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Abstract. We present an ELLAM (Eulerian-Lagrangian localized adjoint method) scheme for
initial-boundary value problems for advection-reaction partial differential equations in multiple space
dimensions. The derived numerical scheme is not subject to the CFL (Courant-Friedrichs-Lewy)
condition and generates accurate numerical solutions even if large time steps are used. Moreover,
the scheme naturally incorporates boundary conditions into its formulation without any artificial
outflow boundary conditions needed, and conserves mass. An optimal-order error estimate is proved
for the scheme. Numerical experiments are performed to verify the theoretical estimate.
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1. Introduction. Advection-dominated reactive transport partial differential
equations (PDEs) arise in petroleum reservoir simulation, subsurface contaminant
transport, and many other applications, and often present serious numerical diffi-
culties [2, 13]. Space-centered finite difference or finite element methods tend to
generate numerical solutions with severe nonphysical oscillations. Upstream weight-
ing techniques are commonly used in industrial applications to stabilize the numerical
approximations in most large-scale simulators. However, they produce excessive artifi-
cial numerical dispersion, which is of the order of the grid spacing size, and potentially
spurious effects related to the orientation of the grid [13, 21].

Many specialized schemes have been developed to overcome the difficulties men-
tioned. Most such methods are based on upstream weighting techniques. The optimal
test function methods [1, 5] minimize the spatial error and yield an upstream bias in
the resulting schemes. The streamline diffusion finite element method [3, 19] adds a
numerical diffusion only in the direction of streamlines with no crosswind diffusion
introduced. The high resolution methods are well suited for the solution of nonlinear
hyperbolic conservation laws and resolve shock discontinuities in the solutions without
excessive smearing or spurious oscillations [7, 8, 17, 24, 25, 26]. Because of the hyper-
bolic nature of advective transport, many characteristic methods have been developed
to solve advection-dominated PDEs [12, 16, 22, 23, 27]. Traditional forward tracking
or particle tracking methods [16] advance the grids or the mass associated with the
nodes following the characteristics and greatly reduce temporal errors. However, these
methods often distort the evolving grids severely or redistribute the mass to the nodes
in the future time steps in an ad hoc manner. Other characteristic methods, such as
the modified method of characteristics (MMOC) [12], follow the flow by tracking the
characteristics backward from a fixed grid at the current time step and, hence, avoid
the grid distortion or mass redistribution problems. These methods symmetrize and

*The first author was supported in part by DOE Grant No. DE-FG05-95ER 25266 and by ONR
Grant No. N00014-94-1-1163. The second author was supported in part by the funding from the
Climbing Project Foundation of China, Natural Science Foundation of China, and the Morning-side
Mathematics Center of Academia Sinica.

TDepartment of Mathematics, University of South Carolina, Columbia, South Carolina 29208

iDepartment of Mathematics, Dalian University of Technology, Dalian 116024, China

§Tnstitute for Scientific Computation, Texas A&M University, College Station, Texas 77843-3404

1



stabilize the governing equations, greatly reduce temporal errors and so allow for large
time steps in a simulation without the loss of accuracy, and eliminate the excessive
numerical dispersion and grid orientation effects [13]. However, many characteristic
methods fail to conserve mass, which is of great concern in virtually all applications.

The difficulties encountered by numerical methods for advection-reaction PDEs
are also reflected in their suboptimal order convergence rates. The linear Galerkin
finite element method and upstream weighting method were proven to have a sub-
optimal order convergence rate of O(h + At) in L? (where h and At are the sizes
of the spatial grids and time steps, respectively) [18]. Despite that characteristic
methods have greatly improved accuracy and efficiency, they considerably increase
the complexities in their theoretical analyses. The best available estimate for the
MMOC (with approximating spaces of piecewise polynomials of degree at most m on
a general finite element mesh) for multidimensional linear advection PDEs is only of
a suboptimal order O(h™ + At) in L?, which was proven in [10] under a periodic as-
sumption. It is only in the context of one-dimensional, constant-coefficient advection
equation with a periodic data that an optimal-order convergence rate of O(h% + At)
in L? was proven for the corresponding MMOC under a fairly restrictive assumption
that At = O(h?) [9)].

The Eulerian-Lagrangian localized adjoint method (ELLAM) was originally pre-
sented in [4] for the solution of one-dimensional, constant-coefficient advection-diffusion
PDEs. The ELLAM framework provides a mass-conservative, characteristic solution
procedure, and overcomes the principal shortcoming of many characteristic methods
while maintaining their numerical advantages. We previously developed an ELLAM
scheme for advection-reaction PDEs, which generates a well-conditioned, symmetric
and positive-definite coefficient matrix and can be solved efficiently by, for example,
the conjugate gradient method in an optimal order number of iterations without any
preconditioning needed. The numerical experiments showed that the ELLAM scheme
often outperforms many widely used and well received methods [28, 29]. Furthermore,
in contrast to many previous methods that either impose a periodicity assumption on
the advection-reaction PDEs or require an artificial outflow boundary condition be
supplemented, the ELLAM scheme naturally incorporates inflow boundary conditions
into its formulation without any artificial outflow boundary conditions needed, and
conserves mass.

The theoretical analysis for ELLAM schemes introduces further difficulties to the
already fairly complicated analyses of characteristic methods. These issues include si-
multaneous a priori estimates for unknowns in interior and at outflow boundaries, and
those due to the special treatment of the inflow boundary for mass conservation. Pre-
viously, the authors derived an optimal order error estimate for the ELLAM scheme
for the initial-boundary value problems for one-dimensional advection-reaction PDEs
[14, 15], without requiring the periodic assumption or the restriction that At = O(h?).
In this paper we derive an optimal order error estimate for the ELLAM scheme for the
initial-boundary value problems of multidimensional, advection-reaction PDEs. Be-
cause the techniques used in analyzing the one-dimensional ELLAM scheme depends
on the Sobolev embedding theorem that the Sobolev space H'(Q) — C(Q) (the space
of all continuous functions) which is true only in one space dimension, the analyses
in [14, 15] would not carry over to multi-dimensional problems. In this paper we
utilize the blending or Boolean interpolation [11, 20] and adopt a different approach
to derive the error estimate. Then we perform numerical experiments to verify the
theoretically proven convergence rates.



The rest of the paper is organized as follows. In Section 2, we present an ELLAM
scheme. In Section 3, we introduce some preliminary notions and blending interpo-
lation estimates. In Section 4, we derive the main result, an optimal-order L? error
estimate. In Sections 5-8, we prove some lemmas used in Section 4. In Section 9, we
perform numerical experiments to verify the theoretical estimates.

2. An ELLAM Formulation. We consider the following initial-boundary value
problem for the advection-reaction PDE

ur(x,t) + V- (vu(x, 1)) + R(x,t)u = f(x,t), (x,t) € Qx(0,T],
(2.1) u(x,t) = g(x,t), x € S
U(X70) = UO(X)7 X € Q7

where Q = (a,b) x (¢,d) is a rectangular domain with the boundary T' := 0Q.
v(x,t) = (Vi(x,t), Va(x,t)) is a velocity field, R(x,t) is a first-order reaction coeffi-
cient, f(x,t) is a given function describing source terms, and u(x,t) is the unknown
function representing the solute concentration of a dissolved substance. S) is the
space-time inflow boundary defined by

s = {(x,t) €T x [0,T] | v(x,¢) - n(z) < 0}7

with n(x) being the unit outward normal. g(x,t) and ug(x) are the prescribed inflow
boundary and initial conditions, respectively.

2.1. Characteristic Tracking and Partitions of the Domain. Let N be a
positive integer. We define a partition of the time interval [0, T] by

t" :=nAt, =0,1,...,N, with At:= —

)

Multiplying the governing PDE in (2.1) by space-time test functions w(x,t) that are
continuous and piecewise smooth, vanish outside the space-time strip Q x (7, #"+1],
and are discontinuous in time at time ¢", we obtain a space-time weak formulation

tn+1

/Q u(x, " w(x, 1) dx + /t" /v n(x) u(x, t)w(x, t)dsdt
(2.2) /”+1 / X, t) (wt +v Vw— Rw) (x, ¢)dxdt

tn+1
:/ u(x, t™)w (xt”dx+/ /fxt (x, t)dxdt,
Q tn
where w(x, %) := flil}l w(x,t), which takes into account the fact that w(z,t) is dis-
b—17}
continuous in time at time t”, and
SV i={(x, 1) € T x [t",#"+1] | v(x,t) -n(z) < 0},

(2.3) SN ={(x, 1) € T x [t",1"H1] | v(x,t) -n(z) = 0},
S,(lo) ={(x,t) e T x [t",t""'] | v(x,t) -n(z) > 0}.

In the ELLAM framework, we choose the test functions w to satisfy the adjoint
equation of the governing PDE in (2.1)

(2.4) wt +v-Vw— Rw = 0.
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Equation (2.4) implies that the test functions w should vary exponentially along the
characteristics defined by the ordinary differential equation

(2.5) Z—’o‘ v(x,0).

Because one cannot solve (2.5) exactly in practice, one has to use numerical means.
For simplicity, we use an Euler quadrature to approximate the characteristics. For
any x € , we define an approximate characteristic r(f; x, #"*1) emanating backward
from x at time t"*! by

(26)  rBx ) = x— v ) 2 6), 6 e [ (x), )
where t*(x) is the time instant when r(6; x, t"T1) backtracks to the boundary T during
the time period [t",¢"T!], and t*(x) := t" otherwise.

For any (x,t) € 59 we define an approximate characteristic r(6; x,t) extending
backward from (x,t) by

(2.7) r(6;x,t) :=x—v(x,t)(t —0), 0€]t'(x,t),t],

where t*(x, t) is the time instant when r(0; x,t) backtracks to the boundary ' during
the time period [t", t], and t*(x,t) := t" otherwise. To accurately measure the effect of
the reaction and source terms on a particle traveling from the previous time t” or the
inflow boundary Sr(ll) to the current time #"*! or the outflow boundary S,(lo), we define
location-dependent time steps At/ (x) = ¢! — t*(x) and At(O)(x,t) 1=t — t*(x, 1).

Instead of defining the test functions w to be exponential along the characteris-
tics determined by (2.5), we define the test functions w to be exponential along the
approximate characteristics defined by (2.6) and (2.7)

(2.8) w(r(6; x,1),0) := w(x, t)e FEHE=0)
where 6 € [t*(x),t" "] for (%,£) = (x,t""") with x € Q and 6 € [t*(x,t),t] for
(%,0) = (x,1) € 5

2.2. A Reference Equation. We now evaluate the second term on the right-
hand side of (2.2). To avoid confusion we replace the dummy variables x and ¢ in this

term by y and 4, and reserve x and t for use in  at time "' or at the space-time
outflow boundary S,(lo). We define

Q(O)(f)) ={xeQ | Iyelf, "], st.r(y;x,0) €T},

2.9

(29) @) ={xeQ | Iy, € SS with vy et 6], st. x =r(0;y,7)}.
Namely, Q(9)(f) C Q is the set of points that will flow out of Q during the time period
[0, t"+1] and Q) (8) C Q is the set of points that flowed into  during the time period
[t", 0]

For any y € Q\Q(©)(#), there exists an x € Q such that y = r(f;x,t"*!).
Similarly, for any y € Q(©)(8), there exists a pair (x,t) € 59 such that y =r(6;x,1).

Hence
gt
/ /f v, w(y,0) dydf
n+1
(2.10) / / r(0;x,t""),0) w(r(d;x,t" "), ) drdf
tn 0\Q(0) (6

gt
/ / r(6;x,t),0) w(r(f;x,t),0) drdd.
Q) (g



Enforcing the backward Euler quadrature at ¢"+! to the first term yields

gt
/ / r(6;x,t"),0) w(r(;x,t" 1), 0) drdf
2\0(0) (8
t"+1
/ / r(6;x,t" ), 0) w(r(;x,t""),0) detJ(8;x,t" ") dhdx
(2.11) e -
- / f(x, t" T Hw(x, t" ) [/ e RO =0 g0 | gx + B, (f,w)
Q t*(x)

B / W (o, ) o, 7 o (o, 17 )b+ By (f, ),
JQ

N A . . .
where detJ(0;x,t"*!) := det(%) is the Jacobian determinant of the trans-

formation from r to x. WU (x, #7+1) 1= (1—e~ FOat" A ())  R(x n+1) if R(x, tnH)) #
0 and W (x,#"*+1) := At (x) otherwise. E;(f,w) is defined by

(2.12) / / r(6;x, "), 6) detI (6; x, ") — f(x, ")

xw(x, 7‘”“) —ROTH T =0) go

The second term on the right-hand side of (2.10) is written as

tn+1

r(0;x,t),0) w(r(d;x,t),0) drdf
tn Q(O)

/ / r(0;x,t),0)w(r(f;x,t),0)detI(0;x,t)v(x,t) - n(x)dhdS
2 13 S(O) t*(x,t)

7/ v(x,t) - n(x)f(x, w(x,t) [/tt( \ e D=0 ag | dS + By (f, w)

5

= Jo v(x,t) - n(X)\I'(Q)(x,t)f(x,t) w(x,t) dS + Ex(f, w),

where ¥ (x,t) := (1 — e’R(x’t)At(o)(x’t)/R(x,t) if R(x,t) # 0 and ) (x,1) :=
AtO)(x,t) otherwise. By (f,w) is defined by

Ey(f,w) := /9(0)/ n(x)|f(r(0;x,t),0) detJ(6;x,t)
—f( xt w(x, t)e” BeDE=0) ggqs.

(2.14)

Substituting (2.10), (2.11), and (2.13) for the second term on the right-hand side
of (2.2) and incorporating the inflow boundary condition in (2.1) into (2.2), we obtain
a weak formulation for the governing PDE in (2.1)

/ u(x, 1" w(x, t" ) dx + / )v(x,t) ‘n(x) u(x,t)w(x,t)dS
Ja

Jsto

:/u(x,tn)w(x7ti)dx+/ \I;(1)(X7tn+l)f(x’tn+1)w(x’tn+1)dx
9]

Q

o v(x,t) - n(x) 3 (x, 1) f(x,1) w(x,t) dS
Jst

- /(r) v(x,t) -n(x) g(x,t)w(x,t)dS + E(w),
Js¢

(2.15)
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with
E(w) = Ei(f,w)+ Ex(f,w)

tn+1

(2.16)
/ / x,t)(ws + v - Vw — Rw)(x,t)dxdt.

2.3. A Numerical Scheme. We define a uniform rectangular partition on 2

b_
Te: zi=a+ildz, i=1,2,....1, with Az:= -2
(2.17) al

TY: yj:=a+jAy, 7=1,2,...,J, with Ay:= ;c

Let h = [(Az)?> 4+ (Ay)?]*/? be the diameter of the partition, we assume that the
partition is quasi-uniform, i.e.,

h

<— <M
~ min{Az, Ay} 1 < oo

Without loss of generality, we assume that Vi (x,t) and V,(x,t) are positive on the
space-time boundary I" x [0, T']. In this case, the spatial inflow and outflow boundaries
') and T©) are independent of time, and the ST(lI) and S,(lo) defined in (2.3) are
reduced to

={(a,y) | y € [e,d]} U{(z, \TEab}S (1) [gn g +1],

2.18
(218) ={(b.y) |y €le,d} U{(z |a:€ab}S ()x[t”,t”“].

Notice that during the time period [t",#"*'], the number of spatial degrees of
freedom crossing the outflow boundary S,(lo) is essentially the Courant number in the

normal direction. To preserve the information, we should refine in time at the outflow
boundary Sr(LO) with the same number of degrees of freedom. Let

Cr9 = max {

Vi (x, 1) At v2<x7t)At}
(x,t)eSO)

Ax ’ Ay

be the Courant number with [Cr(?)] being its integer part. We define a local refine-
ment in time at the space-time outflow boundary S o) by

At

(2.19) T tpgp:=t"Tt —kAt;, k=0,1,...,IC, with Aty := o

with IC = [Cr(@)]+1. The combination of the local refinement (2.19) with the spatial

partition (2.17) forms a partition on the space-time boundary S
Let ¢(x) be any piecewise-bilinear function defined on Q with the partition 7% x
TY, and ¢(x,t) be any piecewise-bilinear function on the space-time outflow boundary

S,(lo) with the partition 7% x Tt or 7Y x T, then the expression (2.8) leads to the
following definitions of the test functions w(x,t) in the space-time strip Q x [t",#"+1]

w(r(@;x,471),0) = g(x)e Bt -0) g e [1+(x), 47 ], x € T,
w(r(B;x,1),0) = ¢(x, t)e BN g e [t(x,1),1], (x,1) € S,

where t*(x) and t*(x,t) are defined below (2.7).
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With the known solution u(x,#™) on € at time " and the inflow boundary condi-

tion on SY), the weak formulation (2.15) solves for u(x, t"*1) on Q at time #"*! and

(0)

u(x,t) on the space-time outflow boundary S;,”’ with no equations being imposed on

S,(ll) at time t"*! or on S,(lo) at time " [4]. However, to conserve mass, all the test
functions in the numerical scheme should sum to one on Q at time ¢"*' and on the
space-time outflow boundary S, ©) . Therefore, we add the basis functions at the nodes
on S (©) at " to those at their nelghborlng nodes on S ) at tn,1c—1, leading to the
modified nodal basis functions d)z J.k and ¢), j.k- To maintain the stability and coerciv-
ity of the ELLAM scheme, we use these modified basis functions for both trial and test
functions. Similarly, we add the basis functions of the test functions at the nodes on
S with ¢ = £+ to those at their neighboring nodes on Q at time ¢"*!. For exam-
ple, at the nodes x; ; (j = 1,2,...,.J) the basis functions ¢ j(X) := ¢g j(X) + ¢1.;(x)
are constant in z direction on the interval [zg,z1]. At all other nodes that are not
adjacent to a node on SS) at 71 the functions ¢ij = b ;. One can easily see that
the test functions w(x,t) defined this way sum to one on § at time #"*! and on the
space-time outflow boundary S,(lo). However, to have second-order accuracy in space,
we cannot use g{),j(x) as the same basis functions for the trial functions in (2.20).
Instead, we use the standard bilinear functions ¢; j(x) on Q at time ¢"*' for the trial
functions. In summary, the trial functions are defined on Q at time ¢"*! and on the
space-time outflow boundary 5’7(,,0), which have the following expressions under the
assumption (2.18)

J oI I
U, tm) =3 0D Uit )i (%) + Y g(xi0." )0 (x)
j=1i=1 i=0
J J—
+ Zg(xo7_i7tn+1)¢0,,7'(x)= X € Q7
(2:20) e
Ux,t) =Y Y UXrj,tap)rr(x1)
J=0 k=0
1 1C-1
+Z Z U(Xi g, k) ik (x,t),  (x,1) € S,
i=0 k=0

where x;; = (2;,y;). ¢i;(x) (0 < i <I,0 <j < J) are the nodal basis func-
tions satisfying ¢; j(X;.m) = diy 0jm, where 6, ; = 1 if i = j and 0 otherwise.
érjk(x,t) (0 < j < J)and ¢;sr(x,t) (0 < i < I) are the nodal basis functions
satisfying @1 j x(X1.1,tnm) = 651 Okm and @i gk (Xi.15 tnm) = 0it Okom- Gk = P1jik
and @i sk = bi.sk for k =0,1,...,IC =2, and ¢1 j1c-1 = ¢rj1c—1 + ¢r,j,1c and
Gi. 1101 = $i,710-1 + Ji.51C-

Incorporating the trial and test functions into (2.15) and dropping the error term
on the right-hand side, we obtain the following ELLAM scheme

/ ( tn+1) ( tn+1)dx+/s(o) v-on U(x7t)1f)(x,t)d5

n

(2.21) U(x, t")w xtn)dx+/xp“>(x.tn+1)f( ") (x, 1) dx
Q

(O)

\\

A (x,t)v -n f(x,t)i(x,t) dS — / v -ng(x,t) w(x,t)dS,

7



where U(x,0) has the same form as (2.20) and is defined to be the L? projection of
ug(x) given in (2.1).

It is easy to see that the ELLAM scheme (2.21) generates a regularly struc-
tured, well-conditioned, symmetric and positive-definite coefficient matrix. Hence,
the resulting algebraic system can be solved efficiently by, for example, the conjugate
gradient method in an optimal order number of iterations without any precondition-
ing needed. Moreover, in contrast to many previous methods which either impose a
periodicity assumption on the advection-reaction PDE in (2.1) or require an artificial
outflow boundary condition be supplemented, the ELLAM scheme (2.21) naturally
incorporates the inflow boundary condition in (2.1) into its formulation and yields a
mass-conservative scheme without any artificial outflow boundary conditions needed.
Furthermore, by a judicious choice of the test functions that appear in the weak form
(2.2), the relative importance of the advection and reaction components in the gov-
erning PDE in (2.1) is directly incorporated into the ELLAM scheme (2.21). We refer
readers to [28, 29] for more detailed information on the implementational issues of the
ELLAM scheme.

3. Preliminaries and Blending Interpolation.

3.1. Preliminary Notions. Let LP(Q2), 1 < p < +oc, be the standard normed
spaces of p-th power Lebesgue integrable functions. Then we define the Sobolev spaces

0" v(z,y)

ooy © LP(Q), 0<i+j< m}

Wm™P(Q) = {7)(X)
with the norms

1
78"’“1)(.7:,1/) ’ -| 1<p<+o0

[
jp3

iyd )
lollwm.r@) = 0<itj<m 83: dy L7 (Q)
O tiy(x,
max || 20@:Y) =4
o<iti<m || 0z'0y! || (g

In particular, we let H™(Q) = W™2(Q) and H°(Q) = L?(Q). In addition, for
1 <p, ¢ < +oo we define the normed spaces

LA(ty, t2; W™P(Q)) =
{’IU(X,t) ‘ ’U)(-,t) : (t17t2) — Wm,p(Q% ||w('7t)||Wm”’(Q) € Lq(tht?)}

with the norms

||w||Lq(t1,tz;W’"~F(Q))

I
3
=
s

3
3
=

(3.1)

||w||£m(o,T;L2(Q)) = énr%XNHw(wtn)HH(Q)-

Let p(z) € Cla,b], the space of continuous functions on [a,b], and 7% be a par-

tition on [a,b] given in (2.17). We define II* to be an interpolation operator from
Cla, b] to the space of piecewise-linear functions on [a, b] with the partition 7%

(T p) () = p(a; 1) (2) + p(z)e\P (2), 1<i<I,

[@i—1,2i]
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with
T — & r — i1

Wy .— 2y .— . . <<
st, (ZE) Az 3 ¢1 (ZE) Az ) $€[$Z,]7wz], 1_Z_I

Similarly, for any gq(z,y) € C(Q), the space of continuous functions on Q, we
define TI' to be an interpolation operator from C(Q2) to Qn(€2), the space of piecewise
bilinear functions on € with the partition 7% x T¥ defined in (2.17)

(1) (. y)]|

= (I"1%q)(z,y) = (MII"q)(z,y)
2
= 3 @it Yiam2)d (@), 1<i<T 1<j<,

I,m=1
where
(1m) — 4D (m) 0= [ . 4 .
b; ; (z,y) =0 ($)¢J (). (@,9) € Qij = [zia, @] x [yj-1,y;],
1<l,m<2, 1<i<I, 1<j<..
It is well known that the following estimates hold [6]
HHIQ*QHW"“P(Q) < M hZ*mHQHW%P(Q): Vg € H*(Q), m=0,1,

lallwm~o@y < M bh" gl Vg € Qn(®), m=0,1

Although the estimate in (3.2) is of optimal-order, it is not refined enough. We
need a more refined expansion in our analysis. For example, it is well known that in
the one-dimensional case, the following error expansions hold

(3.2)

T (m d" p(a) :
I*p)(x) — p(x = Kf)a;wida, 1<i<1I,
sy P -@| = [ KM e S
m =1,2,

where the Kernels Ki(])(a; x) and K? (cv; ) are defined by

i

B (1) _ 7.’131' — T '
(3.4) KWaz) = ¢ (@) Az’ o € [ri1, ],
) (g o Ca—a
¢; (x) = Ap a € [z, x],
and
¢(1) (T) (a - .’171',71) = (wz — x)(a — wii]) , € [.’I,‘i,l,.’]?],
(2) ¢ .y — g
(3:3) K@) = (2) (z — CUifAlsr(CUi —a)
¢;" (z) (zi — @) = Ar , Q€ [z, z;].

Equation (3.3) holds for p € H™(a,b) with m =1 or 2.

3.2. Blending Interpolation. To derive an analogous expansion for the er-
ror of bilinear interpolation (I'q)(z,y) — q(z,y), we utilize the blending or Boolean
interpolation (TT®q)(x,y) [11, 20] defined by

(M) (z.y)|_ = (07 + T — [I*I"q) (=, y)

i3

2

= Z [Q(ﬂfz#lf% y)¢z(.l) (z) + q(=, yj+l72)¢);.l) (y)
=1
2

I . .
- q(wi+1727yj+m72)¢1('7}m) (z,y), 1<i<I,1<j<

l,m=1

9



Using (3.3), we obtain the following error expansions for the blending interpolant,

[Pq)(z,y) — qla,y) |

ZT; & 1
=—(I"=1) / K'(l)(a;w)m(my)da
. ! dal

~ (I~ (117~ Dl )|

(3.6) .
Yi T; (1,m) l+mq
- /y]- s 1Kz'7j (a/BaT/y)W(aaﬂ)dadﬂa
1<i<I, 1<j<J, 1<Il,m<2,
with
lm l m
(3.7) K5 (0 Bimy) = K (as2) K™ (B;y).

Equation (3.6) holds for ¢ € H'*™(Q) with 1 <I,m < 2.
Using (3.3), we obtain an expansion for (ITI' — TT®)q(z,y)

- [ny(nm ~1)+ iI“(Hy - I)}q(ﬂﬁ Y) |-

i,

—11 [ K (032)g0a (0, y)da + T / " KD (8:9)435(x. B)dB
w; Timt Yi it
(3.8) = KZ.(Q)(a;m)quaa(a,y)da + / ng (B; y) I qap(x, B)dB

ST Yi—1

:/wz Ki@)(a Z)Gaa(a,y da+/ K (Ba y)aps(z, B)dp

17
it

[ R s o p)dads
’ / K (oz Bz, y)qaps (@, B)dadf, 1<i<I, 1<j<.J.

Yj—1

Using (3.6) and (3.8), we obtain an error expansion for (II! — I)q

+ (1P — Dg(z, y)|_

i3

x; / yj
o) = [ K aada+ [ K G asate 915

JIri—1 JYj—1
Y Ti 6?
(m,3—m) . q
+ /Ujl '/m“ K;; (a,ﬂ,m,y)m(a,ﬂ)dadﬂ,

1<i<I, 1<j<.J m=12.

3.3. Notations. To derive an optimal-order error estimate for the global trun-
cation errors

e(x,t") = U(x,t") —u(x,t"), x€Q, n=0,1,..., N,
e(x,t) =Uxt) —uxt), (xt)eS?, n=01,...N-1,
we introduce the following auxiliary functions in light of the definition of the trial

functions U in (2.20):
10



I

J I
HIU(X ") :ZZU Xi,j, 1 Qszy( x) + Z (X207 )QSZO( )

i=1 i=0

J
+ZQ(X07_i7tn)QSOJ'(X)7 Xeﬁz n:0:17"':N:
(3_10) ]711(' 1
u(Xr,j,tn k)¢1]k(x t)
w(Xi g, tn 1) bi gk (%,1),
(xﬂe$9 n=01,...,N -1

Then we can decompose the global truncation errors e(x,t") for x € Q and e(x, t)
for (x,t) € S') as follows

e(x7tn) :f(x=tn)—7’](x7tn)= X€ﬁ7 n:071:"':N:
e(x,t) =E&(xt) — n(x, 1), (x,t) € S, m=0,1,...,N -1,
with
§(x, 1) = U(x, ") — Mu(x, "),  &(x,1) = U(x,t) — Mu(x, 1),
(311) TI(X: ) = HI (X fn) - “‘(X7tn)7 U(X:t) = HI“‘(Xat) - “‘(X7t)7

xeQ, n=0,1,...,N, (x,t)eS?, n=0,1,...,N—-1.
Notice that the error estimates for n(x, t") and n(x, t) are known from (3.2), (3.3),
and (3.9). Our main objective is to derive an optimal-order error estimate for &(x, t")

and £(x,t). ;From definitions (2.20) and (3.10), we obtain the following expressions
for £(x,t") and &(x,t)

J I
£(X7tn) :ZZ£(X1]7 )¢7J( ) XEﬁ, n:O,l,...,N,

j=1i=1
J—11C—1
{(x,t) = §(x1,j5 tn k) P15k (X, 1)
7=0 k=0
I 1c-1
Y i tag)bian(x,1)
i=0 k=0
x,0) €S, n=0,1,....N—1
We also introduce the following notation for x € Q and n =0,1,..., N
R I 1 I
Ex,1m) =) Y &% 1) (%) + D> E(xia, 1) o (x)
(3.12) jJ:l i=1 i=1
+ €%t boj (X) + E(x1,1, ") o0 ().
Jj=1

11



The following expressions, which come from (3.11) (3.12), will be used frequently
in our theoretical analysis

E(x,t") =nx,t") =0, xeT@ 0<n<N,

£, t") =&y, t"), () € o, ] X [yr,d], n=0,1,...,N,
(3.13) fA(x,t”) = &(z, 1, "), (z,y) € [x1,b] X [e,11], n=10,1,..., N,

£ tn) = £y, t™),  (2.y) € [a,m] x [, n=0,1,..., N,

E€(x,t) =X, tnrc1), x€TO tet" thro ], 0<n< N 1.

We use € to denote an arbitrarily small positive number and M to denote a generic
positive constant, which may assume different values at different places.

4. Main Results. In this section, we derive an optimal-order L? error estimate
for the ELLAM scheme (2.21). Subtracting (2.21) from (2.15) we obtain

/ e(x, "t E(x, " )dx +/ v(x,t) - n(x) e(x,t)é(x,t) dS
Q

§(@)

_ / e(x, t")E(x, 1) dx — E(é).
Q

Then the error equation above is rewritten in terms of £ and n as follows

/ E(x, " E(x, 1" dx + /( )V(X,t) -n(x)&%(x,t)dS
Js(e
(4.1) €(x,1")¢ xf)dx-l—/ n(x, t")E(x, 17 )dx
- / (e k= [ v t) e, D60, 0dS ~ E(@).
Q S50
Using (3.13) we rewrite the first term on the right-hand side of (4.1) as

§0x, 7k 17 dx

//f 7T dx+// E(x, " (zy, y, T ) dx
Y
!
+/ /fX.tn+1 )E(@,yr, ") dx+/ / E(x, ") (@, yr, 7 ) dx

A:
/ / £ 7¢n+l dx + TT E ( fn+])dy
1/1 1

b AA
/f (z,y1,t" ") dr + -

52( L),
We now turn to the right-hand side of (4.1). The first term is decomposed as

| ity ey
:/ €(y7t”)f(y,ti)dy+/ E(y, t")E(y. th)dy
Q\Q(O) (i) Q@)

= £(x*, ") E(x, 1" detJ (17 x, 1" )e BT AL gy
Q\QD) (gn+1)

0, §& 1€y, 1 )dy
Jal

(4.3)

12



= x* 1M E(x, 71 (detI (17 x, 171 )e  BOGTTHAL ) gy
E(x", 1")E(x, X,
Q\Q(D) (7 +1)

+ [ b mE x4 [y ey £y,

Q\QD (¢n+1) o3

where Q) () and Q(9)() are defined in (2.9).
The first and third terms on the right-hand side of equation (4.3) are bounded by

/ E(x* tM)E(x, ") (detJ (87 x, ) ROl 1) dx
Q\Q) (gn+1)

+/ f(y,t”)f(y7ti)dy‘
!l
1 ‘ 1
< Z 2 g - 2 n
< 2/9("0)5 (y, t3)dy + 2/9‘;”6 (y,t")dy

+MAt f(X*7tn)fA(X,tn+l)‘dx

v+ 0iae 1

< +7 / (X f) . n(x)£2 (Xf)ds + = / fQ(y,fn)dy
2 5(0) QE,O

+MAHECe, )32 ) + MAHIECx, £)][3

However, the estimate for the second term on the right—hand side of (4.3) is very
delicate and is derived in Lemma 1 in Section 5. We only present the result here

/ £(x*, 1M E(x, 7+ )dx
Q\QUD) (gn+1)

1 . 1 .
< = fz(x,t"H)dx + = / fz(x,t”)dx
oy 2 Jiro@ (¢ )n(fa bl xfon )
Az [T ) 2 n+1 Ay (4) 2 n+1
(44) + 4 K (mly)f (3317y=t )dy+ 4 K (myl)f (;U:y]:t )d:l?
y1 x1
Az (z1,d) A b*(b,y1)
+ & o,y ")y + <7 & (2,1, 1")da
Y1 Jxy
AzA AzA
Y )(X1 1)K(4)(X1 DE (xp1,t" ) + —yf (x1,1,t")

+MAL|E(x, "L ) + MALIE )]z (0

where
KO = (1- K9) . KOx) :mm{ W"L& ,
(4.5) ) ni1
KW(x) := (1 _ K(“)(x)) ., K©®)(x) := min {17 W}
z*(z,y) =z —Vi(z,y,t" AL, yv*(z,y) =y— Va(z,y, t"T)AL,
(4.6) b (b o nt1 * g n+1
;yl) = b Vl(b,yl,t )Af, d (.’Iil,d) = d VQ(.’IJl,d,t )Afl
Q= (\QD () N ([a, 21] x [ya, d]),
0y = (\QD (1)) N ([a, 1] X [e, 1)),
(4.7) o e
Q3 .= (O\QD @) N ([21,8] x [e, 1)),
Qg = (O\QD (1)) 0 ([, 8] X [yn, d]).
13



Combining (4.3) (4.4), we have bounded the first term on the right-hand side of
(4.1). Like (4.3), we rewrite the second term on the right-hand side of (4.1) as

/n (v, t")E(y, t1)dy
-/ ey + [l ey
\Q(0) (t7) Q@
/ (x*, ") E(x, ") (det.](t”; x, 1) Fx: AT AL 1) dx
\ Q) (¢m+1)
+ nx* ME(x, 17 dx
Javam (gn+1)

* /< V1) mx)n(x" (x, 1), 1")E(x, t)e RO (E=1") gg.
Sno

(4.8)

The first term on the right-hand side of (4.8) is bounded by

x*,t (x, 1" et J(#7; x, {1 ) e ROt — X
[ o 47 Ge 1) (detd (17, 7 e B A1) g
JO\Q (tn+1)

< MAt / n(x*, t)E(x, ")
Q\QU) (¢n+1)

< MAt|n(x,t") ||L2gQ JIEG, ") |2
< MAHE(x, ") [72(0) + MAE A ||7/(x t")]1%2

dx

The second term on the right-hand side of (4.8) and the third term on the right-
hand side of (4.1) are combined in the error analysis. When Cr > 1, where

Cr:= max {

(x,t)€Qx[0,T]

[Vi(x,t)|At |Va(x,t)|At
Ax ' Ay '

h < M At. These two terms are bounded by

/ n(x* t")g(x7t"+])dx—/ n(x, t"“)é(x t" ) dx
Q\Q() (tn+1)

Q

<[ e €t x| [ ot
. Q\Q(’)(t"r+1) JQ

< MIEGe ™) gy (16617 20 + InG )|z )

< Mh2||§(x,t”“)||L2 ||U||Loo 0.7;H2(2)
< MAH[E(x,t")][7 )+ M(At) wll7, o 0,712 (02)) -

When Cr < 1, we decompose these two terms as follows

/ O Gk i [ £, 17
Q\QUD) (gn+1)

Q
g+l

(4.10) -/Q\Q(”(t"+1) l/fn

- n(x, t"TE(x, 1" ) dx
QU (gn+1)

-/ (e, %) — e 7)) G, 174 )
Jo\Qn (gn+1)

14
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The first term on the right-hand side of (4.10) is bounded by

tn+1

/ / ne(x,t)dt f(x7 t"T ) dx
o\Q) (gn+1) | Jyn

g+l 1/2
<o [ [ mend]  Jé e
Q\Q(I) 1y | Jem

< MAHEx, ") 1720 + MIndlZ2(m 1,220
n+1 4
< MAH|E, ") || 72) + MA ||Ut||L2 tn n 1 H? (Q))-

dx

However, the remaining two terms on the right-hand side of (4.10) are more diffi-
cult to bound. The techniques in the previous analyses for MMOC [10, 12] only lead
to a suboptimal order error estimate that does not reflect the strength of the ELLAM
scheme. To derive an optimal-order error estimate, we develop new techniques to
analyze these terms and present the detailed analyses in Lemmas 2 and 3 in Sections
6 and 7; there we obtain

[ et i+ [ [, 1) — o 1) €, 17
JQn) (gn+1) Q\Q(D) (¢n+1)

<er /( v n&?(x,t)dS +51ATA1/[ (xy1) + KO (xy, 1)]52()(1 N ae)
Js©

On

d
+a1ts [ KOG,y (Tl,vf"+1)du+61A1// K (2, y1)& (o, g1, 7+ do
Yy

1

FMALE( ")y + MAE [+ (A07] o 7).

where 1 = 0 for Cr > 1 (recall (4.9)).
The third term on the right-hand side of (4.8) is bounded by

/(0) v nn(X* (X; t)ﬂf”)f(X: t)eR(x7t)(tt")dS
Sn

1/2 1/2
S M |:/;£O) A\ néz(x;t)dsj| |:/S£O) V- n7’]2(X*(X7t)‘tn)dS:|

(4.11) <ey / v -né?(x,t)dS + M n*(x,t")dx
5L Q(O) (¢n)

= /(O) v -né%(x,t)dS + M(At)3||7t(x,t")||§[2(m
s¢

FAMAL 1+ (A2 [[u(x, 1)} ).

where A = 1 if Cr < 1 and 0 otherwise. At the last step we have used (6.2) that will
appear in Section 6.

Recalling (3.10), M'u(x,t) = u(x,tnrc_1) for x € T© and t € [t",t,10 1]
When Cr > 1, h < M At. Hence,

/ o e tdS < MR+ (A2 (Jlusl2, gion, + el o))
< MA2 (Jlusl 2, ggon, + el 1))

where u; is the tangential derivative of u on I and Aty is defined in (2.19).
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When Cr < 1, t,gc_1 = t"+1. So, Mu(x, t) = u(x, t"+1) for (x,1) € S2). Thus,

2
o o / ut(x,ﬁ)dﬁl ds
r© 54

!
/S(O) n*(x,t)dS < MAt/ n?(x,t" " ds + M L
n t
< At flugs|3 + M(At)

07"[2(5(0))) ||uf||,2 S(O))

Combining the two preceeding estimates, we bound the fourth term on the right-
hand side of (4.1):

/s;m v(x,t) - n(x)n(x, t)é(x, )dS
< Us(m v(x,t) - n(x)n? (x7t)d5} e {/5(01 v(x,t) - n(X)SQ(X,t)ds} 1/2

<ey o v(x,t) -n(x)&%(x,t)dS + M o n*(x,t)dS
s'e s'e

< 52/ v(x,1) - n(x)E(x,1)dS + AM AL b*|[ul|7< (o 7.13 2))
s o

(4.12)

M(At)? [||U||r2 tn nt1 H2(Q)) T ||ut||%42(t"7t"+1;l'~{1(Q))]7

where A = 1 if Cr < 1 and 0 otherwise. At the last step we have used the trace
theorem in the Sobolev spaces

(4.13) (s )2y < MJul, )l a0

The last term on the right-hand side of equation (4.1) is estimated in Lemma 4
in Section 8. We obtain

[£@)

<es / v - n£2(x,t)d5' + €3 / EZ(X; th)dx
/59 JQ

(O (tm+1)N([z1,b] x [y1,d])

+esAx [ KO (ay,y)E (21, y, " )dy

Y1
b

(414)  peaAy [ KO (z,y1) (2,91, " )da

Jxq
+e3AzAY K@ (xp 1) K (x1,1) € (x1,1, ") + MAt||£(Xatn+1)||2LQ(Q)
+ MAt||E(x, t)” 2500y T M(At)? ||u||L°° 0,T:H' ()

+ M(AL)? [||f||,2tn ez 1 o,

where f; is the derivative of f along the (approximate) characteristics.
Incorporating (4.2) (4.4), (4.8) (4.12), and (4.14) into (4.1), we obtain

/yléﬁ x, 47+ e+ 5 /52( .1 )y

+20 [ e, f”+1>dr+m Ptk [ vong s
J s

//fxf”+]dx+ //fxf”

l
Ar y ®) (3¢ 1) KD (x1.1) + 81 K (x11) + 861K (x1.1)
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+883K(5)(X1,1)K(6)(X1 )€ (x1,1, ")

Az A
3 y§2(X1,17t" /f z1,y,t")dy + —= /f Ty, t"
Ax d (3) (5) n+1
+5 | [KO@y) + 46+ e KO @1,9)] €@,y 7 )y
Y1
Ay b

[K(4) (z,91) +4(e1 + 53)K(6) (z, 3 )] (z,yr,t" ) dx
(4.15) 4 Ja

+<%+MAt+a+ma+@>AW)(xﬂ-()ﬁ@iMS
+MAHE(R, )2, gion, + MALIECE ") [Fgq) + MALIER, )20
+MAt [n* <At>2} el 0,772 2y + M (A sl om g1 s
MBH g3z gm s, 2 y) + AMAE [B - (A2 lll = 7115 s
+ M (A2 (1|l z(en gm s,y + 1 Frlaom nsszzca

where we have used the fact that

/ €2 (x, t”)dx+/ & (x, ") dx
Ql® (Q\Q (E)) ([ 2,6] X[y
/ fxf”dx-i—/ fxf”dx+/ /EX?‘”
1/1 z1 * w17 " (by1) C
//f xt”dx+— g(m],yt"dy—l——/ SUZJ] t")dz.
y1 Jz d*(z1,d) (b.y1)

In (4.15) we choose £, = g9 = 3 = 1/24. By the definitions of K®)(x) K (x)
n (4.5), we have the following estimates
K®)(x) +4(e1 +e3) KO (x)
2
< [1 _K® (x)] +EO(x) =1 K®(x) [1 - K(5)(x)] <1,
KW(x) +4(e1 +e3) K (x)
2
SP—K@w]+K@@pﬂ—K@®ﬁ—K@@ﬂgL

Cancelling the corresponding terms in (4.15) and then multiplying both sides by
2, we obtain

d b Az d
R e S R /52“/ )
Jyp Jx

T1 YY1

2

2 n+1
t + Z
f( X1,1, ) 3 q(o)

AzA Az (¢
fQ/ / €0 tm)x+ S e t) + 5 [ty
Z Y1

17

v(x,t) - n(x)&(x,t)dS




+% & (x, ul,f")dr-l—MAf/ o v(x,t) - n(x)&(x,t)dS
S
+MAHJE(x, D500, + MAHIECE )32y + MALE(x, )3

+Mﬁtv4(AﬂﬂWMWmﬂm(n+AﬂAﬂHWMwanmm»
M el gt o gy + AMAE [0+ (AO2]ull 0,712
+ M (A0 (|1 20m s,z + Il insr, 120y |

Summing the preceeding equation over n, we obtain
[1€(x, 1) IILz +3 fo fr(mv x,t) n(x)€(x,t)d S
Ax
/ &€ (x, " )dx + —= f (z1,y, ") dy + == / & (z,y1,t"")dx
Y1 Y1

t"+1

AzAy , n .
et s [ [ v nog s
n+1
<MAtZ||§xt )2 +MAt/ N v(x,t) - n(x)&(x, t)dS

[, mwMNWWTWUﬁwﬂNHmmMTmmn
+Mh‘4||“‘t||%2(0,T;H2( )y +AM [ + (At) ]||“||Loc(o,T;HS(Q))
+ M2 (1307, 200) + M 0,7,y |

Taking At sufficiently small such that M A¢ < 1/2 and applying Gronwall’s in-
equality to the previous equation, we obtain the following estimate
||f||ﬁm(0,T;L2(Q)) + ||§||L2(07T;LQ(I“(O)))
< M{h? + At] [||“||L°°(O,T;H2(Q)) + )\||7/f||L°°(07T;H3(Q)):|
+ M At|ug|l 20,01 (0)) + ME w1200, 7, 12(0)
+MAt[||f||L2(0,T;L2(Q)) + ||fr||L2(0,T;L2(Q))]7

(4.16)

where the discrete norm [ - ||« g 7 7.2(q)) is defined in (3.1). A = 1if Cr <1 and 0
otherwise.

Combining (4.16) with the estimate (3.2), we have proven the main theorem

THEOREM 1. Let u(x,t) be the exact solution of (2.1) satisfying u € L>(0,T};
H3(Q)) and uz € L2(0,T; H*(Q)), and U(x,t"™) be the numerical solution given by the
ELLAM scheme (2.21). Then the following optimal-order L? error estimate holds

U = ull oo, 12(0)) T IU = tllp20,7:02(r01))
< M[h2 + At] TIIUIIm(o,T;H?(Q)) + ||U||L°°(0,T;H3(Q))]
+M Atl|ugl| 20,780 (@) + M B uel 20,782 (02))
+ M AL o120 + Il r oy |

(4.17)

where A =1 if Cr <1 and 0 otherwise.

REMARK 1. For simplicity of presentation, we have derived an optimal-order L?
error estimate (4.17) for the ELLAM scheme (2.21) in two space dimensions. Notic-
ing that a similar error expansion to (8.6) for the blending or Boolean interpolation
holds for higher space dimensions. The error estimate (4.17) holds for the ELLAM
scheme defined in higher space dimensions.

18



5. Proof of Lemma 1. The use of the nonconventional test functions @ in the
ELLAM scheme (2.21) requires a very tight estimate (5.1) to bound the second term
on the right-hand side of (4.3), which is proved in Lemma 1 below.

LEMMA 1. Let & and & be defined in (8.11) (8.12). Then the following estimate
holds for the second term on the right-hand side of (4.3)

/ £(x", 1) E(x, 1"V )dx
Jo\QU) (tm+1)

1
& (x, 1" )dx +
4

/ €2 (x, 1")dx
J(Q\QO) (t7))N ([71 b] % [y1,d])

Az
61+ KO )€ 1,7y + 2 / KD (2,y0)€ (1, ") da

Y1

Ax d* (z1,d) b,y1)
T & (a1, y7t")dy+—/ E(x,yr, t")dx
Y
ATA AzA
g 'UK( )(Xll)K(4)(X11)f2(X11,tn+1) Uf (Xllﬂm)

+MALJE(x, )17 () + MALE(x, t)][7

where K®)(x) and KW (x) are defined in (4.5).
Proof. We prove this lemma by considering two different cases.
Cask 1: Cr < 1. In this case, the curves a(y) and é(z) defined by

a = 1“1(75” (U) y,fn+1) — (1/) - (&(y),y,t”“)At,
c = T'z(t”;a:7c(a:)7tn+l) (:E) -V (:E,E(:E),tn+])At

sl

(5.2)

o

fall in the regions [a, z1] X [¢,d] and [a, b] X [¢,y1], respectively, where
(0 x, ") = (11 (05, y, "), o (B; 2, y, 7).

Hence, the domain Q\Q) (t"+1) is decomposed as

(5.3) Q\QD ") = QUL U Uy

with € through Q4 being defined in (4.7).
Moreover, the K(3)(x) and K*)(x) defined in (4.5) are now reduced to

n+l1 2 : n+l1 2
Az Ay

In this section we also use the following relations frequently

Vl(may7tn+])At -V (m17y7tn+])At = O(h Af)/ T € [(l,.’L‘l], Y€ [C7d]7
Vi(a, y, t" )AL = Vi(zy, g1, t"T)AL = O(h At), = € [a,m1], y € [e,m],
d(y) —a—-" (337y,tn+])At = O(h At):

or equivalently,
K(g)('p,y) 7[((3)(7"171/) = O(At)a T € [(l,.’]’?l], Yy € [C7d]7
K(S)(w7y) _K(S)(mhy]) :O(At)7 HAS [a=$1]= Yy € [Czy]]‘



We split the left-hand side of (5.1) based on the decomposition (5.3)

/ £(x* 1M E(x, 7+ )dx
Q\QU) (gn+1)

(54) = f(X*7t”)§($],y7tn+l)dx+ f(X*7tn)f(X17],tn+])dx
O Qs

E( 1) E (e, g, " dx + [ E(xT 1)E(x, T dx.
Jas JQu

Applying the first equality in (3.13) to {(z*,y*,t"), we bound the first term on
the right-hand side of (5.4) by

E(x* t"M)E(zr,y, 1" )dx
ol

1ot —a

d .
- 21,y Y E (y, yt 47 de| d
| ey ey %AMA T]u

4T Az
(5.5) < / [7K<3>(x1,y>+MAth \s(why,t”“)s(why*,t”) dy
Y1
Az [? Az [? . n
< [ KO @,y + 5 /f K (0, 9)€ 1,y 1)y
7 Y1 YY1
M AHE(x, 7 B2y + MATIEC, ) 22
where in the first “<” sign of (5.5)7 we have used the fact
T1 * T1 _ n+1 At —
/ x adw:/ {az Vi(z,y, t" ™At a} da
iy AT i) Az
o Tr = Vi(wy,y, ") AL -
:/ |:T Vl(Tlay,f ) a+O(Af) dr
aly) Az
_ Az a(y) —a - ) AR)?
< K(3)(m]7y)_(a(y) a—Vi(z,y,t""")AL) 4 MALh
2 2Ax
Az

< KO (z1,y) + MAt h.

In the second “<” sign, we have used the equivalence between the discrete and con-
tinuous L? norms. Namely, there are two positive constants M and Mz such that

! d
(5.6)  Moll€(x, t" )72y < Y Az / & (@i y, t" ) dy < My|l€(x, ") 1720
The second term on the right-hand side of (5.5) is rewritten as

/K (@1,9)€ (21, 4" 1) dy

d*(z1,d)+O(AtAz)
= K(g)(rlaz) +O(At) 52(,’1,‘172775”)(12
4 Sy (x1 D+0(AtAT)

AT (z1,d)

y*(x1,1)

K (21,9)& (21,y,t")dy + MAL|E(x,t")]]7 20
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Az [ (y —o)?
. < == At)|€? "
(37) T4y (x11 '0a10) + Ok t)]f (x11,87) (Ay)? W

A:U & Tld 2 n ny||2

S a1, )€, 0,0y + MAHIES )0
Y1

AzA 3/27 .

D yK(g) (x1,1) [1 - (K(4)(X1,1)) ]fz(xl,htn)

A Tld 2 n ny|2

JAe a1, 91,9, )y + MALIECE, 1)
71

Combining (5.5) and (5.7) yields an upper bound for the first term on the right-
hand side of (5.4)

E(x*, t")€ (1, y, 1" )dx

A d A 1,
<=2 / KO (@, )€ 21, 9,6 )y + 57 / K® (21, )€ (21, . ") dy
Y1 Y1

(5.8) +A”1’2Ayl((3>(>q 1) [1 - (K(4> (x1. 1))3/2]52(X1 L)

+MALE(x, " )T 0) + MALE(x, 1")]|2q

By symmetry the third term on the right—hand side of (5.4) is bounded by

E(x*, )€ (, yr, 8" ) dx

Ay [P A A W A
= / K a,0)€ (an 0 e + 52 / KO (2,1)€ (2,1, 1) da

(5.9) +A3132AyK(4)(x1 ) [1 = (K(3)(x1 1))3/2]52(;(1 L)
+MALE(x, ") 7200y + MAL[E(x, 87)][72
Let
(5.10) dm :=mina(y), and &, := minc(z),

The second term on the right-hand side of (5.4) is bounded similarly to (5.5)

E(x*, ") E(xq, 1,f"+])dx

Ja,
T1 gk Y %
< ‘f(Xm;th)f(Xl,htn)‘ [/&m wAmadw} [/Em yAZICdy}
AzA
(5.11) < 334 YR (x1,1) KW (x1,0) €011, 8" E(x 1, £7)

+MAL|E(x, "L ) + MALIE )17z (0

Az A
< TS Y )(Xl 1)K(4)(X1 1)[52(X1 17tn+1)+£2(xl,1atn):|

+MAL|E(x, " )172 () + MALE(x, t)][72

We now estimate the last term on the right-hand side of (5.4) and obtain
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E(x™, tM)E(x, ") dx

Q
1
(5.12) <5 £(x, t”“)dx+ 5 5 (x*,t")dx
Q
1
<3 & (x t”“)dx—l— 5 f (x*,t") detI ' (t"; x, t" T )dx*
. 1 MAt .
<5 [ @errtax s == [ @(x,tax
Q;

where } is the image of Q4 under the transformation (2.6) with 6 = ¢".

52(x,t”)dx = / &2 (x,t™)dx

J(Q\Q@) (t))N([21,b] % [y1,d])

d*(,’ltl,(i) Tr1
(5.13) + / [/ 52(x,t")dm] dy
Jy1 Jaz*(z1,y)+O(AtAz)
Y1 1
+ / [/ f%x,t")daz] dy
y*(x1,1) [J2*(21,y)+O(AtAz)

b* (b,y1) ¥
+ / / £ (x,t")dy| d.
z1 y* (z,91)+O(AtAz)

We use (3.13) and (5.6) to bound the second term on the right-hand side of (5.13)

d*(,’ltl,(i) Tr1
[ [ € (x,1")dr | dy
Jyr Jaz*(z1,y)+O(AtAz)

*(z1,d) T —
_/y a:hyt)[/T (le)%daH-O(Ath)

Az (z1.d) 3/2
=3 / [1 - (K‘B) (ml,y)) ]52(m1,y,t")dy + MAHE(x, )13 2 q)
Y1

JQy

dy

Likewise, the last term on the right-hand side of (5.13) is bounded by

b* (b,y1) y1 ‘
/ / & (x,t")dy | da
z1 y* (z,91)+O(AtAz)

b (b,y1)
< Ay

— 1— (KW e "Ydx + MA "7
<3 (z,y1) & (z,y,t")dz + €=, )72 (0

T1

The third term on the right-hand side of (5.13) is controlled by

Y1 1
/ [ €2(x, 1")dar | dy
y*(x1,1) |2 (z1,y)+O(AtAz)
Y1
/ / E(x,t")dx
y*(x1,1) [J2*(x11)
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Y1
(5.14)  =E(xi.t / / "y
(x1,1) y*(X1,1)
+MAH[E(x, )] 72(q

)
ATAU [ (K (x1.1) )3/2} [1 — (K(4) (X1,1))3/2}f2 (x1,1,t")
+MAf||£(x "7

Combining (5.12) (5.14), we bound the last term on the right-hand side of (5.4) by

E(x,1M)E(x, 1" )dx

JQu
< 1 52(X;tn+1)dx + 1 / 52(X,tn)dx
2 Ja, 2, (\QO) (7)) ([21,6] X [y1,d])
AzA 3/2 3/2
(515) + Y 1— K(q) (Xl,l) 1— K(4) (Xl,l) 52 (Xl,lytn)
18
A d*(zhd) 3/2 ‘
L () et
U1
Ay (b:y1) 3/2 . i
+=E (1 (KD, p0)) ] € G, ) + MAHIEGE, )30
Ja,

Combining (5.4), (5.8), (5.9), (5.11), and (5.15), we obtain the estimate

/ £(x", tM)E(x, ") dx
Jo\Q) (tm+1)

1 1
<5 | emeixe s €2, 17)dx
Jou J@\2© (%) ([ b x 1))
Az [? Ay [*
+ | KO @@ @yt dy + = / K@ (@50 (2.0, 4™ )da
Y1 x1
AzA
3 yK(3)(X1,1)K(4) (x1,1)€ (31,1, ") + MAtHf(Xath)Hi%Q)
Az (71,d) 2 3/2 n
+E {KO@w+ 5 [1- (K9@0) "]} e
Y1
Ay b* (b,y1) @ 9 @) 3/2 )
0 {K (m;y1)+§[1* (K (-777111)) ]}5 (z,y1,t")dx
AzA 2 8/
Az {K<3> () KD x0) + 2K (xa) [1 - (KO a,)
4 3/2 3/2
(5.16) +5[1— (KD 6an) " |1 - (KD) |

2 3/2
+ gK(4)(X1 1) [1 - (K(B)(Xm)) } }52(3(1,1,75”) + MAt||£(x,t")||%2(Q)

—_

<= E(x, t" ) dx + %/ €2 (x,t")dx

= 2 Ja, (Q\0) (t%))1([1,b] X [y1,d])

Az (¢ Ay [°
+Tw/ K® (a1, 9)€ (z1,y, " )dy + Ty/ KW (@,1)€ (0, g1, " )da
Y1 Jx
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-l—%/yl mhd)f 2(x1,y, f”)dy-l——/ Y € (x,y1,t")dx
+A338AyK(3)(X1 DE® (x11)€ (x1,1,8"H) + %52()(1,1:75”)
+MAL|E(x, 1" 72 () + MALE(x, t")][7-
where we have used the facts
a + Z2(1-a%?%) <1, Va € [0,1],
af + Z2a(1-B%2)+28(1-a3?) + 2 (1-a*?)(1-p%?)
= [a+2(1-a3?)][B+2(1-p%?)] <1, Va, 8 € [0,1].

Cask 2: Cr > 1. If Vi(x,t) and Via(x,t) are constant, then Cr > 1 implies that
Qy, Oy, and Q3 in the decomposition (5.3) are empty sets § and Q\QU) (#"+1) falls
into the region [z1,b] x [y1,d]. Namely,

(5.17) ANQD () € [21,b] X [y1,d], and  Q = Qy = Q3 = 0.

Nevertheless, (5.17) is not necessarily true when Vj(x,t) and Va(x,t) are variables,
because a(y) and é(z) defined by (5.2) can fall in any one of [a,21] X [y1,d], [a, 1]
[c,y1], [z1,0] X [e,y1], and [z1,b] X [y1,d] for different = and y.

Here we first assume (5.17) in deriving an estimate, and then extend the estimate
to a general case. Under the assumption (5.17), (5.13) is now reduced to

& (x,1")dx
A

Y1 1
(5.18) = / 2 (x,1")dx + / [/ £2( x,t")dm} dy
J(Q\QO) (7)) N([w1,6] x [y1,d]) .
d*(z1,d) [ par boa)

+/ { fQ(X,t”)da:} dy —|—/ {/ £ (x, t”)dy} dz.

Y a
The last two terms on the right-hand side of (5.18) are bounded by
d*(z1,d b,y1)
/ {/ (x, f”)dr} dy + / {/ (x, f”)du} dx
D y D

d* (z1,d) x1 _ 2
= /y1 & (z1,y,t") {/ﬂ %dw} dy

b* (b,y1) Y1 DAY
+/ e | [ Y dy} "

;111
& (w1, u,f")du+—/ & (x,y1,t")dz.

AT “(z1,d)
3

S

The second term on the right-hand side of (5.18) is bounded by

[P oo

(5.19) =& (x11,1") U %dm] UU (ZZA_ C?Qdy} e PN

y)? 9
24



Therefore, (5.4) and (5.18) (5.19) yield

/ £(x" 1M E(x, 7+ )dx
Q\QU) (gn+1)

1 1+ MAt .
<= 62(X=tn+l)dx + ; fz(x,t”)dx
2 o, 2 Jo
1 2 n+1 1 2 n
(5.20) <= E(x, t"T )dx + = & (x,t")dx
2 Ja, 2 Ji\0© tm)n ([whb]X[Und])
Az d* (z1,d) b,y1)
+? E(x1,y, t")dy + —/ & (x,y,t")dx
Y1
AzAy n n
+—g & (x1,1,t") + MAH|E(X, ™)1 72(0

When Cr > 1 and (5.17) is not valid, the upper bound for the left-hand side of
(5.1) will be a combination of (5.16) and (5.20). Namely, if a(y) or &(z) falls in [z, b] x
[y1,d] locally, then (5.20) holds. Otherwise, (5.16) holds but with a modification on
the limits of the integrals in the third, fourth, and seventh terms on the right-hand
side of (5.16). Combining all the cases leads to the estimate presented in (5.1). O

6. Proof of Lemma 2. Notice that standard techniques only lead to the fol-
lowing suboptimal-order estimate for the second term on the right-hand side of (4.10)

/ 0, 7 E (x, 7 ) dx
Q) (gn+1)

< M||§(X= t”“)um(nm(tnﬂ))||77(X= tn+])||1L2(Q(I)(t"+1))
< MP2|JE(x, ") | p2 o vy 1 (8T | g2 (i (1))

< MAt|&(x, ,m+1)||’2 Qi (gni1y) + M{h,4 + (At)ﬂ H“’(X’tn+1)”%[/2v°°(9)'

To prove an optimal-order estimate for the scheme (2.21), we need one extra At in
the second term on right-hand side of the above estimate. But we cannot use the
following estimate

€6, " T[T @ mayy £ MAHIEE T e (i (g 1))

since the right-hand side is out of control. Hence, we have to prove the following
superconvergence estimates.
LEMMA 2. The following estimates hold for u(x,t) € L>(0,T; H3(Q))

/ 0, 7 E(x, 7 ) dx
JQUn (gn+1)

d b
<eAr [ K (zy,y)& (z1,y, " )dy +eAy / KO (2,90)& (2, y1,t" ) dz
Jxq

Y1

(6.1) +5ATAU{ J(x11) + K(G)(XLl)A?’} & (x11, ") + MAH[E(x, tn+1)||%2(9)

+MAY [h/‘ + (Atﬂ||u,(x,tn+1)||§,3(m, for Cr<1,

/ n?(x,t")dx
. Q(O)(tn)

(62) < M(AY fulx, ") 320y + AMAL [B* + (A0)2] [[u(x, )33 ).
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where A =1 if Cr < 1 and 0 otherwise.
Proof. Using the ay, and ¢, in (5.10), we write the left-hand side of (6.1) as

/ n(x, ) E (x, £ dx
QN (gn+1)

_ Z/ / x, "€ (@, y, 1" )dx

Yi—1

(6.3) +/y/ n(x, t" T E(xy 1, 1" dx
+Z/ / (x, t" ") E(z, yr, " )dx

Cm
+/ / (x, ") E(xy 1, ") dx+/ / (x, " T E(xq 1, 8" dx.

Using (3.9) with m = 2, we rewrite the first term on the right-hand side of (6.3)

J

Yj a(y)
Z/y /yn(xt"“)f(a:],%t"“)dx

j=2vYi-1Ja

s a(y) ) Y5 = o) )
/ E(wr,y, 1) / / Ky (B2, y)uaas (a, 5,8 ) dadp
1 a Jyj—1Ja

JYj—1

xr1 Yi .
(6.4) +/ Kl(Q)(a;m)uma(a,y,t"“)da+/ K;z)(ﬂ;y)7155(m,6,t"+1)dﬂ} dxdy.

YYj-1

(From definitions (3.4), (3.5), and (3.7), we have the following upper bounds

K3 (a,Bi2,y) < Au, (z,y) € Qi
(6.5) K2 (Biy) < Ay, vy € [yl
Ky (o) < MAL v € [aa)], y € [emd]

Using (5.6), we bound the first term on the right-hand side of (6.4) by
Y; a(y)
ST ey / / K30 (0,52, y)taas (@, B, 07 dadB | dady
j Y a Yj—1Ja
Yj a(y) . Yj 1
"
ji—17a YYj-17a

1/2
Yi 1
dy [/ / uim,@ (Oé, B: tn+] )dad6‘|
J

) 2
< MAt h°/? Z l/y &z, y, t") dy] [/ / Ul B, t”“)dadﬁl
Yj—1 Yj—1

i=2 LMvi- a
< MAE(, ") Taq) + MAE A fJu(x, 5|17
26

1Aaa5(a,ﬂ,t"+1)‘dadﬂl dxdy

J v;
(6.6) < MAt h? Z/

j=2"Yi-1

f(ﬂf] »Ys tn+])




Yj a(y)
/ 5(7‘1 U:fn+1
1

Jyj—1Ja

/ K (oz ) Uaa (@, y,f”+1)da] dzdy

/aICI
Ja

uaa(a,y,t”*l)da} dy

Uaa (0, y, t"T)

E(xy,y, ") da} dxdy
JYj—1Ja

2 J /y /m1
j=2 Yj—1 7 a

< MAHIE(, "7 ) + CAD? [Julx, " )32 o)

7m,+1)‘

Tl Y,

In (6.5), Kj@)(ﬁ;y) is bounded by Ay instead of At. Therefore, the technique
in deriving (6.7) cannot be used to bound the third term on the right-hand side of
(6.4). We treat this term in a different way. Note that ugg(z, 3,t" ") € H!(a,b). By
Sobolev’s embedding theorem, ugg(z, 3,t" ") is continuous with respect to = € [a, b].
Thus, there exists an z € [a, b] such that

1 b
(6.8) ugs(z, B, ") = E/ ugs(a, B,t" ) da,

and

ugp(z, B, ") + /”“aﬁﬁ(a,ﬁ,t"“)da

b
da+/

Therefore, the third term on the right-hand side of (6.4) is bounded by

/,, B /a E(wr,y, ") {/ K (B y)ugs (=, B, fn+])dﬂ}d7“d1/
<MAyZ/U“/a Vuyl

Yi
< MA AUZ{/ Vialy), y, ") [eCan,y, ) |dy
Yi

(6.10) Vy /

a 1/2
/ Vi(z1,y,t""") + O(Az) Q(wl,yin“)dy] [Ju(x, ") s ()
y

b1

11,,35(.7:,6,15"4'1)‘ =

1 b
(6.9) < ﬂ/ [uga(a, 8.7+ uags(a, B, ") da.

m1:3;’775”4»1) tn+])

ugs(, B,

dﬁ] dxdy

i—1

Yj b
“ﬁﬁ(o‘:B:th)‘dadﬂ + / / Uaﬁﬁ(a,ﬂ,t"“)‘dadﬂl }
JYj—17a

< MA#(Ay)?

d
< EAw/ K® (21, 9)& (21, y,t")dy

+ MAHIE ") []20) + MAE B [Ju(x, t" )l q)
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where we have used the fact that for Cr < 1, the K®(x) and K (x) in (4.5) are
reduced to

[Vo(x, t" 1) | At

Vi (x,t" )| At
3 Ay

K(6) -
AL (x)

KO)(x) =

As in the estimate of (6.4), we use (3.9) to bound the second term on the right-
hand side of (6.3)

X fn+] f( 1’1,tn+])dX

=‘£(xl,l,t"+1) // [/ / K3V (0,83, y)uas (@, 8, 7+ )dads

(6.11) / K (a; ) g (o, y, t" 1) da—l—/ K B, Y)ugs(x, B,t”“)dﬁ] dzdy

= [ecera ) // Ax/C'/a

Y1
+/ M Atlugg(a,y, t™ ) da—l—/ Ay‘ugg(a:,&t"“)

<e AzK®) (x1,1)€ (%11, ") + MAtHf(XJnH)HQL?(Q)

Uaaf (Oé, B: tn+] ) dadﬂ

dﬁ} dzdy

+MAt [h“ + (At)ﬂ ||u(X7t"+1)||2H3(Q)7

where we have used (5.6) and (6.9).

Combining (6.4), (6.6), (6.7), (6.10), and (6.11) yields an upper bound for the
first two terms on the right-hand side of (6.3). The remaining terms can be bounded
similarly. Thus, we have proven (6.1).

We now turn to (6.2) and first prove it for Cr < 1. We rewrite this term as

d b bopd
(6.12) / n? (x,t")dx = / / 0 (x, t")dzdy + / / 7 (x, t")dydz.
J Q) () Je Jb(by) Ja Jd*(x.d)

Using (6.5) and the fact
K (a;2) < MAL, @€ [0 (b,y), b, y € [ed],

we bound the first term on the right-hand side of (6.1)

/d / b ) 02 (x, ") dady
= é/ujjl /b by) {/ / K (v, B; 7, Y)Uaas (a, B, t" ) dadf

2
b Yi .
+ [ KEP(as2)unala,y, ") da + / K§2)(/3;y)uw(m,ﬂ,t”“)dﬂ} dwdy

Jrr—1 JYji—1

Iy yi b
< MZ/ {At (Ax)3Ay/ / ul5(a, B,t" ) dadp
j=1 Yj—1 Yij—1 Y Tr-1
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b

+(AD)? A /

Jar—1

Y b
uia(ahy:tn_'—l)da +At(Ay)? / [/ U%B(Q;B;tn+l)da
Jyj—1 |7/a
2

b
+/ 1Liﬁﬁ(a,ﬂ,t”“)da] dﬂ} dxdy
< MAH[B + (A2, 1) 3o

where we have used (6.9) in estimating the ugg term.
When Cr > 1, h < M At. Hence, we have

/ 0 (x,t")dx < MA*[Ju(x, t")|[72 (o) < M (A lu(x, )72 (q)-
Qo) (tm)

By symmetry, we can also obtain the same upper bound for the second term on the
right-hand side of (6.12). Thus, we have proven (6.2). O

7. Proof of Lemma 3. Standard techniques only generate the following suboptimal-
order estimate

/ [n(x,m o, 1) €, 7
Q\Q(D (¢n+1)
< MAEG ") 20) + MAE B2 {|u(x, ") |52

which then leads to a suboptimal-order estimate of the scheme (2.21) and does not
reflect the strength of the ELLAM scheme. In this section we prove the following
superconvergence estimate

LEMMA 3. If Cr < 1, the following estimate holds for u(x,t) € L>(0,T; H3*(Q))

[ [nee.17) — nioc” )] e, 174
JO\QU) (gn+1)
<e /(O v -né?(x,1)dS + aATAy[ (x1) + K(G)(lel)k?(xl s
b
1 EAZE/ K 33]7 (3317y=tn+])dy+5Ay/ K(G)($:y1)€2($:y1:tn+])d$
+MAEC )30y + MAE [B* + (A2 Julx, ) s ),

where K©®) (x) and K9 (x) are defined in (4.5).
Proof. The left-hand side of (7.1) can be rewritten

[ [, %) — o 1) €, 17
Ja\Q (gn+1)
(1.2 = g (160 )

+ [ [noe.17) — ey )] e, 174
O\Q(D (n+1)
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We substitute the following expression into the second term on the right-hand
side of (7.2)

1
| gt 0le )

1
/ ne(z* +8(z — ), 5", ") (@ — 2*)db,

0

n(may*atn) - n(m*ay*atn)

and then integrate the resulting term by parts with respect to =

/ [, 17) e, )] G, 17 oy
Jo\a (gn+1)
1
= / / [n(?‘ +0(x —z"),y*,t") (x — z"), ]é(m,y,t”“)dmdydf)
0 Jo\QU)(tnt1)
1
(7.3) / (" +0(x —2%),y",t") y,(z - x*)]f(az,y,t”“)dmdydﬁ
0 JOQ\QU) (¢n+1) )
oy [n(m* F6(e )y ) (o 5| &y, 7 drdydd
Q\Q(D (gn+1)
/ / H(b* 4+ 006~ )7 17) (b b)) &by 17+ )dyld

_ /0 /P n(a+6(aly) —a),y™,t") (@ - a)} ¢(ar,y, ") dyd,

where in the last term we have used the second and fourth equalities in (3.13).
Using (4.6) and the fact that

(:I: - T*)'I' = Vlm(m7y7tn+1)At7 y; = 7V2m(may7tn+l)At7

the first and second terms on the right-hand side of (7.3) are bounded by

(1" + 8z — 2%), 5" 47) (@ — @), | €, y, "+ )dadydd
0 Jo\Q) (1n+1)

1
aa - [ [ [ (2" + 8z — 27),9%,#%) g — 2] €. 474 )zt
Q\ QD) (¢n+1) ’

< MAE [EGe ™ [y (In(x, )20y + Atllne (x, ) 22 )
< MAE 66 ™) oy + MAE (W' + (A*R) u(x, ")

For Cr < 1, t, ;o1 = t"T'. The last equality in (3.13) gives £(x,t) = &(x, ")
for t € [t",¢"*']. The fourth term on the right-hand side of (7.3) is bounded by

b* + 0 b— b*) y*7 tn) (b - b*) f(b/ yatn+1)dyd9

! / / n(b* +60(b—b*),y*,t") Vi(b,y,t" &b, y, ") dydh
o Jaw)
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d
A / n(b,y* ") Vi(by, " e, y, 7+ )dydd

/ / / n.(z,y*,t")dz
b*+0(b—b*)

1/2
/Vl(b,y,t"+1)£2(b,y,t”“)dy] [Iln(b Yt L2 (e,a)

Vi (b,y, t")E(b, y, t" ) dydh

< MAt

(A2 (5,17 122

gt
< 5/ / von €(x,1)dS + MAL[R [u(b, g, ") 3 o0

+AL B [lu(x, )32 q ]
gt

<E/tn / v-n £2(x, t)dS+MAt[h4 (At) ]||u(x )12

where at the last step, we have used the trace theorem (4.13).

Since Vi (a(y),y, t" 1) — Vi(x1,y,t" ") = O(Az), we can bound the last term on
the right-hand side of (7.3) similarly. Noting that Vi (a(y),y,t" ') —Vi(z1,y,t" ) =
O(Ax), we have

na+6(aly) —a).y".1") (@ a)}fm,y, 74 dydd | =

a+0
/ n(a,y*,t") / / 2(z,y" f”)dzdﬂ]

[ViG@iy, o) + (Viaty), g ) = 13 (ml,w“))} E(an,y, 1 )dy|

= At

d
<eAx / K@ (@1, 9)€ (21, ") dy + eAxAyK ™) (x11)€ (x1 1, ")

+MAL € )20y + MAL R,y ) [ e.q) + AR u(x, ) 32 |
d

<eAz [ K9(y, )& (a1,y, " )dy + eAzAyK P (x1 1)€ (x11, ")
Y1

+MAL €0 1)) + MAL[A + (A02][[u(x, 1) 32 ),

where at the first “<” sign we have used (5.6) and at the second “<” sign we have
used the trace theorem (4.13).

The second and fourth equalities in (3.13) imply &y (z,y,t""1) =0 for x € [a, 7).
Hence,

/ /Q\Q(r) p) [ (" +0(x — %), y*, t") (T*T)f( 47+ dxdf

‘A"/ / / (2" +6(x — a%),y",1") Vi (x, "), (x, 7+ )dxdf
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= At '/b /C; Vi (x, ") & (x, 7T ) | (%, ™)
(7.5) + /0] /0] %n(:ﬂ +y(1 -6)(z" —2),y +v(y* —y),t")dydb| dx
_ At /b /d Vi (6, 1716 (o, £ ) (x, £7) dx
—At/ / (x, t"THE, (x, t"THn(x, t™")dx

LA /0 /0 / | /E(I) Vi (3, 47 )6, (x, 1)

[(1=0)@" = 2) ma(w +7(1 = )" — ),y + (" — ), ")
+W = y) my(e +7(1 = 0)(@" — ),y +v(y" —y).t")| dxdyde.

Using the inverse inequality in (3.2), we bound the third term on the right-hand
side of (7.5) by

At//// Vi(x, 8" )€ (x, 8"H1)

[(1=0)@" —2) mo(@ +7(1 = )@ =)y + 7" — ), 1)

(" y) my(e+ (1= )" — )y + (" — ) 1")|dxdyas|
< M(AD? h 1€ (%, ") | 22 () llulx, 1) || 52 (q
< MAE[E(x, ") 72 () + M(AD? [u(x, t”)lle @
Recalling the first equality in (3.13), we have &, (z,c,t"*!) = 0. Using the inverse

inequality in (3.2) and the fact that At < M Az for Cr < 1, we bound the second
term on the right-hand side of (7.5) by

Af/ / Vi(x, "€, (x, ") dx

‘ 1/2
)2
A / e U dydw] e, £

b 1/2
< M(AHY?(Ay) ' h? [/ fi(ﬂfayl,tnﬂ)d?’] lu(x, ")l 2 ()

< MAt

< M(A)? [1E(x, ") 12(0) [Ju(x,t™) || m2(0
< MAE [, 8" ) |72 +M(At> [lu(x, t”)llm

We sum the first term on the right-hand side of (7.5) by parts and obtain

At/ / x, t"T)n(x, t") €, (x, t" ) dx
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) Z/ / Va0, ) 87) (i g #71) = E(mica ot | dx
:—/ / V](X,tn+l)n(x=tn)f(b7y=tn+l) dx

(7.6) / / X, 1 (o, ) g, 174 dx

Z/ / V1 x+ Az, y, t”“)—V}(xt"“)dz]

n(x,t") &(z;, y,f”+1) dx

At 2 i ) )
’A_;UZ/ / [U(m-l—Am,y,t ) —n(x,t )}
i=2 /¢ Jria

Vi(w + Az,y, t"T)E(zi, y, 1) dx.

Using (5.6), we bound the third term on the right-hand side of (7.6)

Z / [ [l Ay = Vi) o )eCan .7 s

(7.7) <MA7‘Z/ /

Ti—1

,y,t”“)‘dx

< MAtIE(x, ") 20 In(x ")l 22(0
< MAL||E(x, ") |32 ) + MAL B ||u(x )13

Introducing ¢ (z,y,t) by
Az
0o, ,t) = ulo + Aayyot) - uloyt) = [ walat oy, fda,
J0

we have

77(7" + Am:l/: fn) o 77(-77:1/: fn)
= (' — Du(z + Az, y,t") — (1" = Du(z,y,t") = (I' = Dep(z, y, t7).

We combine the proceeding estimate with (3.2) to obtain

T Il Ly 2
(7.8) :ZZ/ / [(H'I)zp(x,t”) } dx
i v e [Ti—1,2:]%[y;-1,9;]
= (| = D (x, )7 20y < MB* [[(x, ™) |32 0y < MBS [Ju(x, t™)[3a

Using (7.8), we bound the last term on the rlgh‘r hand side of (7.6) by

Z / / (@ + Az, y, t") = n(x,t") | Viz + Az, y, "€ (i, y, 8" dx
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1/2
MAf 2
[Z / / [+ Ay, 1) .y, 1m)] dmdy] G, 1) 120

< MAth2||€ A" D 2@ lJu(x, )]s 0
< MAHE(x, ") 120 + MAE b |u(x, f")llm
where at the first “<” sign, we have used (5.6).

For Cr < 1, the last equality in (3.13) implies £(x,t) = £(x, ") for t € [t7,¢"F1].
Hence, we bound the first term on the right-hand side of (7.6) by

/ / (x, " (x, t")E(b, y, t" ) dx

1/2
MAt 4 rb
>~ A—HW(X f )HT2 wi 17b]><[0d [/ / Vl(bay7tn+1)£2(bay7tn+l)dx‘|
n 1/2
A$)1/2 tn+t
< ﬁhz ||U(X tn)||H2 (Jz1—1,b]x[c.d]) [/ / \'E nf X, t dS

tn+1

< E/ / v -né?(x,t)dS + MAt b* ||u(x, f”)||He
in

where at the last step we have used (6.9).
Similarly, the second term on the right-hand side of (7.6) is bounded by

ﬁ /*”2 /d Vi (x, "y (x, t7)€(xy, y, ") dx
ACU,z],C 1 ) v > U )S\b1, Y, b

1/2
MAt ¢
(79) < —||77(X " )||L2([m1,m2]><[c,d]) A:U/ W(w17y=tn+]) 52($1=y7tn+])d1/]
1/2
M (At)'/? . d
> Wh‘Q ||“‘(X7t )||H2([w17w2] x[c,d]) Af/{: Vl(m17y7t)‘£2(mlay7t)dy

d
S eAx / K(5) (mlay)£2(mlay7 t)dy + MAth‘4 ||“‘(X7 tn)||2Hf§(Q)

where at the last step we have used (6.9) again.

Combining (7.3) (7.9), we have bounded the first term on the right-hand side of
(7.2). By symmetry, we can bound the second term on the right-hand side of (7.2) in
the same way. Thus, we have proven Lemma 3. 00

8. Proof of Lemma 4. In this section we derive an optimal-order estimate for
the local truncation error term E() defined by (2.16).
LEMMA 4. Assumeu(x,t) € L>®(0,T; H'(Q)). Then the following estimate holds:

< z—:/ v-n &(x,t)dS + z—:/ E(x, ") dx
552 Q) (e +1)N([e1,b] % [y1.d])

d b
+€A$/ K(5)(ﬂ?1,y)EQ(ml,y,t"“)dy+6Ay/ KO (@, 1)€ (a, 51, ") da
s Y Jx
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+eAzAyK ™ (x1,1) K™ (x1,1)€ (x1,1, ") + MAH|E(x, "7 200
+MAt||f(Xat)||22 son M (A8 lulT o0 (0,7 11 02

M(At)? ||f||r2 tngnt1;n2(Q)) T ||f7'||%2(t",t"+1;L?(Q)) 5

where K©®)(x) and K (x) are defined in (4.5), and f. is the derivative of f along
the (approzimate) characteristics.

Proof. jFrom (2.13), (2.14), and (2.16), the last term on the right-hand side of
(4.1) is rewritten as

tn+1
o=/ / r(B:3,4741),6) detd (B, £71) — f(x, 7)) €, 474)
t*
*Rxf"*‘ﬂ"*‘ 9>d9dx

(8.1) /s<0> /t A (r(6;x,1).0) detJ(G;x,t)—f(x,t)} £(x, 1)

7th (t— Hdeds

t"+1

[ [ a0 [éoty.0) + v(5.0) - VE(y.0) = Rly.0)é(y.0) dyas

where we have used y and 6 as the dummy variables in the last integral and reserve
x and ¢ for variables in Q at time ¢"*! or the space-time outflow boundary Sr(lo)
The first term on the right-hand side of (8.1) is bounded by

g+l

r(6; %, 1"+, 8) detJ (6; x, 1"+ — f(x,t”“)]é(x,tn“)

e*R<x7t"“><t"“*9>d9dx‘

t"+1

< M/ / |de‘rJ (0%, 171) — 1| ‘f (6: x, 7+, 0)£(x,t"+1)‘d0dx
t*

+M/ /
JQ Jt*(x)

< M(A)*/? |:||f||L2(t"7t"+1;L2(Q)) + Hf‘r||L2(t",t"+1;LQ(Q))j| €6, " )2 (0

< MAE(x, ") 72q) + C(AL)? |:||f||%2(t",t"+1;L2(Q)) + ||fT||%2(t"7t"+1;112(§2))j|'

/9/ %(r(%x,t”“),v)dv ‘f(x,t”“)‘(wdx

The second term on the right-hand side of (8.1) is bounded similarly

t
‘/(0) / v-n [f(r(9;x7t),9) detJ(6;x,t) — f(x,t) f(xjt)e*R(xi)(t*@)dgdS
S (x,t)
S MAtHf( )H ‘;(O) + C(Af) ||f||[2 tn, ¢n+1. ]2( )) + ||fT||%2(t",t"+1;[12(9)):| .

At first glance, the last term on the right-hand side of (8.1) does not seem to
contain any convergence factors. Nevertheless, the fact that the test functions w
defined by (2.8) satisfy the adjoint equation (2.4) approximately implies convergence
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rates. To see this, recall that the test functions satisfy
E(r(0;x,t"1),0) + v(x, t" ") - Vw(r(f;x,t" "), )
(8.2) —R(x, " w(r(6;x,t""),0) =0, € [t*(x),t""], xeq,

& (r(0;x,1),0) + v(x,t) - Vw(r(d;x,t),0)
—R(x,t)w(r(8;x,t),8) =0, 6 elt"t], (x,t)eS.

n

Hence, the last term on the right-hand side of (8.1) is rewritten

LfH/ 3.0 [6s(3.6) + v(3.6) - VE(y.6) — R(y. 0)é(y.6)] dydt
—/”H/ u(e(:x,£1),0) & + v - V€~ R €] (x(6:%,4"+"),6) drds
tn Q\Q(6)
+/t /Q (x(6; %, 1), )[59+v VE Rf] (0:x,1),6) drdd
tn
/H] /Q\Q v(x, t" ) — v(r(g;x,t" ), } (71 Vf) (6;x,t" 1), §)drdd
/tH/Q V0%, 1) = V(8 %,1).0)] - (u V) (x(8; %,1), O)ded
+/““/ (R0 741 = R0, 04, 0)] (u €) (6, 671), )t
tn Q\Q(0
X

et
of

The last two terms on the right-hand side of (8.3) are bounded by

:;\

1) — R(r(();x,t),())} (u f) (r(6;x,t),0)drdd.

tn+1

[RGe.t74) = R((0:3,61), )] (u €) (r(0:,174), 0) et

Jo\Q(o

/M / R(x(8:x1), )] (u 5)(r(9;x,t),0)drd9

v-n 52(x,t)dsr/2}

(84) < MA¢ {(At)l/QHf(X,tn+1)||[,2(9) + [/

Jsl©)
ull £2(en n+1:02 ()

< [ vom @xndS + MALELx ) g
Js{

AM (A [Jullf (g g1 1.2(0)) -

Since we cannot hide the term MAt||V§(x,t"Jr])H%g(Q)7 we treat the first and
second terms on the right-hand side of (8.3) in a different way. We obtain

/ /Q\Q x, ") — (r(@;x,t"*’l),())} : (u Vf) (r(8;x, "), 0)drdd
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/H] / v(r(ﬁ;x,t),ﬂ)} : (u Vf) (r(¢;x,1),0)drdd

L
+/tt
[

v [ (x, ") — v(r(6; x, "), 9)] (u 5) (r(6; %, "), 8)drdd

o)
=
Q

(6)

v- (x £ — (r(G;X,t)ﬁ)](uf)(r(ﬁ;xt),@)drdﬁ

+

(x, ") — (r(();x,tnﬂ),ﬂ)} : (Vu f) (r(0;x,t"1),0)drdf

g+l
\Q(0
g+l

+

x,t) — (r(e;x,t),e)] : (vu g) (r(6; %, 1), 0)drdd

EO\{O\KD\

/
/t n+1
1

The first through fourth terms on the right-hand side of the previous equation
are bounded as in (8.4)

tn+1

S~

s [ (x, £+ —v(r(9;x7t”+])70)] -n(u é) (r(6; %, "), §)dsd

\

(x,t) — v(r(6; x, t),())} -n(u f) (r(6;x,t),0)dsdb.

gl

(x, ") — (r(e;x,t"+1),0)] (u é) (r(6; x, " 1), 0)drdd

Q\Q(#
g+l

/ : v(r(é;x,t)ﬁ)] (u é) (r(6; %, 1),0)drdd

/ /Q\Q x, ") — v(r(8; x, "), ]
/M/ v(r(8;x,1),0 }( )oxf )drdd

<e / oV (1S + MAHE )0y + MYl o151 0

( ) (r(6; %, "), 0)drdd

Notice that the two integrals on 9(Q\Q(6)) — S and a(Q(6)) — S\ cancel with
each other. We bound the last two terms on the right-hand side of (8.5) by

gl

s (x, ") — (r(o;x,t”“),o)] -n(u é) (r(6; x, 1" 1), 6)dsdd

gl

/tn / V(r(e?xﬂt)ﬁ)} 'n(u f) (r(6;x,1),6)dsdd

< MAt/
s
SE/ v-n£2(x,t)d5+5/ 2 (x, 1" dx
Js(©) Q) (gn+1)

(8:6)  +M (AL |[ullLes 0,711 (2))

u(x,t) E(x, tﬂ‘dS + MAt/

) Ju(x, 1) €(x.1)|ds
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TABLE 9.1
Convergence rates in space, test for My and .

At | Ax=Ay | lUT) —ulxT)lp2) | 1UGT) —ulx,T)L1q)
7/60 1/40 4.4422 x 1073 7.3693 x 107
7/60 1/48 2.6739 x 1073 4.5730 x 10~ 1
/60 1/56 1.8331 x 10~% 3.2512 x 101
7/60 1/64 1.2876 x 10~ 3 2.4048 x 10~ 7

My = 69.12, a = 2.62 M, = 4.57, a = 2.37

<e / v-n &(x,t)dS +¢ / 2 (x, 1" dx
/sl JQ (4 1) (21,6 x[y1 . d])

d b
+eAr [ KO (zy,y)€ (1, y,t" ) dy + EAy/ KO (2,90)& (2, y1,t" ) dz
Y1 Jxy

FeATAYE® (1)K (1 1)E (01, 7 + MA|EC 7))
VTP ——
Combining (8.1)—(8.6), we have proven the lemma. O

9. Numerical Experiments. In this section we perform numerical experiments
to verify the theoretically proven optimal-order L? convergence rates. The test exam-
ple is the transport of a two-dimensional rotating Gaussian pulse. The spatial domain
is 2 = (-0.5,0.5) x (—0.5,0.5), the rotating field is imposed as Vi (z,y) = —4y, and
Va(z,y) = 4x. The reaction coefficient is R = 0.4 cos(2t). The time interval is
[0,T] = [0,7/2], which is the time period required for one complete rotation. The

initial condition ug(z,y) is given by

(z —2)* + (y = yc)2> :

(9.1) ug(z,y) = exp <— 52

where x., y., and o are the centered and standard deviations, respectively. The
corresponding analytical solution for Equation (2.1) with f = 0 is given by

S \2 4 (5 )2
(9.2) u(x,y,t) = exp <— - =) 2+2(y yel® _ 0.2 sin(2t)> ,
o
where T = x cos(4t) + y sin(4¢) and § = —=z sin(4t) + y cos(4t).
In the numerical experiments, the data are chosen as follows: =, = —0.25, y. = 0,

o = 0.0447 which gives 202 = 0.0040. This problem provides an example for a homo-
geneous two-dimensional reactive transport equation with a variable velocity field and
a known analytical solution. This example has been widely used to test for numerical
artifacts of different schemes, such as numerical stability and numerical dispersion,
spurious oscillations, and phase errors. Our previous results [28, 29] showed that
the ELLAM scheme yields accurate numerical solutions even though large time steps
are used. Moreover, the numerical solutions are free of numerical diffusion, spurious
oscillation, and phase errors.

In this section we use a linear regression to fit the convergence rates and the
associated constants in the error estimates

(9.3) IU(e, T) = (e, T 1) < Mah® + Ms(A1)°, p=1,2.
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TABLE 9.2
Convergence rates in time, test for Mg and (3.

At [ Az=Ay | [UGT) —ul Dz | T0GGT) — ulx D11 )
/28 1/64 2.1875 x 10~ 2 4.1510 x 1073
/32 1/64 1.8225 x 10~ 2 3.6232 x 1073
/36 1/64 1.7047 x 102 3.2190 x 103
/40 1/64 1.4469 x 10~ 2 2.8931 x 10~ 3

Mg =0.85, B =1.10 Mg =0.12, B = 1.01

We perform two kinds of computations. The first tests the spatial convergence
rate of the ELLAM scheme (2.21), where we fix a small time step At and compute
the constant M, and the rate o with respect to h; the other tests the temporal
convergence rate, where we choose a small grid size h and calculate the constant Mg
and the rate 8 with respect to At. The results are presented in Tables 9.1 and 9.2,
fitting the pairs (M,, o) and (Mg, B), respectively. For simplicity in these tables
we present only the errors ||U(x,T) — u(x,T)||z»(q) instead of the uniform-in-time
error ||U(x,T) — u(x,T) f.oo (0,71 () Since the latter is expected to be reached by
|U(x,T) — u(x,T)||rr(q) at the final time ¢ = T". The results show that the ELLAM
scheme (2.21) possesses second-order accuracy in space and first-order accuracy in
time as predicted by Theorem 1 in Section 4. Moreover we notice that the numerical
experiments Mg is much smaller than M,. This reflects the fact that the solutions
of (2.1) are not smooth in space but are much smoother along characteristics, and
justifies the use of the Lagrangian coordinates in the ELLAM schemes.
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