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Abstract

Valve interstitial cells populate aortic valve cusps and have been implicated in aortic valve calcification. Here we investigate
a common in vitro model for aortic valve calcification by characterizing nodule formation in porcine aortic valve interstitial
cells (PAVICs) cultured in osteogenic (OST) medium supplemented with transforming growth factor beta 1 (TGF-b1). Using a
combination of materials science and biological techniques, we investigate the relevance of PAVICs nodules in modeling the
mineralised material produced in calcified aortic valve disease. PAVICs were grown in OST medium supplemented with TGF-
b1 (OST+TGF-b1) or basal (CTL) medium for up to 21 days. Murine calvarial osteoblasts (MOBs) were grown in OST medium
for 28 days as a known mineralizing model for comparison. PAVICs grown in OST+TGF-b1 produced nodular structures
staining positive for calcium content; however, micro-Raman spectroscopy allowed live, noninvasive imaging that showed
an absence of mineralized material, which was readily identified in nodules formed by MOBs and has been identified in
human valves. Gene expression analysis, immunostaining, and transmission electron microscopy imaging revealed that
PAVICs grown in OST+TGF-b1 medium produced abundant extracellular matrix via the upregulation of the gene for Type I
Collagen. PAVICs, nevertheless, did not appear to further transdifferentiate to osteoblasts. Our results demonstrate that
‘calcified’ nodules formed from PAVICs grown in OST+TGF-b1 medium do not mineralize after 21 days in culture, but rather
they express a myofibroblast-like phenotype and produce a collagen-rich extracellular matrix. This study clarifies further the
role of PAVICs as a model of calcification of the human aortic valve.
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Introduction

The aortic valve performs a number of sophisticated functions

including regulation of unidirectional oxygenated blood flow from

the heart to the rest of the body [1,2]. These critical functions are

dependent on the unique structure of the valve at the tissue,

cellular and molecular levels [3]. Aortic valve calcification, a

disruption to the intricate structure of the valve through the

accumulation of mineral deposits in the valve tissue cusps, leads to

considerable morbidity and mortality. The disease increases in

prevalence with age [4], and will continue to increase as the

world’s population ages [5]. Currently, there is no proven

pharmacotherapy to prevent or limit aortic valve calcification

progression. The treatment of choice for aortic valve calcification,

therefore, is to surgically replace valves with bioprosthetic or

mechanical alternatives [6–8] and is associated with many

complications including progressive calcification of the replace-

ment valve. Pharmacotherapies that prevent native and prosthetic

valve calcification remain elusive, partially due to a lack of

understanding of the pathophysiological mechanisms that regulate

disease progression and the lack of a proven in vitro disease model

[3,9,10].

Valvular Interstitial Cells (VICs) are the most abundant cell type

in the aortic valve and play a vital role in maintaining valve

function [11]. VICs represent a heterogeneous population of cells

comprised of embryonic progenitor, endothelial/mesenchymal,

progenitor, quiescent (fibroblasts), activated (myofibroblasts) and

osteoblastic phenotypes [11–14], which are thought to play a role,

either alone or collectively, in the process of calcification [12,15].

Several studies have suggested that VICs may transdifferentiate to

bone-forming cells and directly mediate the formation of calcified

mineral deposits, in a process analogous to bone formation

[4,6,16]. Additionally VICs have been implicated in a dystrophic

calcification through VICs activation in combination with

apoptotic events resulting in calcium salt deposition [17].

VICs derived from porcine tissue (PAVICs) are often used as a

model for aortic valve research, as the fast-growing and readily

available cells can be cultured in vitro [18]. They have been

reported to be a particularly valuable model for aortic valve

calcification studies, as distinct cellular nodules spontaneously
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form in culture in the presence of control medium and osteogenic

medium supplemented with transforming growth factor beta 1

(TGF-b1) [17,18]. TGF-b1 has been implicated in the pathobi-

ology of aortic valve stenosis and has been demonstrated to co-

localize with calcification in diseased aortic tissue cusps [17,19].

Cellular nodules formed in the presence of TGF-b1 are often

referred to in the literature as ‘calcifying nodules’ [17,20].

Nevertheless, a relationship between in vitro nodule formation

and pathological aortic valve calcification has not been clearly

established, and the cellular composition and nature of the

material that comprises such nodules has yet to be determined.

The hard material that accumulates on human calcified valves has

been identified as a mixture of calcium phosphate phases [21–23],

thus similar mineral species should be identifiable in a cell-

mediated model of aortic valve calcification. The calcified material

found in diseased human valves has been suggested to be a result

of an osteoblast like mineralization and/or via a dystrophic

calcification mechanism [16,24].

Here we investigated nodule formation and composition in

cultured PAVICs grown in osteogenic (OST) medium supple-

mented with TGF-b1 (OST+ TGF-b1) by carrying out a

biological and materials-based characterization of the extracellular

matrix (ECM) produced. We then compared this material to

nodules formed by mineralizing murine calvarial osteoblasts

(MOBs) and to PAVICs maintained in basal (CTL) medium.

We utilized a combination of gene expression, immunohistochem-

istry, histochemical staining, scanning electron microscopy (SEM),

transmission electron microscopy (TEM), and live cell bio-

molecular analysis with micro-Raman spectroscopy, a rapid,

noninvasive technique based on light scattering which reveals the

molecular fingerprint of a sample without dyes or labels. Micro-

Raman spectroscopy additionally enables the visualization of

calcium salt deposition more specifically than traditionally used

Alizarin Red S and will detect the presence of any calcium

phosphate inclusion within the PAVICs nodules regardless of an

osteoblast-like or dystrophic deposition [25,26]. Our results

suggest that PAVIC nodules grown in OST+TGF-b1 for up to

21 days show no evidence of calcium phosphate formation and

show no indication of undergoing an osteoblastic differentiation,

however, they do produce an abundant ECM which is predom-

inately collagen including type I collagen.

Materials and Methods

This study was reviewed and approved by the North London

Research Ethics Committee (reference # 10/H0724/18), regis-

tered with the Royal Brompton & Harefield NHS Foundation

Trust and performed in accordance with the requirements of the

research governance framework. Human calcified aortic valve

collection and isolation is fully described in Methods S1.

VICs Isolation
Whole hearts from 18 to 24 month old pigs were obtained from

an abattoir (Cheale Meats, Essex, U.K.). Aortic valve cusps were

removed within 12 hours of slaughter and PAVICs were isolated

through two collagenase digestions as previously described [18].

Cell Culture
PAVICs were cultured in CTL medium consisting of high

glucose Dulbecco’s Modified Eagles Medium (DMEM) supple-

mented with 1% (v/v) antibiotic–antimycotic, 10% (v/v) fetal

bovine serum (FBS), and 2 mM L-Glutamine (All Invitrogen).

OST+TGF-b1 medium consisted of CTL medium supplemented

with 10 mM b-glycerophosphate, 1027 M dexamethasone,

1026 M ascorbic acid, and 10 ng/mL TGF-b1 (all Sigma-

Aldrich). Media was replenished every three days. CTL+TGF-

b1 medium consisted of CTL medium supplemented with 10 ng/

mL TGF-b1. OST medium consisted of CTL medium supple-

mented with 10 mM b-glycerophosphate, 1027 M dexametha-

sone, and 1026 M ascorbic acid. MgF2 coverslips (micro-Raman

spectroscopy), glass cover slips (histology) and tissue culture plastic

were seeded with 56104 cells/cm2 at passages four or five. Prior to

cell seeding, MgF2 and glass cover slips were incubated in FBS for

6 hours.

MOBs were enzymatically derived from the calvaria of neonatal

mouse pups as previously described [27]. To form mineralized

nodules, cells were cultured in alpha minimum essential medium

(Invitrogen) supplemented with 15% (v/v) FBS, 2 mM L-

glutamine, 10 mM b-glycerophosphate, 50 mg/ml ascorbic acid

and 1026 M dexamethasone from day 14. All MOBs were at

passages two to four during testing.

PAVICs Nodule Cross Section Preparation for Histology
After 7, 14 and 21 days, cultures were fixed in 4% (w/v)

formaldehyde (FA) for 20 minutes at room temperature and then

rinsed in phosphate buffered saline (PBS). For histological

sectioning, cells were carefully scraped from the culture surface

using a rubber policeman and re-suspended in a 1% (w/v) agarose

(Sigma) in PBS using the method described by Gruber et al. [28].

Agarose gels containing VICs were again fixed in 4% (w/v) FA for

1 hour, dehydrated in a graded ethanol series and embedded in

paraffin. 5 mm sections were collected on glass slides and prepared

for staining.

Modified Verhoeff van Geison for Detection of Collagen,
Elastin, Muscle and Cell Nuclei

Samples were stained using an elastin stain kit (Sigma) which

utilizes the modified Verhoeff van Gieson method to stain elastic

fibres blue-black to black, collagen pink to red, muscle yellow and

nuclei blue to purple. Sections from blood vessels of adult mice

were used for a positive control.

Immunoperoxidase for Detection of Smooth Muscle
Alpha Actin (aSMA)

Prior to immunoperoxidase staining, sections were dewaxed,

rehydrated in nanopure distilled water (dH2O) and washed in PBS

for 5 minutes. Slides were immersed in 0.1 M citrate buffer (pH 6)

and microwaved for 10 minutes before being immersed in

peroxide (0.01% w/v) in PBS for 10 minutes. Sections were then

washed 3 times for 5 minutes each in PBS and blocked with 3%

(w/v) bovine serum albumin (BSA) in PBS for 30 minutes. Sections

were incubated separately for 1 hour with primary antibodies

(Sigma).

Sections were incubated with biotinylated goat anti-mouse

immunoglobulins (GAM IgG-Vector laboratories) for 1 hour,

washed 3 times in PBS and then incubated for 1 hour with Avidin-

Biotin Complex (ABC-Vector laboratories). Reactivity was

detected using diaminobenzidine tetrahydrochloride (DAB tablets-

Sigma) (25 mg/ml) and hydrogen peroxide (0.01% w/v). Sections

were then counter stained with haematoxylin.

Immunostaining for aSMA and DNA
Sections were dewaxed and rehydrated in dH20. Antigen

retrieval was carried out by immersing slides in 0.1 M citrate

buffer (pH 6), placing in a microwave for 10 minutes, incubating

in citrate buffer for a further 20 minutes, and rinsing with tap

water. To reduce non-specific binding, slides were incubated with
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3% (w/v) BSA for 30 minutes. Specimens were then incubated

with a smooth muscle alpha actin (aSMA) antibody (DAKO) for 1

hour at room temperature. Negative controls were incubated with

3% (w/v) BSA in PBS. After thorough washing, sections were

incubated with goat anti mouse (IgG) Alexa Fluor 594 (Invitrogen)

for 1 hour. After washing twice with PBS, cells were stained with

DAPI and specimens mounted using Permafluor (Beckman

Coulter).

Alizarin Red S Staining for Calcium Detection
Cultures were fixed in 2% (v/v) FA for 10 minutes, washed in

dH20 and stained for 10 min in 2% (w/v) Alizarin Red S (ARS)

(Sigma) in dH2O, rinsed again, air dried, mounted on glass slides

using DPX mounting medium and viewed using bright field

microscopy.

Gene Expression Analysis for Collagen I and BGLAP
Gene expression analysis was performed after 7, 14 and 21 days

in culture. RNA was extracted using the QIAGEN Mini extraction

kit according to the manufacturer’s instructions. Reverse tran-

scription (RT) and real-time polymerase chain reaction (PCR) was

performed as described [20]. TaqMan assays were purchased for

type 1 collagen (COL1A1) and bone gamma-carboxyglutamate

protein (BGLAP) (Ss03373340_m1, Ss03373655_s1) respectively;

(Applied Biosystems). Target gene data were normalized against

18S ribosomal RNA levels (Cat. No. 4310893E; Applied Biosys-

tems) and analyzed using the comparative cycle threshold (Ct)

method.

Scanning Electron Microscopy (SEM)
Cultures were fixed in 4% (v/v) FA in PBS for 45 minutes at

4uC and dehydrated in a graded ethanol series, followed by

critical-point drying with hexamethyldisilazane (Sigma). Samples

were sputter-coated with gold and viewed using a Leo 1525

Gemini scanning electron microscope with an EDX detector (Carl

Zeiss SMT Ltd.) operated at 15 kV.

Transmission Electron Microscopy (TEM)
Cultures were fixed in 4% (v/v) glutaraldehyde in 0.1 M PIPES

buffer (pH 7.4) at 4uC for 2 hours and then fixed in 1% (w/v)

osmium tetroxide in 0.1 M PIPES buffer at room temperature for

1 hour. The samples were then dehydrated using a graded ethanol

series from 50%, 70%, 90% and 100% (v/v), followed by

immersion in acetronitrile. The nodules were then progressively

infiltrated with a Quetol based resin (12.6 g Quetol, 15.5 g

Nonenyl succinic anhydride (NSA), 6.5 g Methyl nadic anhydride

(MNA) and 0.6 g Benzyl dimethylamine (BDMA)) with ratio of

1:1, 3:1 (resin: acetonitrile) and pure resin for 2 hours, overnight

and 4 days, respectively. Pure resin was changed every 24 hours.

Embedded samples were polymerized at 60uC for 24 hours. 70 nm

thick sections were cut onto a water bath via ultramicrotomy. The

sections were collected immediately on bare 300 mesh copper

TEM grids; selected sections were post-stained with uranyl acetate

and lead citrate. TEM was performed on the Joel 2000 operated at

120 kV.

Raman Spectroscopy
Live cell spectra were collected with a 785 nm laser, using a

Renishaw InVia spectrometer connected to a Leica microscope as

previously described [29]. Briefly, spectra were collected from live

cell cultures maintained at 37uC in PBS supplemented with Mg

and Ca. Spectra were collected over 5 accumulations of 3 second

scans covering the Raman shifts range of 800–1800 cm21.

Samples were kept outside the incubator during testing for no

longer than 30 minutes.

Raman spectra were pre-processed for background removal

(baseline subtraction using weighted least squares) and multiplica-

tive scattering correction [30,31]. Interval partial least squares

discriminate analysis (iPLS-DA) was applied to determine if a

model could distinguish between treatment groups [32]. This

model was derived using 194 total spectra collected from PAVICs

nodules grown for 21 days in CTL or OST+TGF-b1 media.

For mapping of PAVICs nodules, cultures were fixed in 4% (v/

v) FA in PBS for 45 minutes at 4uC and dehydrated in a graded

ethanol series. Raman spectra were collected using a 532 nm laser,

on a Renishaw InVia spectrometer connected to a Leica

microscope. Spectra were collected using 1 accumulation of 10

seconds covering the Raman shifts range of 670–1500 cm21.

Raman spectroscopy performed on diseased human aortic valve

tissue is fully described in Methods S1.

Statistical Methods
All continuous data are presented as mean 6 standard

deviation. For RT-PCR, all data were compared using the

Mann-Whitney test for statistical significance. p-values ,0.05 were

considered significant.

Results

PAVICs Grown in OST+TGF-b1 Media form Nodular
Structures and Stain Positive for ARS

VICs cultured in CTL and OST+TGF-b1 media for 21 days

produced distinct, dense nodules approximately 50–200 mm in

diameter (Figure 1A and D, respectively) with nodule formation

occurring as early as day 4 in culture. Whilst nodules formed in

CTL medium were visibly distinguishable from the surrounding

monolayer, those formed in OST+TGF-b1 medium were more

raised from the culture surface and appeared more compact.

Nodules were similar in gross appearance to those formed from

MOBs (Figure 1G). Nodules formed from PAVICs grown in

OST+TGF-b1 media stained positively for ARS, a calcium stain,

after 21 days in culture (Figure 1E). Nodules formed in CTL

medium did not stain positively for ARS (Figure 1B), whilst MOBs

nodules did (Figure 1G). SEM images demonstrated that nodules

formed from PAVICs cultured in OST+TGF-b1 medium

produced distinct three-dimensional morphologies (Figure 1F),

whereas nodules formed in CTL medium appeared as dense areas

of cell growth with a less raised profile from the cell monolayer

(Figure 1C). Nodules formed from MOBs had similar three-

dimensional morphologies to those observed in the PAVICs

cultures grown in OST+TGF-b1 medium (Figure 1I).

PAVICs Grown in OST+TGF-b1 Medium Show an Increase
in type I Collagen Expression

PAVICs grown in OST+TGF-b1 media showed a significantly

higher expression of collagen type I after 14 and 21 days in culture

compared to the expression levels after 7 days (p,0.05) and to

PAVICs cultured in CTL medium at the same time points

(p,0.05, Figure 2A). PAVICs grown in CTL medium also showed

no changes in type I collagen expression at any of the three time

points examined.

BGLAP (osteocalcin) was stably expressed in PAVICs grown in

OST+TGF- b1 or CTL media, however, its expression was

significantly lower (p,0.05) in cells cultured in OST+TGF-b1

medium when compared to cells grown in CTL medium after 7,

14 and 21 days, (Figure 2B).

Valvular Interstitial Cell ‘Calcified’ Nodules
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OST+TGF-b1 Medium Induces aSMA Expression and
Collagen Deposition in PAVICs

Modified Verhoeff van Geison staining and sirius red identified

collagen in PAVICs nodules formed in OST+TGF-b1 medium.

This was in contrast to nodules spontaneously formed in CTL

medium where no collagen deposition was visualized in either the

monolayer or nodule cross sections. No elastin was observed in

PAVICs cultures treated with either CTL or OST+TGF-b1

media. aSMA was present in CTL- and OST+TGF-b1-derived

nodules and monolayers, however, was not expressed homoge-

neously throughout the nodules, but rather only in the outermost

layers (Figure 2 G, I).

TEM of OST+TGF-b1 PAVICs Nodule Cross Sections Show
Abundant ECM and no Evidence of Mineralization

TEM images of PAVICs nodule cross sections showed layered

cellular aggregates similar to those identified by histology. PAVICs

nodules grown in OST+TGF-b1 medium contained a proteina-

ceous ECM which was apparent throughout the nodules and

surrounding cells (Figure 3A). The proteinaceous ECM appeared

disorganized and contained fibrous proteins with a banded

appearance (approximately 65 nm in periodicity) indicative of

mammalian collagen, specifically type I collagen [33–35]. PAVICs

nodules formed in CTL medium displayed a rough membrane

and contained little to no proteinacious ECM between cells

(Figure 3B). Electron dense mineral deposits were not evident in

any PAVICs cross sections.

Raman Spectroscopy Exposes High Protein Content in
OST+TGF-b1 PAVICs Nodules without any Mineral
Presence

Inorganic peaks indicative of mineralization were not present in

CTL (day 21), CTL+TGF-b1 (day 14), OST (day 14) or

OST+TGF-b1 (day 21) treated PAVIC nodules. In contrast the

960 cm21 and 1070 cm21 mineral peaks identifying the phos-

phate PO4 bonds and type B carbonate substitution CO3 bonds,

respectively, are clearly seen in the spectrum collected from an

MOB nodule (Figure 4A). Raman maps of PAVICs nodules grown

in CTL (day 21), CTL+TGF-b1 (day 14), OST (day 14) or

OST+TGF-b1 (day 21) demonstrated a clear absence of mineral

throughout the entire area of the nodules imaged (Figure S1).

Mineral bands were present in spectra collected from calcified

human aortic valve tissue as seen in the representative mean

spectrum (Figure S2).

The difference spectrum between CTL and OST+TGF-b1 (red

spectrum in Figure 4B) reveals that protein bonds contributed the

majority of the difference between the groups. Specifically, bands

at 855, 874, 1043 and 1245–1270 cm21 corresponding to C-C

stretch proline, C-C stretch hydroxyproline, proline and Amide

III, respectively, are notable. The hydroxyproline and two proline

peaks identified in these spectra are specifically Raman collagen

Figure 1. Micrographs showing the morphology and staining of PAVICs and MOBs in culture. A,D,G - Phase contrast images of cultured
PAVICs grown in CTL medium for 21 days, PAVICs grown in OST+TGF-b1 medium for 21 days, and MOBs grown in OST medium for 21 days
respectively (scale = 100 mm). B,E,H - Alizarin Red S staining negative for PAVICs grown in CTL medium for 21 days, positive for PAVICs grown in
OST+TGF-b1 medium for 21 days, and positive for MOBs grown in OST medium respectively (scale = 100 mm). C,F,I - SEM images of cultured PAVICs
grown in CTL medium for 21 days, PAVICs grown in OST+TGF-b1 medium for 21 days, and MOBs grown in OST medium for 21 days respectively
(scale = 50 mm).
doi:10.1371/journal.pone.0048154.g001
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assignments [36] confirming a collagen presence within the

PAVICs grown in OST+TGF-b1 medium.

The iPLS-DA model derived from spectra collected from

PAVICs nodules grown in CTL or OST+TGF-b1 media for 21

days identified three latent variables which differentiate between

the two groups with an equal sensitivity and specificity of 0.979. A

clear division emerged between PAVICs grown in CTL and

OST+TGF-b1 media, as is evident in the scatter plot which

identifies the loadings of each collected spectra (Figure 4C). The

latent variables used in the iPLS-DA model are also shown in

Figure 4C. These variable loadings show spectral regions which

varied between the experimental groups. The latent variables are

shown with highlighted bands indicating spectral regions which

highly contributed to the differentiation between experimental

groups. Specifically, bands at 855, 874, 1032, 1206, 1247 and

1665 cm21 are collagen assignment groups. Table 1 lists all bands

(mineral and organic) highlighted in both the univariate and

multivariate Raman analysis with their corresponding assign-

ments.

Discussion

The mechanism that drives valve calcification has been likened

to that of bone formation and/or a dystrophic process which

includes the deposition of hydroxyapatite mineral [4,21,24,37];

nevertheless the process which mediates the formation of calcified

lesions on aortic valve cusps remains uncertain. Investigators have

speculated that valve calcification involves a transdifferentiation of

VICs into osteoblasts, which then mediate bone-like mineral

formation [6,37,38]. The implication of such an osteoblast-like

mineralization process in the aortic valve has prompted the

development of in vitro models to examine the disease process.

Easily cultured and fast-growing PAVICs are often used as a

simplified model for aortic valve calcification [18], however, their

efficacy in representing the disease has yet to be established. This

study aimed to characterize the ‘calcified’ OST+TGF-b1 PAVICs

nodule composition, compare them to those created by a

confirmed mineralizing culture model (MOBs), and report any

calcium phosphate deposition within the PAVICs nodules.

We observed that PAVICs grown in OST+TGF-b1 medium

formed nodular structures that stained positively for ARS, as has

been previously described [17,39]. Such nodules were notable for

their distinct three-dimensional morphologies that are reminiscent

of nodules formed from MOBs, which also stained positively for

ARS. Nevertheless, when we examined the ultrastructure of such

nodules by TEM, no electron-dense mineral deposits were

observed, as were readily identifiable in our previously published

report of nodules formed from MOBs [40]. Furthermore, Raman

spectroscopy measurements clearly showed an absence of miner-

Figure 2. Gene expression and cross sectional staining of
cultured PAVICs. A - Gene expression of collagen I (* = p,0.05,

** = p,0.0001, *** = p,0.05;**** = p,0.001) and B - Osteocalcin (bone
gamma-carboxyglutamate protein (BGLAP)) (* = p,0.05; ** = p,0.001;
*** = p,0.0001) comparing PAVICs expression at day 7 (D7), day 14
(D14), and day 21 (D21) in both OST+TGF-b1 and CTL media. C – Cross
sectional plane of cultured nodules used for the D,E,F,G,H, and I. D,E -
Modified Verhoeff van Gieson stain [purple – cell nuclei, pink – collagen,
black-elastin] of a cross section of PAVICs cultured in CTL media for 21
days and PAVICs cultured in OST+TGF-b1 media for 21 days respectively
(scale = 50 mm). F,G - Peroxidase stain with Sirius red staining [brown -
aSMA, red – collagen] for PAVICs grown in CTL medium for 21 days and
PAVICs grown in OST+TGF-b1 medium for 21 days respectively
(scale = 50 mm) H,I - Fluorescence staining [red - aSMA, blue - cell
nuclei] of a PAVICs nodule cultured for 21 days in CTL medium and a
PAVICs nodule cultured in OST+TGF-b1 medium for 21 days respectively
(scale = 50 mm).
doi:10.1371/journal.pone.0048154.g002
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alization in the OST+TGF-b1 PAVICs, whilst MOBs nodules

demonstrated distinct peaks, indicative of phosphate and type-B

carbonate-substituted mineral. These results suggest that ‘calcified’

nodules formed from PAVICs under the conditions examined here

do not form mineral deposits and that ARS staining is a poor

method to identify mineral deposits in such cultures. Notwith-

standing, these data do not preclude the possibility of osteogenic

transdifferentiation of PAVICs or exclude the chance that they

could form mineral under different conditions.

A number of studies have suggested that PAVICs and human

aortic VICs may differentiate to osteoblast-like cells during

calcified valve disease progression [41–43]. A study by Chen et

al. demonstrated that both mesenchymal and osteogenic progen-

itor cells exist within the primary PAVICs mixed cell population.

Their results further exposed that PAVICs have the ability to

transdifferentiate into myofibrogenic, adipogenic, osteogenic and

chodrogenic lineages in vitro and thus potentially in vivo [41]. To

probe PAVICs nodules’ potential for osteoblastic differentiation

when grown in OST+TGF-b1 medium, we examined expression

of two genes: type I collagen (COL1A1) and osteocalcin (BGLAP). It

has been reported that calcified human aortic valve interstitial cells

have an increase in osteocalcin RNA expression (a late marker for

bone differentiation) [16]. Whilst we noted an up regulation of

type I collagen in OST+TGF-b1 grown PAVICs, BGLAP

expression remained stable in PAVICs grown in OST+TGF-b1

and this level of expression was significantly lower than expression

levels in CTL PAVICs at the same time points. This suggests that

PAVICs grown in OST+TGF-b1 for up to 21 days were not

differentiating into osteoblasts. A previous study demonstrated

PAVICs grown in mineralization medium for up to eight days did

not display the same level of increased alkaline phosphatase (an

early mineralization marker) as osteoblasts in culture [44]. The

lack of osteoblastic differentiation in this study may be attributed

to a wide range of factors including their growth on stiff tissue

culture plastic/glass substrates [43] and/or TGF-b1 supplemen-

tation.

In this study the OST media was supplemented with TGF-b1

due to its physiological importance in tissue calcification. Studies

have shown qualitatively higher levels of TGF-b1 in the ECM that

co-localized with areas of calcification in diseased human aortic

valves [17,19]. Additionally, the inflammatory response has been

implicated as an important contributing factor in disease onset,

which suggests that a local availability of TGF-b1 [6,45] may

increase during the initial stages of disease progression. Neverthe-

less, the connection between TGF-b1 use in this in vitro system and

disease progression is still unclear. Osman et al. showed that

supplementation of human VIC cultures with members of the

TGF-b family (including TGF-b1) prompted the cells to adopt a

more osteoblast-like phenotype by inducing the secretion of

proinflammatory cytokines which may play an important role in

pathological valvular calcification [42]. Our results here show that

PAVICs grown in OST+TGF-b1 medium do not show evidence

Figure 3. Transmission Electron Micrographs of cultured PAVICs. PAVICs were grown in A - CTL medium and B - OST+TGF-b1 medium (VIC –
valvular interstitial cell, ECM – extracellular matrix) (scale = 2 mm).
doi:10.1371/journal.pone.0048154.g003
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of osteoblastic transdifferentiation and thus these ‘calcified

nodules’ have yet to demonstrate their relationship to calcified

aortic valve disease progression. The absence of mineral within

CTL+TGF-b1 and OST medium PAVICs nodules suggests the

lack of mineralization is not due to osteogenic supplementation or

the additional TGF-b1 supplementation.

TEM and histological staining demonstrated that PAVICs

nodules grown in OST+TGF-b1 were marked by an abundant

proteinaceous ECM, which contained collagen, but without a

specific arrangement or orientation. Collagen production is

mediated by VICs in vivo as part of normal valve maintenance,

however, disruption of this process has also been associated with

calcified aortic valve disease progression [46]. Valvular fibrosis

and over-activated VICs have been implicated in the early stages

of calcified valve pathobiology [46], including a recent suggestion

of calcified aortic valve stenosis being more appropriately viewed

as a fibrocalcific disease [47]. Our current study confirms TGF-b1

supplementation likely promotes and/or maintains an activated

myofibroblastic phenotype in PAVICs and production of ECM in

vitro. The relationship, if one exists, between in vitro PAVIC-

mediated ECM production and the fibrotic stage of aortic valve

calcification, however, has yet to be established.

PAVICs-mediated production of fibrous ECM was further

explored using Raman spectroscopy. Like the histological analyses,

Raman spectroscopy further identified the abundant proteina-

ceous content of PAVICs nodules cultured in OST+TGF-b1

medium. Our PLS-DA model successfully distinguished between

the two experimental PAVICs systems based on the ECM

produced by PAVICs grown in OST+TGF-b1 medium. The

model also clearly indicated the collagen content within the

nodules was a heavy contributor to the model variables, and thus

collagen is a distinguishing element between the groups. Taken

together, these results suggest Raman spectroscopy may be an

effective means to successfully and non-invasively monitor ECM

production in live PAVIC systems in vitro.

Cross sections of OST+TGF-b1 PAVICs nodules showed

positive expression of aSMA, as did monolayers of PAVICs

grown in CTL medium, implicating a myofibroblastic phenotype

Figure 4. Raman spectroscopy of PAVICs and MOBs in culture
compared through univariate and multivariate statistical
analysis. A - Raman spectra comparing a representative MOBs
mineralized nodule spectrum (black), PAVICs grown in CTL media
mean spectrum (dark grey), and PAVICs cultured in OST+TGF-b1
medium mean spectrum (shaded box over entire spectrum). Vertical
shaded areas highlight the 960 cm21 apatite peak and the 1070 cm21

carbonate peak spectral range. B - Higher magnification of the PAVICs
mean spectrum grown in CTL (dark grey) and in OST+TGF-b1 medium
(light grey). The red spectrum is the difference between the two PAVICs
mean spectra. Shaded red bands highlight spectral ranges which
discriminate between groups. C - Scatter plot showing group
separation between PAVICs grown in CTL medium (red triangles) vs.
PAVICs grown in OST+TGF-b1 medium (green circles). D - Latent
variables loadings used in the interval partial least squares discriminant
analysis (iPLS-DA) model, bands highlighted are spectral ranges which
contributed to the distinction between groups.
doi:10.1371/journal.pone.0048154.g004

Table 1. Raman bands contributing to the distinction
between PAVICs grown in OST+TGF-b1 media, CTL media and
MOBs mineralised nodules.

Peak position (cm21) Major Assignments

855 C-C stretch, proline*

874 C-C stretch, hydroxyproline*

960 Apatite - PO4
32 v1 symmetric stretch

1003 Phenylalanine ring breathing mode

1032 Proline *

1043 Proline*

1070 Carbonate - substituted CO3
22 v1 in-plane vibrations

1086 C–N stretching mode of proteins (and lipid mode to
lesser degree)

1128 C-N

1206 Hydroxyproline, tyrosine*

1247–1270 Protein amide III band

1,595–1,720 Amide I (C = O stretching mode of proteins, a-helix
conformation)/C = C lipid stretch

Inorganic peaks are italicized. * indicates collagen assignments.
doi:10.1371/journal.pone.0048154.t001
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[48]. Our results show that the cells at the centre of these nodules

are not aSMA positive and thus may have a different phenotype or

be undergoing apoptosis, as has been previously suggested [39].

TGF-b1 has been suggested to promote myofibroblastic expres-

sion particularly when incorporated on stiff substrates [43] and

calcification via an apoptosis pathway [17,46], thus suggesting a

non-osteoblastic state [17]. The results presented in this study

show that PAVICs cultured in OST+TGF-b1 medium for 21

days, a relatively late time point for in vitro culture [44], do not

further transdifferentiate from the activated myofibroblastic

phenotype into osteoblast-like cells or contain calcium phosphate

within the ‘calcified nodules’. It remains uncertain as to whether

VICs must pass through an intermediate stage of activated VICs

to become osteoblast-like VICs [46,47]. Further investigations are

needed to establish if the OST+TGF-b1 PAVICs model has any

relationship to early (preosteoblastic) stages of calcified aortic valve

disease.

The inhibition of nodule formation in cultured VICs has been

explored through the addition of statins, pravastatin [49], nitric

oxide donors, as well as other cell permeate superoxide scavengers

[20]. The response and transformations of VICs grown in vitro to

various treatments raise interesting questions regarding the

relationship between these cells and the complex in vivo environ-

ment. As investigations into the pathobiology of aortic valve

calcification progress, characterization of both systems using a

variety of techniques offers promise of bridging this gap.

This study combines gold standard biological techniques as well

as advanced material characterization techniques including rapid,

non-invasive Raman spectroscopy. The results show PAVICs

grown in OST+TGF-b1 media for up to 21 days express an

activated myofibroblastic phenotype and produce a predominantly

collagen ECM, however, demonstrate no evidence of further

transdifferentiation into an osteoblastic phenotype and/or calcium

phosphate deposition. Additionally these PAVICs nodules did not

contain any calcium phosphate materials as seen in human aortic

valve calcification. We have thus established a clear limitation of

cultured PAVICs grown in CTL and OST+TGF-b1 media as they

do not appear to transdifferentiate into osteoblastic-like cells nor

form mineral deposits indicative of calcified aortic valve disease

[50]. This study also provides further information on the collagen-

rich ECM produced in PAVICs nodules grown in OST+TGF-b1

medium and the heterogeneous nature of these nodules. This

characterisation of in vitro PAVICs systems is critical in further

understanding PAVICs behavior in culture and for comparison to

aortic valve calcification.

Supporting Information

Figure S1 Raman maps of PAVICs nodules grown in
vitro. A - White light micrograph of PAVICs grown in CTL+
TGF-b1 (scale = 20 mm). B - Overlay of a Raman map of the

phenylalanine peak onto the white light micrograph in A, showing

the cellular presence as seen within the collected Raman spectra

(scale = 20 mm). C - Overlay of the apatite peak Raman map onto

the white light micrograph in A showing no mineral was detected

in any of the mapped area (scale = 20 mm). D - Representative

Raman spectra from Raman maps of PAVICs nodules grown

CTL medium for 21 days, OST+TGF-b1 medium for 21 days,

OST medium for 14 days and CTL+TGF-b1 for 14 days. The

phenylalanine (1003 cm21), amide III (1214–1270 cm21), and

CH2 bending (1445 cm21) peaks clearly identified cellular areas

within the Raman maps. The absence of mineral peak, including

the 960 cm21 apatite and 1070 cm21 carbonate peak show that

there is no mineral presence within these nodules, and mineral

associated peaks were not seen in any spectra collected from the

PAVICs.

(TIF)

Figure S2 Raman spectra collected from calcified
human aortic valves. Mean Raman spectrum of 128 spectra

collected from independent locations within calcified human aortic

valve tissue (isolated from 4 separate donors). The grey bands

highlight the mineral peaks present within the collected spectra at

960 cm21 (apatite) and 1070 cm21 (carbonate peak).

(TIF)
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