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ABSTRACT

For appropriate choices of the coupling constants, the equations of motion of Lovelock
gravities up to order n in the Riemann tensor can be factorized such that the theories admits
a single (A)dS vacuum. In this paper we construct two classes of exact rotating metrics in
such critical Lovelock gravities of order n in d = 2n + 1 dimensions. In one class, the n
angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of
cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then
be recast in terms of Boyer-Lindquist coordinates. The other class involves metrics with
only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild
form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist
form. Both classes of solutions have naked curvature singularities, arising because of the

over rotation of the configurations.
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1 Introduction

Although Einstein’s theory of gravity is highly non-linear, exact solutions do exist, includ-
ing the celebrated (static) Schwarzschild [I] and (rotating) Kerr [2] metrics. Whilst the
generalization of the Schwarzschild metric to higher dimensions is straightforward, such a
generalization of the Kerr metric leads to still exact, but considerably more complicated
solutions [3], especially so when the metrics are asymptotic to (A)dS ((anti-)de Sitter)
spacetimes [4H06].

Finding exact solutions becomes much more difficult when Einstein gravity is extended
with higher-order curvature invariants, even in the case of static solutions. Einstein gravity
extended with quadratic curvature invariants in four dimensions was shown by numerical
methods to admit a new static black hole over and above the Schwarzschild metric, but no
exact solution is known [7[8]. The existence of such new black holes was shown numerically
also when a cosmological constant or a Maxwell field is included [9,[10].

In higher dimensions, when higher-order ghost-free Euler integrands are no longer total
derivatives, Einstein-Gauss-Bonnet or more general Lovelock gravities can be constructed
[11]. In these theories, exact solutions for static black holes have been found [12}[13], and
these have smooth limits to the Schwarzschild metric when the higher-derivative couplings
are sent to zero. Exact solutions for rotating black holes remain elusive in these theories.

Recently, a five-dimensional rotating solution [14] was constructed in the Einstein-Gauss-
Bonnet (EGB) theory, for a certain critical value of the coupling constant for the Gauss-
Bonnet term. For generic values of the coupling constant, the EGB theory admits two (A)dS
vacua with different cosmological constants. One of these has a positive kinetic energy for
linearized graviton fluctuations, while the other has a negative kinetic energy [12]. At the
critical value of the coupling, the two values for the (A)dS cosmological constants coalesce,
and the linearized equations of motion are automatically satisfied, leading to a gravity
theory without a linearized graviton fluctuation [I5], and for which further exact solutions
can be constructed.

The equations of motion of for higher-order Lovelock gravities can also be factorized for
certain specific choices of the coupling constants, again giving rise to only a single (A)dS
vacuum with one specific cosmological constant. Such theories were classified and studied
in [I6]. The critical EGB theory mentioned earlier is a special case. The purpose of this
paper is to generalize the five dimensional rotating solution that was found in [14] for the
critical EGB theory to the critical Lovelock gravities of order n in the Riemann tensor, in
the spacetime dimension d = 2n+1. We obtain exact rotating solutions in two cases. In the
first, the n angular momenta in the n orthogonal spatial 2-planes are all equal, and hence

the metric is of cohomogeneity one. We obtain these solutions first in a Kerr-Schild form,



but we find that they can then be recast into a form written using Boyer-Linquist type
coordinates. This rewriting has the advantage that it is easier to study the global structure
of the solutions. The second class of rotating solutions that we obtain involve only a single
non-vanishing angular momentum. Again, we obtain the solutions in a Kerr-Schild form,
but in this case there appears to be no way to introduce Boyer-Lindquist type coordinates.

The paper is organized as follows. In section 2, we review the construction of the critical
Lovelock gravities. In section 3, we consider static and spherically-symmetric solutions.
Next, we focus on Lovelock gravities of order n in d = 2n 4+ 1 dimensions. In section 4,
we construct the exact rotating solutions where all the angular momenta are equal. In
section 5, we construct the second class of rotating solutions, where only a single angular
momentum is non-zero. We conclude the paper in section 6. In the appendix, we present

details of the Riemann tensor for the single-angular momentum metrics.

2 Critical Lovelock gravities

In this section, we review the construction of [16]. We start with the general class of

Lovelock gravities, for which the Lagrangian is given by

n
e 1L = Z o B® (2.1)
k=0
where
1
k o1 PKO,
B = SRl vyl Ryt (22)
and RA7 denotes the Riemann tensor R* ), an
SRRy = sl o (2.3)
The Euler integrands E*) can also be expressed as
E®) = G Rl prd (2.4)
The first few cases are given by
EO =1 EW=R  E®=R?2_4R"™R,, + R"" R0, ectc. (2.5)

In order for all the Euler integrands E*) in (ZI)) to be non-trivial, the spacetime dimension
d should be > 2n + 1.
The term /—gE®) in the Lagrangian (Z.I)) gives a contribution

ER v _ 1 spro1-prowy pEav | REVk (2.6)
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'Note that this normalisation for 65}:::@1 is not the rather standard “unit-strength” convention.



to the equations of motion.

The equations of motion following from (2.I) imply that general the condition for an
(A)dS spacetime with R,, = Agu, to be a solution is that A should be any of the roots
of a certain n’th -rder polynomial, with coefficients proportional to the constants ai. By
choosing the coefficients ay, appropriately, one can arrange that all the roots are equal. This

case corresponds to having the equations of motion

— 1 PR On = ~ WUn
where E;;g , which we shall refer to as the subtracted Riemann tensorH is given by
= 1
Ri = Bl + oty 28)

The subtracted Riemann tensor vanishes in the case of an AdS vacuum with radius £. We

could, alternatively, obtain a de Sitter solution, by taking 2 < 0. It turns out that

v 2 n—k k(d_2k_1)'2k+1 (k)v
By = kz:%(e?) C"(d—2n—1)!2"+1E“ ’
_ =1 n—k ~k (d_2k7 — 1)' (k)v
B k:0(£2) Cn (d—2n—1)!E“ (29)

These theories were constructed and studied in [16]. We shall refer to them as critical
Lovelock gravities of order n.

In this paper, we are interested in the case with d = 2n+ 1, corresponding to the critical
gravity of maximum order in a given odd dimension. Thus we have

SN

B =3 ()" Cr2(n— k) E”. (2.10)
k=0
The corresponding Lagrangian is thus
"1
L= (O 20— k)E®. (2.11)

k=0

The critical Lovelock gravities are characterized by the fact that they admit only a single
(A)dS vacuum, for which the subtracted Riemann tensor vanishes. The linearization around
the AdS vacuum was studied for the five-dimensional case (i.e. Einstein-Gauss-Bonnet,
EGB) in [15]. It turns out that for a generic EGB theory, where there are two inequivalent
(A)dS vacua, the kinetic term for the linearized graviton gives positive energy in one vacuum,
and negative energy in the other. When the two (A)dS spacetimes coalesce, i.e. in the critical
theory, the linearized perturbation equations become vacuous. The perturbation equations
at quadratic order were derived in [15]. It is straightforward to see that for the critical
Lovelock gravity of order mn, the analogous perturbation equations up to and including

order (n — 1) are vacuous.

*Note that in the case of an Einstein metric with cosmological constant such that Ry, = —(n—1)£"2 g,

the subtracted Riemann tensor (28] is nothing but the Weyl tensor.



3 Static solutions

In this paper, we are interested in constructing solutions where, unlike in (A)dS, the
subtracted Riemann tensor does not vanish. The simplest such case is perhaps a static,

spherically-symmetric metric, for which the most general ansatz takes the form

d 2 d 2
fz"l") + T’2dQ?l—27g ) ng_z’e = % + y2d93_3 , (31)

1—ey
with e =1,0,—1, and dQ§_3 is the metric for a unit round S%~3. (To be precise, we include

ds®> = —h(r)dt* +

the topologies T%2 and H?? also, corresponding to taking ¢ = 0, —1 respectively.) The
critical theories admit black hole solutions with A = f. These solutions were obtained

in [16]. For d = 2n + 1, the solution becomes particular simple, being given by
h=f=r*/?+e—pu, (3.2)

where 4 is an integration constant.
It was shown in [I5] that the critical EGB theory admits another type of static solution,
with
f=r2/0+e, h = h(r) is an arbitrary function. (3.3)

We may easily check that in fact this gives a solution in all the critical Lovelock gravities:

The subtracted Riemann tensor ﬁfgg is given by

rh’ —2h  (2hh" — h'?)(e +1r%/0?)
22 4h? ’

S 1 (e+r¥/)H'N
Ry - (4 I

2 2rh iy = 34
with all remaining components, aside from those following from (3.4]) by the Riemann tensor
symmetries, vanishing identically. As expected, the subtracted Riemann tensor vanishes
when h = r2/(? + ¢, corresponding to the AdS vacuum. It is straightforward to see that
([B4) satisfies the equations of motion (2.7)) in all the critical Lovelock theories in d > 2n+1
dimensions, since the non-vanishing components of the subtracted Riemann tensor are not

sufficient to span the entire range of index values required by the antisymmetric d-tensor in

@)

4 Rotating solutions: all equal rotation

A rotating solution in the five-dimensional critical EGB theory was obtained in [14], by
taking the metric to have a Kerr-Schild form with an AdS “base” ds? that is written
in spheroidal coordinates. The geodesic null vector K, that is used in the Kerr-Schild
construction in [I4] is the same as the one used in the construction of the Kerr-Schild form

of the five-dimensional Kerr-AdS metric in [56]. However, the function w in the Kerr-Schild



metric ds? = ds? + w (K,dz")? is quite different in [14] from the one in [5,6] that gives
Kerr-AdS.

The rotating solution in [I4] has independent rotation parameters in the two orthogonal
spatial 2-planes. We have looked without success for analogous solutions with independent
rotation parameters in the higher-dimensional critical Lovelock gravities (2.7]) in dimensions
d = 2n + 1. However, we have been able to construct higher-dimensional generalisations in
the case where all the rotation parameters are taken to be equal. As was shown in [5[6],
the AdS base metric can then be written in terms of the Fubini-Study metric on CP"!.

We find that the full Kerr-Schild metric for the critical Lovelock solution takes the form

ds* = d5* + \(r* + a*)K?, (4.1)
with
2,2 2 252 2., 2
_ +1)dt redr r*+a
2 = W A + A)? + d52
o = + (22 + 1)(12 + a?) + = [(dp + A)” +dX5 4],

K = K,do"==[dt—a(dy+ A)] + (4.2)

(1]

(g2r2 +1)(r2 + a?)’

where = = 1 — g%a? and dX2_, is the Fubini-Study metric on CP"~!, with its canonical
normalisation Rg, = 21 Gap. As with the Kerr-AdS metrics in odd dimension and with equal
angular momenta, the solutions we obtain here have cohomogeneity one.

The metric (@) can be recast in terms of Boyer-Lindquist coordinates (for which there
are no cross terms between dr and the other coordinate differentials), by means of the
transformations

Ar? dr
(1 +gr?)(1 - (A —g*)r?)’
aXr? dr
(r?+a®)(1— (A —g*)r?)

dt = dr+

dy = do+ g*adr +

The metric (A1) then becomes

272 4 2 2
2 pPh a 2 pl/ldo+A) a N2 dpt  pt o,
where we use p = V72 + a? as the radial variable, and
rP=pt=ad*, R =1-0A-g)(p®-d%. (4.5)

We now prove that the metric (£4]) indeed satisfies the equation (Z.7)). It is convenient
to define the vielbein basis

¥ = &(dT—g(da—l—A)), el = 2F

r =

—



2 p_2((dT+A)

a a =a
. ——2d7'), e = —=eé”, (4.6)

= p =
where €% is a vielbein basis for CP"~!. In fact, for the purposes of the calculations below,
we need not restrict the metric d¥2_; to be that of CP"~! specifically; we may take it to
be any Kéhler metric on a complex manifold X"~ of complex dimension n — 1.

With the function h(p) as yet arbitrary, the torsion-free spin connection is given by

/

r(ph\ o a a 4 ha b h
wor = —-— (_> e +5e, we=—_5€e, wa=—Jwe, wa=-——€c, (47)

p\r T r pr p

hr'  2hp a 1 ha 1

2 0 b . 0 2

wig = (__—2 e — e, wy=—Jpe, Wip=0w— —Jpe —=Jupe,

r r r r pr "

where a prime denotes a derivative with respect to p, J,, are the vielbein components of
the Kadhler form of K71, ie. J = %Jab e A e, and @g, is the spin connection of K" 1.

The curvature 2-forms, after taking h(p) to be given by (&H5]), are given by

O = —-(A—g?)enet, Op2 = —(A— g} e’ Ae?,
havz= —
O = —-A—g>) el e+ az\/_(VcJab)ec/\eb, Ou=MN—gHe ne,
p2r
O = ()\—92)62/\e“+§(V0Jab)ec/\eb,
_ 1 2)\_ 2
Ouw = @ab+()‘_g2)ea/\eb_%Qaba{ec/\ed
_ hav= 1
—(chab)( a;/_ec/\eo+—ec/\e2>, (4.8)
p2r r

where O is the curvature 2-form of £»~!, and
Qabcd = 5ac 5bd - 5ad 5bc + Jac de - Jad ch + 2Jab ch . (49)

Note that all the terms involving (V. Jy) in [f8)) actually vanish, since the Kéhler form is
covariantly constant.
It is now evident that if we define R* po as in (ZF)), then provided we choose g and A

such that
1

7= 2\, (4.10)
then the only non-vanishing components of R po Will be when the indices lie in the direc-
tions of the Kéhler manifold, with

2

~ _ 1 2 2\ — 2
Rob — = peb,  ZECATI) 22 J )Qabcd. (4.11)

e

Since these non-zero components lie within a (2n — 2)-dimensional subspace of the full
(2n + 1)-dimensional spacetime, it follows that the antisymmetrisations in (2.7]) will ensure

that the field equations are satisfied.



Note that this gives a solution of the equations of motion when K"~ ! is any Kihler
manifold. For the particular case we started with, when K*~! = CP"~! with its standard

Fubini-Study metric which has constant holomorphic sectional curvture,

Rabcd = Qabcda (412)
we have the especially simple result that
Q.. (4.13)

2
Eab__a )\
cd — 2

5 Rotating solutions: a single rotation

We have also been able to construct rotating solutions in the d = 2n+ 1 dimensional critical
Lovelock gravities (2.7]) in tha case that just a single rotation parameter is non-vanishing.

The metric in d = 2n 4+ 1 dimensions is given by

ds® = ds* + \p*K?, (5.1)
with
e B (%12 4+ 1) Agdt? p2dr? n p2dh?
1 —a?g? (g?r2 +1)(r? + a?) Ay
(r? +a?)sin?0dp> 5, 9
6 dQ
+ 1—a2g? + r“ cos n—3 >
Ay dt p2dr asin® 0d¢o
K = K,dz"= — _
nat 1—a2¢2 (22 +1)(r2+a?) 1-a2¢g%’
p° = r’+a’cos’h, Ag=1—a%g?cos’. (5.2)

If we choose g and \ to satisfy (4I0]), then we find that the non-vanishing components

of the subtracted Riemann tensor ]A%ﬁ(’,’ ,

appendix A. Decomposing the indices as p = (a, i), etc., where % = (t,7,6,¢) and x' are

defined in (2.8)), are given by the expressions in

the coordinates of the (2n — 3)-sphere, the non-vanishing components of Rgg are of the
forms

R%,  RE=T88, Ry =10 (5.3)
The expressions for f, T and Egg can be found in (Adl), (A2) and (A.3) respectively.
A crucial point for what follows is that the expressions for the components of R;;g are
completely independent of the spacetime dimension (except for the obvious fact that the
range of the ¢ index is dimension dependent). Furthermore, the non-vanishing components
of ﬁﬁ(’; have either four, two (one up, one down) or zero (2n — 3)-sphere indices.

Given the structure of the non-vanishing components of RX, it is clear from (Z7) that

po
the only non-trivial equations of motion will be

E:=0 and E!/=0. (5.4)



Furthermore, we see that

Eg = o fn—2 S(gl)b + g fn—3 S(g?))b7
El = azf 2806 4oy ST 4 a5 it SE P T 6l (5.5)

where the a coefficients are non-vanishing combinatoric factors, and

S(O) — c1dicado éalbl éazbz S(l)b —_ 5b01d162 éalbl Ta2
a

(3)b _ ¢bdyicada qray b1 has
aibiagbs “Yeidy T reads 0 aairbiag ~epdy Te2 0 Sa - TCl Td1 TCQ :

ab1asbs
(5.6)
After rather intricate, but mechanical calculations (which we performed using Mathemat-
ica), we find that
SO =g, shb_g  sBb_q, (5.7)

and hence the single rotation metrics satisfy the equations of motion (2.7)) in all dimensions
d = 2n + 1, provided that (ZI0) holds.

6 Conclusions

In this paper, we considered critical Lovelock gravities and focused on those of order n in
d = 2n + 1 dimensions. We obtained two classes of rotating solutions. In the first class, all
the angular momentum parameters are set equal, and the metric is of cohomogeneity one.
We presented the metric in both the Kerr-Schild and Boyer-Lindquist forms. In the second
class of solutions, only a single rotation parameter is non-vanishing, and the solution is
obtained in the Kerr-Schild form. In this case, it does not appear to be possible to rewrite
it in terms of Boyer-Lindquist type coordinates. By calculating the subtracted Riemann
tensor that appears in the equations of motion (27 explicitly, we demonstrated that the
metrics in both of the classes indeed satisfy the equations of motion. When restricted to
five dimensions, our solutions are special cases of the rotating solutions constructed in [14].

The metrics are all asymptotic to AdS, but they do not describe black holes. Rather,
they have naked curvature singularities. The analysis is rather straightforward for the
solution with where all the angular momenta are equal, since in this case we can rewrite the
metric using Boyer-Lindquist type coordinates. Another way to see the geometric structure
by noting that if we set the rotation parameter to zero, the solution reduces to AdS, with
no “mass” parameter analogous to u in the static solutions ([3.2)). The naked singularity
can thus be understood as being associated with a solution that is “over rotated,” in the
sense that it has angular momentum but no mass.

Exact rotating solutions are hard to come by, and although the solutions we have ob-
tained here have shortcomings associated with the presence of naked singularities, they

do perhaps provide a guide as to how one might hope to construct more general rotating



solutions in critical Lovelock gravities. It would be of great interest to try to obtain such
generalisations where a mass parameter could be added, so that rotating black hole solu-
tions without naked singularities might be possible. It would also be interesting to seek
rotating solutions in the higher-dimensional critical Lovelock gravities in which the angular

momentum parameters could be arbitrary.
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A Subtracted Riemann Tensor for Single-Rotation Metrics

The components of the subtracted Riemann tensor (2.8)) for the Kerr-Schild metrics defined
by (51) and (5:2)) can be given as follows. With 2% = (¢, 7,0, ¢) and z° being the coordinates
of the (2n — 3)-sphere, the non-vanishing components of ﬁfgg involve either four, two (one

up, one down) or zero (2n — 3)-sphere indices. Writing ¢ = cos 6 and s = sin 6, we find

. Nalc? .. o )
Ry ="555, Ry =19, (A1)
where
Tt — 2Xa?s? A% s 2XaPs? Af o 2Xa*csAf
EE(g?r2 +1)p2 b= (r? +a?)p?’ t Earp?
T 2Xa?s? A} Tt _ 2Xast Ay 6 _ 2Xatst Ay
t Ep? ¢ Eal(g?r? 4+ 1)p?’ ¢ Ea(r? 4+ a?)p?’
o 2XdPcsP0 Ay . 2Xa’stAg . 2)\a’cs
=%, Li=———=o2— D=—"s 1
Earp Zap r(g*r? +1)
T _ 2\a’cs T _2)\(1268 Tt 2Xa?s2Ag
O r(r2 +a?)’ o= ro T (22 +1)2(r2 +a2)’
T6 — _ 2Xas2Ag o_ _ 2\a’csAg
" (g%r2 +1)(r2 + a2)2”’ " r(g?r? +1)(r2 +a2)’
2Xa?s2Ag
Tr = — , T =0, A2
r (g?r2 + 1)(r2 + a?) 0 (A-2)
and the components Egg are given by
Ao _ 20a%c?[—(r? 4 a?)(E, + 2a%¢%s?) + a*g?sY] Ao _ 2Xag?res
te — to =

(7 + D0 + )7 |

10


http://arxiv.org/abs/de-sc/0013528

St 2X\a’ g% c?s? Ate _ 2)\a’rcs
(g2 + 1)(r2 + a2)?” 20 (P2 + 1)(r2 +a2)’
Rl — _ 2Xa*c* Ay pte _ 2 adresz,
T (g2r2 4 1)2(r2 4 a2)’ 0r = (g2r2 +1)2(r2 4 a2)2”’
pto _ 2Xa3g?res3 Ay 500 rslg Pt Bir _ 2\ad g2 25t
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