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ABSTRACT

For appropriate choices of the coupling constants, the equations of motion of Lovelock

gravities up to order n in the Riemann tensor can be factorized such that the theories admits

a single (A)dS vacuum. In this paper we construct two classes of exact rotating metrics in

such critical Lovelock gravities of order n in d = 2n + 1 dimensions. In one class, the n

angular momenta in the n orthogonal spatial 2-planes are equal, and hence the metric is of

cohomogeneity one. We construct these metrics in a Kerr-Schild form, but they can then

be recast in terms of Boyer-Lindquist coordinates. The other class involves metrics with

only a single non-vanishing angular momentum. Again we construct them in a Kerr-Schild

form, but in this case it does not seem to be possible to recast them in Boyer-Lindquist

form. Both classes of solutions have naked curvature singularities, arising because of the

over rotation of the configurations.

cvetic@hep.upenn.edu xhfengp@mail.bnu.edu.cn mrhonglu@gmail.com pope@physics.tamu.edu

http://arxiv.org/abs/1609.09136v1


1 Introduction

Although Einstein’s theory of gravity is highly non-linear, exact solutions do exist, includ-

ing the celebrated (static) Schwarzschild [1] and (rotating) Kerr [2] metrics. Whilst the

generalization of the Schwarzschild metric to higher dimensions is straightforward, such a

generalization of the Kerr metric leads to still exact, but considerably more complicated

solutions [3], especially so when the metrics are asymptotic to (A)dS ((anti-)de Sitter)

spacetimes [4–6].

Finding exact solutions becomes much more difficult when Einstein gravity is extended

with higher-order curvature invariants, even in the case of static solutions. Einstein gravity

extended with quadratic curvature invariants in four dimensions was shown by numerical

methods to admit a new static black hole over and above the Schwarzschild metric, but no

exact solution is known [7,8]. The existence of such new black holes was shown numerically

also when a cosmological constant or a Maxwell field is included [9, 10].

In higher dimensions, when higher-order ghost-free Euler integrands are no longer total

derivatives, Einstein-Gauss-Bonnet or more general Lovelock gravities can be constructed

[11]. In these theories, exact solutions for static black holes have been found [12, 13], and

these have smooth limits to the Schwarzschild metric when the higher-derivative couplings

are sent to zero. Exact solutions for rotating black holes remain elusive in these theories.

Recently, a five-dimensional rotating solution [14] was constructed in the Einstein-Gauss-

Bonnet (EGB) theory, for a certain critical value of the coupling constant for the Gauss-

Bonnet term. For generic values of the coupling constant, the EGB theory admits two (A)dS

vacua with different cosmological constants. One of these has a positive kinetic energy for

linearized graviton fluctuations, while the other has a negative kinetic energy [12]. At the

critical value of the coupling, the two values for the (A)dS cosmological constants coalesce,

and the linearized equations of motion are automatically satisfied, leading to a gravity

theory without a linearized graviton fluctuation [15], and for which further exact solutions

can be constructed.

The equations of motion of for higher-order Lovelock gravities can also be factorized for

certain specific choices of the coupling constants, again giving rise to only a single (A)dS

vacuum with one specific cosmological constant. Such theories were classified and studied

in [16]. The critical EGB theory mentioned earlier is a special case. The purpose of this

paper is to generalize the five dimensional rotating solution that was found in [14] for the

critical EGB theory to the critical Lovelock gravities of order n in the Riemann tensor, in

the spacetime dimension d = 2n+1. We obtain exact rotating solutions in two cases. In the

first, the n angular momenta in the n orthogonal spatial 2-planes are all equal, and hence

the metric is of cohomogeneity one. We obtain these solutions first in a Kerr-Schild form,
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but we find that they can then be recast into a form written using Boyer-Linquist type

coordinates. This rewriting has the advantage that it is easier to study the global structure

of the solutions. The second class of rotating solutions that we obtain involve only a single

non-vanishing angular momentum. Again, we obtain the solutions in a Kerr-Schild form,

but in this case there appears to be no way to introduce Boyer-Lindquist type coordinates.

The paper is organized as follows. In section 2, we review the construction of the critical

Lovelock gravities. In section 3, we consider static and spherically-symmetric solutions.

Next, we focus on Lovelock gravities of order n in d = 2n + 1 dimensions. In section 4,

we construct the exact rotating solutions where all the angular momenta are equal. In

section 5, we construct the second class of rotating solutions, where only a single angular

momentum is non-zero. We conclude the paper in section 6. In the appendix, we present

details of the Riemann tensor for the single-angular momentum metrics.

2 Critical Lovelock gravities

In this section, we review the construction of [16]. We start with the general class of

Lovelock gravities, for which the Lagrangian is given by

e−1L =
n∑

k=0

αkE
(k) , (2.1)

where

E(k) =
1

2k
δρ1σ1···ρkσk
µ1ν1···µkνk

Rµ1ν1
ρ1σ1

· · ·Rµkνk
ρkσk

, (2.2)

and Rµν
ρσ denotes the Riemann tensor Rµν

ρσ and1

δβ1···βs
α1···αs

= s!δβ1

[α1
· · · δβs

αs]
. (2.3)

The Euler integrands E(k) can also be expressed as

E(k) = (2k)!

2k
R[µ1ν1

µ1ν1
· · ·Rµkνk]

µkνk
. (2.4)

The first few cases are given by

E(0) = 1 , E(1) = R , E(2) = R2 − 4RµνRµν +RµνρσRµνρσ , etc. (2.5)

In order for all the Euler integrands E(k) in (2.1) to be non-trivial, the spacetime dimension

d should be ≥ 2n+ 1.

The term
√−gE(k) in the Lagrangian (2.1) gives a contribution

E(k) ν
µ = − 1

2k+1 δ
ρ1σ1···ρkσk ν
µ1ν1···µkνk µR

µ1ν1
ρ1σ1

· · ·Rµkνk
ρkσk

(2.6)

1Note that this normalisation for δβ1···βs

α1···αs
is not the rather standard “unit-strength” convention.
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to the equations of motion.

The equations of motion following from (2.1) imply that general the condition for an

(A)dS spacetime with Rµν = λ gµν to be a solution is that λ should be any of the roots

of a certain n’th -rder polynomial, with coefficients proportional to the constants αk. By

choosing the coefficients αk appropriately, one can arrange that all the roots are equal. This

case corresponds to having the equations of motion

Eν
µ ≡ − 1

2n+1 δ
ρ1σ1···ρnσn ν
µ1ν1···µnνn µ R̂

µ1ν1
ρ1σ1

· · · R̂µnνn
ρnσn

= 0 . (2.7)

where R̂µν
ρσ , which we shall refer to as the subtracted Riemann tensor,2 is given by

R̂µν
ρσ = Rµν

ρσ +
1

ℓ2
δµνρσ . (2.8)

The subtracted Riemann tensor vanishes in the case of an AdS vacuum with radius ℓ. We

could, alternatively, obtain a de Sitter solution, by taking ℓ2 < 0. It turns out that

Eν
µ =

n∑

k=0

(
2

ℓ2
)n−kCk

n

(d− 2k − 1)!

(d− 2n− 1)!

2k+1

2n+1
E(k)ν

µ ,

=
n∑

k=0

(
1

ℓ2
)n−k Ck

n

(d− 2k − 1)!

(d− 2n− 1)!
E(k)ν

µ . (2.9)

These theories were constructed and studied in [16]. We shall refer to them as critical

Lovelock gravities of order n.

In this paper, we are interested in the case with d = 2n+1, corresponding to the critical

gravity of maximum order in a given odd dimension. Thus we have

Eν
µ =

n∑

k=0

(
1

ℓ2
)n−k Ck

n (2(n − k))!E(k)ν
µ . (2.10)

The corresponding Lagrangian is thus

e−1L =
n∑

k=0

(
1

ℓ2
)n−k Ck

n (2(n − k))!E(k) . (2.11)

The critical Lovelock gravities are characterized by the fact that they admit only a single

(A)dS vacuum, for which the subtracted Riemann tensor vanishes. The linearization around

the AdS vacuum was studied for the five-dimensional case (i.e. Einstein-Gauss-Bonnet,

EGB) in [15]. It turns out that for a generic EGB theory, where there are two inequivalent

(A)dS vacua, the kinetic term for the linearized graviton gives positive energy in one vacuum,

and negative energy in the other. When the two (A)dS spacetimes coalesce, i.e. in the critical

theory, the linearized perturbation equations become vacuous. The perturbation equations

at quadratic order were derived in [15]. It is straightforward to see that for the critical

Lovelock gravity of order n, the analogous perturbation equations up to and including

order (n− 1) are vacuous.

2Note that in the case of an Einstein metric with cosmological constant such that Rµν = −(n−1) ℓ−2 gµν ,

the subtracted Riemann tensor (2.8) is nothing but the Weyl tensor.
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3 Static solutions

In this paper, we are interested in constructing solutions where, unlike in (A)dS, the

subtracted Riemann tensor does not vanish. The simplest such case is perhaps a static,

spherically-symmetric metric, for which the most general ansatz takes the form

ds2 = −h(r)dt2 + dr2

f(r)
+ r2dΩ2

d−2,ǫ , dΩ2
d−2,ǫ =

dy2

1− ǫy2
+ y2dΩ2

d−3 , (3.1)

with ǫ = 1, 0,−1, and dΩ2
d−3 is the metric for a unit round Sd−3. (To be precise, we include

the topologies T d−2 and Hd−2 also, corresponding to taking ǫ = 0,−1 respectively.) The

critical theories admit black hole solutions with h = f . These solutions were obtained

in [16]. For d = 2n+ 1, the solution becomes particular simple, being given by

h = f = r2/ℓ2 + ǫ− µ , (3.2)

where µ is an integration constant.

It was shown in [15] that the critical EGB theory admits another type of static solution,

with

f = r2/ℓ2 + ǫ , h = h(r) is an arbitrary function. (3.3)

We may easily check that in fact this gives a solution in all the critical Lovelock gravities:

The subtracted Riemann tensor R̂µν
ρσ is given by

R̂ti
tj =

( 1

ℓ2
− (ǫ+ r2/ℓ2)h′

2rh

)
δij , R̂tr

tr =
rh′ − 2h

2hℓ2
− (2hh′′ − h′2)(ǫ+ r2/ℓ2)

4h2
, (3.4)

with all remaining components, aside from those following from (3.4) by the Riemann tensor

symmetries, vanishing identically. As expected, the subtracted Riemann tensor vanishes

when h = r2/ℓ2 + ǫ, corresponding to the AdS vacuum. It is straightforward to see that

(3.4) satisfies the equations of motion (2.7) in all the critical Lovelock theories in d ≥ 2n+1

dimensions, since the non-vanishing components of the subtracted Riemann tensor are not

sufficient to span the entire range of index values required by the antisymmetric δ-tensor in

(2.7).

4 Rotating solutions: all equal rotation

A rotating solution in the five-dimensional critical EGB theory was obtained in [14], by

taking the metric to have a Kerr-Schild form with an AdS “base” ds̄2 that is written

in spheroidal coordinates. The geodesic null vector Kµ that is used in the Kerr-Schild

construction in [14] is the same as the one used in the construction of the Kerr-Schild form

of the five-dimensional Kerr-AdS metric in [5,6]. However, the function w in the Kerr-Schild
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metric ds2 = ds̄2 + w (Kµdx
µ)2 is quite different in [14] from the one in [5, 6] that gives

Kerr-AdS.

The rotating solution in [14] has independent rotation parameters in the two orthogonal

spatial 2-planes. We have looked without success for analogous solutions with independent

rotation parameters in the higher-dimensional critical Lovelock gravities (2.7) in dimensions

d = 2n+ 1. However, we have been able to construct higher-dimensional generalisations in

the case where all the rotation parameters are taken to be equal. As was shown in [5, 6],

the AdS base metric can then be written in terms of the Fubini-Study metric on CP
n−1.

We find that the full Kerr-Schild metric for the critical Lovelock solution takes the form

ds2 = ds̄2 + λ(r2 + a2)K2 , (4.1)

with

ds̄2 = −(g2r2 + 1)dt2

Ξ
+

r2dr2

(g2r2 + 1)(r2 + a2)
+
r2 + a2

Ξ
[(dψ +A)2 + dΣ2

n−1] ,

K = Kµdx
µ =

1

Ξ
[dt− a(dψ +A)] +

r2dr

(g2r2 + 1)(r2 + a2)
, (4.2)

where Ξ = 1 − g2a2 and dΣ2
n−1 is the Fubini-Study metric on CP

n−1, with its canonical

normalisation R̄ab = 2n ḡab. As with the Kerr-AdS metrics in odd dimension and with equal

angular momenta, the solutions we obtain here have cohomogeneity one.

The metric (4.1) can be recast in terms of Boyer-Lindquist coordinates (for which there

are no cross terms between dr and the other coordinate differentials), by means of the

transformations

dt = dτ +
λr2 dr

(1 + g2r2)(1 − (λ− g2)r2)
,

dψ = dσ + g2a dτ +
aλr2 dr

(r2 + a2)(1 − (λ− g2)r2)
. (4.3)

The metric (4.1) then becomes

ds2 = −ρ
2 h2

r2

(
dτ − a

Ξ
(dσ +A)

)2
+
ρ4

r2

((dσ +A)

Ξ
− a

ρ2
dτ

)2
+
dρ2

h2
+
ρ2

Ξ
dΣ2

n−1 , (4.4)

where we use ρ =
√
r2 + a2 as the radial variable, and

r2 = ρ2 = a2 , h2 = 1− (λ− g2)(ρ2 − a2) . (4.5)

We now prove that the metric (4.4) indeed satisfies the equation (2.7). It is convenient

to define the vielbein basis

e0 =
ρh

r

(
dτ − a

Ξ
(dσ +A)

)
, e1 =

dρ

h
,
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e2 =
ρ2

r

((dτ +A)

Ξ
− a

ρ2
dτ

)
, ea =

ρ√
Ξ
ēa , (4.6)

where ēa is a vielbein basis for CP
n−1. In fact, for the purposes of the calculations below,

we need not restrict the metric dΣ2
n−1 to be that of CPn−1 specifically; we may take it to

be any Kähler metric on a complex manifold Kn−1 of complex dimension n− 1.

With the function h(ρ) as yet arbitrary, the torsion-free spin connection is given by

ω01 = − r
ρ

(
ρh

r

)
′

e0 +
a

r2
e2 , ω02 =

a

r2
e1 , ω0a =

ha

ρr
Jab e

b , ω1a = −h
ρ
ea , (4.7)

ω12 =

(
hr′

r
− 2hρ

r2

)
e2 − a

r2
e0 , ω2a =

1

r
Jab e

b , ωab = ω̄ab −
ha

ρr
Jab e

0 − 1

r
Jab e

2 ,

where a prime denotes a derivative with respect to ρ, Jab are the vielbein components of

the Kaähler form of Kn−1, i.e. J = 1
2Jab ē

a ∧ ēb, and ω̄ab is the spin connection of Kn−1.

The curvature 2-forms, after taking h(ρ) to be given by (4.5), are given by

Θ01 = −(λ− g2) e0 ∧ e1 , Θ02 = −(λ− g2) e0 ∧ e2 ,

Θ0a = −(λ− g2) e0 ∧ ea + ha
√
Ξ

ρ2 r
(∇̄c Jab) e

c ∧ eb , Θ1a = (λ− g2) e1 ∧ ea ,

Θ2a = (λ− g2) e2 ∧ ea +
√
Ξ

ρr
(∇̄c Jab) e

c ∧ eb ,

Θab = Θ̄ab + (λ− g2) ea ∧ eb − 1 + a2(λ− g2)

2ρ2
Ωabcd e

c ∧ ed

−(∇̄c Jab)

(
ha

√
Ξ

ρ2 r
ec ∧ e0 + 1

r
ec ∧ e2

)
, (4.8)

where Θ̄ab is the curvature 2-form of Kn−1, and

Ωabcd = δac δbd − δad δbc + Jac Jbd − Jad Jbc + 2Jab Jcd . (4.9)

Note that all the terms involving (∇̄c Jab) in (4.8) actually vanish, since the Kähler form is

covariantly constant.

It is now evident that if we define R̂µν
ρσ as in (2.8), then provided we choose g and λ

such that
1

ℓ2
= g2 − λ , (4.10)

then the only non-vanishing components of R̂µν
ρσ will be when the indices lie in the direc-

tions of the Kähler manifold, with

R̂ab
cd =

Ξ

ρ2
R̄ab

cd −
1 + a2(λ− g2)

ρ2
Ωab

cd . (4.11)

Since these non-zero components lie within a (2n − 2)-dimensional subspace of the full

(2n+1)-dimensional spacetime, it follows that the antisymmetrisations in (2.7) will ensure

that the field equations are satisfied.
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Note that this gives a solution of the equations of motion when Kn−1 is any Kähler

manifold. For the particular case we started with, when Kn−1 = CP
n−1 with its standard

Fubini-Study metric which has constant holomorphic sectional curvture,

R̄abcd = Ωabcd , (4.12)

we have the especially simple result that

R̂ab
cd = −a

2 λ

ρ2
Ωab

cd . (4.13)

5 Rotating solutions: a single rotation

We have also been able to construct rotating solutions in the d = 2n+1 dimensional critical

Lovelock gravities (2.7) in tha case that just a single rotation parameter is non-vanishing.

The metric in d = 2n+ 1 dimensions is given by

ds2 = ds̄2 + λ ρ2K2 , (5.1)

with

ds̄2 = −(g2r2 + 1)∆θdt
2

1− a2g2
+

ρ2dr2

(g2r2 + 1)(r2 + a2)
+
ρ2dθ2

∆θ

+
(r2 + a2) sin2 θdφ2

1− a2g2
+ r2 cos2 θ dΩ2

2n−3 ,

K = Kµdx
µ =

∆θ dt

1− a2g2
− ρ2dr

(g2r2 + 1)(r2 + a2)
− a sin2 θdφ

1− a2g2
,

ρ2 = r2 + a2 cos2 θ , ∆θ = 1− a2g2 cos2 θ . (5.2)

If we choose g and λ to satisfy (4.10), then we find that the non-vanishing components

of the subtracted Riemann tensor R̂µν
ρσ , defined in (2.8), are given by the expressions in

appendix A. Decomposing the indices as µ = (a, i), etc., where xa = (t, r, θ, φ) and xi are

the coordinates of the (2n − 3)-sphere, the non-vanishing components of R̂µν
ρσ are of the

forms

R̂ab
cd , R̂ai

bj = T a
b δ

i
j , R̂ij

kℓ = f δijkℓ . (5.3)

The expressions for f , T a
b and R̂ab

cd can be found in (A.1), (A.2) and (A.3) respectively.

A crucial point for what follows is that the expressions for the components of R̂µν
ρσ are

completely independent of the spacetime dimension (except for the obvious fact that the

range of the i index is dimension dependent). Furthermore, the non-vanishing components

of R̂µν
ρσ have either four, two (one up, one down) or zero (2n− 3)-sphere indices.

Given the structure of the non-vanishing components of R̂µν
ρσ , it is clear from (2.7) that

the only non-trivial equations of motion will be

Eb
a = 0 and Ej

i = 0 . (5.4)
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Furthermore, we see that

Eb
a = α1 f

n−2 S(1) b
a + α2 f

n−3 S(3) b
a ,

Ej
i = α3 f

n−2 S(0) δji + α4 f
n−3 S(1) b

a T a
b δ

j
i + α5 f

n−4 S(3) b
a T a

b δ
j
i , (5.5)

where the α coefficients are non-vanishing combinatoric factors, and

S(0) = δc1d1c2d2a1b1a2b2
R̂a1b1

c1d1
R̂a2b2

c2d2
, S(1) b

a = δbc1d1c2aa1b1a2
R̂a1b1

c1d1
T a2
c2
, S(3) b

a = δbd1c2d2ab1a2b2
T a1
c1
T b1
d1
T a2
c2
.

(5.6)

After rather intricate, but mechanical calculations (which we performed using Mathemat-

ica), we find that

S(0) = 0 , S(1) b
a = 0 , S(3) b

a = 0 , (5.7)

and hence the single rotation metrics satisfy the equations of motion (2.7) in all dimensions

d = 2n+ 1, provided that (4.10) holds.

6 Conclusions

In this paper, we considered critical Lovelock gravities and focused on those of order n in

d = 2n+ 1 dimensions. We obtained two classes of rotating solutions. In the first class, all

the angular momentum parameters are set equal, and the metric is of cohomogeneity one.

We presented the metric in both the Kerr-Schild and Boyer-Lindquist forms. In the second

class of solutions, only a single rotation parameter is non-vanishing, and the solution is

obtained in the Kerr-Schild form. In this case, it does not appear to be possible to rewrite

it in terms of Boyer-Lindquist type coordinates. By calculating the subtracted Riemann

tensor that appears in the equations of motion (2.7) explicitly, we demonstrated that the

metrics in both of the classes indeed satisfy the equations of motion. When restricted to

five dimensions, our solutions are special cases of the rotating solutions constructed in [14].

The metrics are all asymptotic to AdS, but they do not describe black holes. Rather,

they have naked curvature singularities. The analysis is rather straightforward for the

solution with where all the angular momenta are equal, since in this case we can rewrite the

metric using Boyer-Lindquist type coordinates. Another way to see the geometric structure

by noting that if we set the rotation parameter to zero, the solution reduces to AdS, with

no “mass” parameter analogous to µ in the static solutions (3.2). The naked singularity

can thus be understood as being associated with a solution that is “over rotated,” in the

sense that it has angular momentum but no mass.

Exact rotating solutions are hard to come by, and although the solutions we have ob-

tained here have shortcomings associated with the presence of naked singularities, they

do perhaps provide a guide as to how one might hope to construct more general rotating
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solutions in critical Lovelock gravities. It would be of great interest to try to obtain such

generalisations where a mass parameter could be added, so that rotating black hole solu-

tions without naked singularities might be possible. It would also be interesting to seek

rotating solutions in the higher-dimensional critical Lovelock gravities in which the angular

momentum parameters could be arbitrary.
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A Subtracted Riemann Tensor for Single-Rotation Metrics

The components of the subtracted Riemann tensor (2.8) for the Kerr-Schild metrics defined

by (5.1) and (5.2) can be given as follows. With xa = (t, r, θ, φ) and xi being the coordinates

of the (2n − 3)-sphere, the non-vanishing components of R̂µν
ρσ involve either four, two (one

up, one down) or zero (2n − 3)-sphere indices. Writing c ≡ cos θ and s ≡ sin θ, we find

R̂ij
kl =

λa2c2

r2
δijkl , R̂ai

bj = T a
b δ

i
j , (A.1)

where

T t
t =

2λa2s2∆2
θ

Ξa(g2r2 + 1)ρ2
, T φ

t =
2λa3s2∆2

θ

Ξa(r2 + a2)ρ2
, T θ

t =
2λa2cs∆2

θ

Ξarρ2
,

T r
t =

2λa2s2∆2
θ

Ξaρ2
, T t

φ = − 2λa3s4∆θ

Ξa(g2r2 + 1)ρ2
, T φ

φ = − 2λa4s4∆θ

Ξa(r2 + a2)ρ2
,

T θ
φ = −2λa3cs3θ∆θ

Ξarρ2
, T r

φ = −2λa3s4∆θ

Ξaρ2
, T t

θ = − 2λa2cs

r(g2r2 + 1)
,

T φ
θ = − 2λa3cs

r(r2 + a2)
, T r

θ = −2λa2cs

r
, T t

r = − 2λa2s2∆θ

(g2r2 + 1)2(r2 + a2)
,

T φ
r = − 2λa3s2∆θ

(g2r2 + 1)(r2 + a2)2
, T θ

r = − 2λa2cs∆θ

r(g2r2 + 1)(r2 + a2)
,

T r
r = − 2λa2s2∆θ

(g2r2 + 1)(r2 + a2)
, T θ

θ = 0 , (A.2)

and the components R̂ab
cd are given by

R̂t φ
t φ =

2λa2c2[−(r2 + a2)(Ξa + 2a2g2s2) + a4g2s4]

(g2r2 + 1)(r2 + a2)ρ2
, R̂t φ

t θ = − 2λa3g2rcs

(g2r2 + 1)(r2 + a2)
,
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R̂t φ
t r =

2λa5g2c2s2

(g2r2 + 1)(r2 + a2)2
, R̂t φ

φ θ =
2λa2rcs

(g2r2 + 1)(r2 + a2)
,

R̂t φ
φ r = − 2λa2c2∆θ

(g2r2 + 1)2(r2 + a2)
, R̂t φ

θ r =
2λa3rcsΞa

(g2r2 + 1)2(r2 + a2)2
,

R̂t θ
t,φ = − 2λa3g2rcs3∆θ

Ξa(g2r2 + 1)ρ2
, R̂t θ

t r = − rs∆θ

Ξacρ2
R̂t φ

t φ , R̂t r
t φ =

2λa5g2c2s4

Ξaρ2
,

R̂t θ
t θ =

2λa2

Ξa(g2r2 + 1)ρ4

[
r2 + r2(2a2g4r2 − 5a2g2 − 2)c2

−a2(2g4r4 − 8a2g4r2 − 7g2r2 + 3a2g2 + 1)c4

−a4g2(9g2r2 − 5a2g2 − 5)c6 − 6a6g4c8
]
,

R̂t θ
φ θ = −

2λa3s2
[
r2 + r2(2g2r2 − 3a2g2 − 3)c2 + a2(9g2r2 − 2a2g2 − 2)c4 + 6a4g2c6

]

Ξa(g2r2 + 1)ρ4
,

R̂t θ
φ r = −2λa3rcs3∆θ(2g

2r2 + a2g2c2 + 1)

Ξa(g2r2 + 1)2ρ4
, R̂t r

t θ =
(g2r2 + 1)(r2 + a2)

∆θ

R̂t θ
t r ,

R̂t θ
θ r =

2λa2(1− (5a2g2 + 2)c2 + 6a2g2c4)

(g2r2 + 1)2(r2 + a2)
, R̂t r

φ r = − 2λa5c2s4∆θ

Ξa(g2r2 + 1)ρ4
,

R̂t r
φ θ =

2λa3cs3r[a2s2 − 2(r2 + a2)]

Ξaρ4
, R̂t r

t r =
2λa4c2s2[(Ξa(r

2 + a2) + a4g2s4]

Ξa(r2 + a2)ρ2
,

R̂t r
θ r =

2λa2csr

(g2r2 + 1)(r2 + a2)
, R̂φθ

t φ = − 2λa2cs∆2
θr

Ξa(r2 + a2)ρ2
, R̂φθ

t θ = −(g2r2 + 1)∆θ

(r2 + a2)s2
R̂t θ

φ θ ,

R̂φ θ
t r = − ∆2

θ

(r2 + a2)2s2
R̂t r

φ θ , R̂θ r
t φ = −2λa3cs3∆2

θr

Ξaρ4
,

R̂φ θ
φ θ =

2λa2

Ξa(r2 + a2)ρ4

[
6a6g2c8 − a4(5 + 5a2g2 − 9g2r2)c6 − a2r2

+a2(3a2 + a4g2 − 8r2 − 7a2g2r2 + 2g2r4)c4 + r2(5a2 + 2a4g2 − 2r2)c2
]
,

R̂φ θ
φ r =

s∆θr

Ξaρ2c
R̂t φ

t φ , R̂φ r
φ θ =

(g2r2 + 1)(r2 + a2)

∆θ

R̂φθ
φ r ,

R̂φ θ
θ r =

2λa3(1− c2(5 + 2a2g2) + 6a2c4g2)

(g2r2 + 1)(r2 + a2)2
, R̂θ r

φ θ =
(g2r2 + 1)(r2 + a2)2s2

Ξaρ2
R̂φ θ

θ r ,

R̂φ r
t φ = −(g2r2 + 1)2(r2 + a2)∆θ

Ξaρ2
R̂t φ

φ r , R̂φ r
t θ = −(g2r2 + 1)2

s2
R̂t θ

φ r , (A.3)

R̂φ r
t r = −(g2r2 + 1)∆θ

(r2 + a2)s2
R̂t r

φ r , R̂φ r
φ r =

2λa2c2∆θ[Ξa(r
2 + a2 − 2a2s2)− a4g2s4]

Ξa(g2r2 + 1)ρ4
,

R̂φ r
θ r =

2λa3g2csr

(g2r2 + 1)(r2 + a2)
, R̂θ r

φ r =
g2a(r2 + a2)s2∆θ

Ξaρ2
R̂φ r

θ r ,

R̂θ r
t θ = −(g2r2 + 1)2(r2 + a2)∆θ

Ξaρ
R̂t θ

θ r , R̂θ r
t r = −(g2r2 + 1)∆2

θ

Ξaρ2
R̂t r

θ r ,

R̂θ r
θ r = −2λa2[r2 − 2(−2a2 + r2 + a2g2r2)c2 − a2(5 + 5a2g2 − 3g2r2)c4 + 6a4g2c6]

(g2r2 + 1)(r2 + a2)ρ2
.
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