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M. Cvetič a,b,e, Xing-Hui Feng a,∗, H. Lü a, C.N. Pope a,c,d

a Department of Physics, Beijing Normal University, Beijing, 100875, China
b Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
c Mitchell Institute for Fundamental Physics and Astronomy, Texas A&M University, College Station, TX 77843-4242, USA
d DAMTP, Centre for Mathematical Sciences, Cambridge University, Wilberforce Road, Cambridge CB3 OWA, UK
e Center for Applied Mathematics and Theoretical Physics, University of Maribor, SI2000 Maribor, Slovenia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 October 2016
Accepted 7 December 2016
Available online 12 December 2016
Editor: N. Lambert

For appropriate choices of the coupling constants, the equations of motion of Lovelock gravities up to 
order n in the Riemann tensor can be factorized such that the theories admit a single (A)dS vacuum. In 
this paper we construct two classes of exact rotating metrics in such critical Lovelock gravities of order 
n in d = 2n + 1 dimensions. In one class, the n angular momenta in the n orthogonal spatial 2-planes are 
equal, and hence the metric is of cohomogeneity one. We construct these metrics in a Kerr–Schild form, 
but they can then be recast in terms of Boyer–Lindquist coordinates. The other class involves metrics 
with only a single non-vanishing angular momentum. Again we construct them in a Kerr–Schild form, 
but in this case it does not seem to be possible to recast them in Boyer–Lindquist form. Both classes of 
solutions have naked curvature singularities, arising because of the over rotation of the configurations.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Although Einstein’s theory of gravity is highly non-linear, exact solutions do exist, including the celebrated (static) Schwarzschild [1]
and (rotating) Kerr [2] metrics. Whilst the generalization of the Schwarzschild metric to higher dimensions is straightforward, such a 
generalization of the Kerr metric leads to still exact, but considerably more complicated solutions [3], especially so when the metrics are 
asymptotic to (A)dS ((anti-)de Sitter) spacetimes [4–6].

Finding exact solutions becomes much more difficult when Einstein gravity is extended with higher-order curvature invariants, even 
in the case of static solutions. Einstein gravity extended with quadratic curvature invariants in four dimensions was shown by numerical 
methods to admit a new static black hole over and above the Schwarzschild metric, but no exact solution is known [7,8]. The existence of 
such new black holes was shown numerically also when a cosmological constant or a Maxwell field is included [9,10].

In higher dimensions, when higher-order ghost-free Euler integrands are no longer total derivatives, Einstein–Gauss–Bonnet or more 
general Lovelock gravities can be constructed [11]. In these theories, exact solutions for static black holes have been found [12,13], and 
these have smooth limits to the Schwarzschild metric when the higher-derivative couplings are sent to zero. Exact solutions for rotating 
black holes remain elusive in these theories.

Recently, a five-dimensional rotating solution [14] was constructed in the Einstein–Gauss–Bonnet (EGB) theory, for a certain critical 
value of the coupling constant for the Gauss–Bonnet term. For generic values of the coupling constant, the EGB theory admits two (A)dS 
vacua with different cosmological constants. One of these has a positive kinetic energy for linearized graviton fluctuations, while the other 
has a negative kinetic energy [12]. At the critical value of the coupling, the two values for the (A)dS cosmological constants coalesce, and 
the linearized equations of motion are automatically satisfied, leading to a gravity theory without a linearized graviton fluctuation [15], 
and for which further exact solutions can be constructed.

The equations of motion of for higher-order Lovelock gravities can also be factorized for certain specific choices of the coupling con-
stants, again giving rise to only a single (A)dS vacuum with one specific cosmological constant. Such theories were classified and studied 
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in [16]. The critical EGB theory mentioned earlier is a special case. The purpose of this paper is to generalize the five dimensional rotating 
solution that was found in [14] for the critical EGB theory to the critical Lovelock gravities of order n in the Riemann tensor, in the 
spacetime dimension d = 2n + 1. We obtain exact rotating solutions in two cases. In the first, the n angular momenta in the n orthogo-
nal spatial 2-planes are all equal, and hence the metric is of cohomogeneity one. We obtain these solutions first in a Kerr–Schild form, 
but we find that they can then be recast into a form written using Boyer–Lindquist type coordinates. This rewriting has the advantage 
that it is easier to study the global structure of the solutions. The second class of rotating solutions that we obtain involve only a single 
non-vanishing angular momentum. Again, we obtain the solutions in a Kerr–Schild form, but in this case there appears to be no way to 
introduce Boyer–Lindquist type coordinates.

The paper is organized as follows. In section 2, we review the construction of the critical Lovelock gravities. In section 3, we consider 
static and spherically-symmetric solutions. Next, we focus on Lovelock gravities of order n in d = 2n + 1 dimensions. In section 4, we 
construct the exact rotating solutions where all the angular momenta are equal. In section 5, we construct the second class of rotating 
solutions, where only a single angular momentum is non-zero. We conclude the paper in section 6. In the Appendix A, we present details 
of the Riemann tensor for the single-angular momentum metrics.

2. Critical Lovelock gravities

In this section, we review the construction of [16]. We start with the general class of Lovelock gravities, for which the Lagrangian is 
given by

e−1L =
n∑

k=0

αk E(k) , (2.1)

where

E(k) = 1

2k
δ
ρ1σ1···ρkσk
μ1ν1···μkνk

Rμ1ν1
ρ1σ1 · · · Rμkνk

ρkσk
, (2.2)

and Rμν
ρσ denotes the Riemann tensor Rμν

ρσ and1

δ
β1···βs
α1···αs = s!δβ1

[α1
· · · δβs

αs] . (2.3)

The Euler integrands E(k) can also be expressed as

E(k) = (2k)!
2k R[μ1ν1

μ1ν1 · · · Rμkνk]
μkνk

. (2.4)

The first few cases are given by

E(0) = 1 , E(1) = R ,

E(2) = R2 − 4Rμν Rμν + Rμνρσ Rμνρσ , etc. (2.5)

In order for all the Euler integrands E(k) in (2.1) to be non-trivial, the spacetime dimension d should be ≥ 2n + 1.
The term 

√−g E(k) in the Lagrangian (2.1) gives a contribution

E(k) ν
μ = − 1

2k+1 δ
ρ1σ1···ρkσk ν
μ1ν1···μkνk μ Rμ1ν1

ρ1σ1 · · · Rμkνk
ρkσk

(2.6)

to the equations of motion.
The equations of motion following from (2.1) imply that the general condition for an (A)dS spacetime with Rμν = λ gμν to be a solution 

is that λ should be any of the roots of a certain nth-order polynomial, with coefficients proportional to the constants αk . By choosing the 
coefficients αk appropriately, one can arrange that all the roots are equal. This case corresponds to having the equations of motion

Eν
μ ≡ − 1

2n+1 δ
ρ1σ1···ρnσn ν
μ1ν1···μnνn μ R̂μ1ν1

ρ1σ1 · · · R̂μnνn
ρnσn = 0 , (2.7)

where R̂μν
ρσ , which we shall refer to as the subtracted Riemann tensor,2 is given by

R̂μν
ρσ = Rμν

ρσ + 1

	2
δ
μν
ρσ . (2.8)

The subtracted Riemann tensor vanishes in the case of an AdS vacuum with radius 	. We could, alternatively, obtain a de Sitter solution, 
by taking 	2 < 0. It turns out that

1 Note that this normalization for δβ1 ···βs
α1 ···αs is not the rather standard “unit-strength” convention.

2 Note that in the case of an Einstein metric with cosmological constant such that Rμν = −(n − 1) 	−2 gμν , the subtracted Riemann tensor (2.8) is nothing but the Weyl 
tensor.
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Eν
μ =

n∑
k=0

( 2

	2

)n−k
Ck

n
(d − 2k − 1)!
(d − 2n − 1)!

2k+1

2n+1
E(k)ν
μ ,

=
n∑

k=0

( 1

	2
)n−k Ck

n
(d − 2k − 1)!
(d − 2n − 1)! E(k)ν

μ . (2.9)

These theories were constructed and studied in [16]. We shall refer to them as critical Lovelock gravities of order n.
In this paper, we are interested in the case with d = 2n + 1, corresponding to the critical gravity of maximum order in a given odd 

dimension. Thus we have

Eν
μ =

n∑
k=0

( 1

	2
)n−k Ck

n (2(n − k))! E(k)ν
μ . (2.10)

The corresponding Lagrangian is thus

e−1L =
n∑

k=0

( 1

	2
)n−k Ck

n (2(n − k))! E(k) . (2.11)

The critical Lovelock gravities are characterized by the fact that they admit only a single (A)dS vacuum, for which the subtracted 
Riemann tensor vanishes. The linearization around the AdS vacuum was studied for the five-dimensional case (i.e. Einstein–Gauss–Bonnet, 
EGB) in [15]. It turns out that for a generic EGB theory, where there are two inequivalent (A)dS vacua, the kinetic term for the linearized 
graviton gives positive energy in one vacuum, and negative energy in the other. When the two (A)dS spacetimes coalesce, i.e. in the critical 
theory, the linearized perturbation equations become vacuous. The perturbation equations at quadratic order were derived in [15]. It is 
straightforward to see that for the critical Lovelock gravity of order n, the analogous perturbation equations up to and including order 
(n − 1) are vacuous.

3. Static solutions

In this paper, we are interested in constructing solutions where, unlike in (A)dS, the subtracted Riemann tensor does not vanish. The 
simplest such case is perhaps a static, spherically-symmetric metric, for which the most general ansatz takes the form

ds2 = −h(r)dt2 + dr2

f (r)
+ r2d
2

d−2,ε , d
2
d−2,ε = dy2

1 − ε y2
+ y2d
2

d−3 , (3.1)

with ε = 1, 0, −1, and d
2
d−3 is the metric for a unit round Sd−3. (To be precise, we include the topologies T d−2 and Hd−2 also, cor-

responding to taking ε = 0, −1 respectively.) The critical theories admit black hole solutions with h = f . These solutions were obtained 
in [16]. For d = 2n + 1, the solution becomes particularly simple, being given by

h = f = r2/	2 + ε − μ, (3.2)

where μ is an integration constant.
It was shown in [15] that the critical EGB theory admits another type of static solution, with

f = r2/	2 + ε , h = h(r) is an arbitrary function. (3.3)

We may easily check that in fact this gives a solution in all the critical Lovelock gravities: The subtracted Riemann tensor R̂μν
ρσ is given by

R̂ti
t j =

( 1

	2
− (ε + r2/	2)h′

2rh

)
δi

j , R̂tr
tr = rh′ − 2h

2h	2
− (2hh′′ − h′ 2)(ε + r2/	2)

4h2
, (3.4)

with all remaining components, aside from those following from (3.4) by the Riemann tensor symmetries, vanishing identically. As ex-
pected, the subtracted Riemann tensor vanishes when h = r2/	2 + ε , corresponding to the AdS vacuum. It is straightforward to see that 
(3.4) satisfies the equations of motion (2.7) in all the critical Lovelock theories in d ≥ 2n + 1 dimensions, since the non-vanishing compo-
nents of the subtracted Riemann tensor are not sufficient to span the entire range of index values required by the antisymmetric δ-tensor 
in (2.7).

4. Rotating solutions: all equal rotation

A rotating solution in the five-dimensional critical EGB theory was obtained in [14], by taking the metric to have a Kerr–Schild form 
with an AdS “base” ds̄2 that is written in spheroidal coordinates. The geodesic null vector Kμ that is used in the Kerr–Schild construction 
in [14] is the same as the one used in the construction of the Kerr–Schild form of the five-dimensional Kerr–AdS metric in [5,6]. However, 
the function w in the Kerr–Schild metric ds2 = ds̄2 + w (Kμdxμ)2 is quite different in [14] from the one in [5,6] that gives Kerr–AdS.

The rotating solution in [14] has independent rotation parameters in the two orthogonal spatial 2-planes. We have looked without suc-
cess for analogous solutions with independent rotation parameters in the higher-dimensional critical Lovelock gravities (2.7) in dimensions 
d = 2n + 1. However, we have been able to construct higher-dimensional generalizations in the case where all the rotation parameters are 
taken to be equal. As was shown in [5,6], the AdS base metric can then be written in terms of the Fubini–Study metric on CPn−1. We find 
that the full Kerr–Schild metric for the critical Lovelock solution takes the form
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ds2 = ds̄2 + λ(r2 + a2)K 2 , (4.1)

with

ds̄2 = − (g2r2 + 1)dt2

�
+ r2dr2

(g2r2 + 1)(r2 + a2)
+ r2 + a2

�

[
(dψ + A)2 + d�2

n−1

]
,

K = Kμdxμ = 1

�

[
dt − a(dψ + A)

] + r2dr

(g2r2 + 1)(r2 + a2)
, (4.2)

where � = 1 − g2a2 and d�2
n−1 is the Fubini–Study metric on CPn−1, with its canonical normalization R̄ab = 2n ̄gab . As with the Kerr–AdS 

metrics in odd dimension and with equal angular momenta, the solutions we obtain here have cohomogeneity one.
The metric (4.1) can be recast in terms of Boyer–Lindquist coordinates (for which there are no cross terms between dr and the other 

coordinate differentials), by means of the transformations

dt = dτ + λr2 dr

(1 + g2r2)(1 − (λ − g2)r2)
,

dψ = dσ + g2a dτ + aλr2 dr

(r2 + a2)(1 − (λ − g2)r2)
. (4.3)

The metric (4.1) then becomes

ds2 = −ρ2 h2

r2

(
dτ − a

�
(dσ + A)

)2 + ρ4

r2

( (dσ + A)

�
− a

ρ2
dτ

)2 + dρ2

h2
+ ρ2

�
d�2

n−1 , (4.4)

where we use ρ = √
r2 + a2 as the radial variable, and

r2 = ρ2 = a2 , h2 = 1 − (λ − g2)(ρ2 − a2) . (4.5)

We now prove that the metric (4.4) indeed satisfies the equation (2.7). It is convenient to define the vielbein basis

e0 = ρh

r

(
dτ − a

�
(dσ + A)

)
, e1 = dρ

h
,

e2 = ρ2

r

( (dτ + A)

�
− a

ρ2
dτ

)
, ea = ρ√

�
ēa , (4.6)

where ēa is a vielbein basis for CPn−1. In fact, for the purposes of the calculations below, we need not restrict the metric d�2
n−1 to be 

that of CPn−1 specifically; we may take it to be any Kähler metric on a complex manifold Kn−1 of complex dimension n − 1.
With the function h(ρ) as yet arbitrary, the torsion-free spin connection is given by

ω01 = − r

ρ

(
ρh

r

)′
e0 + a

r2
e2 , ω02 = a

r2
e1 , ω0a = ha

ρr
Jab eb , ω1a = − h

ρ
ea , (4.7)

ω12 =
(

hr′

r
− 2hρ

r2

)
e2 − a

r2
e0 , ω2a = 1

r
Jab eb , ωab = ω̄ab − ha

ρr
Jab e0 − 1

r
Jab e2 ,

where a prime denotes a derivative with respect to ρ , Jab are the vielbein components of the Kähler form of Kn−1, i.e. J = 1
2 Jab ēa ∧ ēb , 

and ω̄ab is the spin connection of Kn−1. The curvature 2-forms, after taking h(ρ) to be given by (4.5), are given by

�01 = −(λ − g2) e0 ∧ e1 , �02 = −(λ − g2) e0 ∧ e2 ,

�0a = −(λ − g2) e0 ∧ ea + ha
√

�

ρ2 r
(∇̄c Jab) ec ∧ eb , �1a = (λ − g2) e1 ∧ ea ,

�2a = (λ − g2) e2 ∧ ea +
√

�

ρr
(∇̄c Jab) ec ∧ eb ,

�ab = �̄ab + (λ − g2) ea ∧ eb − 1 + a2(λ − g2)

2ρ2

abcd ec ∧ ed − (∇̄c Jab)

(
ha

√
�

ρ2 r
ec ∧ e0 + 1

r
ec ∧ e2

)
, (4.8)

where �̄ab is the curvature 2-form of Kn−1, and


abcd = δac δbd − δad δbc + Jac Jbd − Jad Jbc + 2 Jab Jcd . (4.9)

Note that all the terms involving (∇̄c Jab) in (4.8) actually vanish, since the Kähler form is covariantly constant.
It is now evident that if we define R̂μν

ρσ as in (2.8), then provided we choose g and λ such that

1

	2
= g2 − λ , (4.10)

then the only non-vanishing components of R̂μν
ρσ will be when the indices lie in the directions of the Kähler manifold, with
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R̂ab
cd = �

ρ2
R̄ab

cd − 1 + a2(λ − g2)

ρ2

ab

cd . (4.11)

Since these non-zero components lie within a (2n − 2)-dimensional subspace of the full (2n + 1)-dimensional spacetime, it follows that 
the antisymmetrisations in (2.7) will ensure that the field equations are satisfied.

Note that this gives a solution of the equations of motion when Kn−1 is any Kähler manifold. For the particular case we started with, 
when Kn−1 = CP

n−1 with its standard Fubini–Study metric which has constant holomorphic sectional curvature,

R̄abcd = 
abcd , (4.12)

we have the especially simple result that

R̂ab
cd = −a2 λ

ρ2

ab

cd . (4.13)

5. Rotating solutions: a single rotation

We have also been able to construct rotating solutions in the d = 2n + 1 dimensional critical Lovelock gravities (2.7) in the case that 
just a single rotation parameter is non-vanishing. The metric in d = 2n + 1 dimensions is given by

ds2 = ds̄2 + λρ2 K 2 , (5.1)

with

ds̄2 = − (g2r2 + 1)�θdt2

1 − a2 g2
+ ρ2dr2

(g2r2 + 1)(r2 + a2)
+ ρ2dθ2

�θ

+ (r2 + a2) sin2 θdφ2

1 − a2 g2
+ r2 cos2 θ d
2

2n−3 ,

K = Kμdxμ = �θ dt

1 − a2 g2
− ρ2dr

(g2r2 + 1)(r2 + a2)
− a sin2 θdφ

1 − a2 g2
,

ρ2 = r2 + a2 cos2 θ , �θ = 1 − a2 g2 cos2 θ . (5.2)

If we choose g and λ to satisfy (4.10), then we find that the non-vanishing components of the subtracted Riemann tensor R̂μν
ρσ , defined 

in (2.8), are given by the expressions in Appendix A. Decomposing the indices as μ = (a, i), etc., where xa = (t, r, θ, φ) and xi are the 
coordinates of the (2n − 3)-sphere, the non-vanishing components of R̂μν

ρσ are of the forms

R̂ab
cd , R̂ai

bj = T a
b δi

j , R̂ i j
k	

= f δ
i j
k	

. (5.3)

The expressions for f , T a
b and ̂Rab

cd can be found in (A.1), (A.2) and (A.3) respectively. A crucial point for what follows is that the expressions 
for the components of R̂μν

ρσ are completely independent of the spacetime dimension (except for the obvious fact that the range of the 
i index is dimension dependent). Furthermore, the non-vanishing components of R̂μν

ρσ have either four, two (one up, one down) or zero 
(2n − 3)-sphere indices.

Given the structure of the non-vanishing components of R̂μν
ρσ , it is clear from (2.7) that the only non-trivial equations of motion will 

be

Eb
a = 0 and E j

i = 0 . (5.4)

Furthermore, we see that

Eb
a = α1 f n−2 S(1) b

a + α2 f n−3 S(3) b
a ,

E j
i = α3 f n−2 S(0) δ

j
i + α4 f n−3 S(1) b

a T a
b δ

j
i + α5 f n−4 S(3) b

a T a
b δ

j
i , (5.5)

where the α coefficients are non-vanishing combinatoric factors, and

S(0) = δ
c1d1c2d2
a1b1a2b2

R̂a1b1
c1d1

R̂a2b2
c2d2

, S(1) b
a = δ

bc1d1c2
aa1b1a2

R̂a1b1
c1d1

T a2
c2 , S(3) b

a = δ
bd1c2d2
ab1a2b2

T a1
c1 T b1

d1
T a2

c2 . (5.6)

After rather intricate, but mechanical calculations (which we performed using Mathematica), we find that

S(0) = 0 , S(1) b
a = 0 , S(3) b

a = 0 , (5.7)

and hence the single rotation metrics satisfy the equations of motion (2.7) in all dimensions d = 2n + 1, provided that (4.10) holds.

6. Conclusions

In this paper, we considered critical Lovelock gravities and focused on those of order n in d = 2n + 1 dimensions. We obtained two 
classes of rotating solutions. In the first class, all the angular momentum parameters are set equal, and the metric is of cohomogeneity 
one. We presented the metric in both the Kerr–Schild and Boyer–Lindquist forms. In the second class of solutions, only a single rotation 
parameter is non-vanishing, and the solution is obtained in the Kerr–Schild form. In this case, it does not appear to be possible to rewrite 
it in terms of Boyer–Lindquist type coordinates. By calculating the subtracted Riemann tensor that appears in the equations of motion 
(2.7) explicitly, we demonstrated that the metrics in both of the classes indeed satisfy the equations of motion. When restricted to five 
dimensions, our solutions are special cases of the rotating solutions constructed in [14].
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The metrics are all asymptotic to AdS, but they do not describe black holes. Rather, they have naked curvature singularities. The 
analysis is rather straightforward for the solution with where all the angular momenta are equal, since in this case we can rewrite the 
metric using Boyer–Lindquist type coordinates. Another way to see the geometric structure by noting that if we set the rotation parameter 
to zero, the solution reduces to AdS, with no “mass” parameter analogous to μ in the static solutions (3.2). The naked singularity can thus 
be understood as being associated with a solution that is “over rotated,” in the sense that it has angular momentum but no mass.

Exact rotating solutions are hard to come by, and although the solutions we have obtained here have shortcomings associated with the 
presence of naked singularities, they do perhaps provide a guide as to how one might hope to construct more general rotating solutions 
in critical Lovelock gravities. It would be of great interest to try to obtain such generalizations where a mass parameter could be added, 
so that rotating black hole solutions without naked singularities might be possible. It would also be interesting to seek rotating solutions 
in the higher-dimensional critical Lovelock gravities in which the angular momentum parameters could be arbitrary.
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Appendix A. Subtracted Riemann tensor for single-rotation metrics

The components of the subtracted Riemann tensor (2.8) for the Kerr–Schild metrics defined by (5.1) and (5.2) can be given as follows. 
With xa = (t, r, θ, φ) and xi being the coordinates of the (2n − 3)-sphere, the non-vanishing components of R̂μν

ρσ involve either four, two 
(one up, one down) or zero (2n − 3)-sphere indices. Writing c ≡ cos θ and s ≡ sin θ , we find

R̂ i j
kl = λa2c2

r2
δ

i j
kl , R̂ai

bj = T a
b δi

j , (A.1)

where

T t
t = 2λa2s2 �2

θ

�a(g2r2 + 1)ρ2
, T φ

t = 2λa3s2 �2
θ

�a(r2 + a2)ρ2
, T θ

t = 2λa2cs�2
θ

�arρ2
,

T r
t = 2λa2s2�2

θ

�aρ2
, T t

φ = − 2λa3s4 �θ

�a(g2r2 + 1)ρ2
, T φ

φ = − 2λa4s4 �θ

�a(r2 + a2)ρ2
,

T θ
φ = −2λa3cs3θ �θ

�arρ2
, T r

φ = −2λa3s4�θ

�aρ2
, T t

θ = − 2λa2cs

r(g2r2 + 1)
,

T φ
θ = − 2λa3cs

r(r2 + a2)
, T r

θ = −2λa2cs

r
, T t

r = − 2λa2s2�θ

(g2r2 + 1)2(r2 + a2)
,

T φ
r = − 2λa3s2�θ

(g2r2 + 1)(r2 + a2)2
, T θ

r = − 2λa2cs�θ

r(g2r2 + 1)(r2 + a2)
,

T r
r = − 2λa2s2�θ

(g2r2 + 1)(r2 + a2)
, T θ

θ = 0 , (A.2)

and the components R̂ab
cd are given by

R̂t φ
t φ = 2λa2c2[−(r2 + a2)(�a + 2a2 g2s2) + a4 g2s4]

(g2r2 + 1)(r2 + a2)ρ2
, R̂t φ

t θ = − 2λa3 g2rcs

(g2r2 + 1)(r2 + a2)
,

R̂t φ
t r = 2λa5 g2c2s2

(g2r2 + 1)(r2 + a2)2
, R̂t φ

φ θ = 2λa2rcs

(g2r2 + 1)(r2 + a2)
,

R̂t φ
φ r = − 2λa2c2�θ

(g2r2 + 1)2(r2 + a2)
, R̂t φ

θ r = 2λa3rcs�a

(g2r2 + 1)2(r2 + a2)2
,

R̂t θ
t,φ = − 2λa3 g2rcs3�θ

�a(g2r2 + 1)ρ2
, R̂t θ

t r = − rs�θ

�acρ2
R̂t φ

t φ , R̂t r
t φ = 2λa5 g2c2s4

�aρ2
,

R̂t θ
t θ = 2λa2

�a(g2r2 + 1)ρ4

[
r2 + r2(2a2 g4r2 − 5a2 g2 − 2)c2 − a2(2g4r4 − 8a2 g4r2 − 7g2r2 + 3a2 g2 + 1)c4

− a4 g2(9g2r2 − 5a2 g2 − 5)c6 − 6a6 g4c8
]
,

R̂t θ
φ θ = −

2λa3s2
[

r2 + r2(2g2r2 − 3a2 g2 − 3)c2 + a2(9g2r2 − 2a2 g2 − 2)c4 + 6a4 g2c6
]

�a(g2r2 + 1)ρ4
,

R̂t θ
φ r = −2λa3rcs3�θ(2g2r2 + a2 g2c2 + 1)

2 2 2 4
, R̂t r

t θ = (g2r2 + 1)(r2 + a2)
R̂t θ

t r ,

�a(g r + 1) ρ �θ
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R̂t θ
θ r = 2λa2(1 − (5a2 g2 + 2)c2 + 6a2 g2c4)

(g2r2 + 1)2(r2 + a2)
, R̂t r

φ r = − 2λa5c2s4�θ

�a(g2r2 + 1)ρ4
,

R̂t r
φ θ = 2λa3cs3r[a2s2 − 2(r2 + a2)]

�aρ4
, R̂t r

t r = 2λa4c2s2[(�a(r2 + a2) + a4 g2s4]
�a(r2 + a2)ρ2

,

R̂t r
θ r = 2λa2csr

(g2r2 + 1)(r2 + a2)
, R̂φ θ

t φ = − 2λa2cs�2
θ r

�a(r2 + a2)ρ2
, R̂φ θ

t θ = − (g2r2 + 1)�θ

(r2 + a2)s2
R̂t θ

φ θ ,

R̂φ θ
t r = − �2

θ

(r2 + a2)2s2
R̂t r

φ θ , R̂θ r
t φ = −2λa3cs3�2

θ r

�aρ4
,

R̂φ θ
φ θ = 2λa2

�a(r2 + a2)ρ4

[
6a6 g2c8 − a4(5 + 5a2 g2 − 9g2r2)c6 − a2r2

+ a2(3a2 + a4 g2 − 8r2 − 7a2 g2r2 + 2g2r4)c4 + r2(5a2 + 2a4 g2 − 2r2)c2
]
,

R̂φ θ
φ r = s�θ r

�aρ2c
R̂t φ

t φ , R̂φ r
φ θ = (g2r2 + 1)(r2 + a2)

�θ

R̂φ θ
φ r ,

R̂φ θ
θ r = 2λa3(1 − c2(5 + 2a2 g2) + 6a2c4 g2)

(g2r2 + 1)(r2 + a2)2
, R̂θ r

φ θ = (g2r2 + 1)(r2 + a2)2s2

�aρ2
R̂φ θ

θ r ,

R̂φ r
t φ = − (g2r2 + 1)2(r2 + a2)�θ

�aρ2
R̂t φ

φ r , R̂φ r
t θ = − (g2r2 + 1)2

s2
R̂t θ

φ r ,

R̂φ r
t r = − (g2r2 + 1)�θ

(r2 + a2)s2
R̂t r

φ r , R̂φ r
φ r = 2λa2c2�θ [�a(r2 + a2 − 2a2s2) − a4 g2s4]

�a(g2r2 + 1)ρ4
,

R̂φ r
θ r = 2λa3 g2csr

(g2r2 + 1)(r2 + a2)
, R̂θ r

φ r = g2a(r2 + a2)s2�θ

�aρ2
R̂φ r

θ r ,

R̂θ r
t θ = − (g2r2 + 1)2(r2 + a2)�θ

�aρ
R̂t θ

θ r , R̂θ r
t r = − (g2r2 + 1)�2

θ

�aρ2
R̂t r

θ r ,

R̂θ r
θ r = −2λa2[r2 − 2(−2a2 + r2 + a2 g2r2)c2 − a2(5 + 5a2 g2 − 3g2r2)c4 + 6a4 g2c6]

(g2r2 + 1)(r2 + a2)ρ2
. (A.3)
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