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Abstract

atntrt correlations from Sulphur-Lead collisions at 200 GeV/c per nucleon are
presented as measured by the focusing spectrometer of experiment NA44 at CERN.
We have investigated the three-pion correlation function at mid-rapidity and found
that a genuine three-body correlation is suppressed. A possible interpretation of
this result is that the emission of particles is partially coherent.
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1 INTRODUCTION

Particle intensity interferometry provides a method for measuring the space-time
extent of a particle-emitting source when the emitted radiation is at least partially
incoherent[1, 2, 3]. In particular, two-pion[4, 5, 6] and two-kaon|[7] correlation studies in
ultra-relativistic nuclear collisions have provided information on the expansion dynamics
and the freeze-out volume when the particles decouple from the source.

Three-particle correlations consist of three combinations of two-particle correlations
and a so-called genuine three-body correlation term. Genuine three-body correlations
have been observed at high energy for pp collisions[8] and e*e~-annihilations[9, 10]. In
other reactions and at lower energies, the possible presence of a three-body correlation is
unclear[11, 12, 13, 14].

In this paper we measure the genuine three-particle correlation between three pions
of the same charge. We parameterize its strength in terms of a weight factor normalized
to be unity for a completely chaotic and symmetric system.

Asymmetry of the source will result in a decrease of the strength of the genuine
three-body correlation. Source asymmetries might be generated by flow, source geometry
and resonance decays, but the effects on the three-body correlation are estimated to be
very small[15, 16]. More importantly, coherence of the particle emitting source can also
result in a decrease of the strength of the genuine three-body correlation. So far the
degree of coherence has been determined from two-particle correlations. This is done by
extrapolating the measured correlation function down to zero relative momentum by a
simple parameterization, most often a Gaussian. Any deviation from the maximum value
of two can be explained as being due to partial coherence. Typically there are several
problems encountered at small relative momenta which make a good measurement in
that region difficult: shrinking phase space and low statistics, finite momentum and two-
track resolution, and uncertainties in the corrections for the Coulomb repulsion in the case
of charged particles. Furthermore, in the case of pion correlations, long-lived resonances
such as w, 7, 7/ may give rise to a correlation peak[17] having a width of only a few
MeV on top of the extrapolated Gaussian. This peak is impossible to resolve with current
experimental resolutions. Most of these problems are reduced in the case of the genuine
three-particle correlation since it is measured over a broad range of relative momenta.
The three-particle correlation can therefore provide supplementary information about the
reaction mechanism which cannot be determined from the two-particle correlation.

This paper is the first result on the strength of the genuine three-pion correlation
in ultra-relativistic nuclear collisions.

2 EXPERIMENTAL SET-UP

The layout of the NA44 focusing spectrometer experiment has been described in
detail elsewhere[4]. The momentum range is selected by two dipole magnets and is 4
GeV/c £+ 20 % in this analysis. Only one charge sign can be detected in the spectrom-
eter at a time. Three quadrupole magnets create a magnified image of the target in the
spectrometer. The data are taken in the “Horizontal” configuration of the quadrupoles,
for which the angular coverage of the spectrometer is approximately —0.3° to 4.5° with
respect to the incident beam. This setting covers the pr range 0 - 350 MeV/c and the
rapidity range 3.2 - 4.1, with an average pr and rapidity of 121 MeV/c and 3.8 respec-
tively. The spectrometer uses three highly segmented scintillator hodoscopes for tracking
and time-of-flight measurements. The most downstream hodoscope is used for particle
identification, and has a time resolution of approximately 100 ps. A trigger is constructed



by requiring two or more hits in the hodoscopes. Two threshold Cherenkov detectors pro-
vide particle identification at the trigger level, and for the data reported here the trigger
additionally requires a pion signal in the first Cherenkov and vetoes electrons in the sec-
ond Cherenkov. No explicit centrality selection is imposed, however the requirement of at
least two particles in the spectrometer favours central events. The trigger is the same as
that used in our two-particle analysis[4, 5].

3 THE THEORY OF BOSE-EINSTEIN CORRELATIONS

The correlation functions for two and three identical particles are given by:

P(ky ks
C2 = ri3r(en M
_ P(ky k2 ,k3)
Cs = P(k1)P(k2)P(k3) (2)

where k; is the four-momentum of particle ¢, P(k1,k;) and P(ki,k,, ks) are the two- and
three-particle probability densities respectively, and P(k;) is the single-particle probability
density. The probability density can be described for the two-particle case as:

P(ky, k) = //|‘I’fz'E'(k1k2;wlwz)|2P($1)P($2)d4$1d4w2 (3)

where p is the source density function; here, for clarity, solely a function of . The wave-
function V¥ is defined as the amplitude for a pair produced at z; and z, to register in the
detectors, suitably symmetrized for bosons.

For a totally chaotic source the correlation functions for the two- and three-particle
cases can be written as (see [3] and references therein):

Ch=1+ |F,'j|2 17 = 12,23,31 (4)
C3=1+ |Flz|2 + |Fzs|2 + |F$1|2 + 2Re { F13F53F3; } (5)

where, assuming plane wave propagation:

Fy= [ @%@y, Qu=ki— ()

and where ();; is the four-momentum difference and ¢7 is the combination of a pair out
of the three-particle sample, i.e. ¢j = 12,23,31. As seen from Eq. (5), the three-particle
correlation function is composed of two parts: the first consists of three terms F;; which we
can also determine from the two-particle correlations; the second is the so-called genuine
three-particle correlation, in this case expressed as 2Re { Fy3Fy3F3; }.

For a totally chaotic and symmetric source, F;; is real, and we do not get any
new information from this last term as |Fj;| can be determined from the two-particle
correlation, Eq. (4). In fact, assuming a chaotic Gaussian, symmetric and momentum
independent source density function, p(z), of width R the correlation functions become:

Co(Qij) = 1+ A% (7)
Ca(Q12, @23, Q) = 1+ ABize™™ % 4 222673 (Bicih) (8)

where ) is a phenomenological parameter|[18] equal to the correlation at ();; = 0. This
parameter has been introduced due to the fact that the measured two- and three-particle



correlation functions never reach the full value which, for Bose-particles, are 2 and 6
respectively. Note that the A and R in Eqs. (7) and (8) are describing the same system.

Our statistics do not allow a three-dimensional analysis of the three-particle corre-
lation function, Eq. (8). We therefore use a one-dimensional parameterization:

2

Ca(Qs) = 1+ Age™ M9 (9)

where Q3 = Q3,4 Q3+ Q2. Eq. (9) is a commonly used parameterization for low-statistics
three-particle correlation functions. We will use Eqs. (7) and (9) to parameterize our data.

We introduce a weight factor w by the relation:
Cs =1+ |Fua|* + |Fas|® + |F31|? + 2| Fua|| Fas|| Fa1| X w (10)

The weight factor w is a measure of the strength of the genuine three-particle cor-
relation. It can be experimentally determined using the following expression, extracted

from Eq. (10):
o — 1Ca(Qs) =1} — {05(Q12) — 1} — {C2(Qas) — 1} — {C2(Qa1) — 1}
24/{C2(@Q12) — 1}{C2(Q2s) — 1}{Ca(Qs1) — 1}
For a totally chaotic and symmetric source w = 1, but w will differ from 1 for either

an asymmetric or coherent particle emitting source.
In the case of asymmetry, the Fourier transform, Eq. (6), will be complex, F;; =

(11)

|F;;|€'#. The phase-factors, €% cancel out in the two-particle correlation function, Eq.
(4), but survive in the three-particle correlation as seen from the last term in Eq. (5).
From Eq. (5), using w = cos(¢12 + ¢a3 + ¢31), we get Eq. (11) and w can be interpreted
as a measure of a phase factor. Asymmetry in the production mechanism will result in a
small reduction of w from 1 at the level of a few per cent[16, 15].

In the case of partial coherence, Eqs. (4-8) are not valid, and more complicated
expressions are needed[16, 19]. We can always define w by the relation (11) but w has
a defined meaning as a phase factor only for chaotic sources. If w is very different from
1 we can only infer that partial coherence is present; w does not measure directly the
proportion of pions produced incoherently.

4 DATA ANALYSIS

Pions are sampled from an exposure of a Sulphur beam on a Lead target during
1991-92. 24,000 raw events with three tracks are reconstructed from hit positions on the
three hodoscopes, with pattern recognition constrained by straight-line trajectories after
the magnets. Tracks are not allowed to share the same or neighbouring hodoscope slat to
certify a high purity of the three-pion sample. Identical cuts are used in constructing the
two- and three-pion data sets. Events containing particles heavier than pions are rejected
by the time-of-flight cuts. Contamination of the pion data set by kaons is less than 2%.
The Q;; and Q3 resolutions are approximately 12 MeV/c and 16 MeV/c respectively.
These resolutions determine the size of the bins used in this analysis.

The correlation function is determined using C'(¢) = A(¢)/B(q). The “real” momen-
tum distribution, A(g), is constructed from tracks from the same event and the “back-
ground” distribution, B(q), is constructed from tracks mixed randomly from all events
contained in A(q). Ideally, the “background” distribution contains all interactions between
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the produced particles, and phase space constraints, but not the Bose-Einstein effect. This
method cancels out effects of the experimental acceptance and trigger biases to first order,
and is described in our previous publications[5, 7].

To compare with theoretical correlation functions, the following corrections[4] are
iteratively applied to produce the correlation function C\op:

Ocorr - Ora,w X KSPC X Kacceptance X KCoulomb (]-2)

The background spectrum is distorted with respect to the true uncorrelated many-
particle spectrum, owing to the effect of the many-particle correlations on the single-
particle spectrum. This is iteratively corrected by the factor Kgpc appropriately gener-
alized to the three-particle case, in which each particle used in the background spectrum
is weighted by the correlation from the event it is taken from.

The factor Kgycceptance corrects the data for the momentum resolution of the spec-
trometer and the many-particle acceptance and is calculated by a Monte Carlo programme
with a full simulation of the tracking detectors and multiple scattering.

The two-particle correlation function has been corrected for the Coulomb inter-
action, Kcouiomp, between the particles using the Coulomb wave function integration

method[20, 21]:

ffd3$1d3$2P($1)P($2)|‘I’Coul(Q12,531 - $2)|2
ffd3$1d3m2p(ml)p($2)|\I,pla.newaue(Q127xl - $2)|2

KCaulomb(Q12) - (13)

where Uy (Q12, 21 — 22) is the symmetrized non-relativistic two-particle Coulomb wave
function, ¥ anewave (@12, 21 — 2) is the symmetrized plane wave, and p(z;) is the density
distribution of the source. The wave functions are expressed in the two-particle center-of-
mass frame, and p(z;) is taken as a Gaussian distribution of width R in all three spatial
dimensions.

The three-particle correlation function has been corrected for the Coulomb interac-
tion using a similar technique. A convenient and useful representation of a wave function
for the three-particle system with the correct asymptotic wave function is given by[22, 23]

Ui kaks (21, T2, T3) ~ D, (21 — T2)YQ,, (22 — T3)Yg,, (235 — 1) (14)

Here, g, (z; — z;) is the non-relativistic two-particle Coulomb wave function describing
the relative motion of the two particles ¢ and j. It is, however, to be emphasized that a
wave function of the type Eq. (14) implies that the relative motion of each of the three
pairs of particles is independent of that of the other pairs, i.e. that no correlations between
the motions of the three particle pairs occur, a notion which clearly can be true at most
for asymptotic particle separations.

Given the general three-particle wave function Wy, (21,22, 23) it is straightfor-
ward to construct a properly symmetrized wave function for the three-pion system in their
center-of-mass system and to calculate the correction factor for the three-particle case with
a similar formula to Eq. (13). Details of such a calculation will soon be published[24].

There is still some room for further systematic errors in the Coulomb correction,
due to the fact that the unknown exact three-body wave-function is reproduced only
asymptotically by the ansatz Eq. (14). However, in the kinematic region of the NA44
experiment, these non-asymptotic corrections are expected to be negligible as the first
non-asymptotic correction terms in the three-body Coulomb wave-functions are known
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to decrease strongly with increasing energy of the triplet and the average energy of the
triplet is large compared to the typical scale of the three-body Coulomb potential in the
NA44 three-pion data sample, see ref. [24] for further details.

Coulomb interactions with the residual nuclear system are negligible but are ex-
pected to be small for particles with identical charge-to-mass ratios. Final-state strong
interactions are also expected to be small but due to large uncertainties in proposed
procedures, no corrections are applied to them[25].

The iterative procedure converges within 3 iterations.

The systematic errors are evaluated by varying the analysis parameters and see-
ing the difference in the correlation produced. These variations include changing the
momentum resolution assumed in the Monte-Carlo correction by +10%, changing the
time-of-flight cuts, and changing the minimum slat separation from one to two slats in all
the hodoscopes. The w is being re-calculated from Eq. (11) for each new set of correla-
tion functions. The systematic errors are estimated by summing up the differences to the
mean-value for each altered setting.

The statistical error on w for each bin is: o0:(w) = a/\/ﬁ, where o is the variance
and N is the number of entries. The uncertainty on w due to the statistical error on C5 and
(5 is treated as an additional systematic error. This is added in quadruture to the other
systematic error and estimated by calculation w by using Cs £ o¢, stat and C2 £ 0¢, stat-
The statistical error is much smaller than the systematic error.

5 RESULTS AND DISCUSSION

The three-pion correlation function is shown in Figure 1 and summarized in Table 1.
There are no significant data points below &~ 16 MeV /c due to the fact that the require-
ment of at least one slat between each track on each hodoscope depletes this region while
increasing the purity of the three-pion sample. The correlation function is fitted using Eq.
(9). The two dashed lines show an estimate of the three-pion correlation function when
w = 0 (lower dashed line) and w = 1 (upper dashed line). This is done using Eq. (8) with
A and R parameters determined from the two-pion correlation function using a Gaussian
parameterization. The data points lie within the boundary given by 0 < w < 1. Although
the w = 1 curve is systematically above the data points on Figure 1, this curve cannot be
excluded.

The two-pion correlation extracted from the three-pion data set is shown in Figure 2
and summarized in Table 2. Within errors, the results are consistent with NA44 measure-
ments made using an ordinary two-particle sample of data taken in the same spectrometer
setting with identical cuts applied. The A3 value from Table 1 is consistent with 3A; which
is expected when w is close to zero, see Eq. (10). The data are “minimum-bias” in both
cases, although central events are favoured in both samples[4, 5] due to the requirement
of at least two particles in the spectrometer. The effect on the correlation function due
to the presence of a third pion is minimal for our data, indicating a small or negligible
genuine three-body contribution. It also indicates that the effect of a pion just outside
the NA44 acceptance is negligible as assumed in our previous publications[4, 5, 6, 7].

The strength of the genuine three-body correlation, w, is calculated using Eq. (11).
First we determine the correlation functions, C; and Cj3, as described above. Knowing the
two- and three-particle correlation functions we can calculate w on an event-by-event basis.
The correlation values, C3(Q12), C2(Q23), C2(Q31), and C5(Q3), are obtained by using (1,
(23, @31, and Q3 for each event. We use the actual data points of the correlation function,
see Figures 1-2, so as not to be biased by some parameterization. As a result we obtain a



System A3 R (fm) X% /Naos
3wt 1.35 £ 0.12 + 0.09 | 2.44 + 0.16 £+ 0.14 | 14.4/17

Table 1: Fit results from three-pion analysis. The errors are statistical and systematic

respectively.
System A R (fm) X%/ Naog
3rt — 27T [ 0.44 +0.04 | 4.45+0.37 | 17.1/20
2t 0.46 +0.04 | 4.50 +0.31 | 18.1/16

Table 2: Results from two-pion analysis from the three-particle data set compared to our
previous published results [4]. Errors are statistical only.

distribution of w for each @3 bin, see Figure 3. Events are taken in the range 16 < @3 <
64 MeV/c, i.e. in the region of the genuine three-body correlation. In order to avoid poles
in the denominator of Eq. (11) events are accepted if @;; < 60 MeV/c. The results are
shown in Figure 3. The w factor deviates from unity and we see no ()-dependence. The
weighted-mean is 0.20 £+ 0.02 £ 0.19, indicating that a genuine three-body correlation is
suppressed.

Our result is, in fact, in agreement with earlier studies of factorial cumulants search-
ing for genuine higher-order correlations[14]. The only possibility known to us for such
a small genuine three-body Bose-Einstein correlation is the presence of partially coher-
ent particle emission in these heavy-ion collisions. This implies that hadrons produced
in high-energy heavy-ion collisions seem to be emitted from the interaction region in a
different way than hadrons produced in simpler and smaller systems.

6 CONCLUSIONS

We have investigated the three-pion correlation function and found that the genuine
three-body correlation is suppressed. One possible interpretation of this result is that the
emission of particles is partially coherent.
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Figure 1: The three-pion correlation function with a fit to Eq. (9) (solid line). The dashed
lines are the estimate of the correlation function when w = 0 (lower dashed line) and
w = 1 (upper dashed line). The dashed area indicates the Q3-range without data. The
double error bars are for statistical (inner) and systematic (outer) respectively.
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Figure 2: The two-particle correlation
function from the three-particle sample
compared with the published two-particle
sample. Errors are statistical only.
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Figure 3: The weight factor w as a function
of Q3. The error bars represent the total
error, see the text.



