
ar
X

iv
:n

uc
l-

th
/0

31
10

49
v1

  1
4 

N
ov

 2
00

3

A relation between proton and neutron asymptotic normalization coefficients for light

mirror nuclei and its relevance to nuclear astrophysics.
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We show how the charge symmetry of strong interactions can be used to relate the proton and
neutron asymptotic normalization coefficients (ANCs) of the one nucleon overlap integrals for light
mirror nuclei. This relation extends to the case of real proton decay where the mirror analog is a
virtual neutron decay of a loosely bound state. In this case, a link is obtained between the proton
width and the squared ANC of the mirror neutron state. The relation between mirror overlaps can
be used to study astrophysically relevant proton capture reactions based on information obtained
from transfer reactions with stable beams.

PACS numbers: 24.50.+g,27.20.+n,27.30.+t

The astrophysical S-factor associated with the periph-
eral proton capture reaction B(p, γ)A at stellar energies
is well known[1] to be related to the Asymptotic Normal-
ization Coefficient (ANC) of the virtual decay A → B+p.
The same ANCs play a crucial role in other peripheral
processes such as transfer reactions whose cross sections
are significantly higher and therefore more easily mea-
surable than those of the direct capture processes at as-
trophysically relevant energies [1]. The study of ANCs
of astrophysical interest is a new and rapidly developing
direction in modern experimental nuclear physics [2, 3].
However, in order to exploit these ideas to determine
the ANCs for light proton-rich nuclei of importance to
nuclear astrophysics the corresponding transfer reactions
often require the use of weak radioactive beams which
generally involves more difficult and less accurate exper-
iments than are possible with stable beams. The higher
intensities of stable beams means that they can be used at
energies below the Coulomb barrier where the sensitivity
to optical potentials, which are the main uncertainty of
ANCs determined from transfer reactions, is minimised.
We point out here that the ANC of the virtual neutron
decay of the nucleus mirror to A, which may be suscepti-
ble to study with stable beams, is related in a model in-
dependent way by the charge symmetry of nuclear forces
to the ANC of the corresponding proton decay of A. We
propose to exploit this new insight to predict peripheral
reaction cross sections in stars.

An asymptotic normalization coefficient (ANC) is one
of the fundamental characteristics of the virtual decay of
a nucleus into two clusters and is equivalent to the cou-
pling constants in particle physics [4]. When multiplied
by a trivial factor, it equals to the on-shell amplitude for
the virtual decay into two clusters and it determines the
large distance behaviour of the projection of the bound
state wave function of the nucleus onto a binary channel.

In earlier work [5, 6], the ANCs for the one-nucleon vir-
tual decays of the mirror pairs 8B − 8Li and 12N − 12B
were studied in a microscopic approach. The calculated
ANCs themselves depended strongly on the choice of the
nucleon-nucleon (NN) force but the ratios of ANCs for

mirror pairs were practically independent of the choice of
the NN force. This observation is based so far entirely on
the calculations using detailed models of nuclear struc-
ture. We now show that it follows naturally as a conse-
quence of the charge symmetry of nuclear forces [27].
The ANC Clj for the one-nucleon virtual decay A →

B+N is defined via the tail of the overlap integral Ilj(r)
between the wave functions of nuclei A and B = A − 1,
where l is the orbital momentum and j is the total rela-
tive angular momentum between B and N . Asymptoti-
cally, this overlap behaves as

√
AIlj(r) ≈ Clj

W
−η,l+1/2(2κr)

r
, r → ∞, (1)

where κ = (2µǫ/h̄2)1/2, ǫ is the one-nucleon separation
energy, η = ZBZNe2µ/h̄2κ, µ is the reduced mass for
the B + N system and W is the Whittaker function. It
follows from [4, 5, 7] that Clj can be expressed in terms
of the many-body wave functions of the nuclei A and B:

Clj = −2µ
√
A

h̄2

× 〈[[ϕl(iκr)Yl(r̂)⊗ χ 1

2

]j ⊗ΨJB
]JA

||V̂ ||ΨJA
〉, (2)

where

ϕl(iκr) = e−iσlFl(iκr)/κr, (3)

Fl is the regular Coulomb wave function at imaginary
momentum iκ, σl = arg Γ(l + 1 + iη), r is the distance
between N and the center-of-mass of B and

V̂ =

A−1
∑

i=1

VNN (|ri − rA|) + ∆Vcoul = V̂N +∆Vcoul, (4)

∆Vcoul =

A−1
∑

i=1

eieA
|ri − rA|

− ZBeAe

r
. (5)

Here ei (eA) is the charge of the i-th (A-th) nucleon, ZB

is the charge of the residual nucleus B and VNN is the
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TABLE I: Ratio R of the proton and neutron squared ANC’s for mirror overlap integrals calculated with GPT [9], Volkov V1
[10], Brink-Boeker B1 [11] and four versions of the M3Y effective NN potentials [12, 13]. M3Y(R), M3Y(HJ) and M3Y(P) were
fitted to the oscillator G-matrix elements of the Reid, Hamada-Johnston and Paris NN potentials respectively and M3Y(E)
was fitted to the oscillator G-matrix elements derived from the NN scattering data. Analytical estimates R0 are also shown.

Overlap Mirror overlap j GPT V1 B1 M3Y(E) M3Y(R) M3Y(P) M3Y(HJ) R0

〈6Li|7Be〉 〈6Li|7Li〉 1/2 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05
3/2 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05

〈7Be|8B〉 〈7Li|8Li〉 1/2 1.18 1.17 1.18 1.20 1.17 1.17 1.19 1.12
3/2 1.20 1.20 1.20 1.22 1.19 1.20 1.22 1.12

〈11C|12N〉 〈11B|12B〉 1/2 1.45 1.42 1.44 1.45 1.42 1.42 1.43 1.37
3/2 1.45 1.44 1.46 1.46 1.42 1.43 1.46 1.37

〈12C|13N〉 〈12C|13C〉 1/2 1.26 1.24 1.24 1.26 1.23 1.24 1.25 1.19
〈14N |15O〉 〈14N |15N〉 1/2 1.53 1.50 1.51 1.53 1.51 1.51 1.52 1.48

3/2 1.54 1.51 1.51 1.57 1.51 1.52 1.56 1.48
〈 15N |16O〉 〈15O|16O〉 1/2 1.55 1.54 1.54 1.57 1.54 1.55 1.56 1.52

two-body nuclear NN potential. If the separated nucleon
is a neutron, ϕl is replaced by the Bessel function jl(iκr).

ANCs can be obtained from Eq. (2) using wave func-
tions which model the structure of nuclear interior well,
for example, from the oscillator shell model [28]. The
incorrect behavior of these model wave functions at large
distances plays a minor role because of the presence of
the short range NN potential on the right hand side in
Eq. (2) [7]. We have performed such calculations for
several 0p nuclei, some of which are of astrophysical im-
portance, with a range of NN potentials using fixed 0h̄ω
wave functions obtained in [8],[29]. The oscillator radii
was chosen to provide correct sizes for the nuclei consid-
ered. In these calculations mirror nuclei have exactly the
same wave functions but, of course, the mirror ANCs are
different because of different functions ϕl(iκr) involved.
The |Clj |2 values change by a factor of two for different
NN potential choice, but the ratio R = |Cp/Cn|2, where
Cp and Cn are the proton and neutron ANCs for mirrors
and hence may refer to different nuclei, changes by less
than 4% for each mirror pair of overlaps (see Table 1 and
[30]).

The observed effect has the following explanation. We
first replace ∆Vcoul by Vcoul(r)−ZBeAe/r where Vcoul(r)
is the monopole Coulomb interaction of the A-th nucleon
with the nucleus B. This ignores higher multipole com-
ponents of ∆Vcoul. Eq. (2) can then be replaced exactly
by a formula in which ∆Vcoul is removed from the matrix
element and ϕl(r) is replaced by ϕmod

l (r). The latter is
defined as the regular solution of the Schrödinger equa-
tion with the potential Vcoul(r) and which is normalized
so that ϕl(r) = ϕmod

l (r) outside the charge radius of B.
Inside the charge radius, the potential Vcoul(r) varies lit-
tle over the nuclear volume and can be replaced by a con-
stant equal to the separation energies difference ǫn − ǫp.
Hence, in the nuclear interior r < RN , which is all that
matters on the right-hand-side of Eq. (2), we can use

ϕmod
l (r) =

Fl(iκprN )

κpRN jl(iκnRN )
jl(iκnr), r ≤ RN , (6)

where iκp and iκn are determined by the proton and
neutron separation energies ǫp and ǫn. Using Eq. (6) in
the modified Eq. (2) and making the assumption that the
difference between the wave functions for mirror pairs in
the nuclear interior can be ignored, we find

R ≈ R0 =

∣

∣

∣

∣

Fl(iκpRN )

κpRN jl(iκnRN )

∣

∣

∣

∣

2

. (7)

R0 depends on the NN force only implicitly through RN .
The values of R0, presented in Table I, have been cal-

culated for RN = 1.3 · B1/3. They change by less than
2%, when RN is varied from 2.5 to 4.5 fm in each case,
and are smaller by less than 7% than the R values ob-
tained from microscopic calculations. Eq. (7) correctly
predicts the dependence of R on neutron and proton sep-
aration energies. The tendency of R0 to inderestimate R
can be attributed to the contributions from the r−2 and
r−3 multipoles of ∆Vcoul. When these multipoles are ex-
cluded from the microscopic calculations, the R values
decrease and become equal to R0 within the uncertainty
in its definition.
In practice, overlap integrals for transfer reactions are

frequently modelled as normalised single-particle wave
functions times spectroscopic factors S, so that Cp(n) =
√

Sp(n) bp(n), where bp(n) is the single-particle proton
(neutron) ANC. The derivation above shows that the re-
sult Eq.( 7) is valid for | bp/bn |2 if we assume that the sin-
gle particle wave functions in the interior and the nuclear
single particle potentials are the same for p and n. The
ratio Rb = (bp/bn)

2 is therefore expected to have only
weak dependence on these potentials. We have verified
this for a range of potentials chosen to simultaneouly re-
produce fixed proton and neutron binding energies. The
individual ANC’s bn and bp vary by up to a factor of 2
but the ratio Rb is stable to within 3% with an aver-
age which agrees with Eq.(7)[31]. If we assume that the
spectroscopic factors Sp and Sn are equal for mirror pairs
then we have an alternative way of estimating R. Note
however that our derivation of Eq.(7) involves fewer as-
sumptions than in this alternative approach and in fact



3

TABLE II: Squared ratio (bmax/bmin)
2 of the maximal and minimal values of b, average ratio of squared ANC’s 〈Rb〉 analytical

estimates R0 and experimental ratios Rexp. Where several experimental values of ANC’s are available, we take their average.
Also shown are proton ǫp and neutron ǫn separation energies (in MeV), number of nodes n and orbital momentum l.

Overlap ǫp Mirror overlap ǫn nl
(

bmax

bmin

)2
〈Rb〉 R0 Rexp Ref.for

Cexp
p

Ref.for
Cexp

n

〈7Be|8B〉 0.137 〈7Li|8Li〉 2.033 0p 1.23 1.01±0.01 1.12 1.08 ± 0.15 [17] [18]
〈11C|12N〉 0.601 〈11B|12B〉 3.370 0p 1.67 1.30±0.02 1.37 1.28 ± 0.29 [15] [16]

〈 14N |15O( 3
2

+

1
)〉 0.507 〈14N |15N( 3

2

+

1
)〉 3.026 1s 1.68 3.62±0.03 4.09

〈 15N |16O〉 12.128 〈15O|16O〉 15.664 0p 2.55 1.55±0.02 1.52

〈16O|17F ( 5
2

+

1
)〉 0.601 〈16O|17O( 5

2

+

1
)〉 4.144 0d 2.15 1.21±0.03 1.21 1.33 ± 0.20 [20, 21, 22, 23] [19]

〈16O|17F ( 1
2

+

1
)〉 0.106 〈16O|17O( 1

2

+

1
)〉 3.273 1s 1.56 702±4 796

〈22Mg|23Al〉 0.123 〈22Ne|23Ne〉 4.419 0d 1.50 2.67·104 2.61·104

〈26Si|27P 〉 0.859 〈26Mg|27Mg〉 6.443 1s 1.80 40.3±1.1 43.3

does not appeal to the concept of spectroscopic factor at
all. Our approach is therefore much more general and
provides a basis for further refinement of the value of the
ratio R predicted by theory. For the mirror pairs 8B -
8Li, 12N - 12B and 17F - 17O, where the experimental
values of the proton Cexp

p and neutron Cexp
n ANC’s are

simultaneously available, both 〈Rb〉 and R0 agree with
Rexp = |Cexp

p /Cexp
n |2 within the error bars (see Table II).

Near the edge of stability, where neutron separation en-
ergies become very small, the corresponding mirror pro-
ton states manifest themselves as resonances. The width
Γp of a narrow proton resonance is related to the ANC
of the Gamow wave function for this resonance by the
equation Γp = µ/κp|Cp|2 [14]. The ANC Cp can be cal-
culated from Eqs. (2) and (3) using the regular Coulomb
function Fl(κpr) of a real argument [4]. Therefore, a link
must exist between Γp and the ANC of mirror neutron
bound states. The ratio RΓ = Γp/|Cn|2 is then approxi-
mated by an equation similar to Eq. (7):

RΓ ≈ Rres
0 =

κp

µ

∣

∣

∣

∣

Fl(κpRN )

κpRN jl(iκnRN )

∣

∣

∣

∣

2

(8)

Alternatively, RΓ can be approximated by the single-
particle ratio Rs.p.

Γ = Γs.p.
p /b2n if the spectroscopic fac-

tors and single-particle potential wells for mirror bound-
unbound pairs are assumed equal. We have calculated

Rs.p.
Γ for the 8B(1+), 12N(2+), 13N(12

+
) and 13N(52

+
)

resonances using a set of two-body Woods-Saxon poten-
tials which reproduce both the separation energy of the
loosely-bound neutron and the position of the mirror pro-
ton resonance. In the case of l 6= 0, for different choice of
the two-body potentials the ratios Rs.p.

Γ change by about
3% while Γs.p.

p changes by up to a factor of 2 (see Ta-
ble III). This is the same as in the case of bound mirror
pairs of overlaps. However, for l = 0, where the cen-
trifugal barrier is absent and non-resonant contributions
are larger, the change in Rs.p.

Γ is larger and reaches 11%.
The average value of Rs.p.

Γ agrees with Rres
0 for the l = 2

resonance 13N(52
+
) but is smaller than Rres

0 by 16%, 20%

and 37% for 8B(1+), 12N(2+) and 13N(12
+
) respectively.

The Rres
0 values themselves are quite stable with respect

to different choice of RN except in the case of the l = 0

resonance 13N(12
+
) where the uncertainty of Rres

0 is 5%.

The proton widths of 8B(1+) 13N(12
+
) and 13N(52

+
)

and neutron ANC’s for their mirror states are known
experimentally. The ratiosRexp

Γ = Γexp
p /|Cexp

n |2 for these
states are shown in Table III. In all these cases, the single-
particle approximation RΓ ≈ Rs.p.

Γ is not confirmed. For
8B(1+), Rexp

Γ is larger than Rs.p.
Γ and agrees with Rres

0 ,

but for 13N(12
+
) and 13N(52

+
) Rexp

Γ is significantly lower
than Rs.p.

Γ and Rres
0 . This result suggests that estimates

based on the relation Γp = SpΓ
s.p.
p and the assumption

Sp = Sn can be unreliable.
The present work confirms the existence of a link be-

tween proton and neutron mirror ANC’s both for bound-
bound and bound-unbound mirror pairs. Therefore, neu-
tron ANC’s obtained with stable beams can be used to
predict cross sections of low-energy direct and resonance
proton capture reactions. Although more accurate theo-
retical ratios for R and RΓ are required for these pur-
poses, the estimates 〈Rb〉, R0, Rs.p.

Γ and Rres
0 of the

present paper can already be used in some cases. In
fact, the ratio R has already been used to predict the
direct 11C(p, γ)12N capture cross sections in [6] and the
results obtained there are in a good agreement with the
predictions based on proton ANC’s recently measured in
[15]. Also, the astrophysical S-factor for the 7Be(p, γ)8B
reaction has been calculated in [18] based on the 〈Rb〉
estimate and experimentally measured neutron ANC in
8Li. Another example is the proton width of the 12N(2+)
resonance for which only an upper limit of 20 keV is avail-
able. Using the neutron ANC for the mirror 12B(2+)
state from [16], we can predict that Γp is equal to 5.9±1.0
or 6.9± 1.2 keV for the RΓ ≈ 〈Rs.p.

Γ 〉 and RΓ ≈ Rres
0 as-

sumptions respectively. These values are less uncertain
than the currently available experimental limit Γp < 20
keV.
Among other cases of astrophysical interest is the
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TABLE III: The ratio Γmax
p /Γmin

p of the maximal and minimal proton widths, average ratio of Rs.p.

Γ , analytical estimates Rres
0

and experimental ratios Rexp

Γ . Where several experimental values of ANC’s are available, we take their average.

Proton resonance
Boundmirror

analog
l

Γmax
p

Γmin
p

〈Rs.p.

Γ 〉 Rres
0 Rexp

Γ

Ref.for
Γexp
p

Ref.for
Cexp

p

8B(1+, 0.774) 8Li(1+, 0.980) 1 1.43 (1.70 ± 0.03) · 10−3 2.03·10−3 (2.29 ± 0.40)·10−3 [24] [18]
12N(2+, 0.960) 12B(2+, 0.953) 1 1.61 (1.22 ± 0.01) · 10−5 1.42·10−5

13N( 1
2

+
, 2.36) 13C( 1

2

+
, 3.09) 0 1.55 (5.98 ± 0.32) · 10−5 8.5 · 10−5 (4.57 ± 0.57)·10−5 [25, 26] [16]

13N( 5
2

+
, 3.55) 13C( 5

2

+
, 3.85) 2 2.01 (1.37 ± 0.03) · 10−2 1.42·10−2 (1.06 ± 0.21)·10−2 [25] [16]

astrophysical S-factor for the direct capture reaction
14N(p, γ)15O(32

+

1
), which is mainly responsible for the en-

ergy production in the CNO cycle. The 15O(32
+

1
) state is

separated from the neighbouring 15O(52
+

2
) state by only

70 KeV, which influences the precision of measurements
involving this state. The spacing between the mirror
15N(52

+

2
) and 15N(32

+

1
) states is larger and therefore the

ANC for the 〈14N|15N(32
+

1
)〉 overlap integral can be deter-

mined using neutron transfer reactions to higher accuracy

than the 15O(32
+

1
) ANC. Also, direct contributions to the

cross sections of the 22Mg(p, γ)23Al and 26Si(p, γ)27P re-
actions, involving proton-rich radioactive nuclei, could be
calculated through the mirror neutron ANC’s which can
be determined using stable targets 22Ne and 26Mg. These
reaction are relevant to the nucleosynthesis in novae and
are being intensively investigated.
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