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Abstract

We address the problem of the apparently very small magnitude of CP violation in the stan-

dard model, measured by the Jarlskog invariant J . In order to make statements about probabili-

ties for certain values of J , we seek to find a natural measure on the space of Kobayashi-Maskawa

matrices, the double quotient U(1)2\SU(3)/U(1)2. We review several possible, geometrically

motivated choices of the measure, and compute expectation values for powers of J for these mea-

sures. We find that different choices of the measure generically make the observed magnitude of

CP violation appear finely tuned. Since the quark masses and the mixing angles are determined

by the same set of Yukawa couplings, we then do a second calculation in which we take the

known quark mass hierarchy into account. We construct the simplest measure on the space of

3×3 Hermitian matrices which reproduces this known hierarchy. Calculating expectation values

for powers of J in this second approach, we find that values of J close to the observed value are

now rather likely, and there does not seem to be any fine tuning. Our results suggest that the

choice of Kobayashi-Maskawa angles is closely linked to the observed mass hierarchy. We close

by discussing the corresponding case of neutrinos.

PACS numbers: 12.15.Hh, 14.60.Pq, 02.20.Hj, 02.40.-k
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1 Introduction

A traditional attitude to theoretical physics has been that the main problem is to discover the

fundamental laws of physics and leave it to experiment and observation to decide what particular

implementation best describes “Our Universe.” Thus traditionally a “physical theory” is often

thought of in terms of a local Lagrangian including certain “coupling constants,” “mass ratios” and

“mixing angles,” all of which, since Planck’s introduction of Planck units [1], may be taken to be

dimensionless numbers. In addition, the local Lagrangian must be supplemented with an account

of the general class of boundary conditions for which the variational principle is valid. Different

classes of boundary conditions are usually thought of as different “super-selection sectors” of the

theory, and describe qualitatively different types of situations which traditionally are not thought

of as having any relation to one other.

Within each sector, there are many solutions of the equations of motion, each of which may be

specified by providing suitable “initial conditions.” Classically these conditions may be thought of

as the space of classical histories, and given in terms of Cauchy data modulo the relation that two

sets of Cauchy data giving the same history are taken to be equivalent. Quantum mechanically one

thinks in terms of some initial, and thus in the Heisenberg picture, eternal, state.

The hope has frequently been expressed in the past that eventually theorists will hit upon a

unique theory, with all coupling constants determined by consistency or symmetry considerations,

and with just one super-selection sector. Even given such a TOE, there remains the issue of boundary

conditions or initial state, as emphasized by Hawking [2]. Recently however there has been a

considerable decline in optimism, and few now seem to believe in a single TOE with a single super-

selection sector, and many refer to a “landscape” of theories.

One approach to this perceived crisis in theoretical physics is to resort to “anthropic” considera-

tions and invoke the idea that there may indeed exist, in the Platonic sense, an enormous number of

“possible universes,” of which only very few will allow the development of sentient beings, and even

fewer will allow sentient beings like ourselves. Thus one is led to contemplate the ensemble of all pos-

sible universes, sometimes referred to as a “multiverse” [3]. This ensemble is sometimes thought of

non-Platonically 1 as an ensemble of connected subsets of a much bigger physically existing universe,

referred to as a meta-universe [4].

At this point it may be helpful to remark, lest the daunting task of thinking about, and making

more precise, the nebulous notion of such a multiverse should not be thought entirely a problem for

theorists seeking credit for making predictions about the world we see about us, that the observers

and experimenters must also face up to that task when assessing the reliability of their measurements

or the extent to which they can confirm theoretical predictions. All such activities are essentially

Bayesian in character [5], and require some notion of “priors,” that is, some sort of a priori measure

of the space of possibilities.

This problem has been addressed, with admittedly only partial success, in a previous paper [6]

1in an Aristotelian sense?
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where the multiverse, for concreteness, was identified with the set of classical histories of a min-

isuperspace cosmological model. A well-defined and natural local measure on the space of classical

histories is easily constructed, but unfortunately the total measure of all histories, even in this finite-

dimensional truncation of the full set of solutions of Einstein’s equations, is infinite. The problem

was recently revisited in [7].

In the present paper, we shall turn to the problem of finding a natural measure on the space of

coupling constants. Thus the multiverse in the present paper is a set of Lagrangians parametrized

by a manifold X or “moduli space,” whose coordinates consist of masses, mixing angles, coupling

constants, etc., and we wish to place a natural measure on this space. We hope this will be useful

for anthropic considerations such as those of [8], where X ≡ S1, the circle parametrizing the phase

of the axion. In that case the issue of a measure was trivial, but in more complicated cases such

as we shall consider in the present paper, the situation is more complicated. We also hope that

the work in this paper will help in clarifying the notion of “fine tuning,” which is so prevalent in

phenomenological discussions.

The structure of this paper is as follows. After introducing the notion of geometric probability and

outlining the Kobayashi-Maskawa theory of CP violation in the standard model, we discuss metrics

on SU(3) and its quotients in section 2, starting with a left-invariant metric on SU(3) which induces

a metric on the flag manifold SU(3)/U(1)2. We perform a Kaluza-Klein type reduction on the left

phases and discuss different possible metrics on the double quotient U(1)2\SU(3)/U(1)2, the space

of Kobayashi-Maskawa matrices. We also discuss the metric used by Ozsváth and Schücking [9],

and argue that it lacks a geometrical justification.

We then use all metrics we have discussed to compute statistics of the Jarlskog invariant J . While

the measure on SU(3)/U(1)2 is independent from the choice of left-invariant metric, the measure

on the double quotient is non-unique. We find that in each case the standard deviation ∆J (with

〈J〉 = 0) is about three orders of magnitude greater than the experimentally observed value of J ,

which appears to be finely tuned. In section 4, we do a closer numerical analysis of the probability

distribution of |J | on the double quotient, using several possible choices for the measure. We quantify

the statement that a magnitude of CP violation as small as observed appears unlikely.

In section 5, we take a different viewpoint: We now consider random distributions on the space

of mass matrices in the standard model. We therefore need to find a measure on the space of 3× 3

Hermitian matrices. We find that the simplest choice which gives convergent integrals over this

space, and expectation values for squared quark masses which reproduce the observed values, is a

Gaussian weighting function with four free parameters, which can be chosen appropriately. We then

find that the standard deviation ∆J is much smaller for this measure, making the observed value

of J appear typical. We conclude that with an appropriate distribution which respects the known

quark mass hierarchy there is no need for fine tuning in J .

We briefly discuss the case of neutrinos in section 6, explaining the general theory, and the

difference between Dirac and Majorana masses. We can not give reliable predictions for ∆J for

neutrinos, due to the absence of known values for their masses.
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1.1 Geometric Probability

The construction of appropriate measures over spaces of geometric objects goes back to the 18th

century cosmologist Buffon and his celebrated needle problem [10]. The reader may find a general

account of the subject in [11]. The simplest case to consider is when the space of coupling constants

X may be regarded as a finite-dimensional homogeneous space with respect to some Lie group G of

symmetries, and the stabilizer or little group is H ⊂ G. Thus X = G/H . If dimX = n, our aim is

to construct an n-form on X which is invariant under the action of G. In the case that X = G, as

in the example of the the axion circle, this is completely unambiguous. We pick any n-form at the

unit element e ∈ G and spread it over G by left or right translation. On a unimodular group, such

as a compact group or a semi-simple group, left or right translation will give identical results. The

original n-form, being a top degree form, is unique up to a multiple. This multiple can be fixed by

normalizing the total measure to unity. The normalized measure is therefore unique.

We could, if we wished, construct the measure as the Riemannian volume element of any left or

right invariant metric on G. The result would be the same. In practice, a convenient procedure for

calculating the measure could be to construct an invariant metric on X = G and then calculate its

Riemannian volume element. Often, the bi-invariant or Killing metric is the most convenient choice.

In the case of a coset, X = G/H , the measure can again be taken to be any n-form at some

arbitrarily chosen point x ∈ X , which is then spread around using the group action. Since any

n-form at x will be H-invariant, the result is again unique and invariant under all the symmetries

of the problem. Of course it is possible that one may express X = G/H in more than one way. This

could in principle give rise to some discrete non-uniqueness, but in practice this seems not to be

important.

Although the situation when coupling constants may be regarded as belonging to a homogeneous

space is quite satisfactory, it is often the case that coupling constants belong to an inhomogeneous

space. In particular, in the case of “mixing angles,” they typically belong to a double coset, or

bi-quotient, of the form H1\G/H2, where H1 and H2 are (not necessarily identical) Lie subgroups

of G. The reason for this is that mixing angles relate two unitary bases for the same space of

physical states. The two unitary bases may not be unique. In particular, it is often the case that

the individual basis vectors can be multiplied by arbitrary phases. In this case, H1 and H2 may

belong to U(1)k, where k is the number of states in the basis. In the case of the Kobayashi-Maskawa

matrix the states are quarks, and one basis diagonalizes the strong Hamiltonian while the other

basis diagonalizes the weak interaction quantum numbers.

A bi-quotient, or double coset, H1\G/H2, is typically not a homogeneous space. This is because

the left action of G will not in general commute with H1, and similarly, the right action of G

will not commute with H2. As a consequence, one cannot, in the case of bi-quotients, use group

invariance to construct an unambiguous measure on the space of mixing angles. Later in this paper,

we shall explore in detail some available options, and the extent to which they affect the probability

distribution of mixing angles.
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1.2 CP Violation and the Jarlskog Invariant

In this section we shall review the Kobayashi-Maskawa theory of CP violation in the quark sector

of the standard model.

If m and m′ are the (Hermitian) mass matrices for the charge 2
3 and − 1

3 quarks respectively,

then there exist unitary matrices U and U ′ such that

UmU † = diag(mu,mc,mt) , U ′m′U ′† = diag(md,ms,mb) . (1)

The Kobayashi-Maskawa matrix V is defined by

V = UU ′† . (2)

The normalized mass eigenstates are only defined up to a phase, and changing these phases changes

the matrices U and U ′ according to

U −→ PL U , U ′ −→ P †
R U

′ , (3)

and hence the Kobayashi-Maskawa matrix changes according to

V → PLV PR , (4)

where PL and PR are diagonal matrices belonging to SU(3). In other words, PL and PR may each

be thought of as belonging to T 2 ≡ U(1) × U(1), the maximal torus of SU(3). Thus the four-

dimensional space of CP violating parameters should be thought of as an element of the double

coset, or bi-quotient, U(1)2\SU(3)/U(1)2, whereas the matrices U and U ′ should be thought of as

elements of the left coset U(1)2\SU(3).

In the discussion of geometric probability attempted in this paper, one could take the viewpoint

that U and U ′ are the fundamental objects relevant in CP violation, which would lead to discussing

distributions on (U(1)2\SU(3))2. One can then use the fact that only V = UU ′† appears in the

Kobayashi-Maskawa theory to reduce this to a distribution on a single U(1)2\SU(3), as we shall see

in section 3.1. Alternatively, one considers V as fundamental and considers the bi-quotient.

Because the right action of U(1)2 is free, the intermediate coset SU(3)/U(1)2 is a compact smooth

homogeneous space without boundary, on which SU(3) acts by left actions. In fact SU(3)/U(1)2

is an example of a flag manifold. The maximal torus U(1)2 acts on the flag manifold via left

actions of SU(3), but its action on SU(3)/U(1)2 is not free, and as a consequence, the bi-quotient

U(1)2\SU(3)/U(1)2 is not a smooth compact manifold without boundary. Rather, it is a stratified

set whose boundary consists of components at which either or both of the left-acting U(1) factors

has fixed points.

In the standard notation

V =









Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb









, (5)
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and it is customary to choose the phases so that

V =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









, (6)

where s12 = sin θ12, c12 = cos θ12, etc., and the angles θ12, θ13 and θ23 are taken all to lie in the first

quadrant (i.e. between 0 and 1
2π).

One can take the angle δ as a measure of CP violation, but its definition depends on the choice

of phases. Jarlskog [12,13] introduced a formalism that eliminates this arbitrariness. She defined an

Hermitian tracefree matrix C by
[

m,m′] = iC , (7)

and took detC as a measure of CP violation. She showed that

detC = −2TBJ , (8)

where

T = (mt −mu)(mt −mc)(mc −mu) , B = (mb −md)(mb −ms)(ms −md) , (9)

and the Jarlskog invariant J is given by

J = Im
(

V11 V22 V
∗
12 V

∗
21

)

. (10)

Despite appearances, J is independent of the arbitrary phases. In other words, it is invariant

under (4). In fact, it has an extremely elegant geometrical interpretation. Since V is a unitary

matrix, its three rows and columns are orthogonal. Thus, for example, there are three relations of

the form

(V V †)12 = V11 V
∗
21 + V12 V

∗
22 + V13 V

∗
23 = 0 . (11)

The three complex numbers a = V11 V
∗
21, b = V12 V

∗
22 and c = V13 V

∗
23, satisfying a+ b + c = 0, may

be thought of as the three sides of a unitarity triangle in the complex plane. The absolute value of

J is twice the area of this triangle:

|J | = |Im(ab∗)| = |Im(ac∗)| = |Im(bc∗)| . (12)

The effect of the transformation (4) is to rotate this triangle in the complex plane, but the area

1
2 |J | is unchanged. Less obviously, the same area results from taking either of the two other possible

inner products, (V V †)13 = or (V V †)23 = 0. Thus J is an invariant, and so it is well defined on the

space of mixing angles.

In terms of the standard parametrization (6), the Jarlskog invariant is given by

J = c12 c23 c
2
13 s12 s23 s13 sin δ . (13)
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One could choose to take a different quantity as a measure of CP violation. Jarlskog [14] suggested

appropriately normalizing the determinant (8) and using

aCP = 3
√
6

detC

(TrC2)3/2
, (14)

which takes values between +1 and −1, and is zero if and only if CP is conserved. Written out

explicitly in terms of the quark masses and mixing angles, this is a complicated expression that we

do not give here. As in the present paper the observed quark mass hierarchy is assumed, we shall

not consider the case of coinciding quark masses, and concentrate on J as a measure of CP violation.

Another possible source of confusion is the assumption of general, not necessarily Hermitian,

mass matrices. In this case the commutator (7) is replaced by

[

mm†,m′m′†] = iC (15)

in order for C to be Hermitian. The use of C or C can lead to ambiguous “orders of magnitude”

estimates for CP violating processes, e.g. when discussing baryogenesis. We will assume that m and

m′ are Hermitian, and as our calculations only involve J these considerations will not be relevant.

2 Metrics on SU(3) and its Quotients

A generic element U of SU(3) is conveniently parametrized by eight real coordinates (p, q, r, t, x, y, z, w),

so that

U = TLW TR , (16)

where

TL = e
i
2 (3p−q)λ3+

i
√
3

2 (p+q)λ8 , TR = eitλ3+i
√
3 rλ8 , (17)

and

W = eixλ7 e−iwλ3 eiyλ5 eiwλ3 eizλ2 , (18)

with

0 ≤ x ≤ 1
2π , 0 ≤ y ≤ 1

2π , 0 ≤ z ≤ 1
2π , 0 ≤ w ≤ 2π . (19)

Here, we are using the standard Gell-Mann representation for the generators of SU(3):

λ1 =









0 1 0

1 0 0

0 0 0









, λ2 =









0 −i 0

i 0 0

0 0 0









, λ4 =









0 0 1

0 0 0

1 0 0









,

λ5 =









0 0 −i

0 0 0

i 0 0









, λ6 =









0 0 0

0 0 1

0 1 0









, λ7 =









0 0 0

0 0 −i

0 i 0









,

λ3 =









1 0 0

0 −1 0

0 0 0









, λ8 =
1√
3









1 0 0

0 1 0

0 0 −2









, (20)
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Explicitly, the matrices W , TL and TR are given by

W =









cycz cysz e−iwsy

−cxsz − eiwsxsycz cxcz − eiwsxsysz sxcy

sxsz − eiwcxsycz −sxcz − eiwcxsysz cxcy









, (21)

(22)

TL = diag
(

e2ip, e−ip+iq, e−ip−iq
)

, TR = diag
(

eir+it, eir−it, e−2ir
)

, (23)

where we use the notation sx = sinx, cx = cosx, etc.

If we identify W as the Kobayashi-Maskawa matrix V in the standard conventions (6), then

x = θ23 , y = θ13 , z = θ12 , w = δ . (24)

If we define left-invariant 1-forms σa by

U−1 dU = iλa σa , (25)

then the general left-invariant metric on SU(3) takes the form

ds2 = gab σa σb , (26)

where gab is a constant symmetric matrix.

For a general choice of the matrix gab, the metric admits no further isometries beyond the left

action of SU(3), which we denote by SU(3)L. For special choices of gab, however, the metric is

additionally invariant under the right action of some subgroup K of SU(3)R. The most symmetric

such case, the bi-invariant or Killing metric for which K is the full right-acting SU(3)R, arises if gab

is proportional to δab. The various intermediate possibilities, of which there are 5, are listed in [15].

In the generic case (i.e. when K is the identity), 28 = 36− 8 parameters are required to specify

the metric. One of these parameters sets the overall scale. For the intermediate cases there are

correspondingly fewer parameters [15]. The bi-invariant metric has the smallest number, namely

just the overall scale. In all cases, the invariant measure on the group SU(3) is the same, and given

by

µ = N
∏

a

σa , (27)

where N is a constant normalization factor.

One of the intermediate cases given in [15] corresponds to

ds2 = a2 (σ2
1 + σ2

4 + σ2
6) + b2 (σ2

2 + σ2
5 + σ2

7) + a2 (σ2
3 + σ2

8) . (28)

This has the symmetry SU(3)L × SO(3)R, where the SO(3)R is generated by λ2, λ5 and λ7. Re-

markably, there is a second Einstein metric in this class [16], in addition to the standard bi-invariant

metric that arises when a = b. The non-standard Einstein metric occurs when b = a/
√
11.

However, the measure on the bi-quotient U(1)2\SU(3)/U(1)2 of SU(3) is not unique. In par-

ticular, if one constructs the measure from an invariant metric it will depend upon the metric that

9



is used. One of the cases enumerated in [15], which is of particular interest for purposes, is when

K = U(1)×U(1). One may denote these U(1) subgroups by U(1)3 and U(1)8, indicating that they

are generated by λ3 and λ8. The possible U(1)3 × U(1)8 × SU(3)L invariant metrics on SU(3) are

ds2 = α (σ2
1 + σ2

2) + β (σ2
4 + σ2

5) + γ (σ2
6 + σ2

7) + δ1 σ
2
3 + δ2 σ

2
8 + 2δ3 σ3σ8 . (29)

The induced metric on the right coset SU(3)/U(1)2 is then given by

ds2 = α (σ2
1 + σ2

2) + β (σ2
4 + σ2

5) + γ (σ2
6 + σ2

7) . (30)

The normalized invariant measure on this coset is given by

µ = N σ1 ∧ σ2 ∧ σ4 ∧ σ5 ∧ σ6 ∧ σ7 . (31)

There is no similarly unique construction of a measure on the bi-quotient U(1)2\SU(3)/U(1)2,

because there is no natural action of SU(3)L on it. The reason for this is that the U(1)2 of the left

quotienting is the maximal torus in SU(3)L, and so no other generators commute with it.

Locally, the bi-quotient U(1)2\SU(3)/U(1)2 is a fiber space whose fibers are orbits of U(1)2L ×
U(1)2R, whose action has fixed points. The bi-quotient is therefore not a smooth manifold. Nev-

ertheless, any metric on SU(3) will induce on any local section a metric, and hence a Riemannian

measure. However, the metric and the measure will in general depend upon the choice of section. In

the language of Kaluza-Klein theory, such metrics will in general depend upon the choice of gauge.

One way to resolve this ambiguity is to project the initial metric on SU(3) orthogonally to the

orbits of U(1)2L × U(1)2R. The resulting Kaluza-Klein metric shall be discussed in section 2.2.

2.1 The flag manifold SU(3)/U(1)2

A choice of metric on the coset SU(3)/U(1)2 can give rise to different metrics on the bi-quotient,

depending on the choice of section we make. In what follows, we shall illustrate this by choosing a

natural metric on the flag manifold SU(3)/U(1)2 that is Einstein-Kähler.

There is a general construction showing that every quotient of a compact Lie group G by its

maximal torus may be regarded as an Einstein-Kähler manifold. A physical application of this result

would be to the modulus space of vacua of a Yang-Mills theory with Higgs in the adjoint. We shall

describe the special case of G = SU(3), following the construction described in [17]. This makes use

of the fact that

SU(3)/U(1)2 = SL(3,C)/B , (32)

where B is the Borel subgroup of SL(3,C). In other words, we can express an SU(3) matrix U in

the Iwasawa form

U =









1 0 0

−z3 1 0

−z2 z1 1

















u 0 0

0 v 0

0 0 1
uv

















1 y1 y2

0 1 y3

0 0 1









. (33)
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Substituting the expression for U given in (16), we find in particular that

z1 = −e−2iq tanx ,

z2 = e−3ip−iq (eiw cosx tan y − sinx sec y tan z) , (34)

z3 = e−3ip+iq (eiw sinx tan y + cosx sec y tan z) .

These expressions can be inverted to give the real coordinates in terms of the zα:

tan2 x = |z1|2 ,

tan2 y =
|z2 − z1 z3|2
1 + |z1|2

,

tan2 z =
|z3 + z̄1 z2|2

1 + |z1|2 + |z2 − z1 z3|2
,

eiw =
(z3 tanx− z̄1 z2) tan z

(z3 + z̄1 z2 tanx) sin y
, (35)

with p and q then obtained using

z1
z̄1

= e−4iq ,
z2
z̄2

= e−6ip−2iq+2iw . (36)

As discussed in [17], the zα can be viewed as complex holomorphic coordinates on the flag

manifold. The Kähler function is given by

K = log(1 + |z2|2 + |z3|2) + log(1 + |z1|2 + |z2 − z1 z3|2) . (37)

It is easy to check that the Kähler metric, given by

ds2 = gαβ̄ dz
α dz̄β̄ , gαβ̄ =

∂2K

∂zα ∂z̄β̄
, (38)

has determinant given by

det(gαβ̄) = 2(1 + |z2|2 + |z3|2)−2 (1 + |z1|2 + |z2 − z1 z3|2)−2 , (39)

which can therefore be written as

det(gαβ̄) = 2e−2K . (40)

Thus K satisfies the Monge-Ampère equation, implying that the Kähler metric gαβ̄ is Einstein.

(Since Rαβ̄ = ∂α∂β̄ log(
√
g).)

Substituting (34) into (38), one obtains the Einstein-Kähler metric on the flag manifold written

in terms of the real coordinates (p, q, x, y, z, w). It is straightforward to verify directly that it satisfies

Rij = 4gij . (41)

In terms of the real coordinates, the Kähler function (37) is given by

e−K = cos2 x cos2 z cos4 y . (42)
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The Einstein-Kähler metric (38) is invariant under the left action of SU(3), and in particular,

under the T 2 action generated by ∂/∂p and ∂/∂q. From (34), this action corresponds to phasing the

complex coordinates zα in such a way as to leave the Kähler function (37) invariant. It is possible,

therefore, to perform a Kaluza-Klein reduction on the two angles p and q, to obtain a metric on the

double coset U(1)2\SU(3)/U(1)2. The resulting metric is extremely complicated, and we shall not

give it explicitly. However, the metric we obtain is not the same as the one discussed in section 2.2.

This difference is connected with the fact that the Einstein-Kähler metric given by (37) and (38)

is not the “round” metric on SU(3)/U(1)2, but rather, it is a particular member of a 1-parameter

family of homogeneous squashed metrics. (It corresponds to the only other member of the family,

other than the “round” metric, that is Einstein.) The Einstein-Kähler metric constructed in (38) is

given, in terms of the left-invariant 1-forms σa defined in (25), by

ds2 = σ2
1 + σ2

2 + σ2
6 + σ2

7 + 2(σ2
4 + σ2

5) . (43)

This illustrates the remarks we made previously about the ambiguity of measures on bi-quotients.

The round metric on SU(3) corresponds to setting

(α, β, γ, δ1, δ2, δ3) = (1, 1, 1, 1, 1, 0) (44)

in (29). Kaluza-Klein reduction with respect to ∂/∂r and ∂/∂t gives the “round” Einstein metric

corresponding to α = β = 1 in (30). The same metric on the flag-manifold quotient would also arise

for general values of δ1, δ2 and δ3, as long as α = β = γ = 1. If, on the other hand,

(α, β, γ) = (1, 1, 2) , (45)

for arbitrary δ1, δ2 and δ3, we obtain the squashed Einstein-Kähler metric (38) on the flag manifold.

This construction, while not providing us with a “simple” metric on the double quotient, has

the virtue of being possible for any coset SU(N)/U(1)N−1; we shall see in section 6.2 that the case

N = 6 may be of relevance to neutrinos.

2.2 Kaluza-Klein reduction of the bi-invariant metric

Here, we start with the bi-invariant metric on SU(3),

ds2 = 1
2Tr dU dU

† = σ2
a . (46)

In terms of the coordinates (p, q, r, t, x, y, z, w), it is given by

ds2 = 3dp2 + dq2 + 3dr2 + dt2 + 3
2 (3 cos 2y − 1)dpdr + 3 cos2 y (cos 2z dpdt+ cos 2x dqdr)

+ 1
2{cos 2x cos 2z (cos 2y − 3) + 4 sin 2x sin 2z sin y cosw} dqdt

− sin2 y (3dp− 3dr + cos 2x dq − cos 2z dt)dw + 2 sin y sinw (sin 2z dtdx − sin 2x dqdz)

+dx2 + dy2 + dz2 + sin2 y dw2 + 2 sin y cosw dxdz . (47)
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As expected, this metric on SU(3) does not depend on p, q, r and t, which are the arbitrary quark

phases appearing in the Kobayashi-Maskawa matrix.

It is perhaps worth remarking here that the first expression in (46) is well-defined for any complex

matrices U , unitary or not. For general complex matrices, it defines a flat metric on the space of

matrix elements, which may be identified with C9 ≡ E18, the 18-dimensional Euclidean space.2

SU(3) may be regarded as a real eight-dimensional submanifold of E18, defined by the nine real

unitary constraints UU † = 1 together with the one real unimodularity constraint detU = 1. The

bi-invariant metric on SU(3) is the induced metric on this submanifold.

One approach to placing a measure on mixing angles would be to give a uniform measure on the

unconstrained mixing angles, and then to obtain a measure on the mixing angles by implementing

the unitarity and unimodularity conditions. The left-invariant measure on SU(3) is unique up to a

scale. Thus, any construction which respects SU(3) invariance will result in a measure which is a

constant multiple of the Riemannian measure constructed from the bi-invariant metric.

Writing (47) in the standard Kaluza-Klein form,

ds2 = hij(x) (dy
i +Ai

µ(x)dx
µ)(dyj +Aj

ν(x)dx
ν ) + g̃µν(x)dx

µ dxν , (48)

where yi = (p, q, r, t) and xµ = (x, y, z, w). The metric on the bi-quotient is then given by

ds̃2 = g̃µν(x)dx
µ dxν . (49)

The metric (49) is once again rather complicated, and we shall not present it explicitly since we

really only wish to calculate the Riemannian measure

µ =
√

g̃ dxdydzdw . (50)

Noting that det g = deth det g̃, and that

det g = 27
4 sin2 2x sin2 y sin2 2z cos6 y , (51)

we find that, after extracting an unimportant overall constant factor,

det g̃ = sin2 2x sin2 2z sin2 y cos4 y/F , (52)

where

F = (sin2 2x+ sin2 2z) sin2 y + 1
8 (5 cos 2y − 3) sin2 2x sin2 2z

+ 1
2 sin 4x sin 4z sin3 y cosw + 1

8 (3 cos 2y − 5) sin2 2x sin2 2z sin2 y cos2 w . (53)

Note that one can alternatively obtain the four-dimensional metric on the bi-quotient by means

of a T 2 Kaluza-Klein reduction of the “round” flag manifold metric

ds2 = σ2
1 + σ2

2 + σ2
4 + σ2

5 + σ2
6 + σ2

7 , (54)

2Obviously, for k × k matrices, C9 is replaced by Ck
2

.
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which differs from the one used in section 2.1.

We have calculated the Riemannian metrics of the two different metrics on the bi-quotients, and

confirmed that these two four-dimensional measures are indeed different. Later, we shall demonstrate

the dependence of the mean-square value of the Jarlskog invariant on the choice of squashing.

2.3 Squashed Kaluza-Klein metrics

As we noted earlier, not only is the four-dimensional double-coset metric obtained by Kaluza-Klein

reduction non-unique, but also the associated measure is non-unique. In section 2.2, we constructed

the measure that follows from the T 4 Kaluza-Klein reduction of the bi-invariant SU(3) metric to

four dimensions, or, equivalently, the T 2 Kaluza-Klein reduction of the “round” six-dimensional flag

metric (54). Here, we present the more general result for the measure on the double coset that is

obtained by Kaluza-Klein reducing a 1-parameter family of squashed flag metrics. Specifically, we

take as our starting point the flag metrics

ds2 = σ2
1 + σ2

2 + σ2
6 + σ2

7 + β (σ2
4 + σ2

5) . (55)

After Kaluza-Klein reduction, we find that the the determinant of the four-dimensional metric

g̃µν is given, after again extracting an unimportant overall constant factor, by

det g̃ = sin2 2x sin2 2z sin2 y cos4 y/F , (56)

where

F = (sin2 2x+ sin2 2z) sin2 y + 1
8 (5 cos 2y − 3) sin2 2x sin2 2z + 1

16 (β − 1)2 sin2 2x sin2 2y sin2 2z

+(β − 1)
[

4 sin2 y sin2 z cos4 z

+sin2 2x
{

cos2 z cos2 2z − 1
4 cos 2z sin2 2y − cos2 y cos4 z [cos2 y − (3 + sin2 y) sin2 z]

}]

+sin 4x sin y sin 2z cosw
[

cos 2z sin2 y + (β − 1)(sin2 y cos2 z − sin2 z) cos2 z
]

(57)

+ 1
8 sin

2 y sin2 2x sin2 2z cos2 w
[

3 cos 2y − 5− 4(β − 1)(cos 2z + sin2 y)− 2(β − 1)2 cos2 y
]

.

Note that this expression reduces to (53) if β = 1, which is the special case of the reduction of the

round flag metric. The non-trivial dependence of (57) on the squashing parameter β shows that the

measure
√
g̃ dxdydzdw on the double-coset is also non-trivially dependent on the choice of squashing.

2.4 Ozsváth-Schücking metric

The previous calculations give rise to rather complicated formulae. It is striking, therefore, that the

metric obtained by Ozsváth and Schücking [9] is so much simpler. Their choice of section consists

of simply setting p = q = r = t = 0 in the metric (47). This results in the metric

ds2 = dx2 + dy2 + dz2 + 2 sin y cosw dxdz + sin2 ydw2 . (58)
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This metric is manifestly invariant under translating the coordinates x and z. Remarkably, there is

one further commuting Killing vector. If one defines new coordinates u and v by

(sin y cosw, sin y sinw, cos y) = (cosu, sinu cos v, sinu sin v) , (59)

then the metric (58) takes the form

ds2 = du2 + dx2 + dz2 + 2 cosu dxdz + sin2 u dv2 , (60)

which has the three commuting Killing vectors ∂/∂x, ∂/∂z and ∂/∂v.

Geometrically, we can understand this if we note that the metric (58) may recast as

ds2 = (dx + sin y cosw dz)2 + (1− sin2 y cos2 w) dz2 + dy2 + sin2 y dw2 , (61)

which exhibits it as a T 2 fibration (having coordinates x and z) over a round hemisphere (having

coordinates y and w). (The co-latitude y lies in the interval 0 ≤ y ≤ 1
2π.) The hemisphere can be

embedded isometrically into Euclidean 3-space as (sin y cosw, sin y sinw, cos y). Equation (59) then

gives a different embedding such that while ∂/∂w generates a rotation around the first axis, ∂/∂v

generates a rotation around the third axis. The projection along the third axis is given by cos y,

while the projection along the first axis is given by cosu.

Note that the extra Killing vector ∂/∂v is purely local, since rotations about the first axis do

not preserve the hemisphere.

The metric (60) can be recast in the form

ds2 = sin2 u dv2 + (dz + cosu dx)2 + du2 + sin2 u dv2 , (62)

which is locally of the form of a U(1) fibration (with coordinate v) over S3.

The un-normalized measure is given by the remarkably simple formula

µ = sin y (1− sin2 y cos2 w)1/2 dxdydzdw ,

= sin2 u dudvdxdz . (63)

Despite its appealing simplicity, the Ozsváth-Schücking construction lacks a geometrical justi-

fication, and introduces a spurious U(1)3 symmetry into the problem. A simpler example, which

makes this clear, is provided by by considering the lower-dimensional example of quotients of SU(2).

The bi-invariant metric on SU(2) is

ds2 = (dψ + cos θ dφ)2 + dθ2 + sin2 θ dφ2 , (64)

where ∂/∂φ generates U(1)L and ∂/∂ψ generates U(1)R. Projecting the metric orthogonally to the

orbits of right translations, à la Kaluza-Klein, gives the round metric

ds2 = dθ2 + sin2 θ dφ2 (65)

on S2. By contrast, simply setting dψ = 0 (the analog of the construction of Ozsváth and Schücking)

instead gives the flat metric

ds2 = dθ2 + dφ2 . (66)
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The round metric (65) is invariant under SO(3). The flat metric (66) appears to be invariant under

the Euclidean group, with ∂/∂θ and ∂/∂φ having the appearance of translations, but these are only

local symmetries since φ is a periodic coordinate and θ lies in an interval.

The example of SU(2) also illustrates the difference between taking the flag manifold measure

and the Kaluza-Klein measure on a bi-quotient. The bi-quotient U(1)\SU(2)/U(1) = U(1)\S2 is

just an interval. Its metric becomes, after performing another Kaluza-Klein reduction of (65),

ds2 = dθ2 . (67)

The measure would be dθ, and not dθ sin θ as obtained by integrating a function f(θ) over the

coordinate φ. It is apparent from this simple example that there are inequivalent ways of calculating

integrals of a function on a right quotient that is invariant under the left group action; namely, one

can either reduce the metric to obtain a measure on the double quotient, or take the measure on

the single quotient and integrate out the left phases.

3 Statistics of the Jarlskog Invariant J

Expressed in terms of the coordinates (x, y, z, w), the Jarlskog invariant (13) is given by

J = 1
4 sin 2x sin 2z sin y cos2 y sinw . (68)

The average of a function f on a space with metric g̃µν is defined by

〈f〉 =
∫

f
√
g̃ dx dy dz dw

∫ √
g̃ dx dy dz dw

. (69)

The experimental value of the Jarlskog invariant J of the Kobayashi-Maskawa matrix is

J = 3.08+0.16
−0.18 × 10−5 , (70)

which is very small compared with its maximum value

Jmax =
1

6
√
3
≈ 0.0962 . (71)

In the following subsections 3.1 to 3.5, we calculate the moments of J for the Kobayashi-Maskawa

matrix, using the various measures we have introduced, and compare them with the experimental

value. We will see that the average values one obtains are rather insensitive to the choice of measure.

In subsection 3.1, we start with SU(3)-invariant measures on the flag manifold SU(3)/U(1)2. In

this case, as we have already noted, there is an unambiguous SU(3)-invariant measure.

3.1 The flag manifold measure

In section 1.2, we saw that the Kobayashi-Maskawa matrix is an element of the four-dimensional

bi-quotient U(1)2\SU(3)/U(1)2, which is however composed of two elements of U(1)2\SU(3). This

left quotient is, just like the right quotient SU(3)/U(1)2, the flag manifold.
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Since the Jarlskog invariant (10), or (68), is independent of all phasing angles, the averaging of

its moments over the flag manifold will give the same results regardless of whether one constructs

the manifold as the left quotient or the right quotient of SU(3) by U(1)2. This is convenient because

we have already presented detailed results for the metrics on the right cosets SU(3)/U(1)2.

A straightforward calculation shows that for the general class of SU(3)-invariant flag metrics

(30),
√
g = 3αβγ sin 2x sin 2z sin y cos3 y . (72)

Since an overall constant factor in the measure cancels out in the normalized averaging process, we

see therefore that in contradistinction to the situation for the double coset U(1)2\SU(3)/U(1)2, the

natural measure on the flag manifold is unique.

One might think of using the Cartesian product of two flag manifolds for calculating the moments

of the Jarlskog invariant for the Kobayashi-Maskawa matrix. In fact, one could equally well use

SU(3) instead of the flag manifold since neither the bi-invariant measure nor J depend on the U(1)2

angles. The natural measure on SU(3)× SU(3), induced from (46), is

µ = N σ1 ∧ σ2 ∧ σ3 ∧ σ4 ∧ σ5 ∧ σ6 ∧ σ7 ∧ σ8 ∧ σ′
1 ∧ σ′

2 ∧ σ′
3 ∧ σ′

4 ∧ σ′
5 ∧ σ′

6 ∧ σ′
7 ∧ σ′

8 . (73)

Since it is only V = UU ′† that enters into the CP violating parameters, one could consider U

and V as independent variables, i.e. write U ′ = V †U for some matrix V . Then the Maurer-Cartan

form on the second SU(3) is

iλaσ
′
a ≡ U ′†dU ′ = U †dU − U †(dV V †)U , (74)

which gives σ′
a = σa − habτb, where τb are right-invariant forms on SU(3) in terms of V coordinates

and hab only depends on the U coordinates. The measure (73), expressed in terms of V and U

coordinates, is thus a product of a function of the U coordinates and the natural measure in V

coordinates (left- and right-invariant forms on SU(3) give the same measure). Integration over the

U coordinates then just gives an irrelevant constant, and one is left with the measure (72) on the

space of V matrices. This justifies the use of (72) instead of the more complicated constructions

obtained by reducing to the double quotient, and we will regard (72) as the most natural choice of

measure on the parameter space.

For the measure (72) the evaluation of the necessary integrals is very simple and we find that all

odd powers of J average to zero, and

〈J2〉 = 1

720
≈ 1.389× 10−3 , 〈J4〉 = 1

201600
≈ 4.960× 10−5 . (75)

Thus we find that ∆J for the Jarlskog invariant is given by

∆J =
1

12
√
5
≈ 0.0373 , (76)

which is about three orders of magnitude larger than the experimental value (70).
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3.2 The Kaluza-Klein measure from the bi-invariant metric

For the metric on the bi-quotient discussed in section 2.2, the expression for the measure is too

complicated to allow us to perform the integrations analytically. Using numerical integration, we

find that

〈J2〉 ≈ 1.1161× 10−3 , 〈J4〉 ≈ 3.750× 10−6 , (77)

with the odd powers of J again averaging to zero. Thus we find

∆J ≈
√

〈J2〉 ≈ 3.341× 10−2 , (78)

which is very close to the previous result.

Naively, one might have thought that since J is independent of all the U(1) phases, the results

would be the same whether one averaged over the space U(1)2\SU(3)/U(1)2, or else the flag manifold

SU(3)/U(1)2. Of course we know that this is not in fact correct, since, as we have seen, the measure

for the bi-quotient depends non-trivially on the squashing parameters α, β and γ in (30) whilst the

measure on the single quotient does not. Nevertheless, it is interesting to compare the expressions

(75) for 〈J2〉 and 〈J4〉 with the ones we obtained in (77) for the bi-quotient averaging. They are in

fact quite similar, although the values are larger in (75) than in (77). (We will see in the following

subsection that, among the more general class of squashed bi-quotient measures, the values of 〈J2〉
and 〈J4〉 seem to be maximized by the “round” case (77).)

3.3 The Kaluza-Klein measure from squashed metrics

We can repeat the calculations of section 3.2 using the measure given by (56) and (57) for the 1-

parameter family of squashed Kaluza-Klein metrics. In view of the complexity of the measure, we

must again resort to numerical integration.

The case where the squashing parameter is chosen to be β = 2 is of particular interest, since

this corresponds to the second Einstein metric on the flag manifold, i.e. the one associated with the

Einstein-Kähler metric we discussed in section 2.1. For this choice, we find

〈J2〉 ≈ 1.1012× 10−3 , 〈J4〉 ≈ 3.678× 10−6 , (79)

with the odd powers of J averaging to zero. Thus we find

∆J ≈
√

〈J2〉 ≈ 3.318× 10−2 , (80)

This is smaller than the value of ∆J we obtained in (78) for the averaging over the Kaluza-Klein

reduction of the bi-invariant metric, but only by about 0.7%. This does not bring it significantly

closer to the experimental value of J , given in (70).

One might wonder whether, for some sufficiently large or small choice for the squashing parameter

β, it might be possible to obtain a result for ∆J that was comparable with the experimentally

observed value. In fact, it appears that 〈J2〉 is a rather slowly varying function of β. The value of
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〈J2〉 appears to be maximized by the choice β = 1, and to fall off monotonically in both directions

as β is taken to zero or to infinity.

For example, if we choose β = 1
2 we find

〈J2〉 ≈ 1.103× 10−3 , ∆J ≈ 3.321× 10−2 , (81)

whilst if we take β → 0 we find

〈J2〉 ≈ 8.097× 10−4 , ∆J ≈ 2.846× 10−2 . (82)

Taking β = 1000, we find

〈J2〉 ≈ 4.298× 10−4 , ∆J ≈ 2.073× 10−2 , (83)

whilst for β = 106 we find

〈J2〉 ≈ 1.958× 10−4 , ∆J ≈ 1.399× 10−2 . (84)

Even quite extreme values for the squashing parameter only bring about small reductions in ∆J .

3.4 The Ozsváth-Schücking measure

Using the Ozsváth-Schücking measure (63), we find that 〈J〉 = 0, and

〈J2〉 = 35× 2−16 ≈ 5.341 × 10−4 , 〈J4〉 = 27027× 2−34 ≈ 1.573 × 10−6 , (85)

and that the standard deviation is

∆J2 =
√

〈J4〉 − 〈J2〉2 =
√
22127× 2−17 ≈ 1.135 × 10−3 , (86)

and

∆J =
√

〈J2〉 =
√
35

256
≈ 2.311 × 10−2 . (87)

Again, the results are rather similar to the previous cases.

3.5 The uniform measure

Assuming a uniform distribution over the angles, and hence treating the double coset as a flat

four-dimensional manifold so that the measure is simply µ = 1, would give

〈J〉 = 0, 〈J2〉 = 1

2048
≈ 4.883× 10−4 , 〈J4〉 = 189× 2−27 ≈ 1.408× 10−6 . (88)

Hence, this simplest possible choice gives

∆J ≈ 2.210 × 10−2 . (89)
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4 Fine tuning of J

In the previous section we saw that different measures on the space of mixing angles all seem to

lead to expectation values for J which are about three orders of magnitude larger than the observed

value. The value for J that we observe hence appears to be finely tuned. In this section we shall

do a closer, mainly numerical, analysis of the “fine tuning” involved. We compare results obtained

by taking the SU(3)-invariant and Kaluza-Klein measures, which seem natural from a geometric

perspective, with a uniform distribution which is just the simplest possible choice.

4.1 Probability distribution of J

The observed value for the Jarlskog invariant J is

J ≈ 10−4.51 ≈ e−10.39 . (90)

In order to obtain a probability distribution for J we have used Mathematica to numerically compute

integrals of the form
∫

√

g̃ dx dy dz dw θ(a− |J |) θ(|J | − b) ≡ P (b ≤ |J | ≤ a) ·
∫

√

g̃ dx dy dz dw (91)

using Monte Carlo methods. The SU(3)-invariant flag manifold measure and the Kaluza-Klein

measure disfavor small values of J more strongly than a uniform distribution would. For example,

we obtain

Pflag(|J | ≤ 10−4) ≈ 0.25% , PKK(|J | ≤ 10−4) ≈ 0.44% . (92)

Taking a uniform distribution
√
g̃ ≡ 1, we get

Punif(|J | ≤ 10−4) ≈ 7% . (93)

The degree of fine tuning required to reproduce a very small J is considerably higher if one uses the

measure induced by a SU(3)-invariant flag metric or the Kaluza-Klein metric, maybe contrary to

what one might expect. Values of J close to its maximal value of 1
6
√
3
≈ 0.0962 are disfavored in

both cases. Therefore we have used a logarithmic scale for |J |.
In all three cases the numerical results for small |J | are well approximated by a power law of the form

p(|J |) = α · |J |λ for the probability density of |J |. The logarithmic graphs show p(log |J |) ∝ |J |λ+1.

For the SU(3)-invariant flag measure, the best fit to the data in the region below |J | = 10−2.3 or

log |J | = −5.3 is

λflag = −0.042(±0.006) , αflag = 18.1(±0.7) ; (94)

for the Kaluza-Klein measure we fitted the data in the region below |J | = 10−2.7 or log |J | = −6.2

and obtained

λKK = −0.097(±0.008) , αKK = 18.9(±1.0) ; (95)

finally for the uniform measure, the best fit to the data in the region below |J | = 10−3.4 or log |J | =
−7.8 is

λunif = −0.500(±0.005) , αunif = 3.51(±0.15) . (96)
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Figure 1: Probability distribution for log |J | using the SU(3)-invariant flag measure, with fit to p(|J |) ∝ |J |λ.

Figure 2: Probability distribution for log |J | using the Kaluza-Klein measure, with fit to p(|J |) ∝ |J |λ.
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Figure 3: Probability distribution for log |J | using a uniform distribution, with fit to p(|J |) ∝ |J |λ.

4.2 Wolfenstein parametrization

A different parametrization of the Kobayashi-Maskawa matrix which is frequently used was intro-

duced by Wolfenstein and is based on the experimentally observed hierarchy

y ≪ x≪ z ≪ 1 (97)

in the mixing angles. One rewrites [18]

sin z = λ , sinx = Aλ2 , sin ye−iw = Aλ3(ρ− iη) (98)

and treats λ as a small parameter while A, ρ, and η are supposed to be parameters of order unity. In

the modern literature one also frequently uses ρ̄, η̄ instead of ρ and η because then the combination ρ̄+

iη̄ is independent of the phase convention in the Kobayashi-Maskawa matrix [19]. These parameters

are defined by

ρ =

√

1−A2λ4

1− λ2
ρ̄−A2λ4(ρ̄2 + η̄2)

(1 −A2λ4ρ̄)2 +A4λ8η̄2
, η =

√

1−A2λ4

1− λ2
η̄

(1−A2λ4ρ̄)2 +A4λ8η̄2
. (99)

The experimental values for λ,A, ρ̄, η̄ are [19]3

λ = 0.2272± 0.0010, A = 0.818+0.007
−0.017, ρ̄ = 0.221+0.064

−0.028, η̄ = 0.340+0.017
−0.045 . (100)

One viewpoint on the Wolfenstein parametrization is that it is adapted to the values for the

Kobayashi-Maskawa matrix entries that we observe and has no deeper significance; but often the

viewpoint is expressed that this parametrization expresses some kind of “natural hierarchy” in the

mixing angles coming from physics beyond the standard model (see e.g. [20]). Treating the other

parameters as “naturally of order unity” reduces our calculations to a one-dimensional problem as

3Note that only even powers of λ appear in all expansions, so that it is λ2
≈ 0.05 which is the small parameter.
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everything is only expanded in terms of λ. We find that the SU(3)-invariant measure on the flag

manifold is now, to leading order in λ,
∣

∣

∣

∣

∂(x, y, z, w)

∂(λ,A, ρ̄, η̄)

∣

∣

∣

∣

√
g ∝ A3λ11

(

1 + λ2 +O(λ4)
)

, (101)

and the Jarlskog invariant J is

J =
A2η̄λ6(1−A2λ4)

(

1− λ2 − 2A2ρ̄λ4 −A2(η̄2 + (ρ̄− 2)ρ̄)λ6 +A4(η̄2 + ρ̄2)λ8
)

(1− λ2) (1− 2A2ρ̄λ4 +A4(η̄2 + ρ̄2)λ8)2
= A2η̄λ6+O(λ10) .

(102)

Inverting this expression to leading order gives the probability distribution for J

p(J) ∝ J

Aη̄2

(

1 +

(

J

A2η̄

)1/3

+O(J2/3)

)

, (103)

which is incompatible with the numerical results. Trying to improve this approximate result by

letting A, ρ̄ and η̄ take all possible values leads to inconsistencies since the expansion in powers of J

contains poles of arbitrary order in A. From our present viewpoint, where no mechanism for fixing

these parameters close to one is known, the Wolfenstein parametrization seems rather misleading

when discussing geometric probability.

5 Quark Mass Matrices and Gaussian Weighting Functions

In the previous sections we have focussed on U(1)2\SU(3)/U(1)2, the space of Kobayashi-Maskawa

matrices, as the space of CP violating parameters. Since SU(3) is compact, this space has finite

volume for a natural measure. But the Kobayashi-Maskawa matrix is derived from the Hermitian

quark mass matrices, which could be viewed as more fundamental and more directly determined

by physics beyond the standard model. In this section, we try to obtain statistics of the Jarlskog

invariant J from a random distribution on the space of 3× 3 Hermitian matrices.

5.1 Distributions on Hermitian matrices

We follow section 1.2 and write the quark mass matrices as

UmU † = diag(mu,mc,mt) , U ′m′U ′† = diag(md,ms,mb) . (104)

where U and U ′ should be thought of as elements of U(1)2\SU(3). Following [12] we normalize the

mass matrices by diving by mass scales Λ and Λ′ (often taken to be the top and bottom quark mass,

respectively) which may be chosen for convenience:

M = U †DU , M ′ = U ′†D′U ′ . (105)

The matrices D and D′ are now dimensionless quantities, and it is clear that U and U ′ are only

defined up to left multiplication by elements of U(1)2. We consider Λ and Λ′ as arbitrary mass
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scales, and so we will allow arbitrary eigenvalues for both matrices, instead of fixing one of them to

be one.

A natural measure on the space of Hermitian matrices is induced by the metric

ds2 = Tr(dM · dM) = Tr (dD · dD) + 2Tr
(

(

dU U †D
)2 −

(

dU U †)2D2
)

(106)

which is invariant under conjugation under U(3). If we define right-invariant 1-forms τa by

dU U † = iλaτa , (107)

this becomes4 (with D ≡ diag(D1, D2, D3))

ds2 = Tr (dD · dD)− 2τaτbTr (λa[D,λb]D)

= dD2
1 + dD2

2 + dD2
3 + 2

{

(D1 −D2)
2(τ21 + τ22 ) + (D1 −D3)

2(τ24 + τ25 )

+(D2 −D3)
2(τ26 + τ27 )

}

. (108)

The corresponding volume form is

(D1 −D2)
2(D1 −D3)

2(D2 −D3)
2 dD1 ∧ dD2 ∧ dD3 ∧ τ1 ∧ τ2 ∧ τ4 ∧ τ5 ∧ τ6 ∧ τ7 . (109)

As explained above, the measure on the coset U(1)2\SU(3) is unique and equal to the measure

induced from the bi-invariant metric on SU(3). We obtain a Riemannian measure

DM := (D1 −D2)
2(D1 −D3)

2(D2 −D3)
2 sin 2x cos3 y sin y sin 2z dD1 dD2 dD3 dx dy dz dw dr dt

(110)

on the space of Hermitian 3 × 3 matrices. The coordinates (x, y, z, w, r, t) on U(1)2\SU(3) were

introduced in section 2, and we allow arbitrary eigenvalues. (In a fermionic mass term, the sign of

the mass has no physical significance, since it can be reversed by multiplying the spinor fields by γ5;

only m2 enters in physical quantities.)

From the expressions (105), it is apparent that each Hermitian matrix with three distinct eigen-

values is associated with six different elements of R3 × U(1)2\SU(3), related by the action of the

discrete group S3:

M = U †DU = (U †P−1)PDP−1(PU) =: Ũ †D̃Ũ , P ∈ S3 , (111)

where S3 is the symmetric group of degree 3 (the dihedral group of order 6, sometimes denoted by

D3 or D6) which permutes the canonical basis vectors of R3. The set of matrices with coinciding

eigenvalues has zero measure and hence can be ignored in the present discussion.

Thus we need to consider the space R3× (U(1)2×S3)\SU(3) instead, restricting the coordinates

on the flag manifold to an appropriate range to pick one of the six matrices related by the S3 action.

We can use the fact that the S3 action permutes the rows of an SU(3) matrix to demand that the

elements of the third column (see section 2) satisfy the relation

| sin y| ≤ | sinx cos y| ≤ | cosx cos y| , (112)

4Compare with the corresponding result for real matrices given in [21]
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which restricts the coordinates x and y to

0 ≤ y ≤ arctan(sinx) , 0 ≤ x ≤ π

4
. (113)

Using the natural measure on the flag manifold, we see that this region has precisely one sixth

of the total volume of the flag manifold:

π/2
∫

0

dz
π/4
∫

0

dx
arctan(sin x)

∫

0

dy sin 2x cos3 y sin y sin 2z

π/2
∫

0

dz
π/2
∫

0

dx
π/2
∫

0

dy sin 2x cos3 y sin y sin 2z

=
1

6
. (114)

An integral over R3 with the given measure diverges. We could introduce a cutoff for the quark

masses, but then any expectation values for quark masses would strongly contradict observation, as

there is no way to explain the observed mass hierarchy.

We therefore choose to introduce a weighting function in the measure which decays sufficiently

fast for large positive or negative eigenvalues, and is able to reproduce the known hierarchy. The

simplest assumption is to take a weighting function of the form

f
(

Tr(M2A)
)

f
(

Tr((M ′)2A′)
)

, (115)

where A and A′ are Hermitian and positive definite, and we shall further assume [A,A′] = 0.

By a redefinition of M and M ′ by unitary conjugation by the same unitary matrix, which leaves

J invariant, one can simultaneously diagonalize A and A′. For simplicity and ease of technical

calculations, we shall choose the function f in (115) to be a decaying exponential so M and M ′ are

governed by Gaussian distributions. Our proposal is to fit the diagonal matrices A and A′ to the

observed quark masses, and use the resulting probability distribution for statistics of J .

An integral of a quantity such as J2 becomes5

〈J2〉 = N

∫

DM DM ′ e−Tr(M2A)−Tr((M ′)2A′) J2(M,M ′) (116)

= N

∫

R6

dD dD′
∫

((U(1)2×S3)\SU(3))2
DU DU ′ e−Tr(D2UAU†)−Tr((D′)2U ′A′U ′†) J2(U,U ′) .

Here DU and DU ′ are the measures on (U(1)2 × S3)\SU(3) and dD := (D1 − D2)
2(D1 −

D3)
2(D2 −D3)

2 dD1 dD2 dD3 etc., and the normalization factor N is defined by

1

N
:=

∫

R6

dD dD′
∫

((U(1)2×S3)\SU(3))2
DU DU ′ e−Tr(D2UAU†)−Tr((D′)2U ′A′U ′†) . (117)

From J = Im
(

V11 V22 V
∗
12 V

∗
21

)

and V = UU ′†, we have

J(U,U ′) =
3
∑

a,b,c,d=1

Im
(

U1aU2bU
∗
1cU

∗
2dU

′∗
1aU

′∗
2bU

′
2cU

′
1d

)

. (118)

At this point, it is perhaps instructive to note that setting A equal to the identity would split

the integral (116) into a product of an integral over the eigenvalues which just gives a constant,

5All odd powers of J again have expectation value zero.
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and an integral of J2 over ((U(1)2 ×S3)\SU(3))2. Since all even powers of J are invariant under

the S3 action on U and U ′, this can be replaced by an integral over (U(1)2\SU(3))2 if averages

are concerned. By the arguments presented in section 3.1, a change of coordinates reduces this to

a single integration over a flag manifold, and one recovers the results of section 3.1 for expectation

values of powers of J .

The introduction of more general diagonal matrices A and A′ means that the invariance of the

measureDM DM ′ under separate conjugation ofM andM ′ by arbitrary elements of U(3), i.e. under

the action of U(3) × U(3), is broken down to the action of the diagonal subgroup U(1)2 × U(1)2

which commutes with A and A′. We find that this symmetry breaking is necessary to obtain a

distribution that reproduces different expectation values for squared quark masses.

It should be clear from (116) that multiplying A (or A′) by a constant is the same as rescaling

the eigenvalues Di (or D
′
i), and so amounts to a rescaling of Λ (or Λ′). We can therefore, without

any loss of generality, choose

A =









1 0 0

0 1/µ2
c 0

0 0 1/µ2
u









, A′ =









1 0 0

0 1/µ2
s 0

0 0 1/µ2
d









, (119)

where µc, µu, µs and µd are dimensionless parameters that we are free to choose so as to reproduce

the observed quark masses as expectation values. (In the case of an exponential exp(−Tr(D2A)),

these would of course be equal to the respective quark masses, expressed in units where Λ = mt and

Λ′ = mb.) Because of experimental uncertainties in the up and quark masses, one can modify this

distribution to reproduce different values for these masses.

It seems practically impossible to evaluate the integral (116), as the expression for J in terms of

coordinates on ((U(1)2 ×S3)\SU(3))2 is too complicated to be given explicitly. However, since

Tr(D2UAU †) =
∑

a

D2
a

∑

c

Ac|Uac|2 =:
∑

a

D2
aξa , Tr((D′)2U ′A′U ′†) =:

∑

a

(D′
a)

2ξ′a (120)

with

ξ1 = A1 cos
2 y cos2 z+A2 cos

2 y sin2 z+A3 sin
2 y , ξ′1 = A′

1 cos
2 y′ cos2 z′+A′

2 cos
2 y′ sin2 z′+A′

3 sin
2 y′ ,

(121)

and we assume A3 ≫ 1 and A′
3 ≫ 1, the integrand is negligibly small unless y ≈ 0 and y′ ≈ 0. We

use this to approximate the integrals over y and y′:

arctan(sin x)
∫

0

dy

arctan(sin x′)
∫

0

dy′ cos3 y sin y cos3 y′ sin y′ e−Tr(D2UAU†)−Tr((D′)2U ′A′U ′†) J2(U,U ′)

≈
arctan(sin x)
∫

0

dy

arctan(sin x′)
∫

0

dy′ y y′ e−A3y
2−A′

3
(y′)2

(

e−Tr(D2UAU†)−Tr((D′)2U ′A′U ′†) J2(U,U ′)
)

∣

∣

y=y′=0

≈ 1

4A3A′
3

(

e−Tr(D2UAU†)−Tr((D′)2U ′A′U ′†) J2(U,U ′)
)

∣

∣

y=y′=0
. (122)
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It turns out that this is independent of w and w′. Any constant factors appearing in both

numerator and denominator and can be dropped, and so we have

〈J2〉 ≈
∫

R6 dD dD′ ∫ d4x
∫

d4x′ sin 2x sin 2z sin 2x′ sin 2z′
(

e−Tr(D2UAU†)−Tr((D′)2U ′A′U ′†) J2(U,U ′)
)

∣

∣

y=y′=0
∫

R6 dD dD′ ∫ d4x
∫

d4x′ sin 2x sin 2z sin 2x′ sin 2z′
(

e−Tr(D2UAU†)−Tr((D′)2U ′A′U ′†)
) ∣

∣

y=y′=0

,

(123)

where
∫

d4x ≡
π/4
∫

0

dx

π/2
∫

0

dz

2π
∫

0

dr

2π
∫

0

dt (124)

and similarly for
∫

d4x′.

Now we can integrate over both copies of R3 in (123), using

∞
∫

−∞

dD1

∞
∫

−∞

dD2

∞
∫

−∞

dD3 (D1 −D2)
2(D1 −D3)

2(D2 −D3)
2e−ξ1D

2

1
−ξ2D

2

2
−ξ3D

2

3

=
3π3/2

8ξ
5/2
1 ξ

5/2
2 ξ

5/2
3

(

ξ21(ξ2 + ξ3) + ξ22(ξ1 + ξ3) + ξ23(ξ2 + ξ1)− 2ξ1ξ2ξ3
)

. (125)

The explicit expression for J at y = y′ = 0 is

J(U,U ′)
∣

∣

y=y′=0
=

1

4
s2xs2x′

{

c2z′s3zsz′ sin(3r̂ + t̂) + c3zcz′s2z′ sin(3r̂ − t̂)

−c2zszsz′(c2z′

[

sin(3r̂ + t̂) + sin(3r̂ − 3t̂)
]

− s2z′ sin(3r̂ + t̂))

+czcz′s2z(c
2
z′ sin(3r̂ − t̂)− s2z′

[

sin(3r̂ + 3t̂) + sin(3r̂ − t̂)
]

)
}

(126)

where sx = sinx, cz′ = cos z′ etc., r̂ = r − r′ and t̂ = t − t′. Integrating (126) over r, r′, t and t′

indeed gives zero, which is why we choose to use J2.

5.2 Results and dependence on quark masses

We need to determine the parameters appearing in the matrices A and A′ in (119). We first observe

that expectation values for squared mass matrices take the relatively simple form

〈D2
1〉 ≈

∫

R3 dDD2
1

π/4
∫

0

dx
π/2
∫

0

dz sin 2x sin 2z
(

e−Tr(D2UAU†)
)

∣

∣

y=0

∫

R3 dD
π/4
∫

0

dx
π/2
∫

0

dz sin 2x sin 2z
(

e−Tr(D2UAU†)
) ∣

∣

y=0

. (127)

The denominator is explicitly

ID :=

π/4
∫

0

dx

π/2
∫

0

dz sin 2x sin 2z
3π3/2

8ξ
5/2
1 ξ

5/2
2 ξ

5/2
3

(

ξ21(ξ2 + ξ3) + ξ22(ξ1 + ξ3) + ξ23(ξ2 + ξ1)− 2ξ1ξ2ξ3
)

,

(128)

where

ξ1 = A1 cos
2 z +A2 sin

2 z , ξ2 = A1 cos
2 x sin2 z +A2 cos

2 x cos2 z +A3 sin
2 x ,

ξ3 = A1 sin
2 x sin2 z +A2 sin

2 x cos2 z +A3 cos
2 x , (129)
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with A3 ≫ A2 ≫ A1. We notice that all ξa are non-zero for all values of x and z. Furthermore, the

integral is dominated by very small x and z (we cannot have x = π
2 ), and we can approximate ID

well by only keeping the terms of leading order in x and z in the trigonometric functions, and

ξ21(ξ2 + ξ3) + ξ22(ξ1 + ξ3) + ξ23(ξ2 + ξ1)− 2ξ1ξ2ξ3 ≈ A3
3x

2 +A2
3A2 , (130)

which are the leading terms (as we shall see, the first of these is effectively also of order A2
3A2):

ID ≈ 3π3/2

8

π/4
∫

0

dx

π/2
∫

0

dz 4xz (A3
3x

2 +A2
3A2)(A1 +A2z

2)−5/2(A2 +A3x
2)−5/2A

−5/2
3

≈ 3π3/2

8

∞
∫

0

dX

∞
∫

0

dZ (A3
3X +A2

3A2)(A1 +A2Z)
−5/2(A2 +A3X)−5/2A

−5/2
3

=
3π3/2

8

∞
∫

0

dX(A3
3X +A2

3A2)(A2 +A3X)−5/2A
−5/2
3 · 2

3A
3/2
1 A2

=
3π3/2

8

2

3A
3/2
1 A2





2

3
A

−1/2
2 A

−3/2
3 +

∞
∫

0

dX
2

3A
1/2
3

(A2 +A3X)−3/2





=
π3/2

4A
3/2
1 A2

(

2

3
A

−1/2
2 A

−3/2
3 +

4

3A
3/2
3 A

1/2
2

)

=
π3/2

2A
3/2
1 A

3/2
2 A

3/2
3

. (131)

Similarly, we find

ID〈D2
1〉 ≈ 15π3/2

16

∞
∫

0

dX

∞
∫

0

dZ (A3
3X +A2

3A2)(A1 +A2Z)
−7/2(A2 +A3X)−5/2A

−5/2
3

=
15π3/2

16

∞
∫

0

dX (A3
3X +A2

3A2)(A2 +A3X)−5/2A
−5/2
3 · 2

5A2A
5/2
1

=
3π3/2

4A
5/2
1 A

3/2
2 A

3/2
3

, (132)

hence

〈D2
1〉 ≈

3

2A1
. (133)

Redoing the same calculation for D2 and D3 gives

〈D2
2〉 ≈

1

2A2
, 〈D2

3〉 ≈
1

2A3
. (134)

There is a relative factor of 3 which has to be taken into account when determining A and A′.

Due to the dependence of masses on the energy scale in quantum field theory, described by the

renormalization group, there is some ambiguity in what is meant by the “quark masses” we want to

reproduce. Following [22], for example, we take all the quark masses evolved to the scale of the Z

boson mass. These are given in [23]:

(mu,mc,mt) = (1.27+0.50
−0.42 MeV, 0.619± 0.084 GeV, 171.7± 3.0 GeV) ;

(md,ms,mb) = (2.90+1.24
−1.19 MeV, 55+16

−15 MeV, 2.89± 0.09 GeV) . (135)
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We use the central values

(mu,mc,mt) := (1.27 MeV, 0.619 GeV, 171.7 GeV) ; (md,ms,mb) := (2.9 MeV, 55 MeV, 2.89 GeV) .

(136)

The mass scales Λ and Λ′ are fixed by setting 〈D2
1〉 = (mt/Λ)

2 and 〈(D′
1)

2〉 = (mb/Λ
′)2. By

comparing the results obtained by numerical integration with the values we want to reproduce, we

can then fix the parameters µc, µu, µs and µd.

In the case of the positively charged top, charm and up quarks, which exhibit a more extreme

quark mass hierarchy, we find that numerical calculations (using Mathematica) reproduce the results

we have obtained analytically very well (see Table 1). For the negatively charged quarks, we find

numerically that we have to use relative factors different from 3 to reproduce the observed masses.

Comparing the numerical results with (136), we fix the parameters appearing in A and A′ to

µ2
c = 3

(

mc

mt

)2

≈ 3.90× 10−5 , µ2
u = 3

(

mu

mt

)2

≈ 1.64× 10−10 ,

µ2
s =

3

2

(

ms

mb

)2

≈ 5.43× 10−4 , µ2
d =

12

5

(

md

mb

)2

≈ 2.42× 10−6 . (137)

As a brief side remark, we see that the dominant contributions to these integrals come from the

regions

y ≈
√

1

A3
, y′ ≈

√

1

A′
3

, x ≈
√

A2

A3
, z ≈

√

A1

A2
, x′ ≈

√

A′
2

A′
3

, z′ ≈
√

A′
1

A′
2

, (138)

and these values are all small compared to one. We can therefore give rough estimates for magnitudes

of individual elements of the Kobayashi-Maskawa matrix.

In the standard convention the ordering of the quark families is (u, c, t), and not (t, c, u) as used

in (119), which means that in our parametrization,

|(UU ′†)13| = |Vtd| , |(UU ′†)12| = |Vts| , |(UU ′†)23| = |Vcd| . (139)

Since all of the numbers in (138) are small, we only keep leading terms in the angles on U and U ′:

|(UU ′†)13| ≈ |x′(z′ − z)− eiw
′

y′ + . . . | ≈ x′z′ ≈ µd ≈ 2× 10−3 ,

|(UU ′†)12| ≈ z′ ≈ µs ≈ 0.02 , |(UU ′†)23| ≈ x′ ≈ µd

µs
≈ 0.07 . (140)

Experimental values are [19]

|Vtd| = (8.14+0.32
−0.64)× 10−3 , |Vts| = (41.61+0.12

−0.78)× 10−3 , |Vcd| = 0.2271+0.0010
−0.0010 . (141)

Our rough estimates reproduce the right ordering of the three parameters, and are accurate to

factors of order a few. A more careful analysis would involve computing expectation values for these

parameters in the distribution we have assumed.

We return to the task of computing the expectation value of J2. In order to obtain an analytical

expression, we use the fact that the main contribution to the integral (123) will come from small z
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to only take the term in (126) that is non-zero at z = 0. Averaging over r, t, r′ and t′ gives a factor

of 1/2, as one might have expected, and therefore we use

J2
small z :=

1

2
sin2 x cos2 x sin2 x′ cos2 x′ cos2 z′ sin4 z′ (142)

for our calculations. The numerator of (123) is the product (using again that only small z contributes)

9π3

32
×

π/2
∫

0

dz
2z

(A1 +A2z2)5/2
×

π/2
∫

0

dz′
sin 2z′ cos2 z′ sin4 z′

(A1 cos2 z′ +A2 sin
2 z′)5/2

×
π/4
∫

0

dx
sin 2x sin2 x cos2 x(A3

3 cos
2 x sin2 x+A2

3A2(cos
6 x+ 2 cos2 x sin2 x+ sin6 x))

(A2 cos2 x+A3 sin
2 x)5/2(A3 cos2 x+A2 sin

2 x)5/2
(143)

×
π/4
∫

0

dx′
sin 2x′ sin2 x′ cos2 x′((A′

3)
3 cos2 x′ sin2 x′ + (A′

3)
2A′

2(cos
6 x′ + 2 cos2 x′ sin2 x′ + sin6 x′))

(A′
2 cos

2 x′ +A′
3 sin

2 x′)5/2(A′
3 cos

2 x′ +A′
2 sin

2 x′)5/2

The first two factors are 2/(3A
3/2
1 A2) and 4/(3

√

A′
2(
√

A′
1 +
√

A′
2)

4), respectively; for the other two

(which are identical) we change variables to X = cos2 x to obtain

1
∫

1/2

dX
X(1−X)(A3

3X(1−X) +A2
3A2(X

2 −X + 1))

(A2X +A3(1−X))5/2(A3X +A2(1 −X))5/2
≈ 1

A2
3

(

arctan

(

1

2

√

A3

A2

)

− 2

√

A2

A3

)

,

(144)

where we are dropping corrections of order A2

A3

. Putting everything together, we obtain

〈J2
small z〉 ≈ (A′

1)
3/2A′

2

√
A2

√

A3A′
3(
√

A′
1 +

√

A′
2)

4

(

arctan

√

A3

4A2
−
√

4A2

A3

)(

arctan

√

A′
3

4A′
2

−
√

4A′
2

A′
3

)
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=

4√
15
mumdmb

mcm2
s

(

1 +
√

2
3
mb

ms

)4

(

arctan

√

mc

4mu
− 2mu

ms

)

(

arctan

√

5
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ms

md
−
√

32

5

md

ms

)

,

where the numerical factors appearing in the last line come from the different factors chosen in (137).

Note that the top quark mass does not appear in this approximate result.

For numerical calculations we use both the simplified expression J2
small z and the expression for

J given in (126). We find that for the first quantity, the numerically evaluated expectation value

〈J2
small z〉 is about 7/6 of (145), and the numerical result for 〈J2〉 (taken at y = y′ = 0) is

〈J2〉 ≈ 5.28× 10−9 , (146)

which gives

∆J =
√

〈J2〉 ≈ 7.27× 10−5 (147)

which is much closer to the observed value than any of the previously obtained results. Assuming

a Gaussian distribution for J which is peaked at zero, the probability of finding a small J , in the

sense of section 4, is now

Pmass(|J | ≤ 10−4) ≈ 83% , (148)
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whereas the probability of finding a J which is even smaller than the observed value is

Pmass(|J | ≤ 3× 10−5) ≈ 32% . (149)

The observed value for J can no longer be viewed as being finely tuned if the distribution used in

our calculations is assumed.

Table 1: Analytical and numerical results for integrals of interest.

Quantity ID (over x, z) ID〈D2
1〉 ID〈D2

2〉 ID〈D2
3〉

Analytical result 1.43× 10−21 2.14× 10−21 2.78× 10−26 1.17× 10−31

Numerical result 1.43× 10−21 2.14× 10−21 2.78× 10−26 1.18× 10−31

Quantity I ′D (over x′, z′) I ′D〈(D′
1)

2〉 I ′D〈(D′
2)

2〉 I ′D〈(D′
3)

2〉
Analytical result 1.32× 10−13 1.99× 10−13 3.60× 10−17 1.60× 10−19

Numerical result 1.32× 10−13 1.98× 10−13 7.28× 10−17 1.99× 10−19

Quantity ĨD (over x, z, x′, z′) 〈J2
small z〉 〈J2〉

Analytical result 1.89× 10−34 3.22× 10−9 —

Numerical result 1.88× 10−34 3.73× 10−9 5.28× 10−9

To test the sensitivity of our results to changes in the parameters, we take values at the upper

or lower limit in (135) and try to find the highest and lowest values for 〈J2〉. We find that setting

(mu,mc,mt) := (0.85 MeV, 0.535 GeV, 174.7 GeV) ; (md,ms,mb) := (1.71 MeV, 40 MeV, 2.98 GeV)

(150)

gives

〈J2〉 ≈ 1.86× 10−9 (151)

and

∆J =
√

〈J2〉 ≈ 4.31× 10−5 , (152)

whereas setting

(mu,mc,mt) := (1.77 MeV, 0.535 GeV, 168.7 GeV) ; (md,ms,mb) := (4.14 MeV, 71 MeV, 2.8 GeV)

(153)

gives

〈J2〉 ≈ 1.52× 10−8 (154)

and

∆J =
√

〈J2〉 ≈ 1.23× 10−4 . (155)

Since the former choice makes J appear more typical, these results are perhaps an indication that

the correct values for the (up, down and strange) quark masses are probably closer to the lower than
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to the upper bounds given in (135). Also, even the greatest possible value for ∆J is significantly

lower than any of the values obtained in previous sections.

In this section, we have established that assuming the observed hierarchy in quark masses in a

Gaussian distribution over the space of mass matrices gives expectation values for J2 which are small

enough to regard the observed value as ‘natural’ and not finely tuned. This statistical observation

seems to open up the possibility that the same mechanism that is responsible for the apparently

unlikely hierarchy in quark masses might also explain why the observed value for |J | is so small.

A more detailed analysis including a probability density for |J | for this distribution is left to

future work, since the numerical methods used here do not give sufficiently accurate results.

6 Extension to Neutrinos

In this section we review the case of neutrino masses, highlighting the difference between Majorana

and Dirac masses and commenting on some recently made suggestions in the literature that one

could distinguish the two cases by gravitational effects. In contrast to the physical situation which

is at present rather unclear, the mathematical problem of obtaining a measure on the space of mixing

matrices is in this case simpler, since one considers the flag manifold U(1)2\SU(3).

6.1 Neutrino masses

The spectrum of neutrinos and their masses, and their nature, Majorana or Dirac, is currently

not well known. Since not all of the the material may be familiar to all readers we shall review

some basic facts about Dirac and Majorana masses in a framework which is sufficiently general to

encompass all likely possibilities. We find it helpful to use a Majorana notation, but no loss of

generality thereby results since, if one starts with complex Weyl notation, one may always take real

and imaginary parts. Alternatively, given a treatment in terms of Majorana spinors, one may always

transcribe it into Weyl notation. In order to simplify the analysis we depart from common practice in

phenomenological particle physics and adopt the spacetime signature (−+++) for all spinors. This

has the advantage that all gamma matrices may be taken to be real, t denotes transpose. C = −Ct

is the charge conjugation matrix and γ5 = −(γ5)t = γ0γ1γ2γ3 so that (γ5)2 = −1. If required, a

concrete representation is given by

γ0 =















0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0















, γ1 =















0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0















,

γ2 =















1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1















, γ3 =















0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0















. (156)
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In this representation we may take C = γ0, and it is often useful to note that γ0 is anti-symmetric

while γ1, γ2 and γ3 are symmetric.

The mass matrix of a set of fermions is defined by imagining setting to zero that part of the

effective or large distance Lagrangian containing couplings to all gauge interactions except gravity.

In fact this is how information about neutrino masses is obtained. One observes mixing as they pass

from the sun to the earth and upper bounds on their masses have been obtained by observing their

arrival times from distant supernova 1987a.

The most general effective Lorentz-invariant Lagrangian for a system of k free Majorana fermions

ψi, i = 1, 2, . . . , k, is

L =
1

2
ψtC/Dψ − 1

2
ψtC

(

m1 +m2γ
5
)

ψ , (157)

where ψ should be thought of as a k dimensional column vector all of whose entries are four com-

ponent real Majorana spinors, and m1 and m2 are real symmetric k× k matrices. Note that at this

stage k may be even or odd. We have made use of the fact that we may diagonalize the kinetic term

using GL(k,R) transformations. We are still allowed SO(k) ⊂ GL(k,R) transformations

ψ → Oψ , OtO = 1 , (158)

where

O = exp (ωij) , ωij = −ωji . (159)

The kinetic term, but not the mass term is also invariant under chiral rotations

ψ → Pψ , (160)

P = exp
(

νijγ
5
)

, νij = νji . (161)

Combining these two sets of transformations we see that the kinetic term, but not the mass term is

in fact invariant under the action of U(k), i.e. under

ψ → Sψ , (162)

S = exp
(

ωij + νijγ
5
)

. (163)

The U(k) invariance is perhaps more obvious if one uses a Weyl basis. Since

(

γ5
)2

= −1 , (164)

one may regard γ5 as providing a complex structure on the space of 4k real dimensional Majorana

spinors, converting it to the 2k complex dimensional space of positive chirality Weyl spinors for

which

γ5 = i . (165)

Clearly S then becomes the exponential of the k × k anti-Hermitian matrix

ωij + iνij . (166)
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Thus

SS† = 1 . (167)

The mass matrix is then a complex symmetric matrix

m = m1 + im2 , (168)

and under a U(k) transformation

m→ S†mS . (169)

At this point we invoke the result of Zumino [24] that S may chosen to render the matrix m diagonal

with real non-negative entries mi.

In the general case, all the masses mi are distinct. They are then said to be of Majorana type.

However it may happen that two masses, m1 and m2 say, coincide. One may then combine ψ1, ψ2

into a Dirac spinor. One then has the case of a Dirac mass. For quarks and charged leptons all

masses are of Dirac type. For neutrinos however it is not yet known of what type they are, nor

indeed how many. A simple assumption is that that k = 6, with three have very heavy masses and

three having very light masses. This corresponds to the so-called “see-saw mechanism”. Of course

the very light neutrinos may be combined into three Weyl neutrinos and are taken to be massless in

the standard model.

From the analysis above it follows that in the general case when all masses mi are distinct, there

is a unique basis for the neutrino states, determined by their inertial motion. If however two or more

masses coincide, then the basis becomes ambiguous up to rotations of the components with equal

masses. In the case that k is even and there are [k2 ] distinct pairs of coincident masses the basis is

arbitrary up to to the action of T [k
2
] ≡ U(1)[

k

2
].

Any mixing matrix taking one to a basis which is preferred from the point of their non-gravitational

gauge interactions will be ambiguous to the extent that the inertial basis and the the gauge basis

are ambiguous. For that reason, in general, a mixing matrix belongs to a double quotient.

6.1.1 The Universality of free fall

In our discussion above we have referred to the interactions of neutrinos with gravitational fields.

Of course neutrinos observed to be coming from the sun, or the supernova 1987a are traveling so

fast that the effects of gravity on them are negligible. However it has been suggested that it is in

principle possible to distinguish Majorana from Dirac masses by their behavior in the gravitational

fields of rotating objects [25–27]. Our analysis above shows that unless there are gauge interactions

such as might correspond to neutrino magnetic or electric dipole moments this is not so, as long as

the coupling to gravity is “minimal”. If so one simply uses for ∇ the standard Levi-Civita covariant

derivative acting on spinors.

Assuming that the mass matrix m is independent of position, we may take it to be everywhere

real and diagonal. Thus each component ψi of the inertial basis propagates independently. One may
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iterate the Dirac equation and use the cyclic Bianchi identity in a curved space to get (reinstating

powers of ~)

− ~
2∇2ψi +

1

4
~
2Rψi +m2

iψ
i = 0 . (170)

If the effects of curvature are negligible on the scale of the Compton wavelength,

~2

m2
i

≪ L2
c , (171)

the second term may be dropped and one obtains the Klein-Gordon equation for each component.

As is well known, there is no ‘gyro-magnetic’ coupling between the spin and the Ricci or Riemann

tensors [28]. To proceed, one may pass to a Liouville-Green-Jeffreys-Wentzel-Kramers-Brillouin

approximation of the form

ψi = χieiS/~ . (172)

One obtains from the original Dirac equation

(

iγµ∂µS +mi

)

χi = 0 (173)

and

γµ∇µχ
i = 0 . (174)

It follows from (173) that

det
(

iγµ∂µS +mi

)

= 0 . (175)

Evaluation the of the determinant in (175) gives the Hamilton-Jacobi equation

gµν∂µ S∂νS +m2
i = 0 . (176)

This shows that the orthogonal trajectories defined by

mi
dxµ

dτ
= gµν∂µS (177)

are timelike geodesics. The same conclusion follows by applying the L-G-J-W-K-B approximation

to the second order iterated Dirac equation (170).

The iterated Dirac equation also gives

∂µS∇µχi = −1

2
(∇2S)χi . (178)

The same result may be obtained by differentiating (173) and using (174). Thus the spinor χi is

parallelly propagated along the timelike geodesics up to direction in spin space. The amplitude

of the spinor χi is governed by the expansion uµ;µ of the hypersurface timelike congruence whose

tangent vector is given by

uµ =
1

mi
gµν∂νS . (179)

We also have from (173) that χi is an eigenspinor of uµγµ. As in flat space it follows that the

spin tensor

Sµν =
χ̄iγ[µγν]χ

i

χ̄iχi
(180)
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satisfies

Sµνu
ν = 0 . (181)

Since χi is parallelly propagated along uµ in direction and since Sµν depends only on the direction

of χi, it follows that the spin tensor Sµν is parallelly transported along the timelike congruence, just

like any other perfect gyropscope. The geodesics are independent of the mass eigenvalue mi and the

polarization state given by χi. Indeed if the fermion starts off in a given polarization state (with the

associated mass), it remains in it. In other words, at the L-G-J-W-K-B level, the Weak Equivalence

Principle, in the form of the Universality of Free Fall, i.e. the statement that all particles fall in the

same way in a gravitational field independently of their mass, polarization, charge etc continues to

hold. Thus there should be no unusual behavior in the vicinity of a spinning black hole, or indeed

in the neighborhood of any spinning system due to the Lense-Thirring effect as suggested in [25,26],

denied in [29] and maintained in [27].

6.2 Neutrino mixing matrix

Here, we briefly review the theory of the neutrino mixing matrix, assuming that the neutrinos are

Majorana.

The lepton mixing matrix [30] belongs to the coset U(1)2\SU(3), since only phasing of the lepton

charge eigenstates (νe, νµ, ντ ), but not the neutrino mass eigenstates (ν1, ν2, ν3) (which are assumed

Majorana) is possible. One has








νe

νµ

ντ









=M









ν1

ν2

ν3









. (182)

Thus (νe, e), (νµ, µ) and (ντ , τ) are doublets under weak isospin.

One conventionally fixes the phases so that M takes the form

M =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e
−iδ

0 1 0

−s13eiδ 0 c13

















c12 s12 0

−s12 c12 0

0 0 1

















eiα1/2 0 0

0 eiα2/2 0

0 0 1









, (183)

where the three angles θ12, θ13 and θ23 lie in the first quadrant.

The Jarlskog invariant for the neutrino mixing matrix, defined as in (10) but with V now replaced

by M , is again given by (13). Note, in particular, that it is independent of the phases α1 and α2.

Experimentally, parameters of the neutrino mixing matrix are not completely known. According

to [19],

sin2 2θ12 = 0.86+0.03
−0.04 , 0.92 < sin2 2θ23 ≤ 1 , sin2 2θ13 < 0.19 , (184)

and there is no experimental information about the Dirac angle δ. Thus, we can certainly deduce

that there is an upper bound on the Jarlskog invariant for the neutrino mixing matrix, given by

|J | < 0.049 . (185)
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For six different neutrino mass eigenstates, as in the see-saw mechanism, a general mixing matrix

would be an element of U(1)5\SU(6), since one would diagonalize a 6× 6 Hermitian matrix.

6.3 Statistics of J

We have seen that the parameter space for the neutrino mixing matrix is the six-dimensional single

quotient U(1)2\SU(3), and that the Jarlskog invariant for the neutrino mixing matrix takes the same

form (10), or (68), as it does for the Kobayashi-Maskawa matrix. Therefore, all results obtained in

sections 3.1 and 4.1 apply equally to the case of neutrinos.

For completeness, we quote the results obtained in section 3.1:

〈J2〉 = 1

720
≈ 1.389× 10−3 , 〈J4〉 = 1

201600
≈ 4.960× 10−5 , ∆J =

1

12
√
5
≈ 0.0373 . (186)

This can be compared with the experimental bound given in (185).

One could also repeat the calculations of section 5, assuming particular values for the neutrino

masses. A strong hierarchy in the neutrino masses would then presumably again lead to ‘naturally’

small CP violation from the corresponding mixing matrix. Alternatively, an experimental obser-

vation of small CP violation for neutrinos would perhaps be an indication of a mass hierarchy in

neutrinos. At present, neither the magnitude of CP violation nor any values of neutrino masses have

been measured sufficiently accurately to allow predictions.

7 Conclusions and Outlook

In this paper, we analyzed the problem of finding a natural measure on a space of coupling con-

stants, which in our case was the space of Kobayashi-Maskawa matrices, the double quotient

U(1)2\SU(3)/U(1)2. We saw that the measure on this double quotient is non-unique, and ana-

lyzed several possible choices of measure on the double quotient. One class of measures was given

by squashed Kaluza-Klein measures, induced by a Kaluza-Klein reduction of a left-invariant metric

on the flag manifold. Alternatively, one could take the unique measure on SU(3)/U(1)2, and simply

integrate over the left angles. The measure used by Ozsváth and Schücking seemed not to be very

well-motivated from a geometric perspective.

When calculating expectation values for J , we found that all of the measures we considered led to

rather similar statistics of J . In each case, the observed value was about three orders of magnitude

below what one would normally expect; the observed value appears to be finely tuned. The same

applied to the Ozsváth-Schücking measure, an extremely squashed Kaluza-Klein measure, or a flat

measure, which is just the simplest choice and not justified geometrically.

In section 5, we adopted the different viewpoint that the Kobayashi-Maskawa matrix should not

be viewed as separate from the quark masses, but that it is really the mass matrices which are

“chosen” by a yet unknown physical mechanism. We took the observed values for the quark masses

as an input and chose the simplest distribution which was able to reproduce these observed values,
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while inducing a different measure on the space of Kobayashi-Maskawa matrices. Assuming such a

distribution, we found that the observed value of J now appears very natural, and not finely tuned

at all. In this statistical approach, regarding the Yukawa couplings determining the mass matrices

as randomly chosen seems more appropriate than separating quark masses and mixing angles. (On

submittal of this article to the archive we were informed of an earlier work [31], similar in spirit to

ours but using different assumptions and methods, which reaches broadly similar conclusions).

Our analysis also applies to the case of massive neutrinos, where the predictions will conceivably

be tested by future experiments. In the standard theory, the Maki-Nakagawa-Sakata matrix [32]

which appears is naturally an element of the single quotient U(1)2\SU(3). Since the right phases

do not play any role in neutrino oscillations, and the relevant J is independent of these phases, the

calculations are identical to the ones presented here, although with the appropriate values of the µ

parameters appearing in A and A′.

In the see-saw mechanism one adds very heavy right-handed neutrinos, and the most general

mixing matrix would be an element of U(1)5\SU(6). This is naturally a Kähler manifold, and the

measure induced by the Kähler metric can be obtained from the analysis in [17]. We leave a detailed

treatment of this case, following our approach here, to future work.

Finally, one could analyze the effects of a fourth generation of quarks on CP violation, by

repeating the calculations for 4× 4 Hermitian matrices. If this generalization spoils the agreement

with the observed J , one might obtain interesting lower bounds on the masses of a hypothetical

extra generation of quarks.
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