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Abstract

Recently it was demonstrated that free fermionic heterotic–strings can pro-
duce models with solely the Minimal Supersymmetric Standard Model states
in the low energy spectrum. This unprecedented result provides further strong
evidence for the possibility that the true string vacuum shares some of the prop-
erties of the free fermionic models. Past free fermionic models have focused
on several possible unbroken observable SO(10) subgroups at the string scale,
which include the flipped SU(5) (FSU5), the Pati–Salam (PS) string models,
and the string Standard–like Models (SLM). We extend this study to include
the case in which the SO(10) symmetry is broken to the Left–Right Symmet-
ric (LRS) gauge group, SO(10) → SU(3)C × U(1)B−L × SU(2)L × SU(2)R.
We present several models of this type and discuss their phenomenological fea-
tures. The most striking new outcome of the LRS string models, in contrast
to the case of the FSU5, the PS, and the SLM string models, is that they can
produce effective field theories that are free of Abelian anomalies. We discuss
the distinction between the two types of free fermionic models which result in
the presence, or absence, of an anomalous U(1). As a counter example we also
present a LRS model that does contain an anomalous U(1). Additionally, we
discuss how in string models the Standard Model spectrum may arise from the
three 16 representations of SO(10), while the weak–hypercharge does not have
the canonical SO(10) embedding.
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1 Introduction

Recently it was demonstrated that free fermionic heterotic string models can
produce models with solely the spectrum of the Minimal Supersymmetric Standard
Model (MSSM) in the effective four dimensional field theory [1]. This achievement
provides further motivation to improve our understanding of this particular class
of heterotic string models. The realistic free fermionic models consist of a large
number of three generation models which differ in their detailed phenomenological
characteristics. All these models share an underlying ZZ2×ZZ2 orbifold structure which
arises from a basic set of boundary condition basis vectors, the so–calledNAHE–set∗.
With this fundamental set incorporated as a necessary ingredient in the construction,
one then finds that three generation models, with the canonical SO(10) embedding
of the Standard Model spectrum† naturally arise. Furthermore, one of the generic
features of semi–realistic string constructions is the existence of numerous massless
states beyond the MSSM spectrum, some of which carry fractional electric charge
and hence must decouple from the low energy spectrum. Recently, and for the first
time since the advent of string phenomenology [4], we have been able to demonstrate
in the FNY free fermionic model [5], that free fermionic models can also produce
models with solely the MSSM states in the light spectrum. We will refer to such a
heterotic string model, as a Minimal Standard Heterotic String Model (MSHSM)‡.

At the level of the NAHE set, denoted by {1,S,b1,b2,b3}, the gauge group is
SO(10) × SO(6)3 × E8. The SO(6)3 symmetries are horizontal flavor symmetries;
the E8 factor gives rise to the hidden gauge group at this stage and the Standard
Model universal gauge group arises from the SO(10) factor. Beyond the NAHE set
the construction of the realistic free fermionic models proceeds by adding three or
four additional boundary condition basis vectors. These additional basis vectors fix
the final SO(10) subgroup in the effective field theory, and at the same time reduce
the number of generations to three, one from each of the sectors b1, b2 and b3.
The models studied to date have focused on three possibilities for the final SO(10)
subgroup: the flipped SU(5) (FSU5) with SO(10) → SU(5) × U(1) [2]; the Pati–
Salam (PS) type models with SO(10) → SO(6)× SO(4) [6]; and the standard–like
models (SLM) with SO(10) → SU(3)× SU(2)× U(1)2 [7].

∗NAHE=pretty in Hebrew. The NAHE set was first employed by Nanopoulos, Antoniadis,
Hagelin and Ellis in the construction of the flipped SU(5) heterotic–string model [2]. Its vital role
in the realistic free fermionic models has been emphasized in ref. [3].

†It is interesting to note that among the perturbative heterotic–string orbifold models the free
fermionic models are the only ones which have yielded three generations with the canonical SO(10)
embedding

‡ It should be emphasized that the success of the FNY model in producing a MSHSM should
not be regarded as indicating that the FNY model represents the correct string vacuum. Indeed,
much further elaborate studies would be needed to support such a claim. The phenomenological
success of the free fermionic models implies that the generic structure afforded by the NAHE set
is favorable for obtaining agreement with the phenomenological characteristics suggested by the
Standard Model data.
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In this paper we extend the analysis of the three generation free fermionic models
to models with the left–right symmetric (LRS) gauge group, i.e. with SO(10) →
SU(3)× U(1)× SU(2)L × SU(2)R. Our primary motivation is to extend our under-
standing of the general properties of the realistic free fermionic models. It should
also be noted, however, that LRS models have been extensively studied as attractive
field theoretic extensions of the Standard Model, in which parity violation is under-
stood to arise from the spontaneous breakdown of SU(2)R. Further phenomenological
advantages of LRS models include its potential role in providing a solution to the
strong CP problem and to the SUSY CP problem [8]. From a supersymmetric grand
unification perspective the LRS symmetric models have the appealing property that
R–parity appears as a gauged symmetry. From a string unification perspective the
LRS models, similar to the PS and SLM string models, have the advantage that they
can incorporate the stringy doublet–triplet splitting mechanism [17]. In contrast to
the MSSM, and similar to the PS models, the LRS models produce Yukawa couplings
of the up and down quark families to a Higgs bi–doublet, which present the danger
of inducing Flavor Changing Neutral Currents (FCNC) at an unacceptable rate [9].

One of the interesting aspects of the LRS string models that we show is the
possible absence of an anomalous U(1) symmetry. As is well known, generically
string models with (2,0) world–sheet supersymmetry give rise to an anomalous U(1)
symmetry [10, 11, 12]. In this paper we present the first examples of semi–realistic
(2,0) heterotic string models in which all the U(1) symmetries are anomaly free.

Our paper is organized as follows. In Section 2 we give a quick review of the field
theory content of the LRS models that we aim to construct. In Section 3 we discuss
the symmetry breaking pattern in the string models. In Section 4 we present the first
example of a LRS string model. The full massless spectrum and related quantum
numbers with respect to the four dimensional gauge group are determined, as well as
all superpotential terms up to quintic order. In Section 5 we offer a variation of the
LRS model in which the U(1)B−L symmetry is enhanced to a non–Abelian symmetry.
The full massless spectrum with quantum numbers and the superpotential are derived
for this model as well. In Section 6 we discuss the absence of an anomalous U(1)
symmetry in our first two examples of LRS string models. As a counter example we
also present a LRS model which does possess an anomalous U(1). Section 7 contains
a phenomenological discussion and our conclusions.

2 The supersymmetric left–right symmetric model

In this section we briefly summarize the field theory structure of the type of
models that we aim to construct from string theory in this paper. The observable
sector gauge symmetry we seek is SU(3)C × SU(2)L × SU(2)R × U(1)B−L. Such
models are reminiscent of the PS type string models, but differ from them by the
fact that the SU(4) gauge group is broken to SU(3)×U(1)B−L already at the string
level. Similar to the PS models, the LRS models possess the SO(10) embedding. The
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quarks and leptons are accommodated in the following representations:

Qi
L = (3, 2, 1) 1

6
=

(

u

d

)i

(2.1)

Qi
R = (3̄, 1, 2)− 1

6
=

(

dc

uc

)i

(2.2)

Li
L = (1, 2, 1)− 1

2
=

(

ν

e

)i

(2.3)

Li
R = (1, 1, 2) 1

2
=

(

ec

νc

)i

(2.4)

h = (1, 2, 2)0 =
(

hu+ hd0
hu0 hd−

)

(2.5)

where hd and hu are the two low energy supersymmetric superfields associated with
the Minimal Supersymmetric Standard Model. The breaking of SU(2)R could be
achieved with the VEV of h. However, this will result with too light W±

R gauge
boson masses. Additional fields that can be used to break SU(2)R must therefore
be postulated. The simplest set would consist of two fields H +H transforming as
(1, 1, 2)− 1

2
+(1, 1, 2̄) 1

2
. When H and H acquire VEVs along their neutral components

SU(2)R×U(1)B−L is broken to the Standard Model weak–hypercharge, U(1)Y . With
this symmetry breaking pattern the bi–doublet Higgs field may split into the two
Higgs doublet hu and hd of the MSSM.

The LRS string models can also contain Higgs fields that transform as (3, 1, 1) and
(3̄, 1, 1), which originate from the vectorial 10 representation of SO(10). These color
triplets mediate proton decay through dimension five operators, and consequently
must be sufficiently heavy to insure agreement with the proton lifetime. An important
advantage of the LRS breaking pattern, with SO(10) → SO(6) × SO(4) at the
string construction level, is that these color triplets may be projected out by the
GSO projections, and therefore need not be present in the low energy spectrum. In
the PS models, however, the Higgs representations that induce SU(4) × SU(2)R →
SU(3)C × U(1)Y contain Higgs triplet representations. In the supersymmetric PS
models the color triplets in the vectorial representation (6, 1, 1) are used to give large
mass to the Higgs color triplets, by the superpotential terms λ2HHD+λ3H̄H̄D̄, when
the fields H and H̄ develop a large VEV of the order of the GUT scale. Therefore, the
stringy doublet–triplet splitting mechanism is useful only in models with SU(3)C ×
SU(2)L ×U(1)2, or SU(3)C ×SU(2)L ×SU(2)R ×U(1)B−L, as the SO(10) subgroup
which remains unbroken by the GSO projections.

The LRS models should also contain four additional singlet fields φ0 and φi=1,2,3.
φ0 acquires a VEV of the order of the electroweak scale which induces the electroweak
Higgs doublet mixing, while φi are used to construct an extended see–saw mechanism
which generate left–right Majorana masses for the left–handed neutrinos. The tree
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level superpotential of the model is given by:

W = λ1ijQ
i
LQ

j
Rh+ λ2ijL

i
LL

j
Rh + λ3ijL

i
RH̄φ

j + λ4hhφ0 + λ5Φ
3 (2.6)

where Φ = {φi, φ0}. The superpotential in eq. (2.6) leads to the neutrino mass matrix






0 mij
u 0

mji
u 0 〈H̄〉
0 〈H̄〉 〈φ0〉





 (2.7)

whose diagonalization gives three light neutrinos with masses of the order
〈φ0〉(m

ij
u /〈H̄〉)2 and gives heavy mass, of order 〈H̄〉, to the right–handed neutrinos.

Below the scale of SU(2)R breaking the left–right symmetric models should re-
produce the spectrum and couplings of the MSSM. As our interest here is primarily
in the string construction of left–right symmetric models we do not enter into the
field theory details, which have been amply studied in the literature [8]. There is
one important issue, however, that deserves mention. As seen from eq. (2.6) in the
left–right symmetric models both up–quark and down–quark masses arise from the
coupling to the Higgs bi–doublet. This introduces the danger of inducing Flavor
Changing Neutral Currents (FCNC) at an unacceptable rate. A possible solution
is to use two bi–doublet Higgs representations, one of which is used to give masses
to the up–type quarks, while the second is used to give masses to the down–type
quarks. This, however, introduces a bi–doublet splitting problem. Namely, we must
insure that one Higgs multiplet remains light to give mass to the up– or down–type
quarks, while the second Higgs multiplet in the respective bi–doublet becomes suf-
ficiently heavy so as to avoid problems with FCNC. Arguably, this can be achieved
in a field theory setting. However, the bi–doublet splitting mechanisms that have
been discussed in the literature [13] utilize SU(2) triplet representations that are, in
general, not present in the free fermionic string models. Therefore, whether or not
bi–doublet splitting can be achieved in the left–right symmetric string models is an
open question, which we will not address in this paper.

We emphasize that our intent here is not to construct a fully realistic left–
right symmetric model, but merely to study the structure of free fermionic string
models with this choice of the SO(10) subgroup. In this respect we note that
the bi–doublet splitting problem introduces further motivation for the choice of
SU(3)×SU(2)×U(1)2 as the SO(10) subgroup which remains unbroken after applica-
tion of the string GSO projections. Thus, while the doublet–triplet splitting problem
does not distinguish between the PS string model (SO(10) → SO(6) × SO(4)), or
LRS string model (SO(10) → SU(3) × SU(2)2 × U(1)), and the SLM string model
(SO(10) → SU(3) × SU(2) × U(1)2), the bi–doublet splitting problem favors the
later choice. The SLM string models provide a stringy solution both to the doublet–
triplet splitting problem, as well as the bi–doublet splitting problem. In this respect
it should also be noted that the choice of SU(4)C×SU(2)L×U(1)T3R

as the unbroken
SO(10) subgroup also achieves these two tasks. Study of this case is left for future
work.
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3 Left–right symmetric free fermionic models

A model in the free fermionic formulation [14] is constructed by choosing a con-
sistent set of boundary condition basis vectors. The basis vectors, bk, span a finite
additive group Ξ =

∑

k nkbk where nk = 0, · · · , Nzk − 1. The physical massless states
in the Hilbert space of a given sector α ∈ Ξ, are obtained by acting on the vac-
uum with bosonic and fermionic operators and by applying the generalized GSO
projections. The U(1) charges, Q(f), for the unbroken Cartan generators of the four
dimensional gauge group are in one to one correspondence with the U(1) currents
f ∗f for each complex fermion f, and are given by:

Q(f) =
1

2
α(f) + F (f), (3.1)

where α(f) is the boundary condition of the world–sheet fermion f in the sector α,
and Fα(f) is a fermion number operator counting each mode of f once (and if f is
complex, f ∗ minus once). For periodic fermions, α(f) = 1, the vacuum is a spinor
representation of the Clifford algebra of the corresponding zero modes. For each
periodic complex fermion f there are two degenerate vacua |+〉, |−〉 , annihilated by
the zero modes f0 and f0

∗ and with fermion numbers F (f) = 0,−1, respectively.
The realistic models in the free fermionic formulation are generated by a basis of

boundary condition vectors for all world–sheet fermions [2, 5, 6, 7, 15, 16]. The basis
is constructed in two stages. The first stage consists of the NAHE set [3, 7], which
is a set of five boundary condition basis vectors, {1,S,b1,b2,b3}. The gauge group
after the NAHE set is SO(10)×SO(6)3×E8 with N = 1 space–time supersymmetry.
The vector S is the supersymmetry generator and the superpartners of the states
from a given sector α are obtained from the sector S + α. The space–time vector
bosons that generate the gauge group arise from the Neveu–Schwarz (NS) sector and
from the sector ζ ≡ 1 + b1 + b2 + b3. The NS sector produces the generators of
SO(10)× SO(6)3 × SO(16). The sector ζ produces the spinorial 128 of SO(16) and
completes the hidden gauge group to E8. The vectors b1, b2 and b3 produce 48
spinorial 16’s of SO(10), sixteen from each sector b1, b2 and b3. The vacuum of
these sectors contains eight periodic worldsheet fermions, five of which produce the
charges under the SO(10) group, while the remaining three periodic fermions generate
charges with respect to the flavor symmetries. Each of the sectors b1, b2 and b3 is
charged with respect to a different set of flavor quantum numbers, SO(6)1,2,3.

The NAHE set divides the 44 right–moving and 20 left–moving real internal
fermions in the following way: ψ̄1,···,5 are complex and produce the observable SO(10)
symmetry; φ̄1,···,8 are complex and produce the hidden E8 gauge group; {η̄1, ȳ3,···,6},
{η̄2, ȳ1,2, ω̄5,6}, {η̄3, ω̄1,···,4} give rise to the three horizontal SO(6) symmetries. The
left–moving {y, ω} states are also divided into the sets {y3,···,6}, {y1,2, ω5,6}, {ω1,···,4}.
The left–moving χ12, χ34, χ56 states carry the supersymmetry charges. Each sector b1,
b2 and b3 carries periodic boundary conditions under (ψµ|ψ̄1,···,5) and one of the three
groups: (χ12, {y

3,···,6|ȳ3,···6}, η̄1), (χ34, {y
1,2, ω5,6|ȳ1,2ω̄5,6}, η̄2), (χ56, {ω

1,···,4|ω̄1,···4}, η̄3).
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The second stage of the basis construction consist of adding three additional basis
vectors to the NAHE set. Three additional vectors are needed to reduce the number
of generations to three, one from each sector b1, b2 and b3. One specific example
is given in Table (4.1). The choice of boundary conditions to the set of real internal
fermions {y, ω|ȳ, ω̄}1,···,6 determines the low energy properties, such as the number of
generations, Higgs doublet–triplet splitting and Yukawa couplings.

The SO(10) gauge group is broken to one of its subgroups SU(5)×U(1), SO(6)×
SO(4) or SU(3) × SU(2) × U(1)2 by the assignment of boundary conditions to the
set ψ̄1···5

1
2

:

1. b{ψ̄1···5
1
2

} = {1
2
1
2
1
2
1
2
1
2
} ⇒ SU(5)× U(1),

2. b{ψ̄1···5
1
2

} = {11100} ⇒ SO(6)× SO(4).

To break the SO(10) symmetry to SU(3)C × SU(2)L × U(1)C × U(1)L
∗ both

steps, 1 and 2, are used, in two separate basis vectors. Similarly, the breaking pat-
tern SO(10) → SU(3)C × SU(2)L × SU(2)R × U(1)B−L is achieved by the following
assignment in two separate basis vectors

1. b{ψ̄1···5
1
2

} = {11100} ⇒ SO(6)× SO(4),

2. b{ψ̄1···5
1
2

} = {1
2
1
2
1
2
00} ⇒ SU(3)C × U(1)C × SU(2)L × SU(2)R.

We comment here that a recurring feature of some of the three generation free
fermionic heterotic string models is the emergence of a combination of the basis
vectors which extend the NAHE set,

X = nαα + nββ + nγγ (3.2)

for which XL ·XL = 0 and XR ·XR 6= 0. Such a combination may produce additional
space–time vector bosons, depending on the choice of GSO phases. These additional
space–time vector bosons enhance the four dimensional gauge group. This situation
is similar to the presence of the combination of the NAHE set basis vectors 1 +
b1 + b2 + b3, which enhances the hidden gauge group, at the level of the NAHE
set, from SO(16) to E8. As we discuss below, we often find, although not always,
that either the SU(3)C or the U(1)C symmetry is enhanced to SU(4)C or SU(2)C ,
respectively. Therefore, we will present models with and without gauge symmetry
enhancement. In the free fermionic models this type of gauge symmetry enhancement
in the observable sector is, in general, family universal and is intimately related to
the ZZ2 × ZZ2 orbifold structure which underlies the realistic free fermionic models.
Such enhanced symmetries were shown to forbid proton decay mediating operators
to all orders of nonrenormalizable terms [16].

∗U(1)C = 3

2
U(1)B−L;U(1)L = 2U(1)T3R

.
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4 Left–right symmetric models without enhanced symmetry

As our first example of a left–right symmetric free fermionic heterotic string model
we consider Model 1, specified below. The boundary conditions of the three basis
vectors which extend the NAHE set are shown in Table (4.1). Also given in Table
(4.1) are the pairings of left– and right–moving real fermions from the set {y, ω|ȳ, ω̄}.
These fermions are paired to form either complex, left– or right–moving, fermions, or
Ising model operators, which combine a real left–moving fermion with a real right–
moving fermion. The generalized GSO coefficients determining the physical massless
states of Model 1 appear in matrix (4.2).

LRS Model 1 Boundary Conditions:

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 1 1 0 0
γ 0 0 0 0 1

2
1
2

1
2
0 0 1

2
1
2

1
2

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 0 0 0 0 0 1 1 0 0 1 1
β 0 0 1 1 1 0 0 0 0 1 0 1
γ 0 0 1 0 1 0 0 1 0 1 0 0

(4.1)

LRS Model 1 Generalized GSO Coefficients:









































1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i
S 1 1 1 1 1 −1 −1 −1

b1 −1 −1 −1 −1 −1 −1 −1 1
b2 −1 −1 −1 −1 −1 −1 −1 1
b3 −1 −1 −1 −1 −1 −1 1 1

α 1 −1 1 −1 −1 −1 1 i
β 1 −1 −1 1 1 −1 −1 i
γ 1 −1 −1 −1 −1 −1 1 1









































(4.2)

In matrix (4.2) only the entries above the diagonal are independent and those
below and on the diagonal are fixed by the modular invariance constraints. Blank
lines are inserted to emphasize the division of the free phases between the different
sectors of the realistic free fermionic models. Thus, the first two lines involve only the
GSO phases of c

(

{1,S}
ai

)

. The set {1,S} generates the N = 4 model with S being the

8



space–time supersymmetry generator and therefore the phases c
(

S

ai

)

are those that
control the space–time supersymmetry in the superstring models. Similarly, in the
free fermionic models, sectors with periodic and anti–periodic boundary conditions,
of the form of bi, produce the chiral generations. The phases c

(

bi

bj

)

determine the

chirality of the states from these sectors.
In the free fermionic models the basis vectors bi are those that respect the SO(10)

symmetry while the vectors denoted by Greek letters are those that break the SO(10)
symmetry. As the Standard Model matter states arise from sectors which preserve
the SO(10) symmetry, the phases that fix the Standard Model charges are, in general,

the phases c
(

bi

ai

)

. On the other hand, the basis vectors of the form {α, β, γ} break

the SO(10) symmetry. The phases associated with these basis vectors are associated
with exotic physics, beyond the Standard Model. These phases, therefore, also affect
the final four dimensional gauge symmetry.

The final gauge group in Model 1 arises as follows: In the observable sector the
NS boundary conditions produce gauge group generators for

SU(3)C × SU(2)L × SU(2)R × U(1)C × U(1)1,2,3 × U(1)4,5,6 (4.3)

Thus, the SO(10) symmetry is broken to SU(3) × SU(2)L × SU(2)R × U(1)C , as
discussed above, where,

U(1)C = TrU(3)C ⇒ QC =
3
∑

i=1

Q(ψ̄i). (4.4)

The flavor SO(6)3 symmetries are broken to U(1)3+n with (n = 0, · · · , 6). The first
three, denoted by U(1)j (j = 1, 2, 3), arise from the world–sheet currents η̄j η̄j

∗

. These
three U(1) symmetries are present in all the three generation free fermionic models
which use the NAHE set. Additional horizontal U(1) symmetries, denoted by U(1)j
(j = 4, 5, ...), arise by pairing two real fermions from the sets {ȳ3,···,6}, {ȳ1,2, ω̄5,6},
and {ω̄1,···,4}. The final observable gauge group depends on the number of such
pairings. In this model there are the pairings, ȳ3ȳ6, ȳ1ω̄5 and ω̄2ω̄4, which generate
three additional U(1) symmetries, denoted by U(1)4,5,6

†.
In the hidden sector the NS boundary conditions produce the generators of

SU(2)1 × U(1)H1
× SU(2)2 × U(1)H2

× U(1)7,8,9,10 (4.5)

where SU(2)1 and SU(2)2 arise from the complex world–sheet fermions {φ̄3, φ̄4} and
{φ̄5, φ̄6}, respectively; and U(1)H1

and U(1)H2
correspond to the combinations of

†It is important to note that the existence of these three additional U(1) currents is correlated
with a superstringy doublet–triplet splitting mechanism [17]. Due to these extra U(1) symmetries
the color triplets from the NS sector are projected out of the spectrum by the GSO projections
while the electroweak doublets remain in the light spectrum.
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world–sheet charges

QH1
= Q(φ̄1)−Q(φ̄2) +

7
∑

i=5

Q(φ̄)i −Q(φ̄)8, (4.6)

QH2
=

4
∑

i=1

Q(φ̄)i −Q(φ̄7)−Q(φ̄)8. (4.7)

The charges under the remaining four orthogonal U(1) combinations are given by

Q7 = Q(φ̄1) +Q(φ̄8),

Q8 = Q(φ̄2) +Q(φ̄7),

Q9 = Q(φ̄1)−Q(φ̄3)−Q(φ̄4)−Q(φ̄5)−Q(φ̄6)−Q(φ̄8),

Q10 = Q(φ̄2)−Q(φ̄3)−Q(φ̄4) +Q(φ̄5) +Q(φ̄6)−Q(φ̄7). (4.8)

The sector ζ ≡ 1+b1+b2+b3 produces the representations (2, 1)±4,0 and (1, 2)0,±4 of
SU(2)H1

×U(1)H1
and SU(2)H2

×U(1)H2
, raising the symmetry to SU(3)H1

×SU(3)H2
.

Thus, the hidden E8 symmetry is broken to SU(3)H1
× SU(3)H2

× U(1)7,8,9,10.
In addition to the graviton, dilaton, antisymmetric sector and spin–1 gauge

bosons, the NS sector gives two pairs of electroweak doublets, transforming as
(1,2,2,0) under SU(3)C × SU(2)L × SU(2)R × U(1)C ; three pairs of SO(10) singlets
with U(1)1,2,3 charges; and three singlets of the entire four dimensional gauge group.
The states from the sectors bj (j = 1, 2, 3) produce the three light generations. These
states and their decomposition under the entire gauge group are shown in Table 1 in
Appendix A. The remaining massless states and their quantum numbers also appear
in Table 1.

4.1 Model 1 Superpotential

We now turn to the superpotential of the model. The cubic level and higher order
terms in the superpotential are obtained by calculating the correlators between the
vertex operators. The non–vanishing terms must be invariant under all the symme-
tries of the string models and must satisfy all the string selection rules [18]. The full
superpotential has been analyzed up to order N = 6. Below we give the cubic and
quartic order terms and the quintic order terms are given in Appendix B. We divide
the superpotential terms into four sets. Terms in the first set contain the states that
transform nontrivialy under the Standard Model gauge group. Terms in the second
set contain only states that are singlets of all non–Abelian groups. Terms in the
third set contain states that transform nontrivialy under the unbroken hidden E8

non–Abelian subgroup, while terms in the fourth set contain both Standard Model
and Hidden Sector states. We indicate when no terms of a given type are found at a
specific order.
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W3(observable):

h1h2Φ3 +h1QL1
QR1

+h1LL1
LR1

+h1L
+
L23

L−
R23

+h1L
−
L23

L+
R23

+h1L
+
L1
L−

R1

+h1L
−
L1
L+

R1
+h2QL2

QR2
+h2LL2

LR2
+h2L

+
L13

L−
R13

+h2L
−
L13

L+
R13

+h2L
+
L2
L−

R2

+h2L
−
L2
L+

R2
+QL3

D̄αβL
−
L3

+QR3
DαβL

+
R3

+LL1
L+

L1
φ̄5 +LL2

L+
L2
φ̄6 +LL3

L+
L3
φ̄7

+LR1
L−

R1
φ5 +LR2

L−
R2
φ6 +LR3

L−
R3
φ7 +L−

L13
L−

L2
φ̄9 +L+

L23
L−

L1
φ̄8 +L+

R13
L+

R2
φ9

+L−
R23

L+
R1
φ8

(4.9)

W3(singlets):

Φ3φ1φ̄1 +Φ3φ2φ̄2 +Φ3φ3φ̄3 +Φ3φ4φ̄4 +Φ3φ10φ̄10 +Φ3φ11φ̄11

+Φ12Φ̄13Φ23 +Φ12φ1φ4 +Φ12φ2φ3 +Φ12φ6φ̄5 +Φ̄12Φ13Φ̄23 +Φ̄12φ̄1φ̄4

+Φ̄12φ̄2φ̄3 +Φ̄12φ̄6φ5 +Φ13φ7φ̄5 +Φ̄13φ̄7φ5 +Φ23φ7φ̄6 +Φ̄23φ̄7φ6

(4.10)

W3(hidden):

Φ3H1H̄1 +Φ3H2H̄2 (4.11)

W4(observable):

QL1
QL3

QR1
QR3

+QL1
QR1

LL3
LR3

+QL1
QR1

L+
L12

L−
R12

+QL1
QR1

L−
L12

L+
R12

+QL1
QR1

L+
L3
L−

R3

+QL1
QR1

L−
L3
L+

R3
+QL1

QR2
L+

L13
L−

R23
+QL1

QR2
L−

L13
L+

R23
+QL1

QR3
L+

L12
L−

R23
+QL2

QL3
QR2

QR3

+QL2
QR1

L+
L23

L−
R13

+QL2
QR1

L−
L23

L+
R13

+QL2
QR2

LL3
LR3

+QL2
QR2

L+
L12

L−
R12

+QL2
QR2

L−
L12

L+
R12

+QL2
QR2

L+
L3
L−

R3
+QL2

QR2
L−

L3
L+

R3
+QL2

QR3
L−

L12
L+

R13
+QL3

QR1
L+

L23
L−

R12
+QL3

QR2
L−

L13
L+

R12

+QL3
QR3

LL1
LR1

+QL3
QR3

LL2
LR2

+QL3
QR3

L+
L13

L−
R13

+QL3
QR3

L−
L13

L+
R13

+QL3
QR3

L+
L23

L−
R23

+QL3
QR3

L−
L23

L+
R23

+QL3
QR3

L+
L1
L−

R1
+QL3

QR3
L−

L1
L+

R1
+QL3

QR3
L+

L2
L−

R2
+QL3

QR3
L−

L2
L+

R2

+LL1
LL3

LR1
LR3

+LL1
LR1

L+
L12

L−
R12

+LL1
LR1

L−
L12

L+
R12

+LL1
LR1

L+
L3
L−

R3
+LL1

LR1
L−

L3
L+

R3

+LL1
L−

L23
φ1φ11 +LL1

L−
L23
φ2φ10 +LL2

LL3
LR2

LR3
+LL2

LR2
L+

L12
L−

R12
+LL2

LR2
L−

L12
L+

R12

+LL2
LR2

L+
L3
L−

R3
+LL2

LR2
L−

L3
L+

R3
+LL2

L+
L13
φ̄1φ10 +LL2

L+
L13
φ̄2φ11 +LL3

LR3
L+

L13
L−

R13

+LL3
LR3

L−
L13

L+
R13

+LL3
LR3

L+
L23

L−
R23

+LL3
LR3

L−
L23

L+
R23

+LL3
LR3

L+
L1
L−

R1
+LL3

LR3
L−

L1
L+

R1

+LL3
LR3

L+
L2
L−

R2
+LL3

LR3
L−

L2
L+

R2
+LR1

L+
R23
φ̄1φ̄11 +LR1

L+
R23
φ̄2φ̄10 +LR2

L−
R13
φ1φ̄10

+LR2
L−

R13
φ2φ̄11 +L+

L12
L+

L13
L−

R12
L−

R13
+L+

L12
L−

L13
L−

R12
L+

R13
+L+

L12
L+

L23
L−

R12
L−

R23
+L+

L12
L−

L23
L−

R12
L+

R23

+L+
L12

L+
L1
L−

R12
L−

R1
+L+

L12
L−

L1
L−

R12
L+

R1
+L+

L12
L+

L2
L−

R12
L−

R2
+L+

L12
L+

L2
L−

R13
L−

R3
+L+

L12
L−

L2
L−

R12
L+

R2

+L−
L12

L+
L13

L+
R12

L−
R13

+L−
L12

L−
L13

L+
R12

L+
R13

+L−
L12

L+
L23

L+
R12

L−
R23

+L−
L12

L−
L23

L+
R12

L+
R23

+L−
L12

L+
L1
L+

R12
L−

R1

+L−
L12

L+
L1
L+

R23
L−

R3
+L−

L12
L−

L1
L+

R12
L+

R1
+L−

L12
L+

L2
L+

R12
L−

R2
+L−

L12
L−

L2
L+

R12
L+

R2
+L+

L13
L+

L1
L−

R23
L−

R2

+L+
L13

L+
L3
L−

R12
L−

R2
+L+

L13
L+

L3
L−

R13
L−

R3
+L+

L13
L−

L3
L−

R13
L+

R3
+L−

L13
L+

L1
L+

R23
L−

R2
+L−

L13
L+

L3
L+

R13
L−

R3

+L−
L13

L−
L3
L+

R13
L+

R3
+L+

L23
L+

L2
L−

R13
L−

R1
+L+

L23
L+

L3
L−

R23
L−

R3
+L+

L23
L−

L3
L−

R23
L+

R3
+L−

L23
L+

L2
L+

R13
L−

R1

+L−
L23

L+
L3
L+

R12
L−

R1
+L−

L23
L+

L3
L+

R23
L−

R3
+L−

L23
L−

L3
L+

R23
L+

R3
+L+

L1
L+

L3
L−

R1
L−

R3
+L+

L1
L−

L3
L−

R1
L+

R3

+L−
L1
L+

L3
L+

R1
L−

R3
+L−

L1
L−

L3
L+

R1
L+

R3
+L+

L2
L+

L3
L−

R2
L−

R3
+L+

L2
L−

L3
L−

R2
L+

R3
+L−

L2
L+

L3
L+

R2
L−

R3

+L−
L2
L−

L3
L+

R2
L+

R3

(4.12)

W4(singlets), W4(mixed), W4(hidden): none
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5 Models with enhanced non–Abelian symmetries

We next turn to our second example, Model 2. The boundary condition basis
vectors and one–loop phases, which define the model, are given in Table (5.1) and
matrix (5.2), respectively.

LRS Model 2 Boundary Conditions:

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2
0 0 1

2
1
2

1
2

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 0 0 0 0 0 1 1 0 0 1 1
β 0 0 1 1 1 0 0 0 0 1 0 1
γ 0 0 1 0 1 0 0 1 0 1 0 0

(5.1)

LRS Model 2 Generalized GSO Coefficients:









































1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i
S 1 1 1 1 1 −1 −1 −1

b1 −1 −1 −1 −1 −1 −1 −1 1
b2 −1 −1 −1 −1 −1 −1 −1 1
b3 −1 −1 −1 −1 −1 −1 −1 1

α 1 −1 1 −1 −1 −1 1 i
β 1 −1 −1 1 −1 1 −1 i
γ 1 −1 −1 −1 −1 −1 1 1









































(5.2)

Model 2, defined by Table (5.1) and matrix (5.2), differs from Model 1 only in
the boundary conditions of the hidden sector world–sheet fermions {φ̄1,···,8} in the
basis vectors β and γ, and in the GSO phases beyond the NAHE ones. In the
basis vector β the alterations are βφ̄3,4 = 0 → 1; βφ̄5,6 = 1 → 0 and in γ they
are γφ̄1 = 1 → 1

2
; γφ̄4 = 1

2
→ 1. While the spectrum arising from the NAHE set

remains essentially unaltered, the spectrum arising from the basis vectors beyond the
NAHE set is substantially modified. Hence some phenomenological features of the
two models are significantly modified.

The total gauge group of Model 2 arises as follows. In the observable sector the NS
boundary conditions produce the generators of (SU(3)C×U(1)C×SU(2)L×SU(2)R ∈
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SO(10))×U(1)1,2,3×U(1)4,5,6, while in the hidden sector the NS boundary conditions
produce the generators of

SU(3)H1
× U(1)H1

× U(1)7 × SU(3)H2
× U(1)H2

× U(1)8 . (5.3)

U(1)H1
and U(1)H2

correspond to the combinations of the world–sheet charges

QH1
= Q(φ̄1)−Q(φ̄2)−Q(φ̄3) +

7
∑

i=4

Q(φ̄)i −Q(φ̄)8, (5.4)

QH2
=

4
∑

i=1

Q(φ̄)i −Q(φ̄7)−Q(φ̄)8. (5.5)

and U(1)7,8 arise from the world–sheet currents φ̄4φ̄4∗ and φ̄8φ̄8∗ , respectively. The
sector ζ ≡ 1 + b1 + b2 + b3 produces the representations (3, 1)−5,0 ⊕ (3̄, 1)5,0 and
(1, 3)0,−5 ⊕ (1, 3̄)0,5 of SU(3)H1

× U(1)H1
and SU(3)H2

× U(1)H2
. Thus, the E8 sym-

metry reduces to SU(4)H1
×SU(4)H2

×U(1)2. The additional U(1)’s in SU(4)H1,2
are

given by the combinations in eqs. (5.4) and (5.5), respectively. The remaining U(1)
symmetries in the hidden sector, U(1)7′ and U(1)8′ , correspond to the combination
of world–sheet charges

Q7′ = Q(φ̄4) +Q(φ̄8), (5.6)

Q8′ = −
3
∑

i=1

Q(φ̄)i +Q(φ̄4)−
7
∑

i=5

Q(φ̄)i −Q(φ̄)8. (5.7)

Model 2 contains two combinations of non–NAHE basis vectors with XL ·XL = 0,
which therefore may give rise to additional space–time vector bosons. The first is
the vector combination β ± γ. The second combination is given by ζ + 2γ, where
ζ ≡ 1+b1+b2+b3. The presence of the first combination depends on the assignment
of periodic boundary conditions in the basis vectors α, β and γ, which extend the
NAHE set and is therefore model dependent. The second combination, however,
arises only from the NAHE set basis vectors plus 2γ and is therefore independent
of the assignment of periodic boundary conditions in the basis vectors α, β and γ.
This vector combination is therefore generic for the pattern of symmetry breaking
SO(10) → SU(3)C × U(1)C × SU(2)L × SU(2)R, in NAHE based models.

In Model 2 all the space–time vector bosons from the sector β±γ are projected out
by the GSO projections and therefore give no gauge enhancement. The sector ζ+2γ,
however, gives rise to two additional space–time vector bosons which are charged
with respect to the world–sheet U(1) currents. This enhances one of the world–sheet
U(1) combinations to SU(2)cust. The relevant combination of world–sheet charges is
given by

QSU(2)C = QC + (Qη1 +Qη2 +Qη3)−Q7′ . (5.8)
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The remaining orthogonal U(1) combinations are

Q1′ = Q1 −Q2,

Q2′ = Q1 +Q2 − 2Q3,

Q3′ = −QC +Q1 +Q2 + Q3 +Q8′ ,

Q7′′ = QC +Q1 +Q2 +Q3 + 3Q7′ ,

Q8′′ = −4QC + 4(Q1 +Q2 +Q3)− 3Q8′ . (5.9)

and Q4,5,6 are unchanged. Thus, the full massless spectrum transforms under the
final gauge group, SU(3)C ×SU(2)L ×SU(2)R ×SU(2)cust ×U(1)1′,2′,3′ ×U(1)4,5,6 ×
SU(4)H1

× SU(4)H2
× U(1)7′′,8′′.

In addition to the graviton, dilaton, antisymmetric sector and spin–1 gauge
bosons, the NS sector gives two pairs of electroweak doublets, transforming as
(1,2,2,1) under SU(3)C×SU(2)L×SU(2)R×SU(2)cust; three pairs of SO(10) singlets
with U(1)1,2,3 charges; and three singlets of the entire four dimensional gauge group.
The sector S+ b1 + b2 + α+ β produces one pair of SU(2)cust doublets that can be
used to break the SU(2)cust symmetry, and three pairs of non–Abelian singlets with
U(1)1,2,3 charges.

The states from the sectors bj ⊕ ζ + 2γ (j = 1, 2, 3) produce the three light
generations. The states from these sectors and their decomposition under the entire
gauge group are shown in Table 2. The leptons (and quarks) are singlets of the color
SU(4)H1,H2

gauge groups and the U(1)7′′ symmetry of eq. (5.9) becomes a gauged
leptophobic symmetry. The remaining massless states and their quantum numbers
are also given in Table 2 in Appendix C. We also provide, in Appendix D, the Model
2 cubic through quintic order superpotential terms.

5.1 Definition of the weak–hypercharge

We now turn to the definition of the weak–hypercharge in this LRS model. Due to
the enhanced symmetry there are several possibilities to define a weak–hypercharge
combination which is still family universal and reproduces the correct charge assign-
ment for the Standard Model fermions. As we discuss below, this feature of the
free fermionic models with enhanced symmetry presents an interesting way to under-
stand how the Standard Model spectrum may still arise from SO(10) representation,
i.e. from the three 16’s of SO(10) which arise from the NAHE set, while the weak–
hypercharge does not possess the canonical SO(10) embedding. We remark that this
type of enhanced symmetry also plays a roll in forbidding operators which mediate
proton decay. We also note that LRS models without the canonical SO(10) embed-
ding of the weak–hypercharge have also been recently discussed in the framework of
Type I string constructions [19]. There it was argued that the non–canonical embed-
ding of the weak–hypercharge is advantageous for obtaining coupling unification in
that framework. In the heterotic string the natural unification scale is of course the
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GUT or the heterotic string scale, and therefore the natural embedding of the weak–
hypercharge is the canonical one. Nevertheless, as we stated above, the main aim of
our exercise here is to demonstrate how the Standard Model spectrum may still arise
from SO(10) representations while the normalization of the weak–hypercharge (and
consequently the Weinberg angle at the unification scale) do not have the canonical
SO(10) value. The usefulness of this result to string models with a lower unification
scale will then depend on improved understanding of the duality relation between
the various models and the properties which are maintained in an extrapolation from
weak to strong coupling. That is, one can imagine that a property of the type we
describe here will have its correspondence also in the dual Type I models.

One option is to define the weak–hypercharge with the standard SO(10) embed-
ding, as in eq. (5.10),

U(1)Y =
1

3
U(1)C +

1

2
U(1)L . (5.10)

This is identical to the weak–hypercharge definition in SU(3) × SU(2) × U(1)Y
free fermionic models, which do not have enhanced symmetries. However, in the
present model, the U(1)C symmetry is now part of the extended custodial symmetry
SU(2)cust. Expressing U(1)C in terms of the new linear combinations defined above,
we have

1

3
U(1)C =

1

6

{

1

4
(3T 3

cust + U7′′)−
1

7
(3U3′ + U8′′)

}

. (5.11)

Thus U(1)Y , by depending on T 3
cust, is no longer orthogonal to SU(2)cust. We must

therefore instead define the new linear combination with this term removed,

U(1)Y ′ ≡ U(1)Y −
1

2
T 3

=
1

2
U(1)L +

5

24
U(1)C

−
1

8

[

U(1)1 + U(1)2 + U(1)3 − U(1)7 − U(1)9

]

, (5.12)

so that the weak–hypercharge is expressed in terms of U(1)Y ′ as

U(1)Y = U(1)Y ′ +
1

2
T 3
cust =⇒ Qe.m. = T 3

L + Y = T 3
L + Y ′ +

1

2
T 3
cust . (5.13)

The final observable gauge group then takes the form

SU(3)C × SU(2)L × SU(2)R × SU(2)cust × U(1)Y ′ ×
{

seven other U(1) factors
}

.

(5.14)
The remaining seven U(1) factors must be chosen as linear combinations of the pre-
vious U(1) factors so as to be orthogonal to the each of the other factors in (5.14).
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Next we discuss the Kač–Moody factors associated with the U(1) factors in this
model. In this class of string models, the Kač–Moody level of the non–Abelian group
factor is always one. The situation is somewhat more complicated for the U(1) factors,
however. In general, a given U(1) current U will be a combination of the simple
worldsheet U(1) currents Uf ≡ f ∗f corresponding to individual worldsheet fermions
f , and will take the form U =

∑

f afUf where the af are certain model–specific
coefficients. The Uf are each individually normalized to one, so that 〈Uf , Uf〉 = 1.
To produce the correct conformal dimension for the massless states, each of the U(1)
linear combinations U must also be normalized to one. The proper normalization
coefficient for the linear combination U is thus given by N = (

∑

f a
2
f)

−1/2, so that the

properly normalized U(1) current Û is given by Û = N · U .
Now in general, the Kač–Moody level of the U(1)Y generator can be deduced from

the OPE’s between two of the U(1) currents, and will be

k1 = 2N−2 = 2
∑

f

a2f . (5.15)

For a weak–hypercharge that is a combination of several U(1)’s with different nor-
malizations, the result (5.15) generalizes to

k1 =
∑

i

a2i ki (5.16)

where the ki are the individual normalizations for each of the U(1)’s.
In Model 1, the U(1)Y generator is given as a combination of simple worldsheet

currents that produces the correct weak–hypercharges for the Standard Model par-
ticles. Thus, in that case, k1 is simply given by (5.15). However, for the weak–
hypercharges (5.12) and (5.13) that appear in Model 2 we instead use (5.16). Hence,
for this weak–hypercharge, we see from (5.13) and (5.16) that k1 = (1/4)k2C + kY ′ =
1/4 + 17/12 = 5/3, which is the same as the standard SO(10) normalization.

Alternatively, we can define the weak–hypercharge to be the combination

U(1)Y =
1

2
U(1)L −

1

6
U(1)3′ +

1

6
U7′′ (5.17)

where U(1)3′ and U(1)7′′ are given in (5.9). This combination still reproduces the cor-
rect charge assignment for the Standard Model states. In this case the Kač–Moody
levels of U(1)L, U(1)3′ and U(1)7′′ are 4, 28 and 48 respectively, so that kY = 28/9.
Therefore, the Weinberg angle at the unification scale is sin2 θW = 0.243. Naturally,
the point that we want to raise is not that the present model with this value of sin2 θW
provides a realistic unified model. Rather, we make the following interesting observa-
tion: The three Standard Model generations still arise from SO(10) representations.
Specifically, the Standard Model three generations all arise from the three 16 repre-
sentations of SO(10) of the NAHE set basis vectors. However, the weak–hypercharge
does not possess the standard SO(10) embedding and consequently, sin2 θW 6= 3/8 at

16



the unification scale. Of course, it will be of further interest to see if such a structure
can also emerge from Type I string constructions which actually allow for a lower
unification scale. The results of ref. [19], which show that some of the structure of
compactifying the heterotic string on a particular orbifold, is actually preserved also
in the Type I models, give rise to the suspicion that this may indeed be the case.

6 Anomalous U(1)

A general property of the realistic free fermionic heterotic string models, which
is also shared by many other superstring vacua, is the existence of an “anomalous”
U(1). The presence of an Abelian anomalous symmetry in superstring derived models
yields many desirable phenomenological consequences from the point of view of the
effective low energy field theory. Indeed, the existence of such an anomalous U(1)
symmetry in string derived models has inspired vigorous attempts to understand
numerous issues, relevant for the observable phenomenology, including: the fermion
mass spectrum, supersymmetry breaking cosmological implications, and more. From
the perspective of string phenomenology an important function of the anomalous
U(1) is to induce breaking and rank reduction of the four dimensional gauge group.
In general, the existence of an anomalous U(1) in a string model implies that the
string vacuum is unstable and must be shifted to a stable point in the moduli space.
This arises because, by the Green–Schwarz anomaly cancellation mechanism, the
anomalous U(1) gives rise to a Fayet–Iliopoulos term which breaks supersymmetry.
Supersymmetry is restored and the vacuum is stabilized by sliding the vacuum along
flat F and D directions. This is achieved by assigning non–vanishing VEVs to some
scalar fields in the massless string spectrum.

An important issue in string phenomenology is therefore to understand what are
the general conditions for the appearance of an anomalous U(1) and under what con-
ditions an anomalous U(1) is absent. The previously studied realistic free fermionic
string models, which include the FSU5, PS, and SLM types, have always contained
an anomalous U(1) symmetry. In contrast, in the two LRS models defined respec-
tively by (4.1,4.2) and (5.1,5.2) all the U(1) symmetries in the four dimensional gauge
group are anomaly free. This is, in fact, the first instance that realistic three gen-
eration (2,0) heterotic string models have produced models which do not contain an
anomalous U(1) symmetry. Irrespective of the potential phenomenological merit of
an anomalous U(1) symmetry, it is important to extract the properties of the models
that result in the presence, or the absence, of an anomalous U(1) symmetry.

For completeness we first discuss the case of the free fermionic models which
contain an anomalous U(1), i.e., the FSU5, the PS, and the SLM string models.
The question of the anomalous U(1) symmetry in string models, in general, and
in the free fermionic models, in particular, was studied in some detail in ref. [12].
The anomalous U(1) in the free fermionic models is in general a combination of
two distinct kinds of world–sheet U(1) currents, those generated by η̄j and those
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generated by the additional complexified fermions from the set {ȳ, ω̄}1,···,6. The trace
of the U(1) charges of the entire massless string spectrum can then be non–vanishing
under some of these world–sheet U(1) currents. One combination of these U(1)
currents then becomes the anomalous U(1), whereas all the orthogonal combinations
are anomaly free. To understand the origin of the anomalous U(1) in the realistic free
fermionic models, it is instructive to consider the contributions from the two types
of world–sheet U(1) currents separately.

In ref. [12] it was shown that the anomalous U(1) in the realistic free fermionic
models can be seen to arise due to the breaking of the world–sheet supersym-
metry from (2,2) to (2,0). Consider the set of boundary condition basis vectors
{1,S, ζ,X,b1,b2} [12], which produces (for an appropriate choice of the GSO phases)
the model with SO(12)×E6×U(1)

2×E8 gauge group. It was shown that if we choose
the GSO phases such that E6 → SO(10)× U(1), the U(1) in the decomposition of
E6 under SO(10) × U(1) becomes the anomalous U(1). This U(1) is produced by
the combination of world–sheet currents η̄1η̄1

∗

+ η̄2η̄2
∗

+ η̄3η̄3
∗

. We can view all of
the realistic FSU5, PS, and SLM free fermionic string models as being related to
this SO(12) × E6 × U(1)2 × E8 string vacuum. This combination of U(1) currents
therefore contributes to the anomalous U(1) in all the realistic free fermionic models
with FSU5, PS, or SLM gauge groups.

The existence of the anomalous U(1) in the FSU5, PS, or SLM, and its absence
in the LRS string models can be traced to different N = 4 string vacua in four
dimensions. While in the E6 model one starts with an N = 4 SO(12) × E8 × E8

string vacua, produced by the set {1,S,X, ζ} [12], we can view the FSU5, PS, and
SLM string models as starting from an N = 4 SO(12) × SO(16) × SO(16) string
vacua. In this case the two spinorial representations from the sectors X and ζ , that
complete the adjoint of SO(16)×SO(16) to E8×E8, are projected out by the choice
of the GSO projection phases. The subsequent projections, induced by the basis
vectors b1 and b2, which correspond to the ZZ2 × ZZ2 orbifold twistings, then operate
identically in the two models, producing in one case the E6, and in the second case
the SO(10)×U(1), gauge groups, respectively. The important point, however, is that
both cases preserve the “standard embedding” structure which splits the observable
and hidden sectors. The important set in this respect is the set {1,S,X, ζ}, where
X has periodic boundary conditions for {ψ̄1,···,5, η̄1, η̄2, η̄3}. The choice of the phase

c
(

X

ζ

)

= ±1 fixes the vacuum to E8 × E8 or SO(16)× SO(16).
In contrast, the LRS free fermionic string models do not start with the N = 4

E8 × E8 or SO(16)× SO(16) vacua. Rather, in this case the starting N = 4 vacua
can be seen to arise from the set of boundary condition basis vectors {1,S, 2γ,X}.
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Starting with this set and with the choice of GSO projection phases

















1 S X 2γ

1 1 1 −1 −1
S 1 1 −1 −1

X −1 −1 1 1
2γ −1 −1 −1 1

















, (6.1)

the resulting string vacua has N = 4 space–time supersymmetry with SO(16)×E7×
E7 gauge group. The sectors b1 and b2 are then added as in the previous models.
The LRS string models therefore do not preserve the “standard embedding” splitting
between the observable and hidden sectors. This is the first basic difference between
the FSU5, PS, or SLM, and the LRS free fermionic models.

Now turn to the case of the three generation models. The chirality of the gen-
erations from the sectors bj (j = 1, 2, 3) is induced by the projection which breaks
N = 2 → N = 1 space–time supersymmetry. Chirality for the generations is therefore
fixed by the GSO projection phase c

(

bi

bj

)

with i 6= j. On the other hand, generation

charges under U(1)j are fixed by the X projection in the E6 model, by the projection
induced by the vector 2γ of the FSU5, PS, and SLM string models, or by the vector
2γ of the LRS string models. The difference is that in the case of the FSU5, PS,
and SLM string models the 2γ projection fixes the same sign for the U(1)j charges
of the states from the sectors bj . In contrast, in the LRS free fermionic models the
corresponding 2γ projection fixes one sign for the (QR+LR)j states and the opposite
sign for the (QL + LL)j states. The consequence is that the total trace vanishes and
the sectors bj do not contribute to the trace of the U(1)j charges. This is in fact the
reason that LRS free fermionic models can appear without an anomalous U(1).

We stress that the existence of LRS free fermionic string models without an
anomalous U(1) does not preclude the possibility of other LRS models with an
anomalous U(1). Our Model 3, specified by Table (6.2) and matrix (6.3) provides a
counter–example.

LRS Model 3 Boundary Conditions:

ψµ χ12 χ34 χ56 ψ̄1,...,5 η̄1 η̄2 η̄3 φ̄1,...,8

α 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
β 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
γ 0 0 0 0 1

2
1
2

1
2
0 0 1

2
1
2

1
2

y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6 y1ω5 y2ȳ2 ω6ω̄6 ȳ1ω̄5 ω2ω4 ω1ω̄1 ω3ω̄3 ω̄2ω̄4

α 1 1 1 0 1 1 1 0 1 1 1 0
β 0 1 0 1 0 1 0 1 1 0 0 0
γ 0 0 1 1 1 0 0 0 0 1 0 1

(6.2)
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LRS Model 3 Generalized GSO Coefficients:









































1 S b1 b2 b3 α β γ

1 1 1 −1 −1 −1 1 1 i
S 1 1 1 1 1 −1 −1 −1

b1 −1 −1 −1 −1 −1 −1 −1 i
b2 −1 −1 −1 −1 −1 −1 −1 i
b3 −1 −1 −1 −1 −1 −1 1 i

α 1 −1 1 1 1 1 1 1
β 1 −1 −1 −1 1 −1 −1 −1
γ 1 −1 1 −1 1 −1 −1 1









































(6.3)

Similar to our Models 1 and 2, Model 3 uses the LRS breaking pattern. It also
contains three generations from the sectors b1, b2 and b3, and the untwisted spectrum
is similar to that of the previous two models. However, Model 3 actually contains
three anomalous U(1) symmetries: TrU4 = −24, TrU5 = −24, TrU6 = −24, one
combination of which,

U(1)A = U4 + U5 + U6, (6.4)

is anomalous, while two orthogonal combinations are anomaly free. In this model
we see that the anomalous U(1)’s correspond to U(1) symmetries which arise from
the additional complexified world–sheet fermions in the set {ȳ, ω̄}1,···,6. This is in
agreement with the above argument that the U(1)j=1,2,3, which are generated by the
η̄j world–sheet fermions, are anomaly free in the LRS free fermionic string models.
The potential implications for the flavor mass spectrum are of particular interest in
this regard.

To close the discussion on the anomalous U(1) in the the LRS string models
we remark that in ref. [12] the general conditions that forbid the appearance of
anomalous U(1) in string models were discussed. Theorem 3, part (b), of [12] allows
us to prove, without computing the trace of the charge TrQi, for each U(1)i, that
all of the Abelian gauge groups in a given model are anomaly free. Theorem 3 states
that:

A model is completely free of anomalous U(1) if, for each U(1)i, there is at least one
simple gauge group G for which (a) all non–trivial massless reps of G do not carry
U(1)i charge, or (b) the trace of Qi over all massless non–trivial reps of G is zero.

In Model 1 the only two non–trivial representations of the hidden sector SU(3)H1

gauge group is the vector–like pair of fields, H1 and H1. Thus, the trace of each U(1)i
charge over SU(3)H1

reps is clearly zero. This implies, by Theorem 3(b), that all of
the U(1)i in this model are anomaly free. (Note that the vector–like fields H2 and
H2 of SU(3)H2

imply this also. Furthermore, the same method of proof also applies
to Model 2 when we replace SU(3)H1,H2

with SU(4)H1,H2
.)
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7 Phenomenological discussion and conclusions

Clearly the most striking new feature of the LRS string models that we pre-
sented is the absence of an anomalous U(1) symmetry in two of them. In the past
much of the analysis of the three generation free fermionic models involved the anal-
ysis of flat directions that are induced by the cancelation of the anomalous U(1)
D–term [2, 20]. The Standard Model singlet VEVs that are used to cancel this
D–term spontaneously break some of the additional U(1) symmetries in the string
models. Such singlet VEVs are necessitated by the requirement that the superstring
vacuum preserves supersymmetry at the string scale. An important issue in this re-
gard is therefore whether for such flat directions there exist one, or perhaps several,
U(1) combinations which remain unbroken. U(1) combinations that remain unbro-
ken down to sufficiently low energies may give rise to interesting observable effects.
In contrast, the absence of an anomalous U(1) in the LRS string models that we
discussed here allows, in principle, all the extra U(1)’s to remain unbroken at the
string scale. Of course imposing some phenomenological constraints, like the decou-
pling of fractionally charged states, may force some Standard Model singlet fields to
acquire a non–vanishing VEV. In which case the analysis of the flat directions is rein-
troduced. However, this is not necessitated by the requirement that the anomalous
U(1) D–term vanishes, and hence not by the requirement that the vacuum preserves
supersymmetry. Similarly, the Fayet–Iliopoulos term which is induced by the anoma-
lous U(1) [21] gives rise to an order parameter which, together with the flat direction
singlet VEVs, is used to produce the hierarchical fermion mass pattern. This order
parameter is therefore no longer present if there is no anomalous U(1), as is the case
in some of the LRS string models that we presented.

Examining the field content of Model 1, we note that the model contains the
neutral Standard Model singlet component of the 16 of SO(10). This field can there-
fore be used to break the SU(2)R gauge symmetry. However, it is noted that the
corresponding component of the 16 is absent from the model and all the remaining
SU(2)R doublets have fractional electric charge with respect to the most natural def-
inition of the weak–hypercharge give in eq. (5.10). The absence of the corresponding
neutral component from the 16 is a common feature in the three generation free
fermionic models in which the SO(1O) is broken by at least two different basis vec-
tors. Therefore, assuming that supersymmetry is not broken at a high scale, the
SU(2)R symmetry cannot be broken along a supersymmetric flat directions, and can
only be broken by a VEV that does not preserve supersymmetry at a lower scale.
From Table 2 we note that Model 2 contains two SU(2)C doublets, Nαβ and Nαβ ,
from the sector S+ b1 + b2 + α + β, that can be used to break the custodial SU(2)
symmetry along a flat direction.

As with Model 1, both Models 2 and 3 contain the neutral component of the 16 of
SO(10) that can be employed to break the SU(2)R symmetry. We remark that this
conclusion holds for the definition of the weak–hypercharge as given in eq. (5.10).
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Other viable definitions of the weak–hypercharge may result in more electrically
neutral fields that may be used to break SU(2)R. As we discussed above, with
such possible alternative definitions the Standard Model spectrum still arises from
the 16 representation of SO(1O), but the weak–hypercharge normalization differs
from the canonical SO(10) normalization.

From Tables 1–3 we note that all three models contain the required Higgs bi–
doublet representations, h1 and h2, that are needed in order to generate the Stan-
dard Model gauge boson and fermion masses. Examining the superpotential terms,
eqs. (4.9) and (D.1), of Models 1 and 2 respectively, we note that the couplings
QLi

QRi
hi and LLi

LRi
hi exist to provide potential mass terms for the states from the

sectors b1 and b2. The structure of the basis vectors beyond the NAHE set, α, β
and γ, which break the cyclic permutation symmetry between the three twisted sec-
tors b1, b2 and b3, results in the states from the sector b3 being identified with the
lightest generation. This outcome is similar to the result that was found in the case
of the free fermionic SLM string models [22], and again is a reflection of the breaking
of the cyclic permutation symmetry by the basis vectors α, β and γ.

¿From eq. (4.11) we note that in Model 1, provided that Φ3 gets a non–vanishing
VEV of the order of the string scale, then the entire hidden matter spectrum of
Model 1 becomes superheavy. In this case the content of the hidden sector spectrum
consists of the gauge bosons of the unbroken hidden E8 subgroup, which in model
1 is SU(3) × SU(3) × U(1)4. These hidden states can interact with the observable
sector only via the heavy hidden matter states, which are charged with respect to the
horizontal U(1) symmetries, U(1)1,2. The observable sector states are also charged
under the horizontal U(1)1,2 symmetries. This represents the interesting case that the
lightest hidden sector state is a hidden glueball that can interact with the Standard
Model states only via the superheavy fermions. Such states may provide interesting
dark matter candidates [23].

In this paper we extended the case studies of realistic free fermionic string models
to the case in which the observable universal SO(10) gauge group is broken to the left–
right symmetric, SU(3)C ×SU(2)L×SU(2)R×U(1)B−L, gauge group. We presented
three specific examples with this symmetry breaking pattern together with the entire
superpotential terms for the first two models, up to quintic order. The distinctive
feature of the LRS free fermionic string models, as compared to the previous, FSU5,
PS, and SLM cases, is the existence of models which do not contain an anomalous
U(1) symmetry. We discussed the general structures which result in the absence, or
presence, of an anomalous U(1), in the respective cases. We further contemplated
how the string models can motivate the interesting possibility in which the Standard
Model fermion spectrum arises from three 16 representations of SO(10), while the
weak–hypercharge does not possess the canonical SO(10) embedding. Finally, it will
be of further interest to study compactification of other classes of string theories on
the manifolds which are associated with the free fermionic models and to examine the
properties of the models, which are preserved in these dual constructions. Similarly,
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it is of further interest to study the properties of the LRS string models in relation
to the phenomenological studies of LRS field theory models. We shall return to these
and related questions in future publications.
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A Left–Right Symmetric Model 1 Fields

F SEC (C;L;R) QC Q1 Q2 Q3 Q4 Q5 Q6 SU(3)H1;2
Q7 Q8 Q9 Q10

QL1
b1 (3, 2, 1) 2 -2 0 0 -2 0 0 (1, 1) 0 0 0 0

QR1
(3̄, 1, 2) -2 2 0 0 2 0 0 (1, 1) 0 0 0 0

LL1
(1, 2, 1) -6 -2 0 0 2 0 0 (1, 1) 0 0 0 0

LR1
(1, 1, 2) 6 2 0 0 -2 0 0 (1, 1) 0 0 0 0

QL2
b2 (3, 2, 1) 2 0 -2 0 0 -2 0 (1, 1) 0 0 0 0

QR2
(3̄, 1, 2) -2 0 2 0 0 2 0 (1, 1) 0 0 0 0

LL2
(1, 2, 1) -6 0 -2 0 0 2 0 (1, 1) 0 0 0 0

LR2
(1, 1, 2) 6 0 2 0 0 -2 0 (1, 1) 0 0 0 0

QL3
b3 (3, 2, 1) 2 0 0 -2 0 0 2 (1, 1) 0 0 0 0

QR3
(3̄, 1, 2) -2 0 0 2 0 0 -2 (1, 1) 0 0 0 0

LL3
(1, 2, 1) -6 0 0 -2 0 0 -2 (1, 1) 0 0 0 0

LR3
(1, 1, 2) 6 0 0 2 0 0 2 (1, 1) 0 0 0 0

L+
L1

b1 + β (1, 2, 1) 3 -1 1 1 0 2 -2 (1, 1) 0 -6 -6 0
L+

R1
±γ (1, 1, 2) 3 -1 1 1 0 -2 2 (1, 1) 0 -6 -6 0

L−
L1

(1, 2, 1) -3 1 -1 -1 0 2 -2 (1, 1) 0 6 6 0
L−

R1
(1, 1, 2) -3 1 -1 -1 0 -2 2 (1, 1) 0 6 6 0

L+
L2

b2 + β (1, 2, 1) 3 1 -1 1 2 0 -2 (1, 1) 0 -6 -6 0
L+

R2
±γ (1, 1, 2) 3 1 -1 1 -2 0 2 (1, 1) 0 -6 -6 0

L−
L2

(1, 2, 1) -3 -1 1 -1 2 0 -2 (1, 1) 0 6 6 0
L−

R2
(1, 1, 2) -3 -1 1 -1 -2 0 2 (1, 1) 0 6 6 0

L+
L3

b3 + β (1, 2, 1) 3 1 1 -1 2 2 0 (1, 1) 0 -6 -6 0
L+

R3
±γ (1, 1, 2) 3 1 1 -1 -2 -2 0 (1, 1) 0 -6 -6 0

L−
L3

(1, 2, 1) -3 -1 -1 1 2 2 0 (1, 1) 0 6 6 0
L−

R3
(1, 1, 2) -3 -1 -1 1 -2 -2 0 (1, 1) 0 6 6 0

L+
L12

1+ b1+ (1, 2, 1) 0 2 2 0 0 0 2 (1, 1) 4 0 0 12
L+

R12
b2 + 2γ (1, 1, 2) 0 -2 -2 0 0 0 -2 (1, 1) 4 0 0 12

L−
L12

(1, 2, 1) 0 2 2 0 0 0 2 (1, 1) -4 0 0 -12
L−

R12
(1, 1, 2) 0 -2 -2 0 0 0 -2 (1, 1) -4 0 0 -12

L+
L13

1+ b1+ (1, 2, 1) 0 2 0 2 0 -2 0 (1, 1) 4 0 0 12
L+

R13
b3 + 2γ (1, 1, 2) 0 -2 0 -2 0 2 0 (1, 1) 4 0 0 12

L−
L13

(1, 2, 1) 0 2 0 2 0 -2 0 (1, 1) -4 0 0 -12
L−

R13
(1, 1, 2) 0 -2 0 -2 0 2 0 (1, 1) -4 0 0 -12

Table 1: Model 1 fields. Charges have been multiplied by 4.
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F SEC (C;L;R) QC Q1 Q2 Q3 Q4 Q5 Q6 SU(3)H1;2
Q7 Q8 Q9 Q10

L+
L23

1 + b2+ (1, 2, 1) 0 0 2 2 -2 0 0 (1, 1) 4 0 0 12
L+

R23
b3 + 2γ (1, 1, 2) 0 0 -2 -2 2 0 0 (1, 1) 4 0 0 12

L−
L23

(1, 1, 2) 0 0 2 2 -2 0 0 (1, 1) -4 0 0 -12
L−

R23
(1, 2, 1) 0 0 -2 -2 2 0 0 (1, 1) -4 0 0 -12

Dαβ S+ β (3, 1, 1) -1 -1 -1 -1 2 2 2 (1, 1) 0 6 6 0
D̄αβ ±γ (3̄, 1, 1) 1 1 1 1 -2 -2 -2 (1, 1) 0 -6 -6 0
h1 Neveu– (1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
h2 Schwarz (1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ1 (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ2 (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ3 (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ12 (1, 1, 1) 0 -4 4 0 0 0 0 (1, 1) 0 0 0 0
Φ̄12 (1, 1, 1) 0 4 -4 0 0 0 0 (1, 1) 0 0 0 0
Φ23 (1, 1, 1) 0 0 -4 4 0 0 0 (1, 1) 0 0 0 0
Φ̄23 (1, 1, 1) 0 0 4 -4 0 0 0 (1, 1) 0 0 0 0
Φ31 (1, 1, 1) 0 -4 0 4 0 0 0 (1, 1) 0 0 0 0
Φ̄31 (1, 1, 1) 0 4 0 -4 0 0 0 (1, 1) 0 0 0 0
φ1 1+ S+ b3+ (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 4 12 -12 4
φ̄1 α+ β (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) -4 -12 12 -4
φ2 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 4 12 12 -4
φ̄2 (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) -4 -12 -12 4
φ3 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) -4 -12 -12 4
φ̄3 (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 4 12 12 -4
φ4 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) -4 -12 12 -4
φ̄4 (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 4 12 -12 4
φ5 S+ β (1, 1, 1) -3 -3 1 1 2 2 -2 (1, 1) 0 -6 -6 0
φ̄5 ±γ (1, 1, 1) 3 3 -1 -1 -2 -2 2 (1, 1) 0 6 6 0
φ6 (1, 1, 1) -3 1 -3 1 2 2 -2 (1, 1) 0 -6 -6 0
φ̄6 (1, 1, 1) 3 -1 3 -1 -2 -2 2 (1, 1) 0 6 6 0
φ7 (1, 1, 1) -3 1 1 -3 2 2 -2 (1, 1) 0 -6 -6 0
φ̄7 (1, 1, 1) 3 -1 -1 3 -2 -2 2 (1, 1) 0 6 6 0

Table 1 continued: Model 1 fields.
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F SEC (C;L;R) QC Q1 Q2 Q3 Q4 Q5 Q6 SU(3)H1;2
Q7 Q8 Q9 Q10

φ8 1+ b1+ (1, 1, 1) -3 1 1 1 -2 2 -2 (1, 1) 4 6 6 12
φ̄8 b2 + b3+ (1, 1, 1) 3 -1 -1 -1 2 -2 2 (1, 1) -4 -6 -6 -12
φ9 β ± γ (1, 1, 1) -3 1 1 1 2 -2 -2 (1, 1) -4 6 6 -12
φ̄9 (1, 1, 1) 3 -1 -1 -1 -2 2 2 (1, 1) 4 -6 -6 12
φ10 S+ b1+ (1, 1, 1) 6 0 0 -2 0 0 0 (1, 1) 0 4 -12 0
φ̄10 b2 + α+ (1, 1, 1) -6 0 0 2 0 0 0 (1, 1) 0 -4 12 0
φ11 β + 2γ (1, 1, 1) 6 0 0 -2 0 0 0 (1, 1) 0 -4 -12 0
φ̄11 (1, 1, 1) -6 0 0 2 0 0 0 (1, 1) 0 4 12 0
H1 S+ b1 (1, 1, 1) 0 -2 -2 0 0 0 0 (3, 1) -4 -4 -4 4
H̄1 +b2 + α (1, 1, 1) 0 2 2 0 0 0 0 (3̄, 1) 4 4 4 -4
H2 +β (1, 1, 1) 0 2 2 0 0 0 0 (1, 3) -4 4 4 4
H̄2 ⊕ζ (1, 1, 1) 0 -2 -2 0 0 0 0 (1, 3̄) 4 -4 -4 -4

Table 1 continued: Model 1 fields.
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B Left–Right Symmetric Model 1 Superpotential Terms

Model 1 Fifth Order Superpotential:

W5(observable):

h1QL2
QR2

φ1φ̄1 +h1QL2
QR2

φ2φ̄2 +h1QL2
QR2

φ3φ̄3 +h1QL2
QR2

φ4φ̄4

+h1QL2
QR2

φ10φ̄10 +h1QL2
QR2

φ11φ̄11 +h1LL2
LR2

φ1φ̄1 +h1LL2
LR2

φ2φ̄2

+h1LL2
LR2

φ3φ̄3 +h1LL2
LR2

φ4φ̄4 +h1LL2
LR2

φ10φ̄10 +h1LL2
LR2

φ11φ̄11

+h1L
+
L13

L−
R13
φ1φ̄1 +h1L

+
L13

L−
R13
φ2φ̄2 +h1L

+
L13

L−
R13
φ3φ̄3 +h1L

+
L13

L−
R13
φ4φ̄4

+h1L
+
L13

L−
R13
φ10φ̄10 +h1L

+
L13

L−
R13
φ11φ̄11 +h1L

−
L13

L+
R13
φ1φ̄1 +h1L

−
L13

L+
R13
φ2φ̄2

+h1L
−
L13

L+
R13
φ3φ̄3 +h1L

−
L13

L+
R13
φ4φ̄4 +h1L

−
L13

L+
R13
φ10φ̄10 +h1L

−
L13

L+
R13
φ11φ̄11

+h1L
+
L2
L−

R2
φ1φ̄1 +h1L

+
L2
L−

R2
φ2φ̄2 +h1L

+
L2
L−

R2
φ3φ̄3 +h1L

+
L2
L−

R2
φ4φ̄4

+h1L
+
L2
L−

R2
φ10φ̄10 +h1L

+
L2
L−

R2
φ11φ̄11 +h1L

−
L2
L+

R2
φ1φ̄1 +h1L

−
L2
L+

R2
φ2φ̄2

+h1L
−
L2
L+

R2
φ3φ̄3 +h1L

−
L2
L+

R2
φ4φ̄4 +h1L

−
L2
L+

R2
φ10φ̄10 +h1L

−
L2
L+

R2
φ11φ̄11

+h2QL1
QR1

φ1φ̄1 +h2QL1
QR1

φ2φ̄2 +h2QL1
QR1

φ3φ̄3 +h2QL1
QR1

φ4φ̄4

+h2QL1
QR1

φ10φ̄10 +h2QL1
QR1

φ11φ̄11 +h2LL1
LR1

φ1φ̄1 +h2LL1
LR1

φ2φ̄2

+h2LL1
LR1

φ3φ̄3 +h2LL1
LR1

φ4φ̄4 +h2LL1
LR1

φ10φ̄10 +h2LL1
LR1

φ11φ̄11

+h2L
+
L23

L−
R23
φ1φ̄1 +h2L

+
L23

L−
R23
φ2φ̄2 +h2L

+
L23

L−
R23
φ3φ̄3 +h2L

+
L23

L−
R23
φ4φ̄4

+h2L
+
L23

L−
R23
φ10φ̄10 +h2L

+
L23

L−
R23
φ11φ̄11 +h2L

−
L23

L+
R23
φ1φ̄1 +h2L

−
L23

L+
R23
φ2φ̄2

+h2L
−
L23

L+
R23
φ3φ̄3 +h2L

−
L23

L+
R23
φ4φ̄4 +h2L

−
L23

L+
R23
φ10φ̄10 +h2L

−
L23

L+
R23
φ11φ̄11

+h2L
+
L1
L−

R1
φ1φ̄1 +h2L

+
L1
L−

R1
φ2φ̄2 +h2L

+
L1
L−

R1
φ3φ̄3 +h2L

+
L1
L−

R1
φ4φ̄4

+h2L
+
L1
L−

R1
φ10φ̄10 +h2L

+
L1
L−

R1
φ11φ̄11 +h2L

−
L1
L+

R1
φ1φ̄1 +h2L

−
L1
L+

R1
φ2φ̄2

+h2L
−
L1
L+

R1
φ3φ̄3 +h2L

−
L1
L+

R1
φ4φ̄4 +h2L

−
L1
L+

R1
φ10φ̄10 +h2L

−
L1
L+

R1
φ11φ̄11

+QL1
QL2

QR1
QR2

Φ3 +QL1
QR1

LL2
LR2

Φ3 +QL1
QR1

L+
L13

L−
R13

Φ3 +QL1
QR1

L−
L13

L+
R13

Φ3

+QL1
QR1

L+
L2
L−

R2
Φ3 +QL1

QR1
L−

L2
L+

R2
Φ3 +QL1

QR2
LL1

LR2
Φ̄12 +QL1

QR2
L+

L2
L−

R1
Φ3

+QL1
QR2

L−
L2
L+

R1
Φ̄12 +QL1

QR3
L−

L12
L+

R23
Φ2 +QL1

QR3
L+

L3
L−

R1
Φ2 +QL1

QR3
L−

L3
L+

R1
Φ̄13

+QL2
QR1

LL2
LR1

Φ12 +QL2
QR1

L+
L1
L−

R2
Φ3 +QL2

QR1
L−

L1
L+

R2
Φ12 +QL2

QR2
LL1

LR1
Φ3

+QL2
QR2

L+
L23

L−
R23

Φ3 +QL2
QR2

L−
L23

L+
R23

Φ3 +QL2
QR2

L+
L1
L−

R1
Φ3 +QL2

QR2
L−

L1
L+

R1
Φ3

+QL2
QR3

L+
L12

L−
R13

Φ1 +QL2
QR3

L+
L3
L−

R2
Φ1 +QL2

QR3
L−

L3
L+

R2
Φ̄23 +QL3

QR1
L−

L23
L+

R12
Φ2

+QL3
QR1

L+
L1
L−

R3
Φ2 +QL3

QR1
L−

L1
L+

R3
Φ13 +QL3

QR2
L+

L13
L−

R12
Φ1 +QL3

QR2
L+

L2
L−

R3
Φ1

+QL3
QR2

L−
L2
L+

R3
Φ23 +LL1

LL2
LR1

LR2
Φ3 +LL1

LR1
L+

L13
L−

R13
Φ3 +LL1

LR1
L−

L13
L+

R13
Φ3

+LL1
LR1

L+
L2
L−

R2
Φ3 +LL1

LR1
L−

L2
L+

R2
Φ3 +LL1

LR2
L+

L1
L−

R2
Φ̄12 +LL1

LR2
L−

L1
L+

R2
Φ3

+LL1
LR3

L−
L23

L+
R12

Φ̄13 +LL1
LR3

L+
L1
L−

R3
Φ̄13 +LL1

LR3
L−

L1
L+

R3
Φ2 +LL1

L+
L23

Φ2φ3φ11

+LL1
L+

L23
Φ2φ4φ10 +LL1

L+
L1
φ1φ4φ̄6 +LL1

L+
L1
φ2φ3φ̄6 +LL2

LR1
L+

L2
L−

R1
Φ12

+LL2
LR1

L−
L2
L+

R1
Φ3 +LL2

LR2
L+

L23
L−

R23
Φ3 +LL2

LR2
L−

L23
L+

R23
Φ3 +LL2

LR2
L+

L1
L−

R1
Φ3

+LL2
LR2

L−
L1
L+

R1
Φ3 +LL2

LR3
L+

L13
L−

R12
Φ̄23 +LL2

LR3
L+

L2
L−

R3
Φ̄23 +LL2

LR3
L−

L2
L+

R3
Φ1

+LL2
L−

L13
Φ1φ̄3φ10 +LL2

L−
L13

Φ1φ̄4φ11 +LL2
L+

L2
φ̄1φ̄4φ̄5 +LL2

L+
L2
φ̄2φ̄3φ̄5

+LL3
LR1

L−
L12

L+
R23

Φ13 +LL3
LR1

L+
L3
L−

R1
Φ13 +LL3

LR1
L−

L3
L+

R1
Φ2 +LL3

LR2
L+

L12
L−

R13
Φ23

+LL3
LR2

L+
L3
L−

R2
Φ23 +LL3

LR2
L−

L3
L+

R2
Φ1 +LR1

L−
R23

Φ2φ̄3φ̄11 +LR1
L−

R23
Φ2φ̄4φ̄10

+LR1
L−

R1
φ̄1φ̄4φ6 +LR1

L−
R1
φ̄2φ̄3φ6 +LR2

L+
R13

Φ1φ3φ̄10 +LR2
L+

R13
Φ1φ4φ̄11

+LR2
L−

R2
φ1φ4φ5 +LR2

L−
R2
φ2φ3φ5 +L+

L12
L−

L13
L+

R12
L−

R13
Φ1 +L+

L12
L−

L23
L+

R12
L−

R23
Φ2
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W5(observable) continued:

+L+
L12

L+
L1
L−

R23
L−

R3
Φ2 +L+

L12
L−

L1
L−

R23
L+

R3
Φ13 +L−

L12
L+

L13
L−

R12
L+

R13
Φ1 +L−

L12
L+

L23
L−

R12
L+

R23
Φ2

+L−
L12

L+
L2
L+

R13
L−

R3
Φ1 +L−

L12
L−

L2
L+

R13
L+

R3
Φ23 +L+

L13
L+

L23
L−

R13
L−

R23
Φ3 +L+

L13
L−

L23
L+

R13
L−

R23
Φ3

+L+
L13

L−
L23

L−
R13

L+
R23

Φ3 +L+
L13

L+
L1
L−

R13
L−

R1
Φ3 +L+

L13
L−

L1
L−

R13
L+

R1
Φ3 +L−

L13
L+

L23
L+

R13
L−

R23
Φ3

+L−
L13

L+
L23

L−
R13

L+
R23

Φ3 +L−
L13

L−
L23

L+
R13

L+
R23

Φ3 +L−
L13

L+
L1
L+

R13
L−

R1
Φ3 +L−

L13
L−

L1
L+

R13
L+

R1
Φ3

+L−
L13

L+
L3
L+

R12
L−

R2
Φ1 +L−

L13
L−

L3
L+

R12
L+

R2
Φ̄23 +L+

L23
L+

L2
L−

R23
L−

R2
Φ3 +L+

L23
L−

L2
L−

R23
L+

R2
Φ3

+L+
L23

L+
L3
L−

R12
L−

R1
Φ2 +L+

L23
L−

L3
L−

R12
L+

R1
Φ̄13 +L−

L23
L+

L2
L+

R23
L−

R2
Φ3 +L−

L23
L−

L2
L+

R23
L+

R2
Φ3

+L+
L1
L+

L2
L−

R1
L−

R2
Φ3 +L+

L1
L−

L2
L+

R1
L−

R2
Φ̄12 +L+

L1
L−

L2
L−

R1
L+

R2
Φ3 +L−

L1
L+

L2
L+

R1
L−

R2
Φ3

+L−
L1
L+

L2
L−

R1
L+

R2
Φ12 +L−

L1
L−

L2
L+

R1
L+

R2
Φ3

(B.1)

W5(mixed):

h1QL2
QR2

H1H̄1 +h1QL2
QR2

H2H̄2 +h1LL2
LR2

H1H̄1 +h1LL2
LR2

H2H̄2

+h1L
+
L13

L−
R13
H1H̄1 +h1L

+
L13

L−
R13
H2H̄2 +h1L

−
L13

L+
R13
H1H̄1 +h1L

−
L13

L+
R13
H2H̄2

+h1L
+
L2
L−

R2
H1H̄1 +h1L

+
L2
L−

R2
H2H̄2 +h1L

−
L2
L+

R2
H1H̄1 +h1L

−
L2
L+

R2
H2H̄2

+h2QL1
QR1

H1H̄1 +h2QL1
QR1

H2H̄2 +h2LL1
LR1

H1H̄1 +h2LL1
LR1

H2H̄2

+h2L
+
L23

L−
R23
H1H̄1 +h2L

+
L23

L−
R23
H2H̄2 +h2L

−
L23

L+
R23
H1H̄1 +h2L

−
L23

L+
R23
H2H̄2

+h2L
+
L1
L−

R1
H1H̄1 +h2L

+
L1
L−

R1
H2H̄2 +h2L

−
L1
L+

R1
H1H̄1 +h2L

−
L1
L+

R1
H2H̄2

(B.2)

W5(singlets), W5(hidden): none
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C Left–Right Symmetric Model 2 Fields

F SEC SU(3)C × SU(2)L;R;C Q1′ Q2′ Q3′ Q4 Q5 Q6 SU(4)H1;2
Q7′′ Q8′′

QL1
b1⊕ (3, 2, 1, 1) -2 -2 -4 -2 0 0 (1, 1) 0 -16

QR1
b1 + ζ + 2γ (3̄, 1, 2, 1) 2 2 4 2 0 0 (1, 1) 0 16

LL1
(1, 2, 1, 2) -2 -2 4 2 0 0 (1, 1) -8 16

LR1
(1, 1, 2, 2) 2 2 -4 -2 0 0 (1, 1) 8 -16

SL1
(1, 2, 1, 1) -2 -2 4 2 0 0 (1, 1) 16 16

SR1
(1, 1, 2, 1) 2 2 -4 -2 0 0 (1, 1) -16 -16

QL2
b2⊕ (3, 2, 1, 1) 2 -2 -4 0 -2 0 (1, 1) 0 -16

QR2
b2 + ζ + 2γ (3̄, 1, 2, 1) -2 2 4 0 2 0 (1, 1) 0 16

LL2
(1, 2, 1, 2) 2 -2 4 0 2 0 (1, 1) -8 16

LR2
(1, 1, 2, 2) -2 2 -4 0 -2 0 (1, 1) 8 -16

SL2
(1, 2, 1, 1) 2 -2 4 0 2 0 (1, 1) 16 16

SR2
(1, 1, 2, 1) -2 2 -4 0 -2 0 (1, 1) -16 -16

QL3
b3⊕ (3, 2, 1, 1) 0 4 -4 0 0 -2 (1, 1) 0 -16

QR3
b3 + ζ + 2γ (3̄, 1, 2, 1) 0 -4 4 0 0 2 (1, 1) 0 16

LL3
(1, 2, 1, 2) 0 4 4 0 0 2 (1, 1) -8 16

LR3
(1, 1, 2, 2) 0 -4 -4 0 0 -2 (1, 1) 8 -16

SL3
(1, 2, 1, 1) 0 4 4 0 0 2 (1, 1) 16 16

SR3
(1, 1, 2, 1) 0 -4 -4 0 0 -2 (1, 1) -16 -16

LL1
b1+ (1, 2, 1, 1) -2 -2 12 0 0 0 (1, 1) -8 -8

L̄L1
α + β ± γ (1, 2, 1, 1) 2 2 -12 0 0 0 (1, 1) 8 8

LR1
(1, 1, 2, 1) -2 -2 12 0 0 0 (1, 1) -8 -8

L̄R1
(1, 1, 2, 1) 2 2 -12 0 0 0 (1, 1) 8 8

LL2
1+ b1+ (1, 2, 1, 1) 2 -2 -4 0 0 0 (1, 1) -8 40

L̄L2
b3 ± γ (1, 2, 1, 1) -2 2 4 0 0 0 (1, 1) 8 -40

LR2
(1, 1, 2, 1) 2 -2 -4 0 0 0 (1, 1) -8 40

L̄R2
(1, 1, 2, 1) -2 2 4 0 0 0 (1, 1) 8 -40

Table 2: Model 2 fields. Charges have been multiplied by 4.
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F SEC SU(3)C × SU(2)L;R;C Q1′ Q2′ Q3′ Q4 Q5 Q6 SU(4)H1;2
Q7′′ Q8′′

D1 I + S + 2γ (3, 1, 1, 1) -4 -4 0 0 0 0 (1, 1) 16 0
D̄1 (3̄, 1, 1, 1) 4 4 0 0 0 0 (1, 1) -16 0
D2 (3, 1, 1, 1) 4 -4 0 0 0 0 (1, 1) 16 0
D̄2 (3̄, 1, 1, 1) -4 4 0 0 0 0 (1, 1) -16 0
D3 (3, 1, 1, 1) 0 8 0 0 0 0 (1, 1) 16 0
D̄3 (3̄, 1, 1, 1) 0 -8 0 0 0 0 (1, 1) -16 0
Dαβ ξ = S+ (3, 1, 1, 1) 0 4 8 0 0 0 (1, 1) 0 32
D̄αβ b1 + b2+ (3̄, 1, 1, 1) 0 -4 -8 0 0 0 (1, 1) 0 -32
Nαβ α + β (1, 1, 1, 2) 0 4 -8 0 0 0 (1, 1) -8 -32
N̄αβ (1, 1, 1, 2) 0 -4 8 0 0 0 (1, 1) 8 32
φ±
1 ⊕ξ + ζ + 2γ (1, 1, 1, 1) 4 0 0 ±4 0 0 (1, 1) 0 0
φ̄±
1 (1, 1, 1, 1) -4 0 0 ∓4 0 0 (1, 1) 0 0
φ±
2 (1, 1, 1, 1) 4 0 0 0 ±4 0 (1, 1) 0 0
φ̄±
2 (1, 1, 1, 1) -4 0 0 0 ∓4 0 (1, 1) 0 0
φ±
3 (1, 1, 1, 1) 4 0 0 0 0 ±4 (1, 1) 0 0
φ̄±
3 (1, 1, 1, 1) -4 0 0 0 0 ∓4 (1, 1) 0 0
φ4 (1, 1, 1, 1) 0 4 -8 0 0 0 (1, 1) 16 -32
φ̄4 (1, 1, 1, 1) 0 -4 8 0 0 0 (1, 1) -16 32
h1 Neveu– (1, 2, 2, 1) 0 0 0 0 0 0 (1, 1) 0 0
h2 Schwarz (1, 2, 2, 1) 0 0 0 0 0 0 (1, 1) 0 0
Φ1 (1, 1, 1, 1) 0 0 0 0 0 0 (1, 1) 0 0
Φ2 (1, 1, 1, 1) 0 0 0 0 0 0 (1, 1) 0 0
Φ3 (1, 1, 1, 1) 0 0 0 0 0 0 (1, 1) 0 0
Φ12 (1, 1, 1, 1) -8 0 0 0 0 0 (1, 1) 0 0
Φ̄12 (1, 1, 1, 1) 8 0 0 0 0 0 (1, 1) 0 0
Φ23 (1, 1, 1, 1) 4 -12 0 0 0 0 (1, 1) 0 0
Φ̄23 (1, 1, 1, 1) -4 12 0 0 0 0 (1, 1) 0 0
Φ31 (1, 1, 1, 1) -4 -12 0 0 0 0 (1, 1) 0 0
Φ̄31 (1, 1, 1, 1) 4 12 0 0 0 0 (1, 1) 0 0
H1 S + β ± γ (1, 1, 1, 1) 0 0 -10 -2 2 -2 (4, 1) 0 -12
H̄1 ⊕(ζ) (1, 1, 1, 1) 0 0 10 2 -2 2 (4̄, 1) 0 12
H2 (1, 1, 1, 1) 0 0 2 -2 2 2 (1, 4) 0 36
H2 (1, 1, 1, 1) 0 0 -2 2 -2 -2 (1, 4̄) 0 -36

Table 2 continued: Model 2 fields.
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D Left–Right Symmetric Model 2 Superpotential Terms

W3(observable):

h1h2Φ3 +h1QL1
QR1

+h1LL1
LR1

+h1SL1
SR1

+h1LL1
L̄R1

+h1L̄L1
LR1

+h2QL2
QR2

+h2LL2
LR2

+h2SL2
SR2

+h2LL2
L̄R2

+h2L̄L2
LR2

+QL1
D̄1SL1

+QL2
D̄2SL2

+QL3
D̄3SL3

+QR1
D1SR1

+QR2
D2SR2

+QR3
D3SR3

+DαβD̄αβΦ3

+DαβD̄3φ4 +D1D̄2Φ̄12 +D1D̄3Φ̄31 +D2D̄1Φ12 +D2D̄3Φ̄23 +D3D̄αβφ̄4

+D3D̄1Φ31 +D3D̄2Φ23 +LL1
L̄L1

Φ1 +L̄L1
L̄L2

φ̄4 +LL2
L̄L2

Φ2 +LR1
L̄R1

Φ1

+LR1
LR2

φ4 +LR2
L̄R2

Φ2 +NαβN̄αβΦ3

(D.1)

W3(singlets):

Φ3φ
+
2 φ̄

+
2 +Φ3φ

−
2 φ̄

−
2 +Φ3φ

+
1 φ̄

+
1 +Φ3φ

−
1 φ̄

−
1 +Φ3φ

+
3 φ̄

+
3 +Φ3φ

−
3 φ̄

−
3

+Φ3φ4φ̄4 +Φ31Φ̄23Φ̄12 +Φ̄31Φ23Φ12 +Φ12φ
+
2 φ

−
2 +Φ12φ

+
1 φ

−
1 +Φ12φ

+
3 φ

−
3

+Φ̄12φ̄
+
2 φ̄

−
2 +Φ̄12φ̄

+
1 φ̄

−
1 +Φ̄12φ̄

+
3 φ̄

−
3

(D.2)

W3(hidden): none

W4(observable):

QL1
QL1

Dαβφ
+
1 +QL1

QL3
QR1

QR3
+QL1

QR1
LL3

LR3
+QL1

QR1
SL3

SR3
+QL2

QL2
Dαβφ̄

−
2

+QL2
QL3

QR2
QR3

+QL2
QR2

LL3
LR3

+QL2
QR2

SL3
SR3

+QL3
QR3

LL1
LR1

+QL3
QR3

LL2
LR2

+QL3
QR3

SL1
SR1

+QL3
QR3

SL2
SR2

+QL3
QR3

LL1
L̄R1

+QL3
QR3

L̄L1
LR1

+QL3
QR3

LL2
L̄R2

+QL3
QR3

L̄L2
LR2

+QR1
QR1

D̄αβφ̄
+
1 +QR2

QR2
D̄αβφ

−
2 +LL1

LL1
φ−
1 φ4 +LL1

LL3
LR1

LR3

+LL1
LR1

SL3
SR3

+LL2
LL2

φ̄+
2 φ4 +LL2

LL3
LR2

LR3
+LL2

LR2
SL3

SR3
+LL3

LR3
SL1

SR1

+LL3
LR3

SL2
SR2

+LL3
LR3

LL1
L̄R1

+LL3
LR3

L̄L1
LR1

+LL3
LR3

LL2
L̄R2

+LL3
LR3

L̄L2
LR2

+LR1
LR1

φ̄−
1 φ̄4 +LR2

LR2
φ+
2 φ̄4 +SL1

SL3
SR1

SR3
+SL2

SL3
SR2

SR3
+SL3

LL1
SR3

L̄R1

+SL3
L̄L1

SR3
LR1

+SL3
LL2

SR3
L̄R2

+SL3
L̄L2

SR3
LR2

(D.3)

W4(singlets), W4(mixed), W4(hidden): none
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W5(observable):

h1QL2
QR2

DαβD̄αβ +h1QL2
QR2

NαβN̄αβ +h1QL2
QR2

φ+
2 φ̄

+
2 +h1QL2

QR2
φ−
2 φ̄

−
2

+h1QL2
QR2

φ+
1 φ̄

+
1 +h1QL2

QR2
φ−
1 φ̄

−
1 +h1QL2

QR2
φ+
3 φ̄

+
3 +h1QL2

QR2
φ−
3 φ̄

−
3

+h1QL2
QR2

φ4φ̄4 +h1LL2
LR2

DαβD̄αβ +h1LL2
LR2

NαβN̄αβ +h1LL2
LR2

φ+
2 φ̄

+
2

+h1LL2
LR2

φ−
2 φ̄

−
2 +h1LL2

LR2
φ+
1 φ̄

+
1 +h1LL2

LR2
φ−
1 φ̄

−
1 +h1LL2

LR2
φ+
3 φ̄

+
3

+h1LL2
LR2

φ−
3 φ̄

−
3 +h1LL2

LR2
φ4φ̄4 +h1DαβD̄αβSL2

SR2
+h1DαβD̄αβLL2

L̄R2

+h1DαβD̄αβL̄L2
LR2

+h1SL2
SR2

NαβN̄αβ +h1SL2
SR2

φ+
2 φ̄

+
2 +h1SL2

SR2
φ−
2 φ̄

−
2

+h1SL2
SR2

φ+
1 φ̄

+
1 +h1SL2

SR2
φ−
1 φ̄

−
1 +h1SL2

SR2
φ+
3 φ̄

+
3 +h1SL2

SR2
φ−
3 φ̄

−
3

+h1SL2
SR2

φ4φ̄4 +h1LL2
L̄R2

NαβN̄αβ +h1LL2
L̄R2

φ+
2 φ̄

+
2 +h1LL2

L̄R2
φ−
2 φ̄

−
2

+h1LL2
L̄R2

φ+
1 φ̄

+
1 +h1LL2

L̄R2
φ−
1 φ̄

−
1 +h1LL2

L̄R2
φ+
3 φ̄

+
3 +h1LL2

L̄R2
φ−
3 φ̄

−
3

+h1LL2
L̄R2

φ4φ̄4 +h1L̄L2
LR2

NαβN̄αβ +h1L̄L2
LR2

φ+
2 φ̄

+
2 +h1L̄L2

LR2
φ−
2 φ̄

−
2

+h1L̄L2
LR2

φ+
1 φ̄

+
1 +h1L̄L2

LR2
φ−
1 φ̄

−
1 +h1L̄L2

LR2
φ+
3 φ̄

+
3 +h1L̄L2

LR2
φ−
3 φ̄

−
3

+h1L̄L2
LR2

φ4φ̄4 +h2QL1
QR1

DαβD̄αβ +h2QL1
QR1

NαβN̄αβ +h2QL1
QR1

φ+
2 φ̄

+
2

+h2QL1
QR1

φ−
2 φ̄

−
2 +h2QL1

QR1
φ+
1 φ̄

+
1 +h2QL1

QR1
φ−
1 φ̄

−
1 +h2QL1

QR1
φ+
3 φ̄

+
3

+h2QL1
QR1

φ−
3 φ̄

−
3 +h2QL1

QR1
φ4φ̄4 +h2LL1

LR1
DαβD̄αβ +h2LL1

LR1
NαβN̄αβ

+h2LL1
LR1

φ+
2 φ̄

+
2 +h2LL1

LR1
φ−
2 φ̄

−
2 +h2LL1

LR1
φ+
1 φ̄

+
1 +h2LL1

LR1
φ−
1 φ̄

−
1

+h2LL1
LR1

φ+
3 φ̄

+
3 +h2LL1

LR1
φ−
3 φ̄

−
3 +h2LL1

LR1
φ4φ̄4 +h2DαβD̄αβSL1

SR1

+h2DαβD̄αβLL1
L̄R1

+h2DαβD̄αβL̄L1
LR1

+h2SL1
SR1

NαβN̄αβ +h2SL1
SR1

φ+
2 φ̄

+
2

+h2SL1
SR1

φ−
2 φ̄

−
2 +h2SL1

SR1
φ+
1 φ̄

+
1 +h2SL1

SR1
φ−
1 φ̄

−
1 +h2SL1

SR1
φ+
3 φ̄

+
3

+h2SL1
SR1

φ−
3 φ̄

−
3 +h2SL1

SR1
φ4φ̄4 +h2LL1

L̄R1
NαβN̄αβ +h2LL1

L̄R1
φ+
2 φ̄

+
2

+h2LL1
L̄R1

φ−
2 φ̄

−
2 +h2LL1

L̄R1
φ+
1 φ̄

+
1 +h2LL1

L̄R1
φ−
1 φ̄

−
1 +h2LL1

L̄R1
φ+
3 φ̄

+
3

+h2LL1
L̄R1

φ−
3 φ̄

−
3 +h2LL1

L̄R1
φ4φ̄4 +h2L̄L1

LR1
NαβN̄αβ +h2L̄L1

LR1
φ+
2 φ̄

+
2

+h2L̄L1
LR1

φ−
2 φ̄

−
2 +h2L̄L1

LR1
φ+
1 φ̄

+
1 +h2L̄L1

LR1
φ−
1 φ̄

−
1 +h2L̄L1

LR1
φ+
3 φ̄

+
3

+h2L̄L1
LR1

φ−
3 φ̄

−
3 +h2L̄L1

LR1
φ4φ̄4 +QL1

QL2
QR1

QR2
Φ3 +QL1

QL2
LL1

LL2
D3

+QL1
QR1

LL2
LR2

Φ3 +QL1
QR1

SL2
SR2

Φ3 +QL1
QR1

LL1
LR2

φ4 +QL1
QR1

LL2
L̄R2

Φ3

+QL1
QR1

L̄L2
L̄R1

φ̄4 +QL1
QR1

L̄L2
LR2

Φ3 +QL1
QR2

LL1
LR2

Φ̄12 +QL1
QR2

SL1
SR2

Φ̄12

+QL1
QR3

SL1
SR3

Φ̄31 +QL1
D̄2SL1

φ+
2 φ

−
2 +QL1

D̄2SL1
φ+
1 φ

−
1 +QL1

D̄2SL1
φ+
3 φ

−
3

+QL2
QR1

LL2
LR1

Φ12 +QL2
QR1

SL2
SR1

Φ12 +QL2
QR2

LL1
LR1

Φ3 +QL2
QR2

SL1
SR1

Φ3

+QL2
QR2

LL1
L̄R1

Φ3 +QL2
QR2

L̄L1
LR1

Φ3 +QL2
QR2

L̄L1
L̄R2

φ̄4 +QL2
QR2

LL2
LR1

φ4

+QL2
QR3

SL2
SR3

Φ̄23 +QL2
D̄αβSL2

Φ̄23φ̄4 +QL2
D̄1SL2

φ̄+
2 φ̄

−
2 +QL2

D̄1SL2
φ̄+
1 φ̄

−
1

+QL2
D̄1SL2

φ̄+
3 φ̄

−
3 +QL3

QR1
SL3

SR1
Φ31 +QL3

QR2
SL3

SR2
Φ23 +QL3

D̄αβSL3
LR1

LR2

+QR1
QR2

LR1
LR2

D̄3 +QR1
DαβSR1

Φ31φ4 +QR1
D2SR1

φ̄+
2 φ̄

−
2 +QR1

D2SR1
φ̄+
1 φ̄

−
1

+QR1
D2SR1

φ̄+
3 φ̄

−
3 +QR2

DαβSR2
Φ23φ4 +QR2

D1SR2
φ+
2 φ

−
2 +QR2

D1SR2
φ+
1 φ

−
1

+QR2
D1SR2

φ+
3 φ

−
3 +QR3

DαβL̄L1
L̄L2

SR3
+LL1

LL2
LR1

LR2
Φ3 +LL1

LR1
SL2

SR2
Φ3

+LL1
LR1

LL1
LR2

φ4 +LL1
LR1

LL2
L̄R2

Φ3 +LL1
LR1

L̄L2
L̄R1

φ̄4 +LL1
LR1

L̄L2
LR2

Φ3

+LL1
LR2

SL2
SR1

Φ3 +LL1
LR3

SL3
SR1

Φ2 +LL1
SL1

NαβΦ2φ
−
1 +LL2

LR1
SL1

SR2
Φ3

+LL2
LR2

SL1
SR1

Φ3 +LL2
LR2

LL1
L̄R1

Φ3 +LL2
LR2

L̄L1
LR1

Φ3 +LL2
LR2

L̄L1
L̄R2

φ̄4

+LL2
LR2

LL2
LR1

φ4 +LL2
LR3

SL3
SR2

Φ1 +LL2
SL2

NαβΦ1φ̄
+
2 +LL3

LR1
SL1

SR3
Φ2

+LL3
LR2

SL2
SR3

Φ1 +LR1
SR1

N̄αβΦ2φ̄
−
1 +LR2

SR2
N̄αβΦ1φ

+
2 +DαβD̄αβL̄L1

L̄L2
φ̄4

+DαβD̄αβLR1
L̄R1

Φ3 +DαβD̄αβLR1
LR2

φ4 +SL1
SL2

SR1
SR2

Φ3 +SL1
LL1

SR1
LR2

φ4

+SL1
LL2

SR1
L̄R2

Φ3 +SL1
L̄L2

SR1
L̄R1

φ̄4 +SL1
L̄L2

SR1
LR2

Φ3 +SL2
LL1

SR2
L̄R1

Φ3

+SL2
L̄L1

SR2
LR1

Φ3 +SL2
L̄L1

SR2
L̄R2

φ̄4 +SL2
LL2

SR2
LR1

φ4 +LL1
LL1

L̄R1
LR2

φ4

+LL1
L̄L1

L̄L1
L̄L2

φ̄4 +LL1
L̄L1

LR1
LR2

φ4 +LL1
LL2

L̄R1
L̄R2

Φ3 +LL1
L̄L2

L̄R1
L̄R1

φ̄4
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W5(observable) continued:

+LL1
L̄L2

L̄R1
LR2

Φ3 +L̄L1
LL2

L̄L2
L̄L2

φ̄4 +L̄L1
LL2

LR1
L̄R2

Φ3 +L̄L1
LL2

L̄R2
L̄R2

φ̄4

+L̄L1
L̄L2

LR1
L̄R1

φ̄4 +L̄L1
L̄L2

LR1
LR2

Φ3 +L̄L1
L̄L2

LR2
L̄R2

φ̄4 +L̄L1
L̄L2

NαβN̄αβφ̄4

+L̄L1
L̄L2

φ+
2 φ̄

+
2 φ̄4 +L̄L1

L̄L2
φ−
2 φ̄

−
2 φ̄4 +L̄L1

L̄L2
φ+
1 φ̄

+
1 φ̄4 +L̄L1

L̄L2
φ−
1 φ̄

−
1 φ̄4

+L̄L1
L̄L2

φ+
3 φ̄

+
3 φ̄4 +L̄L1

L̄L2
φ−
3 φ̄

−
3 φ̄4 +L̄L1

L̄L2
φ4φ̄4φ̄4 +LL2

LL2
LR1

L̄R2
φ4

+LL2
L̄L2

LR1
LR2

φ4 +LR1
LR1

L̄R1
LR2

φ4 +LR1
LR2

LR2
L̄R2

φ4 +LR1
LR2

NαβN̄αβφ4

+LR1
LR2

φ+
2 φ̄

+
2 φ4 +LR1

LR2
φ−
2 φ̄

−
2 φ4 +LR1

LR2
φ+
1 φ̄

+
1 φ4 +LR1

LR2
φ−
1 φ̄

−
1 φ4

+LR1
LR2

φ+
3 φ̄

+
3 φ4 +LR1

LR2
φ−
3 φ̄

−
3 φ4 +LR1

LR2
φ4φ4φ̄4

(D.4)

W5(singlets), W5(mixed), W5(hidden): none
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E Left–Right Symmetric Model 3 Fields

F SEC (C;L;R) QC Q1 Q2 Q3 Q4 Q5 Q6 SU(3)H1;2
Q7 Q8 Q9 Q10

QL1
b1 (3, 2, 1) 2 2 0 0 -2 0 0 (1, 1) 0 0 0 0

QR1
(3̄, 1, 2) -2 -2 0 0 -2 0 0 (1, 1) 0 0 0 0

LL1
(1, 2, 1) -6 2 0 0 -2 0 0 (1, 1) 0 0 0 0

LR1
(1, 1, 2) 6 -2 0 0 -2 0 0 (1, 1) 0 0 0 0

QL2
b2 (3, 2, 1) 2 0 2 0 0 -2 0 (1, 1) 0 0 0 0

QR2
(3̄, 1, 2) -2 0 -2 0 0 -2 0 (1, 1) 0 0 0 0

LL2
(1, 2, 1) -6 0 2 0 0 -2 0 (1, 1) 0 0 0 0

LR2
(1, 1, 2) 6 0 -2 0 0 -2 0 (1, 1) 0 0 0 0

QL3
b3 (3, 2, 1) 2 0 0 2 0 0 -2 (1, 1) 0 0 0 0

QR3
(3̄, 1, 2) -2 0 0 -2 0 0 -2 (1, 1) 0 0 0 0

LL3
(1, 2, 1) -6 0 0 2 0 0 -2 (1, 1) 0 0 0 0

LR3
(1, 1, 2) 6 0 0 -2 0 0 -2 (1, 1) 0 0 0 0

h1 Neveu– (1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
h2 Schwarz (1, 2, 2) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ1 (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ2 (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ3 (1, 1, 1) 0 0 0 0 0 0 0 (1, 1) 0 0 0 0
Φ12 (1, 1, 1) 0 -4 4 0 0 0 0 (1, 1) 0 0 0 0
Φ̄12 (1, 1, 1) 0 4 -4 0 0 0 0 (1, 1) 0 0 0 0
Φ23 (1, 1, 1) 0 0 -4 4 0 0 0 (1, 1) 0 0 0 0
Φ̄23 (1, 1, 1) 0 0 4 -4 0 0 0 (1, 1) 0 0 0 0
Φ31 (1, 1, 1) 0 -4 0 4 0 0 0 (1, 1) 0 0 0 0
Φ̄31 (1, 1, 1) 0 4 0 -4 0 0 0 (1, 1) 0 0 0 0
L+

L12
1 + b1 (1, 2, 1) 0 -2 -2 0 0 0 2 (1, 1) -2 0 0 2

L−
L12

+b2 + 2γ (1, 2, 1) 0 -2 -2 0 0 0 -2 (1, 1) 2 0 0 -2
L+

R12
(1, 1, 2) 0 2 2 0 0 0 2 (1, 1) 2 0 0 -2

L−
R12

(1, 1, 2) 0 2 2 0 0 0 -2 (1, 1) -2 0 0 2
L+

L13
1 + b1 (1, 2, 1) 0 -2 0 -2 0 2 0 (1, 1) -2 0 0 2

L−
L13

+b3 + 2γ (1, 2, 1) 0 -2 0 -2 0 -2 0 (1, 1) 2 0 0 -2
L+

R13
(1, 1, 2) 0 2 0 2 0 2 0 (1, 1) 2 0 0 -2

L−
R13

(1, 1, 2) 0 2 0 2 0 -2 0 (1, 1) -2 0 0 2
L+

L23
1 + b2 (1, 2, 1) 0 0 -2 -2 2 0 0 (1, 1) -2 0 0 2

L−
L23

+b3 + 2γ (1, 2, 1) 0 0 -2 -2 -2 0 0 (1, 1) 2 0 0 -2
L+

R23
(1, 1, 2) 0 0 2 2 2 0 0 (1, 1) 2 0 0 -2

L−
R23

(1, 1, 2) 0 0 2 2 -2 0 0 (1, 1) -2 0 0 2
D1 1+ S+ b2 (3, 1, 1) -3 1 -1 1 0 0 0 (1, 1) 0 -3 3 2
D̄1 +α± γ (3̄, 1, 1) 3 -1 1 -1 0 0 0 (1, 1) 0 3 -3 -2
D2 1+ S+ b3 (3, 1, 1) 2 0 0 -2 0 0 0 (1, 1) 2 0 0 2
D̄2 +α + β + 2γ (3̄, 1, 1) -2 0 0 2 0 0 0 (1, 1) -2 0 0 -2

Table 3: Model 3 fields.
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F SEC (C;L;R) QC Q1 Q2 Q3 Q4 Q5 Q6 SU(3)H1;2
Q7 Q8 Q9 Q10

φ1 S+ b1 + b2 (1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 1) -2 0 6 0
φ2 +α+ 2γ (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 1) 2 0 -6 0
φ3 S+ b1 + b3 (1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 1) -2 0 6 0
φ4 +α+ 2γ (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 1) 2 0 -6 0
φ5 S+ b2 + b3 (1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 1) -2 0 6 0
φ6 +α+ 2γ (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 1) 2 0 -6 0
φ7 S+ b1 + b2 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) 4 0 0 0
φ̄7 +α + β (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) -4 0 0 0
φ8 (1, 1, 1) 0 2 -2 0 0 0 0 (1, 1) -4 0 0 0
φ̄8 (1, 1, 1) 0 -2 2 0 0 0 0 (1, 1) 4 0 0 0
φ9 S+ b1 (1, 1, 1) -3 3 1 -1 0 0 0 (1, 1) 2 -3 3 0
φ̄9 +b3 + α (1, 1, 1) 3 -3 -1 1 0 0 0 (1, 1) -2 3 -3 0
φ10 ±γ (1, 1, 1) -3 -1 -3 -1 0 0 0 (1, 1) 2 -3 3 0
φ̄10 (1, 1, 1) 3 1 3 1 0 0 0 (1, 1) -2 3 -3 0
φ11 (1, 1, 1) -3 -1 1 3 0 0 0 (1, 1) 2 -3 3 0
φ̄11 (1, 1, 1) 3 1 -1 -3 0 0 0 (1, 1) -2 3 -3 0
φ12 S+ b2 (1, 1, 1) -3 -3 -1 -1 0 0 0 (1, 1) -2 -3 3 0
Φ̄31 +b3 + β (1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 2 3 -3 0
φ13 ±γ (1, 1, 1) -3 1 3 -1 0 0 0 (1, 1) -2 -3 3 0
φ̄13 (1, 1, 1) 3 -1 -3 1 0 0 0 (1, 1) 2 3 -3 0
φ14 (1, 1, 1) -3 1 -1 3 0 0 0 (1, 1) -2 -3 3 0
φ̄14 (1, 1, 1) 3 -1 1 -3 0 0 0 (1, 1) 2 3 -3 0
φ15 1 + S+ b3 (1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 1) 0 6 0 2
φ̄15 +α+ 2γ (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 1) 0 -6 0 -2
φ16 1 + S+ b2 (1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 1) 0 6 0 2
φ̄16 +α+ 2γ (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 1) 0 -6 0 -2
φ17 1 + S+ b1 (1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 1) 0 6 0 2
φ̄17 +α+ 2γ (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 1) 0 -6 0 -2
φ18 1 + S+ b3 (1, 1, 1) 6 0 0 2 0 0 0 (1, 1) -2 0 0 -2
φ̄18 +α + β + 2γ (1, 1, 1) -6 0 0 -2 0 0 0 (1, 1) 2 0 0 2
φ19 1 + S+ b1 (1, 1, 1) -3 -3 -1 -1 0 0 0 (1, 1) 0 3 -3 2
φ̄19 +β ± γ (1, 1, 1) 3 3 1 1 0 0 0 (1, 1) 0 -3 3 -2
φ20 (1, 1, 1) -3 1 3 -1 0 0 0 (1, 1) 0 3 -3 2
φ̄20 (1, 1, 1) 3 -1 -3 1 0 0 0 (1, 1) 0 -3 3 -2
φ21 (1, 1, 1) -3 1 -1 3 0 0 0 (1, 1) 0 3 -3 2
φ̄21 (1, 1, 1) 3 -1 1 -3 0 0 0 (1, 1) 0 -3 3 -2

Table 3 continued: Model 3 fields.
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F SEC (C;L;R) QC Q1 Q2 Q3 Q4 Q5 Q6 SU(3)H1;2
Q7 Q8 Q9 Q10

H+
1 1+ S+ b1 (1, 1, 1) 0 2 0 0 0 -2 -2 (3, 1) 0 2 0 -2

H−
1 +α + 2γ (1, 1, 1) 0 -2 0 0 0 -2 -2 (3̄, 1) 0 -2 0 2

H+
2 1+ S+ b2 (1, 1, 1) 0 0 2 0 -2 0 -2 (3, 1) 0 2 0 -2

H−
2 +α + 2γ (1, 1, 1) 0 0 -2 0 -2 0 -2 (3̄, 1) 0 -2 0 2

H+
3 1+ S+ b3 (1, 1, 1) 0 0 0 2 -2 -2 0 (3, 1) 0 2 0 -2

H−
3 +α + 2γ (1, 1, 1) 0 0 0 -2 -2 -2 0 (3̄, 1) 0 -2 0 2

H4 1+ S+ b1 (1, 1, 1) -3 1 -1 -1 0 0 0 (3, 1) 0 -1 -3 -2
H̄4 +β ± γ (1, 1, 1) 3 -1 1 1 0 0 0 (3̄, 1) 0 1 3 2
H5 S+ b1 + b3 (1, 1, 1) -3 -1 1 -1 0 0 0 (1, 3) -2 -3 -1 0
H̄5 +α± γ (1, 1, 1) 3 1 -1 1 0 0 0 (1, 3̄) 2 3 1 0
H6 S+ b2 + b3 (1, 1, 1) -3 1 -1 -1 0 0 0 (1, 3) 2 -3 -1 0
H̄6 +β ± γ (1, 1, 1) 3 -1 1 1 0 0 0 (1, 3̄) -2 3 1 0
H7 S+ b1 + b2 (1, 1, 1) 0 2 2 0 0 0 0 (1, 3) 0 0 -4 0
H̄7 +α + β (1, 1, 1) 0 -2 -2 0 0 0 0 (1, 3̄) 0 0 4 0
H8 (1, 1, 1) 0 -2 -2 0 0 0 0 (1, 3) 0 0 -4 0
H̄8 (1, 1, 1) 0 2 2 0 0 0 0 (1, 3̄) 0 0 4 0
H9 1+ S+ b2 (1, 1, 1) 3 1 -1 1 0 0 0 (1, 3) 0 -3 -1 -2
H̄9 +α± γ (1, 1, 1) -3 -1 1 -1 0 0 0 (1, 3̄) 0 3 1 2
H+

10 S+ b1 + b2 (1, 1, 1) 0 0 0 2 -2 -2 0 (1, 3) 2 0 2 0
H−

10 +α + 2γ (1, 1, 1) 0 0 0 -2 -2 -2 0 (1, 3̄) -2 0 -2 0
H+

11 S+ b1 + b3 (1, 1, 1) 0 0 2 0 -2 0 -2 (1, 3) 2 0 2 0
H−

11 +α + 2γ (1, 1, 1) 0 0 -2 0 -2 0 -2 (1, 3̄) -2 0 -2 0
H+

12 S+ b2 + b3 (1, 1, 1) 0 2 0 0 0 -2 -2 (1, 3) 2 0 2 0
H−

12 +α + 2γ (1, 1, 1) 0 -2 0 0 0 -2 -2 (1, 3̄) -2 0 -2 0

Table 3 continued: Model 3 fields.
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