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1. Introduction

In recent work classical solitonic solutions of string theory with higher-membrane

structure have been investigated. These solutions can be classified according to the sym-

metry the solitons possess in the subspace of spacetime transverse to the membrane. In this

paper, we discuss two classes of solutions, those with four-dimensional spherical symmetry,

which possess instanton structure, and those with three-dimensional spherical symmetry,

which represent magnetic monopole-type solutions in string theory.

For both instantons and monopoles, we review solutions in Yang-Mills field theory as

well as axionic solitonic solutions for the massless fields of the bosonic string. In each case

we combine the gauge theory solution with the corresponding bosonic solution to obtain

an exact multi-soliton solution of heterotic string theory[1].

We begin section 2 with a review of the ’t Hooft ansatz for the Yang-Mills instanton[2–

6]. We then turn to the axionic instanton solution first mentioned in [7]. This tree-level

solution is extended in [8] to an exact solution of bosonic string theory for the special case

of a linear dilaton wormhole solution[9,10]. Exactness is shown by combining the metric

and antisymmetric tensor in a generalized curvature, which is written covariantly in terms

of the tree-level dilaton field, and rescaling the dilaton order by order in the parameter α′.

The corresponding conformal field theory is written down.

An exact heterotic multi-soliton solution with YM instanton structure in the four

dimensional transverse space can be obtained[11,12] by equating the curvature of the Yang-

Mills gauge field with the generalized curvature derived in [8]. This solution represents an

exact extension of the tree-level fivebrane solutions of [13,14,15] and combines the gauge

and axionic instanton structures.

In section 3 we turn to the three-dimensional (monopole) solutions. We first discuss

a multimonopole solution in YM field theory, which arises from a modification of the

’t Hooft ansatz for the four-dimensional instanton[16,17]. We then mention the bosonic

three-dimensional solution obtained in [18]. We complete this section with a review of the

recently constructed exact multimonopole solution of heterotic string theory[16,17], which

now combines the gauge and axionic monopole structures. Unlike the heterotic instanton

solution, this solution does not lend itself easily to a CFT description. An interesting aspect

of this string monopole solution, however, is that the divergences stemming from the YM

sector are precisely cancelled by those coming from the gravity sector, thus resulting in a

finite action solution.

We conclude in section 4 with a summary of these results and a brief discussion.
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2. Four-Dimensional Instanton Solutions

In this section, we discuss four-dimensional, or instanton solutions in bosonic and het-

erotic string theory. We first summarize the ’t Hooft ansatz for the Yang-Mills instanton,

and then write down the tree-level bosonic axionic instanton solution of [7]. An exact ex-

tension of this solution can be obtained for the special case of a wormhole solution, and the

corresponding conformal field theory is written down[8]. Finally, an exact multi-instanton

solution of heterotic string theory is obtained, combining the Yang-Mills gauge solution

with the bosonic axionic instanton[19,11,12].

Consider the four-dimensional Euclidean action

S = − 1

2g2

∫

d4xTrGµνG
µν , µ, ν = 1, 2, 3, 4. (2.1)

For gauge group SU(2), the fields may be written as Aµ = (g/2i)σaAa
µ and Gµν =

(g/2i)σaGa
µν (where σa, a = 1, 2, 3 are the 2× 2 Pauli matrices). The equation of motion

derived from this action is solved by the ’t Hooft ansatz[2–6]

Aµ = iΣµν∂ν ln f, (2.2)

where Σµν = ηiµν(σi/2) for i = 1, 2, 3, where

ηiµν = −ηiνµ = ǫiµν , µ, ν = 1, 2, 3,

= −δiµ, ν = 4
(2.3)

and where f−1 f = 0. The ansatz for the anti-self-dual solution is similar, with the

δ-term in (2.3) changing sign. To obtain a multi-instanton solution, one solves for f in the

four-dimensional space to obtain

f = 1 +

N
∑

i=1

ρ2i
|~x− ~ai|2

, (2.4)

where ρ2i is the instanton scale size and ~ai the location in four-space of the ith instanton.

We will return to the ’t Hooft ansatz when we consider a superstring model with YM

coupling (the heterotic string[1]).

We now turn to the bosonic axionic instanton solution considered in [8]. We first

derive the tree-level solution of [7] and then extend the single instanton wormhole solution

to O(α′) in the massless fields. For this purpose we use the theorem of equivalence of
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the massless string field equations to the sigma-model Weyl invariance conditions (demon-

strated to two-loop order by Metsaev and Tseytlin[20,21]), which require the Weyl anomaly

coefficients β
G

µν , β
B

µν and β
Φ
to vanish identically to the appropriate order in the parameter

α′. The two-loop solution obtained by this method suggests a representation of the sigma

model as the product of a WZW[22] model and a one-dimensional CFT (a Feigin-Fuchs

Coulomb gas)[7]. This representation allows us to obtain an exact solution.

The bosonic sigma model action can be written as[23]

I =
1

4πα′

∫

d2x
(√

γγab∂ax
µ∂bx

νgµν + iǫab∂ax
µ∂bx

νBµν + α′√γR(2)φ
)

, (2.5)

where gµν is the sigma model metric, φ the dilaton and Bµν the antisymmetric tensor,

and where γab is the worldsheet metric and R(2) the two-dimensional curvature. The Weyl

anomaly coefficients are given by[20,21]

β
G

µν = βG
µν + 2α′∇µ∇νφ+∇(µWν),

β
B

µν = βB
µν + α′Hµν

λ∂λφ+
1

2
Hµν

λWλ,

β
Φ
= βΦ + α′(∂φ)2 +

1

2
Wλ∂λφ, ,

(2.6)

where βG
µν , β

B
µν and βΦ are the RG β functions and where Hµνλ = ∂[µBνλ] and Wµ =

−(α′2/24)∇µH
2.

We first show that for any dilaton function satisfying e−2φ e2φ = 0 with

gµν = e2φδµν µ, ν = 1, 2, 3, 4,

gab = δab a, b = 5, ..., 26,

Hµνλ = ±ǫµνλσ∂σφ µ, ν, λ, σ = 1, 2, 3, 4

(2.7)

the O(α′) Weyl anomaly coefficients vanish identically.

We define a generalized curvature R̂i
jkl in terms of the standard curvature Ri

jkl and

Hµαβ [24]:

R̂i
jkl = Ri

jkl +
1

2

(

∇lH
i
jk −∇kH

i
jl

)

+
1

4

(

Hm
jkH

i
lm −Hm

jlH
i
km

)

. (2.8)

One can also define R̂i
jkl as the Riemann tensor generated by the generalized Christoffel

symbols Γ̂µ
αβ , where Γ̂µ

αβ = Γµ
αβ − (1/2)Hµ

αβ .

We follow Metsaev and Tseytlin’s computation of the renormalization group beta

functions for the general sigma-model and combine dimensional regularization and the
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minimal subtraction scheme with the following generalized prescription for contraction of

ǫab tensors[20]:

ǫabǫcd = f(d)
(

δacδbd − δadδbc
)

, (2.9)

where f(d) = 1 − f1ǫ + O(ǫ2) and ǫ = d − 2. We note that the precise form of the

renormalization group beta functions at two-loop order is not scheme-independent but

depends on the choice of f1. Here we set f1 = −1, for which Metsaev and Tseytlin obtain

the following two-loop expressions for the Weyl anomaly coefficients[20,21]:

β
G

µν = α′(R̂(µν) + 2∇µ∇νφ)

+
α′2

2

(

R̂αβγ
(µR̂ν)αβγ − 1

2
R̂βγα

(µR̂ν)αβγ +
1

2
R̂α(µν)β(H

2)αβ
)

+∇(µWν),

β
B

µν = α′(R̂[µν] +Hµν
λ∂λφ)

+
α′2

2

(

R̂αβγ
[µR̂ν]αβγ − 1

2
R̂βγα

[µR̂ν]αβγ +
1

2
R̂α[µν]β(H

2)αβ
)

+
1

2
Hµν

λWλ,

β
Φ
=
D

6
− α′

2

(

∇2φ− 2(∂φ)2 +
1

12
H2

)

+
α′2

16

(

2(H2)µν∇µ∇νφ+R2
λµνρ −

11

2
RHH +

5

24
H4 +

11

8
(H2

µν)
2 +

4

3
∇H · ∇H

)

+
1

2
Wλ∂λφ,

(2.10)

where ∇H ·∇H ≡ ∇αHβγδ∇αHβγδ. Unless otherwise indicated, all expressions are written

to two loop order in the beta-functions, which corresponds to O(α′) in the action. Also, all

indices are in the curved four-space, as it is clear that the flat dimensions do not contribute.

The crucial observation for obtaining higher-loop and even exact solutions is the fol-

lowing. For any solution of the form (2.7), we can express the generalized curvature in

covariant form in terms of the dilaton field φ:

R̂i
jkl = δil∇k∇jφ− δik∇l∇jφ+ δjk∇l∇iφ− δjl∇k∇iφ± ǫijkm∇l∇mφ∓ ǫijlm∇k∇mφ,

(2.11)

It follows from (2.11) that

R̂(µν) = −2∇µ∇νφ,

R̂[µν] = 0.
(2.12)
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It also follows from (2.7) that

∇2φ = 0,

Hµν
λ∂λφ = 0,

H2 = 24(∂φ)2.

(2.13)

From (2.12) and (2.13) it follows that the O(α′) terms in the Weyl anomaly coefficients

in (2.10) vanish identically for the ansatz (2.7). A tree-level multi-instanton solution is

therefore given by (2.7) with the dilaton given by

e2φ = C +

N
∑

i=1

Qi

|~x− ~ai|2
, (2.14)

where Qi is the charge and ~ai the location in the four-space (1234) of the ith instanton.

We call (1234) the transverse space, as the solitons have the structure of 21+1-dimensional

objects embedded in a 26-dimensional spacetime.

We now specialize to the spherically symmetric case of e2φ = Q/r2 in (2.7) and

determine the O(α′) corrections to the massless fields in (2.7) so that the Weyl anomaly

coefficients vanish to O(α′2). For this solution we notice

∇µ∇νφ = 0, (2.15)

and therefore from (2.11)

R̂i
jkl = 0, (2.16)

and we have what is called a “parallelizable” space[20,21]. To maintain a parallelizable

space to O(α′) we keep gµν and Hαβγ in their lowest order form and assume that any

corrections to (2.7) appear in the dilaton:

φ = φ0 + α′φ1 + ...

e2φ0 =
Q

r2
,

gµν = e2φ0δµν ,

Hµνλ = ±ǫµνλσ∂σφ0.

(2.17)

It follows from (2.17) that H2 = 24(∂φ0)
2 = 24/Q and thus Wµ = 0. It follows from (2.16)

that β
G

µν and β
B

µν vanish identically to two loop order and that

β
Φ
=
D

6
+α′

(

(∂φ)2 − 1

Q

)

+
α′2

16

(

R2
λµνρ −

11

2
RHH +

5

24
H4 +

11

8
(H2

µν)
2 +

4

3
∇H · ∇H

)

.

(2.18)
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We use the relations in equation (34) in [20] for parallelizable spaces and the observation

that (H2
µν)

2 = 2H4 = 192/Q2 for our solution to get the identities

R2
λµνρ =

1

8
H4,

RHH =
1

2
H4,

∇H · ∇H = 0.

(2.19)

(2.18) then simplifies further to

β
Φ
=
D

6
+ α′

(

(∂φ)2 − 1

Q

)

+ 2
α′2

Q2
. (2.20)

The lowest order term in β
Φ

is proportional to the central charge and the O(α′) terms

vanish identically. With the choice
−→∇φ1 = −(1/Q)

−→∇φ0, the O(α′2) terms also vanish

identically. The two-loop solution is then given by

e2φ =
Q

r2(1−
α′

Q
)
,

gµν =
Q

r2
δµν ,

Hµνλ = ±ǫµνλσ∂σφ0,

(2.21)

which corresponds to a simple rescaling of the dilaton. A quick check shows that this

solution has finite action near the singularity.

We now rewrite β
Φ
in (2.20) in the following suggestive form:

6β
Φ
=

(

1 + 6α′(∂φ)2
)

+

(

3− 6
α′

Q
+ 12(

α′

Q
)2
)

= 4.

(2.22)

The above splitting of the central charge c = 6β
Φ
suggests the decomposition of the corre-

sponding sigma model into the product of a one-dimensional CFT (a Feigin-Fuchs Coulomb

gas) and a three-dimensional WZW model with an SU(2) group manifold [7,20,21]. This

can be seen as follows. Setting u = ln r, we can rewrite (2.5) for our solution[7] in the form

I = I1 + I3, where

I1 =
1

4πα′

∫

d2x
(

Q(∂u)2 + α′R(2)φ
)

(2.23)

is the action for a Feigin-Fuchs Coulomb gas, which is a one-dimensional CFT with central

charge given by c1 = 1+6α′(∂φ)2[25]. The imaginary charge of the Feigin-Fuchs Coulomb
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gas describes the dilaton background growing linearly in imaginary time and I3 is the

Wess–Zumino–Witten[22] action on an SU(2) group manifold with central charge

c3 =
3k

k + 2
≃ 3− 6

k
+

12

k2
+ ... (2.24)

where k = Q/α′, called the “level” of the WZW model, is an integer. This can be seen

from the quantization condition on the Wess-Zumino term[22]

IWZ =
i

4πα′

∫

∂S3

d2xǫab∂ax
µ∂bx

νBµν

=
i

12πα′

∫

S3

d3xǫabc∂ax
µ∂bx

ν∂cx
λHµνλ

= 2πi

(

Q

α′

)

.

(2.25)

Thus Q is not arbitrary, but is quantized in units of α′.

We use this splitting to obtain exact expressions for the fields by fixing the metric

and antisymmetric tensor field in their lowest order form and rescaling the dilaton order

by order in α′. The resulting expression for the dilaton is

e2φ =
Q

r

√

4

1+ 2α′

Q

. (2.26)

We now turn to the heterotic multi-instanton solution of [11,12]. The tree-level su-

persymmetric vacuum equations for the heterotic string are given by

δψM =
(

∇M − 1
4HMABΓ

AB
)

ǫ = 0, (2.27)

δλ =
(

ΓA∂Aφ− 1
6HAMCΓ

ABC
)

ǫ = 0, (2.28)

δχ = FABΓ
ABǫ = 0, (2.29)

where ψM , λ and χ are the gravitino, dilatino and gaugino fields. The Bianchi identity is

given by

dH = α′
(

trR ∧R − 1
30TrF ∧ F

)

. (2.30)

The (9 + 1)-dimensional Majorana-Weyl fermions decompose down to chiral spinors

according to SO(9, 1) ⊃ SO(5, 1)⊗ SO(4) for the M9,1 →M5,1 ×M4 decomposition. Let

µ, ν, λ, σ = 1, 2, 3, 4 and a, b = 0, 5, 6, 7, 8, 9. Then the ansatz

gµν = e2φδµν ,

gab = ηab,

Hµνλ = ±ǫµνλσ∂σφ

(2.31)
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with constant chiral spinors ǫ± solves the supersymmetry equations with zero background

fermi fields provided the YM gauge field satisfies the instanton (anti)self-duality condition

Fµν = ±1

2
ǫµν

λσFλσ. (2.32)

An exact solution is obtained as follows. Define a generalized connection by

ΩAB
±M = ωAB

M ±HAB
M (2.33)

embedded in an SU(2) subgroup of the gauge group, and equate it to the gauge connection

Aµ[26] so that dH = 0 and the corresponding curvature R(Ω±) cancels against the Yang-

Mills field strength F . As in the bosonic case, for e−2φ e2φ = 0 with the above ansatz,

the curvature of the generalized connection can be written in the covariant form[8]

R(Ω±)
mn
µν =δnν∇m∇µφ− δnµ∇m∇νφ+ δmµ∇n∇νφ− δmν∇n∇µφ

± ǫµmnα∇α∇νφ∓ ǫνmnα∇α∇µφ,
(2.34)

from which it easily follows that

R(Ω±)
mn
µν = ∓1

2 ǫ
λσ

µν R(Ω±)
mn
λσ . (2.35)

Thus we have a solution with the ansatz (2.31) such that

Fmn
µν = R(Ω±)

mn
µν , (2.36)

where both F and R are (anti)self-dual. This solution becomes exact since Aµ = Ω±µ im-

plies that all the higher order corrections vanish[26,27,28,11,12,19]. The self-dual solution

for the gauge connection is then given by the ’t Hooft ansatz

Aµ = iΣµν∂ν ln f. (2.37)

For a multi-instanton solution f is again given by

f = e−2φ0e2φ = 1 +

N
∑

i=1

ρ2i
|~x− ~ai|2

, (2.38)

where ρ2i is the instanton scale size and ~ai the location in four-space of the ith instanton. An

interesting feauture of the heterotic solution is that it combines a YM instanton structure
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in the gauge sector with an axionic instanton structure in the gravity sector. In addition,

the heterotic solution has finite action.

Note that the single instanton solution in the heterotic case carries through to higher

order without correction to the dilaton. This seems to contradict the bosonic solution by

suggesting that the expansion for the Weyl anomaly coefficient β
Φ
terminates at one loop.

This contradiction is resolved by noting that for a supersymmetric ansatz the bosonic

contribution to the central charge is given by[29]

c3 =
3k′

k′ + 2
, (2.39)

where k′ = k − 2. This reduces to

c3 = 3− 6

k

= 3− 6α′

Q
,

(2.40)

which indeed terminates at one loop order. The exactness of the splitting then requires

that c1 not get any corrections from (∂Φ)2 so that c1 + c3 = 4 is exact for the tree-level

value of the dilaton[11,12,19].

3. Three-Dimensional Monopole Solutions

In this section we review the solutions with three-dimensional spherical symmetry,

and which have monopole-like structure. We begin with a simple modification of the ’t

Hooft ansatz[16,17] which leads to a multimonopole solution in field theory, not in the

BPS limit[30,31] and in itself far less interesting than the BPS solution. We then note that

a tree-level bosonic multi-soliton solution with monopole-like structure can be written

down[18]. Finally, we combine the gauge solution with the bosonic solution to obtain an

exact heterotic multimonopole solution[16,17].

We now return to the ’t Hooft ansatz and the four-dimensional Euclidean action

S = − 1

2g2

∫

d4xTrGµνG
µν , µ, ν = 1, 2, 3, 4 (3.1)

with gauge group SU(2). We obtain a mutlimonopole solution by modifying the ’t Hooft

ansatz

Aµ = iΣµν∂ν ln f (3.2)
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as follows. We single out a direction in the transverse four-space (say x4) and assume all

fields are independent of this coordinate. Then the solution for f satisfying f−1 f = 0

can be written as

f = 1 +

N
∑

i=1

mi

|~x− ~ai|
, (3.3)

where mi is the charge and ~ai the location in the three-space (123) of the ith monopole.

If we make the identification Φ ≡ A4 (we loosely refer to this field as a Higgs field in

this paper, even though there is no apparent symmetry breaking mechanism), then the

Lagrangian density for the above ansatz can be rewritten as

Ga
µνG

a
µν =Ga

ijG
a
ij + 2Ga

k4G
a
k4

=Ga
ijG

a
ij + 2DkΦ

aDkΦ
a,

(3.4)

which has the same form as the Lagrangian density for YM + massless scalar field in three

dimensions.

We now go to 3 + 1 dimensions with the Lagrangian density (signature (−+++))

L = −1

4
Ga

µνG
µνa − 1

2
DµΦ

aDµΦa, (3.5)

and show that the above multimonopole ansatz is a static solution with Aa
0 = 0 and all

time derivatives vanish. The equations of motion in this limit are given by

DiG
jia = gǫabc(DjΦb)Φc,

DiD
iΦa = 0.

(3.6)

It is then straightforward to verify that the above equations are solved by the modified ’t

Hooft ansatz

Φa = ∓1

g
δai∂iω,

Aa
k = ǫakj∂jω,

(3.7)

where ω ≡ ln f . This solution represents a multimonopole configuration with sources at

~ai = 1, 2...N . A simple observation of far field and near field behaviour shows that this

solution does not arise in the Prasad-Sommerfield[31] limit. In particular, the fields are

singular near the sources and vanish as r → ∞. This solution can be thought of as a

multi-line source instanton solution, each monopole being interpreted as an “instanton

string”[32].
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The topological charge of each source is easily computed (Φ̂a ≡ Φa/|Φ|) to be

Q =

∫

d3xk0 =
1

8π

∫

d3xǫijkǫ
abc∂iΦ̂

a∂jΦ̂
b∂kΦ̂

c = 1. (3.8)

The magnetic charge of each source is then given by mi = Q/g = 1/g. It is also straight-

forward to show that the Bogomoln’yi[30] bound

Ga
ij = ǫijkDkΦ

a (3.9)

is saturated by this solution. Finally, it is easy to show that the magnetic field Bi =
1
2 ǫijkF

jk (where Fµν ≡ Φ̂aGa
µν − (1/g)ǫabcΦ̂aDµΦ̂

bDνΦ̂
c is the gauge-invariant electro-

magnetic field tensor defined by ’t Hooft[33]) has the the far field limit behaviour of a

multimonopole configuration:

B(~x) →
N
∑

i=1

mi(~x− ~ai)
|~x− ~ai|3

, as r → ∞. (3.10)

As usual, the existence of this static multimonopole solution owes to the cancellation of

the gauge and Higgs forces of exchange–the “zero-force” condition.

We have presented all the monopole properties of this solution. Unfortunately, this

solution as it stands has divergent action near each source, and this singularity cannot be

simply removed by a unitary gauge transformation. This can be seen for a single source

by noting that as r → 0, Ak → 1
2

(

U−1∂kU
)

, where U is a unitary 2 × 2 matrix. The

expression in parentheses represents a pure gauge, and there is no way to get around the

1/2 factor in attempting to “gauge away” the singularity[34]. The field theory solution is

therefore not very interesting physically. As we shall later in this section, however, we can

obtain an analogous finite action solution in heterotic string theory. As in the previous

section, we first consider a monopole-like solution in bosonic string theory.

If we again single out a direction (say x4) in the transverse space (1234) of the bosonic

string and assume all fields are independent of x4, then the tree-level bosonic multi-soliton

solution to the string equations of motion with the ansatz (2.7) is given by[18]

e2φ = C +
N
∑

i=1

mi

|~x− ~ai|
,

gµν = e2φδµν , µ, ν = 1, 2, 3, 4,

gab = ηab, a, b = 0, 5, 6...25,

Hαβγ = ±ǫαβγµ∂µφ, α, β, γ, µ = 1, 2, 3, 4,

(3.11)
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where ~x = (x1, x2, x3) is a three-dimensional coordinate vector in the (123) subspace of

the transverse space. mi represents the charge and ~ai the location in the three-space of

the ith source.

By singling out a direction x4 and projecting out all the field dependence on it, we

destroy the SO(4) invariance in the transverse space possessed by the instanton solution[8].

However, (3.11) is an equally valid solution to the string equations as the multi-instanton

solution, since in both cases the dilaton field satisfies the Poisson equation e−2φ e2φ =

0. The projection is necessary to obtain the three-dimensional symmetry of a magnetic

monopole.

Although the above bosonic multi-soliton solution (3.11) lacks the gauge and Higgs

fields normally attributed to a magnetic monopole in field theory, one can think of the

dual field in the transverse four-space H∗
µ ≡ 1

6 ǫαβγµH
αβγ as the magnetic field strength of

a multimonopole configuration in the space (123) (note that H∗
4 = 0).

Unlike the four-dimensional solutions, the three-dimensional solutions do not easily

lend themselves to a CFT description, and it is therefore difficult to go beyond O(α′) in

obtaining stringy corrections to the tree-level fields. In [8], the O(α′) correction was worked

out for the special case of a single source with C = 0. As in the four-dimensional case, the

metric and antisymmetric tensor are unchanged to O(α′), but the dilaton is corrected:

e2φ =
m

r

(

1− α′

8mr

)

. (3.12)

Unlike the four-dimensional solution, however, the dilaton correction is not a simple rescal-

ing of the power of r to order α′. This fact is intimately connected with the difficulty in

formulating a CFT description of the three-dimensional solution.

We now combine the above solutions to construct an exact multimonopole solution

of heterotic string theory. The derivation of this solution closely parallels that of the

multi-instanton solution reviewed in section 2, but in this case, the solution possesses

three-dimensional (rather than four-dimensional) spherical symmetry near each source.

Again the reduction is effected by singling out a direction in the transverse space. An

exact solution is now given by

gµν = e2φδµν , gab = ηab,

Hµνλ = ±ǫµνλσ∂σφ,

e2φ = e2φ0f,

Aµ = iΣµν∂ν ln f,

(3.13)
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where in this case

f = 1 +

N
∑

i=1

mi

|~x− ~ai|
, (3.14)

where mi is the charge and ~ai the location in the three-space (123) of the ith monopole.

If we again identify the Higgs field as Φ ≡ A4, then the gauge and Higgs fields may be

simply written in terms of the dilaton as

Φa = −2

g
δia∂iφ,

Aa
k = −2

g
ǫakj∂jφ

(3.15)

for the self-dual solution. For the anti-self-dual solution, the Higgs field simply changes

sign. Here g is the YM coupling constant. Note that φ0 drops out in (3.15).

The above solution (with the gravitational fields obtained directly from (3.13) and

(3.14)) represents an exact multimonopole solution of heterotic string theory and has the

same structure in the four-dimensional transverse space as the above multimonopole solu-

tion of the YM + scalar field action. If we identify the (123) subspace of the transverse

space as the space part of the four-dimensional spacetime (with some toroidal compact-

ification, similar to that used in [35]) and take the timelike direction as the usual X0,

then the monopole properties of the field theory solution carry over directly into the string

solution.

The string action contains a term −α′F 2 which also diverges as in the field theory

solution. However, this divergence is precisely cancelled by the term α′R2(Ω±) in the

O(α′) action. This result follows from the exactness condition Aµ = Ω±µ which leads to

dH = 0 and the vanishing of all higher order corrections in α′. Another way of seeing

this is to consider the higher order corrections to the bosonic action shown in [27,28]. All

such terms contain the tensor TMNPQ, a generalized curvature incorporating both R(Ω±)

and F . The ansatz is constructed precisely so that this tensor vanishes identically[8,19].

The action thus reduces to its finite lowest order form and can be calculated directly for a

multi-source solution from the expressions for the massless fields in the gravity sector.

The divergences in the gravitational sector in heterotic string theory thus serve to

cancel the divergences stemming from the field theory solution. This solution thus provides

an interesting example of how this type of cancellation can occur in string theory, and

supports the promise of string theory as a finite theory of quantum gravity. Another point

of interest is that the string solution represents a supersymmetric multimonopole solution
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coupled to gravity, whose zero-force condition in the gravity sector (cancellation of the

attractive gravitational force and repulsive antisymmetric field force) arises as a direct

result of the zero-force condition in the gauge sector (cancellation of gauge and Higgs

forces of exchange) once the gauge connection and generalized connection are identified.

4. Conclusion

We classified some of the recently obtained higher-membrane solitonic solutions of

string theory according to the symmetry the solitons possess in the space transverse

to the membrane. We considered in this paper two such classes: those with four-

dimensional spehrical symmetry, and which possess instanton structure, and those with

three-dimensional symmetry, which represent magnetic monopole-like solutions in string

theory.

We outlined in section 2 the ’t Hooft ansatz for the Yang-Mills instanton, and then

turned to the bosonic tree-level axionic instanton solution of [7], and its exact extension for

the case of a single instanton wormhole solution[8]. A combination of the gauge instanton

and axionic instanton solutions led to an exact multi-instanton solution in heterotic string

theory[11,12].

In section 3 we considered some of the monopole-like solutions. In this case, a combi-

nation of the modified ’t Hooft ansatz[16,17] and a bosonic three-dimensional solution[18]

led to an exact heterotic multimonopole solution[16,17]. Unlike the instanton solutions,

the monopole solutions do not seem to be easily describable in terms of conformal field

theories, an unfortunate state of affairs from the point of view of string theory. An inter-

esting aspect of this solution, however, is that the YM divergences of the modified ’t Hooft

ansatz solution are precisely cancelled in the string theory solution by similar divergences

in the gravity sector, resulting in a finite action solution. This finding is significant in that

it represents an example of how string theory incorporates gravity in such a way as to

cancel infinities inherent in gauge theories, thus supporting its promise as a finite theory

of quantum gravity.

Another class of solutions, which we did not consider here, are the eight dimensional

instanton[36–38] solutions of string theory[39–41]. In this case, however, the exact exten-

sion is most natural in the context of a dual theory of fundamental fivebranes, which has

not yet been constructed.
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