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Abstract

The propagation of the isoscalar and isovector sound modes in a hot nuclear

matter is considered. The approach is based on the collisional kinetic theory

and takes into account the temperature and memory effects. It is shown that

the sound velocity and the attenuation coefficient are significantly influenced

by the Fermi surface distortion (FSD). The corresponding influence is much

stronger for the isoscalar mode than for the isovector one. The memory

effects cause a non-monotonous behavior of the attenuation coefficient as a

function of the relaxation time leading to a zero-to-first sound transition with

increasing temperature. The mixing of both the isoscalar and the isovector

sound modes in an asymmetric nuclear matter is evaluated. The condition

for the bulk instability and the instability growth rate in the presence of the

memory effects is studied. It is shown that both the FSD and the relaxation

processes lead to a shift of the maximum of the instability growth rate to the

longer wave length region.
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I. INTRODUCTION

In the vicinity of the equilibrium state nuclear matter is stable with respect to parti-
cle density and Fermi surface distortions and the excitation of both the isoscalar and the
isovector sound modes is possible. Propagation of an isoscalar sound wave in nuclear matter
depends crucially on the Landau parameter F0 in the quasiparticle interaction amplitude
and on the relaxation processes. For zero temperature, there is an underdamped zero-sound
mode at F0 > 0 because the phase velocity of the sound wave exceeds the speed of particles
inside the Fermi sphere. A strong Landau damping appears at −1 < F0 < 0 where a nonzero
transfer of energy from the wave to particles is possible [1] and the wave transforms to an
overdamped mode. The picture of propagation of the zero-sound wave is essentially more
complicated in the case of a hot nuclear matter. Due to the existence of the temperature
tail of the equilibrium distribution function, the phase conditions for the Landau damping
are fulfilled here for positive values of the F0 and a possibility for a propagation of the sound
wave appears in the region −1 < F0 < 0 [2].

The zero sound is transformed to the first-sound mode in the limit of strong interaction,
|F0| ≫ 1, [3] or in the frequent collision regime at high temperatures [4]. It is necessary to
stress that the sound velocity c is directly related to the nuclear matter incompressibility

coefficient K for the first-sound mode only. In this case, one has c ≈ c1 =
√

K/9m, where c1
is the velocity of the first sound. In general, the sound velocity c is a complicated function
of both K and the dimensionless collisional parameter ωτ , where τ is the relaxation time
and ω is the eigenfrequency of the sound mode. In the present work we obtain a simple
analytical expression for the sound velocity c which provides a description for both the
frequent- and rare-collision limit as well as for the intermediate cases. Special attention is
paid to the propagation of the isovector sound and for the zero- to first- sound transition
for this mode. It is well known [5] that hydrodynamic approaches like the Goldhaber-Teller
or Steinwedel-Jensen models give a reasonable description of the nuclear isovector giant
resonances (IVGR). However it is not the case for the isoscalar giant resonances (ISGR),
where the Fermi surface distortion effects plays an important role [6–9] and the traditional
hydrodynamic model can not be applied. In our approach, this situation is directly related
to the peculiarities of the propagation of both isovector and isoscalar sounds.

The interparticle collisions on the distorted Fermi surface lead to the collisional damping
of the sound wave. Two limiting regimes ωτ → 0 and ωτ → ∞ provide the existence of
the non-damped first and zero sounds, respectively, [1]. In what follows we will use the
collisional kinetic theory, taking into account the memory effects on the collision integral
[1,10–12]. We will discuss a special feature of the temperature dependence of the attenuation
of the sound mode in hot nuclear matter. In particular, we will show that memory effects
lead to a bell-shaped form of the attenuation coefficient κ as a function of the temperature,
providing a correct behavior of κ in both limiting regimes ωτ → 0 and ωτ → ∞.

With decreasing bulk density or increasing temperature the nuclear matter reaches the
regions of mechanical or thermodynamical instabilities with respect to small particle density
distortions [3,13–17] and to separation into liquid and gas phases [18,19]. The general
instability condition of the Fermi liquid reads 1 + Fk/(2k + 1) < 0 [20], where Fk is the
Landau’s parameter in the expansion of the quasiparticle interaction amplitude in Legendre
polynomial [1]. However the development of instability depends not only on the equation of
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state, but also on the dynamical effects such as the dynamical Fermi-surface distortion (FSD)
effect [21]. The FSD effects strongly reduce, by the factor ∼ (|F0| − 1)1/2, the instability
growth rate Γ in the unstable region 0 < −1 − F0 ≪ 1 [3]. In the present work, we will
consider the influence of the Fermi-surface distortion, relaxation and memory effects on the
instability growth rate Γ.

The plan of the paper is as follows. In Sec. II we derive the general equation of motion
for the particle density vibrations in the presence of the memory effects. We introduce the
renormalized incompressibility coefficient and the viscosity coefficient which are frequency
dependent due to the memory effect. In Sec. III we obtain a simple expression for the
refraction and attenuation coefficients for both the isoscalar and the isovector sound waves
which propagate in a hot nuclear matter. We consider also the mixing of the isoscalar and
isovector modes in an asymmetric nuclear matter taking into account the relaxation and the
memory effects. The development of the bulk instability in a low density nuclear matter
in the presence of the relaxation and the memory effects is considered in Sec. IV. The
conclusion is given in Sec. V.

II. SOUND PROPAGATION IN HOT NUCLEAR MATTER

We start from the collisional kinetic equation [1]

∂f

∂t
+

p

m

∂f

∂r
− ∂V

∂r

∂f

∂p
= δSt(t). (1)

Here δSt(t) is the collisional integral, V ≡ V (r, t) is the self-consistent mean field and f
≡ f(r,p, t) is the Wigner distribution function in which we will take into account only the
distortion of the Fermi sphere with multipolarities ℓ ≤ 2

f = fs + δf, δf =
2
∑

ℓ=1

δfℓ. (2)

The distribution fs ≡ fs(r,p, t) corresponds to the spherical Fermi surface and δf represents
both the quadrupole deformation and the displacement of the Fermi surface. For small
deviations from a Fermi sphere the right-hand side (RHS) δSt(t) of (1) is a collision integral
linearized in δf and it can be represented in the form

δSt(t) =
∫ t

−∞

dt′A(t− t′)δf(t′), (3)

which takes into account the memory effects due to the memory kernel A(t − t′). In this
paper we will not use an explicit form of A. Below we will need δSt(t) only for periodic
oscillation of δf with the eigenfrequency ω. Assuming the restriction ℓ ≤ 2 for the Fermi
surface distortion, the collision integral (3) can be written in the form of the extended
τ -approximation, see Refs. [22,23],

δSt(t) = − δf2
τr,ω

, (4)

where the relaxation time τr,ω is ω-dependent due to the memory effects.
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The assumption in Eq. (2) allows us to reduce the collisional kinetic equation (1) to
the local equations of motion for the particle density ρ ≡ ρ(r, t), the displacement field
χα ≡ χα(r, t) and the pressure tensor Pαβ ≡ Pαβ(r, t) derived as the lowest p-moments of
the distribution function f(r,p, t):

ρ =
∫

g dp

(2πh̄)3
f,

∂χα

∂t
=

1

ρ

∫

g dp

(2πh̄)3
pα
m

f, Pαβ =
1

m

∫

g dp

(2πh̄)3
(pα −muα)(pβ −muβ)f.

(5)

Here uα = ∂χα/∂t is the velocity field and g is the spin-isospin degeneracy factor. Taking
the first two p-moments of Eq. (1) one obtains, see Refs. [22–24],

mρ
∂2

∂t2
χν + (

∂

∂rν
P + ρ

∂

∂rν
V ) +

∂

∂rµ
P ′

νµ = 0, (6)

where P is the pressure due to motion of nucleons without distortion of the Fermi sphere and
P ′

νµ is associated with quadrupole distortion of the Fermi surface: Pαβ = Pδαβ + P ′

αβ. The
pressure tensor P ′

νµ is responsible for the dissipative processes. Taking the second p-moment
of Eq. (1) one obtains the following equation for the pressure tensor

∂

∂t
Pαβ +

∂

∂r ν
uνPαβ + Pνβ

∂

∂r ν
uα + Pνα

∂

∂r ν
uβ = −P ′

αβ/τr,ω. (7)

The equations of motion (6) and (7) are closed. They can be applied to both the isoscalar
and isovector sound excitations. Let us consider the isoscalar compression mode. To simplify
the problem, we can rewrite the expression in the parenthesis in Eq. (6) near the equilibrium
value of the density ρeq as

∂

∂rν
P + ρ

∂

∂rν
V = ρ

∂

∂rν

δǫ

δρ
≈ ρeq

∂

∂rν





(

δ2ǫ

δρ2

)

eq

δρ



 , (8)

where index ”eq” refers the equilibrium state, ǫ is the energy density of particles

ǫ = ǫkin + ǫpot, (9)

ǫkin is the kinetic energy density

ǫkin =
3

2
P =

∫ g dp

(2πh̄)3
p2

2m
fs =

3

10

h̄2

m
(
3π2

g
)
2/3

ρ5/3 (10)

and ǫpot is the potential energy density which is related to the mean field V by

V = δǫpot/δρ. (11)

Note that (δǫ/δρ)eq is the chemical potential, which does not depend on the space coordinate
r, for the equilibrium state of the nucleus. We have used this fact when deducing Eq.
(8). Solving Eq. (7) with respect to P ′

αβ, using Eq. (8) and the continuity equation
δρ = ρ− ρeq = −div(ρeqχ), we obtain an equation for the density vibration in the form
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ω2δρ+ (K ′

ω/9m)∇2δρ = iω(4ηω/3mρeq)∇2δρ. (12)

Here

K ′

ω = K + 8(ǫkin/ρ)eqIm

(

ωτr,ω
1− iωτr,ω

)

, (13)

where K ≡ 9(δ2ǫ/δρ2)eqρeq is the static incompressibility and ηω is the viscosity coefficient

ηω = Re

(

τr,ω
1− iωτr,ω

)

Peq. (14)

We point out that there is a significant difference between the static nuclear incompressibility
coefficient, K, i.e., derived as a stiffness coefficient with respect to a change in the bulk
density, and the dynamic one, K ′

ω of Eq. (13), associated with the sound propagation. This
difference is due to the second term on the RHS of Eq. (13) caused by the Fermi-surface
distortion effects. The quantity ηω in Eq. (14) determines the time irreversible contribution
to the pressure tensor P ′

αβ and can be considered as the viscosity coefficient due to the
relaxation occurring on the distorted Fermi surface. Expression (14) is valid independently
of the nucleon’s collision rate. The viscosity goes to zero in both the rare, τr,ω → ∞, and
frequent, τr,ω → 0, collision limits.

III. DISPERSION RELATION, MEMORY EFFECTS AND DAMPING

Assuming a plane wave solution δρ ∼ exp(iq · r−iωt) one obtains from Eq. (12) the
following dispersion relation

ω2 = (K ′

ω/9m)q2 − iω(4ηω/3mρeq)q
2. (15)

The solution of this equation defines the complex wave number q (ω is real). A simple
solution to Eq. (15) can be obtained in two limiting cases of the frequent collision (first
sound) regime, ωτr,ω → 0, and the rare collision (zero sound) regime, ωτr,ω → ∞. The sound
velocity c = ω/q is given by

c = c1 =
√

K/9m if ωτr,ω → 0 and c = c0 =
√

(K +∆K)/9m if ωτr,ω → ∞, (16)

where ∆K ≈ 8(ǫkin/ρ)eq ≈ (24/5) eF ≈ 200 MeV (we adopted the kinetic Fermi energy eF ≈
40 MeV). We point out that the value of ∆K is comparable with the static incompressibility
K ≈ 220 MeV and we have c0 ≈

√
2c1. The factor

√
2 in this relation is due to the restriction

ℓ ≤ 2 for the multipolarity ℓ of the Fermi surface distortion. In a general case of arbitrary
ℓ this factor is increased to

√
3 [1]. The result (16) means that in contrast to the first

sound (frequent collision) regime, the sound velocity of the compression mode can not, in
general, be used directly to extract the static incompressibility ofK because of the additional
contribution from the Fermi surface distortion effects which result in the renormalization of
the incompressibility K into K ′

ω.
Using both asymptotic sound velocity c1 and c0, the solution to the dispersion relation

(15) can be written as

5



q =
ω

c0
(n+ iκ), (17)

where the refraction coefficient n and the attenuation coefficient κ (both real) are obtained
from the following equation

n + iκ =

√

1− iωτr,ω
(c1/c0)2 − iωτr,ω

. (18)

In the frequent collision (first sound) regime we obtain from Eq. (18)

n =
c0
c1
, κ = ωτr,ω(c0/2c1)[(c0/c1)

2 − 1] if ωτr,ω ≪ 1. (19)

In the opposite case of the rare collision (zero sound) regime we obtain

n = 1, κ = [1− (c1/c0)
2]/(2ωτr,ω) if ωτr,ω ≫ 1. (20)

The attenuation coefficient κ in both limiting regimes is a complicated function of the
frequency ω because of the memory effect in the relaxation time τr,ω. In the case of sound
propagation in hot nuclear matter, the competition between the temperature smoothing
effects in the equilibrium distribution function and dynamical distortions of the particle
momentum distribution leads to the following expression for the relaxation time [1,11,12]

τr,ω =
τ0

T 2 + ξ (h̄ω)2
, (21)

where T is the temperature of nuclear matter and the ω-dependence of τr,ω is due to the
memory effects in the collision integral. Below we will use ξ = 1/4π2 [1] and τ0 = α h̄, α =
9.2MeV (for the isoscalar mode) [26].

Equations (15) and (18) are valid for arbitrary collision times τr,ω and thus describe both
the zero and the first sound limit as well as the intermediate cases. From it one can obtain
the leading order terms in the different limits mentioned. In Fig. 1 we have plotted both
coefficients n and κ as obtained from Eq. (18). In the high temperature limit, the system
goes to the frequent collision (first sound) regime with the saturated refraction coefficient n
≈ c0/c1 ≈

√
3 (we use the factor

√
3 instead of

√
2 assuming the contribution of the higher

multipolarities ℓ > 2 in the Fermi surface distortion as was mentioned above) and the
attenuation coefficient κ ∼ τr,ω ∼ 1/T 2. In the opposite low temperature limit, the system
is close to the zero sound regime with n ≈ 1. We point out a shift of both n and κ by
nonzero values at T → 0. This is due to the memory effect in the relaxation time τr,ω of Eq.
(21): in the very high frequency limit, the system can exist close to the first sound regime
at n ≈

√
3 even at zero temperature. The position of the maximum of κ(T ) in Fig. 1 can

be interpreted as the transition temperature Ttr of zero- to first- sound regimes in a hot
Fermi system. The value of Ttr depends slightly on the sound frequency ω and it is shifted
to smaller values with the increase of ω.

Let us consider now the isovector sound mode in a symmetric nuclear matter with ρn,eq =
ρp,eq, where ρn,eq and ρp,eq are the equilibrium neutron and proton density respectively. The
general equations of motion (6) and (7) are still correct. However the energy density ǫ in Eq.
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(8) is related now to the symmetry energy Esymm. The corresponding first sound velocity c1
for the isovector mode is given by, [27] Ch. 6,

c1 =
√

2Esymm/m, (22)

where Esymm = (1/3)eF (1+F ′

0) ≈ 30 MeV, and F ′

0 is the isovector Landau parameter in the
quasiparticle interaction amplitude. The zero sound velocity c0 for the isovector mode can
be found from Eqs. (6) and (7) in the rare collision limit τr,ω → ∞. Taking into account Eq.
(11), one obtains, see also Eq. (16),

c0 =
√

2(Esymm +∆Esymm)/m, (23)

where ∆Esymm ≈ (4/9)(ǫkin/ρ)eq ≈ (4/15) eF ≈ 10 MeV. We point out that, in contrast to
the isoscalar mode, the Fermi surface distortion effect leads to a relatively small increase of
the isovector zero sound velocity c0, Eq. (23), with respect to the first sound one c1, Eq.
(22). The dispersion relation (15) takes the form

ω2 = (2E ′

symm,ω/m)q2 − iω(4ηω/3mρeq)q
2, (24)

where

E ′

symm,ω = Esymm + (4/9)(ǫkin/ρ)eqIm

(

ωτr,ω
1− iωτr,ω

)

. (25)

All relations (17)-(21) are still correct in the isovector case if both asymptotic velocity c0
and c1 are taken from Eqs. (22) and (23). In Fig. 2 we have plotted the coefficients n and κ
as obtained from Eq. (18) for the isovector mode with the collision parameter α = 4.6 MeV
[26]. We point out that the transition temperature Ttr of zero- to first- sound regimes for
the isovector mode is significantly smaller than Ttr for the isoscalar one.

In an asymmetric nuclear matter, both the isovector and the isoscalar modes are depen-
dent on each other. The particle density fluctuation δρ takes a bispinor form δρ = (δρ+,
δρ−), where δρ+ and δρ− are the isoscalar and isovector components respectively. A solu-
tion of the corresponding equations of motion (6) and (7) leads to the following dispersion
relation, see also Eqs. (15) and (24),

Det

(

ω2 − (K ′

ω/9m)q2 + iω(4ηω/3mρeq)q
2 (Ix/m)q2 +O(I2)

(Iy/m)q2 +O(I2) ω2 − (E ′

symm,ω/9m)q2 + iω(4ηω/3mρeq)q
2

)

= 0.

(26)

Here, I = (ρn−ρp)eq/(ρn+ρp)eq ≪ 1 is the asymmetry parameter, ρn and ρp are the neutron
and proton densities respectively, ρeq = (ρn + ρp)eq and the coupling constants x and y are
given by

x = −(2/9)(4ǫF −K/3), y = −(2/9)(4ǫF +K/6− 9Esymm). (27)

As is seen from Eq. (27), the eigenfrequency ω and the corresponding sound velocity for
both the isoscalar and the isovector modes are independent of each other in the linear order
of the asymmetry parameter I. The structure of bispinor δρ = (δρ+, δρ−) is different for
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both the isoscalar-like and the isovector-like modes. For the isoscalar-like mode with the
eigenfrequency ωis given by a solution to Eq. (15), the main contribution to the bispinor δρ
is due to the isoscalar component δρ+ ∼ 1 while the isovector component δρ− is proportional
to the asymmetry parameter I. Namely,

(

δρ−
δρ+

)

is

=
yq2/m

(ω2 − (E ′

symm,ω/9m)q2 + iω(4ηω/3mρeq)q2)ω=ωis

I. (28)

The opposite situation takes place for the isovector-like mode with the eigenfrequency ωiv

given by a solution to Eq. (24). In this case, one has δρ− ∼ 1 and δρ+ ∼ I.

IV. BULK INSTABILITY

Let us consider now the bulk instability regime K < 0 and introduce an instability
growth rate Γ = −i ω (Γ is real, Γ > 0), see Refs. [13,21]. The amplitude of the density
fluctuations, δρ ∼ exp(iq · r−iωt) ∼ exp(Γt), grows exponentially if Γ > 0. To prevent an
unphysical infinite growth of the short wave length fluctuations (see dotted line in Fig. 3),
we will take into account the velocity dependent contribution to the effective interparticle
interaction. Due to the corresponding change in the selfconsistent mean field V in Eq. (6),
an additional anomalous term ∼ q4 appears in the dispersion relation (15) and the equation
for the instability growth rate Γ takes the following form [21]

Γ2 = |c1|2 q2 − ζ(Γ) q2 − κs q
4. (29)

Here c1 = i
√

|K|/9m and

ζ(Γ) =
4

3m

Γτr
1 + Γτ r

eF , (30)

where τr is the relaxation time τr = αh̄/T 2 [4]. The constant κs in the anomalous dispersion
term in Eq. (30) depends on the model. In the case of the effective Skyrme forces, one has
[21] κs = h̄2/9m2 + (9t1 − 5t2)ρ0/32m, where t1 and t2 are the parameters of the velocity
dependent part of the Skyrme forces [28]. We point out that the instability regime with
K < 0 can be reached at a low bulk density ρ0. The incompressibility K is given by

K = 6 eF (1 + F0) (1 + F1/3)
−1 . (31)

Here, the Landau parameters Fk are related to the parameters tn of the effective Skyrme
forces. Namely,

F0 =
9 ρ0
8 eF

[

t0 +
3

2
t3 ρ0

]

m∗

m
+ 3

(

1− m∗

m

)

, F1 = 3
(

m∗

m
− 1

)

, (32)

where m/m∗ = 1 +mρ0 (3 t1 + 5 t2)/8 h̄
2. For the commonly used set of parameters tn, the

instability regime with F0 < −1 is reached at ρ0 <∼ 0.5ρeq.
In Fig. 3 we have plotted the instability growth rate Γ as obtained from Eq. (29). The

calculation was performed for the Skyrme force SIII. For the relaxation time τr we used
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α = 9.2 MeV and the bulk density ρ0 was ρ0 = 0.3 ρeq, where ρeq is the saturated density
ρeq = 0.1453 fm−3. We also show in Fig. 3 the result for the nonviscous nuclear matter
neglecting the anomalous dispersion term∼ q4 and the Fermi surface distortion effect (dotted
line). The non-monotonous behavior of the instability growth rate as a function of the wave
number q is due to the anomalous dispersion term in Eq. (29), induced by the velocity
dependent terms in the interparticle interaction. The instability growth rate Γ reaches a
maximum, Γmax, at a certain q = qmax and Γ goes to zero at q = qcrit. The existence of
the critical wave number qcrit = |c1|2/κs for an unstable mode is a feature of the system
with the anomalous dispersion term [13]. The distortion of the Fermi surface leads to a
decrease of the critical value qcrit, i.e., the nuclear matter becomes more stable due to the
FSD effect. We can also see that the presence of viscosity and the FSD effect lead to a
shift of the position qmax of the maximum of Γ(q) to the left. Thus, the instability of the
nuclear matter with respect to short-wave-length density fluctuations decreases due to the
viscosity and the FSD effect and the most unstable mode is shifted to the region of the
creation of larger clusters in the disintegration of nuclear matter. For a saturated nuclear
liquid one has for the force parameters t0 < 0, t3 > 0 and ts > 0. However both values qmax

and qcrit have a non-monotonous behavior as a function of the bulk density ρ0 because of
the additional ρ0−dependence of the Fermi energy eF in Eqs. (31) and (32). The particle
density dependence of the values of qmax and qcrit is shown in Fig. 4. The instability growth
rate Γ(q) as well as the values of qmax and qcrit are only slightly sensitive to the change of
temperature at T <∼ 10 MeV, where the temperature dependence of the bulk density ρ0 can
be neglected. A more sophisticated consideration is necessary near the critical temperature
Tcrit ≈ 17 MeV where the nuclear matter is unstable with respect to the liquid-gas phase
transition.

V. CONCLUSION

Starting from the collisional kinetic equation (1), we have derived the dispersion relations
(26) and (29) for both the stable and the unstable regime of the density fluctuations in a
heated nuclear matter. The dispersion relations are influenced strongly by the FSD effect
and the anomalous dispersion term. The presence of the Fermi surface distortion enhances
the stiffness coefficient for a stable mode and reduces the instability growth rate for an
unstable one. There is a significant difference between the static nuclear incompressibility
coefficient, K, i.e., derived as a stiffness coefficient with respect to a change in the bulk
density, and the dynamic one, K ′

ω associated with the zero sound velocity, see Eq. (13).
The FSD effect is responsible for the collisional relaxation of the collective modes in the
Fermi liquid and for the non-Markovian character of the nuclear matter viscosity (memory
effect in the viscosity ηω, Eq. (14)). The memory effects in the viscosity play an essential
role in the description of the temperature dependence of the refraction coefficient n, see Eqs.
(18) and (21). We have noted also the bell-shaped form of the attenuation coefficient κ as a
function of the temperature T, see Figs. 1 and 2 . This peculiarity of κ(T ) provides a new
criterion for the determination of the transition temperature Ttr between the zero-sound and
first-sound regimes in hot nuclear matter.

Our consideration provides a good basis for understanding the difference in the devel-
opment of the spinodal instability in nuclear matter taking into account both the FSD and
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the viscosity effect. We have shown that the instability growth rate Γ(q) in an unstable nu-
clear matter with velocity dependent effective interparticle interaction is a non-monotonous
function of the wave number q because of the anomalous dispersion term. The anomalous
dispersion term removes an unphysical infinite growth of the short wave length fluctuations.
The non-monotonous behavior of the instability growth rate Γ(q) is characterized by two
wave numbers qmax and qcrit. We point out that both the FSD effect and the relaxation
processes lead to a shift of qmax to the longer wave length region, providing an increase of
the relative yield of heavier clusters.

The main results were obtained assuming a quadrupole distortion of the Fermi surface.
We point out, however, that the key expression (14) for the viscosity coefficient can be
rewritten identically in the following form

ηω =
3

4
mρeq(c

2
0 − c21) Re

(

τr,ω
1− iωτr,ω

)

, (33)

where c1 and c0 are the first and zero sound velocity respectively. This expression can also
be established from a general consideration, see Ref. [29] Ch.8, and can be used for arbitrary
multipolarities of the Fermi surface distortion.
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FIGURES

FIG. 1. Refraction, n, and attenuation, κ, coefficients of the isoscalar sound wave as functions

of temperature. The calculation was performed for two eigenenergies h̄ω = 1MeV (solid line) and

h̄ω = 1eV (dashed line).
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FIG. 2. Same as Fig. 1 for isovector mode.

13



FIG. 3. Dependence of the instability growth rate Γ on the wave number q. The calculations

were performed for Skyrme force SIII, temperature T = 6MeV and density ρ0 = x ρeq with x = 0.3

and ρeq = 0.1453 fm−3. The solid curve is for the viscous nuclear matter with α = 9.2MeV

including both the memory and the Fermi-surface distortion effects. The dashed and dotted lines

are the results for the nonviscous liquid: curve (1) is for a nuclear matter neglecting the FSD effect;

curve (2) is the result in the presence of the FSD effect and dotted line is the same as curve (1)

neglecting the anomalous dispersion term.
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FIG. 4. Dependence of the characteristic wave numbers of the instability growth rate Γ(q) on

the dimensionless density parameter x = ρ0/ρeq. The calculation was performed for Skyrme force

SIII and temperature T = 6MeV.
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