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Abstract

A new dimensional scaling method for the calculation of excited states of multielectron atoms is

introduced. By including the principle and orbital quantum numbers in the dimension parameter,

we obtain an energy expression for excited states including high angular momentum states. The

method is tested on He, Li, and Be. We obtain good agreement with more orthodox quantum

mechanical treatments even in the zeroth order.
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I. INTRODUCTION

The dimensional scaling (D-scaling) method originally developed by Witten [1] and Her-

schbach [2] is now a well established technique in atomic physics [3]. Substantial progress

has been made in improving the accuracy of the technique and extending it to excited states.

Most notable are the approaches of Goodson and Herschbach [4, 5, 6] and the dimensional

perturbation theory (DPT) developed by Carzoli, Dunn, and Watson [7, 8]. In the present

work, an alternative approach to generalized D-scaling is developed which does not require

calculations of high order 1/D corrections in order to obtain high-angular momentum states

unlike, for example, the Padé approximate used by Goodson which required 20 orders of 1/D.

Our approach is simple and yet accurate. It predicts excited states of helium (the canonical

multi-electron problem) and is easily extended to N electron atoms. We demonstrate the

straight forward extension by analyzing lithium and beryllium.

II. TWO APPROACHES TO D-SCALING

In this section, we will review the traditional D-scaling approach for helium and introduce

our alternative quantum number dimensional formulation.

A. Traditional D-scaling for helium

The Hamiltonian for helium, in atomic units, is given by

Ĥ = −1

2
(∇2

1 +∇2
2) + V (r1, r2, θ), (1)

where

V (r1, r2, θ) = −Z

r1
− Z

r2
+

1√
r21 + r22 − 2r1r2 cos θ

(2)

is the Coulomb potential energy, θ is the angle between the electron radii vectors, and Z is

the nuclear charge. The Laplacian operator, for S states, can be written in D-dimensions as

∇2
1 +∇2

2 = KD−1(r1) +KD−1(r2) +

(
1

r21
+

1

r22

)
L2
D−1 (3)
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where

KD−1(r) =
1

rD−1

∂

∂r
rD−1 ∂

∂r
(4a)

L2
D−1 =

1

sinD−2 θ

∂

∂θ
sinD−2 θ

∂

∂θ
. (4b)

The probability distribution function in D-dimensions is defined to be |ΦD|2 = JD|ΨD|2

where the D-dimensional Jacobian is given by

JD = (r1r2)
D−1 sinD−2 θ (5)

and ΨD is a solution to (1) with eigenvalue E. Letting (3) act on ΨD = J
−

1

2

D ΦD and

transforming parameters as

ri →
(D − 1)2

4
ri (6a)

E → 4

(D − 1)2
E (6b)

we obtain the D → ∞ limit of the energy

E∞ =
1

2

(
1

r21
+

1

r22

)
1

sin2 θ
+ V (r1, r2, θ). (7)

When this energy expression is minimized with respect to the parameters (r1, r2, θ), an

estimate of the ground state (1s2) energy of helium can be obtained which is 5% accurate.

The accuracy can be improved by the 1/D expansion. The limitation of this approach is

that expression (7) cannot produce excited S states nor higher-angular momentum states

(states with L > 0) in its current form without resorting to Langmuir vibrations and high

order 1/D corrections.

B. Present D-scaling for helium

Motivated by the approach of the previous section and to avoid high order dimensional

perturbation expansions, we invented a generalized Laplacian of the form

∇2
1 +∇2

2 = Kγ1(r1) +Kγ2(r2) +

(
1

r21
+

1

r22

)
L2
α (8)

where γ1, γ2, and α are three different parameters which we also assume will tend toward ∞.

Without loss of generality, we then factor our parameters into a finite integer part multiplied
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by a dimensional term given by

γ1 = n1(D − 1) (9a)

γ2 = n2(D − 1) (9b)

α = L(D − 2). (9c)

Thus, γi and α will tend toward ∞ faster than D provided ni and L are finite positive inte-

gers greater than one. By introducing the parameters ni and L, into the usual D dimensional

Laplacian, we will have additional degrees of freedom in the final energy expression. This

parameterization can be interpreted as being the cardinality of a space larger than D di-

mensions which includes the energy levels of the physical system. We will refer to this space

as quantum number dimensional space. If we need to recover the usual three dimensional

Laplacian, we can add a second term to Eq. 9 given by

γ1 = n1(D − 1) + 6(1− n1)/D (10a)

γ2 = n2(D − 1) + 6(1− n2)/D (10b)

α = L(D − 2) + 3(1− L)/D. (10c)

This parameterization allows us to recover the usual three dimensional Schrödinger equation

when D = 3. But for large values of D, system 9 and system 10 are the same. In γ − α

space, the corresponding Jacobian factor now reads

Jγ−α = rγ11 rγ22 sinα θ (11)

which is chosen to provide consistency with the traditional approach. If we now solve

ĤΨγ−α = EΨγ−α with definitions (8), (9), and the scaling transformation (6) we obtain the

final energy expression in the D → ∞ as

E =
1

2

(
n2
1

r21
+

n2
2

r22

)
+

L2

2

(
1

r21
+

1

r22

)
cot2 θ + V (r1, r2, θ). (12)

The derivation of this expression is given in the Appendix A. Additionally, in the Ap-

pendix B we show how to correct the energy with the first 1/D correction. Equation (12) will

allow us to obtain atomic excited states by associating ni as the principle quantum number

for electron i and L as the sum of the individual hydrogenic assignment orbital quantum

numbers i.e. L = ℓ1 + ℓ2. Thus, our L is the maximum in the set of possible total orbital

angular momenta L ∈ {|ℓ1 − ℓ2|, . . . , |ℓ1 + ℓ2|}.
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TABLE I: Energy (in atomic units) of the He atom obtained using Eq. (13) for stats with L = 0.

The final column is the percent error between our energy and previously published results.

|n1n2L〉 Assignment -E (Present.) -E (Ref.)a ∆(%)

|110〉 1s2 1S 3.0625 2.9037 5.40

|120〉 1s2s 1S 2.1595 2.1460 0.60

|130〉 1s3s 1S 2.0621 2.0613 0.03

|140〉 1s4s 1S 2.0333 2.0336 0.02

aComplex rotation technique [14]

III. GROUND STATE AND EXCITED S STATES

The excited S states of helium can easily be found by setting L = 0 in expression (12),

we find

E =
1

2

(
n2
1

r21
+

n2
2

r22

)
+ V (r1, r2, θ). (13)

It is interesting to note that this energy expression is identical to what one would obtain

for a Bohr model of helium using the Bohr space quantization condition for the kinetic

energy operators i.e. 2πr = nλ where λ is the de Broglie wavelength λ = h/p. Bohr space

quantization was also used by Greenspan [9] to obtain an energy expression for the excited

states of helium but with a potential function that was parametrized. More recently, the

Bohr model has been successfully applied to molecules [10, 11, 12, 13]. Here, we take the

electron-nuclear and electron-electron interaction to have their usual Coulombic form. The

results for excited S states are presented in Table I. We see that a dominant feature is the

increase in accuracy with larger quantum number n2. This can easily be explained in terms

of Bohr correspondence. Physically, as n2 > n1(= 1) the corresponding radii will be very

different since ri ∼ n2
i . Thus, electron two sees a screened nucleus of charge Z = 1 and

therefore it is a hydrogenic problem, which is exactly soluble in the Bohr picture.

IV. EXCITED P AND D STATES

Our goal here is to stay within the geometric configuration picture originally established

by Hershbach and co-workers. Other groups have also made substantial contributions (see
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TABLE II: Energy of the He atom for states with L > 0.

|n1n2L〉 Assignment -E (Present.) -E (Ref.) ∆(%)

|121〉 1s2p 1P 2.12710 2.12380b 0.20

|131〉 1s3p 1P 2.05573 2.05514b 0.020

|132〉 1s3d 1D 2.05572 2.05562b 0.004

|221〉 2s2p 1P 0.69720 0.69310c 0.60

|222〉 2p2 1D 0.68440 0.68641c 0.29

|231〉 2s3p 1P 0.55990 0.56384c 0.70

bReference [15]
cReference [16]

TABLE III: Positions of the electrons on the hypersphere for certain representative states

|n1n2L〉 r1 r2 θ

|121〉 0.5005 3.8981 90.4526◦

|132〉 0.5000 8.9579 90.0221◦

|222〉 2.4278 2.4278 95.3006◦

|231〉 2.0249 7.9728 95.8483◦

[3] and references therein) to use D-scaling for these states. We present here, for the first

time, a true Lewis structure picture for helium excited states thus providing an example of a

classical analogue for P states. Physically, the P and D states are just special configurations

of the two electron system in hyperspherical coordinates. Table II compares the energy of

the He atom for some states with L > 0 obtained in the present analysis with the accurate

values known in the literature. Table III shows the configurations of the electrons for some

representative states. We have found that pure S states admit an angle of 180◦ whereas states

with P character and higher-angular momenta typically lie in the range of 90◦ < θ < 180◦.

We cannot, with this method, distinguish between singlet and triplet states of helium nor

can we determine the correct spectroscopic assignment of L. We note that in general, our

method finds a value somewhere near the average of the various L states. For example, the

2p2 1Se state energy is ≈ −0.62 a.u. whereas for the 2p2 3P e state E ≈ −0.71 a.u. and
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the average of the two yields −0.67 a.u. which is much closer to our result of −0.68 a.u.

However, our calculated energy is only 0.29% different from the 1D state. This suggests

that our L is indeed the sum of the individual ℓi s.

Our advantage over the dimensional perturbation treatment is twofold. Firstly, in order

to calculate the excited states of helium they needed to invoke harmonic oscillator wave-

functions as an ansatz to the problem. The various excited modes of the normal coordinates

corresponded to the hydrogenic excited states of helium. Their harmonic oscillator quantum

numbers where associated with the radial and orbital nodes of the hydrogenic wavefunctions

(see for example [17]). In order to calculate with this method, many orders of 1/Dn (in the

1/D expansion) where required. Furthermore, it was seen that the 1/D series was asymptotic

and required further re-summation via Padé approximates. The second drawback was the

fact that it could only consider states where ℓ1 = ℓ2. Thus, the 1s2p state is not accounted

for in their treatment.

The states with electron 1 in an s-orbit and electron 2 in a higher angular momentum

state seem to work the best. We can correct the errors by considering small vibrations

about the “frozen” configuration positions. The derivation of the first 1/D correction and

its application are provided in the Appendix B for the excited states of helium.

V. GENERALIZATION TO THE N-ELECTRON SYSTEM

The present approach admits a simple generalization to the N electron atom with nuclear

charge Z. We can describe the N electron system by including all pairwise interactions.

The problem will thus involve (1/2)N(N + 1) parameters. Let

Kγi =
1

rγi
∂

∂ri

(
rγii

∂

∂ri

)
(14)

as before and

L2
αij

=
1

sinαij θij

∂

∂θij

(
sinαij θij

∂

∂θij

)
(15)

then

Ĥ = −1

2

[
N∑

i=1

Kγi +

N∑

i<j

(
1

r2i
+

1

r2j

)
L2
αij

]
(16)

−Z
N∑

i=1

1

ri
+

N∑

i<j

(r2i + r2j − 2rirj cos θij)
−

1

2 .
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Here γi is as before and αij = Lij(D − 2) with Lij = ℓi + ℓj . Next we transform the N

particle wave-function as

|Ψ〉 =
N∏

i=1

r
−

γi
2

i

N∏

i<j

sin−

αij

2 θij |Φ〉 . (17)

Transforming |Ψ〉 in this way makes the analysis a natural continuation of the helium prob-

lem with the exception that the angular momentum are multiply counted. Then in the

large-D limit the energy function to be minimized is

E(n1ℓ1n2ℓ2 . . . nNℓN) =
1

2

N∑

i=1

n2
i

r2i
+

+
1

2

(
1

N − 1

)∑

i<j

L2
ij

(
1

r2i
+

1

r2j

)
cot2 θij + V (~r, ~θ), (18)

where

V (~r, ~θ) = −Z
∑ 1

ri
+
∑

i<j

(r2i + r2j − 2rirj cos θij)
−

1

2 . (19)

The factor of 1/(N − 1) accounts for the multiple counting of each ℓi. For the case of the

ground state of lithium (Z = 3, N = 3) in the state 1s22s we obtain E = −7.7468 which

is 3.5% different from the true ground state of −7.4780. However, the accuracy of higher

states (including ℓi > 0) is typically much better (see table IV). Additionally, we tested the

method on beryllium and had some success. In this study, we considered states with the core

electrons fixed in the 1s2 orbits. We found an error with respect to published values of 2.6

percent. To eliminate this systematic error, we subtracted off the ground state error from

each of the excited states and found very good agreement with published results. Shown

in the table V are some calculated excited states of beryllium which are compared to other

published results.

VI. CONCLUSION

We have introduced an alternative form of dimensional scaling for the excited states of

atoms. By treating the principle and orbital quantum numbers to be innately coupled to the

dimension D, we developed an algebraic equation for multiple excited states of multielectron

atoms including states of high orbital momentum. This method can be extended to include

relativistic effects for nuclei with high Z numbers by including the kinetic-energy mass

correction term of the Breit-Pauli Hamltonian.
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TABLE IV: Results for various excited states of Lithium

|n1ℓ1n2ℓ2n3ℓ3〉 Assignment -E (Present.) -E (Ref.) ∆(%)

|101021〉 1s22p 2P 7.6897 7.4101d 3.70

|102021〉 1s2s2p 4P 5.2715 5.4375e 3.10

|102121〉 1s2p2 1D 5.1982 5.2335f 0.70

|102130〉 1s2p3s 1P 5.0744 5.0820g 0.15

|102131〉 1s2p3p 1P 5.0668 5.0651f 0.03

|102141〉 1s2p4p 3S 5.0395 5.0311f 0.16

|202032〉 2s23d 3P 1.9496 1.9690h 1.00

|212132〉 2p23d 3P 1.8192 1.8246h 0.30

dReference [18]
eReference [19]
fReference [20]
gReference [21]
hReference [22]

TABLE V: Ground state and various excited states of beryllium. Core electrons 1s2 are implicit

in the notation. The percent error is wrt the corrected value column.

|n3ℓ3n4ℓ4〉 Assignment -E(Present.) Corrected -E(Ref.)i ∆(%)

|2020〉 2s2 1S 15.0603 14.6673 14.6673 0.00

|2021〉 2s2p 1P 14.8939 14.5009 14.4734 0.20

|2030〉 2s3s 1S 14.8014 14.4084 14.4182 0.07

|2121〉 2p2 1D 14.7674 14.3744 14.4079 0.23

|2031〉 2s3p 1P 14.7693 14.3763 14.3931 0.11

|2032〉 2s3d 1D 14.7682 14.3752 14.3737 0.01

iReferences [23], [24], and [25]
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APPENDIX A: SCHRÖDINGER EQUATION IN “D DIMENSIONS”

Here we demonstrate the idea of our D-scaling transformation by applying it to the He

atom. The Hamiltonian of He in three dimensions is given by Eq. (1). First we perform a

continuous transformation of the Laplacian as follows

∇2
1 +∇2

2 =
1

rγ11

∂

∂r1
rγ11

∂

∂r1
+

1

rγ22

∂

∂r2
rγ22

∂

∂r2
+

(
1

r21
+

1

r22

)
1

sinα θ

∂

∂θ
sinα θ

∂

∂θ
, (A1)

where γ1, γ2 and α are given by Eqs. (9). The wave function, coordinates and the energy

transform according to

Ψ = [rγ11 rγ22 sinα θ]−1/2 Φ, ri →
(D − 1)2

4
ri, E → 4

(D − 1)2
E. (A2)

The radial part of the Laplacian acting on Ψ yields

1

rγ
∂

∂r

(
rγ

∂Ψ

∂r

)
= r−

γ

2 sin−
α
2 θ ×

[
∂2

∂r2
−
(γ
2

)(
γ − 2

2

)
1

r2

]
Φ, (A3)

while the angular part leads to

1

sinα θ

∂

∂θ

(
sinα θ

∂Ψ

∂θ

)
= r−

γ

2 sin−
α
2 θ ×

[
∂2

∂θ2
+

α

2
−

(α
2

)(
α− 2

2

)
cot2 θ

]
Φ. (A4)

After the transformation the Schrödinger equation reduces to

(T + U + V )Φ = EΦ, (A5)

where

T = − 2

(D − 1)2

[
∂2

∂r21
+

∂2

∂r22
+

(
1

r21
+

1

r22

)
∂2

∂θ2

]
(A6)

is the kinetic energy term and

U =
γ1(γ1 − 2)

2(D − 1)2
1

r21
+

γ2(γ2 − 2)

2(D − 1)2
1

r22
+

(
1

r21
+

1

r22

)[
α(α− 2)

2(D − 1)2
cot2 θ − α

(D − 1)2

]
(A7)

is the centrifugal potential. In the large-D limit the kinetic energy term vanishes and Eq.

(A5) reduces to finding the minimum of the algebraic energy function (12).
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APPENDIX B: CALCULATION OF 1/D CORRECTION

Let us take into account terms of the order of 1/D in Eq. (A5), then it reduces to
{
− 2

D2

[
∂2

∂r21
+

∂2

∂r22
+

(
1

r21
+

1

r22

)
∂2

∂θ2

]
+

1

2

(
n2
1

r21
+

n2
2

r22

)
+

L2

2

(
1

r21
+

1

r22

)
cot2 θ + V−

− 1

D

[
n1

r21
+

n2

r22
+

(
1

r21
+

1

r22

)(
L(L+ 1) cot2 θ + L

)]}
Φ = EΦ (B1)

We decompose the effective potential U +V in Eq. (B1) near the minimum (r10, r20, θ0) and

leave only terms quadratic in displacement from this point. As a result, we obtain
{
E∞ − 1

D

[
n1

r210
+

n2

r220
+

(
1

r210
+

1

r220

)(
L(L+ 1) cot2 θ0 + L

)]}
Φ−

2

D2

[
∂2

∂r21
+

∂2

∂r22
+

(
1

r210
+

1

r220

)
∂2

∂θ2

]
Φ+

[β11∆r21 + β22∆r22 + β33∆θ2 + 2β12∆r1∆r2 + 2β13∆r1∆θ + 2β23∆r2∆θ]Φ = EΦ, (B2)

where βij are coefficients of the Taylor expansion of the function U + V at the minimum.

Eq. (B2) describes three coupled one dimension harmonic oscillators. To make the oscillator

masses equal we rescale ∆θ as ∆θ = ∆θ̃/r0, where 1/r0 =
√

1/r210 + 1/r220. Then Eq. (B2)

yields
{
E∞ − 1

D

[
n1

r210
+

n2

r220
+

(
1

r210
+

1

r220

)(
L(L+ 1) cot2 θ0 + L

)]}
Φ− 2

D2

[
∂2

∂r21
+

∂2

∂r22
+

∂2

∂θ̃2

]
Φ+

[β11∆r21+β22∆r22+β33∆θ̃2/r20+2β12∆r1∆r2+2β13∆r1∆θ̃/r0+2β23∆r2∆θ̃/r0]Φ = EΦ. (B3)

The problem is reduced to determining eigenvalues Λ1, Λ2, Λ3 of the symmetric matrix:



β11 β12 β13/r0

β12 β22 β23/r0

β13/r0 β23/r0 β33/r
2
0




The energy including the 1/D correction is then given by

E =
4

(D − 1)2

{
E∞ − 1

D

[
n1

r210
+

n2

r220
+

(
1

r210
+

1

r220

)(
L(L+ 1) cot2 θ0 + L

)]
+

√
2

D

[√
Λ1 +

√
Λ2 +

√
Λ3

]}
. (B4)
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TABLE VI: Improvement after the first 1/D correction.

State Zeroth order First order

1s2 1S 5.40% 1.67%

2s3p 1P 0.70% 0.54%

We have applied Eq.(B4) to correct the energy we found for the 1s2 state from table I and

the 2s3p state from II. Shown in table VI is a comparison between the zeroth order and

first 1/D correction for these states with respect to the more exact values. We have noticed

that it is possible to correct the energy with the 1/D expansion to first order but only if the

zeroth order error is significant. For states where the zeroth order gave very good accuracy

(ie ¡ 1%) we do not expect much improvement from the first 1/D correction. It was noted

in reference [3] that 30 terms of the 1/D expansion leads to a 9 decimal place accuracy for

the ground state energy of helium. Thus, the first order term should only correct the most

significant figure.
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