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1 Introduction

We apply a not yet widely known physically transparent analytical method to calculation
of thicknesses and number of layers in multilayer systems (MS) to achieve a high critical
angle.

Usually MS consist of many bilayers of two materials with different refraction indices,
and the thickness a of the bilayer varies with its number i according to theoretical pre-
scriptions of 1]. In such a stuck all the bilayers have different thicknesses, and the change
of neighboring layers is very small. We consider here a different CDstruction: the MS
consists of several periodic chains, and we show how to find te period, number of periods
for every chain, and number of chains to achieve the critical angle we wish.

Applications of MS in experiments are discussed in many review papers (see, for
instance 2 31 and references there in), and we do not dwell on it too much. We only
want to add some references 4 - 101, which were not mentioned in 3.

In 4, 5 6 7 the MS were used for polarization of neutrons by transmission 4) through
them, by transportation along magnetized neutron guides 5 7 and by splitting of un-
polarized beam by a magnetized supermirror 6 In [81 the pulsed beam was produced
by reflection from a supermirror periodically magnetized in external field. In 9 super-
mirrors were used in neutron guides to increase the transmitted flux. Some research on
fabrication of supermirrors was presented in [101.

In our present paper we consider MS for polarization of neutrons. This purpose deter-
mines materials for bilayers. However our analytical method is not limited to this purpose
but is applicable to all MS, even to those that contain more than two materials.

2 Our method

First of all we should mention one difference of our approach comparing to commonly used
one. We consider reflection in terms of normal component k of the incident neutron wave
vector instead of the incidence angle. It is more convenient because reflection of a mirror
a a given angle depends also on wave length, whereas in terms of the wave vector k it
depends only on k and properties of the mirror. In the following we even omit the index
I and use simply k, because we deal only with specular reflection and for that the one

dimension is sfficient.
To be more precise we consider a neutron propagating along x-axis normal to the

supermirror, and calculate its reflection from the supermirror, which is a set of alternating
layers of two aterials. One of them is represented by a potential barrier of height Ub

and width lb, ad another one is represented by a potential well of height u, and width
1�. The potential barrier with lb -+ oo totally reflects neutrons with k < Ub, and b

is called Critical Dumber k,. It is convenient to use Ilk, as a unit of length, then all the
variables become dmensionless, the barrier becomes of height Ub 1, and the critical
number is also unity. In te following we use a somewhat different normalization. We
take for unity te difference ub - u., and for the unit length I Vub :u,,.

We look for sch MS wich give total reflection up to some K > kc = 1. In principle
K, can be arbitrary large, but practically it is possible achieve K, not larger than 4.

Our analytical method is based on an observation [11, 121 that every potential can be
split by an nfinitesimal gap into two separate ones, as shown in fig. 1, and the reflection
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Figure 1: Every potential can be split by an infinitesimal gap of width 4 into
two ones, and the splitting does not change their reflection and transmission properties,
because of total transmission of the gap.

of the composite potential R12 is represented as the combination of reflections R and
transmissions T of the separate barriers:

R , = RI T�2 R2
I - RR2'

where the denominator corresponds to multiple reflections inside the gap. For simplicity
in (1) we did not take into account asymmetry of the potentials, we discuss it when
needed.

The expression (1) gives immediately the result 13) for a semlinfinite periodic poten-
tial. If a single period of the potential is characterized by reflection and transmission
amplitudes r and t respectively, then reflection amplitude of the whole potential (denoted
Ro in [1]: eq-s 14-16) there) is

R = r + �0 7 r I �r) (2)
F + �2 �t2 + F -�,)'2 t2

and the Bloch phase factor (denoted by in [1): eq-s 12), 13) there) is

exp(iqa = F + t2 r - V(1 t)2 _�r2 (3)
F + t 2 r 2 t �)2 - �,2

where a is the period width, and q is the Bloch wave number. At Bragg reflection R
exp(iX) and exp(iga = exp(-q'a) with real X, and q. (We neglect here imaginary part
of the potential.)

With the equations 2 3 we can find 11] reflection, RN, and transmission, TN,

amplitudes of the periodic chain with finite number IV of the periods:
I exp(2iqaN) TA = I I - 2

R = R exp('qaN) (4)
- R2exp(2iqa��)' I - R2 exp(2iqaN)

To see how do these formulas work we need to define the single period ad its amplitudes
r and t. A single period is a bilayer. It consists of a otential well and barrier. This period
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Figure 2 A period containing a well and barrier, can be rearranged to symmetrical form.

is nonsymmetrical, but we can make it symmetrical by shifting the barrier as shown i fig.
2. This rearrangement is not principal, as we see later, but it facilitates our mathematics.
For symmetrical period of width a = � lb we can immediately find amplitudes r and t:

zk�l� I - exp(2ikblb) ik.1 eik616 I - r2
r = e 'r-b - t = wb 5 (5)

exp(2ik6lb)' rb exp(2ikblb)

where k. = (k. - k)l(k� + kb ad potentials may contain imaginary
part because of losses.

Substitution of them into 2) and 4 gives the result shown in fig. 3 and 4 In fig.
3 we see the Bragg reflection with unit amplitude in the interval A called width of the
Darwin table. By decreasing 1. and 1 we can shift the interval A toward larger k, and, if
we can built a system of serniinfinite potentials with different periods in such a way that
intervals A would overlap as intervals D in fig. 5, we can considerably increase k,.

However we can build periodic chains only with fiDite number of periods, so we must
use RNJ of 4), which at Darwin table is smaller tan unity because of exp(-2q'Na in
the nominator. This factor is small when N is large. If we tolerate reflection RNJ -

with some small we must have

N - (6)
2aq'

JR(k)i

0.75

0.5

0.25

A

0
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

k

Figure 3 ReHection amplitude R(k)j of a serniinfinite periodic potential with period
containing he potential well of depth u_ = .5 and width = and the barrier of the
height I and width lb
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Figure 4 Reflection amplitude IRNI of the periodic potential with N = periods. The
parameters of a single period are the same as in fig. 3.

So the strategy is very clear. We step by step cover the range of k, we needed, by overlap-
ping intervals A' < A, and tuning parameters I, 1, N find maximal A' to minimize the
number of required chains, and therefore the total number of layers. To proceed further
it is more convenient to transform 2,3) to the form

V'cos + jJ - �cos 0 11 = VRe(, + Vie(,) P

Vcos + 1, + Fs 0 - 1,1 Vi;(, + P + �[Re(,) ___ - ___ (7)

'siO + J-t - � sin 0 -t I Viie(t) + Iti - Vke(t) _-JtP
e Vi�e (8)V sinO+Jtj+F-�sin�-Itj (t) + tF + Vke(t) _-JtP

where is the phase and Re(r, t) are real parts of amplitudes r, t respectively. To derive
(7,8) we use the relations valid for arbitrary potential 141:

= e0irl, t = ±iei'kltl, r' _ t = e2ik. (9)

From 7) it follows that R is a unit complex number exp(iX), when Jr 12 > Re(r)J.

JR12

Do D, D2 D3 D,

0 ko I k: k2 k k4 k

Figure 5: A system of periodic potentials with overlapping Bragg peaks of widths Di gives
total reflection in a range of k considerably wider than the common case < k < .
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3 Algorithm of calculations of lb, , N and A'

Substitution of (5) into 7) and (8) in the case > Ub gives

Y /k. tan(k�l�/2T+ kbtan(kblb/2)
R V k. tan(k.1. - kb cot(kblb) V kb tan(k.l�/2) + k� tan(kblb/2) (10)

Y , 1k. tan(k�l /2) + kb tan(kbib/2)

k. tan (k.1. - kb cot(kb1b) V kb tan (k.l./2) + k. tan(kbib/2)

or
/Cos + r. I /sin + r.b sin

R V Cos k+ - .b Cos 0- V sin - rb sin

3

V os r.6 os sin - rb sin

and
VqOS2 �n

iq. + (12)
VC.�2 r.2 CS2 2 2b + sin 2,bsi-

where 0± (kj ± kblb)/2. It is easy to check that at the limit lb we obtain R 4 

and q --+ k., and at . --+ 0 we obtain R - r.b, q 4 kb.

If k2 < Ub instead of (I 1, 12) we obtain

�S2�� ep(-2�kI, CS�2�+ - iV�in 2 ep(-2k�,'1,)sin 2
R (13)

�-�.s� � �ep(-2k�,'Ib)COS2 ��+ + iV/�in 2 Sin2

sin exp(-kb'lb) sin 6+ exp (- k'lb) os
fibsin + exp(-k,'Ib) Sin 6 Cosiga FLC-0 ; + exp(-kb

e (14)
sin exp(-kb'lb) sin Cos 6- - exp(-k'lb) COS

+ - - bsin + exp(-k'lb) sin �+ bI Cos �- + exp (- k'lb) os

where ± = kW2 ± Oo, Oo = arccos(k�/Vru-�u�) and k = Vu��P.b
It is easy to check that in the limit - the periodic potential degenerates to

potential step and we obtain R -� r. = exp(-2ioo), = ik'. In the limit lb - 0 barriers

disappear, and we obtain empty space with R = and q k_

Now we consider k > ub. The Bragg reflections take place when expressions under

two square roots in (I 1) have opposite signs. It happens when I os I < r.bj os 0- 1 or

I sin -1 < bl sin q5+1, i.e. for rn/2 - 6 0 :� 7rn/2 + 6, where n is integer. The half

width of the Bragg reflectio 6 = b I COS - I for odd n, and 6 = rbj sin - I for even

n. To get this width maximal we must have k = m for odd n and 7r ± r/2 for

even n (m is also integer).

From these considerations we obtain, that if we want to have the total reflection at

some k = k, we must require at this point kb + klw = and k.1 - kb1b = 0, and

immediately find two parameters 1 = 7r/2kb, and 1 = r/2k. (as was correctly used in 1],

eq 7 We can also require kb1b + k.1w = 7r and k.l. - kb1b = 7, and find two other

parameters lb = 7r/2kb ad 1� = 37r/2k..
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Figure 6 The MS should contain also a barrier of large width to provide total reflection
almost up to k = 

We cannot use the full width A of the Darwin table, because the total reflection inside
it is possible only for infinite number of periods. We need to find such A' and N which
will give the maximal effective length 1 = A'IN covered by a single period.

For optimization we represent 12) in the form

q'� Q -z� ( COS2(0_ COS'(O+) (15)e- , -2Q), where Q )rb
+ Q sin'(O+) Sn'('A-)r2b 

In the case of small b we can expand near point k. where q5+ = 7rn/2 and approximate
(15 as

Q (16)

where x = k - k,)Ik, and xO �-- 2r�bk'k'/rnk'(k 2+ kb). We see, that xO, and therefore
the width of the Darwin table is largest for n = . Thus it is the best to require = 2.

2JR(k)j

0.5

0
0.5 1 1.5 2 2.5 3 3.5 4

IC

Figure 7 Dependence of reflection coefficient RJ' of FeCo-Si MS on k. MS consists of a
wide barrier of width 20 and 34 chains with different number of periods. Total number of
bilayers is 1947. Critical k. for FeCo is equal to 1. Potentia[s do not include imaginary
parts.

Now we need to find the ends k,, of the Darwin table around k,. They depend on
what deviation from total reflection we tolerate. If we tolerate JRJ = - 2, then

Q ln((14N. (17)
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Figure 8: Dependence of reflection coefficient R12 of FeCo-Si MS on k. Parameters of
MS are the same as for fig. 7 Potentials include imaginary parts

From it we find
X 2 n,

(18)
XO 4Nr.b

To find the optimal number N of periods we require the maximal effective width of k
covered by a single period, i.e. we seek a maximum of (k. - k,)IN. This requirement
gives

IV (I 9)
2r.6'

and
\/3 v-.r.bk' k2 \/3

Sk = k, - k, = kxo- - W�b �� -k�r�b, (20)
2 7rk,(k2 + k2) 27rb

where k., kb and r.b are determined for k = k_ If we tolerate 2 = %, then N = 2.6/r�b.
If we use aother condition 0- = 7r/2 we find that xo is approximately 2 times lower. So
to use this condition is not profitable.

Now, the interval A' = 2A -- (\/3/7r)k,7-.b around k. is closed, and we can make the
step to a new k' = k A' and find a new periodic chain around the point k. In practice
we made steps A' = 26k/1.1 to ensure the overlapping of the intervals, because every next
width k is a little bit lower than the preceding one.

lit fig. 7 the reflection coefficient R is shown for MS consisting of 1947 bilayers
with positions of the Bragg peaks chosen as prescribed above. The starting point was
k = L12. It was found empirically. We see that reflection coefficient is perfectly equal
to oe.

Above we did not take into account imaginary part of the potential, however formulas
(2 - 5) arid (10 -- 12)- are valid for arbitrary potentials, so to take into account losses or
gains (in the case of active media) we need only substitute in k. and kb Complex potentials
U�, = U'.,b - U'.',bl where minus sign means losses for u > 0. Of course, the number and
widths of lavers in periodic chains and the widths of the Bragg peaks are real numbers so
for them we must use absolute magnitudes.

The result of calculations for the real systems FeCo-TiZr, which is similar for FeCo-Si,
is show i fig. S. Here the nmber of bilayers is the same as in fig. 7 and we see that
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reflection coefficient deviates from unity. It means that our requirement 17) with small
( is not necessary, because the makes us be tolerable to stronger deviation of the Bragg
reflection from unity. So we can strongly decrease the number of periods in every chain.

In fig. 9 we show how reflection coefficient presented in fig. 7 changes, when number
of bilayers is decreased to 271. We see that now it becomes alike to the one shown in
fig. 8. If we account for imaginary parts of potentials then for the real system FeCo-TiZr
with 271 bilayers we obtain the reflection coefficient shown in fig. 

In the case we are satisfied with smaller increase of the critical angle, we need even
smaller number of layers. In fig. II we show reflection coefficient for FeCo-TiZr with only
46 bilayers. The parameters of these bilayers are shown in tabl. 1.

4 Reflection from the set of chains

If we have two chains with reflection and transmission amplitudes RNt, TNj (i = 1 2,
then reflection R21 from two chains from the left (the chain I is to the right of the chain
2 is

2
R21 RN2 + TN2Rvi (21)

- RN2KN

Addition of the third chain to the left side gives the set with reflection amplitude

IP2 3I? 21

R321 = RV3 + I - RUR21' (22)

Four chains will have reflection amplitude R4321 and so on. It is a simple algorithm to
calculate reflection from all the chains, and at the end we must add a single wide barrier
as shown in fig. 6 which provides total reflection for all k almost up to k = . Because of
finite width of the first barrier, its reflectivity drops near k = . Indeed, the reflection
from the barrier is

1 Q0 k� - ik,�b k' v -1-kr = r I - r 2 Q where r. = k� + ik' k = k
wb b

and Q = exp(-21ok').

para- 1 2 3 4 5 6 7 8 9 10 I 12
meters

k, 1.12 1.32 1.44 1.55 1.65 1.73 1.81 1.90 1.96 2.03 2.09 2.15
16 3.11 1.84 1.5 1.331 1.20 1.11 1.04 0.98 0.93 0.89 0.86 0.82
1� 1.40 1.20 1.09 1.01 0.95 0.91 0.87 0.83 0.80 0.78 0.75 0.73
N 1 3 3 3 1 3 3 4 4 4 4 5 5 1 5

Table 1: Parameters of 12 periodic chains with reflection coefficient shown in fig. 1 k�
is position of the Bragg peak, 1�, lb and N are the widths of riZr (or Si) and FeCo layers,
and the number of bilayers respectively for the chain with he Bragg rflection centered
at k,. Totalnumber of bilayers is 46.
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Figure 9 Dependence of reflection coefficient RJ' of the same system as in fig. 7 with
number of periods in every periodic chain strongly decreased. Total number of bilayers is
271.

Suppose, we tolerate, when Irl = 1 Near the critical point k = reflection
coefficient can be approximated as

(I QO), 1 4P
(I - Qo) + 16k,kbQo 12

so, if we want to have JrJ2 to be everywhere in < k < larger than I - , we must
choose lo = 2/,,f(. In particular, for = 1 we must choose lo = 20. In all the fig-s.
7 - 1 we used this width of the first barrier. However, if we take into account losses,
this parameter is not too much critical. To show that we demonstrate fig. 2 which is
calculated 12 chains of FeCo-TiZr MS with parameters, shown in table 1, and for 0 � 8.
Though reflection of smaller first barrier can be a little bit less the losses in it are also
less, so the result is nearly the same. So practically we have no gain, if increase the totally
reflecting layer too much.

5 Asymmetry of the period

Above we considered the case when periods of periodical chains are symmetrical, i.e.
barrier of width lb is surrounded on both sides with wells of width ./2, i.e. it is represented
as a hreelayer. In practice it is more simple to consider the period as a bilayer consisting
of the well of width and the barrier of the width b- Such a period is not symmetrical. Its
rejection fom the left is not equal to reflection from the right, r,, though transmissions
from both sides is equal and is given by formula (5). The amplitudes r, and rr for the
bilayer are

Tj = e2ik_','r.b I - exp(2ikblb) rr = r.b I - exp(2ikblb)

-- r.2, exp(2ikbib) I - r 2, exp(2ikblb)
(23)

wife r is rlection of tbe ymmetrical period shown in (5). With nonsymmetrical period
expression 2) should e odified. For istance, reflection from the serniinfinite periodic
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Figure 10: Dependence of reflection coefficient Rj' of FeCo-TiZr MS on k. Parameters
of MS are the same as for fig. 8, but the number of bilayers is only 271.

potential beginning with the well we have RI

F + ,,,)I t - VI(I
,,Ir t2 \/(1 �+02 �-t2 V 02 �-t2F1 eV rr [ + /i;rr-1)2 t2 + V(I t2 V (1 + �Y t�2 + J 1 �-, 2 t 2

(24)
or it is exp(ik.l,)R, where R is symmetrical amplitude given by 2 he reflection
from serniinfinite periodic potential beginning with the barrier will be exp(-ik.l,)R, i.e.
asymmetry of r is inherited by R.

Equation 3 for the Bloch phase factor does not change, because instead of r 2 it

contains rIrr, which is identical to r'. Now it is easy to understand that reflection of
a finite number periods RN for asymmetrical period will change in the same way as R,
i.e. for reflection from the left and right we have RNjr = exp(±ik.l.)RN, where RN
is for the symmetrical period. Now we eed to see what happens when we stack two
nonsymmetrical chains. For that we need to generalize expression (1) for nonsymmetrical
potentials 1 and 2 shown in fig. 1. This generalized expression is

R112 RI, T�2 R12 (25)
- Rr, R12

where indices I, r denote reflection from the left and right respectively.
Taking into account this generalization we represent 21) in the form

R121 ik.1.2 �RN2 + T2 2exp(ik,[I.l - 1,21)RNI (26)
1 - RN2 exp(ik�[I.j - 121) RNI I I

where asymmetry is explicitly represented by the factor exp(ik.[I.l - �21)- It is easy
to prove that, if the chain I at some k gives total reflection, i.e. RNI = exp(iX), then
inclusion of chain 2 will not destroy this total reflection, i.e. R121 for tese k is aso a unit
complex number: R2 = eXP(iX')- Indeed, taking into account relations ), which are

valid for R and TN, we can transform 26) as follows

R12 = -e ik.[I.2+1.j]+tx+2i1b2 I I RN21 exp(-ik.[I.l U - �52 - iX) (27)
1 I RN21 xp(ik,,[I,, U] + i2 + iX)
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Figure 1 1: Reflection of 46 bilayers of FeCo-TiZr system with account of losses. Parame-
ters of layers are shown in table .

where 02 is the phase of the amplitude RN2- Since the last factor is of the form exp(ik)
the whole R121 is also of the form exp(iX') which corresponds to the total reflection.

Of course, all these relations are precise nly for real potentials. Imaginary part of the
potentials gives a correction to them, and the smaller is imaginary part the smaller is the
correction.

6 Similarity of all the MS systems

All the MS can be represented as a system with barriers of height 1, and wells of height
0. Indeed, if in a real system barriers have the potential Ub, and wells - the potential
u., then the potential step between well and barrier is Ub - U., and we can normalize this
difference to unity, and take as a unit length the critical wave length = V2-(u - -
So, calculations for all the real systems is the same. The only difference is that at the
end we need to include reflection amplitude from the potential step from vacuum to the
well. This potential step is now has normalized potential �� = u,/(u - u.). If reflection
amplitude from MS without this correction is R, then after correction it will be

(I - 2.)R k - k�
ro. + I where ro = --- k = k2 - ij._

I + ro.R � + k.'

We applied our method to real physical system, and considered only 34 chains, though
it is not principal. With these chains we are able to triple the critical angle. To double it
it is sufficient to have only 12 chains. Their parameters are presented in Table 1. The first
row shows the points k, which are centers of the Bragg peaks. The first number k = .12
was chosen empirically. Next two rows show the width of the wells and barriers lb

for those k., And the last line shows the number of periods in every chain. We do not
present here the numbers of periods that give the perfect reflection for real potentials and
requires 324 bilayers. We show here the numbers of periods that give reflection fig. 
and 12 with 46 bilayers, and which is nearly the same as reflection for real system with
324 bilayers as can be seen from comparison with fig. .
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Figure 12: Reflection of 46 bilayers of FeCo-TiZr system with account of losses. Parame-
ters of layers are shown in table 1. The width of the first barrier is .

Imaginary parts for potentials of real systems were normalized to difference of real
parts fUb-u.. Thus for FeCo-Si system in which Si are wells with u. = 54.4-i6.25* 10-4

neV and FeCo are barriers with ub = 330.7 - i6.40 * 10' neV, the normalised potentials
are ub = I - 2 10-4 and u = - i2.3 10'.

In FeCo-TiZr system the normalized imaginary part of FeCo is gz� 3. 10', and that
of TiZr z�: 1 _ 10-4 . The main effect of losses comes from imaginary part of FeCo, so the

results of calculations for real systems with Si and TiZr give nearly the same result.
The width of the first wide barrier for real systems can be taken equal to instead of 20,

required for perfect system with no losses. Accounting for losses shows that the increase
of the first barrier only increases losses in the whole range of energies and decreases the
total reflection.

7 Conclusion

We presented the method of calculation of a supermirror, having ig critica ang e o
total reflection. We suppose that our method has some advantage, because it is analytical,
and therefore more controllable. Change of parameters J1b and 6 from chain to chain
is sufficiently large and therefore is less prone to errors related to technology of layers
preparation. There is only few change of parameters comparing to common way, when
the parameters change almost continuously, and Slb, 1. become lower than a monolayer.
Such a small change of width is almost impossible to control.

We want also to add tat though our analytical method is very good for analysis,
it is too slow for calculations. So, the calculation of reflection coefficient, after all the
parameters were defined, was performed numerically with the matrix method.

We have shown here how to prepare MS by increasing the range of total reflection
step by step. However it is possible to proceed differently. We can put one bilayer on a
substrate and calculate its reflection. Then put another bilayer with parameters scanned
in some intervals, choose parameters, which give the larger increase of the refiectivity.
Then look for parameters of third bilayer and so on. If we do not restrict hickness of
layers, we can get with 200 bilayers a good reflectivity as shown in fig. 3 or some

12
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Figure 13: Reflection f 399 layers for a model system with u = 1

model system with u = -I even for interval k = 4k, . However in these bilayers some

thicknesses are of the order 0.1 of interatomic distance. It is clear that it is impossible

to achieve a good homogeneity for such thicknesses. We can restrict thicknesses to some

values when scanning in the parameter space. It may give a multilayer system with smaller

number of layers and with not perfect, but well tolerable reflectivity in a wide enough

interval of k.

Though this try and error method may give a tolerable reflection with smaller num-

ber of periods, the step by step method is promising for improving the technology for

preparation of MSs. When we know exact thickness of a single monolayer we can prepare

layers with better surfaces, and we can control the perfectness of the layers by comparing

calculated and really obtained reflectivities in a wide range of energies.

We considered here only reflection of neutrons from MSs. There is no problem to

apply our method also to x-rays. However to do that we should find a better way to

optimize number of layers when we account for imaginary parts of the potentials. In the

case of neutrons the number of layers can be easily found somewhat empirically. In the

case of x-rays we can do the same, however because the imaginary parts for x-rays are

considerably higher the analytical analysis must be more reliable.
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C Bb[COKHM KHTMqecKHm ynom 1J1HOr0 oTpa)KeHRA

MwiaraeTCA HoBbdi allanHTHqeCKHii [0,RXO K allanMy MHOFOCROfiHbIX CcTem.
OH E3BomeT crporo, paccqmTaTE, TOJIUJOH H Hcjio coeB, Heo6xOAHMEie XIA no-
nyqeHH5i 6iH3Kor0 K nJIHOMY oTpa)KeHHA XIA 34WHoro (B HHLkHne nOH3BOJ1b-
HO BbICOKoro) KHTHqeCKOrO yna.

)IeMOHcTpHpyeTcA npKnoxeMe HBOr nAXOAa K peanbHbIM CHCTemam.

Pa6oTa BmOJ1HeHa B la6opaTOPHH HHTPOHHOfi C�HWKH Hm 1. M. DpaHKa
0MA14.

CooftetlHe 06-beaMeMoro imcTHTyra aaepHb]X HccjTej10Baiimi!. Ry6iia, 2002
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Algorithm for Preparation of Multilayer Systems
with High Critical Angle of Total Reflection

The new development of theory of multilayer systems is presented. It shows

precisely how to calculate thicknesses and number of layers to get reflectivity

close to unity for a given, in principle, arbitrary critical angle.

Application of the new approach to real systems is demonstrated.

The investigation has been performed at the Frank Laboratory of Neutron

Physics, JINR.
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