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Abstract. The optical spin noise spectroscopy (SNS) is a minimally invasive
route toward obtaining dynamical information about electrons and atomic
gases by measuring mesoscopic time-dependent spin fluctuations. Recent
improvements of the sensitivity of SNS should make it possible to observe
higher-order spin correlators at thermodynamic equilibrium. We develop
theoretical methods to explore higher-order (third and fourth) cumulants of
the spin noise in the frequency domain. We make predictions for the possible
functional form of these correlators in single quantum dot experiments and then
apply the method of the stochastic path integral to estimate the effects of many-
body interactions.
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1. Introduction

The full counting statistics has become a widely discussed topic both in electronics and
quantum optics [1–6]. Its measurements promise to provide considerably more information
about interacting electrons and photons than what could possibly be obtained from standard
linear response characteristics.

Spins in a small mesoscopic volume of a semiconductor with N electrons typically
experience statistical fluctuations of the order

√
N , even in a zero magnetic field at the

thermodynamic equilibrium. The spin noise spectroscopy (SNS) is an optical technique
that provides a viable route to study such fluctuations by directly measuring local spin
correlators [7, 8]. Experimentally, spin correlators were obtained by measuring the rotation of
the linear polarization of a light beam that passes through a mesoscopic region with spins, e.g.
as shown in figure 1. The polarization rotation angle is proportional to the local instantaneous
magnetization of the region and can be traced with sub-nanosecond resolution in time [9].
Characterization of the equilibrium spin noise has been demonstrated and used to determine
g-factor, spin coherence and spin relaxation times of electrons in GaAs [10–16] and atomic
gases [8, 9, 17–20]. An application of SNS to the central spin dynamics in InGaAs hole-
doped quantum dots [21–24], in particular, revealed the importance of the nuclear quadrupolar
coupling for the decoherence and relaxation of a spin qubit [25].

Higher-order spin correlators are not the subject of application of the standard
fluctuation–dissipation relations. Hence, by studying higher-order statistics, one can obtain
information about spin dynamics that simply cannot be found in the average linear response
characteristics of spin systems [26–28]. For example, the so-called phase transitions at
fluctuating level attract lots of interest [29]. Recently, it was realized that such unusual
critical phenomena can be effectively studied in physical systems by measuring time-dependent
behavior of high-order noise cumulants [28, 30].
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Most of the studies, however, have focused so far on the spin noise power
spectrum [25, 31–34] and the associated second-order spin correlator

g2(t) = 〈Sz(t)Sz(0)〉, (1)

where Sz(t) is the time-dependent spin polarization in a mesoscopic region and z is the
measurement axis. The discussion of higher-order spin correlators at the thermodynamic
equilibrium has been essentially absent. This is partly due to the fact that for a large number
N of spins, the physical noise is dominated by Gaussian fluctuations which are fully described
by (1), as articulated by the law of large numbers. Hence, in order to reveal the additional
information about spin dynamics in the form of higher-order cumulants, one should not only
filter the useful signal from the background noise but also filter out the physical Gaussian
fluctuations. In noninteracting spin systems, non-Gaussian effects are due to discreteness of
spin states.

Among the most relevant theoretical and experimental work, which referred to the optical
SNS, we mention here the model of a weak measurement framework for a single spin system,
developed in [35], which discusses time-interval statistics between detector clicks. The type of
time correlators studied in that work, however, is somewhat distant from the one that is currently
accessible by SNS. On the experimental side, in [36, 37], simple examples of measurements of
higher-order noise statistics of acoustic sound in the frequency domain were provided, claiming
that similar methodology may work to study the spin noise in an SNS setup.

SNS appears to be particularly promising for characterization of the high-order spin
statistics. It provides a considerable and continuous stream of data for statistical analysis.
Information can arrive at the rate of gigabytes per second and the measurement time is formally
unrestricted, e.g. it can be several weeks if needed. Moreover, the sensitivity of SNS has been
continuously improving. For example, recently introduced ultrahigh bandwidth SNS achieved
picosecond time-scale resolution [19]. New measurement schemes have also been proposed
recently to increase the polarimetric sensitivity by using high polarization–extinction schemes
and hence suppress the relative role of the background noise sources [38]. Noise of a single spin
of a heavy hole localized in a flat (InGa)As quantum dot has been successfully observed recently
by SNS [39]. The latter achievement is an important milestone on the way to experimental
studies of the higher-order spin statistics because the law of large numbers no longer applies to
N = 1, which means that a number of higher-order cumulants of spin noise statistics should be
of the same order of magnitude as the spin–spin correlator (1). Nonoptical methods have also
been developed and demonstrated recently to probe correlators of single spins [40, 41], which
may be considered for studies of higher-order spin noise statistics.

It is also helpful that optical SNS is free from many of the problems that were encountered
in measurements of higher-order statistics of electric currents [42–44]. In SNS, since spin
fluctuations are probed optically, there is no problem with the often detrimental noise from
leads, and one generally does not need a complex nano-lithography. The advancement of the
SNS thus motivates us to reconsider the modern technological capabilities of using higher-order
noise statistics measurements as an important tool for material studies and quantum information
science.

The plan of our paper is as follows. In section 2, we define the third- and fourth-order spin
noise cumulants and discuss their properties. We will then consider four different applications
(figure 2) in which we believe the experimental observation of higher-order spin correlations
is most likely. In section 3, motivated by the observation of the spin noise of a single central
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Figure 1. A sample with quantum dots or conducting electrons in a
semiconductor is illuminated by a polarized laser beam, and the Faraday or Kerr
rotation angle of its polarization plane θK is measured.

spin in a quantum dot, we explore a possible form of third- and fourth-order correlators of
a single spin (figure 2(a)) and make specific predictions for verification in InGaAs quantum
dots [39]. In section 4, based on a simple noninteracting spin model, we develop a method
based on the stochastic path integral to calculate spin noise statistics and, for illustration, we
apply it to an ensemble of a mesoscopic number of noninteracting spins (figure 2(b)). Then
in section 5 we explore the effect of many-body interactions, such as the ones arising near
a ferromagnetic phase transition in magnetic semiconductors (figure 2(c)). We apply the path
integral method to a phenomenological kinetic model based on the Glauber spin dynamics to
demonstrate that higher-order spin noise statistics becomes particularly insightful to observe
near a phase transition point. In section 6, we explore the higher-order spin cumulants for
conducting electrons (figure 2(d)) and explore the effect of the Pauli principle.

2. Properties of third- and fourth-order spin correlators in frequency domain

Complete information about an interacting many-body system is contained in the full set of all
cumulants of system variables. Let us introduce a normalized spin polarization

δSz(t) = Sz(t) − 〈Sz〉, (2)

and consider a random variable

a(ω) =

∫ Tm

0
dt eiωtδSz(t), (3)

where Tm is the time of measurement, which is assumed to be much larger than other physical
time scales in the system, including the characteristic relaxation time T of the spin system.
Note that since Sz(t) is real, we have a∗(ω) = a(−ω). For a paramagnetic system, one finds
that 〈a(ω)〉 = 0, where the average is considered over repeated measurements under identical
experimental conditions. The most accessible physically interesting characteristic is the noise
power, which is defined as

C2(ω) = 〈|a(ω)|2〉. (4)
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Figure 2. Four different systems of our focus: (a) a single Ising spin with two
states, up and down, between which transitions can happen with rates k1 and
k2; (b) N noninteracting Ising spins; (c) model with a ferromagnetic coupling
leading to long-range correlations; and (d) model of conducting electrons with
Pauli exclusion interactions.

Its knowledge is equivalent to the knowledge of a spin–spin correlator in the time domain via

C2(ω) = 2Tm

∫
∞

0
dt cos(ωt)〈δSz(t)δSz(0)〉. (5)

At steady conditions, only products of a(ωi) with
∑

i ωi = 0 can be nonzero after
averaging. Hence, the next nearest nontrivial correlator of a(ω) is of the third order and given
by

C3(ω1, ω2) = 〈a(ω1)a(ω2)a
∗(ω1 + ω2)〉. (6)

A specific property of C3 is that it is zero in a system with a time-reversal symmetry. There can
be a variety of potentially interesting combinations of the fourth powers of a(ω). The one that
has the most transparent physical meaning is the so-called bispectrum:

C4(ω1, ω2) = 〈|a(ω1)|
2
|a(ω2)

2
|〉 − 〈|a(ω1)|

2
〉〈|a(ω2)

2
|〉, ω1 6= ω2. (7)

For ω1 = ω2, its definition is modified:

C4(ω) ≡ C4(ω, ω) = 〈|a(ω)|4〉 − 2〈|a(ω)|2〉2. (8)

The bispectrum (7) indicates how spin noise components at two different frequencies ‘talk’
to each other. For example, if C4(ω1, ω2) is negative, one can conclude the presence of anti-
correlations, i.e. observation of a strong signal at one frequency presumes that another frequency
is likely to be suppressed, etc.
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The form of so-called cumulants (6)–(8) is dictated by the requirement that they are
zero for Gaussian fluctuations of a(ω), so that they do not duplicate the information that
can be obtained from (4). One more important property of cumulants is their ‘additivity’,
i.e. independent noise sources additively contribute to their values. This is important because
experimental measurements in SNS generally produce a strong background shot noise, which
can be filtered out by separately measuring the pure background in a strong magnetic
field applied in the direction transverse to the measurement axis. After subtracting the
background contribution from the measured cumulants, one obtains the physical values of
cumulants.

Another consequence of such an additivity of cumulants is that they generally linearly
increase with the measurement time Tm. Indeed, if Tm is much larger than the relaxation time
T , one can expect that a measurement during Tm is roughly equivalent to Tm/T independent
measurements which additively contribute to the finite cumulant value. This property is one of
the reasons for the difficulty in observing higher-order statistics. For example, the dimensionless
ratio C4(ω)/(C2(ω))2 should generally be proportional to T/Tm � 1. Experimentally, it is
important to keep Tm large to avoid nonphysical effects of a finite measurement time. On the
other hand, one should keep the ratio T/Tm not too small in order to be able to filter C4(ω) from
the Gaussian part of spin noise statistics.

As another word of caution, we would like here to point to a problem that has not appeared
in previous measurements of the noise power spectrum (4). Most cumulants are protected
only against an additive background noise, i.e. the noise that is uncorrelated from the physical
signal. In SNS, fluctuations of spins are deduced from the fluctuations of an optical signal. The
probability of light interaction with spins depends on the laser beam intensity, which is often
slowly fluctuating. For C2 and C3, such fluctuations merely renormalize their amplitude, keeping
relative amplitudes at different frequencies the same. In contrast, the expression, e.g. (7), for
C4 is the difference of two terms that may be differently renormalized by the beam intensity
fluctuations. Moreover, for a large number of noninteracting spins in the observation region,
each of those terms can be much larger than their difference in (7), so that even small instabilities
in the beam intensity can lead to an admixture of Gaussian fluctuations and degrade the
measurements of C4. Hence C4 should become most accessible when the number of observed
spins is relatively small, so that the dimensionless ratio, C4/(C2)

2, is as large as possible and
the cumulants are averaged over a smaller span of time than the time scale of slow fluctuations
of the beam intensity. This situation can be realized in a single spin quantum dot as in [39] or in
the case of considerable spin correlations, e.g. when one effectively observes the dynamics of a
small number of ferromagnetic domains.

Higher-order correlators depend on more than one frequency, so obviously, they contain
additional and, possibly, considerably larger amount of information about the system than the
noise power. In solid state applications, as a proof of principle, C3(ω1, ω2) was measured as
a function of frequencies only recently to describe the shot noise of electric charge currents
through an artificial nanostructure [36]. Specially engineered nanoscale systems could allow
measurements of charge current cumulants in the time domain up to 15th order and the study
of fundamental nonequilibrium fluctuation relations [26–28], but such measurements could not
be applied to materials characterization. Therefore, we will explore the information that can be
obtained about condensed matter systems by measuring higher-order spin (rather than current)
correlators.
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3. Single spin noise

3.1. Third-order correlator of Ising spin dynamics

From the point of view of statistical filtering of a useful signal, the third-order correlator
(equation (6)) is the next in complexity after the popular second-order spin–spin correlator.
However, the third-order correlator changes sign under time reversal and hence its observation
requires a specific breakdown of a time reversal symmetry. In a single spin InGaAs quantum dot,
conditions for third-order cumulant observation can be created by applying a strong (of the order
of 1 T) magnetic field in the out-of-plane (i.e. parallel to the measurement z-axis) direction. At
such fields, spin relaxation is dominated by interactions with phonons. At a sufficiently low
temperature, Zeeman coupling in such a magnetic field becomes comparable to kBTs, where Ts

is the system temperature and kB is the Boltzmann constant. Without an in-plane magnetic field
component, one can disregard coherence effects and assume that the spin essentially behaves
as a classical Ising spin. Spin transitions between up and down states can be then described by
kinetic rates k1 and k2, respectively, which satisfy the detailed balance condition

k1/k2 = exp(−gz Bz/kBTs), (9)

where Bz is the z-component of the magnetic field and gz is the corresponding g-factor.
Spin polarization dynamics of this system behaves like a telegraph noise, as shown in

figure 3(a). Let p1(t) and p2(t) be time-dependent probabilities of a spin being, respectively, in
the up and down states. The dynamics of probabilities is governed by the master equation

ṗ1(t) = −k1 p1 + k2 p2,

ṗ2(t) = k1 p1 − k2 p2,
(10)

which can be solved as P(t) = U(t)P(0), with P(t) = (p1, p2)
T, where the evolution operator U

is given by

U(t) =
1

k1 + k2

(
k2 + k1 e−(k1+k2)t k2(1 − e−(k1+k2)t)

(1 − e−(k1+k2)t)k1 k2 e−(k1+k2)t + k1

)
. (11)

It can be shown that the average spin polarization is a constant:

〈Sz(t)〉 = 〈1|σzU(t)|P0〉 =
k2 − k1

k1 + k2
, (12)

which is equal to the average spin at t = 0: 〈Sz〉 ≡ 〈1|σz|P0〉 =
k2−k1
k1+k2

, where σz is the Pauli matrix.
Here 〈1| = (1, 1) and the initial spin polarization |P0〉 = (p1, p2)

T with p1,2 = k2,1/(k1 + k2).
Note that, for simplicity, here we normalized the Ising spin polarization values to be ±1 rather
than ±1/2.

The second-order correlator of spin fluctuations in real time is then given by

C2(t1, t2) = 〈δSz(t1)δSz(t2)〉 =
8k1k2

(k1 + k2)2
e−(k1+k2)(t1−t2), (13)
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Figure 3. (a) Telegraph noise induced by the dynamics of a single spin
polarization Sz(t). (b) The third-order cumulant of spin noise, equation (16), for
a single spin with k1 = 0.2 and k2 = 0.1; Tm = 1.

in which 〈Sz(t1)Sz(t2)〉 = 〈1|σzU(t1 − t2)σzU(t2)|P0〉. The spin noise power spectrum, defined as
in equation (5), reads

C2(ω) =
8k1k2

k1 + k2

Tm

ω2 + γ 2
, (14)

with the relaxation rate γ = k1 + k2.
The third-order spin correlator can be calculated similarly. For t1 > t2 > t3, we have

C3(t1, t2, t3) = 〈δSz(t1)δSz(t2)δSz(t3)〉

=
8k1k2(k1 − k2)

γ 3
e−γ (t1−t3) (15)

with 〈Sz(t1)Sz(t2)Sz(t3)〉 = 〈1|σzU(t1 − t2)σzU(t2 − t3)σzU(t3)|P0〉.
For the case of t2 > t1 > t3, the expression for C3 can be obtained by exchanging t1 and t2.

Finally, by taking the Fourier transform, the third-order cumulant in the frequency domain is
found:

C3(ω1, ω2) = Tm
16k1k2(k1 − k2)

k1 + k2

ω2
1 + ω1ω2 + ω2

2 + 3γ 2

(ω2
1 + γ 2)(ω2

2 + γ 2)((ω2
1 + ω2

2)
2 + γ 2)

. (16)

One can conclude from (16) that C3 is nonzero only when k1 6= k2, i.e. when a strong
magnetic field changes the relative rates of spin transitions. If k1 − k2 changes sign, so does
C3. Measurements of C3 in a quantum dot system can be used, e.g. as an independent probe of
the g-factor via (9) at high values of the magnetic field. In figure 3, we plot C3(ω1, ω2) for the
case of k1 − k2 > 0.

Finally, we note that noise in simple kinetic models has been previously studied in different
contexts, e.g. in statistics of electric currents coupled with a fluctuating two-level degree of
freedom [26, 42, 45]. For example, spin correlator (16) has the same functional form as the
third-order electric current correlator derived in [45].

3.2. Fourth-order cumulant of the Ising spin

The advantage of the fourth-order cumulant is that it is nonzero even without time symmetry
breaking. For a single spin, it is expected to be nonzero because the discreteness of spin states
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Figure 4. Numerically calculated (a) noise power, equation (4), and (b) the
fourth order cumulant, equation (8), for a single Ising spin noise. Elementary
measurement time step is normalized to τ = 1. Cumulants are normalized by
dividing them by the total measurement time Tm = 256τ ; relaxation time is T =

5τ and TD = 2τ . Background level was subtracted by normalizing correlators at
large frequencies to zero value. Averaging is over 100 millions of statistically
independent measurements of a(ω).

leads to a binary signal, which is similar to a telegraph noise rather than Gaussian fluctuations.
Since strong out-of-plane magnetic fields are not needed for its observation, one can measure
C4(ω) in a standard setting, e.g. in a zero magnetic field. The spin of a heavy hole in an InGaAs
quantum dot at such conditions behaves essentially as an Ising spin with Markovian transitions
between up and down states due to the coupling to a quickly fluctuating nuclear spin bath [25].

While, in principle, analytical calculations of C4, by finding its value in the time domain,
are possible, we found them very tedious even for the simplest models. In the next section, we
will describe an alternative approach, which is based on the stochastic path integral technique,
and which provides a simpler framework for the calculation of C4, including for independent
Ising spins. In this subsection, instead, we will present a numerical approach that simulates the
weak measurement setup. Such simulations are close in spirit to the real physics encountered in
the experimental measurement process of SNS and allow us, in particular, to study the effect of
detector parameters on the observable higher cumulants.

As in the previous subsection, we consider an Ising spin but assume that spin flips between
up and down states happen with the same rate k = 1/T , where T is the characteristic lifetime,
which for a hole-doped InGaAs quantum dot was estimated to be ∼0.4 µs [22]. We simulate
the weak measurement process with the scheme that was proposed for SNS in [35]. According
to it, measurements are performed in discrete time steps τ � T . Suppose that with a probability
pD < 1, the coupling to the detector induces the collapse of the state vector at each time
step, leading to a detector ‘click’, i.e. the measurement of the spin state. Respectively, with
a probability

1 − pD ≡ e−τ/TD, (17)

we observe no useful signal at the detector per single measurement. In (17), we introduced
the time TD that characterizes the typical time between collapses of the spin vector to the
measurement basis.

Our measurement axis is the z-axis, and there are three possible measurement outcomes.
Let us call them 1, 0, −1, where ±1 correspond to the collapse of the state vector to one
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of the spin states |±〉, which also correspond to specific ±1 outputs of the detector, while 0
corresponds to the absence of a useful detector click.

If the probability per single measurement step to collapse the spin state is small, most
of the measurement outcomes would be zeros. However, when the collapse of the spin vector
happens, we determine the state of the spin, and the measurement produces +1 or −1. After
this, the evolution of the spin is again calculated according to the master equation. A numerical
simulation of such a process returns a random sequence that simulates the output of a detector,
such as

0000 1 000000000 000000 −1 000000000000 1 000 . . . , etc.

Evaluating it for a span of time Tm ∼ 256τ , we found its Fourier transform and calculated the
powers of a(ω). By repeating this process, we produced 100 millions of such random sequences,
from which we calculated the cumulants. As in SNS experiments, the fact that most of the time
a weak measurement fails to produce the detector response leads to a broad background white
noise, which we subtracted to obtain the physical part of the spectrum. Our results for the noise
power, equation (4), and for the fourth-order cumulant, equation (8), are shown in figure 4.
As expected, the noise power spectrum (figure 4(a)) is Lorentzian. The fourth-order correlator
appears to be negative and narrower than C2. The ratio of the integrated cumulants

η1 =

∫
d ωC4(ω)∫
d ωC2(ω)2

(18)

is found to be η1 = −1.9(T/Tm), which is close to the theoretically predicted value η1 =

−2(T/Tm) (section 4) in the limit Tm � T � τ .
The numerical simulations of measurements of C4, for a single spin, converge relatively

quickly when the time TD is smaller than T , i.e. several nonzero detector clicks happen before
a spin flip. In the opposite case, TD < T , convergence of the simulations to the expected values
of C4(ω) quickly deteriorates, and the result appears to be dependent on the measurement time
Tm. Hence we predict that the favorable conditions for the reliable observation of C4(ω) should
be found at strong beam intensities that increase the probability of light interaction with a spin
of a quantum dot.

4. Stochastic path integral approach applied to noninteracting spin systems

Stochastic path integrals are frequently used for the calculation of physical noise statistics.
Here, we will use the version of this technique that was developed by Pilgram and co-
authors [46, 47], and which is particularly suitable for obtaining cumulants of mesoscopic
systems. Originally, this approach was built to study the full counting statistics of electron
transport in mesoscopic electric circuits, and then adapted to applications in biochemical
reaction networks and explicitly time-dependent systems [48, 49]. In this section, we will
consider the model of N independent Ising spins as an illustrative example, and in the following
two sections we will use this approach to study the effects of ferromagnetic interactions and the
Pauli exclusion principle on cumulants of the spin noise.

The basic idea of constructing the path integral is the separation of time scales. If the
number of interacting spins N is mesoscopically large, one can identify the time interval 1t
such that the number of spins flipped during this time interval is, on average, much larger than
unity but still much smaller than N . One can consider then the total spin polarization of the
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observed region as a slow variable, which can be approximated by a constant during time 1t .
Suppose that the probability k1 is to flip from up to down and the probability k2 is to flip from
down to up states of any spin per unit of time. Since the spins do not interact with each other, this
model, formally, can be solved without a path integral, as we did in section 3 because cumulants
for noise of independent spins simply add. Our goal, however, is to illustrate how path integrals
can be used for calculations of higher-order spin noise cumulants, in order to apply them later
to more complex interacting spin systems.

Let N↑ and N↓ be the numbers of observed spins, respectively, in the up and down states.
The average number of spins transferred from up to down during time 1t is 〈Q1〉 = k1 N↑1t .
Similarly, the transferred number of spins from down to up is 〈Q2〉 = k2 N↓1t . Q1 and Q2

are random variables obeying the Poisson distribution. Their fluctuations result in the variation
of the spin polarization, which we define as M = N↑ − N↓. One can integrate over the fast
fluctuating dynamics of Q1 and Q2 to obtain the partition function for the slowly changing
variable M . During time 1t , the variation of M is M(t + 1t) − M(t) = 2(Q2 − Q1) and Q1

and Q2 can be considered uncorrelated to each other.
The Poisson probability distributions of Q1,2 can be written as integrals

P(Q1,2) =

∫
dχ1,2 e−iχ1,2 Q1,2+1t H1,2(χ1,2), (19)

in which

H1(χ1) = k1 N↑(e
iχ1 − 1), H2(χ2) = k2 N↓(e

iχ2 − 1) (20)

are the cumulant-generating functions of corresponding Poisson distributions. Following the
standard path integral approach [46, 47], we discretize a long measurement time, Tm, into 1t
segments around time moments: tn = n1t with n = 1, . . . , N . The sum over all possible system
trajectories weighted by their probabilities during this time Tm, which is called the partition
function, can then be written as

Z =

∏
n

∏
j=1,2

∫
dM(tn)d Q j(tn)P(Q j)δ [M(tn+1) − M(tn) + 2(Q1(tn) − Q2(tn))] , (21)

where the δ-function imposes the conservation constraint. One should then express the delta
function as an integral over a new variable χ , i.e. as δ( f ) = (2π)−1

∫
dχ eiχ f . Then one can

perform integration over variables Q1,2 and χ1,2, to end up with

Z =

∏
n

∫
dM(tn) dχn

2π
eiχn(M(tn+1)−M(tn))+1t (H1(2χn)+H2(−2χn)). (22)

Taking a continuous limit, we obtain

Z =

∫
DMDχ e

∫
dt (iχ Ṁ+H(M,χ)) (23)

with the Hamiltonian H(M, χ) = H1(M, 2χ) + H2(M, −2χ).
Even though the Hamiltonian is not a real function of its variables, we can apply the

Hamiltonian formalism to the above path integral. The variation of the action with respect to M
and χ gives the saddle point solution χ = χC , M = MC , where

iṀC = −
∂ H

∂χC
, iχ̇C =

∂ H

∂ MC
. (24)
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At the steady state, equation (24) has a solution

χC = 0, MC =
k2 − k1

k1 + k2
N . (25)

One can find that MC coincides with the mean value of the spin polarization in the system.
In order to obtain higher-order spin correlators, one should consider the action near the saddle
point (25) beyond the classical limit and introduce finite values χ and δM that describe the
deviation from (25). As discussed in [47], in order to calculate the nth-order correlator of
variables, it is sufficient to find the Hamiltonian in the action up to the nth-order in total powers
of χ and δM . Hence, we write the partition function as

Z =

∫
DMDχ e

∫
dtL, L= L2 +L3 +L4 + · · · , (26)

where

L2 = iχδṀ + iγ δMχ − aχ2,

L3 = − (k1 − k2)δMχ2, L4 = −
2iγ

3
δMχ3 +

a

3
χ 4. (27)

To shorten our notation, we introduce the parameters

γ = k1 + k2 and a =
4k1k2 N

k1 + k2
. (28)

Keeping only the quadratic part of the Lagrangian L2 in (26), one can calculate the second-
order correlation function by writing the action in the frequency domain. By substituting
χ(t) = T −1

m

∑
ω eiωtχ(ω) and δM(t) = T −1

m

∑
ω eiωtδM(ω) into the action, we find∫

dtL2 =

∑
ω>0

a∗(ω) Âa(ω), (29)

with a = (χ, δM)T and the matrix Â given by

Â =
1

Tm

(
−2a −ω + iγ

ω + iγ 0

)
. (30)

Similarly, one can write the higher-order contributions to the Lagrangian in the frequency
domain, e.g. ∫

dtL3 = −(k1 − k2)
1

T 2
m

∑
ω1,ω2

δM(ω1)χ(ω2)χ(−ω1 − ω2), (31)

∫
dtL4 =

1

T 3
m

∑
ω1,ω2,ω3

(a

3
χ(ω1)χ(ω2)χ(ω3)χ(−ω1 − ω2 − ω3) (32)

−
2iγ

3
δM(ω1)χ(ω2)χ(ω3)χ(−ω1 − ω2 − ω3)

)
. (33)

The second-order correlators are found from (we recall that Z = 1)

〈ai(−ω)aj(ω)〉 =

∫
DMDχai(−ω)a j(ω) e

∫
dtL2 = (− Â−1)i j . (34)
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Explicitly,

〈δM(−ω)δM(ω)〉0 =
2aTm

ω2 + γ 2
, (35)

〈δM(−ω)χ(ω)〉0 = Tm
ω + iγ

ω2 + γ 2
, (36)

〈δM(ω)χ(−ω)〉0 = Tm
−ω + iγ

ω2 + γ 2
, 〈χ(−ω)χ(ω)〉0 = 0. (37)

Equation (35) provides the spin noise power in the frequency domain. As expected, its value
coincides with the noise power of the single Ising spin, equation (14), up to the factor N .
Correlators of δM with χ do not describe a measurable characteristic but they are needed for
the calculation of higher-order cumulants.

To estimate the third-order cumulant, we keep the term with L3 in the action and treat it as
a small perturbation,

C3 ≡

∫
DMDχ e

∫
dtL2δM(−ω1 − ω2)δM(ω1)δM(ω2)

∫
dtL3. (38)

Since the exponent in (38) is quadratic in variables, one can calculate this expression using the
Wick rule by summing over all possible products of second-order correlators. Terms in such
expressions can be represented by the Feynman diagrams, e.g. one of them that contributes
a nonzero value to the cumulant (38) is shown in figure 5(a). Other nonvanishing diagrams
contributing to C3 are obtained by all possible permutations of arrows entering the node such
that the total sum of ingoing and outgoing frequencies is zero. Evaluating these diagrams, we
obtain

C3 = 4(k1 − k2)aTm
ω2

1 + ω1ω2 + ω2
2 + 3γ 2

(ω2
1 + γ 2)(ω2

2 + γ 2)[(ω1 + ω2)2 + γ 2]
. (39)

The fourth-order cumulant defined in equation (7), at k1 = k2, can be found as

C4(ω1, ω2) =

∫
DMDχ e

∫
dtL2|δM(ω1)|

2
|δM(ω2)|

2

∫
dtL4(t). (40)

For the time-reversal symmetric case k1 = k2 ≡ k, the result is represented by the sum of
diagrams shown in figure 5(b) and (c): C4 = C (1)

4 + C (2)

4 , where

C (1)

4 = 8a
Tm

(ω2
1 + γ 2)(ω2

2 + γ 2)
, (41)

C (2)

4 = −16aγ 2Tm
ω2

1 + ω2
2 + 2γ 2

(ω2
1 + γ 2)2(ω2

2 + γ 2)2
. (42)

Generally, there is also a tree-diagram contribution to C4, which appears when the second power
of L3 is included in the perturbative expansion, as shown in figure 5(d). It is also proportional to
the measurement time, Tm, but vanishes at identical rates of up–down and down–up transitions
(k1 = k2), so we do not consider it here.

Finally, we discuss the relative strength of C4 and C2. It is useful to introduce a
dimensionless combination

η ≡

∫
dω1 dω2C4(ω1, ω2)∫

dω1 dω2C2(ω1)C2(ω2)
. (43)
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(a) (b)
ω2

−(ω1 + ω2)

ω2

−ω1
ω1ω1

−(ω1 + ω2)
−ω2 −ω2

ω1 −ω1ω1

ω2 ω2

−ω1

(d)(c)

−ω2

Figure 5. The Feynman diagrams for C3 (a) and C4 (b), (c) and (d). Panel
(a) is the contribution from L3. Panels (b) and (c) show the contributions to
C4(ω1, ω2) due to the two terms ofL4, respectively. Panel (d) shows the tree-level
contribution to C4 due to L3, which is of the order of (b) and (c) but vanishes
when k1 = k2. The solid line denotes 〈δM(ω)δM(−ω)〉0, the dashed line with
notation ω denotes 〈δM(ω)χ(−ω)〉0 and the dashed line with −ω denotes
〈χ(ω)δM(−ω)〉0. Other contributing diagrams are obtained by all possible
permutations of arrows at each node such that the sum of ingoing and outgoing
frequencies is zero.

At k1 = k2 = k, we obtain η = −
2

aTm
= −

1
k N Tm

. Notice that when the number of spins is reduced,
C4 becomes larger as compared to C2(ω1)C2(ω2). For a single spin, η =

1
kTm

.
Another type of fourth-order cumulant, given in equation (8), is characterized by the 4th

order to second-order cumulant ratio defined in equation (18). Our analogous calculations give
η1 = −

2
kTm

= −
2T
Tm

, with the characteristic lifetime T = 1/k.

5. Model with a ferromagnetic coupling

In order to explore many-body effects on spin noise statistics, here we will study a model with
the Glauber dynamics of ferromagnetically coupled Ising spins [30]. We assume that all N
observed spins experience an effective magnetic field proportional to the instantaneous spin
polarization, Bz(t) ∼ M(t), so that the kinetic rates are modified to account for this field and
the detailed balance conditions (9). Here, for simplicity, we define M =

N↑−N↓

N , which is slightly
different from the quantity defined in the noninteracting case.

In comparison to the noninteracting spin model of the previous section, we assume that
k1 and k2 are no longer constant but rather depend on the local magnetization such that
k1/k2 = e−αM , where α is a parameter that characterizes the exchange coupling in the mean
field approximation. This parameter also absorbs the inverse temperature α ∝ T −1

s in (9). We
choose k1 = k e−αM/2 and k2 = k eαM/2, where k is the characteristic kinetic rate at zero M .
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Applying the rules for constructing an effective Hamiltonian in the path integral, we find

H = k e−αM/2 1 + M

2
(ei2χ

− 1) + k eαM/2 1 − M

2
(e−i2χ

− 1). (44)

For such a choice of variables M and χ , the partition function is expressed in the form

Z =

∫
DMDχ eN

∫
dt (iχ Ṁ+H), (45)

in which it is explicitly clear that the correlators, e.g. 〈M(ω)M(−ω)〉, depend as 1/N on the
total number of observed spins. By recalling that the full polarization is obtained by changing
variables M → M N , one can conclude that all cumulants of the total spin polarization will be
finally proportional to N .

We will assume that parameter α is tuned in such a way that the system is close to a
ferromagnetic phase transition, so that the mean magnetization is either zero or small. In such
an approximation, the saddle point equations for equation (44) have two solutions: one is χ = 0
and M = 0; the other is χ = 0 and M2

≈
4
α2 (

α−2
1−α/6). This means that there is a critical value of

the parameter α, namely, αc = 2 that corresponds to the phase transition between paramagnetic
and ferromagnetic phases.

5.1. Correlations in the paramagnetic phase (temperatures above the phase transition)

At temperatures slightly above the phase transition point, we would have zero average
magnetization, M = 0. We introduce a small parameter, t = (Ts − TC)/TC , such that α ≈

2(1 − t), and expand the Lagrangian up to the fourth order in powers of fluctuations from this
point L= L2 +L3 +L4 + · · ·:

L2 = iχδṀ + iγ δMχ − aχ2, L3 = 0,

L4 =
ia
3 δM3χ + a

2δM2χ2
−

i2γ

3 δMχ3 + a
3χ

4,
(46)

where

a = 2k, γ = 2kt. (47)

Evidently, due to the time-reversal symmetry in the paramagnetic phase, the third-order
cumulant is zero. The second-order cumulant has the same Lorentzian form as noninteracting
spins in equations (35)–(37), but with parameters a and γ defined in (47). At the phase
transition, the effective relaxation rate vanishes, γ → 0, indicating the critical slowdown.
Hence, the amplitude of the second-order correlator grows as it approaches the phase transition,
as shown in figure 6(a).

Each term in L4 corresponds to some contribution to the fourth-order cumulant of spin
noise, so that

C4(ω1, ω2) = C (1)

4 + C (2)

4 + C (3)

4 + C (4)

4 . (48)

The first two terms in (48) are due to χ4 and δMχ 3 in (46). We have previously
calculated them for the independent Ising spins model. They produce the same expressions
as equations (41) and (42) with redefined parameters according to (47). The terms ∼δM2χ2 and
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Figure 6. (a) The second-order cumulant for a single spin with k1 = k2 = 0.1
(red) and for a spin system with ferromagnetic interaction with k = 0.1 and
t = 0.1 (blue) and t = 0.2 (black). (b) Fourth-order cumulant for a spin system
with ferromagnetic interaction in the paramagnetic phase. k = 0.2 and t = 0.2.
(c) The quantity η defined in the text which shows the relative strength of C4 and
C2 as a function of normalized temperature t = (T − Tc)/Tc.

∼δM3χ in (46) are new. Their contributions to C4 are given by

C (3)

4 = −8a3 N Tm
ω2

1 + ω2
2 + 6γ 2

(ω2
1 + γ 2)2(ω2

2 + γ 2)2
, (49)

C (4)

4 = −64a4 N Tm
γ

(ω2
1 + γ 2)2(ω2

2 + γ 2)2
. (50)

In figure 6(b), we plot C4(ω1, ω2) in the paramagnetic phase, according to which the fourth-
order correlator is still negative but it can have a very large amplitude near the phase transition.

5.2. Spin noise in the ferromagnetic state (temperature below phase transition)

A specific feature of the ferromagnetic state is the absence of the time-reversal symmetry,
meaning that the third-order cumulant of the spin noise may become nonzero. Below the critical
temperature, we would have the saddle point, which corresponds to M = ±M0 = ±

√
3|t |.

Expanding the Lagrangian up to the third power of fluctuations near M = M0, we find

L= iχδṀ − 2kχ2 + 4ik|t |χδM + aM0χ
2δM + iaM0χδM2. (51)

In this case, a = 2k, γ = 4k|t |. Note that the relaxation rate is twice that in the paramagnetic
phase at the same distance to the phase transition point. Diagrammatic calculations show that
the two third-order terms in (51) produce two contributions to the third-order cumulant

C3 = C (1)

3 + C (2)

3 , (52)

where

C (1)

3 = −4a2 N M0Tm
ω2

1 + ω2
2 + ω1ω2 + 3γ 2

(ω2
1 + γ 2)(ω2

2 + γ 2)[(ω1 + ω2)2 + γ 2]
, (53)

C (2)

3 = −24a3 N M0Tm
γ

(ω2
1 + γ 2)(ω2

2 + γ 2)[(ω1 + ω2)2 + γ 2]
. (54)
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Both terms depend linearly on the average magnetization M0, which in turn scales as M0 ∼ |t |1/2

as a function of temperature distance to the phase transition.
The fourth-order cumulant in this phase would be very complicated to show here properly.

In figure 6(c), we just plot the numerical result for the dimensionless parameter η as a function of
t for both t > 0 and t < 0. Since the parameter η characterizes the deviation of the distribution
of the spin noise from a Gaussian form, its divergence at the phase transition point indicates
a strongly non-Gaussian spin noise statistics. A difference between t > 0 and t < 0 could be
traced to the difference of relaxation rates γ in the two cases.

6. Conducting electrons with Pauli exclusion principle

As another example of nontrivial higher-order correlations, consider the Fermi sea of conducting
electrons. Previously, charge current fluctuations in such systems have been studied extensively.
Partial suppression of the shot noise by the Pauli principle has been one of the most important
effects in this field. It was studied previously, in particular, by the method of the stochastic path
integral [47]. Here we will explore effects of the Pauli exclusion principle on the cumulants of
the local spin noise fluctuations. We assume that, due to the phonon coupling in the observation
region, the local electron distribution in the momentum space, for each spin species, quickly
equilibrates and restores to the Fermi–Dirac distribution at the ambient temperature Ts and at
local chemical potentials µ↑(t) and µ↓(t) for, respectively, spin-up and spin-down electrons.
We assume that the spin degree of freedom equilibrates at a much longer time scale, e.g. the
spin relaxation due to the Dyakonov–Perel mechanism is at ∼100 ns, while the thermalization
of orbital degrees of freedom can be at sub-nanoseconds for conducting electrons in GaAs. Due
to spin flipping, chemical potentials µ↑(t) and µ↓(t) will fluctuate. We normalize the chemical
potentials so that at a zero net spin polarization they are set to zero. The excess of electrons with
spin up then can be related to the chemical potential by

N↑ = D
∫

dε

(
1

1 + e(ε−µ↑)/Ts
−

1

1 + eε/Ts

)
= Dµ↑, (55)

where D is the density of states in the observation region per spin and per unit of energy near
the Fermi surface. Note that D is not an intensive characteristic in the sense that it is not a
density per volume of the system. For example, it is proportional to the size of the mesoscopic
observation region in figure 1. We set the Boltzmann constant kB = 1. For a sufficiently large
observation region, electroneutrality ensures that N↑ = −N↓.

To account for the Pauli exclusion principle, we assume that the average number of spin
flips, e.g. from up to down, for electrons with energy ε, is proportional to the number of electrons
in the observation region with spin up and the density of unfilled states with the spin down at
energy ε. Then the total average rate of transitions from up to down is given by

J↑↓ = k D
∫

dε
1

1 + e(ε−µ↑)/Ts

(
1 −

1

1 + e(ε−µ↓)/Ts

)
= k

D(µ↑ − µ↓)

1 − e(µ↓−µ↑)/Ts
, (56)

where k is the characteristic transition rate. Similarly,

J↓↑ = k
D(µ↓ − µ↑)

1 − e(µ↑−µ↓)/Ts
. (57)
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Figure 7. Fourth-order cumulants, (a) C4(ω1, ω2) and (b) C4(ω), in the model
of spin fluctuations with Pauli exclusion interactions. Parameters: a = 1 and
γ = 0.5.

The local spin polarization is M = N↑ − N↓. Since a single spin flip changes the spin
polarization by 2, the Hamiltonian in the path integral action that describes the dynamics of
M is written as

H = J↑↓(e
2iχ

− 1) + J↓↑(e
−2iχ

− 1), (58)

where χ is the variable conjugated to M . Explicitly,

H =
k M

1 − e−M/(DTs)
(ei2χ

− 1) +
−k M

1 − eM/(DTs)
(e−i2χ

− 1). (59)

The saddle point solution corresponds to χC = 0 and MC = 0. Expanding the Lagrangian up to
the fourth order, we obtain

L= iχδṀ + 2ikδMχ − 4k DTsχ
2
−

k

3DTs
δM2χ2

−
4ik

3
δMχ3 +

4k DTs

3
χ4. (60)

The second-order cumulant would have the same Lorentzian shape as it would be for
independent Ising spins with parameters a = 4k DTs, γ = 2k. The Pauli exclusion principle
changes the expression of a by replacing the total number of spins N with the number of spins
near the Fermi surface in the interval of energy of the order of temperature Ts. The fourth-order
cumulant is the sum of the three terms that correspond to contributions of each of the three terms
in L4

C4 = C (1)

4 + C (2)

4 + C (3)

4 , (61)

where

C (1)

4 = 8a
Tm

(ω2
1 + γ 2)(ω2

2 + γ 2)
, (62)

C (2)

4 = −16aγ 2Tm
ω2

1 + ω2
2 + 2γ 2

(ω2
1 + γ 2)2(ω2

2 + γ 2)2
, (63)

C (3)

4 =
16aγ 2Tm

3

ω2
1 + ω2

2 + 6γ 2

(ω2
1 + γ 2)2(ω2

2 + γ 2)2
. (64)
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The first two terms have the same form as for noninteracting Ising spins (one can compare (63)
with equations (41) and (42)). The new contribution (64) appears from the term ∼δM2χ2

in (60). It radically changes properties of the bispectrum, as shown in figure 7. In particular, the
dimensionless parameter η for the Fermi system becomes positive, η =

2
3a =

1
6k DTsTm

. Comparing
this result with noninteracting and ferromagnetic interaction cases, for which η is negative, we
conclude that the functional form of the fourth-order cumulant is sensitive to the details of spin
interactions. Note also that at lower temperatures, the Pauli exclusion principle makes η larger,
i.e. statistics becomes less Gaussian.

7. Discussion

Higher-order cumulants, by construction, contain additional information to the noise power
spectrum. For example, in all models considered in this work, the noise power has a Lorentzian
form, from which only a single parameter, i.e. the effective relaxation time can be determined. In
contrast, the third-order cumulant contains information about the asymmetry of relaxation rates,
while measurements of the fourth-order cumulant can be used to estimate not only all parameters
of the considered models but also distinguish among candidate models if the Hamiltonian of the
spin system is not a priori known, because the functional form and the sign of the fourth-order
cumulant are sensitive to subtle details of the kinetics. We also predict that ratios of cumulants,
such as parameters η1 and η in equations (18) and (43) provide a good estimate of the size of
physical spin correlations.

We explored the properties of higher-order cumulants of the spin noise in the frequency
domain and discussed the conditions for their experimental observation. In a standard
framework of most of the SNS experiments, measurements were performed on a mesocopic
number, e.g. N ∼ 105, of independent spins. In such a case, the higher-order cumulants are
suppressed in comparison to the noise power, e.g. C4/(C2)

2
∼ 1/N . Our results suggest two

strategies that can be used to enhance this ratio. First, one can perform measurements on a
smaller number of spins. Since the spin noise characterization of a single spin is now accessible
in InGaAs hole-doped quantum dots [39], we believe the measurements of higher-order noise
cumulants in such systems are already possible. Our analytical and numerical calculations
predict a negative value of the fourth-order cumulant at a zero external magnetic field. The
third order cumulant can be also observed in such systems in a strong out-of-plane magnetic
field.

The second strategy to observe higher-order spin cumulants is to perform measurements
on strongly interacting spins. In the case of ferromagnetic interactions, spin fluctuations are
strongly enhanced near the paramagnetic/ferromagnetic phase transition, leading to a much
stronger signal for all cumulants. In such a case, spins flip not independently but rather as
clusters of many correlated spins, and the number N should be interpreted as the typical number
of clusters in the observation region, which can be considerably smaller than the total number
of observed spins. Hence, we predict that the higher-order cumulants can be substantially
more important for the characterization of magnetic semiconductors, especially near the phase
transition temperatures.

To study spin noise in interacting spin systems, we developed a quantitative theoretical
approach, which is based on the stochastic path integral technique. We calculated higher-order
cumulants in a model of a ferromagnetically coupled interacting spin system. At temperatures
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below the phase transition point, we found that the third-order spin cumulant becomes nonzero
in the state with a spontaneous symmetry breaking. Approaching the phase transition point
from higher temperatures, the higher-order cumulants grow not only in the magnitude but also
in comparison to the noise power.

Finally, by applying the stochastic path integral technique to conducting electrons, we
found an enhancement of the relative role of C4 due to the Pauli exclusion principle. In the
metallic phase, we predict that the dimensionless ratio of C4 and (C2)

2 is inversely proportional
to temperature. Hence, by observing the spin noise at the lowest possible temperatures, one may
achieve the regime with strongly non-Gaussian spin fluctuations.

Acknowledgments

We thank Yan Li and S A Crooker for useful discussions. Work at LANL was carried out
under the auspices of the project no. LDRD/20110189ER and the National Nuclear Security
Administration of the US Department of Energy at Los Alamos National Laboratory under
contract no. DE-AC52-06NA25396.

References

[1] Touchette H 2009 Phys. Rep. 478 1
[2] Garrahan J P and Lesanovsky I 2010 Phy. Rev. Lett. 104 160601
[3] Ge H and Qian H 2011 J. R. Soc. Interface. 8 107
[4] Wei B B and Liu R B 2012 Phys. Rev. Lett. 109 185701
[5] Flindt C and Garrahan J P 2013 Phys. Rev. Lett. 110 050601
[6] Benjamin C 2011 Europhys. Lett. 96 67001
[7] Aleksandrov E B and Zapasskii V S 1981 Zh. Eksp. Teor. Fiz. 81 132

Aleksandrov E B and Zapasskii V S 1981 J. Exp. Theor. Phys. 54 64
[8] Crooker S A, Rickel D G, Balatsky A V and Smith D L 2004 Nature 431 49
[9] Mihaila B, Crooker S A, Blagoev K B, Rickel D G, Littlewood P B and Smith D L 2006 Phys. Rev. A

74 063608
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