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By Faming Liang

Texas A&M University

The subject of stochastic approximation was founded by Rob-
bins and Monro [Ann. Math. Statist. 22 (1951) 400–407]. After five
decades of continual development, it has developed into an important
area in systems control and optimization, and it has also served as a
prototype for the development of adaptive algorithms for on-line esti-
mation and control of stochastic systems. Recently, it has been used
in statistics with Markov chain Monte Carlo for solving maximum
likelihood estimation problems and for general simulation and opti-
mizations. In this paper, we first show that the trajectory averaging
estimator is asymptotically efficient for the stochastic approxima-
tion MCMC (SAMCMC) algorithm under mild conditions, and then
apply this result to the stochastic approximation Monte Carlo algo-
rithm [Liang, Liu and Carroll J. Amer. Statist. Assoc. 102 (2007)
305–320]. The application of the trajectory averaging estimator to
other stochastic approximation MCMC algorithms, for example, a
stochastic approximation MLE algorithm for missing data problems,
is also considered in the paper.

1. Introduction. Robbins and Monro (1951) introduced the stochastic
approximation algorithm to solve the integration equation

h(θ) =

∫

X
H(θ,x)fθ(x)dx= 0,(1)

where θ ∈Θ⊂R
dθ is a parameter vector and fθ(x), x∈ X ⊂R

dx , is a density
function depending on θ. The dθ and dx denote the dimensions of θ and x,
respectively. The stochastic approximation algorithm is an iterative recursive
algorithm, whose each iteration consists of two steps:
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Stochastic approximation algorithm.

• Generate Xk+1 ∼ fθk(x), where k indexes the iteration.
• Set θk+1 = θk + akH(θk,Xk+1), where ak > 0 is called the gain factor.

The stochastic approximation algorithm is often studied by rewriting it
as follows:

θk+1 = θk + ak[h(θk) + εk+1],(2)

where h(θk) =
∫
X H(θk, x)fθk(x)dx corresponds to the mean effect of H(θk,

Xk+1), and εk+1 =H(θk, Xk+1)− h(θk) is called the observation noise. In
the literature of stochastic approximation, h(θ) is also called the mean field
function. It is well known that the optimal convergence rate of (2) can be
achieved with ak =−F−1/k, where F = ∂h(θ∗)/∂θ, and θ∗ denotes the zero
point of h(θ). In this case, (2) is reduced to Newton’s algorithm. Unfor-
tunately, it is often impossible to use this algorithm, as the matrix F is
generally unknown.

Although an optimal convergence rate of θk cannot be obtained in gen-
eral, in a sequence of fundamental papers Ruppert (1988), Polyak (1990) and
Polyak and Juditsky (1992) showed that the trajectory averaging estimator
is asymptotically efficient; that is, θ̄n =

∑n
k=1 θk/n can converge in distribu-

tion to a normal random variable with mean θ∗ and covariance matrix Σ,
where Σ is the smallest possible covariance matrix in an appropriate sense.
The trajectory averaging estimator requires {ak} to be relatively large, de-
creasing slower than O(1/k). As discussed by Polyak and Juditsky (1992),
trajectory averaging is based on a paradoxical principle: a slow algorithm
having less than optimal convergence rate must be averaged.

Recently, the trajectory averaging technique has been further explored in
a variety of papers [see, e.g., Chen (1993), Kushner and Yang (1993, 1995),
Dippon and Renz (1997), Wang, Chong and Kulkarni (1997), Tang, L’Ecuyer
and Chen (1999), Pelletier (2000) and Kushner and Yin (2003)] with differ-
ent assumptions for the observation noise. However, up to our knowledge,
it has not yet been explored for stochastic approximation MCMC (SAM-
CMC) algorithms [Benveniste, Métivier and Priouret (1990), Chen (2002),
Kushner and Yin (2003), Andrieu, Moulines and Priouret (2005), Andrieu
and Moulines (2006)]. The stochastic approximation MCMC algorithms re-
fer to a class of stochastic approximation algorithms for which the sample is
generated at each iteration via a Markov transition kernel; that is, {xk+1}
is generated via a family of Markov transition kernel {Pθk(xk, ·)} controlled
by {θk}. Recently, the stochastic approximation MCMC algorithms have
been used in statistics for solving maximum likelihood estimation problems
[Younes (1989, 1999), Moyeed and Baddeley (1991), Gu and Kong (1998),
Gu and Zhu (2001)], and for general simulation and optimizations [Liang,
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Liu and Carroll (2007), Atchadé and Liu (2010)]. It is worth to point out

that in comparison with conventional MCMC algorithms, for example, the

Metropolis–Hastings algorithm [Metropolis et al. (1953), Hastings (1970)],

parallel tempering [Geyer (1991)], and simulated tempering [Marinari and

Parisi (1992), Geyer and Thompson (1995)], the stochastic approximation

Monte Carlo (SAMC) algorithm [Liang, Liu and Carroll (2007)] has signif-

icant advantages in simulations of complex systems for which the energy

landscape is rugged. As explained later (in Section 3), SAMC is essentially

immune to the local trap problem due to its self-adaptive nature inher-

ited from the stochastic approximation algorithm. SAMC has been suc-

cessfully applied to many statistical problems, such as p-value evaluation

for resampling-based tests [Yu and Liang (2009)], Bayesian model selection

[Liang (2009), Atchadé and Liu (2010)] and spatial model estimation [Liang

(2007a)], among others.

In this paper, we explore the theory of trajectory averaging for stochas-

tic approximation MCMC algorithms, motivated by their wide applications.

Although Chen (1993, 2002) considered the case where the observation noise

can be state dependent, that is, the observation noise εk+1 depends on

θ0, . . . , θk, their results are not directly applicable to the stochastic approx-

imation MCMC algorithms due to some reasons as explained in Section 5.

The theory established by Kushner and Yin (2003) can potentially be ex-

tended to the stochastic approximation MCMC algorithm, but, as mentioned

in Kushner and Yin [(2003), page 375] the extension is not straightforward

and more work needs to be done to deal with the complicated structure of the

Markov transition kernel. In this paper, we propose a novel decomposition of

the observation noise for the stochastic approximation MCMC algorithms.

Based on the proposed decomposition, we show the trajectory averaging es-

timator is asymptotically efficient for the stochastic approximation MCMC

algorithms, and then apply this result to the SAMC algorithm. These re-

sults are presented in Lemma A.5, Theorems 2.3 and 3.2, respectively. The

application of the trajectory averaging technique to other stochastic approx-

imation MCMC algorithms, for example, a stochastic approximation MLE

algorithm for missing data problems, is also considered in the paper.

The remainder of this paper is organized as follows. In Section 2, we

present our main theoretical result that the trajectory averaging estimator

is asymptotically efficient for the stochastic approximation MCMC algo-

rithms. In Section 3, we apply the trajectory averaging technique to the

SAMC algorithm. In Section 4, we apply the trajectory averaging technique

to a stochastic approximation MLE algorithm for missing data problems. In

Section 5, we conclude the paper with a brief discussion.
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2. Trajectory averaging for a general stochastic approximation MCMC

algorithm.

2.1. A varying truncation stochastic approximation MCMC algorithm.
To show the convergence of the stochastic approximation algorithm, restric-
tive conditions on the observation noise and mean field function are required.
For example, one often assumes the noise to be mutually independent or to
be a martingale difference sequence, and imposes a sever restriction on the
growth rate of the mean field function. These conditions are usually not sat-
isfied in practice. See Chen [(2002), Chapter 1] for more discussions on this
issue. To remove the growth rate restriction on the mean field function and
to weaken the conditions imposed on noise, Chen and Zhu (1986) proposed a
varying truncation version for the stochastic approximation algorithm. The
convergence of the modified algorithm can be shown for a wide class of the
mean filed function under a truly weak condition on noise; see, for exam-
ple, Chen, Guo and Gao (1988) and Andrieu, Moulines and Priouret (2005).
The latter gives a proof for the convergence of the modified algorithm with
Markov state-dependent noise under some conditions that are easy to verify.

Following Andrieu, Moulines and Priouret (2005), we consider the fol-
lowing varying truncation stochastic approximation MCMC algorithm. Let
{Ks, s≥ 0} be a sequence of compact subsets of Θ such that

⋃

s≥0

Ks =Θ and Ks ⊂ int(Ks+1), s≥ 0,(3)

where int(A) denotes the interior of set A. Let {ak} and {bk} be two mono-
tone, nonincreasing, positive sequences. Let X0 be a subset of X , and let
T :X × Θ→X0 × K0 be a measurable function which maps a point (x, θ)
in X × Θ to a random point in X0 × K0; that is, both x and θ will be
reinitialized in X0×K0. As shown in Lemma A.5, for the stochastic approx-
imation MCMC algorithm, when the number of iterations becomes large,
the observation noise εk can be decomposed as

εk = ek + νk + ςk,(4)

where {ek} forms a martingale difference sequence, and the expectation of
the other two terms will go to zero in certain forms. In Theorems 2.2 and
2.3, we show that {ek} leads to the asymptotic normality of the trajectory
averaging estimator θ̄k, and {νk} and {ςk} can vanish or be ignored when
the asymptotic distribution of θ̄k is considered.

Let σk denote the number of truncations performed until iteration k and
σ0 = 0. The varying truncation stochastic approximation MCMC algorithm
starts with a random choice of (θ0, x0) in the space K0×X0, and then iterates
between the following steps:



TRAJECTORY AVERAGING FOR SAMCMC 5

Varying truncation stochastic approximation MCMC algorithm.

• Draw sample xk+1 with a Markov transition kernel, Pθk , which admits
fθk(x) as the invariant distribution.

• Set θk+1/2 = θk + akH(θk, xk+1).
• If ‖θk+1/2 − θk‖ ≤ bk and θk+1/2 ∈ Kσk

, where ‖z‖ denote the Euclidean
norm of the vector z, then set (θk+1, xk+1) = (θk+1/2, xk+1) and σk+1 = σk;
otherwise, set (θk+1, xk+1) = T (θk, xk) and σk+1 = σk +1.

As depicted by the algorithm, the varying truncation mechanism works in
an adaptive manner as follows: when the current estimate of the parameter
wanders outside the active truncation set or when the difference between
two successive estimates is greater than a time-dependent threshold, then
the algorithm is reinitialized with a smaller initial value of the gain factor
and a larger truncation set. This mechanism enables the algorithm to select
an appropriate gain factor sequence and an appropriate starting point, and
thus to confine the recursion to a compact set; that is, the number of reini-
tializations is almost surely finite for every (θ0, x0) ∈K0×X0. This result is
formally stated in Theorem 2.1, which plays a crucial role for establishing
asymptotic efficiency of the trajectory averaging estimator.

Regarding the varying truncation scheme, one can naturally propose many
variations. For example, one may not change the truncation set when only
the condition ‖θk+1/2−θk‖ ≤ bk is violated, and, instead of jumping forward
in a unique gain factor sequence, one may start with a different gain factor
sequence (smaller than the previous one) when the reinitialization occurs.
In either case, the proof for the theorems presented in Section 2.2 follows
similarly.

2.2. Theoretical results on the trajectory averaging estimator. The asymp-
totic efficiency of θ̄k can be analyzed under the following conditions.

Lyapunov condition on h(θ). Let 〈x, y〉 denote the Euclidean inner prod-
uct.

(A1) Θ is an open set, the function h :Θ→R
d is continuous, and there exists

a continuously differentiable function v :Θ→ [0,∞) such that:

(i) There exists M0 > 0 such that

L= {θ ∈Θ, 〈∇v(θ), h(θ)〉= 0} ⊂ {θ ∈Θ, v(θ)<M0}.(5)

(ii) There exists M1 ∈ (M0,∞) such that VM1 is a compact set,
where VM = {θ ∈Θ, v(θ)≤M}.

(iii) For any θ ∈Θ \ L, 〈∇v(θ), h(θ)〉< 0.
(iv) The closure of v(L) has an empty interior.



6 F. LIANG

This condition assumes the existence of a global Lyapunov function v for
the mean field h. If h is a gradient field, that is, h = −∇J for some lower
bounded real-valued and differentiable function J(θ), then v can be set to J ,
provided that J is continuously differentiable. This is typical for stochastic
optimization problems, for example, machine learning [Tadić (1997)], where
a continuously differentiable objective function J(θ) is minimized.

Stability condition on h(θ).

(A2) The mean field function h(θ) is measurable and locally bounded. There
exist a stable matrix F (i.e., all eigenvalues of F are with negative real
parts), γ > 0, ρ ∈ (0,1], and a constant c such that, for any θ∗ ∈L,

‖h(θ)−F (θ − θ∗)‖ ≤ c‖θ − θ∗‖1+ρ ∀θ ∈ {θ :‖θ− θ∗‖ ≤ γ},

where L is defined in (5).

This condition constrains the behavior of the mean field function around
the solution points. It makes the trajectory averaging estimator sensible
both theoretically and practically. If h(θ) is differentiable, the matrix F can
be chosen to be the partial derivative of h(θ), that is, ∂h(θ)/∂θ. Otherwise,
certain approximation may be needed.

Drift condition on the transition kernel Pθ. Before giving details of this
condition, we first define some terms and notation. Assume that a transition
kernel Pθ is irreducible, aperiodic, and has a stationary distribution on a
sample space denoted by X . A set C⊂X is said to be small if there exist a
probability measure ν on X , a positive integer l and δ > 0 such that

P l
θ(x,A)≥ δν(A) ∀x ∈C,∀A∈ BX ,

where BX is the Borel set defined on X . A function V :X → [1,∞) is said
to be a drift function outside C if there exist positive constants λ < 1 and b
such that

PθV (x)≤ λV (x) + bI(x ∈C) ∀x ∈X ,

where PθV (x) =
∫
X Pθ(x, y)V (y)dy. For a function g :X → R

d, define the
norm

‖g‖V = sup
x∈X

‖g(x)‖
V (x)

and define the set LV = {g :X → R
d, supx∈X ‖g‖V <∞}. Given the terms

and notation introduced above, the drift condition can be specified as fol-
lows.



TRAJECTORY AVERAGING FOR SAMCMC 7

(A3) For any given θ ∈Θ, the transition kernel Pθ is irreducible and aperi-
odic. In addition, there exists a function V :X → [1,∞) and a constant
α≥ 2 such that for any compact subset K⊂Θ:

(i) There exist a set C ⊂ X , an integer l, constants 0< λ < 1, b,
ς , δ > 0 and a probability measure ν such that

sup
θ∈K

P l
θV

α(x)≤ λV α(x) + bI(x ∈C) ∀x ∈X ,(6)

sup
θ∈K

PθV
α(x)≤ ςV α(x) ∀x∈ X ,(7)

inf
θ∈K

P l
θ(x,A)≥ δν(A) ∀x ∈C,∀A∈ BX .(8)

(ii) There exists a constant c > 0 such that, for all x ∈ X ,
sup
θ∈K
‖H(θ,x)‖V ≤ c,(9)

sup
(θ,θ′)∈K

‖H(θ,x)−H(θ′, x)‖V ≤ c‖θ − θ′‖.(10)

(iii) There exists a constant c > 0 such that, for all (θ, θ′) ∈K×K,
‖Pθg −Pθ′g‖V ≤ c‖g‖V ‖θ− θ′‖ ∀g ∈LV ,(11)

‖Pθg− Pθ′g‖V α ≤ c‖g‖V α‖θ − θ′‖ ∀g ∈LV α .(12)

Assumption (A3)(i) is classical in the literature of Markov chain. It implies
the existence of a stationary distribution fθ(x) for all θ ∈Θ and V α-uniform
ergodicity [Andrieu, Moulines and Priouret (2005)]. Assumption (A3)(ii)
gives conditions on the bound of H(θ,x). This is a critical condition for the
observation noise. As seen later in Lemmas A.1 and A.5, it directly leads
to the boundedness of some terms decomposed from the observation noise.
For some algorithms, for example, SAMC, for which H(θ,x) is a bounded
function, the drift function can be simply set as V (x) = 1.

Conditions on the step-sizes.

(A4) The sequences {ak} and {bk} are nonincreasing, positive and satisfy
the conditions:

∞∑

k=1

ak =∞, lim
k→∞

(kak) =∞,

(13)
ak+1 − ak

ak
= o(ak+1), bk =O(a

(1+τ )/2
k ),

for some τ ∈ (0,1],

∞∑

k=1

a
(1+τ)/2
k√
k

<∞,(14)
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and for some constants α≥ 2 as defined in condition (A3),
∞∑

i=1

{aibi + (b−1
i ai)

α}<∞.(15)

It follows from (14) that

k∑

i=[k/2]

a
(1+τ)/2
i √

i
= o(1),

where [z] denotes the integer part of z. Since ak is nonincreasing, we have

a
(1+τ)/2
k

k∑

i=[k/2]

1√
i
= o(1),

and thus a
(1+τ)/2
k

√
k = o(1), or ak =O(k−η) for η ∈ (12 ,1). For instance, ak =

C1/k
η for some constants C1 > 0 and η ∈ (12 ,1), then we can set bk =C2/k

ξ

for some constants C2 > 0 and ξ ∈ (12 , η− 1
α ), which satisfies (13) and (15).

Under this setting, the existence of τ is obvious.
Theorem 2.1 concerns the convergence of the general stochastic approx-

imation MCMC algorithm. The proof follows directly from Theorems 5.4,
5.5 and Proposition 6.1 of Andrieu, Moulines and Priouret (2005).

Theorem 2.1. Assume conditions (A1), (A3) and (A4) hold. Let kσ de-
note the iteration number at which the σth truncation occurs in the stochastic
approximation MCMC simulation. Let X0 ⊂X be such that supx∈X0

V (x)<
∞ and that K0 ⊂ VM0 , where VM0 is defined in (A1). Then there exists al-
most surely a number, denoted by σs, such that kσs <∞ and kσs+1 =∞;
that is, {θk} has no truncation for k ≥ kσs , or mathematically,

θk+1 = θk + akH(θk, xk+1) ∀k≥ kσs .

In addition, we have

θk→ θ∗ a.s.

for some point θ∗ ∈ L.

Theorem 2.2 concerns the asymptotic normality of θ̄k.

Theorem 2.2. Assume conditions (A1), (A2), (A3) and (A4) hold. Let
X0 ⊂ X be such that supx∈X0

V (x) <∞ and that K0 ⊂ VM0 , where VM0 is
defined in (A1). Then √

k(θ̄k − θ∗)−→N(0,Γ)

for some point θ∗ ∈Θ, where Γ = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ is negative
definite, Q= limk→∞E(eke

T
k ), and ek is as defined in (4).
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Below we consider the asymptotic efficiency of θ̄k. As already mentioned,
the asymptotic efficiency of the trajectory averaging estimator has been
studied by quite a few authors. Tang, L’Ecuyer and Chen (1999) gives the
following definition for the asymptotic efficient estimator that can be re-
sulted from a stochastic approximation algorithm.

Definition 2.1. Consider the stochastic approximation algorithm (2).
Let {Zn}n≥0, given as a function of {θn}n≥0, be a sequence of estimators of

θ∗. The algorithm {Zn}n≥0 is said to be asymptotically efficient if

√
n(Zn − θ∗)−→N(0, F−1Q̃(F−1)T ),(16)

where F = ∂h(y∗)/∂y, and Q̃ is the asymptotic covariance matrix of (1/
√
n)×∑n

k=1 εk.

As mentioned in Tang, L’Ecuyer and Chen (1999), Q̃ is the smallest
possible limit covariance matrix that an estimator based on the stochas-
tic approximation algorithm (2) can achieve. If θk → θ∗ and {εk} forms
or asymptotically forms a martingale difference sequence, then we have
Q̃ = limk→∞E(εkε

T
k ). In the next theorem, we show that the asymptotic

covariance matrix Q established in Theorem 2.2 is the same as Q̃, and thus
the trajectory averaging estimator θ̄k is asymptotically efficient.

Theorem 2.3. Assume conditions (A1), (A2), (A3) and (A4) hold. Let
X0 ⊂ X be such that supx∈X0

V (x) <∞ and that K0 ⊂ VM0 , where VM0 is
defined in (A1). Then θ̄k is asymptotically efficient.

As implied by Theorem 2.3, the convergence rate of θ̄k, which is measured
by the asymptotic covariance matrix Γ, is independent of the choice of the
gain factor sequence as long as the condition (A4) is satisfied. The asymp-
totic efficiency of θ̄k can also be interpreted in terms of Fisher information
theory. Refer to Pelletier [(2000), Section 3] and the references therein for
more discussions on this issue.

Trajectory averaging enables smoothing of the behavior of the algorithm
but at the same time, it slows down the numerical convergence because it
takes longer for the algorithm to forget the first iterates. An alternative

idea would be to consider moving window averaging algorithms, see, for
example, Kushner and Yang (1993) and Kushner and Yin (2003), Chapter
11. Extension of their results to the general stochastic approximation MCMC
algorithm will be of great interest.
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3. Trajectory averaging for the stochastic approximation Monte Carlo

algorithm.

3.1. The SAMC algorithm. Suppose that we are interested in sampling
from the following distribution

f(x) = cψ(x), x ∈ X ,(17)

where c is an unknown constant, X ⊂ R
dx is the sample space. The basic

idea of SAMC stems from the Wang–Landau algorithm [Wang and Landau
(2001), Liang (2005)] and can be briefly explained as follows. Let E1, . . . ,Em

denote a partition of X , and let ωi =
∫
Ei
ψ(x)dx for i = 1, . . . ,m. SAMC

seeks to draw sample from the trial distribution

fω(x)∝
m∑

i=1

πiψ(x)

ωi
I{x∈Ei},(18)

where πi’s are prespecified constants such that πi > 0 for all i and
∑m

i=1 πi = 1,
and I{x∈Ei} = 1 if x ∈Ei and 0 otherwise. For example, if the sample space
is partitioned according to the energy function into the following subregions:
E1 = {x :− log(ψ(x)) < u1}, E2 = {x :u1 ≤ − log(ψ(x)) < u2}, . . . ,Em =
{x :− log(ψ(x)) > um−1}, where −∞ < u1 < · · · < um−1 <∞ are the user-
specified numbers, then sampling from fω(x) would result in a random walk
(by viewing each subregion as a “point”) in the space of energy with each
subregion being sampled with probability πi. Here, without loss of generality,
we assume that each subregion is unempty; that is, assuming

∫
Ei
ψ(x)dx > 0

for all i = 1, . . . ,m. Therefore, sampling from (18) essentially avoids the
local-trap problem suffered by the conventional MCMC algorithms. This
is attractive, but ωi’s are unknown. SAMC provides a dynamic way to es-
timate ωi’s under the framework of the stochastic approximation MCMC
algorithm.

In what follows we describe how ω can be estimated by SAMC. Since
fω(x) is invariant with respect to a scale change of ω, it suffices to estimate

ω1, . . . , ωm−1 by fixing ωm to a known constant provided ωm > 0. Let θ
(i)
k

denote the working estimate of log(ωi/πi) obtained at iteration k, and let

θk = (θ
(1)
k , . . . , θ

(m−1)
k ). Why this reparameterization is used will be explained

at the end of this subsection. Let {ak} denote the gain factor sequence, and
let {Ks, s≥ 0} denote a sequence of compact subsets of Θ as defined in (3).
For this algorithm, {Ks, s≥ 0} can be chosen as follows. Define

v(θ) =− log

(
1− 1

2

m−1∑

j=1

(
Sj
S
− πj

)2
)
,(19)
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where Si =
∫
Ei
ψ(x)dx/ exp(θ(i)) for i = 1, . . . ,m − 1, and S =

∑m−1
i=1 Si +∫

Ei
ψ(x)dx. Clearly, v(θ) is continuous in θ, and VM = {θ :v(θ) ≤M} for

any M ∈ (0,∞) forms a compact subset of Θ. Therefore, {VMs , s≥ 0}, 0<
M0 <M1 < · · ·, is an appropriate choice of {Ks, s≥ 0}. For the SAMC algo-
rithm, as seen below, ‖H(θk,Xk+1)‖= ‖(I{xk+1∈E1}−π1, . . . , I{xk+1∈Em−1}−
πm−1)

T ‖ is bounded by the constant
√
2, so we can set the drift function

V (x) = 1. Hence, the initial sample x0 can be drawn arbitrarily from X0 =X ,
while leaving the condition supx∈X0

V (x) <∞ holds. In summary, SAMC
starts with an initial estimate of θ0 ∈K0, and a random sample drawn arbi-
trarily from the space X , and then iterates between the following steps.

SAMC algorithm.

(a) (Sampling.) Simulate a sample xk+1 by a single MH update with the
target distribution

fθk(x)∝
m−1∑

i=1

ψ(x)

eθ
(i)
k

I{x∈Ei} + ψ(x)I{x∈Em},(20)

provided that Em is nonempty. In practice, Em can be replaced by any
other unempty subregion.
(a.1) Generate y according to a proposal distribution q(xk, y).
(a.2) Calculate the ratio

r = eθ
(J(xk))

k
−θ

(J(y))
k

ψ(y)q(y,xk)

ψ(xk)q(xk, y)
,

where J(z) denotes the index of the subregion that the sample z
belongs to.

(a.3) Accept the proposal with probability min(1, r). If it is accepted,
set xk+1 = y; otherwise, set xk+1 = xk.

(b) (Weight updating.) Set

θ
(i)
k+1/2 = θ

(i)
k + ak+1(I{xk+1∈Ei} − πi), i= 1, . . . ,m− 1.(21)

(c) (Varying truncation.) If θk+1/2 ∈Kσk
, then set (θk+1, xk+1) = (θk+1/2, xk+1)

and σk+1 = σk; otherwise, set (θk+1, xk+1) = T (θk, xk) and σk+1 = σk+1,
where σk and T (·, ·) are as defined in Section 2.

SAMC sampling is driven by its self-adjusting mechanism, which, conse-
quently, implies the superiority of SAMC in sample space exploration. The
self-adjusting mechanism can be explained as follows: if a subregion is vis-
ited at iteration k, θk will be updated accordingly such that the probability
that this subregion (other subregions) will be revisited at the next itera-

tions will decrease (increase). Mathematically, if xk+1 ∈ Ei, then θ
(i)
k+1/2←

θ
(i)
k + ak+1(1−πi) and θ(j)k+1/2← θ

(j)
k − ak+1πj for j 6= i. Note that the linear
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adjustment on θ transforms to a multiplying adjustment on ω. This also ex-
plains why SAMC works on the logarithm of ω. Working on the logarithm
enables ω to be adjusted quickly according to the distribution of the sam-
ples. Otherwise, learning of ω would be very slow due to the linear nature
of stochastic approximation. Including πi in the transformation log(ωi/πi)
facilitates our computation, for example, the ratio r in step (a.2).

The self-adjusting mechanism has led to successful applications of SAMC
for many hard computational problems, including phylogenetic tree recon-
struction [Cheon and Liang (2007, 2009)], neural network training [Liang
(2007b)], Bayesian network learning [Liang and Zhang (2009)], among oth-
ers.

3.2. Trajectory averaging for SAMC. To show that the trajectory aver-
aging estimator is asymptotically efficient for SAMC, we assume the follow-
ing conditions.

(C1) The MH transition kernel used in the sampling step satisfies the drift
condition (A3).

To ensure the drift condition to be satisfied, Liang, Liu and Carroll (2007)
restrict the sample space X to be a compact set, assume f(x) to be bounded
away from 0 and ∞, and choose the proposal distribution q(x, y) to satisfy
the local positive condition: for every x ∈ X , there exist positive ε1 and ε2
such that

‖x− y‖ ≤ ε1 =⇒ q(x, y)≥ ε2.(22)

If the compactness condition on X is removed, we may need to impose some
constraints on the tails of the target distribution f(x) and the proposal
distribution q(x, y) as done by Andrieu, Moulines and Priouret (2005).

(C2) The sequence {ak} satisfies the following conditions:

∞∑

k=1

ak =∞, lim
k→∞

(kak) =∞,

ak+1 − ak
ak

= o(ak+1),

∞∑

k=1

a
(1+τ)/2
k√
k

<∞

for some τ ∈ (0,1].
For the SAMC algorithm, as previously discussed, ‖H(θk,Xk+1)‖ is bounded
by the constant

√
2, so we can set V (x) = 1 and set α to any a large number

in condition (A3). Furthermore, given a choice of ak =O(k−η) for some η ∈
(1/2,1), there always exists a sequence {bk}, for example, bk = 2a

(1+τ)/2
k for

some τ ∈ (0,1], such that the inequality ‖θk+1/2− θk‖= ‖akH(θk,Xk+1)‖ ≤



TRAJECTORY AVERAGING FOR SAMCMC 13

bk holds for all iterations. Hence, a specification of the sequence {bk} can be
omitted for the SAMC algorithm.

Theorem 3.1 concerns the convergence of SAMC. In the first part, it states
that kσs is almost surely finite; that is, {θk} can be included in a compact
set almost surely. In the second part, it states the convergence of θk to a
solution θ∗. We note that for SAMC, the same convergence result has been
established by Liang, Liu and Carroll (2007) under (C1) and a relaxed con-
dition of (C2), where {ak} is allowed to decrease at a rate of O(1/k). Since
the focus of this paper is on the asymptotic efficiency of θ̄k, the convergence
of {θk} is only stated under a slower decreasing rate of {ak}. We also note
that for SAMC, we have assumed, without loss of generality, that all subre-
gions are unempty. For the empty subregions, no adaptation of {θk} occurs
for the corresponding components in the run. Therefore, the convergence
of {θk} should only be measured for the components corresponding to the
nonempty subregions.

Theorem 3.1. Assume conditions (C1) and (C2) hold. Then there ex-
ists (a.s.) a number, denoted by σs, such that kσs <∞, kσs+1 =∞, and {θk}
given by the SAMC algorithm has no truncation for k ≥ kσs , that is,

θk+1 = θk + akH(θk, xk+1) ∀k ≥ kσs(23)

and

θk→ θ∗ a.s.,(24)

where H(θk, xk+1) = (I{xk+1∈E1} − π1, . . . , I{xk+1∈Em−1} − πm−1)
T , and θ∗ =

(log(ω1/π1)− log(ωm/πm), . . . , log(ωm−1/πm−1)− log(ωm/πm))T .

Theorem 3.2 concerns the asymptotic normality and efficiency of θ̄k.

Theorem 3.2. Assume conditions (C1) and (C2). Then θ̄k is asymp-
totically efficient; that is,

√
k(θ̄k − θ∗)−→N(0,Γ) as k→∞,

where Γ = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ is negative definite and Q =
limk→∞E(eke

T
k ).

The above theorems address some theoretical issues of SAMC. For prac-
tical issues, please refer to Liang, Liu and Carroll (2007), where issues, such
as how to partition the sample space, how to choose the desired sampling
distribution, and how to diagnose the convergence, have been discussed at
length. An issue particularly related to the trajectory averaging estimator is
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the length of the burn-in period. To remove the effect of the early iterates,
the following estimator:

θ̄
(b)
k =

1

k− k0

k∑

i=k0+1

θi,

instead of θ̄k, is often used in practice, where k0 is the so-called length of
the burn-in period. It is obvious that the choice of k0 should be based on
the diagnosis for the convergence of the simulation. Just like monitoring
convergence of MCMC simulations, monitoring convergence of SAMC sim-
ulations should be based on multiple runs [Liang, Liu and Carroll (2007)].
In practice, if only a single run was made, we suggest to look at the plot
of π̂ to choose k0 from where π̂k has been approximately stable. Here, we
denote by π̂k the sampling frequencies of the respective subregions realized
by iteration k. It follows from Theorem 3.1 that π̂k→ π when the number
of iterations, k, becomes large.

Trajectory averaging can directly benefit one’s inference in many appli-
cations of SAMC. A typical example is Bayesian model selection, where the
ratio ωi/ωj just corresponds to the Bayesian factor of two models if one
partitions the sample space according to the model index and imposes an
uniform prior on the model space as done in Liang (2009). Another example
is inference for the spatial models with intractable normalizing constants, for
which Liang, Liu and Carroll (2007) has demonstrated how SAMC can be
used to estimate the normalizing constants for these models and how the es-
timate can then be used for inference of the model parameters. An improved
estimate of the normalizing constant function would definitely benefit one’s
inference for the model.

4. Trajectory averaging for a stochastic approximation MLE algorithm.

Consider the standard missing data problem:

• y is the observed incomplete data.
• f(x, θ) is the complete data likelihood, that is, the likelihood of the com-

plete data (x, y) obtained by augmenting the observed data y with the
missing data x. The dependence of f(x, θ) on y is here implicit.

• p(x, θ) is the predictive distribution of the missing data x given the ob-
served data y, that is, the predictive likelihood.

Our goal is to find the maximum likelihood estimator of θ. This problem
has been considered by a few authors under the framework of stochastic
approximation; see, for example, Younes (1989), Gu and Kong (1998) and
Delyon, Lavielle and Moulines (1999). A basic algorithm proposed by Younes
(1989) for the problem can be written as

θk+1 = θk + ak∂θ log f(Xk+1, θk),(25)
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where the missing dataXk+1 can be imputed using a MCMC algorithm, such
as the Metropolis–Hastings algorithm. Under standard regularity conditions,
we have

h(θ) =Eθ[∂θ log f(X,θ)] = ∂θl(θ),

where l(θ) is the log-likelihood function of the incomplete data.
To show that the trajectory averaging estimator is asymptotically efficient

for a varying truncation version of the algorithm (25), we assume (A3), (A4)
and some regularity conditions for the distribution f(x, θ). The conditions
(A1) and (A2) can be easily verified with the following settings:

• The Lyapunov function v(θ) can be chosen as v(θ) =−l(θ)+C, where C
is chosen such that v(θ)> 0. Thus,

〈∇v(θ), h(θ)〉=−‖∂θl(θ)‖2.
The set of stationary points of (25), {θ : 〈∇v(θ), h(θ)〉= 0}, coincides with
the set of the solutions {θ :∂θl(θ) = 0}. Then the condition (A1) can be
verified by verifying that l(θ) is continuously differentiable (this is problem
dependent).

• The matrix F trivially is the Hessian matrix of l(θ). Then (A2) can be
verified using the Taylor expansion.

In summary, we have the following theorem.

Theorem 4.1. Assume conditions (A3) and (A4) hold. Then the es-
timator θ̄k generated by a varying truncation version of algorithm (25) is
asymptotically efficient.

In practice, to ensure the drift condition to be satisfied, we may follow
Andrieu, Moulines and Priouret (2005) to impose some constraints on the
tails of the distribution f(x, θ) and the proposal distribution q(x, y). Al-
ternatively, we can follow Liang, Liu and Carroll (2007) to choose a pro-
posal satisfying the local positive condition (22) and to restrict the sample
space X to be compact. For example, we may set X to a huge space, say,
X = [−10100,10100]dx . As a practical matter, this is equivalent to setting
X =R

dx .

5. Conclusion. In this paper, we have shown that the trajectory averag-
ing estimator is asymptotically efficient for a general stochastic approxima-
tion MCMC algorithm under mild conditions, and then applied this result
to the stochastic approximation Monte Carlo algorithm and a stochastic
approximation MLE algorithm.

The main difference between this work and the work published in the
literature, for example, Polyak and Juditsky (1992) and Chen (1993), are
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at the conditions on the observation noise. In the literature, it is usually
assumed directly that the observation noise has the decomposition εk =
ek+νk, where {ek} forms a martingale difference sequence and νk is a higher

order term of o(a
1/2
k ). As shown in Lemma A.5, the stochastic approximation

MCMC algorithm does not satisfy this decomposition.

APPENDIX A: PROOFS OF THEOREMS 2.2 AND 2.3

Lemma A.1 is a partial restatement of Proposition 6.1 of Andrieu, Moulines
and Priouret (2005).

Lemma A.1. Assume condition (A3) holds. Then the following results
hold:

(B1) For any θ ∈ Θ, the Markov kernel Pθ has a single stationary distri-
bution fθ. In addition, H :Θ × X → Θ is measurable for all θ ∈ Θ,∫
X ‖H(θ,x)‖fθ(x)dx <∞.

(B2) For any θ ∈ Θ, the Poisson equation u(θ,x) − Pθu(θ,x) = H(θ,x) −
h(θ) has a solution u(θ,x), where Pθu(θ,x) =

∫
X u(θ,x

′)Pθ(x,x
′)dx′.

There exist a function V :X → [1,∞) such that {x ∈ X , V (x)<∞} 6=
∅, and a constant β ∈ (0,1] such that for any compact subset K⊂Θ,
the following holds:

(i) sup
θ∈K
‖H(θ,x)‖V <∞,

(ii) sup
θ∈K

(‖u(θ,x)‖V + ‖Pθu(θ,x)‖V )<∞,
(26)

(iii) sup
(θ,θ′)∈K×K

‖θ − θ′‖−β(‖u(θ,x)− u(θ′, x)‖V

+ ‖Pθu(θ,x)− Pθ′u(θ
′, x)‖V )<∞.

Lemma A.2 is a restatement of Proposition 5.1 of Andrieu, Moulines and
Priouret (2005).

Lemma A.2. Assume conditions (A1), (A3) and (A4) hold. Let X0 ⊂X
be such that supx∈X0

V (x) <∞ and that K0 ⊂ VM0 , where V0 is defined
in (A1). Then supkE[V α(Xk)I(k ≥ kσs)] <∞, where α ≥ 2 is defined in
condition (A3) and kσs is defined in Theorem 2.1.

Lemma A.3 is a restatement of Corollary 2.1.10 of Duflo (1997), pages 46
and 47.

Lemma A.3. Let {Sni,Gni,1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square-
integrable martingale array with differences υni, where Gni denotes the σ-
field. Suppose that the following assumptions apply:
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(i) The σ-fields are nested: Gni ⊆Gn+1,i for 1≤ i≤ kn, n≥ 1.

(ii)
∑kn

i=1E(υniυ
T
ni|Gn,i−1)→ Λ in probability, where Λ is a positive def-

inite matrix.
(iii) For any ε > 0,

∑kn
i=1E[‖υni‖2I(‖υni‖≥ε)|Gn,i−1]→ 0 in probability.

Then Snkn =
∑kn

i=1 υni→N(0,Λ) in distribution.

Definition A.1. For ̺ ∈ (0,∞), a sequence {Xn, n≥ 1} of random vari-
ables is said to be residually Cesàro ̺-integrable [RCI(̺), in short] if

sup
n≥1

1

n

n∑

i=1

E|Xi|<∞

and

lim
n→∞

1

n

n∑

i=1

E(|Xi| − i̺)I(|Xi|> i̺) = 0.

Lemma A.4 is a restatement of Theorem 2.1 of Chandra and Goswami
(2006).

Lemma A.4. Let {Xn, n≥ 1} be a sequence of nonnegative random vari-
ables satisfying E(XiXj)≤E(Xi)E(Xj) for all i 6= j and let Sn =

∑n
i=1Xi.

If {Xn, n≥ 1} is RCI(̺) for some ̺ ∈ (0,1), then

1

n
[Sn −E(Sn)]→ 0 in probability.

Lemma A.5. Assume conditions (A1), (A3) and (A4) hold. Let X0 ⊂X
be such that supx∈X0

V (x) <∞ and that K0 ⊂ VM0 , where V0 is defined in

(A1). If kσs <∞, which is defined in Theorem 2.1, then there exist R
d-

valued random processes {ek}k≥kσs , {νk}k≥kσs and {ςk}k≥kσs defined on a
probability space (Ω,F ,P) such that:

(i) εk = ek + νk + ςk for k ≥ kσs .
(ii) {ek}k≥kσs is a martingale difference sequence, and 1√

n

∑n
k=kσs

ek −→
N(0,Q) in distribution, where Q= limk→∞E(eke

T
k ).

(iii) 1√
k

∑k
i=kσs

E‖νi‖→ 0, as k→∞.

(iv) E‖∑k
i=kσs

aiςi‖→ 0, as k→∞.

Proof. (i) Let εkσs = νkσs = ςkσs = 0, and

ek+1 = u(θk, xk+1)−Pθku(θk, xk),

νk+1 = [Pθk+1
u(θk+1, xk+1)−Pθku(θk, xk+1)]
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+
ak+2− ak+1

ak+1
Pθk+1

u(θk+1, xk+1),(27)

ς̃k+1 = ak+1Pθku(θk, xk),

ςk+1 =
1

ak+1
(ς̃k+1 − ς̃k+2).

It is easy to verify that (i) holds by noticing the Poisson equation given in
(B2).

(ii) By (27), we have

E(ek+1|Fk) =E(u(θk, xk+1)|Fk)− Pθku(θk, xk) = 0,

where {Fk}k≥kσs is a family of σ-algebras satisfying σ{θkσs , xkσs} ⊆ F0

and σ{θkσs , θkσs+1, . . . , θk;xkσs , xkσs+1 , . . . , xk} ⊆ Fk ⊆ Fk+1 for all k ≥ kσs .
Hence, {ek}k≥kσs forms a martingale difference sequence.

When kσs <∞, there exists a compact set K such that θk ∈ K for all
k ≥ 0. Following from Lemmas A.1 and A.2, {ek}k≥kσs is ek is uniformly
square integrable with respect to k, and the martingale sn =

∑n
k=1 ek is

square integrable for all n.
By (27), we have

E(ek+1e
T
k+1|Fk) = E[u(θk, xk+1)u(θk, xk+1)

T |Fk]

−Pθku(θk, xk)Pθku(θk, xk)
T(28)

△
= l(θk, xk).

Following from Lemmas A.1 and A.2, ‖l(θk, xk)‖ is uniformly integrable
with respect to k. Hence, {l(θk, xk), k ≥ kσs} is RCI(̺) for any ̺ > 0 (Defi-
nition A.1). Since {E(ek+1e

T
k+1|Fk)−E(ek+1e

T
k+1)} forms a martingale dif-

ference sequence, the correlation coefficient Corr(l(θi, xi), l(θj, xj)) = 0 for
all i 6= j. By Lemma A.4, we have, as n→∞,

1

n

n∑

k=kσs

l(θk, xk)→
1

n

n∑

k=kσs

El(θk, xk) in probability.(29)

Now we show that El(θk, xk) also converges. It follows from (A1) and (B2)
that l(θ,x) is continuous in θ. By the convergence of θk, we can conclude
that l(θk, x) converges to l(θ

∗, x) for any x ∈ X . Following from Lemmas A.1,
A.2 and Lebesgue’s dominated convergence theorem, El(θk, xk) converges to
El(θ∗, x). Combining with (29), we obtain

1

n

n∑

k=kσs

l(θk, xk)→El(θ∗, x) = lim
k→∞

E(eke
T
k ) in probability.(30)
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Since ‖ek‖ can be uniformly bounded by an integrable function cV (x), the
Lindeberg condition is satisfied, that is,

n∑

i=kσs

E

[‖ei‖2
n

I(‖ei‖/
√
n≥ε)

∣∣∣Fi−1

]
→ 0 as n→∞.

Following from Lemma A.3, we have
∑n

i=kσs
ei/
√
n→N(0,Q) by identifying

ei/
√
n to υni, n to kn, and Fi to Gni.

(iii) By condition (A4), we have

ak+2 − ak+1

ak+1
= o(ak+2).

By (27) and (26), there exists a constant c1 such that the following inequality
holds:

‖νk+1‖V ≤ c1‖θk+1− θk‖+ o(ak+2) = c1‖akH(θk, xk+1)‖+ o(ak+2),

which implies, by (26), that there exists a constant c2 such that

‖νk+1‖V 2 ≤ c2ak.(31)

Since V (x) is square integrable, νk is uniformly integrable with respect to k
and there exists a constant c3 such that

∞∑

k=kσs

E‖νk‖√
k
≤ c3

∞∑

k=kσs

ak√
k
<∞,

where the last inequality follows from condition (A4). Therefore, (iii) holds
by Kronecker’s lemma.

(iv) A straightforward calculation shows that

k∑

i=kσs

aiςi =−ς̃k+1 =−ak+1Pθku(θk, xk).

By Lemmas A.1 and A.2, E‖Pθku(θk, xk)‖ is uniformly bounded with respect
to k. Therefore, (iv) holds. �

By Theorem 2.1, we have

θk+1− θ∗ = (θk − θ∗) + akh(θk) + akεk+1 ∀k ≥ kσs .(32)

To facilitate the theoretical analysis for the random process {θk}, we define
a reduced random process: {θ̃k}k≥0, where

θ̃k =

{
θk + ς̃k, k > kσs ,
θk, 0≤ k ≤ kσs ,

(33)
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which is equivalent to set ς̃k = 0 for all k = 0, . . . , kσs . For convenience, we
also define

ε̃k = ek + νk, k > kσs .(34)

It is easy to verify that

θ̃k+1− θ∗ = (I + akF )(θ̃k − θ∗)
(35)

+ ak(h(θk)−F (θ̃k − θ∗)) + akε̃k+1 ∀k ≥ kσs ,

which implies

θ̃k+1− θ∗ =Φk,kσs(θ̃kσs − θ
∗) +

k∑

j=kσs

Φk,j+1aj ε̃j+1

(36)

+

k∑

j=kσs

Φk,j+1aj(h(θj)−F (θ̃j − θ∗)) ∀k ≥ kσs ,

where Φk,j =
∏k

i=j(I + aiF ) if k ≥ j, and Φj,j+1 = I , and I denotes the
identity matrix.

For γ specified in (A2) and a deterministic integer k0, define the stopping
time µ=min{j : j ≥ k0,‖θj − θ∗‖ ≥ γ} if ‖θk0 − θ∗‖< γ and 0 if ‖θk0 − θ∗‖ ≥
γ. Define

A= {i :kσs < k0 ≤ i < µ},(37)

and let IA(k) denote the indicator function; IA(k) = 1 if k ∈A and 0 other-
wise. Therefore, for all k ≥ k0,

(θ̃k+1− θ∗)IA(k+1)

= Φk,k0(θ̃k0 − θ∗)IA(k+ 1) +

[
k∑

j=k0

Φk,j+1aj ε̃j+1IA(j)

]
IA(k+ 1)(38)

+

[
k∑

j=k0

Φk,j+1aj(h(θj)−F (θ̃j − θ∗))IA(j)
]
IA(k+1).

Including the terms IA(j) in (38) facilitates our use of some results published
in Chen (2002) in the later proofs, but it does not change equality of (38).
Note that if IA(k+ 1) = 1, then IA(j) = 1 for all j = k0, . . . , k.

Lemma A.6. (i) The following estimate takes place:

aj
ak
≤ exp

(
o(1)

k∑

i=j

ai

)
∀k ≥ j,∀j ≥ 1,(39)

where o(1) denotes a magnitude that tends to zero as j→∞.
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(ii) Let c be a positive constant, then there exists another constant c1
such that

k∑

i=1

ari exp

(
−c

k∑

j=i+1

aj

)
≤ c1 ∀k ≥ 1,∀r ≥ 1.(40)

(iii) There exist constants c0 > 0 and c > 0 such that

‖Φk,j‖ ≤ c0 exp
{
−c

k∑

i=j

ai

}
∀k≥ j,∀j ≥ 0.(41)

(iv) Let Gk,j =
∑k

i=j(aj−1−ai)Φi−1,j +F
−1Φk,j. Then Gk,j is uniformly

bounded with respect to both k and j for 1≤ j ≤ k, and
1

k

k∑

j=1

‖Gk,j‖ −→ 0 as k→∞.(42)

Proof. Parts (i) and (iv) are a restatement of Lemma 3.4.1 of Chen
(2002). The proof of part (ii) can be found in the proof of Lemma 3.3.2 of
Chen (2002). The proof of part (iii) can be found in the proof of Lemma
3.1.1 of Chen (2002). �

Lemma A.7. If conditions (A1)–(A4) hold, then

1

ak+1
E‖(θk+1 − θ∗)IA(k +1)‖2

is uniformly bounded with respect to k, where the set A is as defined in (37).

Proof. By (33) and (27), we have

1

ak+1
‖θk+1− θ∗‖2 =

1

ak+1
‖θ̃k+1− θ∗− ς̃k+1‖2

≤ 2

ak+1
‖θ̃k+1− θ∗‖2 +2ak+1‖Pθku(θk, xk)‖2.

Following from (B2) and Lemma A.2, it is easy to see that E‖Pθku(θk, xk)‖2
is uniformly bounded with respect to k. Hence, to prove the lemma, it suf-
fices to prove that 1

ak+1
E‖(θ̃k+1− θ∗)IA(k+1)‖2 is uniformly bounded with

respect to k.
By (33), (A2) and (B2), there exist constants c1 and c2 such that

‖h(θj)−F (θ̃j − θ∗)‖IA(j)
= ‖h(θj)− F (θj − θ∗)− F ς̃j‖IA(j)

(43)
≤ ‖h(θj)− F (θj − θ∗)‖IA(j) + c2aj‖Pθj−1

u(θj−1, xj−1)‖

≤ c1‖θj − θ∗‖1+ρ + c2aj‖Pθj−1
u(θj−1, xj−1)‖.
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In addition, we have

E‖θ̃k0 − θ∗‖2IA(k0) =E‖θk0 − θ∗ + ς̃k0‖2IA(k0)
(44)

≤ 2‖θk0 − θ∗‖2IA(k0) + 2E‖ς̃k0‖2.

It is easy to see from (26) and (27) that ς̃k0 is square integrable. Hence,
following from (37), there exists a constant γ̃ such that

E‖θ̃k0 − θ∗‖2IA(k0)≤ γ̃.(45)

By (38), (41), (43) and (45), and following Chen [(2002), page 141] we
have

1

ak+1
E‖(θ̃k+1 − θ∗)IA(k+ 1)‖2

≤ 5c0γ̃

ak+1
exp

(
−2c

k∑

i=k0

ai

)

+
5c20
ak+1

k∑

i=k0

k∑

j=k0

[
exp

(
−c

k∑

s=j+1

as

)
aj exp

(
−c

k∑

s=i+1

as

)
ai‖Eei+1e

T
j+1‖

]

+
5c20
ak+1

k∑

i=k0

k∑

j=k0

[
exp

(
−c

k∑

s=j+1

as

)
aj exp

(
−c

k∑

s=i+1

as

)
aiE‖νi+1ν

T
j+1‖

]

+
5c20c

2
2

ak+1

k∑

i=k0

k∑

j=k0

[
exp

(
−c

k∑

s=j+1

as

)
a2j exp

(
−c

k∑

s=i+1

as

)

× a2iE‖Pθi−1
u(θi−1, xi−1)(Pθj−1

u(θj−1, xj−1))
T ‖
]

+
5c20c

2
1

ak+1
E

[
k∑

j=k0

exp

(
−c

k∑

s=j+1

as

)
aj‖θj − θ∗‖1+ρIA(j)

]2

△
= I1 + I2 + I3 + I4 + I5.

By (39), there exists a constant c3 such that such that

‖I1‖ ≤
5c0c3γ̃

ak0
exp

(
o(1)

k+1∑

i=k0

ai

)
exp

(
−2c

k∑

i=k0

ai

)
,

where o(1)→ 0 as k0 →∞. This implies that o(1) − 2c < 0 if k0 is large
enough. Hence, I1 is bounded if k0 is large enough.
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By (39) and (40), for large enough k0, there exists a constant c4 such that

k∑

j=k0

a2j
ak+1

exp

(
−c

k∑

s=j+1

as

)
≤

k∑

j=k0

aj exp

(
− c
2

k∑

s=j+1

as

)
≤ c4.(46)

Since {ei} forms a martingale difference sequence (Lemma A.5),

Eeie
T
j =E(E(ei|Fi−1)e

T
j ) = 0 ∀i > j,

which implies that

I2 =
5c20
ak+1

k∑

i=k0

[
a2i exp

(
−2c

k∑

s=j+1

as

)
E‖ei‖2

]

≤ 5c20 sup
i
E‖ei‖2

k∑

i=k0

[
a2i exp

(
−2c

k∑

s=j+1

as

)]
.

Since {‖ei‖, i≥ 1} is uniformly bounded by a function cV (x) which is square
integrable, supiE‖ei‖2 is bounded by a constant. Furthermore, by (40), I2
is uniformly bounded with respect to k.

By (27), (26) and condition (A4), there exist a constant c0 and a constant
τ ∈ (0,1) such that the following inequality holds:

‖νk+1‖V ≤ c0‖θk+1 − θk‖+ o(ak+2)≤ c0bk + o(ak+2) =O(a
(1+τ )/2
k ).(47)

This, by (B1) and the Cauchy–Schwarz inequality, further implies that there
exists a constant c′0 such that

E‖νi+1ν
T
j+1‖ ≤ c′0a

(1+τ )/2
i a

(1+τ)/2
j .(48)

Therefore, there exists a constant c5 such that

I3 = 5c20

k∑

i=k0

k∑

j=k0

[
exp

(
−c

k∑

s=j+1

as

)
aj√
ak+1

× exp

(
−c

k∑

s=i+1

as

)
ai√
ak+1

O(a
(1+τ )/2
i )O(a

(1+τ)/2
j )

]

≤ 5c20c5

k∑

i=k0

k∑

j=k0

[
exp

(
− c
2

k∑

s=j+1

as

)
aj

1/2

× exp

(
− c
2

k∑

s=i+1

as

)
ai

1/2a
(1+τ)/2
i a

(1+τ)/2
j

]

= 5c20c5

{
k∑

j=k0

[
aj

1+τ/2 exp

(
− c
2

k∑

s=j+1

as

)]}2

.
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By (40), I3 is uniformly bounded with respect to k.
Following from Lemmas A.1 and A.2, E‖Pθi−1

u(θi−1, xi−1)(Pθj−1
u(θj−1,

xj−1))
T ‖ is uniformly bounded with respect to k. Therefore, there exists a

constant c6 such that

I4 = 5c20c
2
2c6

k∑

i=k0

k∑

j=k0

[
exp

(
−c

k∑

s=j+1

as

)
a2j√
ak+1

exp

(
−c

k∑

s=i+1

as

)
a2i√
ak+1

]

≤ 5c20c
2
2c6

{
k∑

j=k0

[
aj

3/2 exp

(
− c
2

k∑

s=j+1

as

)]}2

.

By (40), I4 is uniformly bounded with respect to k.
The proof for the uniform boundedness of I5 can be found in the proof of

Lemma 3.4.3 of Chen (2002), pages 143 and 144. �

Lemma A.8. If conditions (A1)–(A4) hold, then as k→∞,

1√
k

k∑

i=kσs

‖h(θi)−F (θ̃i − θ∗)‖ −→ 0 in probability.

Proof. By (33) and (27), there exists a constant c such that

1√
k

k∑

i=kσs

‖h(θi)− F (θ̃i − θ∗)‖

≤ 1√
k

k∑

i=kσs

‖h(θi)−F (θi − θ∗)‖+
c√
k

k∑

i=kσs

ai‖Pθi−1
u(θi−1, xi−1)‖

△
= I1 + I2.

To prove the lemma, it suffices to prove that I1 and I2 both converge to zero
in probability as k→∞.

Following from Lemmas A.1 and A.2, E‖Pθku(θk, x)‖ is uniformly bounded
for all k ≥ kσs . This implies, by condition (A4), there exists a constant c such
that

∞∑

i=1

aiE‖Pθi−1
u(θi−1, xi−1)‖√
i

< c

∞∑

i=1

ai√
i
<∞.

By Kronecker’s lemma, E(I2)→ 0, and thus I2→ 0 in probability.
The convergence I1→ 0 can be established as in Chen [(2002), Lemma

3.4.4] using the condition (A2) and Lemma A.7. �
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Proof of Theorem 2.2. By Theorem 2.1, θk converges to the zero point
θ∗ almost surely and

θk+1 = θk + akH(θk, xk+1) ∀k≥ kσs .

Consequently, we have, by (33),

√
k(θ̄k − θ∗) = o(1) +

1√
k

k∑

i=kσs

(θi − θ∗)

(49)

= o(1) +
1√
k

k∑

i=kσs

(θ̃i − θ∗)−
1√
k

k∑

i=kσs

ς̃i,

where o(1)→ 0 as k→∞.

Condition (A4) implies 1√
k

∑k
i=kσs

ai→ 0 by Kronecker’s lemma. Follow-

ing Lemmas A.1 and A.2, there exists a constant c such that

1√
k

k∑

i=kσs

E‖ς̃i‖ ≤
c√
k

k∑

i=kσs

ai+1→ 0.(50)

Therefore, 1√
k

∑k
i=kσs

ς̃i→ 0 in probability as k→∞.

By (36), (49) and (50), we have

√
k(θ̄k − θ∗) = op(1) +

1√
k

k∑

i=kσs

Φi−1,kσs (θ̃kσs − θ
∗)

+
1√
k

k∑

i=kσs

i−1∑

j=kσs

Φi−1,j+1aj ε̃j+1

(51)

+
1√
k

k∑

i=kσs

i−1∑

j=kσs

Φi−1,j+1aj(h(θj)−F (θ̃j − θ∗))

△
= op(1) + I1 + I2 + I3,

where op(·) means

Yk = op(Zk) if and only if Yk/Zk→ 0 in probability, as k→∞.

By noticing that Φk,j =Φk−1,j + akFΦk−1,j, we have

Φk,j = I +
k∑

i=j

aiFΦi−1,j and F−1Φk,j = F−1 +
k∑

i=j

aiΦi−1,j,
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and thus

aj−1

k∑

i=j

Φi−1,j =
k∑

i=j

(aj−1− ai)Φi−1,j +
k∑

i=j

aiΦi−1,j.

By the definition of Gk,j given in Lemma A.6(iv), we have

aj−1

k∑

i=j

Φi−1,j =−F−1 +Gk,j,(52)

which implies

I1 =
1√

kakσs−1

(−F−1 +Gk,kσs )(θ̃kσs − θ
∗).

By Lemma A.6, Gk,j is bounded. Therefore, I1→ 0 as k→∞. The above
arguments also imply that there exists a constant c0 > 0 such that

∥∥∥∥∥aj
k∑

i=j+1

Φi−1,j+1

∥∥∥∥∥< c0 ∀k,∀j < k.(53)

By (53), we have

‖I3‖=
1√
k

∥∥∥∥∥

k∑

j=kσs

k∑

i=j+1

Φi−1,j+1aj(h(θj)− F (θ̃j − θ∗))
∥∥∥∥∥

≤ c0√
k

k∑

j=kσs

‖h(θj)−F (θ̃j − θ∗)‖.

It then follows from Lemma A.8 that I3 converges to zero in probability as
k→∞.

Now we consider I2. By (34) and (52),

I2 =−
F−1

√
k

k∑

j=kσs

ej+1 +
1√
k

k∑

j=kσs

Gk,j+1ej+1

+
1√
k

k∑

j=kσs

(−F−1 +Gk,j+1)νj+1

△
= J1 + J2 + J3.

Since {ej} is a martingale difference sequence,

E(eTi G
T
k,iGk,jej) =E[E(ei|Fi−1)

TGT
k,iGk,jej ] = 0 ∀i > j,
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which implies that

E‖J2‖2 =
1

k

k∑

j=kσs

E(eTj+1G
T
k,j+1Gk,j+1ej+1)≤

1

k

k∑

j=kσs

‖Gk,j+1‖2E‖ej+1‖2.

By the uniform boundedness of {E‖ei‖2, i ≥ kσs}, (42) and the uniform
boundedness of Gk,j, there exists a constant c1 such that

E‖J2‖2 ≤
c1
k

k∑

j=kσs

‖Gk,j+1‖→ 0 as k→∞.(54)

Therefore, J2→ 0 in probability as k→∞.
Since Gk,j is uniformly bounded with respect to both k and j, there exists

a constant c2 such that

E‖J3‖ ≤
c2√
k

k∑

j=kσs

E‖νj+1‖.

Following from Lemma A.5(iii), J3 converges to zero in probability as k→
∞.

By Lemma A.5, J1→ N(0, S) in distribution. Combining with the con-
vergence results of I1, I3, J2 and J3, we conclude the proof of the theorem.

Proof of Theorem 2.3. Since the order of ςk is difficult to treat, we con-
sider the following stochastic approximation MCMC algorithm:

θ̃k+1 = θ̃k + ak(h(θk) + ε̃k+1),(55)

where {θ̃k} and {ε̃k} are as defined in (33) and (34), respectively. Follow-
ing from Lemma A.5(ii), {ε̃k} forms a sequence of asymptotically unbiased
estimator of 0.

Let
¯̃
θn =

∑n
k=1 θ̃k/n. To establish that

¯̃
θ is an asymptotically efficient

estimator of θ∗, we will first show (in step 1)

√
n(

¯̃
θ− θ∗)→N(0,Γ),(56)

where Γ = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ and Q= limk→∞E(eke
T
k ); and then

show (in step 2) that the asymptotic covariance matrix of
∑n

k=1 ε̃k/
√
n is

equal to Q.
Step 1. By (34), we have

¯̃θ = θ̄+
1

n

n∑

k=1

ς̃k.(57)
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By Lemmas A.1 and A.2, E‖Pθk−1
u(θk−1, xk−1)‖ is uniformly bounded for

k ≥ kσs and thus there exists a constant c such that

E

∥∥∥∥∥
1√
n

n∑

k=kσs

ς̃k

∥∥∥∥∥=E

∥∥∥∥∥
1√
n

n∑

k=kσs

akPθk−1
u(θk−1, xk−1)

∥∥∥∥∥≤
c√
n

n∑

k=kσs

ak.

By Kronecker’s lemma and (A4), we have 1√
n

∑n
k=kσs

ak→ 0 in probability.

Hence, 1√
n

∑n
k=kσs

ς̃k = op(1) and

1

n

n∑

k=kσs

ς̃k = op(n
−1/2).(58)

That is
¯̃
θn = θ̄n + op(n

−1/2).(59)

Following from Theorem 2.2 and Slutsky’s theorem, (56) holds.
Step 2. Now we show the asymptotic covariance matrix of

∑n
k=1 ε̃k/

√
n

is equal to Q. Consider

E

(
1√
n

n∑

k=1

ε̃k

)(
1√
n

n∑

k=1

ε̃k

)T

− 1

n

(
n∑

k=1

E(ε̃k)

)(
n∑

k=1

E(ε̃k)

)T

=
1

n

n∑

k=1

E(ε̃k ε̃
T
k ) +

1

n

∑∑

i 6=j

E(ε̃iε̃
T
j )−

1

n

[
n∑

k=1

E(ε̃k)

][
n∑

k=1

E(ε̃k)

]T

= (I1) + (I2) + (I3).

By (34), we have

(I1) =
1

n

n∑

k=1

E(eke
T
k ) +

2

n

n∑

k=1

E(ekν
T
k ) +

1

n

n∑

k=1

E(νkν
T
k )

= (J1) + (J2) + (J3).

By (47), ‖νkνTk ‖V 2 =O(a1+τ
k ) for k ≥ kσs , where τ ∈ (0,1) is defined in (A4).

Since V 2(x) is square integrable, there exists a constant c such that

1

n

n∑

k=1

E‖νkνTk ‖ ≤ o(1) +
c√
n

1√
n

n∑

k=kσs

a1+τ
k ,

which, by Kronecker’s lemma and (A4), implies J3→ 0 as n→∞.
Following from Lemmas A.1 and A.2, {‖ek‖}k≥kσs is uniformly bounded

with respect to k. Therefore, there exists a constant c such that

J2 =
2

n

n∑

k=1

E‖ekνTk ‖ ≤ o(1) +
c

n

n∑

k=kσs

E‖νk‖.
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Following from Lemma A.5(iii), J2→ 0 as n→∞.
By (28), E(ek+1e

T
k+1) =El(θk, xk). Since l(θ,x) is continuous in θ, it fol-

lows from Theorem 2.1 that l(θk, x) converges to l(θ∗, x) for any x ∈ X .
Furthermore, following from Lemma A.2 and Lebesgue’s dominated con-
vergence theorem, we conclude that El(θk, xk) converges to El(θ∗, x), and
thus

J1→El(θ∗, x) = lim
k→∞

E(eke
T
k ) =Q.

Summarizing the convergence results of J1, J2 and J3, we conclude that
(I1)→Q as n→∞.

By (34), for i 6= j, i≥ kσs and j ≥ kσs , we have

E(ε̃iε̃
T
j ) = E{(ei + νi)(ej + νj)

T }=E(eie
T
j + νiν

T
j + eiν

T
j + νie

T
j )

(60)
= E(νiν

T
j ),

where the last equality follows from the result that {ek}k≥kσs is a martingale
difference sequence [Lemma A.5(ii)]. By (48), there exists a constant c such
that

E‖νiνTj ‖ ≤ ca
(1+τ )/2
i a

(1+τ )/2
j ,

which implies that
∥∥∥∥
1

n

∑∑

i 6=j

E(νiν
T
j )

∥∥∥∥≤ o(1)+c
[

1√
n

n∑

i=kσs

a
(1+τ)/2
i

][
1√
n

n∑

j=kσs

a
(1+τ )/2
j

]
.

(61)

By Kronecker’s lemma and (A4),
∑n

i=kσs
a
(1+τ )/2
i /

√
n→ 0 and thus

1

n

∑∑

i 6=j

E(νiν
T
j )→ 0 as n→∞.(62)

In summary of (60) and (62), we have

(I2) =
1

n

∑∑

i 6=j

E(ε̃iε̃
T
j )→ 0 as n→∞.(63)

By (47), there exists a constant c such that

1√
n

∥∥∥∥∥

n∑

k=1

Eνk

∥∥∥∥∥≤ o(1) +
1√
n

n∑

k=kσs

E‖νk‖= o(1) +
c√
n

n∑

k=kσs

a
(1+τ )/2
k .

By Kronecker’s lemma and (A4), we have

1√
n

∥∥∥∥∥

n∑

k=1

Eνk

∥∥∥∥∥→ 0 as n→∞.(64)
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By Lemma A.1(i) and (ii), where it is shown that {ek}k≥kσs is a martingale
difference sequence, we have

(I3) =
1

n

[
n∑

k=1

E(ek + νk)

][
n∑

k=1

E(ek + νk)

]T

=

[
1√
n

n∑

k=1

E(νk)

][
1√
n

n∑

k=1

E(νk)

]T
.

Following from (64), we have (I3)→ 0 as n→∞.
Summarizing the convergence results of (I1), (I2) and (I3), the asymptotic

covariance matrix of
∑n

k=1 ε̃k/
√
n is equal to Q. Combining with (56), we

conclude that
¯̃
θk is an asymptotically efficient estimator of θ∗.

Since
¯̃
θk and θ̄k have the same asymptotic distribution N(0,Γ), θ̄k is also

asymptotically efficient as an estimator of θ∗. This concludes the proof of
Theorem 2.3.

APPENDIX B: PROOFS OF THEOREMS 3.1 AND 3.2

The theorems can be proved using Theorems 2.1 and 2.2 by showing that
SAMC satisfies the conditions (A1) and (A2), as (A3) is assumed, and (A4)
and and the condition supx∈X0

V (x)<∞ have been verified in the text.
Verification of (A1). To simplify notation, in the proof we drop the

subscript k, denoting xk by x and denote θk = (θ
(1)
k , . . . , θ

(m−1)
k ) by θ =

(θ(1), . . . , θ(m−1)). Since the invariant distribution of the MH kernel is fθ(x),
we have for any fixed θ,

E(I{x∈Ei} − πi) =
∫

X
(I{x∈Ei} − πi)fθ(x)dx

=

∫
Ei
ψ(x)dx/eθ

(i)

∑m
j=1[

∫
Ej
ψ(x)dx/eθ(j) ]

− πi(65)

=
Si
S
− πi

for i= 1, . . . ,m−1, where Si =
∫
Ei
ψ(x)dx/eθ

(i)
and S =

∑m−1
i=1 Si+

∫
Em

ψ(x)dx.
Therefore,

h(θ) =

∫

X
H(θ,x)fθ(x)dx=

(
S1
S
− π1, . . . ,

Sm−1

S
− πm−1

)T

.

It follows from (65) that h(θ) is a continuous function of θ. Let Λ(θ) =

1− 1
2

∑m−1
j=1 (

Sj

S − πj)2, and define v(θ) = − log(Λ(θ)) as in (19). As shown
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below, v(θ) is continuously differentiable. Since 0 ≤ 1
2

∑m−1
j=1 (

Sj

S − πj)2 <
1
2 [
∑m−1

j=1 (
Sj

S )2+π2j )]≤ 1 for all θ ∈Θ, v(θ) takes values in the interval [0,∞).

Solving the system of equations formed by (65), we have the single solution

θ(i) = c+ log

(∫

Ei

ψ(x)dx

)
− log(πi), i= 1, . . . ,m− 1,

where c = − log(
∫
Em

ψ(x)dx) + log(πm). It is obvious that v(θ∗) = 0, and

v(L) has an empty interior, where θ∗ is specified in Theorem 3.1. Therefore,
(A1)(iv) is satisfied.

Given the continuity of v(θ), for any numbersM1 >M0 > 0, θ∗ ∈ int(VM0),
and VM1 is a compact set, where int(A) denotes the interior of the set A.
Therefore, (A1)(i) and (A1)(ii) are verified.

To verify the condition (A1)(iii), we have the following calculations:

∂S

∂θ(i)
=

∂Si

∂θ(i)
=−Si,

∂Si

∂θ(j)
=
∂Sj

∂θ(i)
= 0,

(66)
∂(Si/S)

∂θ(i)
=−Si

S

(
1− Si

S

)
,

∂(Si/S)

∂θ(j)
=
∂(Sj/S)

∂θ(j)
=
SiSj
S2

for i, j = 1, . . . ,m− 1 and i 6= j. Let b=
∑m−1

j=1 Sj/S, then we have

∂v(θ)

∂θ(j)
=

1

2Λ(θ)

m−1∑

j=1

∂(Sj/S − πj)2
∂θ(j)

=
1

Λ(θ)

[∑

j 6=i

(
Sj
S
− πj

)
SiSj
S2
−
(
Si
S
− πi

)
Si
S

(
1− Si

S

)]

=
1

Λ(θ)

[
m−1∑

j=1

(
Sj
S
− πj

)
SiSj
S2
−
(
Si
S
− πi

)
Si
S

]

=
1

Λ(θ)

[
bµξ

Si
S
−
(
Si
S
− πi

)
Si
S

]

for i= 1, . . . ,m− 1, where it is defined µξ =
∑m−1

j=1 (
Sj

S − πj)
Sj

bS . Thus,

〈∇v(θ), h(θ)〉

=
1

Λ(θ)

[
b2µξ

m−1∑

i=1

(
Si
S
− πi

)
Si
bS
− b

m−1∑

i=1

(
Si
S
− πi

)2 Si
bS

]

(67)

=− 1

Λ(θ)

[
b
m−1∑

i=1

(
Si
S
− πi

)2 Si
bS
− b2µ2ξ

]
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=− 1

Λ(θ)
(bσ2ξ + b(1− b)µ2ξ)≤ 0,

where σ2ξ denotes the variance of the discrete distribution defined in the
following table:

State (ξ) S1
S − π1 · · · Sm−1

S − πm−1

Prob. S1
bS · · · Sm−1

bS
If θ = θ∗, 〈∇v(θ), h(θ)〉= 0; otherwise, 〈∇v(θ), h(θ)〉< 0. Therefore, (A1)(iii)

is satisfied.
Verification of (A2). To verify this condition, we first show that h(θ) has

bounded second derivatives. Continuing the calculation in (66), we have

∂2(Si/S)

∂(θ(i))2
=
Si
S

(
1− Si

S

)(
1− 2Si

S

)
,

∂2(Si/S)

∂θ(j) ∂θ(i)
=−SiSj

S2

(
1− 2Si

S

)
,

which implies that the second derivative of h(θ) is uniformly bounded by
noting the inequality 0< Si

S < 1.
Let F = ∂h(θ)/∂θ. By (66), we have

F =




−S1
S

(
1− S1

S

)
S1S2
S2

· · · S1Sm−1

S2

S2S1
S2

−S2
S

(
1− S2

S

)
· · · S2Sm−1

S2

...
. . .

...
...

Sm−1S1
S2

· · · · · · −Sm−1

S

(
1− Sm−1

S

)




.

Thus, for any nonzero vector z= (z1, . . . , zm−1)
T ,

z
TFz=−

[
m−1∑

i=1

z2i
Si
S
−
(

m−1∑

i=1

zi
Si
S

)2]

=−b
[
m−1∑

i=1

z2i
Si
bS
−
(

m−1∑

i=1

zi
Si
bS

)2]
− b(1− b)

(
m−1∑

i=1

zi
Si
bS

)2

(68)

=−bVar(Z)− b(1− b)(E(Z))2 < 0,

where E(Z) and Var(Z) denote, respectively, the mean and variance of the
discrete distribution defined by the following table:

State (Z) z1 · · · zm−1

Prob. S1
bS · · · Sm−1

bS

This implies that the matrix F is negative definite and thus stable. Ap-
plying Taylor’s expansion to h(θ) at the point θ∗, we have

‖h(θ)− F (θ− θ∗)‖ ≤ c‖θ− θ∗‖1+ρ,
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for some constants ρ ∈ (0,1] and c > 0, by noting that h(θ∗) = 0 and that
the second derivatives of h(θ) are uniformly bounded with respect to θ.
Therefore, (A2) is satisfied.
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