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1. Introduction

In the superembedding approach to supersymmetric extended objects the object under

consideration is described mathematically as a subsupermanifold (the worldsurface)

of superspacetime (the target supermanifold). This approach was initiated some time

ago [1, 2] in the context of superparticles. Superspace actions were found for particles

in D = 3, 4, 6 and 10 dimensional spacetimes [1, 2, 3, 4, 5, 6] and then later for the

heterotic string in ten dimensions [7, 8]. Actions of the heterotic string type were

constructed for other type I branes (i.e. branes with no worldsurface vector or tensor

fields) [9, 10] but it was not clear at the time that these actions described the right

degrees of freedom. In [11] a generalised action was proposed for type I branes which

leads to the standard Green-Schwarz equations of motion (see [12, 13] for reviews) and

this approach has recently been extended to cover D-branes [14, 15, 16].

The structure of the worldsurface supermultiplets that arise in the superembedding

formalism was clarified in [17]; there it was assumed that a natural embedding condi-

tion, namely that the odd tangent bundle of the worldsurface should be a subbundle

of the pull-back of the odd tangent bundle of the target space, holds. It was found in

[17] that three types of multiplet can arise: on-shell, off-shell or underconstrained. In

the on-shell case, there can be no superspace actions of the heterotic string type since

such actions would necessarily involve the propagation of the Lagrange multipliers that

are used in this construction. Nevertheless, on-shell embeddings are useful for deriving
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equations of motion; for example, the full equations of motion of the M-theory five-

brane were first obtained this way [18]. In the off-shell case, by which it is meant that

the wordsurface multiplet is a recognisable off-shell multiplet, it is possible to write

down actions of the heterotic string type. The third case that arises, and which we call

underconstrained here, typically occurs for branes with low codimension. For exam-

ple, in codimension one the basic embedding condition gives rise to an unconstrained

scalar superfield. In order to get a recognisable multiplet further constraints must be

imposed. An example of this is given by IIA D-branes where the basic embedding

condition yields an on-shell multiplet for p = 0, 2, 4, but an underconstrained one for

p = 6, 8. By imposing by hand the further constraint that there is a worldsurface vector

field with the usual modified Bianchi identity whose superspace field strength vanishes

unless all indices are bosonic one recovers on-shell multiplets [19]. (For p = 0, 2, 4 one

can show that the vector Bianchi identity follows from the basic embedding condition.)

In this note we show that there is a simple algorithm for generating actions for

(almost) all branes starting from the superembedding formalism. It can be used in two

ways: if the multiplet is on-shell, one can use it to find the Green-Schwarz action; if the

multiplet is off-shell one can use it either to write down a superspace action of heterotic

string type or one can construct a Green-Schwarz action which in general will have

auxiliary fields. In the underconstrained case we shall assume that further constraints

have been imposed to convert the embedding into one of the first two types. The

actions obtained this way are Lorentz covariant and are thus not applicable to branes

with self-dual tensor multiplets, although actions involving additional fields have been

proposed for these cases [20, 21]. We give three examples: the D = 11 supermembrane,

which has an on-shell scalar multiplet, the type IIA D2-brane in D = 10, which has an

on-shell vector multiplet, and the membrane in D = 4, which is off-shell.

The method of constructing actions proposed here is closely related both to the

superspace method used for the heterotic string and to the generalised action princi-

ple. However, the proof that the GS action is κ-symmetric is greatly simplified. In

addition, our approach is deductive in the sense that we derive the GS action from the

superembedding formalism. Thus, in the case of D-branes, rather than starting with

the Dirac-Born-Infeld (DBI) term in the action we show that it emerges from the con-

struction. An advantage of this approach is that it is applicable to other type II branes

which have higher rank worldsurface antisymmetric tensor gauge fields, provided that

they are not self-dual.

2. Superembeddings

We consider superembeddings f : M → M , where the worldsurface M has (even|odd)

dimension (d|1
2
D′) and the target space has dimension (D|D′). In local coordinates M

is given as zM (zM), where zM = (xm, θm) and zM = (xm, θµ) (if no indices are used we

shall distinguish target space coordinates from worldsurface ones by underlining the
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former). The embedding matrix EA
A is defined to be

EA
A = EA

M∂Mz
MEM

A , (2.1)

in other words, the embedding matrix is the differential of the embedding map referred

to standard bases on both spaces. Our index conventions are as follows: latin (greek)

indices are even (odd) while capital indices run over both types; letters from the begin-

ning of the alphabet are used to refer to a preferred basis while letters from the middle

of the alphabet refer to a coordinate basis, the two types of basis being related to each

other by means of the vielbein matrix EM
A and its inverse EA

M ; exactly the same

conventions are used for the target space and the worldsurface with the difference that

the target space indices are underlined. Primed indices are used to denote directions

normal to the worldsurface. We shall also use a two-step notation for worldsurface

spinor indices where appropriate: in general discussions, a worldsurface spinor index

such as α runs from 1 to 1
2
D′, but it may often be the case that the group acting on

this index includes an internal factor as well as the spin group of the worldsurface; in

this case we replace the single index α with the pair αi where i refers to the internal

symmetry group. A similar convention is used for normal spinor indices.

The basic embedding condition is

Eα
a = 0 . (2.2)

It implies that the odd tangent space of the worldsurface is a subspace of the

odd tangent space to M at each point in M ⊂ M . In many cases, equation (2.2)

determines the equations of motion for the brane under consideration. Moreover, it

also determines the geometry induced on the worldsurface and implies constraints on

the background geometry which arise as integrability conditions for the existence of such

superembeddings. For the cases where the worldsurface multiplet is underconstrained

one can arrive at a multiplet which describes the physical fields by imposing the further

constraint that there should exist appropriate q-form worldsurface gauge fields, Fq. We

will describe this constraint in the case of Dp-branes below.

In addition to the embedding matrix, each brane comes with a Wess-Zumino form,

Wp+2, defined on M . This term takes different forms for different branes. To be

specific, let us consider the fundamental Fp-branes and Lp-branes [17] with 16 target

space supersymmetries and Dp-branes and the M5-branes which have 32 target space

supersymmetries. The F-class corresponds to p-branes in p+5 dimensions (p = 1, 2..., 5)

and the L-class corresponds to p-branes in p + 4 dimensions (p = 1, 2, ..., 5). In each

one of these cases there exist Cartan integrable systems in the target space which take

the form
Fp : dGp+2 = 0 ,

Lp : dGp+2 = G2Gp+1 , dGp+1 = 0 , dG2 = 0 ,

Dp : dG = GH3 , dH3 = 0 ,

M5 : dG7 = G4G4 , dG4 = 0 ,

(2.3)
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where, in the Dp-brane case, G is a sum of the Ramond-Ramond (RR) curvatures

which have even/odd ranks in type IIA/B theory, and wedge products of forms are

understood. These equations can be solved locally to give

Fp : Gp+2 = dCp+1 ,

Lp : Gp+2 = dCp+1 − C1Gp+1 , Gp+1 = dCp , G2 = dC1 ,

Dp : G = dC − CH3 +meB2 , H3 = dB2 ,

M5 : G7 = dC6 − C3G4 , G4 = dC3 ,

(2.4)

where m is an arbitrary constant which is relevant for type IIA theory and C is the

sum of the RR potentials. We denote by C the potentials associated with all the target

space field strengths, with the exception of H3 = dB2 which plays a special role in the

case of Dp-branes.

The Wess-Zumino form Wp+2 is a closed form

dWp+2 = 0 , (2.5)

constructed from from the pull-backs of suitable target space forms as well as intrinsic

worldvolume forms. For Fp-branes the form Gp+2 is closed, and therefore its pullback

to the worldvolume is a candidate Wess-Zumino form. However, the forms Gp+2 in

Dp-brane case, G7 in the M5-brane case and Gp+2 in the Lp-brane case are not closed.

This is remedied by introducing respectively a two-form F2, a three-form F3 and a

p-form Fp as follows:

Lp : Fp = dAp−1 − f
∗Cp , (2.6)

Dp : F2 = dA1 − f
∗B2 , (2.7)

M5 : F3 = dA2 − f
∗C3 , (2.8)

These satisfy the Bianchi identities

Lp : dFp = −f ∗Gp+1 , (2.9)

Dp : dF2 = −f ∗H3 , (2.10)

M5 : dF3 = −f ∗G4 . (2.11)

Note that the construction of these forms has led to the introduction of intrinsic

worlvolume potentials A1, A2 and Ap−1. Using the ingredients described above, we

construct the Wess-Zumino forms as follows:

Wp+2 =



f ∗Gp+2 Fp

f ∗ (Gp+2 + FpG2) Lp

(
(f ∗G)eF

)
p+2

Dp

f ∗ (G7 + F3G4) M5

(2.12)
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It is easy to verify that all these forms are indeed closed. Thus, the Wess-Zumino

form Wp+2 can locally be written as

Wp+2 = dZp+1 , (2.13)

where

Zp+1 =



f ∗Cp+1 Fp

f ∗ (Cp+1 + C1Fp) Lp

(
(f ∗C)eF

)
p+1

+mωp+1 Dp

f ∗ (C6 + C3F3) M5

(2.14)

and where ωp+1(A, dA) is the Chern-Simons form present for type IIA Dp-branes defined

by

dωp+1(A, dA) = (edA)p+2 . (2.15)

We mentioned earlier that for the cases where the worldsurface multiplet is under-

constrained one can arrive at a multiplet which describes the physical fields by imposing

the further constraint on a suitable worldvolume superform. In the case of Dp-branes

that constraint is [22]

FαB = 0 , (2.16)

i.e. all of the components of F except the purely bosonic ones must vanish. It can

be shown that for p < 6 the basic embedding condition puts the theory on-shell [19],

and that for these cases the condition (2.16) follows automatically. In other cases one

can argue for these constraints by considering open branes which end on other branes

[22, 23]. A similar situation arises for the M5-brane, for which we refer the reader to

refs. [18, 24]. The case of Lp-branes will be treated in detail elsewhere [25].

3. Kappa symmetry and Green-Schwarz actions

The basic embedding condition (2.2), which underlies all branes studied so far and

which is geometrically very natural, is intimately related to κ-symmetry in the GS

approach to branes. Under an infinitesimal worldsurface diffeomorphism one has

(δzM )EM
A = vAEA

A , (3.1)

where vA is the worldsurface vector field generating the diffeomorphism. For an odd

diffeomorphism, with va = 0, one finds, using the embedding condition (2.2),

δza ≡ (δzM )EM
a = 0 , (3.2)

and

δzα ≡ (δzM)EM
α = vαEα

α . (3.3)
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This can be rewritten in the more usual κ-symmetry form

δzα =
1

2
κβ(1 + Γ)β

α , (3.4)

where

κα = vαEα
α (3.5)

and where

Pα
β =

1

2
(1 + Γ)α

β (3.6)

is the projection operator onto the odd tangent space of the worldsurface from the odd

tangent space of the target. It is given in terms of Eα
α by

Pα
β = (E−1)α

γEγ
β . (3.7)

Thus we have

δza = 0 (3.8)

δza =
1

2
κβ(1 + Γ)β

α . (3.9)

Equations (3.9), evaluated at θ = 0, are the standard κ-symmetry transformations

of zM (x) in the GS formalism. The explicit form of the operator Γ, which must square to

unity in order for P to be a projector, and the explicit relation between the parameters

for κ-symmetry and worldsurface supersymmetry depend on the choice of basis for the

odd tangent space on the worldsurface, but whichever basis one chooses to work with,

κ-symmetry will have a precise definition in terms of worldsurface supersymmetry. Of

course the latter does not change and so should, we would argue, be thought of as being

more fundamental.

For any brane the Wess-Zumino form Wp+2 is closed. Since it is a p + 2-form on a

manifold which has even (i.e. bosonic) dimension p+ 1 it follows that it is exact. This

is so because the de Rham cohomology of a supermanifold coincides with the de Rham

cohomology of its body. Therefore we can always write

Wp+2 = dKp+1 (3.10)

for some globally defined (p+ 1)-form K on M . Furthermore, since none of the target

space fields or the worldsurface fields has negative dimension, at least for the models

under discussion here, it follows that the only non-vanishing component of K is the

purely bosonic one. In components this means

KαA1···Ap = 0 . (3.11)

We now define the Green-Schwarz Lagrangian form Lp+1 to be

Lp+1 = Kp+1 − Zp+1 (3.12)

6
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Under a worldsurface diffeomorphism generated by the vector field v one has

δLp+1 = LvLp+1 = divLp+1 + ivdLp+1 . (3.13)

Since, by construction, Lp+1 is closed,

dLp+1 = 0 , (3.14)

the variation (3.13) reduces to

δLp+1 = divLp+1 . (3.15)

Therefore the action integral

S =
∫
M0

L0
p+1 , (3.16)

where M0 is the body of M and where

L0
p+1 = dxmp+1 ∧ dxmp ∧ . . . dxm1Lm1...mp+1 | , (3.17)

where the vertical bars indicate evaluation of a (worldvolume) superfield at θ = 0, will

be invariant under κ-symmetry transformations and diffeomorphisms of M0, since these

transformations are identified with the leading components of the superdiffeomorphisms

of M .

As we noted in the introduction, this result is closely related to both superspace

actions of the heterotic string type and to the generalised actions of refs [11, 14, 15].

However, there is a difference in that, in the generalised action formalism [11, 14, 15],

the Dirac-Born-Infeld action is explicitly included in the case of D-branes. The method

proposed here generates the DBI action (fromKp+1) automatically, and moreover allows

for the DBI action to be extended to worldsurface q-form gauge fields with q > 2. The

argument given above shows that the Lagrangian we have constructed is invariant uder

the right symmetries and has the usual Wess-Zumino term. The contribution to the

action from K must therefore be the DBI action. Below we shall show that this is

indeed the case in specific examples.

It is worth emphasizing that not only is the DBI action automatically generated

in the method proposed here, but that also the κ-symmetry of the total action is

made manifest. This is due to the closure property (3.15). In the generalized action

formalism, however, while the action is indeed an integral of a Lagrangian (p+ 1)-form

over M0, not only is the DBI term explicitly included (along with certain Lagrange

multiplier terms), but also the closure property dLp+1 = 0, needed for the proof of

k-symmetry, is non-manifest, and proving it requires lengthy calculations [14, 15].

The form of the Lagrangian given in (3.12) is closely related to the actions considered

before in [7] for the heterotic string, in [9] for the D = 11 supermembrane, and in [10]

for higher super p-branes. We shall comment about this relation in more detail in

Section 7.
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4. M2-brane

To illustrate the above general formalism we consider first the simplest case, namely

an on-shell type I brane, the membrane (M2-brane) in D = 11. We assume that the

embedding condition (2.2) holds. (See [26] as well for a treatment of the supermembrane

in the superembedding formalism ). It can then be shown that we may choose

Eα
α = uα

α , (4.1)

Ea
a = ua

a , (4.2)

with the complementary normal matrix EA′
A, which specifies the choice of normal

spaces, being given by

Eα′
α = uα′

α , (4.3)

Ea′
a = ua

a . (4.4)

We may also impose

Eα′
a = 0 . (4.5)

In these formulae u denotes an element of the group Spin(1, 10) or the correspond-

ing element of the Lorentz group in eleven dimensions. Thus the matrices uα
α and

uα′
α together make up an element of Spin(1, 10) while ua

a and ua′
a make up the corre-

sponding element of SO(1, 10). We remind the reader that although Eα
a = 0, it is not

the case that Ea
α = 0, although we can choose

Ea
α = Λa

α′uα′
α . (4.6)

The leading component of the superfield Λa
α′ should be thought of as the spacetime

derivative of the transverse fermionic coordinate field, that is, the derivative of the

physical fermion field of the membrane.

In order to derive the GS action from the superembedding formalism it is necessary

to show that the θ = 0 component of Em
a, which we denote by Ema is the dreibein for

the GS metric. The latter is defined to be

gmn =
(
∂mz

MEM
a
) (
∂nz

NEN
bηab

)
| , (4.7)

where, we recall that the bar denotes evaluation of a quantity at θ = 0. From the

embedding condition we have

Eα
a = Eα

m
(
∂mz

M
)
EM

a + Eα
µ
(
∂µz

M
)
EM

a = 0 . (4.8)

We can always choose a gauge on the worldvolume such that Eα
m| = 0. Moreover

the leading component of Eα
µ is non-singular. Therefore, evaluating the above equation

at θ = 0 we deduce

∂µz
MEM

a| = 0 . (4.9)
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Using this result we find

Ea
a| = Ea

m
(
∂mz

M
)
EM

a| . (4.10)

It then follows, since Ea
m| = Eam, the inverse of Ema, and the fact that

Ea
aEb

bηab = ηab , (4.11)

that Ema is indeed the dreibein for the GS metric as claimed, i.e.

Em
aEn

bηab = gmn . (4.12)

The Wess-Zumino form for the M2-brane is the pull-back of the supergavity four-

form G4. Its non-vanishing components are

Gαβcd = −i(Γcd)αβ (4.13)

and the totally vectorial component Gabcd. On the worldvolume of the brane there

should therefore be a three-form K3 such that

W4 = f ∗G4 = dK3 . (4.14)

In index notation this reads

4∇[AKBCD] + 6T[AB
EK|E|CD] = (f ∗G)ABCD . (4.15)

This is indeed the case as we shall now verify. Since there are no fields of negative

dimension on the worldvolume (given the standard embedding condition), the only

non-vanishing component of K has purely vectorial indices. By directly evaluating the

dimension zero component of the above equation one finds that it is satisfied for

Kabc = εabc . (4.16)

Since there are no fields of negative dimension it is apparent that the negative

dimension compoents of W4 = dK3 are trivially satisfied. To prove that the remaining

components are also satisfied it is convenient to introduce a four-form I4 defined by

I4 = W4 − dK3 , (4.17)

where K3 has the components described above. Clearly dI4 = 0. We need to show that

I4 = 0 but, by dimensional analysis, the only components of I4 that need to be checked

are Iαβcd and Iαbcd (since Iabcd vanishes identically). The fact that Iαβcd vanishes can

easily be checked using the formulae given above while one can show that this implies

automatically that Iαbcd = 0 by using the identity dI4 = 0. In a coordinate basis one

therefore has

Kmnp| = εmnp
√
−det g , (4.18)

where g is the GS metric. The GS Lagrangian is therefore recovered from the general

formulae (3.12) and (3.16); it is

L =
√
−det g −

1

6
εmnp∂pz

P ∂nz
N ∂mz

M CMNP , (4.19)

where G4 = dC3 on M , and where

L0 = dxm ∧ dxn ∧ dxpεmnp L . (4.20)

9
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5. D2-brane

The on-shell example we shall consider is the IIA D2-brane in D = 10. For simplicity

we shall take the target space to be flat and m = 0, although this is not essential. The

basic embedding equation (2.2) is imposed as usual and we may choose to parametrise

the dimension zero components of the embedding matrix in the form [18]

Eα
α = uα

α + hα
β′uβ′

α ,

Ea
a = ua

a . (5.1)

Here u denotes part of a matrix of the group Spin(1, 9), in the spinor or the vector

representations according to the indices. The pull-back to the worldsurface of the

defining equation for the target space torsion two-form gives the equation

∇AEB
C − (−1)AB∇BEA

C + TAB
CEC

C = (−1)A(B+B)EB
BEA

ATAB
C . (5.2)

The dimension zero component of this equation reads, on using the embedding

condition (2.2),

Eα
αEβ

βTαβ
c = Tαβ

cEc
c . (5.3)

Using

Tαβ
c = −i(Γc)αβ (5.4)

and (5.1) one finds [19]

hα
β′ → hαi

β′j = δi
j(γab)α

β′hab (5.5)

and

Tαβ
c = −i(Γd)αβmd

c , (5.6)

where

ma
b = δa

b(1− 4y) + 8(h2)a
b (5.7)

with

y =
1

2
trh2 (5.8)

and where h2 denotes matrix multiplication.

It is not difficult to show that the embedding condition (2.2) implies the existence

of a two-form F such that

dF = −f ∗H3 , (5.9)

where H3 is the pull-back of the NS three-form on the target space. This identity is

satisfied provided that we choose all the components of F to vanish except for Fab
which is related to h by

ma
cFcb = 4hab . (5.10)

This can be rearranged to give

Fab =
4hab

1 + 4y
. (5.11)

10
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The Wess-Zumino four-form W4 is given by

W4 = dZ3 = d(f ∗C3 + f ∗C1F) , (5.12)

where C1 and C2 are two of the RR potentials on the target space. It can be rewritten

as

W4 = f ∗G4 + f ∗G2F , (5.13)

where the RR field strengths G4 and G2 are given by

G4 = dC3 +B2G2 , (5.14)

G2 = dC1 , (5.15)

with B2 being the potential for the NS field strengthH3. The non-vanishing components

of the RR fields in flat superspace are

Gαβcd = −i(Γcd)αβ (5.16)

Gαβ = −i(Γ11)αβ . (5.17)

It is now straightforward to verify that

W4 = dK3 , (5.18)

where all of the components of K3 vanish except for Kabc which is given by

Kabc = εabc K , (5.19)

with

K =
1− 4y

1 + 4y
. (5.20)

The part of the GS Lagrangian arising from K is then given by

Kmnp| = (Em
aEn

bEp
c)εabc K| . (5.21)

However, Em
a| = Ema is again simply the dreibein for the induced GS metric,

Em
aEn

bηab = gmn . (5.22)

From this we derive

Kmnp| = εmnp
√
−det g ×K| . (5.23)

It remains to show that K is proportional to det
√
δmn + Fmn. To this end, we

first observe that we can replace the coordinate indices appearing in the Born-Infeld

determinant as written here by orthonormal ones at no cost. Thus we can work with

Fab and hab and then evaluate at θ = 0. We have

det (1 + F) = exp tr log (1 + F)

= exp tr
(
−F

2

2
+ F4

4
− . . .

)
,

(5.24)
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where the second step follows from the antisymmetry of F . Writing F in terms of h

using (5.11) and employing the identity

h3 = yh , (5.25)

we find
det (1 + F) = exp trh2

(
−42

2(1+4y)2 + 44

4(1+4y)4 − . . .
)

= exp log
(
1− 16y

(1+4y)2

)

=
(

1−4y
1+4y

)2
.

(5.26)

Therefore, K defined in (5.20) is given by

K =
√

det(δmn + Fmn) , (5.27)

and that the GS Lagrangian is obtained from the general formulae (3.12) and (3.16) to

be

L0 = dxm ∧ dxn ∧ dxpεmnp L . (5.28)

with

L =
√
−det(gmn + Fmn)− f ∗C3 − f

∗C1F , (5.29)

in agreement with the general results for Dp-brane actions in the GS formalism [27, 28,

29, 30, 31, 32].

6. The membrane in N = 1, D = 4 superspace

The final example we shall consider is the membrane in N = 1, D = 4 superspace.

This is a type I brane for which the standard embedding condition defines an off-shell

multiplet. Actually, this brane has codimension one and the worldsurface multiplet in

question is an entire scalar superfield, but this is is simply the off-shell scalar multiplet

in three dimensions.

To simplify the discussion we shall take the target space to be flat. For the embed-

ding matrix we can take, as before,

Eα
a = 0 , (6.1)

Eα
α = uα

α + hα
β′uβ′

α , (6.2)

where both α and α′ are d = 3 spinor indices taking two values. We also choose

Ea
a = ua

a . (6.3)

The dimension zero component of the torsion equation (5.2) gives

hα
β′ = iδα

β′h (6.4)
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and

Tαβ
c = −i(1 + h2)(γc)αβ , (6.5)

but in this case, the (real) field h is not related to a gauge field, rather its leading

component is the auxiliary field in the scalar multiplet.

The Wess-Zumino form W4 is in this case simply the pull-back of the target space

four-form G4 = dC3 to M . The only non-vanishing component of G4 for a flat target

space is

Gαβcd = −i(Γcd)αβ . (6.6)

The general argument given previously implies that

W4 = dK3 . (6.7)

It is straightforward to verify that this is indeed the case, and that the only non-

vanishing component of K3 is

Kabc = εabc K , (6.8)

where

K =
1− h2

1 + h2
. (6.9)

The GS Lagrangian form is

Lmnp = (Kmnp − (f ∗C)mnp)| , (6.10)

from which the GS Lagrangian density is found to be

L =
√
−det g

(
1− h2

1 + h2

)
| −

1

6
εmnp(f ∗C)mnp| , (6.11)

where g is again the standard GS induced metric. The only difference from the usual

GS Lagrangian is the factor multiplying the GS measure containing as it does the

auxiliary field h. However, the equation of motion for this field is purely algebraic and

can be used to set h = 0. We thus recover the standard GS action. It is amusing to

note that the off-shell action given here has the same form as the DBI action for the

D2-brane when expressed in terms of h.

Since the multiplet is off-shell it is possible to construct a superspace action for this

model using the techniques that were introduced in [7] in the context of the heterotic

string. In order to do this it is useful to introduce the notion of a q-vector density,

which we shall call a q-coform for short. Such an object is a tensor density of tensorial

type (q,0) which is totally antisymmetric. There is a natural pairing between q-coforms

P and q-forms ω given by

(P, ω) =
∫
PMq...M1ωM1...Mq . (6.12)
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If the space of q-coforms is denoted by Ω̃q, then there is a natural derivative d̃ which

maps Ω̃q to Ω̃q−1 and which satisfies d̃2 = 0. In a coordinate basis one has

(d̃P )M1...Mq−1 = PM1...Mq ,Mq := PM1...Mq
←
∂Mq , (6.13)

where the derivative is the right derivative. One then has

(P, dω) = −(d̃P, ω) , (6.14)

up to possible surface terms. Using this notation we can write an action for the mem-

brane in the form

S = (P,K − f ∗C − dQ) , (6.15)

where P is a three-coform and Q a new two-form field. This action is invariant under

P → P + d̃X , (6.16)

where X is a four-coform. Varying the action with respect to Q gives

d̃P = 0 . (6.17)

Thus P is an element of the third homology group associated with the operator

d̃. This group is one-dimensional, but non-trivial, and can be represented in suitable

coordinates by

Pmnp = θ2εmnp × constant (6.18)

with all other components vanishing. The constant of integration is naturally inter-

preted as the tension of the brane. Varying the action with respect to the embedding

is quite complicated, but because we know the content of the worldsurface multiplet

we can instead substitute (6.18) back into the action to get the Green-Schwarz form

given above.

In constructing this action we have assumed that the basic embedding condition

(2.2) is satisfied. However, one can also derive this by including a Lagrange multiplier

field Πa
α to impose the embedding constraint. The action then becomes

S =
∫

Πa
αEα

a − (P,K − f ∗C − dQ) . (6.19)

This action has precisely the same structure as the action given for the heterotic

string. Although such actions have been written down previously for p-branes with

p ≥ 2, it was not known at the time whether such actions would lead to the corerct brane

dynamics. If the embedding condition imposed by the Lagrange multiplier superfield

leads to an on-shell world-volume multiplet then more degrees of freedom, contained

within the Lagrange multiplier superfield, will also propagate. The example studied

here is an off-shell multiplet and so would seem to provide the first well-established

example of a superfield action for a brane with p > 1.
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We conclude this section with two comments. Firstly, the form of the action integral

given in (6.15) can also be used when the constraints are on-shell. In such a case, the

resulting action should not be thought of as a superfield action, but simply as the

GS action rewritten in superspace. Secondly, in order to write down the action for

the D = 4 membrane in the form given in (6.19), the embedding constraint must be

relaxed. However, even in this case there will still be a globally defined three-form K

such that dK3 = W4, although the explicit form for K will be more complicated than

it is when the embedding condition is satisfied.

7. Comments

In this paper we have shown that one can construct Green-Schwarz actions for almost

all branes, excluding those with self-dual gauge fields, in a systematic fashion starting

from the Wess-Zumino form on the worldvolume. It is important that one uses the

superembedding formalism to derive this result because the Wess-Zumino form van-

ishes identically on the bosonic worldvolume. The resulting superspace Lagrangian

form, Lp+1, given in (3.12) can be obtained explicitly if one know the (p + 1)-form

Kp+1 for a given brane. In fact, if the standard embedding condition (2.2) holds, it is

straightforward to invert the relation

Wp+2 = dKp+1 . (7.1)

This is because the only non-vanishing component of K in this case will be the one

which has only vectorial indices while the only non-vanishing component of W will be

the one with two spinor indices and p vectorial indices, provided that the background

geometry is of standard type (which would be expected to arise form brane integrability

in any case). In this situation one would have

Wαβc1...cp = Tαβ
coKcoc1...cp . (7.2)

From this equation one determines K to be

Ka1...ap+1 = ta1

αβWαβa2...ap+1 , (7.3)

where ta
αβ is the inverse of Tαβ

c,

ta
αβTαβ

b = δa
b. (7.4)

Note that the right-hand side of this equation is totally antisymmetric on the vector

indices although this is not manifest.

This explicit form for K was found previously in the case of Fp-branes in [7, 9, 10]

where the Lagrangian form was referred to as B̃. For these branes the dimension zero
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worldvolume torsion and the inverse tensor t have components proportional to the

components of the Dirac gamma matrices. In all these case one then finds

Ka1...ap = εa1...ap (7.5)

and this in turn results in the standard Nambu kinetic term in the GS action propor-

tional to the bosonic worldvolume in the induced metric.

In the general case Tαβ
c involves the worldvolume field h and so the expression

for K will be more complicated. It will be equal to the epsilon tensor times a scalar

factor which, for example in the case of D-branes, will be the Born-Infeld function as

we saw explicitly in the case of the D2-brane. However, it is worth emphasizing that

in our formulation no knowledge of the DBI action is assumed and it is derived from

the first principles described in the paper. Consequently our formalism can be applied

to construct new brane actions which will involve generalisations of DBI actions with

higher rank field strengths. The formulation of [14], applied to Dp-branes, in essence

provides the formKp+1 as the Dirac-Born-Infeld (DBI) kinetic term. However, it should

be emphasized that the knowledge of the usual GS type formulation of the Dp-brane

action is used as an input in this construction, thereby essentially elevating the known

DBI action to an integral in a bosonic slice of the worldvolume supermanifold.

We have also shown that if the embedding condition leads to an off-shell multiplet

one can construct superspace actions using the ideas introduced in [7] and illustrated

this with the example of the membrane in D = 4. It would be interesting to determine

the gauge fixed action for this membrane in terms of worldvolume superfields in the

static gauge. This should give a manifestly supersymmetric superspace action expressed

in terms of physical superfields. One would hope to recover in this way a manifestly

supersymmetric, superfield formulation of the results obtained some time ago in [33]

by gauge fixing the Green-Schwarz action accompanied by a complicated set of field

redefinitions.

The calculation of K7 for the M5-brane would also of considerable interest, because

a self-dual worldvolume 3-form field strength is involved. Manifestly Lorentz invariant

actions for such forms do not exist unless one introduces an auxiliary scalar field and

new gauge invariances, fixing of which necessarily breaks Lorentz invariance [20, 21].

A generalized action principle fails due to the very presence of this auxiliary field

[13]. On the other hand, a generalized action principle for self-dual supergravity in

six-dimensions is known to exist [34]. The price one pays is that the action is not

supersymmetric when restricted to x-space. Instead, one should vary the action first

in the full group manifold, and then restrict the result to x-space and this leads to

supersymmetric and consistent equations of motion. Determining K7 for the M5-brane

would shed light on the question of whether a similar phenomenon could occur in the

M5-brane. In this context, it is worth mentioning the work of [35] where κ-symmetric

M5-equations of motion are obtained from an action which is not κ-invariant as it

contains three-forms of both dualities.
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To conclude, we emphasize that the action formula proposed in this paper is a

universal one which applies to all branes with the possible exception of those which

contain chiral forms. In addition to producing the known brane actions in the GS

formalism (upon restriction to bosonic wolrdvolume), our action fomula solves the

problem of constructing actions for branes whose worldvolume supports supermultiplets

that contain higher than second rank antisymetric tensors. Indeed, we shall apply the

action formula of this paper to construct an action for an L5-brane in D = 9 which

contains a linear multiplet with a four-form potential [25]. Other applications of the

action formula might yield new insights into duality symmetries that map branes into

other branes, as well as facilitating the study of interesting residual symmetries such

as superconformal symmetry in various backgrounds of interest.
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