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ABSTRACT

In this paper, we first introduce the RSK algorithm, which gives a correspondence between

integer sequences and standard tableaux. Then we introduce Schensted’s theorem and Greene’s

theorem that describe how the shape of the standard tableau is determined by the sequence. We

list four different bijections constructed by using the RSK insertion. The first one is a bijection

between vacillating tableaux and pairs (P, T ), where P is a set of ordered pairs and T is a standard

tableau. The second one is a bijection between set partitions of [n] and vacillating tableaux. The

third one is about partial matchings and up-down tableaux and the final one is from sequences to

pairs (T, P ), where T is still a standard tableau and P is a special oscillating tableau. We analyze

some combinatorial statistics via these bijections.
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NOMENCLATURE

fλ The number of standard Young tableaux of shape λ

gλ(n) The number of vacillating tableaux of shape λ and length 2n

B(n, k) The number of partitions of [n] with k blocks distinguished.

cr(P ) Crossing number

ne(P ) Nesting number

mλ
k The number of vacillating tableaux of shape λ, length 2k

f̃λk The number of up-down tableaux of length k, shape µ

[|µ|] The shape of |µ| squares in one row

[1|µ|] The shape of |µ| squares in one column

πα The order permutation of α

λ∗ The conjugate of λ

dk(σ) The length of the longest subsequence of σ which has no in-
creasing subsequences of length k + 1

ak(σ) The length of the longest subsequence of σ which has no de-
creasing subsequences of length k + 1

Des(π) The set of all descents of π

d(π) The descent number of π

maj(π) The major index of π

BS(w) The backsteps in a permutation

Des(P ) The descent set in a standard tableau
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1. INTRODUCTION

RSK algorithm, named after Robinson, Schensted, and Knuth, is a remarkable combinatorial

correspondence between a sequence of integers and a semistandard tableau. Given a sequence

σ = (a1, a2, ..., an) of distinct integers, RSK algorithm associates σ to a pair (P,Q) of standard

Young tableau (SYT) of the same shape. Such constructions lead to combinatorial proofs of certain

identities. For example, if the sequence is a permutation of {1,2,...,n}, then the RSK algorithm

proves

n! =
∑
λ

(fλ)2,

where the sum is over all partitions λ of n and fλ is the number of standard Young tableaux of

shape λ.

We introduce the RSK algorithm in chapter 2. In the third chapter, we introduce Schensted’s

theorem, which describes how the tableaux encodes length of the longest increasing and decreasing

subsequences of σ. Explicitly, if σ corresponds to a tableau T with shape λ = {λ1 ≥ λ2 ≥ ... ≥

λq > 0}, then the length of the longest increasing subsequence of σ is λ1 and the length of the

longest decreasing subsequence of σ is q. Greene extended Schented’s theorem by giving an

interpretation of the rest of the shape of λ.

The main content of this thesis are four different bijections. The first bijection is from vacil-

lating tableaux to pairs (P, T ), where P is a set of ordered pairs and T is a standard tableau. This

bijection proves the identity

gλ(n) = B(n, k)fλ

where gλ(n) is the number of vacillating tableaux of shape λ and length 2n, fλ is the number of

standard tableaux of shape λ and content [k], and B(n, k) is the number of partitions of [n] with k

blocks distinguished.

The second bijection is from set partitions P to vacillating tableaux (λi)Ni=0 of empty shape. In

this case, there is an interesting relation between the crossing number of the set partition cr(P ) and
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the nesting number of the set partition ne(P ) and the vacillating tableau. Similar to Schensted’s

theorem, cr(P ) equals to the most number of rows in any λi and ne(P ) equals to the most number of

columns in any λi. In addition, if we restrict the partitions to complete matchings, the distribution

of descents in matching can be observed in the sequence of tableaux.

The third bijection is from up-down (oscillating) tableaux to a pair (L,Qµ), where L is a two

line array of distinct integers and Qµ is a standard Young tableau with shape µ. The construction

gives a combinatorial proof of the identity:

f̃µk =

(
k

|µ|

)
(2r − 1)!!fµ, µ ` (k − 2r)

where f̃µk is the number of all up-down tableaux of length k and shape µ. Compared with the

construction above, we can consider the array L as a partial matching. Once we determine the

shape of the oscillating tableau, especially for the two special shapes [|µ|] or [1|µ|], we can find the

rest part of the matching is determined.

The fourth bijection is from integer sequences in [n]r to pairs (T, P ), where T is a standard

tableau and P is a special oscillating tableau named r-vacillating tableau. It proves the identity

nr =
∑
λ`n

fλmλ
r

where mλ
r is the number of r-vacillating tableaux of shape λ and length 2r. The bijection also

carries the backsteps associated to integer sequences to the descent set on standard tableaux.

2



2. RSK INSERTION AND RSK ALGORITHM

First, we introduce the RSK algorithm [1].

Definition 1. An integer partition of a nonnegative integer n is a weakly decreasing sequence

λ = (λ1, λ2, ..., λl) of positive integers satisfying
∑

1≤i≤l λi = n. Empty partition is included and

denoted by ∅. We let Par :=
⋃
n≥0 Par(n).

Definition 2. Let λ = λ1...λr ∈Par with r ≤ n. A semistandard tableau (SST) T over {1, 2, ..., n}

of shape λ is a scheme

T =

T11 T12 ... T1λ1

T21 T22 ... T2λ2

...

Tr1 ... Trλr

Tij ∈ {1, 2, .., n}

with Ti1 ≤ Ti2 ≤ ... ≤ Tiλi for the rows and T1j < T2j < ... for the columns. Set µk = #{Tij :

Tij = k}; then µ = (µ1, µ2, .., µn) is called the type of T .

Algorithm 1 The RSK Insertion
The elementary operation is the insertion of an element x into a given semistandard tableau T ,
T←x:

1. Let R be the first row of T .

2. While x is less than some element in R, do

A Let y be the smallest element of R greater than x;

B Replace y ∈ R with x;

C Let x := y and let R be the next row.

3. Place x at the end of R.

3



Given a matrix A = (ai,j)i,j≥1 over N0 with finitely many nonzero elements and
∑

i,j ai,j = n,

we can define a 2× n-scheme associated to A as: 1 ... 1 2 ... 2 3 ... 3 ...

1 ... 1 ... 1 ...


where column

(
i
j

)
appears aij times. Obviously, it is a bijection, so we can identify the matrix with

its associated 2× n-scheme.

A =

 i1 i2 ... in

j1 j2 ... jn



Algorithm 2 The RSK Algorithm
The RSK Algorithm associates to a given matrix A a pair (P,Q) of SSTs by inserting elements
step by step.

1. P (0) = Q(0) = ∅.

2. Suppose (P (t), Q(t)) has been constructed, then:

A P (t+ 1)=P (t)←jt+1

B Q(t+ 1) arises from Q(t) by putting it+1 in that position such that Q(t+ 1) has the same
shape as P (t+ 1). The other elements of Q(t) remain unchanged.

Theorem 1. The RSK algorithm gives a bijection between the matrices A over N0 and the ordered

pairs (P,Q) of semistandard tableaux of the same shape, where type(P )=col(A), type(Q)=row(A).

The key point of the proof is the inverse construction (P,Q) → A. Let Qrs be the rightmost

entry of the largest element in Q which is the position where the last insertion path in P (t). Prs

was bumped by the rightmost entry in row r− 1. From row r− 1 we go back to r− 2 until we find

the element a that was inserted in P (t− 1) and set Q(t− 1) = Q(t)\Qrs, and continue.
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Theorem 2. The RSK algorithm has a symmetry property:

A
RSK−−−→ (P,Q) implies AT RSK−−−→ (Q,P )

Definition 3. A semistandard tableau T over {1,2,...,n} is called a standard tableau (or Young

tableau) SY T if every k ∈ {1, ..., n} appears exactly once in T .

We can find that the entries in a standard tableau are distinct integers and each row and column

forms an increasing sequence. Given a sequence α = a1a2...an of positive integers, we can get the

order permutation of α, πα = r(a1)r(a2)...r(an).

Example 1.

S =

(
112223566

231156144

)
→ S̃ =

(
123456789

451289367

)
The matrix Ã belonging to S̃ is thus an n × n permutation matrix and the semistandard tableau

turns to be a standard tableau.

The construction is used to prove the symmetry of RSK insertion. In addition, all the following

contents in this paper are based on standard tableaux.

5



3. SCHENSTED’S THEOREM

Theorem 3 (Schensted [2]). If σ∗ is obtained from σ by writing the sequence a1, a2, ..., an in

reverse order, then P (σ∗) = P (σ)T (the transpose of P (σ)). If P (σ) has shape λ, then P (σ∗) has

shape λ∗(the conjugate of λ).

Given a sequence of distinct integers σ = a1a2...an, Schensted described a method for com-

puting the length of the longest increasing and decreasing subsequences of σ. We can get a pair

of Young tableaux(P,Q) associating to σ. Assume the shape of tableau P is defined by a partition

λ = {λ1 ≥ λ2 ≥ ... ≥ λq} and λ∗ = {λ∗1 ≥ λ∗2 ≥ ... ≥ λ∗r} is the partition conjugate to λ.

Theorem 4 (Schensted’s Theorem). The length of the longest increasing subsequence of σ is λ1

(the number of columns of P ), and the length of the longest decreasing subsequence is λ∗1 (the

number of rows of P ).

3.1 Greene’s Theorem

Greene extended Schensted’s Theorem by interpreting the rest of the shape of λ [2]. For each

k ≤ n, dk(σ) denotes the length of the longest subsequence of σ which has no increasing subse-

quences of length k + 1 and ak(σ) denotes the length of the longest subsequence of σ which has

no decreasing subsequences of length k + 1.

Lemma 1. Let (X,≤) be a finite partially ordered set, and let r be the largest size of a chain. Then

X can be partitioned into r but no fewer antichains.

Lemma 2 (Dilworth’s Theorem). Let (X,≤) be a finite partially ordered set, and let m be the

largest size of an antichain. Then X can be partitioned into m but no fewer chains.

According to these two lemmas, the definitions of dk(σ) and ak(σ) are equivalent to the length

of the longest subsequence consisting of k descending subsequences and the length of the longest

subsequence consisting of k ascending subsequences.
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Theorem 5 (Greene’s Theorem [2]). For each k ≤ n,

ak(σ) = λ1 + λ2 + ...+ λk

dk(σ) = λ∗1 + λ∗2 + ...+ λ∗k

I introduce the proof briefly. First, Knuth gave a complete characterization for two sequences

σ1 and σ2 with the same tableau, that is, P (σ1) = P (σ2).

Theorem 6 (Knuth). Suppose x < y < z. Let σ1 be a sequence which contains three adjacent

terms of one of the following four types: (y, x, z), (y, z, x), (x, z, y) or (z, x, y). If σ2 is obtained

from σ1 by interchanging x and z, then P (σ1) = P (σ2).

Every sequence can be transformed into a sequence σ̃ obtained by listing the rows of P (σ) in

order starting from the bottom. σ̃ can give the tableau back again, so it can be thought of as a

canonical form for sequence σ. Then we can assume the sequence σ with the tableau P (σ)

σ = (s(q, 1), s(q, 2), .., s(q, λq), .., s(1, 1), ..., s(1, λ1))

P (σ) =

s(1, 1) s(1, 2) .. .. s(1, λ1)

.. .. .. s(2, λ2)

s(k, 1) .. ..

.. .. ..

s(q, 1) ... s(q, λq)

Give a sequence of distinct integers σ = (a1, a2, ..., an) and a subsequence of it, say, γ =

(ai1 , ai2 , ..., aiq). If γ contains no increasing subsequences of length k+1, we call γ a k-decreasing

subsequence of σ. We can find that every k-decreasing subsequence is the union of k decreasing

subsequences. Similarly, we can define a k-increasing subsequence of σ.

Consider the case of canonical form. First, we prove ak(σ) = λ1+λ2+ ...+λk. Assume k ≤ q,

then the subsequence starting with s(k, 1) and containing all subsequent elements is k-increasing

7



and has length λ1 + λ2 + ... + λk. We find that σ can be partitioned into r = λ1 decreasing

subsequences, if we read each column from bottom to top.

Since a k-increasing sequence can intersect a decreasing sequence at most k times, it follows

that

λ1 + λ2 + ...+ λk ≤ ak(σ) ≤
r∑
i=1

min{k, λ∗i }

Here λ∗i is the number of entries in the i-th column. That means we add up all the bold entries, i.e.

the first k rows:

P (σ) =

s(1,1) s(1,2) .. .. s(1,λ1)

.. .. .. ..

s(k,1) s(k,2) .. s(k,λk)

.. .. ..

s(q, 1) ... s(q, λq)

Hence, we can get ak(σ) = λ1 + λ2 + ...+ λk. To get the conclusion of dk(σ), we consider the

union of the first k-decreasing sequences above whose total length is λ∗1 + λ∗2 + ... + λ∗k. Dually,

the rows of P (σ) partition σ into increasing subsequences and we can find similarly:

λ∗1 + λ∗2 + ...+ λ∗k ≤ dk(σ) ≤
r∑
i=1

min{k, λi}

Hence, dk(σ) = λ∗1 + λ∗2 + ...+ λ∗k. Finally, we prove the theorem.

Greene’s theorem shows us that we can obtain the shape of the associated tableau without going

through the whole sequence by RSK insertion.

8



4. INSERTIONS ON SEQUENCES OF TABLEAUX

4.1 Basic notations

Definition 4. A set partition of [n] is a set of nonempty subsets of [n] such that every element i in

[n] is in exactly one of these subsets.

Definition 5. A (complete) matching on [2n]={1, 2, ..., 2n} is a set partition of [2n] of type (2, 2, ...2).

It can be represented by listing its n blocks, as {(i1, j1), .., (in, jn)}, where ir < jr. Two blocks

(ir, jr) and (is, js) form a crossing if ir < is < jr < js and form a nesting if ir < is < js < jr.

Definition 6. A k-crossing of a set partition is a subset {(i1, j1), (i2, j2), ..., (ik, jk)} of its standard

representation where i1 < i2 < ... < ik < j1 < j2 < ... < jk. A k-nesting of a set partition is a

subset {(i1, j1), (i2, j2), ..., (ik, jk)} of its standard representation where i1 < i2 < ... < ik < jk <

jk−1 < ... < j1.

Definition 7. Let cr(P ) be the maximal i such that P has an i-crossing, ne(P ) the maximal j such

that P has a j-nesting.

A block {i1, i2, ..., ib}, i1 < i2 < ... < ib, of a set partition is represented by the set of pairs

{(i1, i2), (i2, i3), ..., (ib−1, ib)}. If a set partition is represented by the union of all sets of pairs and

the union is taken over all its blocks, it is called the standard representation. Given a partition P of

[n], it can be represented by a graph on the vertex set [n] whose edge set consists of arcs connecting

the elements of each block in numerical order.

Example 2. The standard representation of 1457-26-3 [3] is {(1, 4), (4, 5), (5, 7), (2, 6)}:

1 2 3 4 5 6 7

9



Definition 8. A sequence ∅ = λ0, λ1, ..., λn = λ of partitions is called an oscillating tableau (up-

down tableau) of shape λ if either λi−1 ⊆ λi or λi−1 ⊇ λi and λi−1 and λi differ by exactly one

square, i = 1, 2, ..., n. The number n is called the length of the oscillating tableau.

Definition 9. A vacillating tableau V 2n
λ of shape λ and length 2n is a sequence λ0,λ1,...,λ2n of

integer partitions such that (i)λ0 = ∅ and λ2n = λ, (ii)λ2i+1 is obtained from λ2i by doing nothing

or deleting a square, (iii)λ2i is obtained from λ2i−1 by doing nothing or adding a square.

Example 3. An example of an oscillating tableau of shape 11(�� ) and length 6 is given by:

(
∅ � �� � �

�
�
�
� �

�

)

denoted by

∅, 1, 2, 1, 11, 21, 11

For a vacillating tableau of shape 11(�� ) and length 10:

(
∅ ∅ � � � � �� �� �

�
� �

�
�
�

)

denoted by

∅, ∅, 1, 1, 1, 1, 2, 2, 21, 11, 11

4.2 Bijection from vacillating tableaux to pairs (P, T )

Theorem 7. Let gλ(n) be the number of vacillating tableaux of shape λ ` k (
∑
λ = k) and length

2n.We have:

gλ(n) = B(n, k)fλ,

where fλ is the number of standard tableaux of shape λ and content [k], andB(n, k) is the number

of set partitions of [n] with k blocks distinguished.

The theorem comes from [3]. Given a vacillating tableau V of shape λ and length 2n, we can

10



define a sequence (Pi, Ti) where Pi is a set of ordered pairs of integers in [n], and Ti is a standard

tableau of shape λi. P0 is the empty set and T0 is the empty tableau.

A1 If λi = λi−1, then (Pi, Ti) = (Pi−1, Ti−1).

A2 If λi ⊃ λi−1, then i = 2k for some integer k ∈ [n]. Let Pi = Pi−1 and Ti is obtained from

Ti−1 by adding the entry k in the square λi\λi−1.

A3 If λi ⊂ λi−1, then i = 2k−1 for some integer k ∈ [n]. Let Ti be the unique tableau of shape λi

such that Ti−1 is obtained from Ti by row (RSK)-inserting some number j. Let Pi be obtained

from Pi−1 by adding the ordered pair (j, k).

The construction above can be reversed. Given a pair (P, T2n) and the standard representation

of P , denoted by E(P ), we reconstruct the preceding tableaux and get the sequence of shapes. If

we have the T2k for some k ≤ n, we can get the tableaux T2k−1, T2k−2 by the following rules:

a1 T2k−1 = T2k if the integer k does not appear in T2k. Otherwise T2k−1 is obtained from T2k by

deleting the square containing k.

a2 T2k−2 = T2k−1 if E(P ) does not have an edge of the form (i, k). Otherwise there is a unique

i < k such that (i, k) ∈ E(P ). In that case let T2k−2 be obtained from T2k−1 by row-inserting

i.

According to the bijection Φ(V ) = (P, T2n), we can proof the Theorem 7 easily. If we consider

the vacillating tableaux of empty shape, then we get the conclusion that

g∅(n) = B(n)

Moreover, any walk from ∅ to ∅ in m+ n steps can be viewed as a walk from ∅ to some shape λ in

n steps, then followed by the reverse of a walk from ∅ to λ in m steps, which gives us

∑
λ

gλ(n)gλ(m) = g∅(m+ n) = B(m+ n)

11



4.3 Bijection φ from partitions to vacillating tableaux

There is a bijection between the set of vacillating tableaux of empty shape and the partition set

of [n] [3]. Given a partition P ∈ Πn with the standard representation, we construct the vacillating

tableau φ(P ) as follows:

Start from the empty standard Young Tableau by letting T2n = ∅, read the number j ∈ [n] one

by one from n to 1, and define T2j−1, T2j−2 for each j.

B1 If j is the righthand endpoint of an arc (i, j), but not a lefthand endpoint, first do nothing, then

insert i (by RSK algorithm) into the tableau.

B2 If j is the lefthand endpoint of an arc (j, k), but not a righthand endpoint, first remove j, then

do nothing.

B3 If j is an isolated point, do nothing twice.

B4 If j is the righthand endpoint of an arc (i, j), and the lefthand endpoint of another arc (j, k),

then delete j first, and then insert i.

The vacillating tableau φ(P ) is the sequences of shaped of these SYT’s.

Example 4. Given the partition 1457-26-3, we can get the sequence of SYT’s:

∅ ∅ 1 1 1 1 1 2 24 2 2 5 5 ∅ ∅

2 2 2 5

and the vacillating tableau is

∅ ∅ � � �
�

�
�

�
�

� �� � �
�

� � ∅ ∅

12



which is denoted by

∅ ∅ 1 1 11 11 11 1 2 1 11 1 1 ∅ ∅

There are some interesting statistics. The relation between cr(P ), ne(P ) and the vacillating

tableaux is given in the following theorem.

Theorem 8. Let P ∈ Πn and φ(P ) = (∅ = λ0, λ1, ..., λ2n = ∅). Then cr(P) is the most number of

rows in any λi, and ne(P) is the most number of columns in any λi.

The theorem is general enough to hold in other cases.

4.3.1 Descent numbers and major indices on complete matching

Restricting to the case that every block has two numbers and each number appears only once,

the set partitions of [n] turn to be a complete matching and the map above only has two cases, B1

and B2. we can omit the "do nothing" operation and start from the empty SYT T0 = ∅. We find

that there is an one-to-one correspondence between oscillating tableaux with shape empty, length

n and the set of matchings on [n].

Kim finds some properties of distribution of descents in matchings and those properties are proved

by such construction [4].

Definition 10. A permutation π ∈ Sn has a descent at position i if π(i) > π(i + 1), where

i = 1, ..., n− 1. The set of all descents of π is denoted by Des(π) and the descent number of π is

defined as d(π) := |Des(π)|+ 1.

Definition 11. Given a a permutation π ∈ Sn, the major index of π is the sum of the descent

position of π, i.e.

maj(π) =
∑

i∈Des(π)

i

Define a sequence of Young tableaux of length 2n. Starting with T0 = ∅, given Ti−1, we define

Ti as follows:
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B1 If i is the smaller element in its block {i < j} in π, let Ti be obtained from Ti−1 by row-

inserting j.

B2 If i is the larger element in its block {i < j} in π, let Ti−1 contains i, Ti is obtained by removing

i and sliding the hole out(jeu de taquin)

In a general permutation π, it has a basic property of symmetry.

∑
π∈σn

pd(π) =
∑
i

aip
i

where ai = an+1−i. For major indices, it has similar conclusion. Considering the permutation π′

with reverse order of π, the positions of descents in π and π′ are complementary, which gives us

the symmetry. However, for the matchings, it doesn’t hold since the reverse order of a matching

might not be a matching again.

Kim finds the following theorem about symmetry which holds for matchings.

Theorem 9. Let π ∈ S2n be a matching and define π′ by π′ = T−1(T (π)′). Then,

d(π) + d(π′) = 2(n+ 1)

and

maj(π) + maj(π′) = 2n2

Example 5. Consider the matching σ = (14)(23)(56) ∈ S6. The sequence of tableaux associated

with σ is  ∅ 4 3 4 ∅ 6 ∅

4


and the associated oscillating tableau is

T (σ) =

 ∅ � � � ∅ � ∅

�


14



The conjugate of T (σ) is

T (σ)′ =

(
∅ � �� � ∅ � ∅

)

The associated matching is π′ = T−1(T (π)′) = (13)(24)(56). π has descents at position

1,2,3,5 and π′ has descents at position 2,5. d(π) = 5, d(π′) = 3, d(π) + d(π′) = 2(3 + 1) and

maj(π) = 11, maj(π′) = 7, maj(π) +maj(π′) = 2 ∗ 32.

Given a matching π ∈ S2n, let

T (π) = (λ0, ...., λ2n)

For any 1 ≤ i ≤ 2n−1, consider the size of λi−1, λi, and λi+1. We can see that there are six cases:

1. If |λi−1| < |λi| and |λi| > |λi+1|, then π has a descent at position i.

2. If |λi−1| > |λi| and |λi| < |λi+1|, then π doesn’t have a descent at position i.

3. If |λi−1| < |λi| < |λi+1| and the box added the second time is in a strictly lower row than

the box added the first time, then π has a descent at position i.

4. If |λi−1| < |λi| < |λi+1| and the box added the second time is in a weakly higher row than

the box added the first time, then π doesn’t have a descent at position i.

5. If |λi−1| > |λi| > |λi+1| and the box removed the first time is in a strictly lower row than the

box removed the second time, then π has a descent at position i.

6. If |λi−1| > |λi| > |λi+1| and the box removed the first time is in a weakly higher row than

the box removed the second time, then π doesn’t have a descent at position i.
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xi
case 1

xi+1 xi xi+1

case 2

xi
case 3

xi+1 xi xi+1

case 4

xi
case 5

xi+1 xi xi+1

case 6

These six cases cover all the possibilities of sequences of three standard tableaux and they are

used to prove Theorem 9. According to Theorem 9, there is a perfect symmetry for both descent

numbers and major indices.

Proposition 1. The descent numbers and major indices form a kind of special generating functions

named Palindromic Function, which is

∑
π∈S2n

pd(π)qmaj(π) =
∑

ai,jp
iqj

where ai,j = a(2n+1)−i,2n2−j .

4.4 Map between oscillating tableau and partial matching

Let f̃µk denote the cardinality of the set F µ
k of all up-down tableaux of length k, shape µ, and

fµ denote the number of standard Young tableaux of shape µ. To prove the identity:

f̃µk =

(
k

|µ|

)
(2r − 1)!!fµ, µ ` (k − 2r)
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Sundaram [5] sets up a bijection between up-down tableaux Skµ and pairs (L,Qµ), where Qµ is a

SYT of shape µ and L is a two-line array

L =

 j1 ... jr

i1 ... ir


with j’s in the top row written in increasing order and the i’s in the bottom row are such that jk > ik

for each k = 1, .., r and the j’s and i’s are all distinct and {entries in Qµ}∪{entries in L} = [k].

Given the sequence Skµ, we build up an associated sequence of tableaux Ti for each each shape

µi of the sequence:

C1 If the sequence is increasing at step j, given the SYT Tj−1 with shape µj−1 and µj is one box

larger than µj−1, then Tj is the SYT obtained by adding a j to Tj−1 in the position of the added

box.

C2 If µj is one box less than µj−1, to get Tj we do the following:

(a) Bump out the extra entry of Tj−1 by columns(inverse Schensted column-insertion) toget

a tableau Tj of shape µj , and a letter x.

(b) Record the fact that a removal occurred at step j by putting the pair (j, x) into a two-line

array L, with j on top.

Since the x was bumped out at step j, it must have been inserted in an earlier step, so x < j.

Then we know that the process reverses.

Given the pair (L,Qµ), Qµ is the kth step of the sequence and we reconstruct the preceding

tableaux and get the sequence of shapes. Given SYT Tj , we try to get Tj−1:

D1 If j does not appear in the top row of the two-line array L, then we delete the box labelled j

from Tj .
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D2 If j does appear in the top row of L, which means the pair (j, i) is in L, then we insert i,

Tj−1 = (i
RSK−→ Tj).

Example 6. Here is an example [5]. For an oscillating tableau:

1, 11, 21, 211, 111, 11, 21, 22, 221, 211,

we can get a pair (L,Qµ):

L =

{ 5 6 10

2 4 3
},

1 7

8

9


4.4.1 Combinatorial statistics on partial matching

As we know, there is a bijection between an up-down tableau of shape ∅, length 2n and a

complete matching S2n. Some combinatoric statistics of the matchings can be observed in the

tableaux, such as crossing number and nesting number. According to Sundaram’s identity, we

know that there is a bijection between each up-down tableau of length k, shape µ and a pair of

(L,Qµ). It is a general case since it ends at shape µ rather than an empty shape. We can consider

L as a partial matching and all the entries in Qµ represent the lefthand endpoints of the arcs. The-

orem 8 and the property of descents still hold.

Assume that we can complement the partial matching, which means we have |µ| more steps k+ 1,

k + 2,.., k + |µ| and all of them are righthand endpoints. Generally, there are more than one cases

for these extra steps to match those lefthand endpoints, i.e. those numbers in the standard Young

tableau Qµ. Then we consider two special cases that the standard Young tableaux Qµ have shape

[|µ|] or [1|µ|]

18



Figure 4.1: Two special shapes of SYTs

According to the rule for the standard Young tableau, once the shape and the number of the

tableau are determined, there is only one case to complement the matching. Given the numbers

a1 < a2 < ... < a|µ| which are those lefthand endpoints without righthand endpoints, then

1. In the case of shape [|µ|], the remaining matching are (a1, k+ 1),(a2, k+ 2),...,(a|µ|, k+ |µ|)

and they form a |µ|-crossing.

2. In the case of shape [1|µ|], the remaining matching are (a1, k+|µ|),(a2, k+|µ|−1),...,(a|µ|, k+

1) and they form a |µ|-crossing.

Ignoring the complement above, we add the infinite point for the partial matching which is

considered as the righthand endpoint for those remaining lefthand endpoints. According to the

definition of k-crossing and k-nesting, these new arcs don’t form any crossings or nestings and

only one of them helps form crossing or nesting with original arcs.

Figure 4.2: Infinite point

In this case, up-down tableaux P of shape [|µ|] have the property that the number of rows in
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any µi is equal to ne(P) and up-down tableaux P of shape [1|µ|] have the property that the number

of columns in any µi is equal to cr(P).
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5. INTEGER SEQUENCES AND R-VACILLATING TABLEAUX

To prove the identity:

nr =
∑
λ`n

fλmλ
r

Halverson [6] constructs an invertible map that turns a sequence (i1, ..., ir) of numbers in the range

1 ≤ ij ≤ n into a pair (Tλ, Pλ) consisting of a standard tableaux Tλ of shape λ and a special type

of oscillating tableaux Pλ of shape λ and length 2r for some λ ` n, which is called r-vacillating

tableaux. The definition of r-vacillating tableaux is:

Definition 12. A r-vacillating tableau of shape λ and length 2r is a sequence of partitions,

((n) = λ(0), λ(
1
2
), λ(1), ..., λ(r−

1
2
), λ(r) = λ),

satisfying:

1. λ(i) ` n and λ(i+
1
2
) ` (n− 1),

2. λ(i) ⊇ λ(i+
1
2
) and |λ(i)/λ(i+ 1

2
)|=1,

3. λ(i+
1
2
) ⊆ λ(i+1) and |λ(i+1)/λ(i+

1
2
)|=1,

The bijection uses jeu de taquin and RSK insertion [7]. First, let me introduce the former pro-

cess.

Given a standard tableau of shape λ ` n, jeu de taquin provides an algorithm for removing the

box containing x from T and producing a standard tableau S of shape µ ` (n− 1) with µ ⊆ λ and

{1, ..., n}\{x}. Let Si,j denote the entry of S in row i and column j, and a corner of S is a box

whose removal leaves the Young diagram of a partition. Then the process S = (x
jdt←− T ).

E1 Let c = Si,j be the box containing x
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E2 While c is not a corner, do

(a) Let c′ be the box containing min{Si+1,j, Si,j+1}

(b) Exchange the positions of c and c′

E3 Delete c

Given i1, ..., ir, with 1 ≤ ij ≤ n, we will produce a pair (Tλ, Pλ) consisting of a standard tableaux

Tλ and r-vacillating tableaux Pλ. Initialize the first tableau to be the standard tableaux of shape

(n):

T (0) = 1 2 ... n

Then recursively define standard tableaux T (j+ 1
2
) and T (j+1) by:

T (j+ 1
2
) = (ij+1

jdt←− T (j)), 0 ≤ j ≤ k − 1.

T (j+1) = (ij+1
RSK−→ T (j+ 1

2
)), 0 ≤ j ≤ k − 1.

Let λ(j) be the shape of T (j), and let λ(j+
1
2
) be the shape of T (j+ 1

2
). Then let

Pλ = (λ(0), λ(
1
2
), λ(1), λ(1

1
2
), ..., λ(k))

Tλ = T (k)

The iterative delete-insert process that associates the pair to the sequence can be denoted by:

(i1, ..., ik)
DI−→ (Tλ, Pλ)

Example 7. Given sequence (2, 4, 3), which satisfies 1 ≤ ij ≤ 6 [6]. At the beginning, the tableau

is:

T (0) =

(
1 2 3 4 5 6

)
2

jdt←− T (0)

22



T ( 1
2
) =

(
1 3 4 5 6

)
2
RSK−→ T ( 1

2
)

T (1) =

 1 2 4 5 6

3


4

jdt←− T (1)

T (1 1
2
) =

 1 2 5 6

3


4
RSK−→ T (1 1

2
)

T (2) =

 1 2 4 6

3 5


3

jdt←− T (2)

T (2 1
2
) =

 1 2 4 6

5


4
RSK−→ T (2 1

2
)

T (3) =


1 2 3 6

4

5


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Finally, we get the pair:

(2, 4, 3)
DI−→


1 2 3 6

4

5

, (6, 5, 51, 41, 42, 41, 411)


Lemma 3. Consider two successive row-insertions, first row-inserting x in a tableau T and then

row-inserting x′ in the resulting tableau T ← x, giving rise to two routes R and R′ and two new

boxes B and B′.

1. If x ≤ x′, then R is strictly left of R′, and B is strictly left of and weakly below B′.

2. If x > x′, then R′ s weakly left of R and B′ is weakly left of and strictly below B.

Halverson’s insertion gives a bijection between a sequence and a pair (Tλ, Pλ), which carries

the backsteps associated to integer sequences to the descent set on standard tableaux [7]. Map

sequences in {1, ..., n}r to permutations in Sn using following surjection

{1, ..., n}r → Sn

a = (a1, ..., ar) 7→ wa = RT(1, 2, .., n, a1, ..., ar)

where RT(1, 2, .., n, a1, ..., ar) is the permutation consisting of the rightmost occurrence of each

integer in {1,...,n}.

Definition 13. The backsteps in a permutation w = (w1, ..., wn) ∈ Sn are

BS(w) = {i|i+ 1 is to the left of i in w = (w1, ..., wn)}

We have defined the descent set. If P is a standard tableau, then the descent set of P is

Des(P ) = {i|i+ 1 is in a lower row than i in P}
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Proposition 2. If a ∈ {1, .., n}r and a DI−→ (Pa, Qa), where Pa is a standard tableau of shape

λ ` n and Qa is an r-vacillating tableau starting from specific shape, then

BS(wa) = Des(Pa)

In the example above, the sequence is (2,4,3) and the associated permutation is

RT (1, 2, 3, 4, 5, 6, 2, 4, 3) = (1, 5, 6, 2, 4, 3),

We find the backsteps in this permutation is (3, 4). In the tableau

T (3) =


1 2 3 6

4

5

 ,

the descent set is (3, 4). That is, BS(wa) = Des(Pa).
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6. CONCLUSIONS

RSK insertion gives a bijection between sequences of distinct integers and standard tableaux.

Schensted proved the length of the longest increasing and decreasing subsequences equals to the

number of columns and rows separately. Then, Greene found a global description of the shape of

the tableau.

In this paper, besides the introduction of RSK insertion and Schensted’s theorem, I summarize

four different bijections constructed by using RSK insertion. All these bijections can be used to

prove corresponding combinatorial identities.

In the case of complete matchings, Kim found the property of symmetry which forms a special

generating function named Palindromic Function. We also list all the six possibilities of sequences

of three standard tableaux. Three of them form a descent and others don’t.

In the case of partial matching, we consider two special shapes of standard tableaux. After

adding an infinite point for the partial matching, we find that the theorem about crossing number

and nesting number holds partially.

The last bijection is from a sequence of integers to a special type of oscillating tableau called

r-vacillating tableau. It has an interesting property that the backstep in the permutation constructed

from the sequence equals to the descent set of the standard tableau.
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