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ABSTRACT

A framework for dislocation-based viscoplasticity and dynamic ductile failure (CPD-

FE) has been developed to model high strain rate deformation and damage in single crys-

tals and polycrystals. The rate dependence of the crystal plasticity formulation is based

on the physics of relativistic dislocation kinetics suited for extremely high strain rates.

The damage evolution is based on the dynamics of void growth, which are governed by

both micro-inertia as well as dislocation kinetics and dislocation substructure evolution.

An averaging scheme is proposed in order to approximate the evolution of the dislocation

substructure in both the macroscale as well as its spatial distribution at the microscale.

Additionally, a concept of a single equivalent dislocation density that effectively captures

the collective influence of dislocation density on all active slip systems is proposed here.

Together, these concepts and approximations enable the use of semi-analytic solutions for

void growth dynamics, which greatly reduce the computational overhead that would other-

wise be required. The resulting homogenized CPD-FE framework has been implemented

into a commercially available finite element package, and a validation assessment against

a suite of direct numerical simulations was carried out. The model is calibrated and val-

idated against published experimental data of the stress-strain response of single crystals

subject to dynamic loading conditions. Lastly, the model is utilized to study polycrystals at

the mesoscale level through the explicit resolution of individual grains, i.e. resolving each

individual grain’s size, shape, and orientation. A few thousand mesoscale calculations are

carried out, systematically varying the misorientation angles of the grain boundaries (GB)

in the computational microstructures. Despite the fact that the CPD-FE model neglects the

possibility of variation in inherent GB weakness, the CPD-FE simulations agree favorably

with experimental observations that have demonstrated a non-monotonic relationship be-
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tween GB misorientation and the likelihood of failure initiation along said GB. The role

played by mechanics, i.e. elastic and plastic anisotropy, in this non-monotonic trend is

elucidated here.
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NOMENCLATURE

Acronyms

CP Crystal plasticity
CPD Crystal plasticity damage
CPD-FE CPD finite element model
MD Molecular Dynamics
KB/SHPB Kolsky bar or split Hopkinson pressure bar
BVP Boundary value problem
ODE Ordinary differential equation
DNS Direct numerical simulation
GB Grain boundary
TB Twin boundary
FZ Fundamental zone
SCF Stress concentraion factor
RSS Resolved shear stress
CRSS Critical resolved shear stress
cr Critical value
m Mobile dislocation
im Immobile dislocation
eff Effective value
eq Equivalent value
mult Multiplication
trap Trapping
ann Annihilation
rec Recovery
nuc Nucleation
het Heterogeneous
hom Homogeneous

General
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ρs Mass density of solid material at rest

b Burgers vector

(α) Slip system index

c⊥ Taylor interaction factor

µ Shear modulus

cs Shear wave speed

I Second order identity tensor

e Basis vector in reference configuration

I Forth order identity tensor

S Eshelby’s tensor

C Elastic modulus tensor in crystal basis

Σsp Material spall strength

c0b Bulk wave speed at ambient condition

Ductile failure

a Current void radius

ϕ Current void volume fraction

a0 Initial void radius

ϕ0 Initial void volume fraction

`v Average void spacing in reference configuration

R Internal resistance to void growth

Rdd Dislocation dynamics resistance

Rcr Quasistatic resistance
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MT Taylor factor

Cd Effective elastic modulus tensor in crystal basis
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Crystal Plasticity

Microscale Macroscale Description

f F Total deformation gradient tensor

fe Fe Elastic part of the deformation gradient tensor

fp Fp Plastic part of the deformation gradient tensor

− Fd Damage part of the deformation gradient tensor

s Σ Cauchy stress

l L Velocity gradient

v⊥ V⊥ Dislocation velocity

τ T Resolved shear stress

τcr Tcr Critical resolved shear stress

γ̇ Γ̇ Slip rate

s0 s0 Slip direction vector in crystal basis

n0 n0 Slip plane normal vector in crystal basis

s S Slip direction vector in plastically deformed
configuration

n N Slip plane normal vector in plastically deformed
configuration

% 〈%〉s Total dislocation density

%m 〈%m〉s Mobile dislocation density

%im 〈%im〉s Mobile dislocation density
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1. INTRODUCTION AND MOTIVATION

A deeper understanding of and control over the fundamental processes governing de-

formation and failure of ductile metals subject to dynamic loading is vital to the advance-

ment of a number of applications, e.g. personal and vehicular protection systems, space-

craft shielding, automotive crash safety, and advanced manufacturing. Despite this tech-

nological importance, many fundamental aspects of dynamic ductile failure are poorly

understood and the sophistication of constitutive models for dynamic ductile failure has

lagged behind their quasi-static counterparts. Our aim here is to advance the state-of-the-

art in this area through the development, implementation, calibration, verification, and

validation of what is to our knowledge the first dislocation-based crystal plasticity frame-

work for dynamic ductile failure. In particular, this dissertation focuses on spall strength

and dynamic failure of crystalline and polycrystalline metals. The ultimate goal of this

work is to understand the relationship between dynamic mechanical behavior, microstruc-

ture, and loading conditions, which will ultimately provide guidance for material selection

and material design for shock loading applications.

1.1 Shock compression and spall failure experiments

While the proposed framework is applicable to general loading situations, the shock

deformation and failure of materials is typically studied experimentally via plate impact

testing. A single plate impact experiment provides a wealth of information that may be uti-

lized to calibrate and validate viscoplasticity and damage constitutive models. In addition,

physics-based models, like the one developed here, may be utilized to interpret aspects of

The present chapter is based on publications by Nguyen et al. (2017, 2019).
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the experimental measurements and observations, e.g. dislocation nucleation and kinetics,

twin and void dynamics, phase transformations, etc.
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Fig. 1.1: From left to right: schematic of a plate impact test; typical time versus stress
wave front position diagram for plate impact tests; idealized deformation description on
the spall plane.

The schematic of a plate impact test is shown in Fig. 1.1. In the test, a flyer plate is

accelerated to come into contact with a target plate which is initially at rest (Meyers and

Aimone, 1983; Meyers, 1994; Kanel, 2010). The target plate is made of the material of

interest. The contact generates two compressive incident waves traveling away from the

impact surface in both plates (cf. Fig. 1.1). As those waves reach the rear ends, they are

reflected back as rarefaction fan waves, meet each other again and generate a tensile wave

at a position called the spall plane. By controlling the thickness ratio between the target

and the flyer, experimentalists can design the spall plane to be in the middle of the target

plate. In particular, for two plates of the same material, a ratio greater than one creates a

spall plane inside the target plate; a ratio of two creates a spall plane in the middle of the

target plate (cf. Fig. 1.1). Due to the high aspect ratios between the plates’ radiuses to their

thickness, the strain state of a volume element on the spall plane can idealized as uniaxial
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strain, i.e. its macroscopic deformation gradient can be written as

[F] =


F11 0 0

0 1 0

0 0 1

 . (1.1.1)

The coefficients for the above deformation gradient tensor and other tensors below are

with respect to the basis show in Fig. 1.1. In the absence of rigid rotation, the logarithmic

strain tensor ε can then be written as

[ε] =


ln(F11) 0 0

0 0 0

0 0 0

 . (1.1.2)

The deviatoric part of the logarithmic strain tensor can be written as

[ε′] =


2
3

ln(F11) 0 0

0 −1
3

ln(F11) 0

0 0 −1
3

ln(F11)

 . (1.1.3)

The equivalent logarithmic strain is then simplified as

εeq ≡
√

2

3
ε′ : ε′ =

2

3
ln(F11). (1.1.4)

In order to diagnose the macroscopic material behavior, the velocity history of the

free surface of the target plate is recorded using velocity interferometer system for any

reflectors (VISAR, Meyers, 1994). Figure 1.2 presents a generic free surface velocity

(ufs) history from a plate impact test. Due to shock loading, the dynamic behavior of a

3



Fig. 1.2: Illustration of a typical free surface velocity history (Meyers, 1994, figure 4.8(b)).

material depends on the strong stress wave propagation, reflection and interaction. The

recorded velocity history provides important information on that dynamic behavior, such

as Hugoniot elastic limit (or the dynamic yield strength), plastic hardening or softening,

phase transition, as can be seen in Fig. 1.2.
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Fig. 1.3: Typical time evolution of F11, pressure and equivalent stress of a volume element
on spall plane without damage evolution.
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One particularly important property that may be obtained from the velocity history is

the spall strength, which is the tensile strength of a material under shock loading condi-

tions. For an isotropic material, the Cauchy stress tensor for the uniaxial strain deformation

on spall plane can be written as

[Σ] =


Σ11 0 0

0 Σ22 0

0 0 Σ22

 . (1.1.5)

The pressure and equivalent stress are then defined as

P = −1
3
(Σ11 + 2Σ22), (1.1.6)

Σeq = |Σ11 − Σ22|. (1.1.7)

By substituting the pressure and equivalent stress into the Cauchy stress we have

[Σ] =


−P + 2

3
Σeqsgn(Σ11 − Σ22) 0

0 −P − 1
3
Σeqsgn(Σ11 − Σ22) 0

0 0 −P − 1
3
Σeqsgn(Σ11 − Σ22)

 .
(1.1.8)

The deviatoric part of the Cauchy stress can be written as

[Σ′] =


2
3
Σeqsgn(Σ11 − Σ22) 0

0 −1
3
Σeqsgn(Σ11 − Σ22) 0

0 0 −1
3
Σeqsgn(Σ11 − Σ22)

 .
(1.1.9)

Figure 1.4 illustrates the time evolution of deformation gradient F11 and stress on the

spall plane, when damage evolution is not activated. When shock wave reaches the spall

5



plane for the first time (≈ 0.2 µs), the volume element on the spall plane is subjected to

compression (i.e. F11 < 1), leading to a positive compression pressure and an increase

in equivalent stress. When the two reflected waves from the flyer and target free surface

interact at the spall plane (≈ 0.65 µs), the volume element is unloaded and then stretched

(i.e. F11 > 1), leading to a tensile hydrostatic stress and an increase in equivalent stress

after unloading. During loading, the principle stresses Σ11 and Σ22 of ductile materials

are close to the opposite of pressure. The two stresses Σ11 and Σ22 cross each other when

unloading initiates (≈ 0.65 µs).

Figure 1.4 illustrates the stress states on the spall plane with 3 deformation modes:

elastic; elasto-plastic; elasto-plastic with damage evolution, and their corresponding free

surface velocity. With elasto-plastic behavior, the the equivalent stress increases to the

yield strength and then relaxes, as compared to purely elastic behavior, with hardening

or softening as loading progresses. Without damage evolution, the pressure continues to

drop to a negative value close to the peak compression pressure (≈ 10 GPa in Fig. 1.4)

as tension progresses. In reality, when the tensile stress is higher than the dynamic tensile

strength of the material, nanovoids and/or microvoids can nucleate, grow and coalesce.

That damage evolution relaxes the hydrostatic stress. The stress relaxation on spall plane

sends a pullback signal to the recorded velocity history, as illustrated in Fig. 1.4(c).

From the difference between the maximum (umaxfs ) and local minimum (uminfs ) of the

target plate free surface velocity (cf. Fig. 1.5), which is usually called the pullback veloc-

ity, an acoustic estimation (Kanel, 2010) of the target plate material spall strength can be

obtained as

Σsp =
1

2
ρsc0b

(
umaxfs − uminfs

)
. (1.1.10)

In the above equation, ρs is the mass density of the solid material at rest, c0b is the bulk

wave speed at ambient condition. Romanchenko and Stepanov (1980) proposed a correc-
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Fig. 1.4: Evolution of (a) pressure and (b) (Σ11−Σ22) of a volume element on spall plane
for pure elastic; elasto-plastic; elasto-plastic with damage evolution material behavior.
Equivalent stress is the absolute value of (Σ11−Σ22). (c) Corresponding velocity histories.

tion to the bulk wave speed using the longitudinal wave speed as below

Σsp = ρs
(
umaxfs − uminfs

) c0bc0l

c0b + c0l

, (1.1.11)

with c0l denoting the longitudinal wave speed at rest. Kanel (2010) proposed a correction

to the pullback velocity using the time-derivative of the free surface velocity right before

and after spall signal as below

Σsp =
1

2
ρsc0b

(
umaxfs − uminfs + hsp

(
1

c0b

− 1

c0l

)
dufs
dt

∗)
(1.1.12)

In the above equation, hsp is the target thickness, dufs
dt

∗
= |u̇1|u̇2
|u̇1|+u̇2 is a function of deceler-

ation before spall (u̇1) and acceleration after spall (u̇2). Due to its simplicity, Eq. (1.1.10)

is the most commonly used formulation to estimate spall strength from plate impact test.
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At a given compressive pressure (i.e. for given flyer-target impedance and impact ve-

locity), different strain rates can be obtained by varying the plates thickness. This is the

result of the shock wave attenuation due to propagation inside the target material. In par-

ticular, an increase in the target plate thickness results in reducing the loading rate. The

tensile loading rate is usually estimated from the unloading curve in the free surface ve-

locity history (right before spall signal - see Fig. 1.5) as below

ε̇ =
1

2c0b

dufs
dt

∣∣∣∣
t=tsp

. (1.1.13)

Equation (1.1.13) is a rough approximation of tensile strain rate and it is likely smaller

than the real rate during spallation, due to shock wave attenuation with propagation and

the spreading of rarefaction wave to target free surface. For example, the tensile strain

rate on spall plane from plate impact tests (i.e. using Eq. (1.1.13)) is ≈ 6 times lower than

their hydrodynamic computer simulation counterparts (i.e. directly approximate from spall

plane deformation) in (Turley et al., 2018).
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400
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600

Fig. 1.5: Typical recorded velocity history of target free surface, reproduced from shot 1
data of Turley et al. (2018).
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Beside the indirectly measured spall strength from target free surface velocity, the tar-

get damage morphology can also be useful in correlating the spall strength to microstruc-

ture of the materials (Peralta et al., 2009; Wayne et al., 2010; Brown, 2015; Krishnan

et al., 2015; Fortin et al., 2016). For example, by analyzing the morphology of the frac-

ture surface (Fig. 1.6), the statistics of damage localization on the spall plane (i.e. the

relative tendency to have damage localization of individual microstructure) (Wayne et al.,

2010; Brown, 2015) and the damage characteristic (i.e. intergranular versus intragranular)

(Peralta et al., 2009) during spallation can be obtained.

(a) (b)

Fig. 1.6: (a) Intergranular and intragranular voids on spall plane of polycrystalline copper.
(b) intergranular void in polycrystalline copper (Brown, 2015).

1.2 Key factors governing spall strength of single crystals

Within high purity metal single crystals, the key factors reported to affect spall strength

are the crystal orientation (Minich et al., 2004; Turley et al., 2018), and the loading condi-

tions including the shock pressure (Minich et al., 2004; Turley et al., 2018), tensile strain

rate (Srinivasan et al., 2007; Turley et al., 2018), and the pulse shape of the incident shock

wave (Gray III et al., 2007; Luo et al., 2009b). However, the reported trends relating the

apparent spall strength in single crystals and these key factors seem to contradict each

other in some cases. For example, orientation dependence was observed in the experi-

ments of Minich et al. (2004); Perez-Bergquist et al. (2011); Turley et al. (2018), but not

9



(a)
0 10 20 30 40 50

1

1.5

2

2.5

3

(b)
0 50 100 150 200

8

10

12

14

16

18

Fig. 1.7: Variation of single crystal copper spall strength with respect to shock pressure
from (a) plate impact tests, (b) MD calculation (reproduced from (Minich et al., 2004) and
(Luo et al., 2009a), respectively).

in MD simulations of Luo et al. (2009a) at a very high pressure (160 GPa) (cf. Fig. 1.7).

Also, some of the observations of orientation dependence made solely from experiments

are inconsistent with each other, for example in single crystal copper the 〈100〉 orientation

was observed to be stronger than the 〈110〉 orientation by Minich et al. (2004) and Turley

et al. (2018), but weaker than the 〈110〉 orientation by (Perez-Bergquist et al., 2011), at

similar magnitudes of peak shock pressure. Similarly, the spall strength was reported to

increase with shock pressure in Minich et al. (2004); Turley et al. (2018), but is observed

to decrease with shock pressure, presumably because of the increase in shock temperature,

in the results of Luo et al. (2009a) (cf. Fig. 1.7).

While MD simulations provide more detailed insights to the processes occurring within

the crystal lattice during the spallation process, they are presently restricted to strain rates

that are much higher than those typically associated with experiments. Continuum models

offer the opportunity to bridge across the disparate time scales, but require that the appro-

priate mechanisms are incorporated into the constitutive theory for single crystal behavior.
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1.3 The role of microstructure in spall failure

For polycrystalline materials, it is necessary to understand the relationship between

spall strength and material microstructure (Meyers and Aimone, 1983; Curran et al., 1987;

Meyers, 1994) in order to optimize the strength. Spall strength tends to be highly sensitive

to microstructure, and sometimes exhibits perplexing relationships. For example, alloying

can either increase (Chen et al., 2006; Wang et al., 2014) or decrease (Curran et al., 1987;

Pedrazas et al., 2012) the spall strength of aluminum alloys. Likewise, the spall strength

dependence on grain size was reported to follow typical Hall-Petch strength-size relation

(i.e. smaller is stronger) in atomistic calculations (Kuksin et al., 2008; Mackenchery et al.,

2016) and some experimental observations (Zurek et al., 1988; Buchar et al., 1991). By

contrast, spall strength was observed to increase with increasing grain size (i.e. smaller

is weaker) in (Minich et al., 2004; Razorenov et al., 2007), with strongest spall strength

exhibited in high purity single crystals. This contradiction was argued to be an implica-

tion of the competing length scales of grain size and spacing between damage nucleation

sites (Wilkerson and Ramesh, 2016). In addition to affecting the spall strength, grain

size reportedly influenced dynamic fracture morphology of polycrystals (Escobedo et al.,

2011, 2014), i.e. influenced the transgranular versus intergranular characteristic of poly-

crystalline damage.

Beyond grain size, crystal orientation also affects void growth (Ling et al., 2016, 2017,

2018), spall strength (Minich et al., 2004; Turley et al., 2018) and spall failure morphol-

ogy (Perez-Bergquist et al., 2011). Moreover, from analyzing intergranular spall damage

in polycrystal copper, Wayne et al. (2010) and Brown et al. (2015) suggested that mi-

crostructure features such as GB misorientation angle may play a role in damage localiza-

tion. Figure 1.6 shows examples of intragranular and intergranular damages in polycrys-

talline copper due to spallation. In their observation, the likelihood of finding intergranular
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damage was related to the corresponding misorientation angle (see Fig. 1.8). Their results

showed that the peak probability of damage nucleating on a particular GB occurred within

the range of 25◦ to 50◦ misorientation angle, and the peak was more pronounced in pre-

strained polycrystals (Brown et al., 2015).
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Fig. 1.8: Conditional probability to find voids at GB of given misorientation angle, on
spall plane of prestrained polycrystalline copper, reconstructed here from the work of
Brown (2015).

The fundamental reason for this correlation is unclear, but is likely related to one of the

following factors: inherent GB weakness (e.g. dislocation mobility or lack thereof across

a GB, local atomic disregistry) or mechanics of interface incompatibilities (i.e. difference

in mechanical behavior of neighboring grains). Fensin and Hahn (2017) used molecular

dynamics to study susceptibility of tantalum GBs to dynamic failure, and reported no

distinguishable link between the void nucleation stress and GB disorder measures such as

energy or excess free volume. In a detailed experimental analysis, Escobedo et al. (2011)

found no clear correlation between the likelihood of a GB being damaged and the Schmid

factor nor the elastic stiffness mismatch across the GB.
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In contrast, Krishnan et al. (2015) utilized an extended Gurson model for crystal plas-

ticity to study incipient spall failure for a set of experimentally observed damaged GBs and

suggested a larger role of incompatibility in mechanical properties across the interface, as

well as interface orientation, on intergranular failure. Wu and Zikry (2016) observed a

similar preference of intergranular fracture due to elastoplastic incompatibility when ana-

lyzing the mode I fracture of Σ3 and Σ17b bicrystals. Lieberman et al. (2016) expanded

these earlier studies to provide a more fundamental understanding of the relationship be-

tween plastic incompatibility and the likelihood of intergranular damage using material

characterization in conjunction with direct numerical simulation. However, there has yet

to be a systematic and conclusive analysis to fully understand the dominant factors gov-

erning the correlation of intergranular damage localization and GB misorientation angles

reported in (Wayne et al., 2010; Brown et al., 2015).

1.4 The modeling state of the art

The earliest models of ductile failure were based on the analytic analysis of an isolated

void in an otherwise homogeneous infinite medium, e.g. (Bishop et al., 1945; Hill, 1950;

McClintock, 1968; Rice and Tracey, 1969; Ball, 1982; Huang et al., 1991). While these

early models provided valuable insights into the initial stages of void growth, such models

failed to capture the important effect of an evolving void volume fraction, i.e. porosity,

thereby limiting their utility in ductile fracture analysis. This shortcoming was remedied

by Gurson (1977), who proposed a pioneering micromechanics-based framework capa-

ble of modeling the progressive failure of porous materials. In the subsequent decade,

Gurson’s model was modified into what would become known as the Gurson-Tvergaard-

Needleman (GTN) model (Chu and Needleman, 1980; Tvergaard, 1981; Tvergaard and

Needleman, 1984), which provided a mixed phenomenological and micromechanics-based

framework to distinctly account for the three critical elements of ductile failure, i.e. void
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nucleation, growth, and coalescence. For more comprehensive reviews of these ductile

failure mechanisms and associated models see (Garrison and Moody, 1987; Pineau and

Pardoen, 2007; Besson, 2009; Benzerga and Leblond, 2010; Pineau et al., 2016). One sig-

nificant drawback of the original model derived by Gurson (1977) was that the derivation

is restricted to porous materials whose solid matrix material may be adequately approx-

imated as an elastically rigid and rate-independent perfectly plastic material. Given that

most real materials do not behave in this mathematically idealized manner, a significant

amount of effort has gone into extending the applicability of this class of ductile failure

theories to account for more complex constitutive behaviors of the solid matrix material,

including

• viscoplasticity, e.g. Budiansky et al. (1982); Johnson and Cook (1983); Haghi and

Anand (1991); Cortés (1992a,b); Tong and Ravichandran (1993, 1995); Paquet and

Ghosh (2011); Wilkerson and Ramesh (2014);

• plastic anisotropy, e.g. Benzerga and Besson (2001); Monchiet et al. (2008); Ker-

alavarma and Benzerga (2008, 2010); Keralavarma et al. (2011);

• strain-gradient plasticity (and other nonlocal effects), e.g. Tvergaard and Needleman

(1995); Huang et al. (2000); Wu et al. (2003a); Reusch et al. (2003); Wen et al.

(2005a,b); Enakoutsa and Leblond (2009); Nguyen et al. (2015);

• crystal plasticity, e.g. Nemat-Nasser and Hori (1987); Han et al. (2013); Paux et al.

(2015); Mbiakop et al. (2015);

• inertial effects, e.g. Carroll and Holt (1972); Ortiz and Molinari (1992); Molinari

and Mercier (2001); Jacques et al. (2012a,b); Molinari et al. (2015); Jacques et al.

(2015).
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This dissertation continues this progress towards greater sophistication through the exten-

sion to a single crystal matrix material of finite mass density (i.e. non-negligible inertial

effects) whose constitutive response is governed by a single crystal dislocation-based vis-

coplasticity model (Lloyd et al., 2014b) applicable for extremely high strain rates.

As stated earlier, the development of dynamic ductile failure theories has significantly

lagged behind their quasi-static counterparts. For example, the first attempts to extend a

Gurson-type porous flow potential to the dynamic regime (i.e. non-negligible microscale

inertial effects) were carried out two decades later by Wang and Jiang (1997); Wang (1997)

and subsequently in an alternative form by Molinari and Mercier (2001). Even more stark

is the fact that this class of Molinari and Mercier (2001) type ductile failure models has

been utilized to computationally analyze only about a dozen or so published non-trivial

macroscopic boundary value problems, e.g. (Czarnota et al., 2006, 2008; Jacques et al.,

2012a,b, 2015; Fick et al., 2015), compared to the hundreds or perhaps thousands that

have been solved with the quasi-static GTN model. This disparity is in spite of the well-

documented (Carroll and Holt, 1972; Ortiz and Molinari, 1992; Tong and Ravichandran,

1993, 1995; Wu et al., 2003b; Molinari and Wright, 2005) important role played by micro-

inertia in retarding the growth of voids under dynamic loading. The real-world impor-

tance of micro-inertia has been further bolstered by several recent works (Czarnota et al.,

2006; Wright and Ramesh, 2008; Czarnota et al., 2008; Jacques et al., 2010; Wilkerson

and Ramesh, 2014, 2016), which have invoked micro-inertia as the dominant mechanism

governing the experimentally-observed strong strain rate-dependence of spall strength (a

measure of dynamic tensile strength inferred from high velocity plate impact experiments)

reported in e.g. (Moshe et al., 1998, 2000; Antoun, 2003; Cuq-Lelandais et al., 2009;

Kanel, 2010). These claims are in contrast to the earlier works that attributed the rate-

dependence of spall strength simply to viscoplasticity of the solid matrix material (Seaman

et al., 1976; Johnson and Cook, 1983; Perzyna, 1986; Cortés, 1992a,b; Wang, 1994; Zheng
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et al., 1994). These discrepancies were rectified by Wu et al. (2003b,a,c) whose calcula-

tions clearly demonstrated that viscoplasticity may be dominant in the early stages of void

growth; however, the dominant mechanism soon becomes micro-inertia as the voids grow

to large sizes (& 1-10 µm).

Recently, Wilkerson and Ramesh (2014) argued that a comprehensive revisit of the

role played by micro-inertia versus solid matrix material viscoplasticity was long overdue

given the extremely high strain rates (& 107 s−1) that may be achieved near the inter-

nal surface of a dynamically growing void. At such strain rates, the simple power-law

type rate-sensitivity invoked in much of the earlier literature is inadequate (Barton et al.,

2011); therefore, Wilkerson and Ramesh (2014) instead utilized the J2 dislocation-based

viscoplasticity model recently proposed by Austin and McDowell (2011) in order to de-

scribe the constitutive behavior of the solid matrix material in a thick-wall spherical shell

analysis. The key components of the Austin and McDowell (2011) model are (i) an addi-

tive decomposition of the total dislocation density into mobile and immobile populations

with mobile segments being the carriers of plasticity through an Orowan-type relation; (ii)

a mobility law that accounts for the thermally-activated regime as well as the relativistic

dislocation regime where dislocation velocities are forbidden to exceed the material wave

speed (Eshelby, 1949); and (iii) evolution equations for the dislocation substructure that

approximate nucleation, multiplication, trapping, annihilation, and recovery mechanisms.

With this model, Wilkerson and Ramesh (2014) demonstrated that while micro-inertia re-

mained dominate for late stage void growth, the retarding effect of viscoplasticity on early

growth could be far more severe than previously assumed. In particular, once dislocation

velocities near the void surface approach the wave speed the void growth rate is paralyzed

and incapable of growing at faster rates regardless of the applied stress. Moreover, the

evolution of dislocation substructure may induce a number of unique void growth behav-

iors, e.g. the complete shut down of void growth (after voids have grown by a factor of
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about 10 or 100) due to the starvation of the mobile dislocation density.

Here we account for these important retarding effects of micro-inertia and dislocation

kinetics on dynamic void growth in a single crystal ductile failure framework. Unlike

(Wilkerson and Ramesh, 2014), which was limited to pure hydrostatic stress states, here

we aim to develop a framework applicable to general loading conditions, similar in spirit

to the isotropic dynamic ductile failure model of Molinari and Mercier (2001), which is

the current state-of-the-art in dynamic ductile failure modeling. The key advancements

of the proposed framework over that of Molinari and Mercier (2001) is (i) crystal plastic-

ity rather than J2 plasticity; (ii) dislocation-based plasticity rather than phenomenological

plasticity models; and (iii) relativistic drag-based viscoplasticity more suited to extremely

high strain rates. To the best of our knowledge, there is no general framework for dynamic

ductile failure that includes even one of these features, let alone all three. Fortunately,

the necessary preliminaries are in place with extensions of the dislocation-based J2 theory

of Austin and McDowell (2011) to dislocation-based crystal plasticity having been re-

cently developed by Lloyd et al. (2014b) and Luscher et al. (2017). Figure 1.9 summarizes

the key contributions in physics-based viscoplasticity and micromechanics-based damage

modeling of isotropic and anisotropic materials.

1.5 Dissertation organization

The remainder of this dissertation is organized as follows.

• chapter 2 is devoted to the theoretical framework for dynamic failure of single crys-

tals. section 2.1 details the finite deformation kinematics invoked for the macro-

scopic (effectively homogenized) continuum as well as the assumed (approximate)

kinematics of microscopic continuum, i.e. the solid matrix material. Furthermore,

in order to render a framework that is as computationally tractable as possible, some

geometric simplifications are assumed. In section 2.2, we briefly review the mi-
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Fig. 1.9: Schematic of key literature in physics-based viscoplasticity and micromechanics-
based damage modeling of isotropic and anisotropic materials.

croscopic constitutive equations utilized here to describe the solid matrix material,

namely those of (Lloyd et al., 2014b) with some modifications to account for the

small length-scales associated with the plastic zone of a growing void. Moreover,

the assumed macroscopic constitutive equations are postulated based on volume av-

eraging schemes, and incorporation of porosity effect on macroscopic shear stress

threshold. A Mie-Grüneisen equation of state is added to model the nonlinear re-

lationship between pressure and volume. Again, for computational expediency a

number of assumptions are made in section 2.3 in order to simplify the evolution

equation for porosity evolution down to a single second-order ordinary differential

equation.

• chapter 3 details a fairly extensive validation assessment of the predictive capability

of the homogenized single crystal dynamic ductile failure framework in comparison
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with direct numerical simulations. While this validation effort provides no assess-

ment of the validity of chosen model parameters, it does provide some degree of

confidence in the assumptions made throughout section 2.2.

• chapter 4 presents calibration of model parameters against experimental results. The

chapter is divided into crystal plasticity calibration in subsection 4.1.1 and damage

distribution calibration in subsection 4.1.2. section 4.2 analyzes the pressure depen-

dence of spall strength on a range [4,14] GPa pressure.

• chapter 5 aims to shed light on the potential role of mismatch in anisotropic proper-

ties across a grain boundary (GB) in explaining the observed intergranular damage

statistics in polycrystalline copper due to spallation. section 5.1 details the boundary

value problem (BVP) that is used in the chapter to study misorientation dependence

of damage localization preference. section 5.2 presents the simulation results and

discussion of the possible governing factors.

• Lastly, chapter 6 presents concluding remarks and future directions.

• The details of the implementation scheme and verification of the CPD-FE VUMAT

are provided in an appendix.
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2. FRAMEWORK

2.1 Kinematics

2.1.1 Kinematics at macroscale

Consider a general porous single crystal in a reference (undeformed) configuration B0.

The body may be mapped into the current configuration Bt through the total macroscopic

deformation gradient tensor F, as shown in Fig. 2.1. A multiplicative decomposition of

the total macroscopic deformation gradient tensor is assumed, i.e. F = FeFpFd, where Fd

accounts for irreversible volumetric deformation, Fp accounts for irreversible deviatoric

deformation, and Fe accounts for reversible elastic deformation of the body. The solid

material is taken to be plastically incompressible, and hence the porosity may be directly

related to the damage part of the macroscopic deformation gradient tensor as

Fd = 3

√
1− ϕ0

1− ϕ
I (2.1.1)

with I denoting the second order identity tensor, ϕ and ϕ0 denoting void volume fraction

and its initial value, respectively.

The elastic strain measure utilized throughout this proposal is the Green-Lagrange

strain, i.e. Ee , 1
2
(FeTFe − I). The total macroscopic velocity gradient L , ḞF−1 is ad-

ditively decomposed into elastic, irreversible deviatoric, and irreversible volumetric parts:

L = ḞeFe−1︸ ︷︷ ︸
,Le

+ FeḞpFp−1Fe−1︸ ︷︷ ︸
,Lp

+ FeFpḞdFdFp−1Fe−1︸ ︷︷ ︸
,Ld

, (2.1.2)

The present chapter is based on publication by Nguyen et al. (2017).
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Fig. 2.1: Schematic of a multiplicative decomposition of total macroscopic deformation
gradient tensor F into elastic Fe, irreversible deviatoric Fp, and irreversible volumetric Fd

parts.

The irreversible deviatoric velocity gradient in the intermediate configuration, which

will be utilized in the crystal plasticity macroscopic constitutive relationship, is obtained

by pull back of Lp via Fe, i.e. L̃p = ḞpFp−1, ·̃ denoting the tensor at intermediate configura-

tion Bp. The plastic part of the rate of deformation tensor in the intermediate configuration

is denoted as D̃p , 1
2
(FeTFeL̃p + L̃pTFeTFe), cf. (Luscher et al., 2013).

2.1.2 Geometric considerations

Consider again the porous single crystal described in Fig. 2.1. For simplicity, the

porous single crystal is assumed to have uniform void size and void distribution, and pre-

serve the number of voids during deformation. As a consequence, the porosity ϕ can be

computed as

ϕ =
4

3
πNva

3 (2.1.3)

with a denoting void radius,Nv denoting the total number of voids per unit volume of total

material in the intermediate damaged configuration Bd. This number density of voids may

be directly related to an characteristic length scale `v ,
(

4
3
πNv

)− 1
3 , and thus we express
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Eq. (2.1.3) as:

ϕ =

(
a

`v

)3

. (2.1.4)

2.1.3 Kinematics at microscale

Consider now the microscale deformation of the representative spherical shell in the

intermediate damaged configuration Bd. Since all of the irreversible volumetric deforma-

tion is attributed to void growth, the microscale deformation will consist of only elastic

and irreversible deviatoric deformation. As with the macroscale, a multiplicative split

of the total microscopic deformation gradient f is assumed, i.e. f = fefp, with fe and fp

denoting the microscopic elastic and plastic parts of the deformation gradient tensor, re-

spectively. Here, lowercase variables generally denote microscale field quantities. The

deformation gradient at microscale (f) is indirectly related to the deformation gradient at

macroscale (F) through volume averaged strain, i.e. E = V−1
∫∫∫

V edV , where E and e

are Green-Lagrange strain tensor at microscale and macroscale.

Turning our attention to closed-form approximation of these deformation fields, fol-

lowing Gurson (1977) consider a velocity field (absent of rigid body motion) in the in-

termediate configuration additively composed of a spatially-varying (non-negligible fluc-

tuations), spherically-symmetric motion and a linear field approximated as an affine (nil

fluctuations) extrapolation of the macroscale isochoric motion in the intermediate plastic

configuration Bp, i.e.

vp(xp, t) = ṙp(rp, t)er + L̃p · xp, (2.1.5)

where vp denotes the spatial velocity at time t of a microscopic material point located at

xp in the intermediate configuration. Likewise, r0 and rp respectively denote the radial po-

sition of microscale material point in the reference and intermediate plastic configurations

in the absence of macroscopic irreversible deviatoric deformation in the intermediate plas-
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tic configuration, i.e. Fp = I. The incompressibility of the matrix material, i.e. detfp = 1,

places a constraint on admissible solutions for rp, such that the plastic part of the velocity

gradient tensor may be obtained as

l̃p ,
∂vp
∂xp

= L̃p − 2
ṙp
rp

er ⊗ er +
ṙp
rp

(eθ ⊗ eθ + eφ ⊗ eφ) , (2.1.6)

where the second two terms on the right-hand side of Eq. (2.1.6) approximate the spatial

fluctuations from the mean experienced in the solid matrix material.

Moreover, the plastic part of rate of deformation tensor at intermediate configuration

is simply the symmetric part of Eq. (2.1.6), i.e.

d̃p = D̄p−2
ṙp
rp

er ⊗ er +
ṙp
rp

(eθ ⊗ eθ + eφ ⊗ eφ)︸ ︷︷ ︸
,d̃pµ

, (2.1.7)

with D̄p , 1
2
(L̃p + L̃pT ) and d̃pµ denoting the microscale fluctuations from the macroscale

plastic part of the rate of deformation tensor in the intermediate plastic configuration. An

invariant-based equivalent scalar plastic strain rate is defined here as ε̇peq ,
√

2
3
d̃p : d̃p. A

measure of the fraction of the equivalent plastic strain rate associated with the fluctuations

alone is denoted here as ε̇peq
∣∣
µ
, and may be computed from Eq. (2.1.7) with D̄p = 0, i.e.

ε̇peq
∣∣
µ

= 2|ṙp|r−1
p , which may be alternatively expressed as ε̇peq

∣∣
µ

= 2|ȧp| a2
pr
−3
p . Finally,

defining the porosity in the intermediate plastic configuration as ϕ ∆
= (ap/`

p
v)

3 this equiv-

alent plastic strain rate associated with microscale fluctuations is related to the porosity

growth rate in the intermediate plastic configuration, i.e.

ε̇peq
∣∣
µ

=
2

3

a3
p

r3
p

|ϕ̇|
ϕ− ϕ2

. (2.1.8)

While Eq. (2.1.7) may suffice for isotropic porous plasticity, e.g. Gurson (1977), here
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we are interested in a crystal plasticity framework in which the plastic part of the velocity

gradient tensor is a cumulative byproduct of the plastic slip rates γ̇(α)
p on each of the various

slip systems (denoted by subscript α), i.e.

l̃p =

nslip∑
α=1

γ̇(α)
p s(α)

0 ⊗ n(α)
0 , (2.1.9)

with s(α)
0 and n(α)

0 respectively denoting the unit slip direction and unit slip plane normal in

the reference configuration and nslip denoting the total number of slip systems. Likewise

for the macroscale,

L̃p =

nslip∑
α=1

Γ̇(α)
p s(α)

0 ⊗ n(α)
0 , (2.1.10)

with Γ̇
(α)
p denoting the effective macroscale plastic slip rate. In most crystal plasticity

frameworks, γ̇(α)
p is utilized to evolve internal state variables. As such, it will prove useful

to formulate an approximate relation between γ̇(α)
p and Γ̇

(α)
p through the use of ε̇peq

∣∣
µ

in a

Taylor factor-type argument, i.e.

MT ε̇
p
eq

∣∣
µ
≈

∣∣∣∣∣
nslip∑
α=1

γ̇(α)
p

∣∣
µ

∣∣∣∣∣ , (2.1.11)

where MT denotes the Taylor factor with γ̇
(α)
p

∣∣∣
µ

denoting the additional microscale fluc-

tuations on each slip rate.

Here, we assume that microscopic slip rate may be sufficiently approximated (for our

purposes) as the areal average over the polar coordinates at a particular radial coordinate.

Moreover, it is assumed that the contribution from the fluctuation field to the magnitude of

each of these slip rates will necessarily be identical. As a result, our final approximation

for the magnitude of the spatially-varying microscale slip rates is taken as the sum con-

tributions of the corresponding macroscale slip rates and the microscale fluctuations, i.e.
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∣∣γ̇(α)
p

∣∣ =
∣∣∣Γ̇(α)

p

∣∣∣+
MT

nslip
ε̇peq
∣∣
µ
. (2.1.12)

Here we choose the Taylor factor associated with randomly oriented crystals, i.e. MT ≈

3.06 (Stoller and Zinkle, 2000), in Eq. (2.1.12) since spherical void growth has no preferred

orientation.

2.2 Constitutive equations

2.2.1 Microscale constitutive equations

2.2.1.1 Crystal elasticity

The microscopic second Piola-Kirchhoff stress, s, is assumed to be linearly related

to elastic strain, ee, through the fourth-order elastic stiffness tensor, C, i.e s = C : ee.

The microscale Cauchy stress σ is related to the microscale second Piola-Kirchhoff stress

via σ = det (f e−1) f esf eT . For simplicity, we assume a linear dependence of the elastic

constants on pressure p and temperature ϑ.

Cijkl = C0
ijkl +

∂Cijkl
∂p

p+
∂Cijkl
∂ϑ

(ϑ− ϑ0) , (2.2.1)

with C0
ijkl denoting the corresponding elastic constants at ambient pressure and tempera-

ture, i.e. ϑ0 = 300K.

2.2.1.2 Dislocation-based crystal plasticity

The total dislocation density %(α) on each α-th slip system is assumed to additively

decompose into mobile and immobile populations:

%(α) = %(α)
m + %

(α)
im , (2.2.2)
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with subscripts m and im denoting the mobile and immobile populations, respectively.

The microscale slip rate on each slip system is accommodated by the mean velocity v(α)
⊥

of mobile dislocations via Orowan’s equation, i.e.

γ̇(α)
p = b%(α)

m v
(α)
⊥ , (2.2.3)

with b denoting the magnitude of the Burger’s vector. In this work, we adopt a mobility

law suitable for the drag-dominated regime:

{∣∣τ (α)
∣∣− τ (α)

cr

}
sgn

(
τ (α)

)
=
B0

b

v
(α)
⊥

1−
(
v

(α)
⊥ /c

(α)
s

)2 , (2.2.4)

with B0 denotes the drag coefficient at rest, τ (α) denotes the resolved shear stress, τ (α)
cr

denotes the critical resolved shear stress, c(α)
s denotes the shear wave speed along the α-th

slip direction.

2.2.1.3 Nonlocal microscale hardening law

Here, we modify Taylor’s hardening law to describe the hardening of the solid matrix

material. Since the local nature of τ (α)
cr may be a poor approximation on the small length-

scales associated with void growth, we modify τ (α)
cr here to approximate the long-range

interaction of spatially-varying effective dislocation density, i.e.

τ (α)
cr (x) = τ0 +

∞∫
0

c⊥µ
(α)b

√
%

(α)
eff (y)g (||y− x||) d ||y− x||. (2.2.5)

τ0 denotes the Peierls stress, µ(α) denotes the shear modulus along the α-th slip system,

and c⊥ being a proportionality constant. The effective dislocation density is determined
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from an interaction matrix, i.e.

%
(α)
eff =

nslip∑
β=1

aαβ%
(β) , (2.2.6)

with aαβ being the components of the nslip×nslip hardening interaction matrix, e.g. 12×12

for face-centered cubic crystals. For simplicity, we choose typical values (Kocks, 1970;

Asaro, 1983) of unity along the diagonal (self-hardening) and 1.4 for off-diagonal en-

tries (latent hardening), which was also justified by Kubin et al. (2008) in the absence of

detailed data. g (||y− x||) is a nonlocal kernel function that determines the influence of

effective dislocation density at some arbitrary microscopic material point y on the critical

resolved shear stress at x with ||y− x|| denoting the distance between these two points.

For convenience we employ a top-hat function with non-zero (constant) values inside the

particular spherical shell under analysis, i.e.

τ (α)
cr = τ0 +

1

`v − a

`v∫
a

c⊥µ
(α)b

√
%

(α)
eff dr. (2.2.7)

While Eq. (2.2.7) is certainly a crude approximation, it is our claim here that it may capture

more of the pertinent physics of hardening associated with long-range interactions than a

purely local approximation. Furthermore, it is shown in section 2.3 that Eq. (2.2.7) is

mathematically convenient as it permits an analytic approximation that greatly reduces the

computational overhead otherwise required.

2.2.1.4 Dislocation substructure evolution equations

To model the evolution of dislocation density during loading, we adopt dislocation sub-

structure evolution equations similar to those proposed in Austin and McDowell (2011);

Lloyd et al. (2014b); Luscher et al. (2017) with some modifications. In particular, the
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evolution of mobile dislocation density is taken to be the resultant of the following mech-

anisms: (i) multiplication of mobile dislocation segments; (ii) trapping of mobile dis-

location segments rendering them immobilized; (iii) mutual annihilation of mobile seg-

ments with opposite signed co-planar mobile or immobile dislocations; (iv) nucleation

of fresh new dislocation segment. These mechanisms are approximated by the following

microscale evolution equations:

%̇(α)
m = %̇

(α)
mult + %̇(α)

nuc − %̇
(α)
trap − %̇m(α)

ann − %̇im(α)
ann (2.2.8)

%̇
(α)
im = %̇

(α)
trap − %̇im(α)

ann , (2.2.9)

where subscripts mult, trap, ann and nuc denote these mechanisms, respectively. Suit-

able, albeit simple, approximate statistical models for the remaining substructure evolution

equations are proposed here motivated by the work of Austin and McDowell (2011); Lloyd

et al. (2014b); Luscher et al. (2017), i.e.

%̇
(α)
mult =

cmult
b2

∣∣γ̇(α)
p

∣∣ (2.2.10)

%̇
(α)
trap =

ctrap
b

√
%

(α)
f

∣∣γ̇(α)
p

∣∣ (2.2.11)

%̇m(α)
ann = cmann%

(α)
m

∣∣γ̇(α)
p

∣∣ (2.2.12)

%̇im(α)
ann = cimann%

(α)
im

∣∣γ̇(α)
p

∣∣, (2.2.13)

where cmult, ctrap, cmann and cimann are material constants with values representative of pure

copper provided in Table 2.1. %(α)
f denotes the forest dislocation density on the α-th slip

system, which is geometrically computed considering the total density of dislocations that
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pierce through a particular slip system (Ma and Roters, 2004), i.e.

%
(α)
f =

nslip∑
β=1

Aαβf %(β) with Aαβf ,
1

2

∣∣n(α) · s(β)
∣∣+

1

2

∣∣n(α) ·
(
n(β) × s(β)

)∣∣, (2.2.14)

where both edge and screw character dislocation densities have been assumed to exist in

roughly equal proportion (Luscher et al., 2017).

It is known that dislocations can be homogeneously nucleated within the lattice under

shock compression, reportedly at shock pressures as low as 15GPa (Austin and McDowell,

2012). Heterogeneous nucleation is known to occur in polycrystals and single crystals with

impurities at much lower pressures (Austin and McDowell, 2011). Here we focus attention

on incorporation of a heterogeneous dislocation nucleation term, although the framework

and numerical implementation readily admits a source term for homogeneous nucleation

as well.

Austin and McDowell (2012) proposed a relatively simple stress-based expression

for the heterogeneous nucleation of dislocations, further extended to crystal plasticity by

Lloyd et al. (2014b), i.e.,

%̇(α)
nuc = αhet|τ̇ (α)| (mhet + 1)

(
|τ (α)| − τmin

)mhet
(τmax − τmin)mhet+1

(2.2.15)

where αhet is the scaling coefficient, mhet is a scalar parameter that defines the shape of

the stress barrier to heterogeneous dislocation nucleation, which depends upon the cur-

rent resolved shear stress τ (α), its rate τ̇ (α), and τmin and τmax are the lower and upper

shear stress threshold for this mechanism to be activated. The nucleation parameters used

here are those from Austin and McDowell (2012) with some adjustments for the present

application to single crystals rather than polycrystalline copper.

Given Eqs. (2.2.8)–(2.2.13) it follows that the microscale spatial variation of the dislo-
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Table 2.1: Material properties and substructure evolution parameters representative of
single crystal pure copper.

Properties Value Units Parameters Value Units

ρs 8.94 × 103 kg−m−3 cmult 8.96× 10−5 −
b 2.56 Å ctrap 3× 10−3 −
c

(α)
s 2.14 km− s−1 cmann 0.5 −
B0 30 µPa−s cimann 0.5 −
τ0 10 MPa c⊥ 0.5 −
µ(α) 41 GPa MT 3.06 −

cation density will evolve in accordance with the microscale spatial variation of the mag-

nitude of the microscale slip rates
∣∣∣γ̇(α)
p

∣∣∣, which in turn are approximated here as a function

of the macroscale slip rates
∣∣∣Γ̇(α)

p

∣∣∣ and the approximate fluctuation field as prescribed in

Eq. (2.1.12). This provides one key bridge between the microscale and macroscale with

further linkages developed in the subsequent subsection.

2.2.2 Macroscale constitutive equations

2.2.2.1 Porous crystal elasticity

Here we adopt the notion of a macroscopic stress and strain that are taken to be the

volume average of the microscopic stress and strain. Such notions are commonly adopted

and are described in further detail elsewhere, e.g. Qu and Cherkaoui (2006). To denote

volume averages over the microscale domain Ωmicro we make use of typical notation:

〈f〉 = Ω−1
micro

∫∫∫
Ωmicro

fdΩmicro. Additionally, we utilize a superscript s to denote a

volume average over the microscale domain Ωs
micro containing only the solid matrix ma-

terial, i.e. 〈f〉s = Ωs
micro

−1
∫∫∫

Ωsmicro
fdΩs

micro. Following this notation, the macroscale

Cauchy stress denoted as Σ is equal to the corresponding microscale volume average, i.e.

Σ = 〈σ〉. Likewise, the macroscale Green-Lagrange elastic strain tensor Ee is related to
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the microscale via Ee = 〈ee〉. Moreover, since the microscale domain including only the

voids is stress free it follows that Σ = (1− ϕ) 〈σ〉s.

As with the microscale, the macroscale second Piola-Kirchhoff stress, S, which is

related to the macroscale Cauchy stress via Σ = Je−1FeSFeT , is taken here to be a linear

function of the macroscale Green-Lagrange elastic strain:

S = Cd : Ee, (2.2.16)

where Cd denotes the fourth-order damaged elastic stiffness tenor. Here our porous media

may be considered as a two-phase composite with one phase (the voids) possessing nil

stiffness and the other phase (solid matrix material) possessing a stiffness of C. Mori and

Tanaka (1973) derived an elegant approximation for Cd for such two-phase composites,

i.e.

Cd = (1− ϕ)C
(
ϕ(I− S)−1 + (1− ϕ) I

)−1
(2.2.17)

with I denoting the fourth-order identity tensor and S denotes the fourth-order Eshelby

tensor. A closed-form solution for S for the special case of spherical voids embedded with

a cubic material have been developed elsewhere, e.g. Lin and Mura (1973); Mura (2013).

2.2.2.2 Macroscopic dislocation-based crystal plasticity

We now turn our attention to the formulation of an adequate model to determine the

evolution of the macroscale plastic velocity gradient tensor in the intermediate plastic

configuration, L̃p as a function of the macroscale stress. L̃p governs the deformation from

the intermediate damaged configuration Bd to the intermediate plastic configuration Bd. In

our formulation, this deformation is assumed to be affine and unperturbed by microscale

heterogeneities (voids). As such, we assume here that the evolution of L̃p is governed by

a uniform average measure of the Cauchy stress in the solid matrix material, i.e. 〈σ〉s.
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Note that 〈σ〉s is an amplification of the macroscale Cauchy stress by a factor (1− ϕ)−1,

i.e. 〈σ〉s = (1− ϕ)−1 Σ; which provides one mechanism for the porosity ϕ to influence

(accelerate) the evolution of L̃p.

Taking this uniform average stress as the driving force, a corresponding uniform effec-

tive dislocation velocity V(α)
⊥ associated with L̃p may be computed from a mobility relation

similar to Eq. (2.2.4), i.e.

{∣∣T (α)
s

∣∣− T (α)
cr

(
T (α)
s ,Σ, ϕ

)}
sgn

(
T (α)
s

)
=
B0

b

V(α)
⊥

1−
(
V(α)
⊥ /c

(α)
s

)2 , (2.2.18)

where T (α)
s and T (α)

cr denote the effective uniform resolved shear stress and the effective

uniform critical resolved shear stress, respectively. T (α)
cr

(
T

(α)
s ,Σ, ϕ

)
is a non-negative

scalar-valued function that accounts for the possibility of additional softening of the macroscale

yield criterion due to porosity and other stress measures, e.g. first, second, and third

macroscale stress invariants. An analytical formulation for T (α)
cr will be provided in sub-

subsection 2.2.2.4. The effective resolved shear stress is computed via contraction of

〈σ〉s on the Schmid tensor in the current macroscale configuration, i.e. T (α)
s = 〈σ〉s :(

S(α) ⊗ N(α)
)

. For simplicity, the effective uniform critical resolved shear stress (T (α)
cr )

can be assumed to be the solid matrix domain volume average of the microscale critical

resolved shear stress, i.e.

T (α)
cr =

〈
τ (α)
cr

〉s
= τ0 +

1

`v − a

`v∫
a

c⊥µ
(α)b

√
%

(α)
eff dr. (2.2.19)

Likewise, the effective macroscale mobile dislocation density is taken as the solid matrix

domain volume average of the α-th microscale mobile dislocation density, i.e. 〈%(α)
m 〉s,

for which a scheme will be proposed in section 2.3 to compute 〈%(α)
m 〉s via interpolation
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functions. The macroscale slip rate follows the ensuing macroscale Orowan’s equation,

i.e. Γ̇
(α)
p = b〈%(α)

m 〉sV(α)
⊥ . Substitution of this macroscopic slip rate into Eq. (2.1.10), i.e.

L̃p =

nslip∑
α=1

b〈%(α)
m 〉sV

(α)
⊥ s(α)

0 ⊗ n(α)
0 , (2.2.20)

completes the constitutive framework required to model the evolution of the plastic part

of the macroscale deformation gradient tensor Fp. It is worth noting that no new model

parameters were introduced, as the development was based entirely on averaging concepts.

In the next section, we develop a set of dynamic damage evolution equations necessary to

compute the evolution of Fd.

2.2.2.3 Dynamic evolution equation for porosity

The last remaining aspect of our macroscale constitutive framework is the develop-

ment of a suitable model for the porosity evolution. Following the pioneering work of

Knowles and Jakub (1965) and Carroll and Holt (1972), the balance of radial momentum

of a spherically-symmetric, incompressible spherical shell subject to an external tensile

pressure pout (and nil applied pressure on the inner radius) may be expressed as

ρs

(
1− a

`v

)
aä+ ρs

(
3

2
− 2

a

`v
+

1

2

(
a

`v

)4
)
ȧ2 = pout −

`v∫
a

2

r
σeq dr︸ ︷︷ ︸
,R

, (2.2.21)

where ρs denotes the mass density of the solid matrix material and the equivalent Mises

stress. R captures the material-specific resistance of the solid matrix material to iso-

choric deformation. Following the arguments of Wright and Ramesh (2008), we extend

Eq. (2.2.21) to porous media by replacing pout with the mean macroscale Cauchy stress

Σm and replace the inner radius of the representative spherical shell with the porosity in

33



the intermediate damaged configuration, i.e.

1

3
ρs`

2
v

(
1− 3
√
ϕ

3
√
ϕ(1− ϕ)

ϕ̈− 1− 12ϕ+ 11ϕ4/3

6ϕ4/3(1− ϕ)2 ϕ̇2

)
= (Σm −R) sgn {ϕ̇} , (2.2.22)

where `v preserves the length-scale dependence. Note that the function sgn {ϕ̇} has been

appended to the net driving force to artificially prevent reverse yielding of the solid matrix,

which is not necessarily adequately captured by Eq. (2.2.21), see Wright and Ramesh

(2008) for more details on this aspect.

The microscale crystal plasticity constitutive equations outlined in Eqs. (2.2.1)–(2.2.14)

are relatively complex for obtaining a concise closed-form solution. The subsequent sec-

tion is devoted to obtaining a closed-form approximation toR that will reduce Eq. (2.2.22)

to a simple, second-order ordinary differential equation.

2.2.2.4 Degradation of the macroscopic CRSS using a porosity dependent single crystal
yield function

Our macroscopic dislocation-based crystal plasticity presented in subsubsection 2.2.2.2

could likely not accurately reproduce the observed crystallographic orientation depen-

dence of the far-field deviatoric stresses under simple-shear deformation modes. This

is because of the approximation made in the former model that the shear stresses driving

crystallographic slip throughout the crystal are unaffected by the presence of the void. In

reality, the void does affect the distribution of shear stresses throughout the crystal. Al-

ternately, this can be viewed as a degradation to the effective macroscale slip resistance,

or critical resolved shear stress (CRSS), in terms of the far-field stresses. For example,

for an isotropic perfectly-plastic material Gurson (1977) developed a well-known analyt-

ical expression for an approximate upper bound of the macroscopic threshold stress state

for plastic deformation in the vicinity of a growing void. The Gurson yield surface and

flow potential have been modified and used extensively to model void growth in isotropic
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ductile metals including dynamic spallation (Tvergaard and Needleman, 1984; Johnson

and Addessio, 1988; Wang and Jiang, 1997). The Gurson surface has also been extended

for modeling pore growth in anisotropic single crystals by Han et al. (2013), Ling et al.

(2016), and Paux et al. (2015, 2018), who have demonstrated the applicability of the yield

function in this context by comparison with DNS of a unit cell containing a single void

embedded within single crystal matrix. In order to account for this coupling omitted from

our previous model, we extend the theory by using a modified Gurson surface to define a

degraded macroscopic CRSS for each slip system according to

(
T

(α)
cr

T
(α)
s

)2

+
2

45
χϕ

(
Σeq

T
(α)
s

)2

+2q1ϕ cosh

[
q2

√
3

20

Σm

T
(α)
s

5

√
Σeq

T
(α)
s

]
−1−q2

1ϕ
2 = 0. (2.2.23)

Noting the traditional decomposition of the macroscale Cauchy stress into mean and de-

viatoric components, Σ = ΣmI + Σ′ where Σm = TraceΣ/3 is the mean stress, Σeq =√
3/2Σ′ : Σ′, the void volume fraction is denoted by ϕ, and q1 and q2 are the GTN (Tver-

gaard and Needleman, 1984) model parameters. The term including the parameter χ was

added by Han et al. (2013) to extend the applicability of the GTN (Tvergaard and Needle-

man, 1984) surface to crystal plasticity (i.e. anisotropic plasticity). We have further mod-

ified the argument of the cosh function to include a scaling by 5

√
Σeq

T
(α)
s

in order to reduce

the effect of mean stress Σm when the ratio of hydrostatic stress and equivalent stress

(stress triaxiality) is large, such as encountered under uniaxial strain loading associated

with spallation. Han et al. (2013) used this expression to solve for the effective macro-

scopic resolved shear stress (T (α)
s , i.e. the denominator on the first term from the left of

Eq. (2.2.23)). Here, we are instead using the expression to identify an effective degraded

macropscopic CRSS in terms of the macrosopic resolved shear stress T (α)
s , mean stress

Σm, equivalent stress Σeq and porosity ϕ. The phenomenological relationship implied by
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Eq. (2.2.23) is consistent between our approach and that of Han et al. (2013), but the con-

nection with the remainder of the void growth and crystal plasticity behavior remains quite

different.

2.2.2.5 Equation of state

Under increasingly larger shock pressures, the extension of linear thermoelasticy to

include pressure- and temperature-dependent second-order elastic moduli becomes insuf-

ficient to describe the pressure, p, specific volume (per mass), v, and temperature, T , re-

lationship necessary for adequately representing a shock wave (Luscher et al., 2013). For

these larger amounts of compression, an equation of state (EOS) is more appropriate to

describe this nonlinear thermoelastic behavior. However, for the range of the shock com-

pression considered in the simulations presented in this dissertation (i.e. less than 15 GPa),

the effect of temperature evolution on pressure is negligible (cf. Luscher et al., 2013, Fig.

1 for an example). Future improvements of this model to include the temperature evolu-

tion as in Luscher et al. (2018) will enable consideration of an extended range of loading

conditions; here we ignore the effect of temperature evolution on pressure recognizing the

restriction to present magnitudes of shock compression, such that the Mie-Grüneisen EOS

for the solid matrix simplifies to

peoss =
K0χs(1− 0.5Γ0χs)

(1− sχs)2
+ ρ0Γ0E (2.2.24)

In this equation, ρ0 is the initial solid matrix mass density, K0 is the ambient bulk modulus

(K0 = ρ0C
2
0 with C0 is the bulk wave speed at rest), χs = 1 − ρ0

ρs
= 1 − J

Jd
, ρs is the

current solid matrix mass density, Γ0 is the Grüneisen parameter at initial state, s is the

slope correlating shock velocity and particle velocity, E is the internal strain energy due

to the compressed lattice per unit mass (Ė = S : Ė, where S is the second Piola-Kirchhoff
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Table 2.2: Naming convention utilized here for face-centered cubic slip systems in refer-
ence configuration.

α 1 2 3 4 5 6 7 8 9 10 11 12

n(α)
0 (111) (111) (111) (1̄11) (1̄11) (1̄11) (11̄1) (11̄1) (11̄1) (1̄1̄1) (1̄1̄1) (1̄1̄1)

s(α)
0 [11̄0] [1̄01] [011̄] [101] [1̄1̄0] [011̄] [1̄01] [01̄1̄] [110] [1̄10] [101] [01̄1̄]

stress and E is the Green-Lagrange strain). The macroscopic mean stress on the porous

volume element can be scaled down by Σm = −(1− ϕ)peoss , which is consistent with our

volume average notion for macroscopic stress here.

2.3 Closed-form approximations via reduced-order dislocation-based crystal plas-
ticity

For a class of constitutive relations that additively decompose similar to Eq. (2.2.4),

Wilkerson and Ramesh (2014) argued that R may be additively decomposed, i.e. R =

Rcr + Rdd. Here, Rcr denotes the quasi-static critical resistance associated with the

quasi-static yield strength, i.e. τ (α)
cr , and Rdd denotes the viscoplastic resistance associ-

ated with the visoplastic over-stress, i.e. τ (α) − τ
(α)
cr . The crystal plasticity relations in

Eqs. (2.2.1)–(2.2.14) used to represent the microscale response are more complicated than

the J2 viscoplasticity used by Wilkerson and Ramesh, 2014. While the latter enabled a

simple closed-form expression, here we develop accurate approximations of Rcr and Rdd

for single crystals that obviates some of the unnecessary complexity. Toward this aim, it is

necessary to first propose a reduced-order dislocation-based crystal plasticity model that

is more amenable to such analytic solutions.

2.3.1 Reduced-order dislocation-based crystal plasticity

Consider representing the full crystal plasticity constitutive equations, i.e. Eqs. (2.2.1)–

(2.2.14), by a sufficiently accurate approximation between equivalent Mises stress, σeq,
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and equivalent plastic strain rate, ε̇peq, of a similar functional form to the J2 relations uti-

lized in Wilkerson and Ramesh (2014), i.e.

{σeq − σy} ∝
B0

b

veq⊥
1− (veq⊥ /cs)

2 , (2.3.1)

where σy denotes the yield strength and veq⊥ is an effective scalar measure of the magni-

tude of dislocation velocities on the various active slip systems. Similarly, we define an

effective scalar measure of the mobile dislocation density, i.e. %eqm , such that the equivalent

plastic strain rate may be expressed by an Orowan-type relation, i.e.

ε̇peq = b%eqmv
eq
⊥ . (2.3.2)

Ideally, a weighting average scheme for %eqm and veq⊥ could be developed such that these

two simple relations will produce the same equivalent stress – equivalent strain rate re-

lation as the full crystal plasticity equations, i.e. Eqs. (2.2.1)–(2.2.14). Here I simply

approximate the equivalent mobile dislocation density:

%eqm = ζ [ijk]

√
1

nact

∑
α∈{act}

(
%

(α)
m

)2

, (2.3.3)

with ζ [ijk] denotes the inverse Schmid factor for particular loading direction.

2.3.2 Closed-form approximation ofRdd

I now turn our attention to the development of a similarly simple modified J2 theory

that is appropriate for utilization in Rdd. Here I propose the following modified J2 the-

ory to approximate the equivalent stress in the single crystalline material surrounding a
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dynamically growing void:

{σeq − σy} = MT

ζrandv⊥→cs
ζrandv⊥/cs→0

B0

b

ε̇peq
b%eqm

1−
(

ε̇peq
b%eqmcs

)2 , (2.3.4)

with ζrandv⊥→cs = 2.83, ζrandv⊥/cs→0 = 2.07 denote the inverse Schmid factor for loading in

random orientation of fcc crystal when dislocation velocity approach shear wave speed

and zero respectively. Effective mobile dislocation density is expressed as,

%eqm = ζrandv⊥→cs

√√√√ 1

nslip

nslip∑
αslip=1

(
%

(αslip)
m

)2

, (2.3.5)

With our modified J2 theory in hand, i.e. Eqs. (2.3.4) and (2.3.5), we return to Rdd,

which is defined as the part ofR (expressed in Eq. (2.2.21)) associated with the over-stress

σeq − σy in the intermediate damaged configuration, i.e.

Rdd ,

`pv∫
ap

2

rp
{σeq − σy} drp = MT

ζrandv⊥→cs
ζrandv⊥/cs→0

B0

b

`pv∫
ap

2

rp

ε̇peq
∣∣
µ

b%eqm

1−

(
ε̇peq
∣∣
µ

b%eqmcs

)2 drp, (2.3.6)

where Eq. (2.3.4) has been substituted into the integral definition ofRdd. Moreover, given

thatR in Eq. (2.2.21) provides the constitutive resistance to spherical void growth in the in-

termediate damage configuration, the associated microscale plastic rate ε̇peq
∣∣
µ

is employed

in Eq. (2.3.6). In order to evaluate the integral in Eq. (2.3.6), the spatial dependence of

ε̇peq
∣∣
µ

and %eqm must be prescribed as a function of the microscale intermediate plastic ra-

dial coordinate rp. Recall that the spatial dependence of ε̇peq
∣∣
µ

is known to decay with

the inverse cube of rp according to Eq. (2.1.8). However, the spatial dependence of the
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equivalent mobile dislocation density is unknown a priori, as it evolves according to the

dislocation density evolution equations outlined in Eqs. (2.2.8)–(2.2.14). That said, Wilk-

erson and Ramesh (2014) demonstrated that an integral of the form shown in Eq. (2.3.6)

may be obtained in closed-form for a family of power-law functions describing the spatial

distribution of %eqm , i.e.

%eqm = %̃eqm

(
rp
ap

)η
, (2.3.7)

with η denoting an unknown power-law exponent and the %̃eqm denoting the equivalent mo-

bile dislocation density at the void surface (rp = ap). Likewise, %̂eqm denotes the equivalent

mobile dislocation density at rp = `pv. Here I will utilize ·̃ and ·̂ to generally denote such

evaluations of a microscale field quantity at a particular microscale spatial location, i.e.

(rp = ap) and (rp = `pv), respectively. Taking the spatial dependence of %eqm to follow

Eq. (2.3.7) and the spatial dependence of ε̇peq
∣∣
µ

to follow Eq. (2.1.8), a closed-form solu-

tion forRdd is readily obtainable, i.e.

Rdd =
MT

3 + η

ζrandv⊥→cs
ζrandv⊥/cs→0

B0

b
ln

∣∣∣∣∣∣∣∣
b%̃eqmcs +

2

3

|ϕ̇|
ϕ− ϕ2

b%̃eqmcs −
2

3

|ϕ̇|
ϕ− ϕ2

·
b%̃eqmcs −

2

3

|ϕ̇|ϕη/3

1− ϕ

b%̃eqmcs +
2

3

|ϕ̇|ϕη/3

1− ϕ

∣∣∣∣∣∣∣∣ (2.3.8)

for η 6= −3 with ϕ denoting porosity as before.

The question remains, if we are to make use of Eq. (2.3.8) what is the appropriate

choice for η? Our strategy here is to treat Eq. (2.3.7) as an interpolation function between

two known values of the equivalent dislocation density %eqm , namely %̃eqm and %̂eqm . In our

approach, the values of %̃(α)
m and %̂(α)

m are explicitly computed at each time step according

to their respective evolution equations, i.e. Eq. (2.1.12) and Eqs. (2.2.8)–(2.2.14) appended

with ·̃ and ·̂ over all associated microscale field quantities. For example, the evolution of

%̃
(α)
m is driven by the plastic slip rate at the void surface ˙̃γ

(α)
p and, likewise, the evolution of
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%̂
(α)
m is driven by the plastic slip rate ˙̂γ

(α)
p at rp = `pv; then %̃eqm and %̂eqm are similarly known

via Eq. (2.3.5). In addition to evaluation at these two microscale spatial locations, such a

computational procedure may be utilized to compute %eqm at any other number of microscale

spatial locations. Clearly this can quickly become quite computationally burdensome;

therefore, I assume that all unknown values of the microscale field quantity %eqm fall near

enough to the interpolation function to be suitably approximated by it. As such, η is

purposefully chosen such that it forces the value of Eq. (2.3.7) at rp = lpv to be exactly

equal to its known value %̂eqm , i.e.

η = ln−1 ϕ ln
%̃eqm
%̂eqm

. (2.3.9)

2.3.3 Closed-form approximation ofRcr

I turn our attention to the development of an approximation of Rcr, which denotes

the quasi-static critical resistance associated with the quasi-static yield strength, i.e. τ (α)
cr .

Following our modified J2 approach outlined in subsection 2.3.2, I seek an approximation

for a J2 measure of quasi-static yield strength, i.e. σy, as a weighted average of the critical

resolved shear stress on all nslip slip systems. As with Rdd, here I invoke a Taylor-type

approximation:

σy = MT

nslip∑
α=1

τ
(α)
cr

∣∣∣γ̇(α)
p

∣∣∣
nslip∑
α=1

∣∣∣γ̇(α)
p

∣∣∣ . (2.3.10)

For the purpose of computing Rcr, I further assume that the magnitude of the microscale

slip rate is much larger than the macroscale slip rate, i.e.
∣∣∣γ̇(α)
p

∣∣∣ � ∣∣∣Γ̇(α)
p

∣∣∣. Given this

approximation, Eq. (2.3.10) simplifies to σy ≈ MTn
−1
slip

nslip∑
α=1

τ
(α)
cr , where Eq. (2.1.12) has
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been employed. The approximation for quasi-static critical resistance is thus expressed as

Rcr ,

`pv∫
ap

2

rp
σy drp =

MT

nslip

`pv∫
ap

2

rp

nslip∑
α=1

τ (α)
cr drp. (2.3.11)

In general τ (α)
cr spatially varies across the microscale domain, thereby limiting the evalu-

ation of Eq. (2.3.11) to numerical approaches. However, here I have chosen a particular

nonlocal hardening law, i.e. Eq. (2.2.7), which enables an exact integration of Eq. (2.3.11):

Rcr =
2

3

MT

nslip
ln

(
1

ϕ

) nslip∑
α=1

τ (α)
cr . (2.3.12)

While this solution is a convenient approximation of Rcr from a computational expe-

diency standpoint, a numerical approximation of the integral in Eq. (2.2.7) is nevertheless

required to close the framework. Given current values for the effective dislocation density

at inner and outer surface of the spherical shell, integration of Eq. (2.2.7) may be obtained

through any suitable numerical integration technique, e.g.

τ (α)
cr = τ0 +

1

2
c⊥µ

(α)b

(√
%

(α)
eff

∣∣∣
rp=`pv

+

√
%

(α)
eff

∣∣∣
rp=ap

)
. (2.3.13)

One subtle issue associated with the solution ofRcr expressed in Eq. (2.3.12) is the neglect

of elasticity, which tends to slightly soften the critical resistance (Huang et al., 1991). In

order to account for this second-order effect, I must modify the integrand in Eq. (2.3.11) to

replace σy with min(σeeq, σy), where σeeq denotes the corresponding value of the equivalent

stress if the total microscale deformation was purely elastic. For simplicity, I take this

equivalent elastic stress as a linear approximation of the equivalent strain εeq, i.e. σeeq =

3µeqεeq with µeq being an isotropic equivalent measure of the shear moduli. Here I take

µeq = µ(α) for lack of any better model. Following the same integral transformation
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Fig. 2.2: Demonstration of the role of finite stiffness, i.e. µeq 6= ∞, in softening the
critical resistance term Rcr according to Eq. (2.3.14) (with MT = 3.06 and τ (α)

cr = 310
MPa). Each dotted line corresponds to a value of initial porosity: ϕ0 ∈ [4.19×10−3, 3.35×
10−2, 11.31× 10−2, 26.81× 10−2].

utilized by Huang et al. (1991), substitution of min(σeeq, σy) in Eq. (2.3.11) leads to

Rcr = 2

3
√

1/ϕ∫
1

min

(
2µeq ln

ξ3

ξ3 + a3
0/a

3 − 1
,
MT

nslip

nslip∑
α=1

τ (α)
cr

)
dξ

ξ
, (2.3.14)

where ξ = r/a. In the limit of rigid elasticity, i.e. µeq → ∞, Eq. (2.3.12) is exactly

recovered from Eq. (2.3.14). For finite elasticity, Eq. (2.3.14) approximates the second-

order softening effects of elastic deformation onRcr that are neglected in the closed-form

solution expressed in Eq. (2.3.12). Figure 2.2 provides a comparison of these two approxi-

mations, i.e. Eq. (2.3.12) versus Eq. (2.3.14). Clearly, the correction factor is negligible in

the late stages of void growth, i.e. ϕ� ϕ0. However, in the earliest stages of void growth,

i.e. ϕ ∼ ϕ0, Rcr may be over-estimated when the elastic correction is neglected. It is left

to the user of this model to ascertain the necessity of accounting for the elastic correction

in their particular application.
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3. VALIDATION ASSESSMENT OF THE FRAMEWORK

AGAINST

DIRECT NUMERICAL SIMULATIONS

3.1 Material, geometry, and computational details

Here I focus our analysis on a porous face-centered cubic single crystal with a uni-

form distribution of spherical voids on a simple cubic lattice. An appropriately chosen

representative volume element (RVE) for such a material is a single cubic unit cell (UC)

comprising of a single spherical void embedded within a cube of homogeneous single

crystal matrix subject to appropriate periodic boundary conditions. In the reference con-

figuration B0 , the chosen UC of interests has an undeformed length of l0 = 10 µm along

each edge and an undeformed void radius of a0, thereby resulting in an initial porosity of

ϕ0 = 4
3
πa3

0`
−3
0 . For the simulation results discussed in this section, I considered initial

void sizes and initial porosity values of a0 ∈ [1, 2, 3, 4] µm.

The DNS involve the explicit determination of the exact microscale field quantities

as determined through the solution of the microscale constitutive equations outlined in

subsection 2.2.1, i.e. Eqs. (2.2.1)–(2.2.14). The microscale constitutive equations have

been implemented as a user-defined subroutine (VUMAT) within Abaqus/explicit (Hibbit

et al., 2012). The single crystal matrix material within the UC is discretized into a com-

putational mesh of eight-node hexahedral elements employing linear shape functions and

reduced integration, similar to the mesh depicted in Fig. 3.1. Details of the numerical al-

gorithms utilized here may be found in Luscher et al. (2017). The macroscale constitutive

The present chapter is based on publication by Nguyen et al. (2017).
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equations governing the CPD model, i.e. Eqs. (2.2.16)–(2.2.22) along with Eq. (2.3.8) and

Eq. (2.3.14), have likewise been implemented into Abaqus/explicit via a separate VUMAT

(see the appendix for implementation). Throughout the remainder of this section, com-

parisons between DNS and CPD are made for the same initial conditions (including void

geometry and crystallographic orientation), macroscale geometry, and macroscale loading

conditions in order to facilitate an appropriate comparison.

In the remainder of this section, DNS and CPD simulations will be carried out for

macroscopically homogenous loading conditions, i.e. Grad(F) = 0. As such, the macroscale

response predicted by the CPD framework may be modeled as a single cubic element with

edge length equal to that of the UC (again making use of C3D8R elements in Abaqus).

In both the DNS and CPD simulations, loading is achieved through displacement control

by prescribing constant velocity boundary conditions on the external boundary, which is

equivalent to controlling the macroscopic deformation gradient F. The use of affine dis-

placement boundary conditions in DNS likely poses a higher resistance to void growth in

elastic loading and softening regimes as compared to the periodic boundary condition that

can also be used to model the same macroscopic deformation.

Most of the simulations are carried out for macroscopic uniaxial deformation, e.g.

F = ε̇te1 ⊗ e1 + I, or macroscopic triaxial deformation, i.e. F = (1 + ε̇t) I, with ε̇ de-

noting a constant engineering strain rate and e1, e2, e3 denoting 3 orthogonal unit vectors

parallel to the edges of UC (the UC axes). Additional simulations are carried our for the

case of macroscopic simple shear, e.g. F = Ḟ12te1 ⊗ e2 + I. Unless otherwise noted,

the simulations are carried out with the lattice cubic axes aligned with the UC axes, e.g.

e1 parallel with [100]. For simulations explicitly investigating orientation effects, Euler

angles (denoted here as φ1, φ2, and Φ) are utilized to describe the orientation of the lattice

cubic axes relative to the UC axes.

Since our interests here are in dynamic ductile failure, all simulations are carried out
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Fig. 3.1: A representative finite element mesh of the unit cell.

at high engineering strain rates, e.g. ε̇ = 105 s−1, ε̇ = 106 s−1, or Ḟ12 = 106 s−1. However,

such high loading strain rates applied instantaneously to the external surfaces of an other-

wise resting body will induce significant wave dynamics within the solid matrix. While

the DNS naturally captures this phenomena, the CPD model is incapable of reproducing

such fine details. In order to minimize this effect, an affine initial microscale velocity field

is prescribed to all material points within the UC, i.e. v|t=0 = Ḟ · x0, in both DNS and

CPD calculations. In the CPD this affine velocity field implies ȧt=0 = a0l
−1
0 l̇t=0, which

in turn implies a nil initial condition on the rate of porosity, i.e. ϕ̇t=0 = 0. Spatially ho-

mogeneous initial conditions are assumed for both the mobile and immobile dislocation

densities. The initial temperature is specified as ϑt=0 = 300 K throughout the domain, and

simulations are carried out under isothermal conditions to facilitate a simpler interpretation

of the model results in the context of validation assessment.
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Fig. 3.2: Comparisons of mean macroscopic stress Σm as a function of evolving void
volume fraction ϕ as predicted by DNS and our CPD theory. Macroscopic triaxial defor-
mation, i.e. F = (1 + ε̇t) I, is applied at a constant engineering strain rate of a) ε̇ = 105 s−1

and b) ε̇ = 106 s−1 for varying values of initial porosity with a constant uniform mobile
dislocation density of ρ(α)

m = 1014 m−2.

3.2 Constant dislocation density structure

In order to systematically assess the predictive quality of the CPD in relation to DNS,

I begin with comparisons for a frozen dislocation density structure, i.e. %̇(α)
m = %̇

(α)
im = 0,

that is spatially homogeneous across the microscale domain. Such simulations enable us

to remove any potential discrepancies between CPD and DNS that may arise due to the

spatial distribution (or its effects) not be adequately captured in the CPD theory.

3.2.1 Isolating effects of micro-inertia andRdd in the absence ofRcr

In this subsection, I make an additional effort to isolate features by forcing the critical

resolved shear stress on all slip systems to be zero, i.e. τ (α)
cr = 0. The effect of this

simplification on the CPD theory is that the quasi-static critical resistance is exactly equal

to zero, i.e. Rcr = 0. While the critical resolved shear stress is neglected, here I maintain

the contribution of the over-shear stress, i.e.
∣∣τ (α)

∣∣− τ (α)
cr , associated with relativistic drag

effects, cf. Eq. (2.2.4).

Comparisons of the evolution of macroscopic mean stress (Σm) as a function of evolv-
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ing porosity ϕ are presented in Fig. 3.2 and Fig. 3.3. For these plots, simulation cases

include different initial void volume fractions and constant uniform dislocation density on

all slip systems, e.g. ρ(α)
m = 1014 m−2. Figure 3.2(a) and Fig. 3.2(b) compare the evolution

of mean stress versus porosity for triaxial loading with constant engineering strain rates of

105 s−1 and 106 s−1, respectively, for various initial values of porosity. The CPD theory

captures the overall effective softening response and viscous resistance quite well.

The results presented in Fig. 3.3 demonstrate the very strong dependence of the me-

chanical response of the UC on the dislocation density, and that this effect is captured quite

well by the CPD theory. Comparisons of the evolution of macroscopic mean stress and

equivalent Mises stress as predicted by DNS and the CPD theory are presented in Fig. 3.4

for uniaxial deformation, e.g. F = ε̇te1 ⊗ e1 + I at an engineering strain rate of 106 s−1.

Figure 3.4(a) provides additional evidence of the utility of our model for Rdd even for

a non-spherically symmetric deformation. Moreover, the remarkable agreement between

DNS and CPD in Fig. 3.4(b) provides some degree of confidence in Eq. (2.2.18), which

governs the evolution of the macroscopic slip rates, i.e. Γ
(α)
p , and macroscopic deviatoric
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Fig. 3.3: Comparisons of mean macroscopic stress Σm as a function of evolving void
volume fraction ϕ as predicted by DNS and our CPD theory. Macroscopic triaxial defor-
mation, i.e. F = (1 + ε̇t) I, is applied at a constant engineering strain rate of a) ε̇ = 105 s−1

and b) ε̇ = 106 s−1 for the same initial porosity, but various constant mobile dislocation
densities.
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Fig. 3.4: Comparisons of a) mean macroscopic stress Σm and b) equivalent Mises macro-
scopic stress Σeq as a function of evolving void volume fraction ϕ as predicted by DNS
and our CPD theory. Macroscopic uniaxial deformation, e.g. F = ε̇te1⊗e1 + I, is applied
at a constant engineering strain rate of ε̇ = 106 s−1 for varying values of initial porosity
with a constant uniform dislocation density of ρ(α)

m = 1014 m−2.

stress Σ′ in our CPD theory.

In order to evaluate the theory under more complex loading cases, simulations of the

UC loaded under uniaxial deformation, e.g. F = ε̇te1 ⊗ e1 + I, with an instantaneous

transition (jump) in engineering strain rate from ε̇ = 105 s−1 to 106 s−1 at an axial engi-

neering strain of 1% (at t = 0.1µs) were conducted. For this case, the UC has an constant

uniform dislocation density of ρ(α)
m = 1014 m−2. Figure 3.5(a) and Fig. 3.5(b) show that

the evolution of mean and equivalent macroscopic stress as a function of evolving porosity

from DNS is captured well by our CPD model.

3.2.2 Combined influence of micro-inertia,Rdd, andRcr without degradation of the
macroscopic CRSS using a porosity dependent single crystal yield function

Having demonstrated some degree of confidence in the validity of our CPD theory in

the absence of the quasi-static critical resistance term Rcr, I now turn our attention to a

validation assessment ofRcr by turning on the critical resolved shear stress (i.e. τ (α)
cr 6= 0)

in conjunction with inertia andRdd.

To assess Rcr, DNS and CPD calculations were conducted for cases of constant uni-
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Fig. 3.5: Comparisons of a) mean macroscopic stress Σm and b) equivalent Mises macro-
scopic stress Σeq as predicted by DNS and our CPD theory. Macroscopic uniaxial defor-
mation, e.g. F = ε̇te1 ⊗ e1 + I, is applied with an instantaneous transition (marked by
the vertical dotted line) in engineering strain rate from ε̇ = 105 s−1 to 106 s−1 at an axial
engineering strain of 1% (at t = 0.1 µs). (ρ(α)

m = 1014 m−2).

form dislocation density of ρ(α)
m = ρ

(α)
im = 1014 m−2 with the UC loaded under macroscopic

triaxial deformation, F = (1 + ε̇t) I, at engineering strain rates of ε̇ = 105 s−1 and ε̇ = 106

s−1. Comparisons of DNS and CPD for this case are shown in Fig. 3.6 for two initial

porosities (namely ϕ0 = 3.35% and ϕ0 = 11.3%). The agreement between DNS and
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Fig. 3.6: Comparisons of mean macroscopic stress Σm as a function of evolving void
volume fraction ϕ as predicted by DNS and our CPD theory with τ (α)

cr 6= 0. Macroscopic
triaxial deformation, i.e. F = (1 + ε̇t) I, is applied at a constant engineering strain rate of
a) ε̇ = 105 s−1 and b) ε̇ = 106 s−1 for two values of initial porosity with a constant uniform
dislocation density of ρ(α)

m = ρ
(α)
im = 1014 m−2.
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Fig. 3.7: Comparisons of equivalent macroscopic stress Σeq as a function of evolving
macroscopic shear deformation F12 as predicted by DNS (markers) and our CPD theory
(solid lines) with τ (α)

cr 6= 0. Macroscopic shear deformation, i.e. F = F12te1 ⊗ e2 + I, is
applied at a constant engineering strain rate of Ḟ12 = 106 s−1. The lattice axes are aligned
such that a) [100] and [010] and b) [110] and [1̄10] directions are parallel to the respective
UC axes e1 and e2. (ρ(α)

m = ρ
(α)
im = 1014 m−2).

CPD theory is remarkable given the numerous assumptions and approximations invoked

in section 2.3.

Moreover, it is encouraging to note that discrepancy between the CPD and DNS at

the lower strain rate case shown in Fig. 3.6(a) is essentially a constant over-prediction of

about 10% throughout the entire loading history. I can reasonably attribute nearly all of

this error in the CPD prediction to an error in our model for Rcr by recognizing that the

agreement between DNS and CPD is nearly perfect under the same loading conditions

withRcr turned off (cf. Fig. 3.2(a)). As such, one could seemingly reduce the error in our

model forRcr to perhaps no more than a few percent by amending Eq. (2.3.14) to include

a pre-factor correction constant of about 0.9 (at least for these loading conditions).

In order to assess the capability of the CPD theory to capture crystallographic orien-

tation effects predicted by DNS, a number of macroscopic simple shear deformation, i.e.

F = Ḟ12te1⊗ e2 + I, simulations were carried out at a deformation rate of Ḟ12 = 106 s−1.

For cases of loading under macroscopic simple shear, there are only negligible changes in
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the void volume fraction. Consequently, for these cases I instead compare the evolution

of macroscopic equivalent stress Σeq with the evolving macroscopic shear deformation

F12 in Fig. 3.7 and Fig. 3.8. Comparisons of macroscopic stress-macroscopic deformation

curves as predicted by DNS (markers) and CPD theory (solid lines) are shown in Fig. 3.7

from simple shear loading for various initial void volume fractions and two different crys-

tallographic orientations. The agreement between CPD and DNS in the inelastic region

depends strongly on the initial porosity and the crystallographic orientation. For the case

where the cubic crystal axes are aligned with the unit cell axes, i.e. Fig. 3.7(a), the re-

sults indicate that our CPD model over-predicts the inelastic response in comparison to

DNS. Whereas, for cases in which the shearing direction e1 is aligned with any of the

〈110〉 lattice directions, i.e. Fig. 3.7(b), the agreement is significantly better. Regardless

of the crystallographic orientation, a trend is observed that the discrepancy between CPD

and DNS is fairly negligible at low initial porosities, e.g. ϕ0 . 0.5%. Such an observa-

tion is somewhat encouraging, given that we are primarily interested in applying our CPD

framework as a ductile failure theory for initially dense, i.e. ϕ0 � 0.5%, single crystals.

In order to further explore the accuracy of our model across a wider range of crystal-

lographic orientations, I conducted an additional 364 DNS and CPD macroscopic simple

shear simulations to sweep through crystallographic orientation space. Each of these simu-

lations results in an equivalent macroscopic stress – macroscopic shear deformation curve

similar to those shown in Fig. 3.7. From each of these 364 simulated stress-deformation

curves I extract a single data point of the equivalent macroscopic stress at a shear deforma-

tion of F12 = 0.031 (i.e. Σeq|F12=0.03) predicted by DNS and CPD. The resulting 728 total

data points obtained from DNS and CPD simulations are reported in Fig. 3.8 as a function

of the Euler angles. Four sets of Euler angles are chosen, namely

1Note that this choice of shear deformation is well into the inelastic region for all orientations considered.
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• φ1 = 0°,Φ = 30°, and φ2 ∈ [0°, 90°] with a 1° interval;

• φ1 = 0°,Φ = 45°, and φ2 ∈ [0°, 90°] with a 1° interval;

• φ1 = 10°,Φ = 25°, and φ2 ∈ [0°, 90°] with a 1° interval;

• φ1 = 50°,Φ = 12°, and φ2 ∈ [0°, 90°] with a 1° interval,

for which I note that this choice of φ2 completely spans the symmetry of face-centered cu-

bic materials. For these simulations, each UC was assigned a constant uniform dislocation

density of ρ(α)
m = ρ

(α)
im = 1014 m−2 and an initial void volume fraction of ϕ0 = 11.31%,

which is a large enough porosity to produce fairly significant discrepancies between CPD

and DNS for some crystallographic orientations (cf. Fig. 3.7).

Overall, our CPD theory captures the general trends of the crystallographic orientation

dependence as predicted by DNS, but appears to over emphasize the orientation depen-

dence of the effective yield stress. While our model exhibits relatively high accuracy

for several orientations (cf. Fig. 3.8(a)), it results in up to 18% error in some others

(Fig. 3.8(b)). This discrepancy suggests that the effect of voids on macroscopic shear

strength is more complex than can be represented T (α)
cr = τ

(α)
cr .

3.2.3 Combined influence of micro-inertia, Rdd, and Rcr with degradation of the
macroscopic CRSS using a porosity dependent single crystal yield function

In this subsection, we repeated the crystal plasticity-damage finite element (CPD-FE)

and DNS calculations of simple shear deformation presented in the last subsection using

the theory for degradation of the macroscopic CRSS using a porosity dependent single

crystal yield function. We identify the parameters in Eq. (2.2.23) to be q1 = 1.20, q2 =

1.25 and χ = 3 upon comparing the macroscopic shear response from the CPD-FE and

DNS. The results of CPD-FE using the theory for degradation of the macroscopic CRSS

(red curve) are compared with previous subsection result (green curve) and the DNS results

(blue markers) in Fig. 3.9 across a range of crystal orientations. As can be seen in Fig. 3.9,
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Fig. 3.8: Results of a high-throughput analysis comparing equivalent macroscopic stress
at a simple shear deformation F12 = 0.03 (i.e. Σeq|F12=0.03) as a function of various crystal-
lographic orientations as predicted by DNS (dotted line) and our CPD theory (solid lines)
with τ (α)

cr 6= 0. Macroscopic simple shear deformation, i.e. F = Ḟ12te1 ⊗ e2 + I, is ap-
plied at a constant engineering strain rate of Ḟ12 = 106 s−1. For each choice of φ1 and Φ,
φ2 ∈ [0°, 90°] with 1° intervals. (ϕ0 = 11.31% and ρ(α)

m = ρ
(α)
im = 1014 m−2).

the extension based on Eq. (2.2.23) substantially improves the agreement between the

homogenized crystal plasticity damage theory with the DNS results.
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Fig. 3.9: Results of a high-throughput analysis comparing equivalent macroscopic stress
at a simple shear deformation F12 = 0.03 (i.e. Σeq|F12=0.03) as a function of various crystal-
lographic orientations as predicted by DNS (markers), Nguyen et al. (2017) model (solid
green lines) and the current CPD model (solid red lines) with τ

(α)
cr 6= 0. Macroscopic

simple shear deformation, i.e. F = Ḟ12te1 ⊗ e2 + I, is applied at a constant engineering
strain rate of Ḟ12 = 106 s−1. For each choice of φ1 and Φ, φ2 ∈ [0°, 90°] with 1° intervals.
(ϕ0 = 11.31% and ρ(α)

m = ρ
(α)
im = 1014 m−2). Nguyen et al. (2017) model simplified the

effect of void on shear strength, i.e. T (α)
cr = τ

(α)
cr . The current CPD model account for the

effect of void on shear strength using Eq. (2.2.23).
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DNS of cases of simple shear deformation were used to calibrate Eq. (2.2.23) within

the extended CPD-FE approach; CPD-FE simulations of uniaxial strain loading condi-

tions were conducted and compared with DNS to build further confidence of the extended

model in cases where the shear and hydrostatic stresses are of the same order of magni-

tude. Three crystallographic loading directions, i.e. 〈100〉, 〈110〉, 〈111〉 were included

in these calculations. The computed evolution of macroscopic equivalent stress with re-

spect to axial engineering strain is compared with the DNS results in Fig. 3.10(a) and

Fig. 3.10(b) for the model without or with the theory for degradation of the macroscopic

CRSS, respectively. The improved agreement between CPD-FE and DNS in both the peak

effective deviatoric stress and the subsequent softening using the present extension to our

previous model is apparent from these figures. In the results obtained without degraded

macroscopic CRSS (Eq. (2.2.23)), i.e. Fig. 3.10(a), the effective deviatoric stress after

yielding gradually softens as a result of increasing porosity, with the degradation equal

to ratio of (1 − ϕ). In the results from the current model, i.e. Fig. 3.10(b), the effective

deviatoric stress softens more rapidly upon yielding because of the contribution of the

hydrostatic stress, Σm, significantly increasing the cosh term in Eq. (2.2.23) leading to a

pronounced reduction in the effective shear resistance. While the new model exhibits a

more rapid degradation in effective deviatoric stress than the DNS, the value approaches

that of the DNS as the strain is further increased (i.e. to 6%) leading to generally better

agreement than the previous model. On the other hand, these extensions have not reduced

the accuracy of the computed evolution of the mean stress (cf. Fig. 3.10(c)) under these

conditions of uniaxial strain. We note that the evolution of mean stress for the three crys-

tallographic loading directions are strongly similar for DNS results and identical for the

CPD-FE results under these cases where hardening was excluded by holding dislocation

density constant. These results, in particular from the DNS, suggest that much of the ob-

served orientation dependence of spall strength (Turley et al., 2018) may result from the
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anisotropic (static and dynamic) hardening due to dislocation evolution during the initial

shock compression of the material, especially in consideration of the identical initial slip

resistance assumed for all crystal slip systems.
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Fig. 3.10: Comparisons of (a,b) equivalent macroscopic stress Σeq, (c) mean macro-
scopic stress Σm and as a function of axial engineering strain as predicted by DNS, CPD
without degraded macroscopic CRSS (a), and CPD with degraded macroscopic CRSS
(Eq. (2.2.23)) (b and c). Macroscopic uniaxial deformation, i.e. F = ε̇te1 ⊗ e1 + I, is
applied at a constant engineering strain rate of ε̇ = 106 s−1 with a constant uniform dislo-
cation density of %(α)

m = %
(α)
im = 1014 m−2 (ϕ0 = 0.42%).

3.3 Implications of an evolving dislocation substructure

In the present subsection, attention is turned to cases where dislocation density evolves

with inelastic deformation according to dislocation interaction and evolution mechanisms

by using values of model parameters (ctrap, cmult, c
m
ann, c

im
ann) as listed in Table 2.1. Again

for these calculations, as with those discussed in subsection 3.2.1, the threshold stress for

dislocation glide is first held to zero, i.e. τ (α)
cr = 0, in an effort to isolate the role of viscous

resistanceRdd.

3.3.1 Isolating effects of micro-inertia andRdd in the absence ofRcr

Within one set of comparative calculations shown in Fig. 3.11, the chosen UC was

constructed with an initially spatially homogeneous and initially uniform (on all slip sys-
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Fig. 3.11: Comparisons of mean macroscopic stress Σm as a function of evolving void
volume fraction ϕ (and dislocation density) as predicted by DNS and our CPD theory.
Macroscopic triaxial deformation, i.e. F = (1 + ε̇t) I, is applied at a constant engineering
strain rate of a) ε̇ = 105 s−1 and b) ε̇ = 106 s−1 with an initially uniform dislocation
density of %(α)

m,0 = %
(α)
im,0 = 2× 1013 m−2 (for ϕ0 = 3.34%).

tems) dislocation density of %(α)
m,0 = %

(α)
im,0 = 2 × 1013 m−2 with an initial void volume

fraction of ϕ0 = 3.34%. These UCs were loaded under macroscopic triaxial deformation,

i.e. F = (1 + ε̇t) I, at a constant engineering strain rate of ε̇ = 105 s−1 and ε̇ = 106 s−1.

Again, the agreement between CPD and DNS is remarkable. This rather complex mecha-
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Fig. 3.12: Comparisons of a) mean macroscopic stress Σm and b) equivalent Mises macro-
scopic stress Σeq as a function of evolving void volume fraction ϕ as predicted by DNS
and our CPD theory. Macroscopic uniaxial deformation, i.e. F = ε̇te1⊗ e1 + I, is applied
at a constant engineering strain rate of ε̇ = 106 s−1 with an initially uniform dislocation
density of %(α)

m,0 = %
(α)
im,0 = 2× 1013 m−2 (for ϕ0 = 3.34%).
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Fig. 3.13: Comparisons of mean macroscopic stress Σm as a function of evolving void
volume fraction ϕ (and dislocation density) as predicted by DNS and our CPD theory.
Macroscopic triaxial deformation, i.e. F = (1 + ε̇t) I, is applied at a constant engineering
strain rate of a) ε̇ = 105 s−1 and b) ε̇ = 106 s−1 with a uniform initial immobile disloca-
tion density of %(α)

im,0 = 1013 m−2, and a non-uniform initial mobile dislocation density of
%

(α)
m,0 = α× 1013 m−2 (for ϕ0 = 3.34%).

nism of evolving dislocation density is captured remarkably well in our CPD theory by a

fairly simple set of equations governing substructure evolution, and an approximation for

the spatial distribution of the substructure across the microscale domain.

Respective comparisons of the evolution of macroscopic mean stress and equivalent

Mises stress (Σeq ,
√

3
2
Σ′ : Σ′) as predicted by DNS and the CPD theory are presented

in Fig. 3.12(a) and Fig. 3.12(b) for uniaxial deformation, e.g. F = ε̇te1 ⊗ e1 + I at an

engineering strain rate of 106 s−1. Moreover, the remarkable agreement between DNS and

CPD in Fig. 3.4(b) provides some degree of confidence in Eq. (2.2.18) and Eq. (2.2.20),

which govern the evolution of the macroscopic slip rates Γ
(α)
p and macroscopic deviatoric

stress Σ′ in our CPD theory.

In order to assess accuracy of the CPD model under a broader range of conditions, a

set of UC calculations starting with an initially non-uniform distribution of mobile dis-

location density across various slip-systems, i.e. %(α)
m 6= %

(β)
m for α 6= β, is compared

in Fig. 3.13. More specifically, initial mobile dislocation densities on each slip system
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were assigned according to %(α)
m,0 = α × 1013 m−2 following the slip system convention

detailed in Table 2.2. The initial immobile dislocation density was specified uniformly

as %(α)
im,0 = 1013 m−2. Otherwise, the geometry and loading conditions are identical to

those utilized in Fig. 3.11. As evidenced by the results depicted in Fig. 3.13, this approach

renders a CPD theory that is in reasonably good agreement with DNS even for such a

disparate set of initial conditions.

3.3.2 Combined influence of micro-inertia,Rdd, andRcr

Due to our particular choice of non-local microscale hardening law, i.e. Eq. (2.2.7),

the critical resolved shear stress τ (α)
cr is obliged to be spatially homogeneous across the

microscale domain (at a particular macroscopic point). As such, the relatively small de-

ficiencies (cf. Fig. 3.6) in our CPD model for the quasi-static critical resistance Rcr, i.e.

Eq. (2.3.14), are essentially the same regardless of whether dislocation density is frozen

or evolving. Given this argument, there is no particular need to carry out additional DNS

of UCs with evolving dislocation density for τ (α)
cr 6= 0.
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4. CALIBRATION OF THE FRAMEWORK AGAINST SINGLE

CRYSTAL EXPERIMENTS

4.1 A straightforward procedure for model calibration

In this section, we calibrate our model parameters by direct comparison with published

experimental data. A typical calibration procedure for dynamic ductile failure models is

through comparing the free surface velocity history from a plate impact test and its simu-

lation counterpart. Using this approach, the crystal plasticity parameters can be calibrated

from the shock front profile or the first part of the velocity history, i.e. when the veloc-

ity rises from zero to maximum value or shock wave reaches the target plate free surface

(e.g. Austin and McDowell, 2011, 2012; Lloyd et al., 2014b). The damage model pa-

rameters could then be calibrated from the pullback velocity, i.e. the difference between

the maximum velocity and the pullback signal. In addition to plate impact tests, crys-

tal plasticity parameters can also be calibrated from comparing the stress-strain responses

measured from Split-Hopkinson pressure bar (SHPB − also known as Kolsky bar) ex-

perimental data and extracted from the simulation counterpart. The calibration procedure

using plate impact test accesses more analagous strain rates (> 104 s−1) and stress state

from impact events, but involves fairly small strains (< 10%). In contrast, the calibration

procedure using SHPB can access larger strains (from 10% to 50%), but at lower strain

rates (∼ 103 s−1) and stresses. As such, we recommend the crystal plasticity models that

will be utilized for physics-based spall predictions to be calibrated against both velocity

history as well as a method to evaluate the large strain response (e.g. SHPB, or Taylor

anvil experiments). On the other hand, calibration against plate impact test can be a cum-

bersome process due to the restrictions of i) small time increment for numerical stability,
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ii) small element size to properly model shock wave propagation inside flyer and target

plates. Therefore, for the time being we calibrate our crystal plasticity model parameters

against SHPB using an eight-node volume element loaded under nominally uniaxial stress

conditions for computational efficiency. The damage distribution parameters would then

be calibrated using also an eight-node volume element subjected to compression/tension

cyclic loading as to be explained in the following.

4.1.1 Plasticity calibration

In this subsection, we calibrate the dislocation evolution parameters using solid (i.e.

ϕ = 0) single crystal copper SHPB experiments performed by Rittel et al. (2012). Due to

the relatively low strain rate to observe the effect of heterogenous dislocation nucleation,

the nucleation parameters was taken or adjusted from (Austin and McDowell, 2012) rather

than being calibrated here. With that being said, this subsection calibrate cmult, ctrap, cmann

and cimann.

Uniaxial stress compression is the typical representation of loading with Split-Hopkinson

pressure bar experiment. In order to simulate uniaxial stress compression in a single three-

dimensional element of Abaqus C3D8R type, the loading direction face on the left (i.e.

X = −) was held fixed, the loading direction face on the right (i.e. X = +) was given

a prescribed velocity. The remaining faces (i.e. Y = ±, Z = ±) are unconstrained. The

〈123〉 crystal orientation is aligned with the loading direction (X). The volume element

was subjected to the target true strain rates from 3000 s−1 to 5800 s−1. The true stress

versus true strain from experiment results and their simulation counterparts are presented

in Fig. 4.1. By adjusting the dislocation evolution parameters (cmult, ctrap, cmann and cimann),

the simulation result is brought into a reasonably good agreement with experimental data,

especially for true strain rates of 4150 s−1 and up. The calibrated value of parameters

cmult, ctrap, c
m
ann and cimann are presented in Table 4.1. As can be seen in Fig. 4.1, the present
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crystal plasticity model provides a good fitting for single crystal data up to strains of 0.3-

0.4, at which point the model deviates from the experiment data. This result implies that

dislocation density does not come to the equilibrium value as it should in the experiment.

The agreement between our simulation results and experiment data up to the large strain

of 0.3 provides confidence for our spallation modeling later on, in which the spall strength

occurs at fairly low strains (Wright and Ramesh, 2008).

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

Fig. 4.1: Comparison of true stress - true strain behavior from Split Hopkinson pressure
bar experiments (dashed line) and simulations (black solid lines) for loading orientation
〈123〉 (Rittel et al., 2012) and different loading rates.

4.1.2 Damage distribution calibration

In this subsection, we calibrate our damage parameters, i.e. ϕ0 and `v, using acoustic

limit of spall strength (i.e. Eq. (1.1.10)) estimated from plate impact tests (Turley et al.,

2018).

As mentioned in chapter 1, the deformation on spall plane is usually idealized to be

uniaxial strain due to high aspect ratio between plates’ radius and thickness (e.g. Grady,

1988). Under the uniaxial strain condition, the total strain is restricted to be uniaxial

rather than its elastic/inelastic components, which enables general 3D dislocation slip. The

uniaxial strain deformation can be described with the deformation gradient F = (F11 −
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Table 4.1: Material parameters for single crystal copper subjected to high rate ductile
damage process used in this chapter. Other model paramters were given in the previous
tables.

Parameters Value Unit Reference

Initial material state
%m0 10−3 µm−2

%im0 10−2 µm−2

Strength parameters
b 2.56 Å
τ0 10 MPa
c⊥ 0.5 −
µ 41 · 103 MPa
Dislocation density evolution parameters
cmult 7.68 · 10−5 − Calibrated
ctrap 5 · 10−3 − Calibrated
cmann 1 − Calibrated
cimann 1 − Calibrated
αhet 1.4 · 103 µm−2 (Austin and McDowell, 2012)
τmin 16 MPa (Austin and McDowell, 2012)
τmax

µ
15

− (Austin and McDowell, 2012)
mhet 0.7 − (Austin and McDowell, 2012)
Damage distribution parameter
`v 10 µm Calibrated
ϕ0 5 · 10−3 − Calibrated
Equation of state (Meyers, 1994)
ρ0 8940 Kg/m3

C0 3930 m/s
s 1.49 −
Γ 2.0 −
Elastic modulus (Every and McCurdy, 1992)
C11 169 GPa
C12 122 GPa
C44 75.3 GPa

1)e1 ⊗ e1 + I. Due to uniaxial strain loading condition, the relative volume is equal to

the axial stretch, i.e. J ≡ det F = F11. By controlling the rate of change of F11, a
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Table 4.2: Comparison of predicted spall strength from the model, and the spall strength
measured from experiments (Turley et al., 2018).

Shot Crys. Impact umaxfs P ε̇ ∆upb Σ
(Exp.)
sp Σ

(Sim.)
sp ∆Σsp

Ori. vel. (ms−1) (ms−1) (GPa) (µs−1) (ms−1) (GPa) (GPa) %

8 〈100〉 280 279 5.19 0.7 96 1.69 1.68 0.48
11 〈100〉 284 286 5.26 2.2 157 2.76 2.68 2.91

3 〈100〉 297 297 5.52 1.3 121 2.13 2.08 2.28
4 〈100〉 460 456 8.8 0.95 110 1.94 1.95 0.46
5 〈100〉 598 598 11.7 0.75 120 2.11 1.88 12.30
6 〈100〉 705 701 14.1 0.62 118 2.08 1.84 13.05
7 〈100〉 296 294 5.5 0.65 95 1.67 1.65 1.11
9 〈100〉 600 595 11.8 1.5 147 2.59 2.34 10.67
10 〈100〉 500 498 9.63 1.4 124 2.18 2.25 3.07

1 〈110〉 500 496 9.63 1.19 108 1.9 2.25 15.58
2 〈111〉 502 494 9.67 0.8 85 1.5 1.86 19.36

compression/tension cycle can be obtained as below,

F11 =

 1− ε̇t for t < tcomp

1− ε̇tcomp + ε̇(t− tcomp) for t ≥ tcomp

(4.1.1)

In the above equation, tcomp denotes compression loading time; ε̇ denotes engineering

strain rate (ε̇ > 0). By changing the value of compression time duration, i.e. tcomp, differ-

ent relative volume J or compression pressure was obtained. The value of compression

time duration tcomp was set so as to obtain the compression pressure in (Turley et al., 2018)

for comparison purposes. Here, the strain rates during compression and tension are taken

to be the same value. In reality, the compression rate is typically higher than the tension

rate, due to the attenuation of the shock wave during propagation (Meyers, 1994).

Three crystallographic orientations 〈100〉, 〈110〉 and 〈111〉 are used as loading direc-
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tions in these simulations, for a direct comparison with experiment data in Turley et al.

(2018). The strain rate ε̇ was taken as the associated experimental counterpart from the

published hydrodynamic computer simulations (Turley et al., 2018) for 〈100〉 orientation.

The strain rates from hydrodynamic computer simulations excludes 〈110〉 and 〈111〉 crys-

tal orientations in Turley et al. (2018). Therefore, we use strain rates of 6 times the cor-

responding rates estimated from the unloading part of the velocity history, as calculated

by Turley et al. (2018) for 〈100〉 orientation. The peak hydrostatic stress from our one

element simulations is then compared to the acoustic spall strength from the experiment

(Turley et al., 2018).

The damage parameters ϕ0 and `v are then calibrated from shots 8 and 11, which are in

close loading pressures (5.225± 0.035 GPa) but on two magnitude of strain rates (0.7 and

2.2 µs−1), so that there is a reasonably good agreement between simulation and experiment

spall strength, as showed in the first two rows of Table 4.2. The values of ϕ0 and `v are

given in Table 4.1. The calibrated parameters are then used to simulate the rest of plate

impact tests in (Turley et al., 2018). The simulation results and experimental counterparts

are presented in Table 4.2. The last column in Table 4.2 shows the relative errors between

the simulated spall strength and the measured (acoustic) spall strength, i.e. |Σ
(exp.)
sp −Σ

(sim.)
sp |

Σ
(exp.)
sp

.

The magnitude difference in relative errors between 3 loading orientations of similar shock

pressure (shots 10, 1, 2) implies that our parameters calibrated for 〈100〉 orientation are

not optimal for other loading directions, i.e. 〈110〉 and 〈111〉.

In addition, our simulation spall strength agrees with the experimental data that the

spall strength does not scale with Taylor factor. In particular, spall strength of 〈100〉 (2.45

Taylor factor), is higher than spall strength of 〈111〉 (3.67 Taylor factor), given the similar

compression pressures (∼ 10 GPa). The Taylor factor is a measure of the yield strength of

a particular orientation. The fundamental reason for this nontrivial orientation dependence

of spall strength is the objective of a future work.
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4.2 Prediction of the pressure dependence of single crystal spall strength

Shock pressure can either harden and/or soften single crystal spall strength through

inducing plastic deformation and the associated thermal energy. In particular, the tem-

perature rise due to shock wave propagation (e.g. McQueen and Marsh, 1960) and plastic

dissipation assists dislocations in overcoming short-range obstacles (Austin and McDow-

ell, 2011). This thermal activation promotes void growth through plastic deformation of

surrounding solid matrix, and therefore alleviates the material spall strength. Thermal soft-

ening seems to be the dominant factor for reducing spall strength with increasing pressure

in the MD calculation of Luo et al. (2009a).

In this work, temperature evolution is omitted. Therefore, the sources for pressure de-

pendence of spall strength are only i) typical strain hardening (i.e. due to the (total/net)

dislocation density accumulation with increasing total applied strain), ii) dynamic soften-

ing (i.e. due to the mobile dislocation density accumulation). In particular, the over stress

on each slip system (at microscale) (|τ (α)| − τ
(α)
cr ) on the drag regime is approximately

proportion to dislocation velocity (v(α)
⊥ ) (e.g. Austin and McDowell, 2011, equation (10)),

i.e. |τ (α)|−τ (α)
cr ≈ B0v

(α)
⊥ /b, with B0 and b denoting the dislocation phonon drag viscosity

and Burger’s vector respectively. B0 is a function of temperature (Luscher et al., 2017).

Using Orowan’s equation, dislocation velocity is inversely correlated to mobile disloca-

tion density, i.e. v(α)
⊥ = γ̇(α)/b%

(α)
m , at a given strain rate (γ̇(α)). Therefore the viscosity of

the crystalline material (η(α) = (|τ (α)| − τ (α)
cr )/γ̇(α)) is inversely correlated to the mobile

dislocation density, i.e. η(α) = B0/b
2%

(α)
m . While the viscosity is proportion to the spall dy-

namic resistance (see Johnson, 1981, equation 30), increasing mobile dislocation density

consequently softens the spall strength of the crystalline material.

In this subsection, we use our calibrated model to explore the pressure dependence of

single crystal copper spall strength on a range of strain rates. The same uniaxial strain
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BVP as described previously is used here. We choose to model 〈100〉 orientation as a

representative orientation due to availability of data for the orientation in Turley et al.

(2018), which we can compare with. Compression pressure values on the range of [4-

15] GPa and strain rate values on the range of [0.05-3.5] µs−1 are considered here. The

simulated spall strength is presented in Fig. 4.2(a) as a contour plot.

As can be seen in Fig. 4.2(a), our model can capture the reported pressure dependence

and rate dependence of spall strength in (Turley et al., 2018). In particular, given similar

compression pressure ∼ 5.5 GPa, increasing the loading rate leads to an increase in the

simulated spall strength (shots 7, 8 and 3); given similar strain rate ∼ 1.4 µs−1, increasing

the compression pressure leads to an increase in the simulated spall strength (shots 3, 10,

9). On this lower range of strain rate (less than 2 µs−1), the spall strength is dominated by

the quasistatic resistance which is a function of the total dislocation density accumulated

with increasing total applied strain (or applied pressure). As a result, the spall strength

monotonically increase with increasing compression pressure at low strain rate. On the

other hand, as strain rate increases, the effect of pressure on spall strength reduces. At

strain rate ∼ 2 µs−1, the effect of rate dependence dominates spall strength.

Based on the experiment data for 〈100〉 orientation for shock stress of less than 15

GPa, (Turley et al., 2018) proposed an empirical model of spall strength, which is linear

dependent on the shock pressure (P ) and the strain rate (ε̇) as below

Σsp = Σ0 + k1P + k2ε̇. (4.2.1)

In this equation, k1 and k2 are the linear correlation coefficients between spall strength

and pressure, strain rate respectively. The variation of our simulated spall strength on

pressure at different strain rate values is presented in Fig. 4.2(b). While for each strain

rate value, there is a linear correlation between pressure and spall strength, their linear
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correlation coefficient reduces with increasing strain rate. The linear correlation coefficient

approximated from our simulation result, denoted as ∂Σsp/∂P , is presented in Fig. 4.2(c).

The error bars show the 95% confidence interval for the coefficient. The emperical model

value, k1, of Turley et al. (2018) and the linear correlation coefficient from MD data of

Luo et al. (2009a) are also showed in Fig. 4.2(c) (blue and red lines, respectively) for

comparison purpose. In addition, three pairs of Turley et al. (2018) experimental data

were chosen for computing the coefficients (square markers in Fig. 4.2(c)), such that the

pairs are in the similar strain rates (less than 0.1 µs−1 difference) and wide ranges of

pressure (more than 4 GPa difference). From the left of Fig. 4.2(c), they are shots 6, 7;

shots 8, 5; shots 3, 10. The three data points (squares) show the same trend of decreasing

∂Σsp/∂P with increasing strain rate as in our simulation results. The comparison implies

that a constant value of k1, as in the empirical model (Eq. (4.2.1)), is posed for a low

approximation accuracy at high loading rate. In other words, the effect of pressure and

strain rate on spall strength should be coupled.
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Fig. 4.2: a) Spall strength of 〈100〉 crystal loading orientation for a range of compres-
sion pressure and strain rate. Markers are acoustic limits from experiments of Turley
et al. (2018). b) Variation of spall strength with pressure for strain rates 0.05, 1, 3.5 µs−1

(extracted from a)). c) Linear correlation coefficient betwen spall strength and pressure.
Simulation results are presented as error bar. The bars correspond to 95% confidence
interval in obtaining the correlation coefficients. The square markers are the correlation
coefficients calculated from pairs of plate impact tests of Turley et al. (2018).
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In the following, we will analyze the pressure dependence of spall strength. As the

first step, we decompose the spall strength into the quasistatic (Rcr), dynamic (Rdd) and

microinertia part (Riner) as described in chapter 2,

Σsp = Rcr +Rdd +Riner. (4.2.2)

We then seek an approximation of the quasistatic spall strength, Rcr, as a linear function

of pressure using a simple isotropic rate-independent linear hardening and linear elastic-

ity model. The volume element on spall plane, which is subjected to uniaxial compres-

sion/unloading, has an approximate equivalent strain of εeq = 4|εv|/3 (see Meyers, 1994,

equation 14.1), with εv denoting the volumetric strain at peak compression pressure P . If

a linear relationship between P and εv is assumed, i.e. P = K0|εv|, then the yield strength

of the material after compression and unloading is

Σy = σy0 +Hεeq = σy0 +
4H

3K0

P, (4.2.3)

with σy0 and H denote initial yield strength and the hardening modulus, respectively.

The quasistatic spall strength is scaled with the yield strength of the material as Rcr =

2
3
σy ln( 1

ϕ0
) (Huang et al., 1991). Therefore the quasistatic spall strength is linearly depen-

dent on pressure, i.e.

Rcr =
2

3
σy0 ln(

1

ϕ0

) +
8H

9K0

ln(
1

ϕ0

)P. (4.2.4)

If we approximate the copper hardening modulus H from Johnson-Cook model (Johnson

and Cook, 1985, table 2) at constant temperature, εeq = 0.02 and ε̇eq = 0, then H ≈ 1.35

GPa. By substituting the bulk modulus at rest, K0, and our calibrated initial void volume

fraction, ϕ0 = 0.005, then we get ∂Rcr
∂P

= 0.046. This value of ∂Rcr
∂P

is close to the k1 value
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of Turley et al. (2018) empirical model, and also to our value of ∂Σsp
∂P

at low strain rate.

Following the phenomenological approach of Johnson and Cook (1985), the homolo-

gous temperature ϑ∗ = ϑsp−ϑ0
ϑm−ϑ0 can be added to account for the effect of temperature on

the quasistatic strength. In here subscripts sp,m and 0 denote spall, melting and initial

condition. In addition, the homologous temperature scales down the quasistatic strength

of copper in an almost linear fashion according to (Johnson and Cook, 1985, table 2).

Therefore, the quasistatic strength for copper can be rewritten as

Rcr =

2

3
σ0 ln

(
1

ϕ0

)
︸ ︷︷ ︸

Incipient spall

+
8

9

H

K0

ln

(
1

ϕ0

)
P︸ ︷︷ ︸

Shock hardening


(

1− ϑsp − ϑ0

ϑm − ϑ0

)
︸ ︷︷ ︸

Shock softening

(4.2.5)

The first two terms in Eq. (4.2.5) (i.e. incipient spall and shock hardening) are limited by

the quasistatic spall strength of the fully saturated material, i.e. 2
3
σ∞ ln

(
1
ϕ0

)
. The spall

temperature (ϑsp) should be a physic-based function of initial temperature, shock pressure

and plastic dissipation on the spall plane. For dislocation-free crystals in MD calculation of

Luo et al. (2009a), the hardening can be ignored while the the initial yield strength σy0 can

be as high as 2.3 GPa (Schiøtz and Jacobsen, 2003). According to the published data (Luo

et al., 2009a, table II) for 〈100〉 orientation, the dependence of homologous temperature on

pressure can be approximated as ∂ϑ∗

∂P
=0.0051 GPa−1. By substituting σy0 = 2.3 GPa and

∂ϑ∗

∂P
=0.0051 GPa−1 into Eq. (4.2.5), the value of ∂Σsp

∂P
becomes -0.0414, which is close

to the our calculation of linear correlation coefficient from MD calculation data of Luo

et al. (2009a) (cf. Fig. 4.2(c)). Therefore Eq. (4.2.5) provides a simple scalling law for

quasistatic spall strength as a function of initial porosity, pressure and temperature, which

is in agreement with both experimental data (Turley et al., 2018) and MD calculation (Luo

et al., 2009a).

Toward the high range of strain rate, spall strength is also controlled by dynamic re-
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sistance (through viscosity, η) and microinertia. At a given strain rate, the microinertia

is independent of pressure, but the dynamics resistance (Rdd) is sensitive compression

pressure (Nguyen et al., 2017) through the generation of mobile dislocation density as

mentioned above. That is, Rdd is proportional to viscosity (Johnson, 1981), which de-

creases nonlinearly with increasing pressure, i.e. ∂η/∂P < 0. The viscosity effect on

dynamic void growth was derived by Cortés (1992a) for isotropic material to be

Rdd =
4

9
ησy0

1− ϕ0

ϕ0

ε̇. (4.2.6)

Therefore, the empirical parameter k2 in Eq. (4.2.1) is better be a function of pressure

P , i.e. k2 = 4
9
ησy0

1−ϕ0

ϕ0
and ∂k2/∂P < 0.

It should be noted that, the pressure dependence studied in here is for pressure of

less than 15 GPa, i.e. before homogeneous dislocation nucleation is activated. Homo-

geneous dislocation nucleation process would lead to a dramatic change in dislocation

density (Austin and McDowell, 2012, figure 9b), and potentially increases or decreases

the pressure dependence of spall strength significantly.
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5. PREDICTING STATISTICS OF INTERGRANULAR DAMAGE

IN POLYCRYSTALS

In this chapter, we seek to analyze the dominant factors governing experimental ob-

servation of the correlation of intergranular damage localization and GB misorientation

angles (Wayne et al., 2010; Brown et al., 2015) in a systematic manner. We singled out the

effect of cohesive GB strength on this intergranular damage localization study. The details

of the method and the results are to be provided in the following sections.

5.1 Methodology

In order to evaluate the roles of inherent GB weakness versus the mechanics of GBs be-

hind observed trends in the preferential localization of intergranular damage, we single out

the mechanics (i.e. elasticity and plasticity) of neighboring grains by explicitly modeling

individual GBs as perfectly bonded interfaces, i.e. without any intrinsic local degradation

of strength associated with various GB characteristics.

5.1.1 Idealized BVP for high-throughput analysis

In order to study the damage localization preference we confine our attention to a

simplified bicrystal structure (see Fig. 5.1), rather than modeling the full polycrystal mi-

crostructure. As such, the effects of misorientation across GBs can be isolated from the

effects of GB alignment with respect to loading direction, which are also known to be sig-

nificant in certain loading cases (Krishnan et al., 2015; Fensin et al., 2014). In particular, it

has been observed from incipient spallation shock loading experiments of polycrystalline

The present chapter is based on a publication by Nguyen et al. (2019).
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copper that the population of GBs on which voids first nucleate is primarily those GBs

whose interface normal direction is closely aligned with the direction of shock wave prop-

agation (Fensin et al., 2014). Therefore, we focus our attention on those perpendicular

GBs that are most susceptible to incipient failure.

Figure 5.1 shows a schematic of the two-dimensional (2D) model of a GB structure

loaded under conditions of macroscopic uniaxial tensile strain together with microscopic

plane strain employed within this work. The length and height of the domain of the GB

structure are L = 120 µm in the X direction and H = 120 µm in Y direction, respectively.

For all cases investigated in this work, the GB is at the mid-thickness of the specimen with

the corresponding interface normal, ngb, aligned along the X direction. The GB interface

is modeled as having the same inherent strength as material points in the grain interior.

In other words, we introduce no ad hoc rules to represent an a priori-assumed inherent

interface weakness. The structure is meshed with 240 elements of Abaqus C3D8R type,

comprising a layer of one element throughout the thickness along the out-of-plane direc-

tion (Z direction). To achieve plane strain conditions, kinematic constraints are applied to

V

 11 1F   X XF I e e

X

Y

(I) (II) 11F


Mesoscale

Macroscale

Fig. 5.1: On the left, a schematic of a plate impact experiment with a target plate being
impacted by a thinner flyer plate at an impacted velocity V . On the right, an idealized GB
structure near the spall plane with the GB interface marked as a dashed line. Displacement
is prescribed on the boundary of the GB structure in order to obtain macroscopic uniaxial
strain at constant engineering strain rate.
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the front (Z = +) and back (Z = −) nodes, such that the total out-of-plane strain is zero.

As a result of this plane strain condition, the combination of elastic and plastic strain in the

Z direction is zero, while plastic slip in the out-of-plane direction is generally non-zero.

Twelve elements are equally spaced vertically across the specimen height (Y direction),

while the mesh is more refined with 20 elements along the X direction and biased such

that the element length is reduced to 1.47 µm near the interface to capture the stronger

gradients in the vicinity. A mesh convergence study was performed to determine that this

particular mesh resolution is adequate, i.e. doubling the total number of elements resulted

in less than a 3% change in our quantities of interest (εf), which will be described further

in the subsequent section.

Due to the high aspect ratio between the diameter and the thickness of a target plate

in a plate impact test, the deformation at a material point inside the plate can be simply

approximated as uniaxial deformation (Lloyd et al., 2014a; Austin and McDowell, 2012),

i.e. F = I+(F11−1)ex⊗ex, with F11 < 1 during the compression phase and with F11 > 1

during the tension phase caused by interaction of rarefaction waves. These boundary con-

ditions imposed on each GB BVP were selected in order to enforce “macroscopic” uniaxial

deformation across the GB. This condition is nominally and macroscopically achieved for

an isotropic solid under shock compression and rarefaction because of the inertial resis-

tance to transverse motion and the alignment of the polarization of the longitudinal wave

with the direction of wave propagation. In actuality, the anisotropy of the individual crys-

tals will lead to local wave dynamics which do not precisely satisfy this condition locally.

Including details of actual wave dynamics at a grain boundary would require a full poly-

crystal calculation, such as in Moore et al. (2018). On the other hand, we are interested in

understanding the extent to which grain boundary damage can be understood through sim-

ple approximations. Consequently, we make the approximation of uniaxial strain imposed

along the boundaries of each GB, recognizing that this is a simplified representation of

74



the full in-situ response of a GB. Furthermore, because the BVP incorporates elastoplastic

deformation, the compression phase may enhance the effect of plasticity (incompatibility)

on the damage localization (e.g. via dislocation/GB interaction). However, we further

simplify the analysis by addressing only the deformation associated with tensile loading,

while acknowledging that the observed effects of plasticity on damage localization may be

modified in a full compression/tension cycle. The value of the axial (engineering) strain

rate is Ḟ11 = 106s−1 throughout all calculations discussed here. While there are not direct

measurements of the stress history from experimental efforts at incipient spall, Escobedo

et al. (2011) performed plate impact experiments on polycrystalline copper impacted by a

Quartz projectile at approximately 80 m/s and estimated spall strengths of approximately

1.3-1.4 GPa for copper and the resulting strain rates. Perez-Bergquist et al. (2011) per-

formed similar experiments of polycrystalline copper flyer impacting a copper bicrystal

at 170 m/s and observed orientation dependence of the ensuing void nucleation. While

they did not provide an estimate of the stress magnitudes, ? simulated these experiments

with a single crystal model that did not include damage nucleation and showed peak ten-

sile stresses on the order of 2GPa and strain rates of 106-107 s−1. From those results, one

can infer the rate of tensile stress accumulation of approximately 25 GPa per microsecond

during interaction of the rarefaction waves. Turley et al. (2018) provided an estimate of

tensile strain rates and spall strength (order 2GPa) based on analysis of velocimetry from

several single crystal copper plate impact experiments. Advances in in-situ diagnostics,

such as diffraction to measure lattice dimensions, will lead to a more detailed assessment

of the stress history in the future. In the meantime, the evolution of deformation and stress

provided by our simple loading conditions is consistent with that observed in the present

literature; within our calculations, the rate of tensile stress accumulation is on the order of

100 GPa per microsecond approaching spall strengths of the order of 3 GPa

The GB structures are loaded in uniaxial tensile strain through the prescription of the
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following boundary and initial conditions. Nodes along the left-most edge (X = 0) are

restrained such that VX (X = 0, t) = 0. Nodes along the right-most edge are pulled in

tension at constant velocity such that VX(X = L, t) = Ḟ11L. The vertical velocities

along these edges (X = 0 or X = L) are unconstrained. The bottom and top edges

(Y = 0 and Y = H , respectively) are restrained to ensure macroscopically uniaxial strain

conditions, i.e. VY(Y = 0, t) = VY(Y = H, t) = 0, while the longitudinal velocities along

these edges remain unconstrained. In order to avoid an artificial tensile wave emanating

from the right-most boundary at t = 0 and to minimize artificial local wave dynamics

throughout the domain, we apply an affine initial velocity field v (X, t = 0) = Ḟ ·X. This

initial condition is consistent with a quasi-uniform and quasi-steady deformation. These

loading constraints idealize the nearly constant strain rate at the spall plane that has been

commonly observed in spallation studies (e.g. Grady, 1988).

In-situ grain boundaries are likely affected by two scales of inertial response. Mi-

croscopically, there is an inertial resistance of the material surrounding nucleated voids,

which serves to impede or accentuate their instantaneous growth rate. Mesoscopically, the

material inertia affects the local wave dynamics in the interaction zone of the dominant

macroscopic wave. The GB BVP used here includes the microscopic effects of inertia

associated with damage accumulation through the constitutive equations which include

pertinent terms in damage evolution (Nguyen et al., 2017), while omitting the mesoscopic

inertia consistent with our simplified representation that excludes local wave dynamics. In

other words, the microinertia of void growth is not affected by the manner of the deforma-

tion (i.e. whether it is induced by homogeneous loading or local wave dynamics).

A further departure from the in-situ polycrystal behavior is made by our analysis, in

that we omit the shock induced hardening associated with an initial compression wave. In-

cluding these effects require a consideration of a large range of initial compressive shock

wave magnitudes. We believe that the trends and conclusion obtained from the present
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analysis is important as it isolates the elastic and plastic mismatch across gain bound-

aries without adding further complications of differing levels of post-shock slip resistance;

while this would be an interesting aspect to isolate and study in its own regard, it is outside

the scope of the present investigation.

Crystallographic orientations were assigned (either randomly or selectively) in each

grain to obtain misorientation across the GB; details of crystallographic orientation are

given in section 5.2. We have used numerical simulations of this BVP with the help of an

appropriate constitutive model to perform a high-throughput analysis generating sufficient

statistics to understand the role of the mismatch in elastic and plastic properties on the

process of damage localization at GBs.

5.1.2 Constitutive model selection

Predicting the failure of polycrystals subjected to high strain rate requires an appropri-

ate plasticity and damage model to account for relevant physics and crystallography. Clas-

sical mean-field micromechanics, such as Mori-Tanaka self-consistent (Qu and Cherkaoui,

2006) and viscoplastic self-consistent (Lebensohn and Tomé, 1993), are not capable of the

large stress and strain gradients that develop near a GB without further enhancements to

consider nearest neighbor interactions. These methods are indeed attractive for bulk re-

sponse of polycrystals subject to fairly uniform deformation fields, but are poor choices

for localization problems. A crystal plasticity (CP) approach can predict a more accurate

stress distribution in the vicinity of a GB, but is alone incapable of predicting damage ini-

tiation and propagation. Focusing on the inherent cohesive strength of GB, CP together

with the cohesive zone approach (Clayton, 2005; Vogler and Clayton, 2008) can be used

to model interface debonding. However, such models (Clayton, 2005; Vogler and Clayton,

2008) are incapable of modeling transgranular void growth, which is commonly observed

in experiments (Escobedo et al., 2011; Perez-Bergquist et al., 2011), and a priori assume
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that there is an intrinsic strength associated to GBs. The approach of using CP with ex-

plicitly resolved individual voids (Lebensohn et al., 2013) is appealing, but the associated

computational cost is not feasible for the present desired high-throughput study. Therefore,

we use the current framework for modeling dynamic void growth within single crystals.

In addition to calculations performed in Abaqus/Explicit employing the CPD-FE model,

a smaller subset of quasi-static calculations were performed in Abaqus/Standard using its

anisotropic elasticity model for the purpose of isolating the effects of crystal elasticity

from elastoplasticity.

5.2 Results and discussion

5.2.1 Comparison of model with experiments: the role of mechanics as distinct from
GB disorder

Motivated by the experimental observations of GB characteristics (e.g. misorientation

angle) associated with preferential nucleation and growth of damage during incipient spal-

lation experiments (Wayne et al., 2010; Brown et al., 2015), we use the GB structure setup

described in the previous section and Fig. 5.1 to explore the role of elastic and plastic

anisotropy in discerning between GBs that are more or less favorable for damage localiza-

tion.

In order to focus on the effect of GB misorientation on damage localization, the effects

of initial distributions of material substructure (i.e. dislocation density and void distribu-

tion) are suppressed by assigning an identical and uniform distribution of substructure for

all GB structures (see Table 5.1 for detail), and identical crystal elastic stiffness (as written

in the crystallographic basis), plasticity and damage parameters (see Nguyen et al. (2017)

for detail).

In Table 5.1, the spacing of void nucleation sites, `v = 30 µm, is (coarsely) approx-

imated from the dimple spacing on the fracture surface of spalled single crystal copper
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Table 5.1: Various initial microstructural parameters utilized in the current CPD-FE pre-
dictions. The values of all other model parameters not explicitly reported here are provided
in Nguyen et al. (2017).

Microstructural parameter Symbol Value Unit

Initial mobile dislocation density %
(α)
m,0 50 µm−2

Initial immobile dislocation density %
(α)
im,0 50 µm−2

Spacing of void nucleation sites `v 30 µm
Initial porosity ϕ0 0.005 −

identified from Perez-Bergquist et al. (2011). The initial porosity, ϕ0 = 0.005, is set so as

to obtain an approximate single crystal spall strength Rcr ∼ 2 GPa with the given initial

dislocation density (see Nguyen et al. (2017)). Rcr is an approximation for incipient spall

strength, which was measured in Turley et al. (2018) to be ∼ 2 GPa for single crystal

copper.

We define the macroscopic strain at incipient failure, εf, as the value of axial engineer-

ing strain recorded when any point within the specimen reaches the coalescence porosity

(i.e. ϕmax = ϕcr). The coalescence porosity, ϕcr = 0.5, is chosen as an upper bound for

sufficient level of local damage that was detected (by EBSD) in Brown et al. (2015), where

disk and needle-shaped voids were observed on the boundary, implying the presence of co-

alesced voids. We note that the trends observed from the present investigation, which are

presented in the following sections, are not highly sensitive to the value of coalescence

porosity. We associate smaller values of εf with an increased likelihood for the particular

GB structure to develop damage localization under spall conditions.

Figure 5.2 shows contour plots of the porosity field at incipient failure for five GBs

of various misorientation angles (θ). The first four columns correspond to a particular

GB structure formed by initially aligning the [001] and [110] crystal directions with the

respective X and Z (out-of-plane) axis in the specimen coordinate system for both crystals.
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Then grain (I) is rotated by an angle θ about the Z axis. The last column corresponds

to a Σ3{111} twin boundary (TB). Each contour plot corresponds to the state when the

local porosity first reaches the coalescence porosity, which corresponds with the incipient

failure strain, εf, whose value is indicated at the bottom of each contour plot. In all of

the examined GBs, though porosity evolves inside either (or both) of the grains, porosity

localizes at the interface, which is in agreement with experimental observations (Wayne

et al., 2010; Brown et al., 2015). Noting that all positions within each grain have the same

initial conditions and properties, this localized failure is solely due to the elastic and plastic

incompatibilities across the GB.

In these cases, the damage more dominantly accumulates within one grain, particularly

for the θ = 45◦ and non-twin θ = 60◦; this behavior is in agreement with experimental

observation (Krishnan et al., 2015). Furthermore, the strain at incipient failure, εf, varies

with respect to misorientation angle. In the leftmost four columns (cases with the same

[110] rotation axis), the strain at incipient failure reduces with increasing misorientation

angle. However, given the same misorientation angle of 60◦, the strain at incipient failure

is considerably larger (i.e. higher GB resistance to failure) for the TB than for the non-

twin 60◦ GB. This result implies that misorientation angle by itself is not an adequate GB

characteristic to predict intergranular damage localization.

In addition, the damage tends to localize toward the upper or lower boundaries of the

bicrystal. This is largely an artifact of the anisotropy of the crystals. The elastic moduli

coupling between axial and transverse deformation (e.g. C61 and C51 in the specimen ori-

entation) are generally non-zero and different between the two grains. For the cases in

Fig. 5.2, C61 in grain (I) is roughly 3-15% of C11 and zero in grain (II) (right) for the non-

twin structures, and approximately zero in both grains for the Σ3{111} case. Therefore,

imposing zero vertical displacement on upper/lower boundaries as well as plane strain

boundary conditions induces a small (but non-negligible) stress concentration at either
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the upper or lower interface edges. This slightly biases GB failure toward those edges.

Note that we carried out an additional set of calculations (not shown here) utilizing pe-

riodic boundary conditions on all lateral boundaries. These periodic simulations fully

suppressed the small bias for damage localization towards the upper/lower boundaries

shown in Fig. 5.2. That said, the general trend of the dependence of GB misorientation on

conditional probabilities shown in Fig. 5.4 was fairly insensitive to the precise nature of

lateral boundary conditions, i.e. rigid displacement constraints versus periodic boundary

conditions.

In order to better understand the statistical nature of intergranular spall failure, a large

suite of 2,000 simulations, each with randomly chosen orientations for grain (I) and (II)

shown in Fig. 5.1, was conducted. The orientations for each crystal were randomly se-

lected from a uniform distribution over all possible orientations in SO(3), leading to a

Mackenzie distribution of all possible distinctive disorientation angles over the interval

[0◦, 62.8◦], for materials with cubic symmetry (Mackenzie, 1958; Handscomb, 1958).

Each of the 2,000 GB structures was loaded under tension to an applied strain of 20%,

which roughly corresponds to the total strain imposed during incipient spall failure.

[001] interface normal on (II): & [110] rotation axis on (I) Σ3{111}
θ = 60◦θ = 15◦ θ = 30◦ θ = 45◦ θ = 60◦

εf = 0.23 εf = 0.19 εf = 0.17 εf = 0.16 εf = 0.47

Fig. 5.2: Porosity contours at incipient failure when the bicrystal is subject to plane strain
constraints. Axial strain is written at the bottom of each contour. The first four structures
correspond to [001] interface direction and [110] rotation axis.
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The Bayesian conditional probability to find a GB with incipient failure prior to reach-

ing axial strain εapp = 0.2, given a misorientation angle of θ was computed as P (εf < εapp |θ ) =

P (θ |εf < εapp ) × P (εf < εapp) /P (θ) from the results of the 2,000 simulations. By com-

puting the conditional probabilities, any bias associated with the nonuniform distribution

of misorientation angle is eliminated (Wayne et al., 2010; Brown et al., 2015). The axial

engineering strain εapp is a limit that (while selected somewhat arbitrarily) is indeed in

the reasonable range of magnitudes for tensile strain associated with incipient spall (yet,

perhaps not complete failure) of polycrystalline copper. In order to enable direct compar-

ison with the experimental results of Brown et al. (2015), we use the same bins of 5◦ in

the interval [0◦,65◦] used in their study for our calculations. The margin of error for 95%

confidence interval is also calculated for each bin of misorientation angle. The margins of

error are computed by simply multiplying the z-score (Z∗ = 1.96 for 95% confidence in-

terval) by the standard error of the statistic, i.e.
√

pbin(1−pbin)
nbin

, where nbin is the GB count in

each bin, and pbin is the proportion that satisfy the condition εf < εapp, of the correspond-

ing bin (Lohr, 2009). This margin of error maximizes at pbin = 0.5 and increases as the

sampling size in each bin decreases (e.g. when misorientation approaches upper and lower

[001] interface normal on (II): & [110] rotation axis on (I)
θ = 15◦ θ = 30◦ θ = 45◦ θ = 60◦

εf = 0.25 εf = 0.21 εf = 0.19 εf = 0.19

Fig. 5.3: Porosity contours at incipient failure when the bicrystal is subject to 3D periodic
boundary condition instead of plane strain constraints. Axial strain is written at the bottom
of each contour.
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Fig. 5.4: Conditional probability from experiment and simulations: (blue) probability
to find damage localized at GB at given misorientation angle θ, experimental result for
as-received material, reproduced here from Brown et al. (2015); (maroon) probability to
find a GB with εf < εapp at given misorientation angle θ, simulation result from 2000
randomly generated misorientation structures; (yellow) probability to find a GB with εf <
εapp at given misorientation angle θ, simulation result from 2,000 randomly generated
misorientation structures with 74% of Σ3 TBs.

limits in Mackenzie’s distribution). The same margin of error concept is used throughout

the chapter.

The resulting conditional probabilities (in maroon) are plotted in Fig. 5.4 and com-

pared with corresponding observations from experiments of Brown et al. (2015) (in blue).

The margin of error is plotted as an error bar for each bin. Differences in the absolute

magnitudes of these conditional probabilities between experiment and simulation are ex-

pected due to the position of the examined cross section area within the polycrystalline

experimental specimen, i.e. the volume of the material subjected to tensile loading sur-

rounding the precise spall plane. A larger examined volume results in a smaller fraction

of damaged boundaries ( 1164
50438

= 0.0231 for data set reproduced in Fig. 5.4 Brown et al.

(2015)). Therefore, we focus not on specific magnitudes, rather similarities or differences
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in the trends observed from the previous experiments and these results.

Despite the idealizations associated with the simulated GB structures, including uniax-

ial strain boundary conditions, neglecting initial shock compression, and the omission of

any variations in GB cohesive strength as a function of GB character, the CPD-FE model

reproduces most of the trends observed in the experiments, adding to the credibility of

the model’s capabilities. As seen in Fig. 5.4, the conditional probability for experiments

and model is negligible at small misorientation angle (θ ≤ 5◦) and continues to increase

up to θ ≈ 40◦. The trends in P(εf < εapp |θ ) increasing with misorientation angle in the

interval 0 ≤ θ ≤ 40◦ imply an increased likelihood of damage localization with respect

to misorientation angle over this range, which is consistent with the conclusions reported

by both Wayne et al. (2010) and Brown et al. (2015). The agreement between our model,

which makes no explicit accounting for inherent GB weakness, and the experimental ob-

servations suggests that the preferential selection of GBs for the development of ductile

damage over the range of misorientation angle 0 ≤ θ ≤ 40◦ can be explained by mechan-

ics alone. In other words, the mismatch in elastoplastic properties across the GB, rather

than inherent weakness attributed to GB disorder, may effectively define the role of a GB

in ductile damage processes. This plausible dependency is analyzed in greater detail in

subsection 5.2.3 of the chapter.

On the other hand, as the misorientation angle increases through the range 50◦ ≤

θ ≤ 62.8◦, the conditional probability of failure from the simulation results does not

exhibit the same decline as observed in experimental data. Based on results from their

incipient spall plate impact experiments on polycrystalline copper, Escobedo et al. (2011)

report that the most prevalent GB structure with a misorientation θ ≈ 60◦ is the Σ3 {111}

TB and that it is indeed more resistant to the development of damage than other, less

prevalent, GBs with θ ≈ 60◦. Consequently, they conclude that damage preferentially

localizes at other high angle GB (c.f. figure 11 in Escobedo et al. (2011)). The remarkably
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higher resistance to intergranular damage of Σ3 {111} TB as compared to other GBs was

also reported in various experimental observations (Cerreta et al., 2012; Escobedo et al.,

2013; Yang et al., 2016). There is an ongoing debate on whether the GBs’ characteristics

or mechanics is the dominant factor for the relatively high resistance (to intergranular

damage) of Σ3 {111} TBs. It is plausible that this effect is associated with the relatively

small GB energy for Σ3 {111} TBs in comparison to other high angle GBs (Wolf and

Phillpot, 1989), which would manifest as a higher coherent GB strength unaccounted for

in the present modeling framework. However, it is also plausible that this observation

can be described by mechanics of the elastoplasticity in the vicinity of the TBs due to

the continuity in elastic stiffness (in interface normal and interface in-plane directions)

and maximum Schmid factor along the interface normal direction. Under uniaxial loading

across the interface, this continuity in properties leads to more uniform elastic and plastic

deformation fields across the Σ3 {111} TBs than for general GBs of 60◦ misorientation

angle.

Further support of these observations are found in the literature. GB characteristics

such as GB energy and free volume were concluded to be insignificant in determining

spall strength from molecular dynamics simulations (Fensin and Hahn, 2017). Σ3 {111}

TBs were shown to be able to dissociate and/or transmit dislocations during interaction

due to their local mechanics compatibility across the GB (Dewald and Curtin, 2007; Jin

et al., 2008). Escobedo et al. (2013) and Cerreta et al. (2012) provide related experimental

observations of this compatibility effect on damage localization when comparing the lat-

tice misorientation surrounding separation sites of a high-angle GB. In their experiments,

non-special high-angle GBs led to intergranular damage, while Σ3 {111} TBs resulted

in transgranular damage. They postulated that the observed relationship is attributed to

the relative difference in line defect/interface interactions, e.g. dislocation pile-up versus

transmission, rather than on the mismatch in anisotropic elastic or plastic properties.
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From our simulation results we observe that the strain at incipient failure, εf, varies

widely for all GBs with θ = 60◦, depending on the rotation axis. The pertinent simulation

results are summarized in Table 5.2, where it is clear that εf for Σ3 {111} is more than

double the average value for general cases of θ = 60◦. In other words, even in our purely

mechanics framework that does not incorporate inherent GB energy, Σ3{111} TBs are

significantly more damage resistant than all other 60◦ GBs.

The structures studied here include randomly generated orientations such that there is

no preferential occurrence of Σ3 {111} TBs (or any other special GB). On the other hand,

the actual polycrystalline specimens naturally exhibit a larger proportion of the GBs with

θ ≈ 60◦ represented by the special Σ3 {111} boundaries (more than 60% in Escobedo

et al. (2011) and more than 35% in Brown et al. (2015)). Consequently, our conditional

probabilities depicted by maroon bars in Fig. 5.4 do not capture the influence of the more

resistant Σ3 {111} TBs near θ ≈ 60◦. However, our inspection of the mechanical behavior

of these special boundaries relative to random GBs of the same misorientation is entirely

consistent with a mechanics-based discrimination of GBs preferential for the development

of damage.

We consider again the analysis leading to the conditional probabilities indicated by

maroon bars in Fig. 5.4, but here take into account the special Σ3 TBs as follows. In the

FCC polycrystalline copper material used (as-received) in the experimental investigation

of Brown et al. (2015), approximately 74% of GBs with θ ∼ 60◦ were determined to be

Σ3 TBs (Brown et al., 2015). According to Brandon’s criterion (Brandon, 1966), GBs

of θ ≈ 60◦ ± 8.66◦ can be considered as Σ3 TBs in FCC materials. Correspondingly,

we have introduced the effects of this more prevalent GB by randomly selecting 74% of

the GBs in our simulation suite that satisfy Brandon’s criterion to be replaced with Σ3

TBs. By repeating the analysis of conditional probabilities on this modified population of

simulation results, the Bayesian probability model predictions are brought into remarkably
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Table 5.2: Comparison of strain at incipient failure for a single crystal of loading orienta-
tion <111>, a Σ3 {111} TB, a pure tilt GB and 100 random GBs each with θ = 60◦.

Structure θ εf

Single crystal 0◦ 0.53
Σ3 {111} TB 60◦ 0.47
Pure tilt with respect to <110> 60◦ 0.15
100 random rotation axes 60◦ 0.18 ± 0.03

good agreement with the experimental observations (see yellow bars in Fig. 5.4). This

agreement indicates that the entire trend of Bayesian probability observed in the Brown

et al. (2015) experiments can be captured by elastoplastic mechanics without the need to

invoke the concept of inherent GB weakness or disorder. Note that this may not necessarily

be true for alloys, for example, with significant segregation of impurities to the GBs.

5.2.2 Decomposition of misorientation into tilt and twist

While the previous section considered correlations in the crystallographic character-

istics of randomly selected GBs, here we turn attention to the relationships observed by

controlled variation of tilt and twist angles. The geometry of a general GB can be defined

by no fewer than five macroscopic degrees of freedom (DOFs), including three DOFs rep-

resenting the rotation that brings both grains into a single crystallographic alignment (e.g.

three Euler angles or two components of a rotation axis plus the misorientation angle θ),

and two additional DOFs to represent the interface normal direction (Wolf and Yip, 1992;

Sutton and Balluffi, 1995; Lejček, 2010). For example, pure tilt and twist GBs correspond

to those whose axis of relative rotation is aligned perpendicular or parallel to the GB nor-

mal direction, respectively. For low misorientation angles (i.e. less than 15◦ (Brandon,

1966)), tilt and twist GBs can be described by particular configurations of edge and screw

dislocations, respectively. Thus, relating GB behavior to a single characteristic such as
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total misorientation angle may mask important relationships.

In general, any misorientation can be decomposed into a nonunique combination of tilt

and twist. One decomposition of misorientation into tilt and twist is expressed as

exp [θn̂] = ∆R = RIIR
T
I = exp [θtwstn̂twst] exp [θtiltn̂tilt] , (5.2.1)

where n, ntilt and ntwst correspond to the rotation axes for the total GB misorientation

rotation, tilt, and twist angles, θ, θtilt, and θtwst, respectively. The twist axis, ntwst, is aligned

with the GB normal, and the tilt axis is orthogonal, i.e. ntilt ·ntwst = 0. Note that we use the

·̂ operator to denote the skew tensor whose axial vector is given by the argument, ·. RI and

RII are the (sometimes referred to as “active”) rotation tensors from specimen coordinate

system to the corresponding crystal (I) and (II) coordinate systems. Due to the cubic

symmetry of FCC, there is more than one equivalent tilt/twist decomposition for the same

physical GB. To eliminate this ambiguity, ∆R is selected to be the disorientation (which is

defined as the ∆R with the minimal rotation angle around an axis in the fundamental zone

(FZ) (Mackenzie, 1958)), so that the tilt/twist decomposition is unique for each physical

GB. For example, the decomposition of Σ3 TB using Eq. (5.2.1) results in θtwst = 60◦ with

ntwst = 1√
3
[111] and θtilt = 0◦.

A statistical analysis of the correlation between misorientation, twist, tilt, and εf for the

set of 2,000 GBs introduced in subsection 5.2.1 is presented in Fig. 5.5. The plots along the

diagonal of Fig. 5.5 are the kernel density estimates of the probability distribution function

for each corresponding measure (using a normal distribution). The scatter plots below the

diagonal show possible correlations between each pair of corresponding measures. A

linear regression is superposed over the top of each scatter plot with a red line to indicate

trends. The Spearman correlation coefficient (rs) is printed above each scatter plot to

characterize the monotonic correlation of the particular pair of measures.
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Fig. 5.5: Kernel distribution estimates (on the diagonal) of misorientation, twist, tilt and
εf. Scatter plots (below diagonal) with superimposed linear regressions and Spearman’s
correlation coefficients for the corresponding row and column measures.

As can be seen clearly in Fig. 5.5, the distributions of all geometric parameters (misori-

entation, tilt and twist) are nonuniform as a result of the cubic symmetry. The distribution

of misorientation angle is approximately the Mackenzie distribution for unique disorien-

tation within the FZ (Mackenzie, 1958). The upper and lower limits of tilt and twist are

the same as those of misorientation, due to the choice of the minimal rotation decompo-

sition. The scatter plots of tilt and twist angle with respect to misorientation angle each

exhibit the expected strong relationship (cf. Eq. (5.2.1)) between these descriptors of the
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relative rotation. While tilt and twist are orthogonal, and hence independent character-

istics in randomly constructing a GB, they are strongly correlated when subjected to the

constraint of computing relative disorientation within the FCC FZ. Consider, as the twist

angle increases towards its upper limit, the range of viable tilt angles associated with a total

disorientation within the FZ necessarily decreases. This relationship is clearly exhibited

by the non-linear upper boundary of the range of tilt angles and the apparent correlation

with twist angle.

Consistent with the previous sub-section 5.2.1, Fig. 5.5 shows that the strain to fail-

ure, εf, is inversely proportional to the misorientation angle; as the GB misorientation is

increased it becomes more susceptible to the growth of voids and localization of damage.

However, the decomposition of the GB misorientation into tilt and twist angle enables a

more specific observation, namely that it is the GB tilt angle which is dominantly related

to the apparent strength of a GB.

This observation is quantified by the order of magnitude difference between the Spear-

man correlation coefficients, which indicate negligible correlation between εf and twist

(rs = 0.02), while indicating a moderate monotonic relationship between εf and tilt (rs =

−0.35).

Recalling that Σ3 TBs can be constructed by a pure twist, i.e. θtilt = 0◦, their high

strain at incipient failure (Table 5.2) is entirely consistent with our mechanics-based as-

sessment of GB strength. In addition, these results suggest that stochastic nature of the

relationship between the misorientation angle and the liklihood for development of dam-

age on a particular grain boundary apparent in Fig. 5.4 and in Brown et al. (2015) may be

less ambiguously understood through relationships with twist and tilt. In other words, the

misorientation angle, without consideration of rotation axis, is an insufficient description

of GB character in the context of ductile damage. The higher Spearman coefficient relat-

ing tilt angle and εf (rs = −0.35) as compared to that relating misorientation angle and εf
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(rs = −0.27), combined with the effectively uncorrelated relationship between twist angle

and εf supports our conclusion that the tilt angle is a better GB descriptor than misorien-

tation angle in characterizing damage localization. However, there is only a moderate, i.e.

not a strong, quantitative correlation between the tilt angle and GB resistance to damage.

Recall that we have chosen to use a characterization of the GB that is based on the dis-

orientation (i.e. smallest misorientation within FZ of FCC symmetry) decomposed into

tilt and twist components. This characterization is unambiguous on account of Eq. (5.2.1)

for the decomposition of a disorientation. However, a given characterization of GB in this

approach could equally be described by a symmetrically equivalent rotation that is not the

disorientation. Some such equivalent relative orientations may be decomposed using our

tilt/twist decomposition into a description that is actually a smaller tilt angle. For example,

the symmetric twin boundaries Σ5, Σ7, Σ9, and Σ11 are all described using Eq. (5.2.1) as

pure tilt boundaries, yet they are equivalently described as a pure twist of 180◦ about the

tilt boundary normal. Thus, it is plausible that the observed correlation would be stronger

if one considered a “minimum tilt angle” description of each GB; however, we prefer to

use the more canonical description of the GB and accept that the correlation with tilt angle

is only moderate in this regard.

5.2.3 Key governing factors: elastic and plastic anisotropy

The agreement between our modeling results and the previous experimental observa-

tions (c.f. Fig. 5.4) implies that the mechanics at interfaces may be sufficient to explain the

preferential growth of damage at certain types of GBs without invoking inherent GB disor-

der or weakness. This subsection aims to provide a better understanding of the underlying

interfacial discontinuity in elastoplastic properties that gives rise to these GB relationships,

by further exploring the role of the mismatch in elasticity and plasticity across GBs and

the corresponding relationships with observed damage localization.
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In our framework, the main driving force for ductile void growth is the hydrostatic

stress, while the inertia associated with mass surrounding a void and the matrix flow stress

provide the resistance to void growth (Nguyen et al., 2017). Therefore, at an equivalent

state of macroscopic, or far-field stress, a higher local fluctuation in the pressure asso-

ciated with a stress concentration factor (SCF) will promote early void growth. Here

we define SCF as the maximum hydrostatic stress near the interface normalized by the

volume-averaged mean hydrostatic stress. Prior to any appreciable void growth, the SCF

for a GB structure is determined based on the mismatches in elastic stiffness and the ease of

plastic slip across the GB. Although plastic slip is isochoric, the associated heterogeneous

deformation affects the distribution of stresses throughout the structure, thus modifying

the pressure distribution.

It is convenient to introduce a parameterization of the mismatch in anisotropic elastic-

ity similar to Dundur’s parameter (Schmauder and Meyer, 1992). In this work, we quan-

tify the mismatch in anisotropic elasticity in a given direction, β, across a GB interface

according to

ηβ = 2

∣∣∣C(I)
β − C

(II)
β

∣∣∣
C

(I)
β + C

(II)
β

, (5.2.2)

where superscripts (I) and (II) refer to respective crystals, and β is the direction of inter-

est. The mismatch factor is a function of both misorientation and the elastic coefficients

(i.e. C11, C12, C44). The hydrostatic SCF depends nonlinearly on the stiffness incompabil-

ity factors in each specimen direction, ηX, ηY and ηZ. The three incompatibility factors in

specimen directions, ηX, ηY and ηZ, all have the same order of magnitude. Among the three

factors, ηX corresponds to the variation in axial stress normal to the GB. This factor, i.e. ηX,

is similar to Dundur’s parameter, which uses the directional Young’s modulus to quantify

the elasticity mismatch of a composite consisting of two different isotropic elastic mate-

rials (Schmauder and Meyer, 1992). Dundur’s parameter is frequently applied to indicate
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the relative likelihood for crack propagation along a composite interface. Our selection of

the crystal stiffness across the interface, rather than Young’s modulus, is motivated by the

macroscopic uniaxial strain conditions associated with incipient spallation in plate impact

experiments. The directional stiffness coefficient can be computed by rotating the fourth-

order elastic stiffness tensor from the crystal basis to specimen basis (Bower, 2009) and

selecting the appropriate coefficients. Application of an arbitrary twist, c.f. Eq. (5.2.1), to

either of the two crystals does not affect the uniaxial stiffness along the interface normal

direction, thus demonstrating the independence of ηX on GB twist angle.

We choose a measure of plasticity mismatch that is in a close analogy to the elasticity

counterpart. Here, a normalized Taylor factor (Taylor, 1938) difference between the two

crystals is used, i.e.,

∆MT/MT = 2

∣∣∣M (I)
T −M

(II)
T

∣∣∣
M

(I)
T +M

(II)
T

, (5.2.3)

where M (I)
T and M (II)

T are Taylor factors in each crystal computed for loading normal to

the GB. The Taylor factor is associated with the relative ability for a crystal with a par-

ticular orientation relative to the axis of loading to accommodate an imposed deformation

via plastic flow, and can be used to predict the relative strength of textured polycrystals.

An absolute Taylor factor difference, i.e.
∣∣∣M (I)

T −M
(II)
T

∣∣∣, was used in (Lieberman et al.,

2016) to quantify the plasticity mismatch in polycrystals. Our choice of normalizing the

Taylor factor difference is motivated by Dundur’s parameters, which intend to quantify the

relative change rather than the absolute value change of stress across the interface. Our

Taylor factor calculations represent the case of triaxial incompressible plastic deforma-

tion assuming equal plastic strain rates in both directions orthogonal to the grain boundary

normal (Bunge, 1970; Przybyla et al., 2007). This assumption leads to the independence

of Taylor factor on the crystallographic directions aligned with the specimen directions Y

and Z, such that ∆MT/MT is independent of twist angle.
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Scatter plots in Fig. 5.6 show the dependence of SCF and εf on ηX, ηY and ∆MT/MT. A

red line corresponding to a linear regression is superposed over each scatter plot along with

the Spearman correlation coefficient to better visualize and quantify possible relationships.

The SCF is calculated using crystal plasticity without damage at 1% axial engineering

strain.

Fig. 5.6: Scatter plots with superimposed linear regressions and Spearman’s correlation
coefficients for the relationship between εf , SCF, elasticity and plasticity mismatches.

The order of magnitude difference between the Spearman correlation coefficients in

Fig. 5.6 implies that SCF and εf are more strongly correlated with ηX and ∆MT

MT
than ηY. ηY

is selected as representative of both of the lateral elasticity mismatch parameters ηY and

ηZ and the apparent lack of correlation between failure strain and ηY is similarly exhibited

by ηZ. This result indicates that, perhaps expectedly, the elasticity mismatch in directions

transverse to the GB normal are unimportant to the SCF and the strain to failure. Fur-

thermore, the similarity between Spearman correlation coefficients relating SCF with ηX

(rs = 0.32) and ∆MT
MT

(rs = 0.31) implies that elasticity and plasticity incompatibilities
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could equally explain the variations in the computed SCF for copper under purely tensile

loading.

The values of the Spearman correlation coefficients relating failure strain, εf, with ηX,

∆MT
MT

, and SCF are all greater than 0.50, which implies reasonably strong associations

between the GB strength and these variables. In particular, εf is observed to decrease with

increasing values of ∆MT

MT
and ηX, thus we conclude that GBs with larger differences in

their elastic stiffnesses and their Taylor factors are more susceptible to incipient damage

localization. While both ηX and ∆MT

MT
are independent of twist from construction, Fig. 5.6

helps explain the observed independence of εf on twist. Moreover, this analysis provides a

mechanistic understanding of why GB tilt angle is a more predictive GB characteristic than

misorientation angle when assessing the likelihood of damage localization. Lieberman

et al. (2016) arrived at a similar conclusion when correlating the damage location sites

and Taylor factor difference of neighboring grains, although elastic incompatibility across

GBs was not considered in that work. This mechanics mismatch may provide a key to

explain the high damage resistance of Σ3 TBs (with an SCF = 1 under these loading

conditions) relative to other high-angle GBs observed in experiments (Cerreta et al., 2012;

Escobedo et al., 2013), given that there has not been a clear link identified between other

GB characteristics (e.g. energy, free volume) and fracture strength (Fensin and Hahn,

2017).

To visualize the effect of elastic and plastic incompatibility on the SCF, we compare

the SCF at 1% axial engineering strain for the GBs constructed by tilt and twist operations

(i.e. Eq. (5.2.1)), with [001] twist axis and [110] tilt axis, in the range of [0◦, 45◦] rotation

angles. Figure 5.7 depicts the effect of variations in GB misorientation on the hydrostatic

SCF for 3 scenarios: (i) with anisotropic elasticity (A , 2C44

C11−C12
6= 1) and no plasticity;

(ii) with isotropic elasticity (A = 1) and crystal plasticity; (iii) with anisotropic elasticity

(A 6= 1) and crystal plasticity. The tilt angle is varied along the x-axis of these plots, while
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variations attributed to variation in twist angle are indicated by an error bar for each value

of tilt. For case (i), plasticity, porosity and inertia were omitted from the BVP of Fig. 5.1

in order to isolate the effects of crystal elasticity on SCF. For these purely elastic, quasi-

static simulations, Abaqus Standard was used to solve the BVP. The material behavior

was specified using Abaqus’ orthotropic elasticity model with copper elastic moduli of

C11 = 169 GPa, C12 = 122 GPa and C44 = 75.3 GPa (Every and McCurdy, 1992). In

case (ii), isotropic elasticity with C11 = 215.12 GPa, C12 = 121.0 GPa and C44 = 47.06

GPa (note, A = 2C44

C11−C12
= 1) was used within our crystal plasticity model, in order to

highlight the effects of anisotropy due solely to crystalline slip on the hydrostatic SCF. In

case (iii), the general anisotropic elasticity and plasticity crystal model was used.

Comparing the three SCF curves in Fig. 5.7 reveals that both anisotropic elasticity

and crystal plasticity influence the SCF; in particular, both cases that included anisotropic

elasticity (with and without crystallographic slip indicated by purple and yellow curves,

respectively) exhibit larger SCF than for the case with isotropic elasticity indicated by the

blue curve. The role of plasticity is to reduce the variation of SCF with respect to tilt

angle in comparison with the purely anisotropic elastic case. Note that the variation in

SCF for the full model with anisotropic elasticity and crystallographic slip is not a simple

superposition of the independent variations for the other two cases. This result suggest

that, even prior to plastic deformation, the mismatch in anisotropic elasticity across a GB is

significant in establishing the driving force for subsequent void growth. Consequently, we

would expect materials exhibiting low elastic anisotropy to have GBs of higher ductility.

5.2.4 Extrapolation to other metals and implications for GB engineering

Up to this point in the chapter, the focus has been on copper as a representative crys-

talline material. In this section, we extrapolate the observations to other crystalline mate-

rials.
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Fig. 5.7: The hydrostatic SCFs computed for three cases including (i) (in yellow) with
anisotropic elasticity and no plasticity (i.e. A 6= 1); (ii) (in blue) with isotropic elasticity
(i.e. Zener ratio, A = 1) and anisotropic crystal plasticity; (iii) (in purple) with anisotropic
elasticity and crystal plasticity (A 6= 1). The SCF values are computed at 1% axial en-
gineering strain. Error bars represent variations associated with the twist of grain (II)
relative to [001] at fixed angles of tilt.

The negligible influence of interface in-plane elasticity mismatch and the strong in-

fluence of interface out-of-plane elasticity and Taylor factor mismatches on εf (see the

bottom graphs of Fig. 5.6) motivates a prediction of SCF for general cubic materials based

on the two parameters: ηX and ∆MT

MT
. However, it is beyond on the scope of this chapter to

address the coupled manner in which ηX and ∆MT

MT
can affect SCF, which is deemed to be

complicated. Instead, we simply introduce a straightforward decomposition of SCF as

SCF = ∆SCFel(ηX) + ∆SCFpl(
∆MT

MT
) + 1, (5.2.4)

where ∆SCFel and ∆SCFpl are contributions from elasticity and plasticity incompatibil-

ities. The two functions are required to vanish where interface discontinuities vanish.

The simple linear approximations that satisfy the condition are ∆SCFel = λelηX and
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∆SCFpl = λpl ∆MT
MT

. It should be noted that the elasticity mismatches depend on the ra-

tio between the elastic coefficients (i.e. C11 : C12 : C44) rather than the magnitude of

individual coefficient. The Zener parameter A is a scalar index that captures this propor-

tionality effect, which implies that ηX of one cubic material can be scaled by the Zener

ratio. Based on calculations, the scaling factor is adopted as ηX = ln(A)
ln(Aref)

ηref
X with Aref

and ηref
X denoting the Zener ratio and elasticity mismatch for the corresponding orientation

pair of a reference cubic material. Here copper is used as the reference material for the

following calculation. Utilizing the above approximations, Eq. (5.2.4) can be written as

SCF = λel ln(A)

ln(Aref)
ηref

X + λpl ∆MT

MT
+ 1. (5.2.5)

As εf is inversely proportional to SCF, the correlations motivate a simple inverse ap-

proximation of εf, i.e. εf ∝ SCF−1. However, for very small tilt angles (θtilt < 5◦), εf is

very sensitive to SCF. This additional sensitivity at low tilt angles can be approximately

captured by the following functional form:

εf

εref
f

≈ α

(
λel ln(A)

ln(Aref)
ηref

X + λpl ∆MT

MT
+ 1

)−1

+ (1− α)

(
1− tanh

ln(A)
ln(Aref)

ηref
X + ∆MT

MT

0.005

)
.

(5.2.6)

In the above equation, εref
f is a reference strain to incipient failure for a single crystal loaded

along the <100>, i.e. εref
f = 0.45.

Figure 5.8 is the contour plot for normalized strain εf
εref

for materials of Zener ratio and

GB tilt angle. The parameters λel, λpl and α are calibrated from SCF for isotropic elas-

ticity and cubic elasticity in combination with crystal plasticity (blue and purple curves in

Fig. 5.7), εf (square markers in Fig. 5.8) for θtwst = 0◦. Simulation results using C11 = 169

GPa, C12 = 122 GPa and C44 = 32.64 GPa, which induces a Zener ratio equivalent to that
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of aluminum (A = 1.22), is also plotted (diamond marker) in Fig. 5.8. The quantita-

tive agreement between the numerical predictions (square and diamond markers) and the

contour plot shows the the effectiveness of the simple functional form in Eq. (5.2.6).

The contour map (Fig. 5.8) predicting the relative variation of εf with respect to tilt

and Zener ratio can be a viable tool to guide GB engineering. A polycrystal with a high

fraction of high angle GBs and/or a high Zener ratio will behave in a brittle manner and

be more susceptible to intergranular failure. A material with a low Zener ratio and low tilt

angle GBs will be more ductile and less susceptible to intergranular failure.

In addition to Zener ratio and tilt angle, the crystallography plays an important role

in the likelihood of intergranular failure. It was noted earlier that εf has a strong inverse

correlation with Tayor factor difference, ∆MT

MT
(c.f. Fig. 5.6). By construction, the Tayor

factor depends on the available slip or twin systems of the crystal. For example, FCC
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Fig. 5.8: Extrapolation of εf based on tilt, and Zener ratio, for the orientation set in
Fig. 5.7 (square markers). Calibrated parameters for Eq. (5.2.6) are λel = 0.46, λpl = 0.18,
α = 0.49. Diamond markers are simulation results of an identical material except with a
shear modulus of C44 = 32.64 GPa and a Zener ratio equivalent to aluminum (A = 1.22).
Markers on the top of the contour box show Zener ratios of cubic materials calculated
from elastic coefficients in (Every and McCurdy, 1992), and equivalent Zener ratios of
magnesium (HCP) and α-Ti (HCP) from (Ranganathan and Ostoja-Starzewski, 2008).
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has 12 primary slip systems, body-centered cubic (BCC) such as α-Fe can have up to 48

slip systems, and hexagon close-packed (HCP) such as magnesium has 36 (primary) slip

and twin systems. Using the same set of 2,000 random orientations, the Taylor factor

difference is calculated for BCC and HCP and their distribution is plotted on Fig. 5.9 for

comparison.

Generally, as can be seen in Fig. 5.9, materials with more available slip systems corre-

spond to a smaller maximum attainable mismatch in the Taylor factor across all possible

crystallographic orientations. In the limiting case of an infinite number of slip systems,

i.e. J2 plasticity, the Taylor factor mismatch will vanish for all orientation pairs. A higher

number of easily activated slip systems induces a lower SCF, which results in better duc-

tility. As such, if high ductility is desired one should choose a material with a Zener ratio

close to unity and many slip systems.

Some crystalline materials, particularly HCP, have slip or twin systems that are ex-

tremely difficult to activate under general loading conditions. For example, HCP magne-

sium has a low critical resolved shear stress (CRSS) in basal or extension twin systems,

but high CRSS in pyramidal or compression twin systems (Zhang and Joshi, 2012). As a

consequence, even with a total of all 36 slip and twin systems, magnesium is commonly

considered a brittle material. Figure 5.9 shows an example of the Taylor factor mismatch

for these restricted slip systems. When 36 slip and twin systems can be activated easily,

the largest Taylor factor mismatch is less than 0.2. While with only basal slip and exten-

sion twin systems, ∼ 40% of Taylor factor mismatches are larger than 0.2 with the largest

values reaching 0.77. According to equation Eq. (5.2.6), doubling ∆MT
MT

will roughly half

εf for magnesium. As such, Fig. 5.9 sheds some light on the ductility of HCP materials.

Generally, an HCP with similar CRSS for all slip and twin systems is expected to be sig-

nificantly more ductile than an HCP with large contrasts between CRSS of various slip

and twin systems, which will tend to be more susceptible to intergranular failure.
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Fig. 5.9: Relative frequency of Taylor factor difference for 2,000 randomly oriented
GBs. FCC: 12 slip systems 〈11̄0〉 {111}. BCC: 12 primary slip systems 〈1̄11〉 {110}
and 12 secondary slip systems 〈1̄11〉 {211}; HCP: Extension twin systems (for Magne-
sium) (6): 〈101̄1̄〉 {101̄2}; Basal slip systems (3): 〈112̄0〉{0001}; Prismatic slip system
(3): 〈112̄0〉{101̄0}; pyramidal slip system (6): 〈112̄0〉{101̄1} pyramidal <c+a> slip system
(12): 〈112̄3〉{101̄1} Compression twin systems (for Magnesium) (6): 〈101̄2̄〉{101̄1}
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6. CONCLUSIONS AND FUTURE DIRECTIONS

6.1 Concluding remarks

The focus of this dissertation has been model development and application of a compu-

tational framework for mesoscale modeling of dynamic failure of shocked single crystals

and polycrystals. To the best of the author’s knowledge, the resulting homogenized model

is the first of its kind, and is particularly powerful in predicting the dynamic evolution of

damage in ductile single crystal and polycrystal metals subject to high-rate loading.

In chapter 2, we have developed a dislocation-based viscoplasticity and dynamic duc-

tile damage framework for single crystals. Within the framework the rate of crystallo-

graphic slip is determined through Orowan’s expression in terms of an evolving dislo-

cation density field and the effective mean velocity for the mobile population of dislo-

cations. An expression for the velocity of dislocations accounts for the mechanism of

phonon drag acting on dislocations, which naturally increases as dislocations approach

the shear wave speed of the lattice in order to capture so-called relativistic effects. An

averaging scheme was developed to approximate the evolution of the dislocation substruc-

ture in both the macroscale as well as its spatial distribution at the microscale. Beside the

averaging scheme, we also incorporated the yield function for porous single crystal (Han

et al., 2013) into the CRSS at macroscale to improve the accuracy of the porosity effect

on macroscopic shear response on shear dominant loading regime. The kinetics of dy-

namic damage evolution are represented by closed-form approximations derived through

a spherical shell analysis of solid matrix material surrounding an encapsulated void. By

The present chapter is based on publications by Nguyen et al. (2017, 2019).
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separating the effect of macroscopic deviatoric and hydrostatic stress, crystal plasticity

and dynamic void growth are solved using different yield conditions, in a consistent man-

ner. Namely, crystal plasticity and dynamic void growth are coupled via the evolving

dislocation structure and evolving porosity. Within the model for dynamic void growth,

a closed-form approximation for the internal resistance to void growth was developed to

represent dislocation forest interactions and high-rate dislocation dynamics.

The resulting homogenized single crystal ductile damage framework has been imple-

mented into the commercially available finite element package Abaqus/explicit. chapter 3

provided comparison with direct numerical simulations of corresponding unit cells. We

have established the relative accuracy of the approximate expressions in representing the

dynamics of void growth, which are governed by both micro-inertia as well as dislocation

kinetics and dislocation substructure evolution. The agreement between the homogenized

theory and direct numerical simulations was shown to be quite remarkable given the so-

phistication of the underlying viscoplasticity framework.

In chapter 4, the crystal plasticity and damage parameters were calibrated for sin-

gle crystal copper against KB/SHPB high strain-rate stress-strain measurements (Rittel

et al., 2012) and acoustic spall strength measurements from plate impact test (Turley et al.,

2018). Single element simulations of spallation for a range of compression pressure and

strain rate indicate a favorable agreement with experimental data (Turley et al., 2018) and

molecular dynamics simulation data (Luo et al., 2009a). In particular, we find that the spall

strength increases with increasing compression pressure for the lower range of strain rates,

but can decrease with increasing compression pressure at extreme strain rates or extreme

pressures. Lastly, we provide simple scaling relations that capture the relevant physics and

help elucidate the dominant governing mechanisms.

In chapter 5, we turned our attention to the spall failure of polycrystals. In particular,

we explored the dominant GB characteristics and related factors that explain the pref-
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erential growth and localization of damage on particular GBs within dynamically loaded

polycrystalline copper (Wayne et al., 2010; Brown et al., 2015). We make use of the model

presented in chapter 2, to study the effect of GB misorientation on damage localization.

Our key findings on the spall failure of polycrystals are summarized as follows.

• The proposed numerical framework and subsequent analysis captures most of the

trends on preferential localization of damage at GBs observed in experiments (Brown

et al., 2015) for misorientation angle θ < 40◦.

• By accounting for the prevalence of Σ3 twin boundaries in polycrystalline copper

within our framework, the conditional probabilities observed in experiments (Brown

et al., 2015) for localization of damage with respect to misorientation angle across

the entire domain of viable orientations is well captured by the model. That is, the

observed correlations between grain boundaries that are preferentially more likely to

exhibit damage can be solely explained by the mismatch in the mechanical response

of the adjacent grains. As such, we conclude that mechanics is likely a key factor in

the intergranular failure of relatively pure metals. This conclusion is in agreement

with the observations of Lieberman et al. (2016) who considered the relationship be-

tween Taylor factor differences and porosity growth at GBs in full-field polycrystal

calculations.

• Our analysis demonstrates that misorientation alone is not a sufficient GB character-

istic to predict the likelihood of preferential localization of damage. Instead, there

is a stronger correlation between the tilt angle of a GB and the conditions leading to

damage localization.

• Further investigation of the dependence of preferential damage localization on mis-

match in anisotropic elastic and plastic properties demonstrates that both a high
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stiffness mismatch and high Taylor factor mismatch across a GB promote intergran-

ular damage localization. The fact that ηX and ∆MT
MT

are independent of twist angle

and that εf does not depend on twist provides further corroboration and reasoning

that GB damage localization is likely independent of twist angle.

• The statistical analysis of our simulation results suggests that mismatch in elastic

and plastic properties can equally explain the observed variations in GB resistance

to damage for copper. Further analysis and modeling of the hydrostatic stress con-

centration factor, SCF, suggests that the distinction between GBs within FCC and

BCC materials with higher Zener ratio than copper will likely be driven predomi-

nantly be elastic mismatch. On the other hand, FCC and BCC materials with lower

Zener ratio will be more driven by the mismatch in plastic anisotropy. HCP ma-

terials can behave similar to FCC or BCC if there are sufficient slip systems, but

with limited deformation modes, HCP metals will be predominantly affected by the

plasticity incompatibility.

Our work on polycrystals is meaningful not only to understand the underlying mecha-

nisms governing the preference toward intergranular damage localization, but also provide

a fundamental basis for GB engineering of dynamic strength.

6.2 Future directions

Model limitation and possible model improvement

The limitations of the model are listed as follow.

• The homogenized model was constructed based on the assumption of uniform void

size and void spacing. This assumption makes it possible to simplify the represen-

tative volume element into a micromechanic equivalent volume element of a voided
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sphere, which is used to build the damage evolution equation. In reality, void size

and void spacing are randomly distributed inside the material (see Brown, 2015, for

examples). A model development to include a statistical distribution of void fami-

lies could be indirectly added by considering a statistical distribution of nucleation

stresses (Wright and Ramesh, 2008).

• Void interaction and coalescence can strongly influence the material macroscopic

behavior at later stage of void growth. In this model, void coalescence criteria is

simply a constant porosity value (ϕcr). For single crystals, it has been shown that

void coalescence is affected by stress triaxiality and Lode parameter (Srivastava and

Needleman, 2013). A model development to incorporate those stress parameters into

the critical porosity ϕcr could be useful to address their effect on void coalescence.

• Dislocation transportation and dislocation interaction with GB interfaces are rel-

evant mechanisms in deforming polycrystals. They were postulated to affect the

dynamic intergranular failure of polycrystals (Cerreta et al., 2012). However, the

dislocation-based crystal plasticity model, upon which our homogenized model is

built, ignored these mechanisms. A coupling between the crystal plasticity and a

continuum dislocation transport such as the work of Luscher et al. (2016) is desired

to improve the accuracy of the evolving dislocation density, and therefore the spall

strength in shock loading.

• The crystal plasticity parameters were calibrated from KB/SHPB experiments. A

more rigorous calibration can be performed using the early stage of velocity history

in plate impact tests and simulation counterparts (see Lloyd et al., 2014b, for an

example).

Despite the above limitations, the CPD-FE model proposed here might be utilized to
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understand other aspects of spall strength and fracture morphology. The two aspects are

briefly outlines below:

Anomalous orientation dependence of spall strength

As mentioned briefly in chapter 1, the orientation dependence of spall strength is not

fully understood, with contradicting experimental data from Minich et al. (2004); Turley

et al. (2018); Perez-Bergquist et al. (2011) and MD simulations result (Luo et al., 2009a).

Spall strength measured from plate impact tests of Minich et al. (2004) has been used to

show the dependence of spall strength on crystal orientation (see Fig. 6.1). In particular,

the pullback velocity of 〈100〉 orientation is higher than that of 〈110〉 orientation on a range

from 5 GPa to 50 GPa compression pressure. Figure 6.2(a) shows one example of that re-

lationship at 9.63 GPa shock compression. A reversed correlation can be inferred from

the velocity histories of Perez-Bergquist et al. (2011), in which pullback velocity of 〈110〉

orientation is higher than that of 〈100〉 orientation (see Fig. 6.2(b)). It is worth noting that

the orientation of higher pullback velocity also had higher experimental-inferred tensile

loading rates (by comparing the unloading slopes of the velocity histories in Fig. 6.2). It is

known that the static yield strength of 〈110〉 orientation is larger than that of 〈100〉 orienta-

tion (see (Rawat et al., 2014) for an example). The reason for this is, 〈110〉 orientation has

higher Taylor factor than 〈100〉 orientation (M 〈100〉
T = 2.45 and M 〈110〉

T = 3.67). That said,

orientation dependence reported by Minich et al. (2004) and Turley et al. (2018) does not

scale with the Taylor factor for those orientations. On the other hand, Luo et al. (2009a)

reported no orientation dependence of spall strength on single crystal copper at extreme

loading rates (∼ 1010 s−1) from MD simulations. The CPD-FE model proposed here could

be used to elucidate the fundamental reasons for this anomalous orientation dependence

through modeling plate impact tests of single crystals.
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Fig. 6.1: Pullback velocity for copper single crystals of 〈100〉, 〈110〉, 〈111〉 orientations,
and polycrystals of grain sizes 8 µm, 45 µm, 90 µm (reproduced from (Minich et al.,
2004)).
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Fig. 6.2: Free surface velocity history from a) one target plate made of 2 grains with 〈100〉
and 〈110〉 orientations (reproduced from (Perez-Bergquist et al., 2011)), b) 2 plate impact
tests on single crystals of 〈100〉 and 〈110〉 orientations (reproduced from (Turley et al.,
2018)).

Grain size dependence of void size and void area fraction

Non-monotonic grain size dependence on final void sizes and void area fractions The

void size and void area fraction was reported to be a function of grain size in (Escobedo

et al., 2011). In particular, void area fraction and void size were both observed to increase

with grain size, for grain size of 60 µm and up (see Fig. 6.3(a) and Fig. 6.3(b), respec-
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tively). The trends reverse as grain size reduces from 60 µm to 30 µm. The reason for

these trends is not fully understood. The CPD-FE model proposed here could be used to

understand these correlations through modeling plate impact tests of polycrystalline target

plates with explicit resolution of individual grains.

(a) (b)

Fig. 6.3: a) Void area fraction as a function of grain size, b) void size distribution (repro-
duced from (Escobedo et al., 2011)).
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APPENDIX

Implementation

The CP model (without damage) was implemented into user-defined subroutine VU-

MAT (Abaqus/Explicit subroutines to define material behavior) by Dr. Darby J. Luscher.

The detail implementation was described in (Luscher et al., 2017). The backbone of the CP

model implementation is the 4th order Runge-Kutta scheme to integrate the rate equations

of crystal plasticity constitutive laws (subsection 2.2.1).

The VUMAT subroutine for CPD was build upon the VUMAT subroutine for CP by

adding a step prior to the 4th order Runge-Kutta CP integration scheme. In the step, a

backward Euler integration scheme was used to integrate porosity (ϕ) in the second order

ODE (i.e. Eq. (2.2.22)) based on the trial stress. The porosity and equivalent plasticity due

to void growth (Eq. (2.1.12)) are then passed into the evolving dislocation density on both

microscale and macroscale in the subsequent 4th order Runge-Kutta scheme.

The uncoupled integration scheme is not ideal for solving the set of nonlinear and

complex (CPD) constitutive equations. In order to limit the accumulated error from this

uncoupled integration scheme, a sub-incrementation scheme is used over time steps of

large change in solution dependent variables (such as dislocation density and porosity). In

particular, time increment is cut into half whenever the estimated error from the Runge-

Kutta method (obtained by comparing the 3rd order and 4th order Runge-Kutta) or from

Backward Euler method is larger than the targeted tolerance.

Verification

The subsections provides verification of some key equations in the CPD model.
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CP implementation: Cliffton’ equation for dislocation velocity

In order to verify the implementation of Cliffton’ equation for dislocation velocity

(Eq. (2.2.4)), uniaxial strain loading in 〈100〉 direction in a single hexagonal volume ele-

ment was conducted. Due to the loading direction, 8 slip systems can be equally activated

(Lloyd et al., 2014a) in this BVP. The CRSS (τ (α)
cr ) is removed to further simplify the prob-

lem (by setting τ0 = 0 and c⊥ = 0). The evolution of dislocation velocity (v⊥) with respect

to RSS (τ ) from the simulation result for one activated slip system are plotted in Fig. 6.4

and in a excellent agreement with the analytical solution of Eq. (2.2.4).
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Fig. 6.4: Comparison of dislocation velocity evolution with respect to RSS from one
element simulation and Cliffton’s equation analytical solution

Porosity evolution implementation

This subsection provides verification for the backward Euler integration scheme to

solve porosity in Eq. (2.2.22). For simplicity, we set internal resistance to be zero, i.e.

R = 0 (by setting τ0 = 0, c⊥ = 0, MT = 0), the second order ODE for porosity becomes

1

3
ρs`

2
v

(
1− 3
√
ϕ

3
√
ϕ(1− ϕ)

ϕ̈− 1− 12ϕ+ 11ϕ4/3

6ϕ4/3(1− ϕ)2 ϕ̇2

)
= Σm (6.2.1)
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In the following two subsubsections, a stress controlled loading is applied to the volume

element rather than the displacement control as the previous subsection.

Special case 1: Constant loading rate

For the special case of constant external stress rate, i.e. dΣm
dt

= const, the void growth

rate ȧ approaches asymptotic void velocity ȧ∗ as a/a0 approach infinity (see (Wilkerson,

2017), equation 3.3),

ȧ∗ =

√
6

11

Σm

ρs
(6.2.2)

Figure 6.5 shows the comparison of void velocity from the asymptotic formulation

(Eq. (6.2.2)) and from numerical simulation. For this simulation, the external stress rate is

set to be dΣm
dt

= 10MPa
µs

; the time integration increment is ∆t = 10−3 µs; void spacing is

`v = 1000µm; initial void size is a0 = 1 µm (or ϕ0 = 10−9). As can be seen in Fig. 6.5, the

void velocity from numerical simulation successfully approaches the analytical velocity as

a/a0 approaches infinity, as expected in this special loading scenario.
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Fig. 6.5: (a) Void velocity evolution with respect to void radius, (b) Relative difference
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Special case 2: Solve for a given analytical expression ϕ∗

This subsection provides verification on solution convergence due to reducing time

step size. Here, a given analytical evolution of porosity with respect to time is assumed,

ϕ∗ = 0.001 + 10t3. (6.2.3)

Void spacing is set to be `v = 10 µm. Putting the analytical function ϕ∗ into Eq. (6.2.1), a

analytical expression for mean stress can be express as below

Σm =
1

3
ρs`

2
v


60t

1−(10−3+10t3)
1/3

(10−3+10t3)
1/3

[1−(10−3+10t3)]

−900t4
11
6 (10−3+10t3)

4/3
−20t3+ 247

1500

(10−3+10t3)
4/3

[1−(10−3+10t3)]
2

 (6.2.4)

Using Eq. (6.2.4) as the external applied stress with respect to loading time, the porosity

evolution from the backward Euler scheme can be obtained. The numerical solution for

porosity (ϕ∆) is then plotted in comparison with the given analytical expression (ϕ∗) in

Fig. 6.6. The results show that numerical solution for porosity (ϕ∆) converges to the given

analytical expression (ϕ∗) with decreasing time step size.
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