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ABSTRACT 

 

Fluid flow in subsurface petroleum reservoirs occurs on a wide range of length 

scales and capturing all the relevant scales in reservoir modeling is a cumbersome task. 

Even with the advent of modern computational resources, reservoir simulation of high 

resolution fine scale geologic models remain a challenge. Therefore, it is customary to use 

some kind of upscaling procedure to coarsen the multimillion cell geologic models to a 

scale feasible for practical reservoir simulation. Existing methods for upscaling of 

geologic models are based on steady state concepts of flow while the actual flow 

simulations itself is utilized for the purpose of capturing pressure and saturation transients. 

However, steady state or pseudo steady state limits may never be achieved for a coarse 

cell volume during a simulation time step in high contrast low permeability systems 

introducing a potentially significant bias into an upscaling or downscaling calculation. In 

this dissertation, a novel formulation is proposed which resolves these dynamic effects 

using an asymptotic pressure solution. 

Three principal research contributions are made in this dissertation. First, a novel 

construction of transmissibility in 1D is derived using pseudo steady state concepts which 

has the advantage of localization over steady state methods, when applied for upscaling 

problems. This construction is general for all grid geometries usually utilized in industry 

standard reservoir simulation codes (block centered, radial, corner point). A new form of 

pressure averaging is proposed to effectively convert a 3D pseudo steady state upscaling 

into a 1D calculation. Second, a pressure transient diffuse source upscaling formulation is 
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introduced to identify well-connected sub volume that reaches pseudo steady state 

especially in high contrast systems. The formulation is based on transients approaching 

pseudo steady state in the upscaling region which can effectively identify the well-

connected sub volume that contributes the flow. Third, the pressure transient diffuse 

source formulation developed for upscaling is extended to the multiscale framework 

where the large scale changes in pressure are resolved on the coarse grid while the 

saturations are resolved on the fine scale using downscaled coarse information. 

Applications are shown for both incompressible and slightly compressible flow. 
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 CHAPTER I 

INTRODUCTION: UPSCALING 

 

Reservoir simulation is a widely used tool for qualitative and quantitative forecast 

of fluid flow in subsurface formations. The simulation itself is made possible through the 

numerical solution of mass conservation equations in the form of partial differential 

equations. Fluid flow in subsurface petroleum reservoirs occurs on a wide range of length 

scales from micrometer pore scale to macro reservoir scale (Dagan 2012). Capturing all 

the relevant scales in the macro scale reservoir modeling is a cumbersome task and is 

usually limited by the availability of computational resources. Building geologic models 

with millions of grid blocks is a commonplace in the oil and gas industry. Even with the 

advent of modern computational technology, reservoir simulation of these fine scale 

geologic models remain a challenge especially with the industry moving towards 

scholastic workflows to quantify the uncertainty in performance predictions. The 

stochastic workflows require simulations of multiple realizations of reservoir models 

which adds significant computational overhead. Therefore, it is customary to use some 

kind of upscaling procedure to coarsen the high resolution geologic models to a scale 

feasible for practical reservoir simulation. While quantities like porosity and geometry 

which are additive, may be upscaled using simple volume weighted averages, upscaling 

of permeability which is an intrinsic property or transmissibility which includes the 

permeability as well as the geometry, requires some care. Upscaling techniques may be 
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classified into single phase and multi-phase methods. The focus of this dissertation is on 

single phase upscaling methods.  

There are number of upscaling methods for permeability (or transmissibility) 

proposed in the literature ranging from simple analytical averaging methods (Deutsch 

1989,King 1989) to advanced flow based upscaling methods (Chen et al. 2003, King and 

Mansfield 1999). It is well documented in the literature that flow based upscaling methods 

tend to give better coarse scale descriptions than their analytical counterparts (see 

Durlofsky and Chung 1990,Christie 1996, Farmer 2002). In flow based upscaling 

methods, a single phase elliptical partial differential equation (Eq.(1.1)) is solved with a 

specified set of boundary conditions over the domain Ω to obtain an effective permeability 

or transmissibility. In Eq.(1.1), k  is the permeability tensor,   is the fluid viscosity, ,p u  

refer to the fluid pressure and Darcy velocity respectively. 

1
0 where u u k p


      (1.1) 

King et al. 1998, Lunati et al. 2001 and Chen et al. 2003 have documented that 

upscaling for transmissibility being a high resolution property compared to permeability 

honors the fine scale connectivity information better than the cell based permeability 

upscaling methods. This is hardly a coincidence since flow simulation eventually relies on 

inter-cell transmissibilities rather than cell permeabilities to solve for pressure. Since Eq. 

(1.1)  is incompressible, artificial boundary conditions are imposed over Ω to induce flow. 

Depending on where the boundary conditions are imposed over Ω, the single phase flow 
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based upscaling methods may be further classified into local, extended local, global, local-

global upscaling methods.  

 

1.1 Local Upscaling Methods 

In the local upscaling methods, the size of the computational region Ω is restricted 

to the coarse cell(s) for which the effective property is to be evaluated. The most common 

type of local upscaling method is illustrated in Figure 1.1 which mimics the laboratory 

scale core flood permeability measurement experiment with pressure isobars at the inlet 

and outlet face and no flow side boundary conditions. This type of boundary conditions 

were first proposed by Warren and Price 1961 and by making the side boundary conditions 

no flow, crossflow terms are neglected. This calculation is repeated in three principal 

directions to obtain a diagonal permeability or transmissibility using volumetric pressure 

averaging of Darcy’s equation as shown in Eq. (1.2) for permeability upscaling over 

domain Ω. 

    3 21
ˆEffd x u k d x np


 

       (1.2) 
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Figure 1.1: Local steady state upscaling with no flow side boundary conditions 

 

Sealed side boundary conditions are strictly valid only when the flow units are 

mirror images of each other (symmetric) which puts a severe restriction of the general 

applicability of the boundary conditions to various reservoir models. As noted by Cardwell 

and Parsons 1945, the use of pressure isobars will bias the answers upwards while the use 

of sealed side boundaries will bias the results downwards. Whether one bias will dominate 

the other depends on the geologic environment. Usually, sealed side boundary conditions 

preserve barriers. However, the whole “core-flood” boundary conditions systematically 

expand barrier and reduce the continuity of pay (King 2007). Alternatives to sealed side 

boundary conditions were proposed in the literature, namely linear pressure boundary 

conditions (Guerillot et al. 1990) and periodic boundary conditions (Durlofsky and Chung 

1990). These boundary conditions allow calculation of a full permeability tensor for 

upscaled models. In linear pressure boundary conditions (Figure 1.2), the pressure gradient 

still remains constant as is the case with no flow. However, fluid is allowed to leave or 

enter at any point on the transverse sides of the coarse block. Durlofsky and Chung 1990 

and Durlofsky 1991 documented that linear pressure side boundary conditions tend to bias 

the upscaled permeability (or transmissibility) upwards. They proposed the use of periodic 
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boundary conditions with imposed flux conservation (Figure 1.3). A variant of this was 

also proposed by Bøe 1994 which uses a weak formulation of Darcy’s law to derive a 

symmetric and positive definite permeability tensor.  

 

 

Figure 1.2: Local upscaling in vertical direction with linear side boundary 

conditions 

 

 

Figure 1.3: Local upscaling with periodic boundary conditions 

 

The use of periodic boundary conditions results in effective permeability greater 

than or equal to no flow side boundary conditions and always less than linear pressure 

boundary conditions. Periodic boundary conditions are strictly valid when the coarse 

volumes are periodic i.e., fine scale heterogeneity in each coarse block must be identical. 
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Unfortunately the reservoir rocks are seldom periodic. It is clear from the above discussion 

is that the upscaled effective permeability (or transmissibility) is sensitive to the choice of 

boundary conditions. This is referred to as the localization effect. To reduce the 

dependence on local boundary conditions, extended local methods were proposed which 

will be discussed in the following section. 

 

1.2 Extended Local Upscaling Methods 

In extended local methods, the size of the computation region is expanded beyond 

the coarse blocks by adding a buffer region or skin, and boundary conditions are imposed 

on the extended domain (Holden and Lia 1992;Gomez-Hernandez and Journel 1994; Hou 

and Wu 1997; Wu et al. 2002). The extent of the border regions and their effectiveness 

depends on the geologic environment. For instance Wen et al. 2003 reported very little 

improvement by using two coarse rings as the skin region compared to one coarse ring. 

Figure 1.4 shows the set up for extended local upscaling with “core-flood” boundary 

conditions imposed one coarse ring as skin region. After solving Eq. (1.1) on the extended 

domain, pressure averaging is performed in the coarse cell(s) of interest to obtain an 

effective property. 
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Figure 1.4: Extended local upscaling with no flow side boundary conditions 

 

1.3 Global Upscaling Methods 

In global upscaling, the fine scale solution is solved using a specified set of global 

boundary conditions (e.g. wells) and the upscaled property is evaluated based on the fine 

scale solution (White and Horne 1987, Holden and Nielsen 2000). Global upscaling 

methods mostly apply to transmissibility upscaling where the coarse transmissibilities are 

obtained using the coarse face flux and the bulk volume averaged pressure differences. 

Once the initial coarse transmissibilities are computed, iterative procedure may be 

required to remove any negative transmissibilities to a point where both fine and coarse 

solutions are in agreement. Although very expensive, global upscaling methods can 

provide accurate coarse scale descriptions. However, once the global boundary conditions 

change, the same coarse description may not be accurate. So, these techniques rely heavily 

on the knowledge of the global boundary conditions. 
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1.4 Coupled Local-Global (Quasi Global) Upscaling Methods 

Local-global methods are developed as an intermediary between extended local 

and global upscaling methods (Chen et al. 2003). These methods take advantage of the 

global boundary conditions but always solve the global problem on the coarse scale 

instead of fine scale which significantly reduces the computational overhead. An iterative 

procedure is employed to derive the boundary conditions for the extended local upscaling 

problems and effective permeabilities or transmissibilities are evaluated based on the 

derived boundary conditions. Figure 1.5 shows the set up for local-global transmissibility 

upscaling with global coarse pressures. These pressure are interpolated on the fine scale 

resolution and used as boundary conditions to solve for flow at the coarse face of interest. 

The effective transmissibility is evaluated using Eq.(1.3) where the denominator is the 

bulk volume averaged pressure differences for the coarse blocks of interest. 

faceEff

upstream downstream

q
T

p p





 (1.3) 
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Figure 1.5: Coupled local global upscaling procedure showing global coarse 

pressures used to solve for flow at the coarse face 

 

The convergence criteria for the iterations is established based on a predefined 

tolerance for flux and pressure residual between successive iterations. Areas with very low 

flow are avoided in the iterations to avoid negative transmissibilities. This version was 

named adaptive local global upscaling (Chen and Durlofsky 2006). Local-global upscaling 

was successfully tested on many cases with some variations (see Efendiev and Durlofsky 

2004;Wen et al. 2006; Alpak et al. 2012 and Alpak 2015). One drawback of the method 

seems to be the reliance on the knowledge of global boundary conditions. Upscaling of 

geologic models is typically performed early in the life of a reservoir where there is no 

access to dynamic well data. In fact, it is performed as a precursor to the future well 

planning. Therefore, optimizing an upscaling calculation to a specified set of global 

boundary conditions may not be robust (Fincham et al. 2004). 
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1.5 Near Well Upscaling Methods 

The local and extended local upscaling methods described above are based on the 

assumption of linear pressure field (constant pressure gradient) for the specified pressure 

isobars as boundary conditions to drive the local flow. However, the pressure gradients 

are no longer uniform in the presence of wells. King 2007 proposed a simple algebraic 

well index calculation using analytic upscaled permeability calculation. Ding 1995 first 

introduced a near well upscaling procedure using global boundary conditions. Durlofsky 

et al. 2000 introduced the extended local flow based near well upscaling procedure where 

uniform pressure boundary conditions are imposed on an extended domain over the coarse 

block where the well resides. As shown in Figure 1.6, the well and boundary pressures are 

imposed to be 1 and 0 respectively. Flow from well to the well cell is handled using 

Peaceman equivalent radius (Peaceman 1978, 1983, 1990). The upscaled well index after 

solving Eq.(1.1) over Ω is given by Eq. (1.4) where the denominator is difference between 

well bottomhole pressure and the bulk volume averaged coarse block pressure. The 

neighboring well block transmissibilities are also adjusted using the obtained pressure 

field using Eq.(1.3). 

Eff well

wf coarseblock

q
WI

p p





 (1.4) 
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Figure 1.6: Near well upscaling procedure (After Durlofsky et al. 2000) 

 

1.6 Steady State Upscaling: Issues 

The recurring issue from the above discussion on steady state upscaling is the 

impact of local boundary conditions on the upscaled answers. The focus of this dissertation 

is entirely on improvement of local upscaling methods. Therefore, issues related to the 

same are discussed henceforth. Figure 1.7 describes three scenarios for a flow at a coarse 

cell pair with different upstream and downstream boundary conditions. Although, they 

may have the same face flux, the reference pressure drops for the calculation of 

transmissibility are different leading to different transmissibilities for the three cases. 

Steady state upscaling is therefore implicitly coupled to the large scale global boundary 

conditions. While the quasi global and global upscaling techniques can accurately capture 

the cross flow terms (transverse pressure gradients) for a specified global scenario, the 

knowledge of large scale boundary conditions may not be readily available especially early 
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in the life cycle of a field where upscaling is typically performed in the reservoir modeling 

workflow (Fincham et al. 2004).  

 

 

Figure 1.7: Localization issue in steady state local upscaling 

 

King 2007 proposed apriori upscaling errors to determine the quality of an 

upscaling calculation before performing it (Table 1.1). As per the author, the leading order 

error for an upscaling calculation is the assumption of pressure equilibrium within a coarse 

volume which is violated in the presence of disconnected or weakly connected pay. 

Capturing the reservoir connectivity is important for a local upscaling calculation in order 

to accurately capture the fine scale flow behavior on the coarser scale. This is particularly 

important in high contrast systems where the pressure takes a long time to equilibrate in 

the low permeability volumes. Moreover, the reservoirs themselves have changed in the 

recent times with new plays in unconventional shale oil/gas in extremely low permeability 

rock. This change in fundamental mechanisms challenges the historical modeling 

approaches based upon steady state concepts. New gridding techniques are being proposed 

to simulate the hydraulic as well as natural fractures (Sun and Schechter 2015).  

The second assumption in Table 1.1 relates to the assumption of uniform flux in 

the direction of flow for two-point steady state upscaling. In the presence of strong cross 

flow, the upscaled answers may be less accurate for a local steady state upscaling. A local-
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global upscaling or multi-point stencil may be required in such cases. However, most of 

the standard industry tools are built on standard two point flux approximations due to the 

expensive nature of multi point stencils. While the first two errors in Table 1.1 focus on 

single phase upscaling errors, the third point explains the multiphase flow errors while 

coarsening. In the presence of highly correlated heterogeneities, even if there is a perfect single 

phase upscaling that captures the total velocity, the phase velocities may not be accurate which 

will be apparent in the frontal advance. In such cases, it is worthwhile considering multiphase 

upscaling like pseudoization (King and Mansfield 1999;Alpak 2015) or perform multiscale 

simulation instead so that the multiphase errors are resolved on the fine scale using 

downscaled pressure and velocities. The third assumption relates to multiphase effects 

while coarsening which will be discussed in the multiscale simulation section of this 

dissertation. 

 

Assumption Source of Error (Missing Physics) 

Pressure equilibrium 

within the coarse cell 

Disconnected or weakly connected pay 

within the coarse cell will not be in equilibrium 

Fluid velocity is parallel 

to the pressure drop 

Flow may depend on the transverse pressure 

drop on the coarse grid 

Single velocity within a 

coarse cell 

Distribution of multiphase frontal velocities 

replaced by a single value 

Table 1.1: Apriori upscaling errors (King 2007) 
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1.7 Research Objectives: Upscaling 

The motive of this research is to expand upon the current state of the art in local 

upscaling methods using pressure transient concepts. In the current work, instead of 

expanding the computational domain to reduce the dependence on the local boundary 

conditions, we work backwards from the flowing face by setting up a local flow field using 

source terms derived from pseudo steady state concepts. The upscaling formulation is 

derived from pseudo steady state concepts (PSS) which removes the explicit dependence 

of local boundary conditions in a way steady state upscaling does not. 

The upscaling work of this dissertation is divided into three main chapters. In 

chapter two, standard expressions for transmissibility are derived in 1D using a 

generalized construction. Then, a rigorous relationship is derived in 1D between pore 

volume averaged steady state pressure drop and the total pseudo steady state pressure drop 

which is utilized to define transmissibility using pseudo steady state concepts. Extension 

of the 1D construction to 3D is presented using a novel pressure averaging approach and 

advantages of using PSS concepts to upscaling are highlighted. 

In chapter three, two variations of a local upscaling formulation based on PSS flow 

is presented. While one formulation is completely localized, the other one is weakly 

coupled to the upstream and downstream faces. The weakly coupled method is based on 

a variational formulation which has zero total flux at the inlet and outlet boundaries having 

a leaky flux at the fine scale resolution. Applications of the PSS upscaling formulations 

are shown for SPE10 (Christie and Blunt 2001) and an onshore tight gas reservoir model. 
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In chapter four, a pressure transient diffuse source (DS) upscaling formulation is 

presented which is an extension of PSS concepts to transient systems. A brief background 

on the existing literature is reviewed which is required for the development of the diffuse 

source upscaling approach. Advantages of the proposed formulation for applicability in 

high contrast systems is highlighted. Applications are shown for 3D SPE10 and tight gas 

reservoir models. The approach is benchmarked against extended local and local-global 

upscaling approach in a series of 2D localization tests. Extension of the DS formulation 

to faulted grids is also shown. 

Finally in chapter five, the upscaling work is summarized with key findings from 

chapter two to five and possible aspects of further research are also highlighted. 
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 CHAPTER II 

STEADY STATE AND PSEUDO STEADY STATE TRANSMISSIBILITY 

 

2.1 Introduction 

Transmissibility is used to relate pressure drop to fluid flux in flow simulators. It 

is usually described using steady state (SS) concepts, although its application in flow 

simulation is to a sequence of pseudo steady state flow calculations. Here, transmissibility 

is defined using both steady state and pseudo steady state flow concepts in 1D and the 

conceptual advantages of using pseudo steady state when developing upscaling algorithms 

is highlighted. A novel pressure averaging procedure is introduced to turn the 1D 

construction into a 3D PSS transmissibility. 

 

2.2 1D Transmissibility 

The 3D diffusivity equation for slightly compressible single phase flow in the 

absence of gravity and external sources is given by Eq.(2.1). The porosity (ϕ) and 

permeability (k) are functions of position. Total compressibility  tc  and fluid viscosity 

(μ) are treated as constants. For multiphase flow, the inverse of viscosity will be replaced 

by the total mobility, 1 rw w ro ok k    (water-oil example). However, the 

transmissibility itself will still follow the current construction. 

1
0 where t

p
c u u k p

t





    


 (2.1) 
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For finite difference and finite volume applications, the diffusivity equation is 

integrated over the domain of each grid block Ω (Rozon 1989). Applying divergence 

theorem to Eq.(2.1) gives Eq.(2.2) which shows the cell pressure in the discretized 

equations is the pore volume averaged pressure (  3d x p


 ) and the flux across the 

boundaries of each cell  n u  is expressed with respect to the differences between pore 

volume averaged pressures. This is the reference pressure drop for the definition of 

transmissibility although most of the upscaling literature reports the transmissibility 

evaluation using bulk volume averaged pressures. This is due to the fact that porosity 

never shows up in the equations when working with purely incompressible steady state 

flow. 

   3 2 ˆ 0tc d x p d x n u
t


 


  

    (2.2) 

Now, pressure solutions in 1D are reviewed for defining and evaluating the two-

point expression for transmissibility. The 1D diffusivity equation for slightly compressible 

flow can be expressed in terms of the cross sectional area ( ( )A x ) and the Darcy flux (q) 

given by Eq.(2.3).  

( )
( ) 0 where t

p q kA x p
A x c q

t x x




  
   

  
 (2.3) 

The Darcy flux ( ( )q x ) may be integrated to obtain the pressure profile for both 

steady state and pseudo steady state (Eq.(2.4)).  

( )

p q
dx

kA x


   (2.4) 
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The steady state pressure drop over an interval from 
1x  to 

2x  given a uniform flux 

fq  is given in Eq.(2.5). 

( )
SS f

dx
p q

kA x
    (2.5) 

 If this interval corresponds to a cell with cell faces at 
1x and

2x , then this provides 

the definition of the cell transmissibility in terms of the normalized pressure drop.  

   

2

1

1
x

SS

Cell

f x

p dx

T q k x A x


    (2.6) 

Here, the permeability and the cross-sectional area may both be functions of 

position. The cell transmissibility is not directly used in flow simulation. Instead the 

intercell transmissibility is used which references to the pressure difference between the 

pore volume weighted average cell pressures in adjacent cells. As an intermediate step, 

the pressure difference between the face pressures and the pore volume weighted cell 

pressure is calculated, which define the half cell transmissibilities. This average pressure 

is obtained from the pressure profile that interpolates between the pressure values of 1p  

and 2p  at 1x  and 2x , respectively. For steady state flow: 

 
           

2 2

1 1

1 2

x xx

SS

x x x x x

dx dx dx
p x p p

k x A x k x A x k x A x
  

  
    
    
 

    (2.7) 

The pore volume weighted average pressure is: 
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     

   

   
       

   
   

2

1

2

1

2 2

1 1

2 2

1 1

1 2

x

SS
x

SS x

x

x x x

x x x x x

SS x x

x x

dx x A x p x
p

dx x A x

dx dx
dx x A x p p

k x A x k x A x
p

dx
dx x A x

k x A x









  



  
   

    
 

   
   

   
   





  

 

 (2.8) 

The half cell transmisisbilities are defined using the pressure difference between 

SSp  and each face pressure. 

   
   

   

   
   

   

2 2

1 1 1

2 2 2

1 1

1

1

2

2

1

1

x xx

SS

Half

f x x x x

x x x

SS

Half

f x x x x

p p dx
dx x A x dx x A x

k x A xT q

p p dx
dx x A x dx x A x

k x A xT q

 


 







 

 


 

 

  

  

 (2.9) 

The sum of the reciprocal of the half cell transmissibilites gives back the cell 

transmissibility (Eq.(2.6)). In contrast, the sum of the reciprocal of the half cell 

transmisisbilities for a pair of adjacent cells yields the expression for intercell 

transmissibility where the shared face pressure cancels out (Eq.(2.10)). Here the left 

(upstream) cell extends from 1ix   to ix  and the right (downstream) cell from ix  to 1ix  . 

   
   

   

   
   

   

1

1

1

1

1

1

i i i

i i i

i i

i i

Left Right

SS SS

f

x x x x

x x x x x x

x x

x x

p p

T q

dx dx
dx x A x dx x A x

k x A x k x A x

T
dx x A x dx x A x



 

 









  




 

   
 

   

 

 (2.10) 
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The PSS flux solution follows the 1D form of the diffusivity equation when p
t




 

is uniform in the volume. Therefore, PSS flux varies linearly with pore volume.  

         

         

2 2

1

2

1 1

1, 1

2, 2

x x

PSS f

x x x

xx

PSS f

x x x

q x q dx x A x dx x A x

q x q dx x A x dx x A x

 

 





 
    

 
 

 
    

 
 

 

 

 (2.11) 

Here, the PSS flux is expressed in terms of the flux for each cell face, 
1fq  or 

2fq . 

The PSS pressure drops may be obtained by substituting the above PSS flux in Eq. (2.4) 

and setting the limits from 1x  to 2x  (Eq.(2.12)). 

 

   

   

   
   

   

   

   

   
   

   

2 2

2

1

2

1

1

2

2

1 1

2

1

1

1, 1,

1 1

2, 2,

2 2

1

1

x x

x

x x xPSS PSS

x

f f x

x

x x

x

x x xPSS PSS

x

f f x

x

dx
dx x A x

k x A xp x q x
dx

q q k x A x
dx x A x

dx
dx x A x

k x A xp x q x
dx

q q k x A x
dx x A x















  


 

  


 

 




 




 (2.12) 

After integration by parts, Eq. (2.12) and Eq.(2.9) come out be equivalent giving a 

relationship between half cell transmissibilities and the pseudo steady state pressure 

solutions. The equivalence relationships is that the pore volume average SS pressure drop 

is equal to the total PSS pressure drop across the volume. 

PSS SSp p    (2.13) 
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The intercell transmissibility can now be expressed in terms of normalized sum of 

PSS pressure drops with 
fq  being flux across the shared face (face 2 of the left cell and 

face 1 of the right cell). 

 

   

 

   

1

1

2, 1,1 1 i i

i i

x xLeft Right
PSS PSSPSS PSS

f f x x

q x q xp p
dx dx

T q q k x A x k x A x





  
   

  
   (2.14) 

Notice the largest contribution to the pressure gradient within the integrals of 

Eq.(2.14) is at the flowing face, where the pressure gradients are identical to the SS 

solution. At the far cell faces, the normalized flux and the PSS pressure gradient both 

vanish. Although these two approaches (SS and PSS) have been shown to be equivalent 

in 1D, they will differ in multiple dimensions. In the context of an upscaling calculation, 

the advantage of using a PSS approach is highlighted further down the text. 

Now, a simple 1D block centered cell pair example (Figure 2.1) is considered to 

demonstrate the relationship between the SS and PSS solutions. In Figure 2.1, 1 2,A A  refer 

to the cross sectional areas, 1 2,x x   are the respective lengths of the upstream and 

downstream blocks and 
fq  is the flux across the shared face. 
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Figure 2.1: Steady state and Pseudo Steady State pressure profiles for a 1D Block 

centered cell pair 

 

The steady state pressure profile is a piecewise linear function of position. The 

steady state pressure profile and average pressure in each cell are expressed in terms of 

the face flux and the face pressure.  

  f

SS f

i i

q
p x p x

k A


    (2.15) 

 
1

2

f

SS f i

i i

q
p p x

k A


     (2.16) 

The intercell transmissibility for the cell pair is now given by the difference of the 

pore volume averaged SS pressure drops (Eq.(2.17)). 

1 2

1 1 2 2

1 1 1

2 2

Left Right

SS SS

f

p p x x

T q k A k A

  
    (2.17) 
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The steady state pressure profile and the volume weighted steady state cell pressure 

may also be used to define the “pressure equivalent” position of the cell center, 
cx  in 1D 

(Pedrosa and Aziz 1986). This cell center may be used to develop a finite difference 

formulation for the transmissibility based upon the pressure at
cx . 

 SS c SSp x p  (2.18) 

This is a general definition that may be used for arbitrary cells. For block centered 

cells, the pressure equivalent center is at the centroid of the cell, 
1

2
c ix x  . This 

equivalence with the centroid is true of all simplexes (this 1D example, 2D triangular 

elements, 3D tetrahedral elements) but need not be true in general, as will be shown for 

radial elements, below. 

For PSS flow, the flux varies linearly within each block which gives a quadratic 

solution for the pressure profile. 

 

 
2

1

2

PSS f

i

f

PSS f

i i i

x
q x q

x

q x
p x p x

k A x



 
   

 

 
    

 

 (2.19) 
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The PSS pressure drop across the cell gives the same result for the intercell 

transmissibility as expected (Eq.(2.21)). Notice the PSS flux profile (Eq.(2.19)) naturally 

follows the finite element RT0 basis function (Raviart and Thomas 1977). 

1 2

1 1 2 2

1 1 1

2 2

Left Right

PSS PSS

f

p p x x

T q k A k A

   
    (2.21) 

In summary, three equivalent ways of expressing the reference pressures to 

compute the intercell transmissibility for a cell pair are shown in 1D (Eq.(2.22)). 

 Pore volume weighted average of the steady state pressure for each cell 

 Cell center steady state pressure for each cell 

 Pseudo steady state pressure drop across each cell 

Center

PSS SS SSp p p      (2.22) 

Although equivalent in 1D, these three approaches differ when used as the basis 

of an upscaling calculation. Of these approaches, the first follows directly from the volume 

averaged form of the diffusivity equation. The second provides the relationship to a finite 

difference construction, and provides the definition of a cell center. The last approach is 

formally equivalent to the first in 1D, but will provide the basis for the upscaling approach 

developed in this study. 

Interestingly, much of the upscaling literature follows a bulk volume averaged 

form of Darcy’s equation either expressed in terms of an effective permeability or the 

upscaled cell transmissibility, Eq.(2.6). Neither has any dependence upon the porosity, 

and each may be consistently derived using steady state pressure solutions. In contrast, 

when developing an upscaling approach for flow based upon transients, a pore volume 
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weighted average arises, and we also may take advantage of the intrinsic relationship 

between steady state and pseudo steady state solutions derived above.  

 

2.3 Pressure Averaging 

In the above section, an equivalence relationship between PSS and SS definitions 

of transmissibility was established. To extend this PSS construction to multiple 

dimensions, a face pressure on a surface needs to be defined if the pressure on the surface 

is not uniform. The average pressure can be developed from the specification of the total 

flux across the surface. Specifically, consider the total flux across a surface (
fq ) expressed 

in terms of the intercell transmissibilities, T , and the pressures, 
1,p  and 

2,p , for the cell 

pairs on the two sides of the surface (Figure 2.2).  

 

Figure 2.2: Stack of cells describing flux continuity at the shared face 

 

 1, 2,

1
fq T p p


    (2.23) 
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Flux equivalence (continuity) at the face leads to a transmissibility weighted 

definition of the average face pressure, 
fp . 

   1, 2,

2 2
f f fq T p p T p p

 
        (2.24) 

 1, 2,

1

2
fp T p p T     (2.25) 

The flux equivalence provides a relationship between the cell pressures on each 

side of the surface, the average face pressure, and the flux. At a boundary of the 

computational domain, the half cell transmissibility and the face pressure are used in this 

average instead of the intercell transmissibility and the adjacent cell pressure. If the face 

is considered at a no flow boundary condition, then the face pressure just becomes the 

transmissibility weighted average of the upstream cell pressures. 

fp T p T    (2.26) 

As an example of the use of this flux based definition of the pressure average, flow 

in a 2D radial element of uniform thickness h is examined to evaluate the half cell 

transmissibility, Figure 2.3. 

The Darcy velocity and its divergence expressed in 2D radial coordinates are given 

below. 

 
1 1 1

r r

uk p k p
u u u ru

r r r r r




   

  
      

   
 (2.27) 

The total flux in each direction is obtained as an integral of the Darcy velocity 

across the appropriate cross-section.  
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(a) (b) 

Figure 2.3: 2D radial element (a) Radial flow (b) Azimuthal flow 

 

The flux profiles for radial and azimuthal flow are given in Eq.(2.28) and Eq.(2.29) 

respectively. 

 
 ,

r

p rkh
q r rhd u r d

r
 


 


 


  

   (2.28) 

 
 2 2

1 1

,
r r

r r

p rkh dr
q hdr u

r





 


  

   (2.29) 

Each flow direction defines an average pressure specific to that direction of flow 

(Eq.(2.30) and Eq.(2.31)). The weights in the average are proportional to the local 

transmissibility, similar to the finite difference form of the pressure average, just shown. 

 
   

   
, 1

,
p r dp rkh kh

q r r d r p r d p r
r dr

 


   

  
 


   

    (2.30) 
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
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 (2.31) 

For the two directional pseudo steady state solutions in the radial element, the total 

PSS flux corresponding to each face of the element may be integrated to obtain the average 

PSS pressure drop and corresponding half cell transmissibility. For radial flow through 

the 1r   face (Figure 2.3a), the PSS flux and the corresponding half cell transmissibility are 

given below: 

     

 
 

2

1

2 2 2 2

2 2 1

2 2 2
2 2 2

2 22 2
1 2 1 12 1

1 1 1 1
ln

2

PSS f

r

PSS

Half

f r

q r q r r r r

r rp r rdr

T q kh r kh r r rr r  

   

   
           


 (2.32) 

For radial flow through 2r  face, a similar result is obtained. 

     

 
 
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T q kh r kh r r rr r  

   

   
           


 (2.33) 

For azimuthal flow (Figure 2.3b): 

 

   2 1 2 10

1 1 1 1 1

ln ln 2
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  

 


 



  

 
  


 (2.34) 

These are the known solutions for the radial and azimuthal transmissibility within 

a 2D radial element. As an aside, these expressions for the PSS pressure drop may be used 

to determine the pressure equivalent center location for the radial element (Eq. (2.22)). 
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 
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2 2 1 1
1 22 2

2 1

ln ln 1 1
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2 2
c c

r r r r
r

r r
  


    


 (2.35) 

The radial center is not at the cell centroid. For example, for a complete 360  

radial element, the centroid is at 0r  , which is not within the cell, while this pressure 

equivalent location is always within the element. 

In the radial PSS solution, a uniform value for u  is consistent with a pressure 

that does not depend upon  , so there is no distinction between  ,p r  and  p r . 

However, for the azimuthal PSS solution, the pressure depends upon both coordinates, 

and this definition of  p   has a non-trivial relationship to  ,p r  . This definition of the 

average pressure based upon the total flux correctly obtains the azimuthal transmissibility 

To summarize, two examples were shown of the reduction of a multi-dimensional 

pressure distribution to an equivalent 1D pressure profile. The averaged pressure for a 

surface is defined to be consistent with the total flux across the surface. For a finite 

difference calculation, this fixes the weights to be the intercell transmissibility between 

elements. For a homogeneous element, as in the case of the radial element, the directional 

average pressures may be obtained analytically. 

The two elements that will be used in the transmissibility upscaling approach are: 

the use of PSS pressure drops associated with the flux through each cell face, and the 

reduction of 3D pressure distributions to 1D pressure profiles by a flux-based pressure 

average.  
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Now, two ways of setting up a 3D PSS upscaling calculation are presented. One is 

to use no flow boundary conditions everywhere on the exterior of the domain except the 

flowing face and define an upstream average pressure using a local transmissibility weight 

as in Eq.(2.26) to calculate the reference PSS pressure drop for transmissibility (
PSSp ). 

The second is to set up the upstream face as an isobar by making the total flow equal to 

zero but not necessary the local flow. The unknown upstream face pressure is obtained by 

solving the flow equation with this extra condition. A discussion of these approaches is 

presented in the following sub section. 

 

2.3.1 3D Steady State Pressure Averaging 

The set up for 3D steady state transmissibility upscaling is highlighted in Figure 

2.4 where upstream and downstream isobars are imposed to drive flow. 3D steady state 

pressure equation (Eq.(1.1)) is solved for pressure and total flux given the uniform face 

pressures and no flow side boundary conditions. 

 

 

Figure 2.4: 3D Steady state pressure averaging 
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Pore volume weighted pressure (
SSp ) is calculated from the 3D solution to obtain 

reference pressure drop for half-cell transmissibility. 

1 2;
0

f fHalf Half

SS SS SS

q q
T T

p p p

 
 
  

  (2.36) 

2.3.2 3D Pseudo Steady State Pressure Averaging 

In 3D PSS flow pressure averaging, the 3D flow is reduced to an equivalent 1D 

flow using total flux and an average pressure. At PSS, the total flux can be obtained from 

the enclosed pore volume and is proportional to the face flux (
fq ). Two scenarios are 

considered herein. The first is similar to the steady state set up with isobars at upstream 

and downstream faces and no flow side boundary conditions (Figure 2.5a). This approach 

is named PSSP. Total PSS flux at the downstream face is specified and zero total flux at 

the upstream face is imposed. The downstream isobar sets the gauge and the upstream 

isobar is a consequence of the zero total flux condition. This is a completely local 

upscaling calculation on the coarse grid, but not on the fine grid. 
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(a) 3D PSSP averaging 

 

(b) 3D PSSQ averaging 

Figure 2.5: 3D PSS pressure averaging 

  

3D PSS pressure equations (Eq.(2.1)) are solved for the unknown upstream face 

pressure and the half-cell transmissibility with flow referenced to the downstream face is 

given by 

2

0

fHalf

PSS

q
T

p



 

 (2.37) 

Another PSS flow pressure averaging set up is described in Figure 2.5b where the 

flow is completely localized compared to the previous two flow descriptions. This 

approach is named PSSQ where the total flux is specified at the flowing face and no flow 

boundary conditions imposed on all other exterior faces. The total as well as the local flux 

is zero everywhere on the exterior faces except the flowing face which gives a completely 

local upscaling calculation both on the fine as well as the coarse grid. After solving the 
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3D PSS pressure equations, the upstream average face pressure (
PSSp ) is calculated as a 

local transmissibility weighted average as described in Eq. (2.26). The half-cell 

transmissibility now is given by Eq.(2.38). The transmissibility calculated using this 

approach is always less than or equal to the transmissibility calculated by PSSP. Both of 

these PSS upscaling approaches will exposed further for upscaling calculations in the next 

chapter. 

2

0

fHalf

PSS

q
T

p





 (2.38) 

2.4 Discussion 

This chapter presented a review of transmissibility construction using steady state 

and pseudo steady state concepts. The reference pressure drop for steady state 

transmissibility was shown to be the pore volume averaged pressure drop and the 1D cell 

center was defined using the steady state and the averaged steady state pressure profile. 

The center defined this way guarantees to be within the cell and may not coincide with the 

geometric centroid as shown in the radial flow example.  

The PSS transmissibility construction in 1D was made possible due to an 

equivalence relation derived between pore volume averaged steady state pressure drop and 

the total PSS pressure drop. Superposition of PSS pressure drops was shown to recover 

SS pressure drop making the PSS solutions more general than steady state. This is because 

flux is not assumed to be uniform in the direction of flow unlike a steady state calculation. 

A new form of PSS pressure averaging was introduced to extend the 1D PSS 

transmissibility construction to 3D for upscaling purposes. The averaging procedure was 
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motivated by defining a face pressure based on flux continuity. The averaging approach 

was demonstrated on a 2D radial element with both radial and azimuthal flow. Two types 

of 3D PSS flow problems were presented, one with zero total flux at the upstream face but 

not necessary the local flux (PSSP) and the other with a zero local flux on all external 

faces except the flowing face (PSSQ). A steady state upscaling calculation is explicitly 

coupled to the upstream and downstream pressure boundary conditions and implicitly 

coupled to the large scale boundary conditions. PSSP calculation is weakly coupled to the 

upstream and downstream faces and PSSQ calculation has the advantage of complete 

localization. PSS flow in general is driven the natural reservoir energy whereas steady 

state flow depends on the choice of boundary conditions. 

In the next section, PSS upscaling formulation is formally presented using the 

results derived in the current section. 

 



 

35 

 

 CHAPTER III 

PSEUDO STEADY STATE UPSCALING 

 

3.1 Methodology 

In this section, the PSS upscaling formulation is formally presented. Since at PSS, 

flux varies linearly with pore volume (Matthews et al. 1954), the slightly compressible 3D 

diffusivity equation is rewritten in terms of pore volume and face flux (Eq.(3.1)). 

face

t

p

qp
u c

t V
 


   


 (3.1) 

 

 

Figure 3.1: 2x2 PSS upscaling formulation 

 

The PSS upscaling set up is described in Figure 3.1 where effective transmissibility 

is calculated between a coarse block pair using an imposed coarse face flux and total PSS 

                                                 

Part of the data reported in this chapter is reprinted with permission from “Dynamic Downscaling and 

Upscaling in High Contrast Systems” by Nunna and King, 2017: Paper SPE-186289-MS presented at SPE 

Reservoir Simulation Conference held in  Montgomery, Texas, USA, 20–22 February 2017. Copyright 

2017, Society of Petroleum Engineers. 
Part of the data reported in this chapter is reprinted with permission from “Application of Pressure Transient 

Concepts for Improved Upscaling of Geologic Models” by Nunna 2017: Paper SPE-189293-STU presented 

at the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, USA, 9-11 October 

2017. Copyright 2017, Society of Petroleum Engineers. 



 

36 

 

pressure drop. Unlike steady state flow based upscaling where flow is driven by artificially 

imposed pressure isobars, the flow in PSS upscaling is driven by the source terms 

attributed to the compressibility driven natural reservoir energy. In Figure 3.1, the side 

boundary conditions are no flow while the choice of upstream and downstream boundary 

conditions differ for the two different PSS upscaling approaches which will be described 

in this work – PSSQ and PSSP.  The upstream cells act as a source and the downstream 

cells as a sink. The strength of the source/sink terms in each fine cell are proportional to 

the pore volume and are scaled by the total imposed flux at the coarse face (Eq.(3.1)).  

The use of superposition gives a simple and useful relation between PSS and SS 

as discussed before. The superposition to two PSS solutions with equal and opposite 

source/sink terms gives a SS solution but not vice versa i.e., PSS solutions are more 

complete and steady state is only one subset of the solutions that PSS can describe. Figure 

3.2 describes the example where SS flow in the blue coarse block is described using 

superposition of PSS flow between the blue-red and the green-blue coarse cell pairs. The 

PSS flow description has the advantage of reducing the dependence on large scale 

boundary conditions by utilizing the local source/sink terms to drive flow for a local 

upscaling calculation. 

 



 

37 

 

 

Figure 3.2: Sum of two local PSS calculation giving a SS flow profile (Reprinted 

with permission from Nunna and King 2017) 

 

After defining the source/sink terms and the boundary conditions, one additional 

gauge condition is required to close the loop and obtain a discrete solution of Eq.(3.1). 

Two choices were explored for this: one is to set the pore volume average of the pressures 

to vanish (Eq.(3.2)) and the other is to impose an additional constraint on the shared face 

by making it an isobar ( 0facep  ). Although Eq.(3.2) relaxes the additional assumption on 

the shared face, there are some instances which may lead to material balance issues. For 

instance, in Figure 3.3, a barrier running across the coarse cell pair causes material balance 

issue. The source term of fine cell 1 does not necessarily equal the sink term of sink term 

of cell 2 although the total flux is preserved by construction. This results in a material 

balance issue making the coefficient matrix of the discrete equation singular and forcing 

a zero effective transmissibility. Imposing the shared face as an isobar always guarantees 

non-negative transmissibility by allowing fluid to leak through the shared face in case of 

barrier as in Figure 3.3. 

0i i

i

p PV   (3.2) 
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(a) Issue (b) Solution 

Figure 3.3: Disconnected pay issues in PSS upscaling 

 

The use of PSS concepts for upscaling was first described by Karimi‐Fard et al. 

2006 in the context of dual porosity matrix fracture simulation. The PSS upscaling was 

used to describe flow in fracture systems. Although the flow calculation is similar to 

Karimi‐Fard et al. 2006, the current approach differs in the calculation of effective 

transmissibility using the pressure averaging technique described in the previous chapter. 

The PSS construction is also similar to the work done by Aarnes 2004 and Lie, K.-A. et 

al. 2012 for computing basis function in multiscale simulation. 

 

3.2 PSSQ and PSSP Transmissibility Upscaling Formulation 

In this section, two different choices of setting up the PSS upscaling formulation 

is described through the choice of defining the upstream and downstream face boundary 

conditions. The PSSQ approach imposes no flow on the entire outer periphery making it 

completely localized (Figure 3.4a).  After discretizing Eq.(3.1) and solving for the local 

pressures, the average upstream and downstream face pressures are calculated as 
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transmissibility weighted average (Eq.(3.3)) as discussed in the previous chapter. The 

weight 
iT  in Eq.(3.3) refers to twice the intercell transmissibility or half-cell 

transmissibility along the outer fine cell faces. Intercell transmissibility is the default 

choice unless the face is on the boundary of the reservoir or is surrounded entirely by a 

non-pay barrier. 

 

 

i i

i up down face

i

i up down face

p T

p
T










 (3.3) 

 

  

(a) PSSQ (b) PSSP 

Figure 3.4: PSS transmissibility upscaling formulation 

 

The upscaled inter cell transmissibility is computed from the average upstream and 

downstream face pressures given by Eq.(3.4) 

1 up down

Eff

PSSQ face

p p

T q


  (3.4) 

The PSSP approach relaxes the assumption of no flow upstream and downstream 

boundary conditions by allowing the leaky local flow but keeping the total flux equal to 

zero. This is done by setting the boundary face as an isobar with unknown pressure that is 
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to be calculated. One additional equation for each face is required which is given by 

Eq.(3.5). Interestingly, this equation is the similar to the transmissibility weighted average 

described for the PSSQ algorithm (Eq.(3.3)). The main difference here is that the face 

pressure is imposed as a uniform isobar for PSSP while no such condition is required for 

PSSQ. The equation for upscaled PSSP inter cell transmissibility is similar to Eq.(3.4) 

with the upstream and downstream face pressures now being uniform (Eq.(3.6)). 

 
,  

0i i PSS

i up down face

T p p


   (3.5) 

1
up down

PSS PSS

Eff

PSSP face

p p

T q


  (3.6) 

This formulation is inspired from the variational formulation of the diffusivity 

equation which is based on minimizing the work required to move fluids through the 

subsurface volume (Stewart 1968). Given a volume Ω  where we specify either p  or 

n k p   on its boundary,   then the dissipation must be minimized, where the 

dissipation is proportional to Eq.(3.7). Minimizing Eq.(3.7) is equivalent to solving the 

Laplace equation and gives the additional equation Eq.(3.5). 

3d x p k p


    (3.7) 

 

3.2.1 Two-point Upscaling Diagnostics - SS vs PSS 

In this section, the advantage of using PSS concepts for upscaling is highlighted 

with two simple numerical examples with 2 2 2   coarsening. The two-point flux 

diagnostic measure proposed by Kasap and Lake 1990 is used to compare transverse and 
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longitudinal pressure drops for the upscaling calculations. The transverse face pressure 

drops are calculated using the transmissibility weighted pressures at the no flow transverse 

boundaries. 

 

Case 1 

Figure 3.5 describes the permeability field for case 1. The pressure solutions for 

steady state, PSSQ and PSSP upscaling are shown in Figure 3.6. 

 

  

Figure 3.5: Case 1 - 2x2x2 permeability in X and Z directions 

 

The amount of crossflow can be quantified by comparing the transmissibility 

weighted average transverse pressure drops with the longitudinal average pressure drop 

for each upscaling calculation. Table 3.1 represents the longitudinal and transverse 

pressure drops for each upscaling calculation. The numbers in the parenthesis represent 

the transverse pressure drop as a percentage of longitudinal pressure drop. Clearly, SS has 

the highest cross flow in the vertical direction whereas both PSSQ and PSSP calculations 
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have a minimal transverse pressure drops. This is also evident from the pressure maps in 

Figure 3.6. Notice, the reference SS pressure drop for transmissibility is negative because 

the pore volume averaged difference does not always guarantee non-negative 

transmissibility especially in the presence of strong cross flow. The PSS calculations on 

the other hand have no restriction on flux being uniform in a way SS does, instead the flux 

profile may follow the local heterogeneity which highlights one of the advantages of using 

PSS concepts for upscaling. Another key difference between the SS and PSS methods is 

the averaging procedure. The transmissibility weighted pressure average used for PSS 

methods emphasizes the high flow regions over the low flow cells by means of 

transmissibility. This is not true for the pore volume which is evident from the negative 

pressure drop for the steady state upscaling calculation in Table 3.1. 

 

   

(a) Steady state (b) PSSQ (c) PSSP 

Figure 3.6: Case 1 - Pressure solutions for 2x2x2 upscaling calculations 
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 SSp   PSSQp  
PSSPp  

I (longitudinal) -0.06 3.47 3.24 

J (transverse) 0.0002 (0%) 0.0003 (0%) -0.0004 (0%) 

K (transverse) 0.73 (1200%) 0.96 (28%) 0.59 (18%) 

Table 3.1: Case 1 - Average pressure drops in each direction for 2x2x2 steady state, 

PSSQ and PSSP upscaling 

 

Case 2 

Figure 3.7  shows the permeability map for case 2 and Figure 3.8 the corresponding 

pressure distributions for the upscaling methods tested. The longitudinal and transverse 

pressure drops are tabulated in Table 3.2. Most of the permeability distribution is high 

except the downstream right blocks at the bottom (Figure 3.7). Compared to PSS methods, 

there is significant amount of cross flow in the vertical direction for steady state as 

tabulated in Figure 3.9 and Table 3.2 through the transverse pressure drop calculations. 

This is due to the uniform flux assumption in steady state whereas for both the PSS 

methods, the velocity is mostly aligned to the longitudinal pressure drop and most of the 

pressure drop is seen only around the low permeability region towards the right. Both PSS 

calculations show less artifacts and vertical cross flow dominates in SS but not for PSS 

methods. 
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Figure 3.7: Case 2 - 2x2x2 permeability in X and Z directions 

 

   

(a) Steady state (b) PSSQ (c) PSSP 

Figure 3.8: Case 2 - Pressure solutions for 2x2x2 upscaling calculations 

 

 SSp   PSSQp  
PSSPp  

I (longitudinal) 0.3553 0.00017723 0.0006295 

J (transverse) -0.0448 (4%) -1.31E-05 (7%) -4.41E-05 (7%) 

K (transverse) -0.9285 (261%) -0.000113 (64%) -0.0004229 (67%) 

Table 3.2: Case 2 - Average pressure drops in each direction for 2x2x2 steady state, 

PSSQ and PSSP upscaling 
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(a) Steady State flow (b) PSS flow 

Figure 3.9: Case 2 - Vertical cross flow in SS and PSS upscaling calculations 

 

Both the above test cases highlight the advantage of using PSS concepts for flow 

based upscaling. 

 

3.3 PSS Well Index Upscaling Formulation 

Well index definition is based upon a steady state pressure drop from the 

bottomhole flowing pressure to a reference pressure. In the context of local well index 

upscaling, the well index is expressed using PSS flow and superposition of the pressure 

drops from the cell to bottomhole and the cell to neighboring cells (Eq.(3.8)). The well 

index is defined by the pressure drop from the bottomhole to the cell (Eq.(3.9)) and the 

pressure drop from the cell to neighboring cells is the transmissibility piece given by the 

numerical finite difference calculation which has already been described in the above 

sections (Eq.(3.10)). The equations are pictorially represented in Figure 3.10. 

 

     
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(a) Reference SS pressure drop (b) PSS pressure drops 

Figure 3.10: SS and PSS pressure drops used to calculate well index 

 

The pressure drop from the bottomhole to the cell faces is obtained from a 

reference calculation which sets the boundary conditions for the finite difference 

calculation. Peaceman 1978, 1983, 1990 used two wells or a well and a coarse cell 

boundary as reference pressures and then computed the well index and the equivalent 

wellbore radius under numerical refinement. Under numerical refinement, the impact of 

far field boundary conditions near the well are negligible and all that is left is the pressure 

drop due to the well which is used to calculate the well index. However, for an upscaling 

calculation, numerical refinement is not performed, instead a single cell Peaceman 

calculation is performed to evaluate the coarse well index.  

As done for the PSS transmissibility, the well index upscaling is formulated using 

the same set up described for transmissibility upscaling. Instead of the face flux, the flow 
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is now driven by a well flux ( 1wq  ). The bottomhole pressure ( 0wfp  ) is set to a gauge 

pressure of zero and the averaging surface now becomes the outer boundary  of the 

coarse block (Figure 3.11). 

  

(a) PSSQ (b) PSSP 

Figure 3.11: PSS well index upscaling 

 

After solving the discretized version of Eq.(3.1), the upscaled well index is given 

by Eq.(3.11) 

1 PSS wf

Eff

PSS w

p p

WI q


  (3.11) 

The PSSP well index formulation is similar to the steady state well index 

formulation proposed by Durlofsky et al. 2000 where the upstream isobar is imposed on 

an extended domain instead of the boundary of the coarse block that contains the well.  

Peaceman 1990 utilized analytic steady state radial flow pressures at the 

boundaries of the computation domain as boundary conditions (Eq.(3.12)) to evaluate the 

fine scale equivalent radius  or  for finite difference numerical calculation. This is done 
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by finding the well cell pressure  op  from the numerical calculation and the difference 

between well cell pressure and the bottomhole pressure defines the equivalent radius 

(Eq.(3.13)). This is identical to solving the difference between analytic and numerical 

pressures which vanishes at the boundary and matches the total flux from the well. This 

particular calculation corresponds to PSSP where the total flux conditions is imposed. 

However, the local flux at the boundary does not match the analytic radial solution. 

Therefore, PSSP is the preferred upscaling calculation over PSSQ. 
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The two proposed PSS well index methods are further tested on homogeneous 

models with known reference solutions. A 3 3  homogeneous test model was considered 

with different aspect ratios and well in the center of the coarse block. The reference coarse 

well index was calculated form the equivalent Peaceman radius (Eq.(3.14)) and the 

upscaled well indices were calculated using a flow based approach with the boundary 

conditions specified as above for PSS. For steady state, a uniform known isobar is 

specified on the outer boundary and the upscaled well index is evaluated based on the 

difference between pore volume averaged cell pressure and the specified bottomhole 

pressure. Eq. (3.14) is an approximation to the actual Peaceman radius as Peaceman 1990 

clearly demonstrated the calculation is not so accurate for a single cell. Nonetheless, it 

may give us a direction on choosing the PSS upscaling approach for well index. 
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Four different aspect ratios were tested ( 1,2,5,10DY DX   ) and Figure 3.12 

describes the pressure maps with the corresponding well indices evaluated for steady state, 

PSSP and PSSQ. The error seems to increase with increase in aspect ratio as shown in 

Table 3.3. Both PSSP and SS well index upscaling methods show relatively less error 

compared to PSSQ. Henceforth, PSSP well index will be considered the preferred well 

index method for the current work. The upscaled transmissibilities will be evaluated based 

on PSSP and PSSQ but the well index calculation is restricted to PSSP method. 

 

 Absolute Error (%) 

Aspect ratio SS PSSP PSSQ 

1 7.66 7.66 9.09 

2 3.48 3.48 9.79 

5 6.38 6.38 19.46 

10 11.07 11.07 34.03 

Table 3.3: Well index error evaluated for different aspect ratios 
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(a) Aspect ratio = 1 (a) Aspect ratio = 2 

  

(a) Aspect ratio = 5 (a) Aspect ratio = 10 

Figure 3.12: 3x3 Homogeneous well index comparison for SS, PSSP, and PSSQ 
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3.4 Numerical Experiments 

The PSS upscaling formulation is tested on SPE10 synthetic reservoir model 

(Christie and Blunt 2001) and an onshore tight gas reservoir (Zhou and King 2011). In the 

original study, the SPE10 dataset was studied under secondary recovery. The current work 

is primarily restricted to single phase flow to study pressure and rate upscaling without the 

need to address multiphase flow issues which may be rigorously captured in a multiscale 

simulation framework. 

The SPE10 model has been designed to be a challenge for upscaling algorithms. It 

is a 60 220 85   cell model (1,122,000 cells in total) with uniform rectangular 20 ft x 10 

ft x 2 ft cells. The architecture of the reservoir consists of sheet sands in the upper geologic 

unit and tortuous narrow channels in the lower unit (Figure 3.13). The facies distribution 

in Figure 3.13 is implicit in the model and is obtained from the ratio of vertical to 

horizontal permeability. The reservoir properties are highly heterogeneous with strong 

contrast between the porosity and permeability trends (Figure 3.14). 
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(a) SPE10 Upper geologic unit 

(Tarbert) 

 

(b) SPE10 Lower geologic unit 

(Upper Ness) 

 

Figure 3.13: Facies description of the upper and lower geologic units of SPE10 

(Reprinted with permission from Nunna and King 2017) 

 

 

Figure 3.14: SPE10 permeability porosity cross plot 

 

The tight gas reservoir model is a low net to gross reservoir undergoing primary 

depletion. Figure 3.15a describes the facies map of the high resolution 3D geologic model 

showing thin fluvial sands with intermittent connectivity. The model size 103 108 375 

cells (~4 million cells) and the cells are 250 feet on the side and approximately 1 foot in 
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thickness. The areal grid is uniform while the vertical grid is stratigraphic. The model has 

been built with proportional layering within each zone. Less than 17% of the cells are 

active in the geologic model and we expect that continuity of the sand channels will be 

difficult to preserve. There is significant heterogeneity within the sand channels 

themselves, with permeability varying over four orders of magnitude. The reservoir has 

81 vertical wells with 24 years of production history (Figure 3.15b). 

 

  
(a) Facies map (b) Pore volume map 

  

Figure 3.15: Full field tight gas reservoir model (After Zhou and King 2011) 

 

3.4.1 2D SPE10 Localization Test 

In this section, the impact of localization i.e., the effectiveness of boundary 

conditions on the local upscaling methods is evaluated. The PSS upscaling approach is 

benchmarked against extended local (Holden and Lia 1992) and adaptive local global 

(Chen and Durlofsky 2006) upscaling methods. The 2D test case studied here is one of the 

steady state models considered in Chen and Durlofsky 2006 which is layer 55 of the SPE10 

model with 1 injector and two producers (Figure 3.16). The injector I1 is placed at  5,5  

and the two producers are placed at  5,175 and  55,215 respectively. The coarsening 
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ratio is10 10 . The injector is maintained at bottomhole pressure equal to one and the 

producers at zero bottomhole pressure with steady state flow regime. As shown in the 

Figure 3.16, the test case has high contrast in properties with high permeability channels 

with low permeability sands in between making it a challenging case. The errors in 

localization are assessed by evaluating the error in face fluxes relative to the fine scale 

simulation. The face fluxes obtained from fine scale simulation are summed up to the 

resolution of the coarse grid to have a like for like comparison. The average error is 

quantified based on the total summed up flux consistent with the Chen and Durlofsky 2006 

paper (Eq.(3.15)). The upscaling methods were implemented inside the Matlab Reservoir 

Simulation Toolbox environment (Krogstad et al. 2015;Lie, K.A. et al. 2012;Lie 2014). 

100 1
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face
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

 (3.15) 

 

 

Figure 3.16: SPE10 layer 55 permeability 

 

Figure 3.17 and Figure 3.18 describe the error in face fluxes in X and Y directions 

for extended local (EL), adaptive local-global (ALG), PSSQ and PSSP methods 
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respectively. While adaptive local-global is consistently accurate in both directions, 

extended local appears have to the largest error out of the four upscaling methods. This is 

not a surprise as ALG is specifically optimized to the particular well configuration 

considered here. Notice both PSSQ and PSSP perform reasonably well without reference 

to any global boundary conditions. This particular test case highlights the advantage of 

using PSS concepts for upscaling as opposed to a steady state technique. 

 



 

56 

 

  

(a) Extended local (b) Adaptive local-global 

  

(c) PSSQ (d) PSSP 

Figure 3.17: SPE10 layer 55 X direction face flux comparisons for different 

upscaling methods 
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(a) Extended local (b) Adaptive local-global 

  

(c) PSSQ (d) PSSP 

Figure 3.18: SPE10 layer 55 Y direction face flux comparisons for different 

upscaling methods 

 

3.4.2 3D SPE10 Single Phase Flow 

In this section, the upscaling methods are evaluated on the entire SPE10 model 

with a producer and injector pair placed at the corners (Figure 3.19). The oil and rock 
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compressibilities were left to the default values of the original SPE10 dataset. The well 

constraints and simulation input data are summarized in Table 3.4. 

 

 

Figure 3.19: SPE10 model permeability map with injector and producer 

 

Initial pressure, psia 6000 

Rock compressibility, psi-1 1e-6 

Producer constraints 4000 psia bottomhole pressure 

Injector constraints 
2000 bbl/day target reservoir volume; 

10000 psia bottomhole pressure constraint 

Simulation time 1 year 

Table 3.4: SPE10 single phase flow simulation input data 

 

Five coarsening ratios ( 1 1 4  , 2 2 1  , 2 2 2  , 3 3 1  and 2 2 5  ) are 

considered and the PSS upscaling methods are benchmarked against local steady state 

upscaling method with pressure isobars imposed on the upstream and downstream face 
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(Figure 3.20). The effective transmissibility is evaluated based on the face flux and the 

pore volume averaged pressure difference between the coarse blocks under consideration. 

 

 

Figure 3.20: 2x2 local steady state upscaling 

 

Figure 3.21 describes the cumulative oil recoveries for the 5 coarsening ratios. It 

is clear that both steady state and PSSP upscaling perform consistently better than the 

PSSQ upscaling method with regards to the well rates. However, the face flux error 

comparisons (Figure 3.22, Table 3.5) show that PSSP better captures the flow field 

compared to the steady state and PSSQ. For the sake of brevity, only 4 coarsening ratios 

are shown that capture the most information. The face fluxes are compared for the last 

time step and the error in face flux is computed using the L2-norm given by Eq.(3.16).  

2

2

( )
fine coarse L

face

fine L

q q
e q

q


  (3.16) 

In summary, PSS upscaling results show consistently lower performance 

prediction relative to fine scale simulation for SPE10 model. The assumption of entire 

coarse blocks reaching PSS may not be valid in a high contrast model such as SPE10 

especially in the lower geologic unit which represents high contrast highly channelized 

environment. 
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Figure 3.21: SPE10 single phase flow cumulative oil recovery for different 

coarsening ratios 
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Figure 3.22: SPE10 single phase flow face flux comparisons for different coarsening 

ratios 
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 1 1 4   2 2 1   2 2 2   3 3 1   2 2 5   

SS 0.584 0.333 0.460 0.436 0.618 

PSSP 0.559 0.362 0.485 0.418 0.613 

PSSQ 0.634 0.374 0.514 0.440 0.646 

Table 3.5: SPE10 single phase flow face flux errors for different coarsening ratios 

 

3.4.3 3D Low Contrast  SPE10 Single Phase Flow 

In this section, the PSS upscaling methods are tested on the low contrast Tarbert 

formation of the SPE10 model (layer 1-35). The formation contains fairly continuous sheet 

sands. The simulation input data and the coarsening ratios are kept same as the previous 

section. Figure 3.23 and Figure 3.24 describe the cumulative recoveries and face flux 

comparisons for the coarsening ratios considered in the previous section. Clearly, the PSS 

upscaling results show considerable improvement compared to the high contrast SPE10 

model discussed before. Therefore, the assumption of reaching PSS in a low contrast 

coarse block may be a valid one. 

 

 



 

63 

 

  

  

 

 

Figure 3.23: SPE10 Tarbert formation cumulative oil recovery for different 

coarsening ratios 
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Figure 3.24: SPE10 Tarbert formation face flux comparisons for different 

coarsening ratios 

 



 

65 

 

3.4.4 3D Full Field Tight Gas Single Phase Flow 

The upscaling results for the tight gas model (Figure 3.15) are presented in this 

section. The upgridding resolution in the vertical direction is performed based on pillar 

adaptive unstructured coarsening approach proposed by Zhou and King 2011. Three 

coarsening ratios are chosen:1 1 N  , 2 2 N  and3 3 N  . Here ‘N’ is obtained from the 

adaptive upgridding approach that preserves the vertical continuity in the fine cells that 

encompass a coarse block. Figure 3.25  describes the total cumulative gas recovery for the 

24 year production history for the 3 coarsening ratios. For1 1 N  , all the upscaling 

methods yield accurate performance prediction relative to the fine scale simulation. This 

is due to the low contrast of permeability within each coarse cell obtained from adaptive 

vertical coarsening. For the areal coarsening cases, we can clearly see that steady state 

consistently overestimates while pseudo steady state consistently predicts accurate gas 

recovery compared to the fine scale model even at a lower resolution. For example, in 

3 3 N   case, there are approximately 40,000 active cells in the coarse model compared 

to 4 million cells in the geologic model. Notice, there is hardly any difference between 

PSSP and PSSQ methods. The adaptive gridding of the tight gas example is a specialized 

upgridding application. When considering multiphase flow, for instance, gravity 

segregation is a fundamental mechanism which cannot be captured with such a grid 

design. However, the upscaling calculations demonstrated in this case have not been 

specialized to tight gas, and the high permeability contrast within the channels have made 

this a useful test case.  
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Figure 3.25: Tight gas full field cumulative gas recoveries for 3 coarsening ratios 

 

3.5 Discussion 

The formulation and application of pseudo steady state upscaling was presented in 

this chapter. Two different ways of setting up a PSS transmissibility upscaling calculation 

were discussed – PSSQ and PSSP. The advantage of using PSS concepts for upscaling 

was highlighted using two simple numerical examples where the steady state calculations 

failed in the presence of significant cross flow. On the other hand, the flow for PSS 

calculations was almost linear with less bias. 

For the well index upscaling, PSSP upscaling was chosen as the default PSS 

algorithm based on equivalence between the PSSP method and the calculation performed 

by Peaceman 1990 both of which match the total flux across the computational boundary. 

The PSS upscaling methodology was tested on a high contrast 2D model to 

evaluate the effectiveness of the local boundary conditions on the performance of the 

coarse model relative to the fine scale simulation. The results demonstrated improved 

performance of PSS upscaling methods relative to extended local upscaling without 

having to reference the large scale boundary conditions in a way the local-global upscaling 

method requires. . By construction, the superposition of PSS solutions gives back the SS 



 

67 

 

flow profile. Through the use of superposition, the fundamental flow fields studied allow 

for the capture of cross-flow in the upscaling calculation.  

Both PSSQ and PSSP methods performed reasonably well for the 2D SPE10, 3D 

SPE10 low contrast and 3D tight gas examples. However, PSS method consistently 

underestimated the performance predictions for the high contrast 3D SPE10 model. This 

is due to the restrictive assumption that an entire coarse block reaches PSS even in the 

presence of weakly connected pay where it takes a long time for the pressure to equilibrate. 

Following King 2007, the assumption of pressure equilibrium inside a coarse block is 

violated in the presence of weakly connected or disconnected pay. For instance, consider 

a coarse cell pair upscaling as shown in Figure 3.26 with a weakly connected barrier in 

the middle of the upstream coarse block. The assumption of PSS in the entire volume for 

flow at the face leads to steep pressure gradient towards the left of the domain and biases 

the upscaled transmisisbilities downwards. In order to identify the sub volume that 

effectively contributes to the flow at the face, a pressure transient diffuse source upscaling 

approach is proposed in the following chapter. 

 

 

Figure 3.26: 1D PSS upscaling stranded pay issue 
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 CHAPTER IV 

DIFFUSE SOURCE UPSCALING 

 

In this chapter, the background elements needed to set up the pressure transient 

diffuse source (DS) upscaling algorithm are highlighted starting with the diffusive time of 

flight and asymptotic pressure approximation of the diffusivity equation. 

 

4.1 Diffusive Time of Flight 

The diffusive time of flight   is obtained from the solution of the Eikonal equation 

which arises from the high frequency asymptotic limit of the diffusivity equation. Fourier 

transform of the slightly compressible diffusivity equation (Eq.(2.1)) to the frequency 

domain gives Eq.(4.1) as shown by Virieux et al. 1994. 

        ( ) , ,tk x p x x c i p x         (4.1) 

Based on an analogy with electromagnetic wave propagation, Vasco and Datta‐

Gupta 1999 and Kulkarni et al. 2001 proposed the solution of Eq.(4.1) to be of the form 

given in Eq.(4.2). 

                                                 

Part of the data reported in this chapter is reprinted with permission from “Dynamic Downscaling and 

Upscaling in High Contrast Systems” by Nunna and King, 2017: Paper SPE-186289-MS presented at SPE 

Reservoir Simulation Conference held in  Montgomery, Texas, USA, 20–22 February 2017. Copyright 

2017, Society of Petroleum Engineers. 
Part of the data reported in this chapter is reprinted with permission from “Application of Pressure Transient 

Concepts for Improved Upscaling of Geologic Models” by Nunna 2017: Paper SPE-189293-STU presented 

at the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, USA, 9-11 October 

2017. Copyright 2017, Society of Petroleum Engineers. 
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The Eikonal equation (Eq.(4.3)) is obtained by substituting Eq.(4.2) in Eq.(4.1) 

and collecting the high frequency terms. 

        tx k x x x c        (4.3) 

Here,  x  is associated with the propagation of the first passage pressure pulse 

from an impulse source or sink. For a homogeneous isotropic media, the Eikonal equation 

simply relates   to the distance (r) from a source through a proportionality constant given 

by hydraulic diffusivity (Eq.(4.4)) 

tc
r

k


   (4.4) 

The Eikonal equation may be solved on a gridded mesh using the Fast Marching 

Method (FMM) (Sethian 1996) which is an extension of the well-known graph search 

algorithm Dijkstra (Dijkstra 1959). For the current work, Dijkstra’s algorithm is 

considered as the additional angular resolution offered by FMM is not necessary for an 

upscaling calculation using two-point discretization.  

 

4.2 Asymptotic Pressure Approximation 

Collecting the high frequency limit of Eq.(4.2) and transforming back to the time 

domain shows that the time derivative of the pressure drop is proportional to an 

exponential kernel of the form (
2 4tp t e   ) for which King et al. 2016, Wang et al. 
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2017 derived the asymptotic solutions to the diffusivity equation for various boundary 

inner and outer boundary conditions. In the current work, the fixed rate drawdown solution 

derived by King et al. 2016 is utilized. In this formulation, the diffusivity equation is 

written in terms of pressure and flux which are functions of   and t. The flux is defined 

as the total flux across a   contour. The asymptotic fixed rate draw-down solution is given 

by Eq.(4.5) where wq  is the flowrate at the wellbore and  V t  refers to the time dependent 

drainage volume.  The explicit form of the drainage volume is a consequence of material 

balance since wq q  at the wellbore, 0  . The exponential approximation in this 

equation is exact for early time at any location, even in the presence of strong 

heterogeneity. This is a consequence of  x  being a solution to the Eikonal equation. 

The exponential term may be physically interpreted as an outwardly moving pressure 

transient. For sufficiently smooth heterogeneity, where reflection terms are negligible, this 

may provide an excellent approximation for all times. Notice as 
2 4, 1tt e    for any 

finite , and    pV t V , we recover a PSS solution (Eq.(3.1)). 
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 (4.5) 

King et al. 2016  described the characteristics of the asymptotic fixed rate draw-

down solution in terms of the time derivative of the pressure drop. These characteristics 

relate the range of the exponential term to the spatial profile of the solution (Figure 4.1and 

Table 4.1). Figure 4.1 describes the spatial footprint of the asymptotic pressure solution in 
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terms of the time derivative of the pressure drop normalized to its value at the wellbore

 0  . There are three important relationships between   and t that can be obtained 

from the asymptotic solution which are also described in Figure 4.1. In the pressure 

transient literature, the depth of investigation (DOI) is defined as the time when p t    

reaches a maximum at a given location for an impulse source/sink (Lee 1982). Calculation 

of DOI involves the exponential term and a geometry dependent pre-factor which depends 

on the flow geometry. For instance, 2 4 1DOIt   is the relationship for radial flow. 

Although this is the most common relationship, it does not directly enter the DS upscaling 

formulation. A second relationship is associated with the limit of detectability (LOD). This 

appears in the well testing literature in the context of the time at which you can detect the 

distance to a fault or the distance to the boundary of the reservoir through the well-test 

derivative (Lee 1982). This follows the relationship 2 4 4LODt   where the exponential 

reaches a value of
2 /4 4  0.018LODt

e e
   . This exponential is evaluated relative to unity in 

the context of LOD. In the diffuse source upscaling formulation it will be used to estimate 

those volumes that are still at near initial pressures at a given time. The last relationship is 

given at late time when 2 4 0.01PSSt   and
2 /4 0.01  0.99PSSt

e e
   . This limit is important 

in the well testing literature as the flow regimes (radial, linear, spherical) are apparent at 

the well once the PSS limit is reached in the vicinity of the wellbore. This is also the time 

at which the line source radial flow transient solution, given by the exponential integral 

function  2  4iE t , may be approximated by its logarithmic limit. 
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Figure 4.1: Spatial profile of the asymptotic pressure solution (After King et al. 

2016) 

 

Solution Exponential Range / 4τ t  Range 

PSS 
2 /4 0.99te    / 4 0.1t   

Transient 
2 /40.018 0.99te    0.1 / 4 2t   

Near Initial  

(Limit of Detectability) 

2 /4 0.018te    / 4 2t   

Table 4.1: Solution characteristics of the asymptotic pressure approximation 

 

King et al. 2016 derived a general form for the analytic solution for the equivalent 

1D pressure profile using the asymptotic approximation described above. Its validity is 

limited to “sufficiently smooth” or early time solutions. In the current, the 3D diffusivity 

equation is solved numerically without the assumption that the spatial dependence of the 

pressure is only given by  x . However, the exponential form is retained as a diffuse 

source term as it provides a means to explore the transition from the initial pressure to the 
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long time pseudo steady state limit. It will be shown that of the three relationships 

described above, the diffuse source upscaling most strongly relies upon the Limit of 

Detectability, which is applicable even in the presence of strong heterogeneity 

 

4.3 Diffuse Source Transmissibility Upscaling 

Utilizing the asymptotic pressure approximation described above (Eq.(4.5)), the 

diffusivity equation is rewritten as Eq.(4.6) for implementing the diffuse source upscaling 

technique. This formulation was first proposed by Nunna 2014;Nunna et al. 2015 in the 

context of a tight gas reservoir upscaling problem. 

 

2 4face t
q

u e
V t

     (4.6) 

As is the case with PSS upscaling described in the previous chapter, the local flow 

in DS upscaling is driven by source/sink terms now in a transient sense. The strength of 

the local source and sink terms are proportional to
2 4  te   . The diffusive time of flight to 

the center of each fine cell is obtained using Dijkstra’s algorithm with the starting value 

0   on the shared coarse cell face as shown in Figure 4.2. 
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Figure 4.2: Diffuse source cell face drainage volume 

 

In Figure 4.2, consider a pressure front moving away from the coarse cell face, 

only the fine cells connected to the face will have a finite value of  . The construction 

naturally removes the non-pay (grey cells) and isolated pay from the drainage volume of 

the coarse cell face. The non-pay cells (grey) and disconnected cells have infinite time of 

flight, but the remaining cells have finite   and will contribute to the upscaling 

calculation. Depending upon the time threshold chosen, this may also reduce the impact 

of low but non-zero values of permeability, making the results less sensitive to the choice 

of a net-pay cut-off. The calculation is local to the coarse cell face instead of being directly 

based upon all the fine cells. The application of local steady state or pseudo steady state 

upscaling techniques to Figure 4.2 would yield no flow as the center of the downstream 

coarse block is a barrier but the diffuse source approach can capture any finite flow local 

to the face. While the entire literature focused on expanding the computational domain to 

reduce the dependence on local boundary conditions for an upscaling calculation, the DS 

method tries to reduce the domain by working backwards from the flowing face. 
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The mathematics of the construction becomes apparent by examining a 1D 

homogeneous case, with a uniform cross section. From the asymptotic approximation, the 

flux function may be calculated analytically for the coarse cell pair with diffuse source 

and sink terms. The asymptotic approximation for uniform cross section 
facew  and 

 p facedV w d   reduces to Eq.(4.7). 

 

2 4face t

face

qq
w e

V t






 


 (4.7) 

At the upstream/downstream edge of the domain, the flux vanishes. Hence,   0q   

at e  ; e  is the diffusive time of flight to the edge of the volume. Integrating Eq.(4.7) 

to a finite   gives Eq.(4.8). 

 

 

2

,

4

0 e

q t

face t

face

q
dq w e d

V t

 





    (4.8) 

After algebraic manipulation, the analytic flux function is given below. 

 
 

,
2 2

face e
face

w
q t q t erf erf

V t t t

 
 

    
     

    
 (4.9) 

Evaluating  V t  for a uniform cross section in a bounded domain with upper limit 

e  gives Eq.(4.10) 

 
2

e
faceV t tw erf

t




 
  

 
 (4.10) 

Substituting Eq.(4.10) in Eq.(4.9) and normalizing by 
faceq  gives the flux basis 

function as a function of position ( ) and time. 
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 0
ˆ , 1

2 2

eq t erf erf
t t




   
     

   
 (4.11) 

At long time limit i.e. at PSS  t  , Eq.(4.11) becomes a linear function of 

given by Eq.(4.12). The flux profile at PSS has reduced to Raviart and Thomas 1977 basis 

whereas for steady state, the flux is uniform throughout the domain. 

 0
ˆ 1 eq      (4.12) 

Eq.(4.11) is graphically presented in Figure 4.3 for a 1D homogeneous cell pair. 

The arrow shows the direction of fluid flow. For early time, the flux vanishes except near 

the coarse cell face, and an upscaling calculation will emphasize only those cells near the 

face. In the late time limit at PSS, the flux function will be a simple linear function which 

is a finite element RT0 basis. In 3D and with heterogeneity, the flux function is more 

complicated and will need to be determined numerically. 
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Figure 4.3: 1D Homogeneous diffuse source flux profile for a cell pair (Reprinted 

with permission from Nunna 2017) 

 

Similar to the two PSS upscaling methods exposed in the previous chapter, the DS 

upscaling method also has two choices of specifying the upstream and downstream 

boundary conditions namely DSQ and DSP. In fact, PSS upscaling is a subset of the more 

general DS formulation for a particular choice of time. The source/sink terms for the 

diffuse source upscaling technique are evaluated at a specified time which will be 

discussed in the following section. After specifying time, Eq.(4.6) is discretized and the 

pressures are solved numerically. Then, the effective transmissibility for DSQ and DSP 

methods is obtained using the pressure averaging procedure (Eq.(3.4) and Eq.(3.6)). The 

near well upscaling formulation using the diffuse source methodology is very similar to 

the PSS well index formulation discussed in the previous chapter (Figure 3.11). The only 

difference for the DS method is that the diffusive time of flight is evaluated from the 

perforated cells ( 0  ) with source terms scaled as per 
2 4  te    instead of   . 
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4.3.1 Selection of Time 

The purpose of a non-net cutoff is to discard those portions of a reservoir 

description that do not contribute to recovery or to the reservoir energy. A good cutoff is 

one where the gross quantities of interest, e.g., transmissibility or gross permeability or 

gross porosity do not vary significantly when the cutoff is varied. The exponential term 

can distinguish between the net and non-net cells, according to the value of  . For a finite 

  at a large but finite time, 
2 /4  te    . These are the net cells. However, low 

permeability cells have a large value for  , so that at a large but finite time 
2 /4  0te    . 

An upscaling calculation has potentially very wide range of   values. Since   is 

a surrogate for pressure, an average   value for the region is defined using the effective 

pore volume (PV) weight. 

2 24 4i it t

i i i

i i

PV e PV e
   

   (4.13) 

In order to characterize the transient,  average should be evaluated at a time 

which the system is still infinite acting. This gives a relation for time at which the outer 

boundary is first detected approximated by  2 . This is the limit of detectability (LOD) of 

the outer boundary given by:  
2

2 / 4 4LODt   (Table 4.1). Using   LODt t  in Eq.(4.13) 

gives Eq.(4.14) which is a non-linear equation for   that can be solved by successive 

substitution or simple bisection between max  and min .  

2 2 2 2
i i

i i i

i i

PV e PV e
     

   (4.14) 
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Eq.(4.14) reduces to 
min  as   0  and the usual pore volume weighted average 

as    . Therefore, the solution is bounded between 
min  and the pore volume 

weighted average. At low values of   , there is a possibility of the ratio becoming 0 0 . 

Hence for the sake of implementation, Eq.(4.14) is modified as Eq.(4.15) by multiplying 

both numerator and denominator by 
2 2
min e  .  This guarantees at least one cell has a non-

zero source term. 

 

   2 2 2 2 2 2
min mini i

i i i

i i

PV e PV e
     

 
   

   (4.15) 

Following the discussion of Table 4.1, once 2i  , the contribution to the 

reservoir energy within the upscaling region is negligible. This provides a natural 

definition for non-net. In the analysis of the dynamics of the upscaling calculation, a range 

of times is considered to evaluate the impact of time selection on the upscaled property 

(permeability or transmissibility). Once a   is obtained, the range of times to be examined 

is based on the following relationships to a characteristic time, given by the ratio 2  4 . 

 Divide by 4 to get the “near initial” time (exponential 1.8% ) 

 Multiple by 10 to get the onset of approximate PSS (exponential  0.9 ) 

 Multiple by 100 to get the PSS limit (exponential  0.99 ) 

To have more information within the transient period, the range of times specified 

in Table 4.2 are chosen to evaluate the impact of time selection on the upscaled property. 
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Solution Time: t  Exponential: 
2 /4τ t

e  

PSS   1.00 

PSS Limit  2100  / 4  0.99 

Approximate PSS  210  / 4  0.90 

Characteristic Time  2 / 4  0.37 

Near Initial  2 / 4 / 4  0.018 

Table 4.2: Range of times chosen for the time sensitivity study and the 

corresponding solution characteristics 

 

Now, two local upscaling examples are presented, one with a high contrast 

permeability field and the other with a relatively low contrast in properties. The choice of 

time will impact the volume support for the upscaling calculation. At any time, the 

drainage volume fraction is given by the ratio of drainage volume to the total pore volume 

of the system. 

2 4

( )
i t

i

i

p i

i

PV e
V t

DrainageVolume Fraction
V PV



 



 (4.16) 

The impact of time selection is analyzed through a cross plot of effective 

permeability and the drainage volume fraction. Here, the effective link permeability is 

obtained by scaling out the geometry from the effective transmissibility. For the sake of 

brevity, only DSQ calculation is evaluated. 
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High Contrast System 

Figure 4.4 shows the permeability, porosity distribution for a 3 3 1   coarse cell 

pair. The contrast in permeability between the two coarse cells is over four orders of 

magnitude. The higher permeability cells have a lower diffusive time of flight and vice-

versa. Figure 4.5 shows the visualization of the exponential weights at different choices 

of time. This displays the drainage volume evolution with time, moving outwards from 

the coarse cell interface. Observe the volume support increasing as the time is increased. 

At PSS  t  , the entire pore volume contributes to the calculation of the effective 

permeability. 

 

  

(a) Permeability (md) (b) Porosity 

Figure 4.4: High contrast cell pair upscaling properties 
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(a) Near Initial (b) Characteristic time (c) APSS 

  

 

(d) PSS Limit (e) PSS  

Figure 4.5: Evolution of drainage volume for the high contrast case 

 

 

Figure 4.6: Effective permeability vs drainage volume fraction for the high contrast 

case 

 

The cross plot between the upscaled permeability and the drainage volume fraction 

(Figure 4.6) shows that the permeability has stabilized between the near initial time and 

the PSS limit. The lower permeability cells on the right start contributing only at the PSS 

Limit and at this point, 85% of the pore volume is drained. However, when ,t   to 
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reach PSS, source and sink terms are placed in cells that will not contribute to flow until 

a very large time. These terms induce high pressure gradients and lower the effective 

permeability. In contrast, at any finite time, including large but finite times, the volume 

contributing to flow from the downstream coarse cell has negligible support leading to an 

increased permeability compared to PSS. Notice the steady state effective permeability is 

also close to the PSS value as a consequence of superposition. 

 

Low Contrast System 

Figure 4.7 shows the permeability and porosity for a low contrast 3 3 1   coarse 

cell pair with relatively higher permeabilities compared to the high contrast case. The 

drainage volume visualization (Figure 4.8) now shows that cells in both coarse blocks start 

responding by characteristic time, which was not the case in the high contrast example. 

The high permeability cell right at the face starts responding even at near initial time which 

is expected. The evolution of effective permeability (Figure 4.9) shows similar trend 

compared to the high contrast case. However, both PSS limit and PSS are exactly the same 

indicating the assumption of PSS in this region is valid. The steady state approach may 

not be bad in this case because of low contrast and relatively high permeability. While 

there was a 100% increase in effective permeability values between PSS and PSS limit in 

the high contrast case, there is no difference when there is minimal contrast. 
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(a) Permeability (md) (b) Porosity 

Figure 4.7: Low contrast cell pair upscaling properties 

 

   

(a) Near Initial (b) Characteristic time (c) APSS 

  

 

(d) PSS Limit (e) PSS  

Figure 4.8: Evolution of drainage volume for the low contrast case 

 



 

85 

 

 

Figure 4.9: Effective permeability vs drainage volume fraction for the low contrast 

example 

 

Impact of the Net/Non-Net Cutoff 

In this section, the impact of the low permeability cells in the high contrast system 

is explored by modifying the initial reservoir model through the use of a non-net cutoff on 

the fine scale permeability. Following the depletion pattern in Figure 4.5d, only two cells 

in the downstream coarse block are considered to be pay, and the porosity is set to zero in 

the other cells. The permeability field and the corresponding upscaled results are shown 

in Figure 4.10. It is clear that now the PSS value is not a bad estimate of the permeability: 

due to the imposed non-net cutoff, the coarse cell face is responding only to the connected 

high permeability volume even at infinite time. The steady state effective permeability is 

also closer to the diffuse source upscaling result due to the absence of high contrast in the 

system compared to the previous case. For SS, the pressure boundary condition for the 

downstream coarse cell is imposed in the first column instead of the outer boundary which 

otherwise would yield no-flow. Notice that the value of effective permeability obtained 



 

86 

 

here (Figure 4.10b) matches closely with the PSS limit value in the case without cutoff 

(Figure 4.6). From this, a conclusion may be drawn that the transient formulation allows 

to capture the well connected sub-volume(s) without the need to introduce any explicit 

non-net cutoffs. 

 

 

 

(a) Permeability (b) Effective permeability vs Drainage 

Volume Fraction 

Figure 4.10: Impact of non-net cutoff on the high contrast case 

 

Once the PSS limit has been selected as a representative time for the DS upscaling 

calculation, the source and sink strengths can be examined in more detail. A significant 

difference between this large but finite time, and an infinite time, only arises if there are 

sub-volumes that have not depleted by the PSS limit: these are those cells that are beyond 

the limit of detectability at PSSt . Specifically, a distinction can be made between those cells 

that have not depleted from those that do deplete, by replacing the exponential weights 

with a value of 0 or 1 at the threshold of the limit of detectability as described in Eq.(4.17)

.  
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2
2

/4 1  4 4

0

i PSSt i PSSif t
e

otherwise
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 


  (4.17) 

 

The interpretation of the threshold is that only the volumes that are well-connected 

to the coarse face reach PSS whereas any weakly connected volumes do not. The threshold 

is chosen based on limit of detectability (LOD) at a time equal to the PSS limit. The results 

of using this “PSS Threshold” are shown in the above figures for the three cases studied, 

where they give values close to the PSS limit. This approach also has a conceptual 

advantage over the use of the full exponential as a source or sink term, as the asymptotic 

approximation is only valid at times earlier than the limit of detectability. In the form of 

this threshold, only those sub-volumes where the exponential term is valid retain a 

dependence on  . 

 

4.3.2 2D Diffuse Source Transmissibility Example 

A 2D example is presented to summarize the diffuse source approach with a DSQ 

example (Figure 4.11). 

 

Figure 4.11: 2x2 DSQ upscaling example 
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The discrete equations for the upstream fine cells are given by Eq.(4.18).
ijT , here 

represents the fine scale intercell transmissibility between block i  and block  j , and iPV  

represents the pore volume of grid block  i . 
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 (4.18) 

The discretized equations for the downstream grid blocks are given by Eq.(4.19). 

The negative sign on the right hand side indicates sink terms. 
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 (4.19) 

To complete the set of equations, a gauge condition of uniform zero face pressure 

is specified. In setting the face pressure to be an isobar, the pressure field is effectively 

solved one coarse block at a time. Also notice that the transmissibility expressed with 

respect to the face pressure is twice the intercell transmissibility. For DSP upscaling 
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approach two additional equations are required to impose the outer faces as isobars 

(Eq.(3.5)). 

The system of equations depends upon a specified time t , chosen based on the 

approach to the PSS limit. First a  is calculated for the upstream and downstream coarse 

blocks using Eq.(4.14) and then the maximum of the two   max ,up down    is obtained. 

Based on this, a large but finite time is determined from the approach to the PSS limit 

 2100* 4PSSt t    and then threshold the exponential weights to 0 or 1 based on 

Eq.(4.17). After solving for the pressures, the reference diffuse source pressure drop for 

transmissibility is calculated based on Eq.(4.20) .Here, the transmissibility T  refers to the 

intercell or half-cell transmissibility along the outer fine cell faces of the two coarse cells. 

1 1 5 5 4 4 8 8

1 5 4 8

DS

p T p T p T p T
p

T T T T

 
  

 
 (4.20) 

The intercell transmissibility is used for cell faces which are internal to the 3D 

reservoir model. Half cell transmissibility is only used for the external boundaries of the 

model. The upscaled transmissibility is given by: 

1 DS

Eff

face

p

T q


  (4.21) 

Notice that the face flux and viscosity scale out of the transmissibility calculation 

since the pressure drops are proportional to   faceq . Therefore, a unit value for this 

combination is imposed while implementing the algorithm. 
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Before moving on to the numerical experiments for the upscaling calculations, a 

downscaling exercise is presented using the diffuse source formulation to motivate its 

usage for the multiscale simulation. 

 

4.4 Diffuse Source Downscaling 

The downscaling is performed using a reference fine scale simulation model i.e., 

the coarse fluxes are obtained using the fine scale simulation instead of running a pressure 

solve on the coarse grid. This is done only to validate the proposed formulation as a 

downscaling exercise. The coarse fluxes are obtained by summing up the fine scale face 

fluxes to the resolution of the coarse grid. 

For the DS approach, the coarse flux is downscaled using the transient formulation 

(Eq.(4.6)) with the exponential term replaced by the PSS/LOD threshold, to obtain the 

velocity field (Figure 4.12). Notice, the approach employed here is DSQ, not DSP. The 

DSP approach results in a flux discontinuity at the shared faces due to an imposed isobar. 

The coarse flux is continuous, however the fine scale fluxes are not. For DSQ approach 

the downscaling is trivial since the entire outer boundary is treated as no-flow allowing 

seamless superposition to obtain mass conservative fine scale velocity field. 

 

 

Figure 4.12: Diffuse source (DSQ) downscaling validation workflow 

. 
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For the steady state approach, half-cell steady state formulation is utilized with 

pressure isobars at the centers of the respective coarse blocks. Since the equations are 

linear with no source/sinks (Eq.(1.1)), the pressure isobars are rescaled to match the coarse 

flux to obtain the local velocity field (Figure 4.13). Here, the fluid enters halfway through 

the upstream block and leaves halfway from the downstream block. The global velocity 

field is then obtained by superposition. This formulation by construction has flux 

discontinuity at the coarse cell centers. Møyner and Lie 2014b proposed a localization 

scheme for this approach to generate continuous mass conservative velocity fields. 

However, this is not considered in the current work. 

 

 

Figure 4.13: Steady state downscaling validation workflow 

 

The downscaling workflow is tested on SPE10 top and bottom layers with an 

injector-producer pair at the corners (Figure 4.14). The coarsening ratio is 3 3 1  . The 

injector and producer are maintained at a constant bottomhole pressure of 10,000 psia and 

4,000 psia respectively. The rock and single phase oil compressibility are left to the default 

values of the original SPE10 data set. 
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(a) Top layer (b) Bottom layer 

Figure 4.14: Permeability of the top and bottom layers of SPE10 

 

The downscaled velocity field is compared at a simulation time of 1 month. Figure 

4.15 represents the velocity profile for the top layer. The range of the color scale is 

adjusted to be the same for the difference in velocities for the two approaches. The steady 

state downscaling approach consistently underestimates the total velocities while the DS 

formulation clearly has fewer biases. The largest discrepancy can be seen at the location 

of the wells, where the total velocities are the largest. The difference is more pronounced 

in the bottom layer (Figure 4.16) where there is higher contrast in properties compared to 

the top layer. Again, the diffuse source downscaling approach consistently reduces the 

biases introduced by steady state upscaling. Although the application shown here is for 

compressible flow, the same formulation may be utilized to simulative multiscale 

incompressible flow as demonstrated in Nunna et al. 2018. 
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(a)  (b)  (c)  

Figure 4.15: Total velocity profile of SPE10 top layer at 1 month, (a): Fine scale 

velocity, (b): SS velocity error, (c): DS velocity error 

 

 
  

(a) (b) (c) 

Figure 4.16: Total velocity profile of SPE10 bottom layer at 1 month, (a): Fine scale 

velocity, (b): SS velocity error, (c): DS velocity error 

 

4.5 Numerical Experiments 

The DS upscaling method is tested on the models described in the PSS upscaling 

chapter with some additional test cases. 
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4.5.1 3D SPE10 Single Phase Flow 

The model and simulation input information are given in Figure 3.19 and Table 

3.4 respectively. The well performance predictions are described in Figure 4.17 where the 

DSQ method consistently out performs the remaining upscaling algorithms. Figure 4.18 

describes the face flux comparisons at the end of simulation. For the sake of brevity, the 

PSS plots are omitted and also 2 2 2   resolution is not shown. The reader is advised to 

look at Figure 3.22 for PSS face flux comparisons. However, Table 4.3 provides a 

comprehensive summary of the face flux errors for all the tested upscaling methods. Both 

Figure 4.18 and Table 4.3 show that the DS methods consistently give superior coarse 

scale descriptions relative to steady state or pseudo steady state methods. Although the 

DSP method overestimates the well rates, it fares well in terms of the face flux 

comparisons. The overall effectiveness of the diffuse source upscaling methods relative to 

steady state and pseudo steady state methods on the high contrast SPE10 model is due to 

the fact that they can effectively capture the subgrid heterogeneity that contributes to the 

flow (i.e., reaches PSS) in a local upscaling calculation.  
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Figure 4.17: SPE10 single phase flow cumulative oil recovery for different 

coarsening ratios 
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Figure 4.18: SPE10 single phase flow face flux comparisons for different coarsening 

ratios 
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 1 1 4   2 2 1   2 2 2   3 3 1   2 2 5   

SS 0.584 0.333 0.460 0.436 0.618 

PSSP 0.559 0.362 0.485 0.418 0.613 

PSSQ 0.634 0.374 0.514 0.440 0.646 

DSP 0.427 0.247 0.372 0.312 0.438 

DSQ 0.503 0.264 0.355 0.309 0.505 

Table 4.3: SPE10 single phase flow face flux errors for different coarsening ratios 

 

4.5.2 2D SPE10 Two Phase Flow 

In this section, the DS upscaling methods are tested for two phase flow (oil, water) 

scenario. The initial coarse relative permeabilities were obtained using pore volume 

averaged fine scale initial water saturations. Two 2D cases are considered: a low contrast 

layer 1 and a high contrast layer 68 of SPE10 model (Figure 4.19). The coarsening ratio 

chosen is 3 3 1  and the simulation time is 5 years. The fluid, rock and well 

configurations were left to the default values of the SPE10 dataset. 
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(a) Layer 1  (b) Layer 68 

Figure 4.19: SPE10 permeability map for layers 1, 68 with one central injector and 

four producers 

 

Figure 4.20 describes the layer 1 cumulative oil production and water cut for the 4 

producers showing almost identical response for all the upscaling methods. Although the 

oil rates are accurate, some difference can be seen in the water cut response at wells P1, 

P2 and P4. The face flux comparison at the end of simulation also show similar errors for 

the tested upscaling methods (Figure 4.21). Figure 4.22 shows the water saturation (Sw) 

error maps at the end of simulation also showing similar spatial error for all the upscaling 

methods. The coarse water saturation is uniformly mapped on to the fine cells within the 

coarse block making the coarse water saturation at the same resolution at the fine scale 

water saturation. The similarity of the results for layer 1 may be due to the low contrast in 

reservoir properties which is not the case for layer 68. 
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(a) Cumulative oil production (b) Producer water cut 

Figure 4.20: SPE10 layer 1 two phase flow producer cumulative oil volumes and 

water cut 

 

   

(a) Steady state (b) DSQ (c) DSP 

Figure 4.21: Face flux comparisons at the end of simulation for SPE10 layer 1 two 

phase flow 
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(a) Fine scale Sw (b) Sw error - SS 

  

(c) Sw error - DSQ (d) Sw error - DSP 

Figure 4.22: SPE10 layer 1 two phase flow water saturation error maps at the end 

of simulation 

 

Layer 68 is cited as one of the most challenging layers of SPE10 with highly 

heterogeneous channelized flow features (Efendiev and Hou 2009). Figure 4.23 shows the 

oil volumes and water cut response for the producers. Producers P3 and P4 did not 

experience water breakthrough in all the models. Hence, their response is not plotted. 

Although the performance predictions are not as accurate as the previous case, both DSQ 

and DSP methods give relatively better oil volume prediction compared to steady state 

upscaling. In terms of the face flux comparison at the end of simulation, DSP methods has 

the least error followed by DSQ and steady state upscaling (Figure 4.24). The water 

saturation error maps also show that both DSP and DSQ upscaling methods exhibit less 
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error compared to steady state upscaling. The superior performance of the DS methods 

relative to steady state may due to the fact that the assumption of pressure equilibrium 

inside a coarse block is well accounted for in the DS methods and not in the steady state 

upscaling. However, a significant source of error for all the single phase upscaling 

methods may be due to multiphase issues where one single coarse pressure may not 

capture the fine scale water front movement. Such cases may be better handled by a 

multiscale simulator when there is a high velocity variance inside a coarse block. 

 

 

 

 

(a) Cumulative oil production (b) Producer water cut 

Figure 4.23: SPE10 layer 68 two phase flow producer cumulative oil volumes and 

water cut 
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(a) Steady state (b) DSQ (c) DSP 

Figure 4.24: Face flux comparisons at the end of simulation for SPE10 layer 68 two 

phase flow 

 

  

(a) Fine scale Sw (b) Sw error - SS 

  

(c) Sw error - DSQ (d) Sw error - DSP 

Figure 4.25: SPE10 layer 68 two phase flow water saturation error maps at the end 

of simulation 
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4.5.3 2D SPE10 Localization Tests 

The localization tests performed in the PSS upscaling chapter are repeated here 

with the DS upscaling methods considering the same test case model – SPE10 layer 55. 

Figure 4.26 and Figure 4.27 represent the face flux comparisons for the steady state 

simulation using extended local, adaptive local-global, DSQ and DSP upscaling methods. 

Notice the error (Eq.(3.15)) for DS methods increased considerably compared to the PSS 

cases (Figure 3.17, Figure 3.18). This PSS threshold criteria for such a large coarsening 

ratio (10 10 ) can be very aggressive resulting in far few cells reaching PSS in a coarse 

block. The threshold criteria for DS methods is based on Eq.(4.17) which picks up only 

the well-connected sub volume to a face. For instance, see the example chosen from the 

current case (Figure 4.28) where the PSS threshold picks up only high permeability 

channel connected to the face. The downstream coarse cell has two high permeability 

zones separated by a low permeability baffle. The DS methods replace the barrier on the 

whole with a high transmissibility on either side of the downstream coarse block. The 

adaptive local-global method in this case would pick up the flow through the baffle using 

a global flow field whereas the DS methods pick up only one sub volume connected to the 

face. So, the DS methods effectively reduce the overall connectivity compared to an 

extended local or a local-global approach. A purely local method does not capture the flow 

tortuosity beyond the coarse blocks when coarsening to such a large factor especially in a 

channelized environment. However, the results indicate the DS methods have relatively 

less error compared to the extended local method. 
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(a) Extended local (b) Adaptive local-global 

  

(c) DSQ (d) DSP 

Figure 4.26: SPE10 layer 55 X direction face fluxes with original DS cutoff 
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(a) Extended local (b) Adaptive local-global 

  

(c) DSQ (d) DSP 

Figure 4.27: SPE10 layer 55 Y direction face fluxes with original DS cutoff 
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(a) Permeability (b) Source/sink cells after cutoff 

Figure 4.28: SPE10 layer 55 10x10 coarsening example showing the impact of PSS 

threshold 

 

Until now, the DS results were based on a time selection procedure described in 

section 4.3.1 which worked well for relatively small coarsening factors. However, the 

above results indicate the shortcoming of the time selection procedure in the presence of 

multiple sub volumes inside a coarse block. To investigate the same, a sensitivity study is 

performed based on different choices of thresholding. The thresholding procedure is still 

based on the concept of limit of detectability (LOD) at the outer boundary. However, the 

definition of outer boundary varies for each approach based on a reference diffusive time 

of flight ref . The thresholding procedure based on ref is given in Eq.(4.22) based on LOD. 

2 2

2
/

/4 1  0.018

0

i ref

i LODt if e
e

otherwise

 





 
 


 (4.22) 

Three cases were considered as follows: 

 Case 1: Based on PSS limit where 10ref   with   defined using 

Eq.(4.14) 
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 Case 2: Based on LOD at the outer boundary defined by the minimum 

diffusive time of flight at the outer boundary cells  min

b . Here, 

 
2

min4 4 4b

LODt t    . Therefore, min 2b

ref  . 

 Case 3: Based on LOD at the outer boundary defined by 2 median . Here, 

median  refers to the median of the diffusive time of flights for the coarse 

block evaluated from the shared face. 

For the sensitivity study, only the DSQ upscaling is considered. Figure 4.29 and 

Figure 4.30 represent the face flux comparisons after revising the thresholding 

criteria as per Eq.(4.22) and considering the above three approaches. Case 2 shows 

improved performance over case 1 but the DS method using case 3 shows 

relatively better performance on par with ALG upscaling. To explain this further, 

several local examples are considered by comparing the transmisisbilities obtained 

by each of the above 3 approaches. 
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(a) Case 1 (b) Case 2 

 

 

(c) Case 3  

Figure 4.29: SPE10 layer 55 X direction face flux comparisons for the three cases 

considered in the threshold sensitivity study 
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(a) Case 1 (b) Case 2 

 

 

(c) Case 3  

Figure 4.30: SPE10 layer 55 Y direction face flux comparisons for the three cases 

considered in the threshold sensitivity study 

 

The first example is the same case considered in Figure 4.28. Figure 4.31 and Table 

4.4 describe the impact of threshold for the three DS cases. Notice in Table 4.4, the largest 

error in face flux is shown for DSQ-1 which effectively short circuits the right coarse 

block giving a very high transmissibility. However, both cases 2 and 3 give comparable 
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transmissibilities and face flux errors. In fact case 3 and PSSQ are equivalent for this 

example as shown in Figure 4.31d where all the cells are tagged to PSS locally. 

 

  

(a) Permeability (b) Case 1 

  

(c) Case 2 (d) Case 3 

Figure 4.31: Example 1 threshold sensitivity showing the source cells for each case 

after thresholding 

 

Method Teff qface Error (%) 

ALG 0.17 77 

PSSQ 0.13 148 

DSQ-1 1173 8715 

DSQ-2 0.15 110 

DSQ-3 0.13 148 

Table 4.4: Summary of transmissibility and face flux errors for each upscaling 

method considered in Example 1 

 



 

111 

 

Figure 4.32 and Table 4.5 show the results for example 2 with permeability 

distribution shown in Figure 4.32a. Notice case 3 source distributions are able to reach the 

coarse cell boundaries but still have a sensitivity towards the low permeability volumes 

inside the coarse blocks which makes it different from PSS method. Case 2 just picks the 

minimum diffusive time of flight cell at the boundaries which gives rise to high 

transmissibility. In terms of the face flux errors in Table 4.5, case 3 shows the minimum 

error of all the DS cases. 

 

  

(a) Permeability (b) Case 1 

  

(c) Case 2 (d) Case 3 

Figure 4.32: Example 2 threshold sensitivity showing the source cells for each case 

after thresholding 
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Method Teff qface Error (%) 

ALG 71.20 8 

PSSQ 4.14 28 

DSQ-1 59.50 67 

DSQ-2 9.27 65 

DSQ-3 5.03 23 

Table 4.5: Summary of transmissibility and face flux errors for each upscaling 

method considered in Example 2 

 

In example 3, the upstream coarse block has a low permeability volume towards 

the left (Figure 4.33a) and both case 1 and case 2 capture similar sub volumes to each PSS 

while case 2 tries to put sources even in the far left low permeability volume owing to the 

way it is defined based on the boundary  . The face flux errors in Table 4.6 show the least 

error again for case 3. Even though the transmissibilities for the adaptive local global and 

case 1 are similar, the face flux errors are different because they are impacted by the global 

trend where the transmissibilities differ in other regions leading different face fluxes. 
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(e) Permeability (f) Case 1 

  

(g) Case 2 (h) Case 3 

Figure 4.33: Example 3 threshold sensitivity showing the source cells for each case 

after thresholding 

 

Method Teff qface Error (%) 

ALG 42.33 13 

PSSQ 0.68 88 

DSQ-1 41.20 21 

DSQ-2 2.28 56 

DSQ-3 24.46 2 

Table 4.6: Summary of transmissibility and face flux errors for each upscaling 

method considered in Example 3 

 

On the whole case 3 gives consistently better source distributions and face flux 

profiles. Hence, this will be the proposed way to define the transient source/sink terms for 
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the DS approach. In summary, the time for DS upscaling is selected based on LOD at the 

outer boundary defined by 2 median  giving Eq.(4.23). 

 
2

2 4 4median LODt   (4.23) 

Then, the PSS sub volume is identified based on Eq.(4.24). The thresholding 

procedure is summarized in Figure 4.34. 

2
2

/4 1  / 4 4

0

i LOD i LODif t
e

otherwise

   
 


 (4.24) 

 

 

Figure 4.34: PSS threshold based LOD at far face 

 

Figure 4.35 and Figure 4.36 show the face flux comparisons with revised DS 

cutoff. Clearly, the results have improved from previous case. 
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(a) Extended local (b) Adaptive local-global 

  

(c) DSQ (d) DSP 

Figure 4.35: SPE10 layer 55 X direction face fluxes with revised DS cutoff 
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(a) Extended local (b) Adaptive local-global 

  

(c) DSQ (d) DSP 

Figure 4.36: SPE10 layer 55 Y direction face fluxes with revised DS cutoff 

 

To test the impact of localization further, the same test case (layer 55) is now 

converted into a single phase oil primary depletion with 4 producers as shown in Figure 

4.37. The producers are placed at  5,5 ,  5,175 ,  55,215  and  55,5 .The well 

bottomhole pressures were maintained at 5800 psia and the initial reservoir pressure at 
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6000 psia. The fluid (oil) and rock data is retained the same as the original SPE10 dataset. 

Simulation time is set to 5 months. For the ALG upscaling, the coarse transmissibilities 

are retained from the previous steady state simulation and are not recomputed for the new 

well configuration. This is the done to test the impact of large scale boundary conditions 

on the performance of the upscaling algorithm. 

 

 

Figure 4.37: SPE10 layer 55 permeability with 4 producers 

 

Figure 4.38 and Figure 4.39 represent the face flux comparisons (in both 

directions) at 1 and 5 months respectively. The errors increase with simulation time. 

Extended local upscaling exhibits the highest error while both the DS method perform 

reasonably well relative to the ALG and EL upscaling techniques. Notice, the error for 

ALG method is higher than both the DS methods since it is not optimized for the current 

well configuration. This highlights the dependence on the large scale boundary conditions 

for the ALG technique whereas DS upscaling does not refer to the global boundary 
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conditions and seems to give reasonable coarse scale descriptions as shown in the steady 

state and primary depletion simulation cases. 

 

  

(a) Extended local (b) Adaptive local-global 

  

(c) DSQ (d) DSP 

Figure 4.38: SPE10 layer 55 primary depletion face flux comparisons at 1 month 
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(a) Extended local (b) Adaptive local-global 

  

(c) DSQ (d) DSP 

Figure 4.39: SPE10 layer 55 primary depletion face flux comparisons at 5 months 

 

4.5.4 3D Full Field Tight Gas Single Phase Flow 

In this section, the DS upscaling techniques are applied to the tight gas simulation 

considered in the previous chapter (Figure 3.15). Figure 4.40 shows the cumulative gas 

recoveries for the 3 coarsening ratios. The DS results overlaps the PSS methods and all 
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the PSS, DS methods show accurate coarse well rates compared to steady state upscaling 

for 2 2 N  and 3 3 N  . 

 

   

Figure 4.40: Tight gas full field recoveries 

 

4.6 Extension to Faulted Grids 

Since the PSS/DS upscaling technique is formulated by working backward from 

the flowing face, extension to faulted grids is natural by construction (Figure 4.41). A 

sector of Amellago carbonate outcrop model (Shekhar et al. 2014) is selected as a test 

case. 

 

Figure 4.41: Faulted grid DSQ upscaling 
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There is around 9 orders of variance in permeability magnitude for the sector 

model and an inverted five spot well pattern is considered for steady state simulation 

(Figure 4.42). The model size is 42 45 45  and has one fault running across the center as 

shown in Figure 4.42. The producers are maintained at a bottomhole pressure of 300 bars 

and the injector rate constraint is 2000 3m day . The initial reservoir pressure is set to 350 

bars. 

 

 

 

(a) Permeability (b) Well locations 

Figure 4.42: Sector of Amellago carbonate outcrop model 

 

For the purpose of benchmarking, cell permeability upscaling is considered as a 

reference. The coarsening factor is 2 2 3  . Figure 4.43 represents the face flux 

comparisons for the upscaling methods and the error is based on Eq.(3.16). Both DSQ and 

DSP perform well compared to SS upscaling method. Figure 4.44 shows the pressure maps 
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at the end of simulation which again show accurate pressure footprint for DSQ, DSP and 

steady state upscaling is the least accurate. 

 

 

Figure 4.43: Amellago simulation steady state simulation face flux comparison 

 

 

Figure 4.44: Amellago steady state simulation pressure profile 
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4.7 Discussion 

A novel upscaling methodology was presented using pressure transient concepts 

which allows to distinguish between well-connected and weakly connected pay in a local 

upscaling calculation. The development of the method has relied upon the concepts of 

diffusive time of flight, drainage volume, and the approximate solution to the diffusivity 

equation. In contrast to the incompressible steady state algorithms, the diffuse source 

upscaling formulation is based upon a solution to the diffusivity equation and exposes 

more of the transient flow physics. It was shown that in a high contrast system, it is not 

necessary for the entire coarse volume to reach PSS. The DS formulation can identify the 

sub volume that can be sufficiently close to PSS giving results that are sensitive to local 

connectivity.  However, if the volume is relatively homogeneous (well connected), the 

difference between PSS and transient solutions is negligible as seen in the time sensitivity 

examples. 

The upscaling formulation is tested on high contrast 3D SPE10 model with single 

phase flow, 2D SPE10 model with two phase flow where both DSQ and DSP showed 

superior performance compared to steady state and PSS upscaling methods. The 

application of DS formulation to 2D localization tests showed that in the presence of 

multiple sub volumes, the original PSS threshold may not capture the fine scale flow 

behavior accurately. A new source/sink cutoff procedure was proposed to account for 

multiple sub volumes inside a coarse block. The new procedure showed improved local 

connectivity by still having a sensitivity towards low permeability stranded volumes. 

Revising the threshold showed significant improvement where the DS methods have 
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consistently shown reduced biases compared to those introduced by steady state 

incompressible upscaling boundary conditions (extended local and adaptive local-global) 

especially when the global boundary conditions are changed. The new thresholding 

procedure may be further investigated and tested on previously run 3D SPE10 cases. It 

seems there is a sweet spot in terms of defining the local source/sink terms that accurately 

capture the fine scale behavior. Therefore, the thresholding procedure needs further 

investigation especially for large coarsening factors. 

The DS formulation is also extended to faulted systems and application of the same 

to a high contrast carbonate model highlighted the relative accuracy of the DS methods 

compared to steady state upscaling. Overall, DSQ upscaling method seems to be 

performing consistently well in all the cases tested in this work. 
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 CHAPTER V 

SUMMARY AND CONCLUSIONS: UPSCALING 

 

5.1 Summary and Conclusions 

A new construction of 1D transmissibility using PSS concepts was presented using 

the derived relation between pore volume average SS pressure drop and PSS pressure 

drop. Extension of 1D transmissibility construction to 3D was presented using a novel 

pressure averaging technique motivated by the flux continuity condition. Two different 

PSS averaging techniques are presented – PSSP and PSSQ. While PSSQ is a completely 

localized upscaling calculation, PSSP is weakly coupled to the upstream and downstream 

faces through non-zero local but zero total flux. 

PSS methods by construction have less biases compared to incompressible steady 

state upscaling algorithms which are explicitly coupled to the large scale boundary 

conditions. This is explored by benchmarking PSS upscaling with extended local and 

adaptive local global upscaling methods and the results demonstrated the advantage of 

using PSS concepts for upscaling which does not couple to the global boundary conditions. 

Application to full field tight gas reservoir also showed better coarse scale descriptions 

compared to steady state upscaling. However, application of PSS upscaling to high 

contrast SPE10 model showed lower performance predictions relative to fine scale due to 

the assumption of pressure equilibrium inside a coarse block which is violated in the 

presence of weakly connected or disconnected pay. 
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A pressure transient diffuse source upscaling methodology based on diffusive time 

of flight and asymptotic pressure approximation was presented which exposes the 

transient physics. The formulation was shown to identify the sub volume that may reach 

PSS in the presence of high contrast relaxing the assumption of pressure equilibrium in a 

coarse volume. Application of the DS formulation to high contrast SPE10 single phase 

and two phase flow showed superior performance compared to steady state upscaling 

methods. Extension of the same formulation to faulted grids was also presented using a 

high contrast carbonate sector model example. 

 

5.2 Future Research 

All of the applications shown in the current work are based on two point flux 

approximations. However, PSS upscaling is not restricted to two point formulation. A full 

permeability/transmissibility tensor may be derived using PSS concepts on multi point 

discretization stencils which may be further explored. 

A simple two-point upscaling diagnostics was presented in this work to highlight 

the advantage of using PSS concepts for upscaling over SS. These diagnostics may be 

further explored to give insight into when a two-point upscaling calculation may be 

inaccurate. 

The choice of PSS threshold may be further investigated especially for large areal 

coarsening ratios when there are multiple sub volumes inside a coarse block. This is where 

the DS construction may be further improved by the use of adaptive gridding. For instance, 

if the difference between PSS and DS transmissibility is too high, it may be a favorable 
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place to perform adaptive coarsening or even the apriori diffusive time of flight 

information may be utilized to decide upon the adaptivity.  Also, the face pressure 

constraint used to remove the local material balance errors is also another candidate where 

adaptive grid design will be applicable. The diffusive time of flight and drainage volume 

concepts may also be utilized to design adaptive layering schemes for geologic models 

based on apriori calculations. 

It may be worthwhile to retain the areal resolution in the well blocks to the original 

fine scale resolution so that there is no impact of off centered wells while upscaling the 

well indices. Most of the cases considered in the current work have non-centered wells in 

the coarse blocks. Well index makes a significant impact on the performance of the 

upscaled models and removing the ambiguity regarding upscaling well connections may 

go a long way in improving the proposed upscaling algorithms in the current work.  
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 CHAPTER VI 

INTRODUCTION: MULTISCALE SIMULATION 

 

Multiscale methods have recently garnered much attention as a robust alternative 

to upscaling and fine scale simulation. As discussed in Chapter 1, to make reservoir 

simulation practically feasible, it is customary to use some kind of upscaling procedure. 

Unfortunately, there is a tradeoff between loss of information and model accuracy while 

using these upscaling methods especially in the presence of high contrast and non-

stationary correlation structures. The model error may be significant with a high level of 

coarsening especially when considering multiphase flow. The purpose of multiscale 

reservoir simulation methods is not only to capture the large scale behavior as with 

upscaling but to solve the problem at original fine scale resolution and keep the 

computational cost comparable to any upscaling procedure. This is made possible by the 

construction of multiscale basis functions that allow the solution to be mapped back and 

forth between the fine and coarse grids. The mapping is not restricted to two scales of 

projection (fine and coarse), the basis functions allow the solution to be projected to any 

number of scales (fine scale resolutions). However, the current work is restricted the two 

scale projection multiscale methods. 

Multiscale methods involve solving pressure on the coarse computational grid and 

saturation changes on the original fine grid. To this end, the so called multiscale basis 

functions are constructed through the solutions of localized flow problems just like the 

case of flow based upscaling. Instead of constructing the effective transmissibilities / 
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permeabilities, the basis functions act as coarse properties and also enable retaining the 

fine scale information inside them. As is the case with flow based upscaling, the choice of 

boundary conditions employed to localized the flow problems and build the basis 

functions can have a significant impact on the accuracy of the solution. The pressure 

equation known hereby as the flow equation is elliptic/parabolic in nature and the 

saturation equation known as the transport equation is hyperbolic in nature. Both equations 

in their general formulation are highly nonlinear and tightly coupled. However, the 

pressure equation becomes elliptic and linear for incompressible flow. The motivation for 

solving the saturation on the finer scale is due to its highly nonlinear behavior and strong 

dependence on the local heterogeneity. Following Table 1.1, when there is significant 

velocity variance in a coarse block, a single value of averaged saturation will not be able 

to capture the frontal movement. Instead the changes in pressure are relatively large scale 

which may be resolved on a coarser mesh. This coarse information may be downscaled to 

the fine grid using basis functions and the downscaled information is used to solve the 

saturation changes. 

Every multiscale method has two major steps: construction of multiscale basis 

functions and assembling the global system of equations. Multiscale methods separate 

themselves on the basis of how these basis functions are constructed. The basis functions 

are designed to capture the multiscale features of the solution. Multiscale methods are 

broadly divided into multiscale finite element and finite volume methods. A broad 

literature review of these methods is presented below. For a comprehensive overview of 

the multiscale methods, please review Efendiev and Hou 2009. 
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6.1 Multiscale Finite Element Method (MsFEM) 

Multiscale finite element method (MsFEM) was first formulated by Hou and Wu 

1997 for incompressible flow. A brief overview is given below. 

Let the fine grid domain   be partitioned into h  finite elements known as the 

coarse grid. Consider the elliptic pressure equation in domain   belonging to real 

numbers of dimension d ( d ).  

  dk p f in     (6.1) 

Let ix  be the interior nodes of the mesh h  and 0

i  be the nodal basis of the 

standard finite element space. The basis function i  for a coarse grid element K is obtained 

by solving the local flow problem given by 

  00 , , h

i i ik in K on K K T          (6.2) 

The multiscale basis function obtained this way coincide with the finite element 

basis functions on the boundary of the coarse grid block K and are oscillatory in the interior 

domain depending on the local heterogeneity. The representation of the fine scale solution 

via basis functions allows reducing the dimension of computation. Once the basis 

functions are computed for each coarse grid node, the next step is to assemble the coarse 

system of equations. Let hp  be the approximate solution given by Eq.(6.3) where ip  

represent the approximate value of the solution at the coarse grid nodes (unknown).  
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( )h i i

i

p p x  (6.3) 

Eq.(6.3) is substituted in the original fine scale equation Eq.(6.1) and multiplied 

with coarse scale test functions resulting in a complete coarse dimensional system of 

equations. Two choices of coarse test functions exist in the literature namely Galerkin 

finite element and Petrov-Galerkin (Hou et al. 2004). The resulting coarse solution may 

be projected back on to the fine scale using Eq. (6.3) and this fine scale information may 

now be used to solve multiphase saturation on the original fine grid. 

The choice of boundary conditions for the basis function play an important role in 

capturing the underlying heterogeneity. The boundary condition for the multiscale basis 

function should reflect the oscillation of the solution across the coarse grid boundary 

(Efendiev and Hou 2009). If not, there can be significant errors resulting from the 

resonance between the coarse grid size and the characteristic length scale of the problem. 

As per Hou et al. 1999, the resonance error becomes large when the two scales are close. 

These resonance errors may be reduced by solving one dimensional reduced problems 

across the boundaries like the multi scale finite volume methods which will be discussed 

in the next section (Jenny et al. 2003) or oversampling methods (Hou and Wu 1997; 

Efendiev et al. 2000). Oversampling methods tend to reduce the impact of the boundary 

conditions by extending the computational domain beyond the coarse grid where the 

problem is solved. One issue with the MsFEM is that the reconstructed fine scale solution 

is not conservative due to pressure basis. Chen and Hou 2003 clearly indicate that a 

conservative fine scale velocity is necessary for accurate modeling of multiphase flow 
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(transport equation). Therefore, they proposed a conservative mixed finite-element 

method which will be discussed now. 

 

6.2 Multiscale Mixed Finite Element Method (MsMFEM) 

In standard mixed finite element methods, one seeks an approximate solution of 

the pressure equation (Eq.(6.4)) written here for incompressible flow where q is the 

external source and rt  is the total relative fluid mobility. 

 , rtu q u k p in       (6.4) 

The mixed formulation reads: find the velocity and pressure 

     2

0, divu p H L     such that 

     

     

1

0

2

, , 0

, ,

div

rtk u v p v v H

u l q l l L


 

      
 

    

 (6.5) 

Here,       2 2

0 : , 0
ndivH v L v L v n on           and  2L  is the 

square integrable function space over . Notice the permeability tensor is written in the 

inverse form together with the fluid mobility in Eq.(6.5). In mixed finite element methods, 

the solution space is restricted to subspaces    2

0

divV H and W L     which 

follows: 

   

   

1

, , 0

, ,

rt h h h h h

h h h h

k u v p v v V

u l q l l W


 

     
 

   

 (6.6) 
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The subspaces may be defined using the lowest order RT0 (Raviart and Thomas 

1977) or BDM1 (Brezzi et al. 1985). While the normal component of velocity for RT0 

space is constant, it is allowed to be linear for BDM1. Both have the same piecewise 

uniform subspace for pressure. The velocity subspace or the basis function for velocity is 

usually constructed per a cell interface. For RT0, one basis function per interface is 

required. However, for BDM1, there is one additional set of “divergence-free” basis. A 

brief summary of these basis is explained in Arbogast 2000. 

The multiscale mixed finite element method discussed here was first formulated 

by Chen and Hou 2003 to account for mass conservation issues generated on the coarse 

mesh by the original mixed finite element method (Hou and Wu 1997). Arbogast 2002 

and Arbogast and Bryant 2002 presented another version of mixed multiscale finite 

element approach where localization was achieved using special boundary conditions on 

the coarse block boundaries. The basis functions were incorporated into the coarse scale 

equation by means of numerical Greens functions. 

The MsMFEM proposed by Chen and Hou 2003 produces mass conservative 

solutions on the coarse scale but not necessarily on the fine scale. This was modified by 

Aarnes 2004 and Aarnes et al. 2006 to generate conservative velocity field both on the 

coarse as well as the fine scale to simulate multiphase flow. This is done by introducing 

source functions to construct localized basis functions. On the coarse scale, the velocity is 

basis function is a generalization of the RT0 method and the pressure basis is piecewise 

uniform. Aarnes et al. 2008 extended the MsMFEM formulation to corner point grids and 
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Pal et al. 2015 validated the formulation by including the effects of compressibility, 

gravity and capillarity. A brief overview of the MsMFEM formulation is described below. 

Consider two coarse elements 
iE  and 

jE  with 
ij i jE E     being the share 

interface between them. The multiscale basis associated with the interface 
ij  is 

calculated by solving the following  

   

   

 0,

i

j

ij rt

i i i
E

ij

j j j
E

ij i ij j

k p

w x w d x E

w x w d x E

n on E E

 

 


 



  

  
 

   
   
 

    




 (6.7) 

Notice while solving the basis function for the interface, all other faces are 

maintained at no flow boundary conditions making the problem completely localized 

(Eq.(6.7)). The source term iw was proposed to be equal to the trace of permeability tensor 

( ( )tr k ) by Aarnes 2004. Krogstad et al. 2009 and Lie, K.-A. et al. 2012 utilized the source 

function scaled by local porosity to account for compressibility effects. Although 

MsMFEM has the advantage of working for complex unstructured geometries (Aarnes et 

al. 2008), inclusion of physics like compressibility, capillarity is difficult owing to the 

mixed form of pressure equation. For incompressible flow, fine scale pressure is 

irrelevant. Hence, a piecewise uniform basis would work. However, for non-elliptic 

parabolic form of pressure equation (for e.g.: compressible flow), the pressure information 

is also required on the fine scale. Although Lie, K.-A. et al. 2012 proposed basis functions 

for pressure, their validity is not tested on realistic models. 



 

135 

 

 

6.3 Multiscale Finite Volume Method (MsFVM) 

The multi scale finite volume method was introduced by Jenny et al. 2003, Jenny 

et al. 2005 where the basis functions for pressure are constructed on a dual grid connected 

by the coarse cell centroids. The formulation by construction generates conservative 

coarse scale solutions by working from cell centers as basis nodes. The pressure is 

expressed as a linear combination of basis functions i  to incorporate subscale variations. 

The method has been tested on wide variety of problems like compressible flow (Lunati 

and Jenny 2006, Zhou and Tchelepi 2008 and Hajibeygi and Jenny 2009), density driven 

flow (Lunati and Jenny 2008, Künze and Lunati 2012), black oil flow (Lee et al. 2008), 

near well modeling (Wolfsteiner et al. 2006, Jenny and Lunati 2009) and fractured flow 

(Hajibeygi et al. 2011). To reduce the errors in the presence of strong heterogeneities, an 

iterative framework was proposed by Hajibeygi et al. 2008 and later extended by 

Hajibeygi and Jenny 2011 to include adaptivity in the computation of basis functions. The 

basic idea of the iterative framework is to systematically bring the fine scale residuals by 

means of locally computed correction functions for low frequency errors and a global 

smoother for high frequency errors. The MsFVM was also formulated in an algebraic 

manner by means of compact matrix operations using prolongation and restriction 

operators (Zhou and Tchelepi 2008, Lunati et al. 2011). This formulation was generalized 

and extended to stratigraphic grids by Møyner and Lie 2014a.  

Although MsFVM ensures mass conservation on the coarse scale, the resulting 

fine scale solution is however not conservative. Therefore, a velocity reconstruction 
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procedure is performed before the fine scale velocities are passed on to a transport solver. 

The reconstruction procedure is done by solving the localized flow problems by using the 

non-conservative dual grid fluxes as boundary conditions. Kippe et al. 2008 utilized the 

nested gridding approach proposed by Gautier et al. 1999 to reconstruct the conservative 

fine scale velocities. 

A brief overview of the original multiscale finite volume method is given below. 

As discussed above, the MsFVM works with two coarse grids: primal coarse grid and the 

dual grid as shown in Figure 6.1. The dual grid (A) marked by the dashed lines is 

encompassed by 4 primal coarse blocks. For each dual coarse grid block, a set of dual 

basis functions are constructed for each node in the dual grid (coarse cell centers). An 

elliptic problem of the form Eq.(6.8) is solved on the dual grid boundary with boundary 

pressure boundary conditions  1,4i ikp k   just like a conventional flow based steady 

state upscaling method. The four solutions form the dual basis functions  1,4k k   and 

the pressure solution inside the dual grid is given by Eq.(6.9). This generates a multi-point 

stencil akin to the multi-point flux approximation (MPFA) scheme. 

  0rtk p    (6.8) 

4

1

k

k

k

p p


   (6.9) 

Now, the flux q across the coarse blocks can be written as a linear combination 

(Eq.(6.10) ) where kq represent the flux contributions from corresponding dual basis 

functions. 
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4

1

k

k

k

q p q


  (6.10) 

 

 

Figure 6.1: MsFVM primal (bold solid lines) and dual coarse grid (red dashed 

lines) on the underlying fine grid (solid lines) 

 

The dual basis functions may be used to compute the effective transmissibilities 

based on the Eq.(6.10) which will be utilized in solving the coarse solution. Once the 

coarse solution is obtained, the fine scale solution is readily obtained using Eq.(6.9). 

Although the MsFVM generates conservative coarse scale velocity field, the fine scale 

velocities are discontinuous across the dual grid interfaces. Hence, a velocity 

reconstruction procedure is employed to generate a conservative fine scale velocity field. 

The velocities generated from dual basis may be equally distributed on the coarse grid 

boundary as done by the original paper by  Jenny et al. 2003 or they may distributed based 

on intercell fine scale transmissibility as weights as done by Gautier et al. 1999. These 

fluxes serve as boundary conditions to solve localized flow problems that yield the 

required mass conservation on the fine scale.  



 

138 

 

The multiscale basis functions are usually calculated only once at the beginning. 

However, this may not be sufficient to reduce the fine scale residual especially in areas 

where the total mobility change is high. Thus, Jenny et al. 2005 introduced an adaptive 

criterion to re-compute basis functions only in the areas where the total mobility exceeds 

a particular threshold. One of the challenges for the MsFVM is the accuracy and 

robustness in the presence of high contrast and high anisotropy. Møyner and Lie 2014a 

showed that the method is not robust enough in the presence of high contrast features in a 

way that even the iterative schemes do not work. This may be partly due to the boundary 

conditions employed to localize the flow problem in the dual basis function calculations. 

 

6.4 Multiscale Restricted Smooth Basis Method (MsRSB) 

The multiscale restricted smooth basis method is considered to be the one of the 

most robust and accurate multiscale method based on application results to wide variety 

of test cases (Møyner and Lie 2016b, Møyner and Lie 2016a and Lie et al. 2017). The 

MsRSB method was formulated in the multiscale finite volume framework to resolve the 

complex challenge of unstructured grids and high contrast reservoir properties using an 

iterative framework. The method itself was originally inspired the multi scale two point 

flux approximation (MsTPFA) method formulated by Møyner and Lie 2014b. MsRSB 

was tested on black oil models in Møyner and Lie 2016a and a realistic reservoir simulator 

environment in Lie et al. 2017. It was also extended to fracture simulation in Shah et al. 

2016. A brief overview of the method is presented below using incompressible flow 

example. 
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The multiscale formulation starts with the prolongation operator for pressure 

which maps the coarse pressure on to the fine grid (Eq.(6.11)). The prolongation operator 

is nothing but a matrix of basis functions obtained by solving localized flow problems as 

is the case with every multiscale method.  

f cp Pp  (6.11) 

The original fine scale system is of the form 

fAp q  (6.12) 

Substituting Eq. (6.11) in Eq.(6.12) and multiplying by the restriction operator (R) 

gives the coarse system of equations.  

    c c c c cR A Pp RAP p A p Rq q     (6.13) 

Two choices exist for the restriction operator, the control volume restriction 

operator and the Galerkin operator. The Galerkin operator is just a transpose of the 

prolongation operator and is generally used in the multi scale finite element methods. 

However, since the focus of MsRSB is not on iterative performance, the control volume 

restriction operator is used here which is a matrix of the ones if the fine scale block belongs 

to a particular coarse block and zero elsewise. This corresponds to setting the coarse flux 

between two blocks as the summation of fluxes induced by the prolongation operator. 

While the MsFVM works with a dual grid to construct the prolongation operator (basis 

functions), MsRSB works with only with the primal coarse grid which is partitioned on 

the original fine grid. 
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The procedure for calculating the prolongation operator for MsRSB method differs 

from other multiscale methods in the sense that it is an iterative process which does not 

the solve the localized flow problems. In fact the approach used for MsRSB prolongation 

operator construction is more akin to the multigrid methods which employ a single step 

smoother to reduce local error i.e., Jacobi interpolation (Vanek et al. 1994). The initial 

value of the prolongation operator in the iterative process is chosen as the transpose of the 

restriction operator i.e., an injection matrix of ones and zeros. A local smoothing iteration 

is defined given by Eq.(6.14) where D is the diagonal matrix of the fine scale stiffness 

matrix (A) and   is a relaxation factor set to 2/3. The iterative process ensures that the 

prolongation operator is algebraically smooth. The support of the basis functions increases 

with each itearation. To avoid this, support regions are predefined for each coarse block 

and the updates during the iterations are restricted within the support regions. The support 

regions are defined by local triangulation of the block centroids and face centroids of the 

coarse faces that are shared by the corresponding block. In 2D, the support region for a 

coarse block extends to a maximum of 9 coarse block neighbors. 

1 1n n n

j j jP P D AP    (6.14) 

After computing the prolongation operator, an iterative smoothing step may be 

performed on Eq.(6.13) to take care of the localized low frequency errors. As is the case 

with MsFVM, MsRSB method also requires flux reconstruction to generate mass 

conservative fine scale velocity fields. The flux reconstruction is performed by re-



 

141 

 

computing the fine scale solution using flux boundary conditions over the coarse block 

edges obtained from the multiscale pressure solution. 

 

6.5 Research Objectives: Multiscale Simulation 

The motive of the current work is to extend the PSS/DS upscaling formulation 

developed in the previous chapters to multiscale framework. Since the PSS/DS upscaling 

formulation is based on flux boundary condition, the formulation closely aligns with the 

MsMFEM. 

The multiscale work in this dissertation is divided into two sub topics dealing with 

incompressible and compressible flow. For the incompressible flow formulation, two 

different work flows are presented: Upscaling-downscaling workflow and the multiscale 

mixed finite element workflow. In the upscaling-downscaling workflow, the coarse 

problem is solved using the effective transmissibilities obtained from the pressure 

averaging procedure formulated in the upscaling section and the multiscale workflow is 

the same as the MsMFEM but the proposed method differs in the calculation of basis 

functions. For the compressible flow, only the upscaling-downscaling workflow is tested 

and the complete multiscale formulation for compressible flow is motivated for future 

research. The proposed multiscale method is tested on 2D and 3D cases of SPE10 synthetic 

reservoir model and benchmarked against the MsMFEM proposed by Aarnes 2004 for 

incompressible flow. 
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 CHAPTER VII 

MULTISCALE DIFFUSE SOURCE METHOD 

 

7.1 Multiscale Diffuse Source (MsDS) Method – Incompressible Flow 

In this section, the multiscale diffuse source method is presented for two phase 

(oil, water) incompressible flow in the absence of gravity and capillarity. The governing 

equations are formulated in terms of total velocity ( u ) for flow and fractional flow 

 w w rtf    formulation for transport. The flow equation is written in terms of total 

relative mobility ( rt o w ro o rw wk k        ) and total velocity as shown below. 

Here, q is the total external source (well rates) 

,rtu k p u q      (7.1) 

The transport equation is expressed in terms of water saturation ( wS ). 

w
w w

S
f u q

t



 


 (7.2) 

Notice for solving water saturation using Eq.(7.2), only the fine scale velocity is 

required. Hence, the pressure information is immaterial for incompressible transport in the 

absence of gravity and capillarity. The transport equation is solved on the fine scale using 

two-point upstream weighted mobility discretization (Brenier and Jaffre 1991) which 

guarantees monotonicity in saturation movement. The time dependence of the quantities 

may be handled using the well-known IMPES (Implicit pressure, explicit saturation) 

formulation or sequential implicit (Watts 1986, Tchelepi et al. 2007) schemes. The focus 
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of the multiscale work is however on the flow equation which will be discussed further. 

Two different workflows are proposed for solving Eq. (7.1) on the coarse grid and Eq. 

(7.2) on the original fine grid. 

 

7.1.1 Upscaling-Downscaling Workflow 

In the upscaling-downscaling workflow the flow problem is solved on the coarse 

grid using effective single phase transmissibilities obtained from the diffuse source 

upscaling method. The flow problem is of the form Eq.(7.3) where 
cA  contains the coarse 

transmissibility matrix and well source/sink matrix depending on the well boundary 

conditions. Flow from well to well cell is handled using the diffuse source-P upscaled well 

index described in the upscaling chapter 4. 

 c c cA p q  (7.3) 

The single phase coarse transmissibilities are multiplied by total mobilities which 

are evaluated based on pore volume averaged coarse saturation and the single point 

upstream weighted pressure scheme. Once the coarse system of equations is solved using 

a two-point flux approximation (TPFA) scheme (Aziz and Settari 1979), the coarse fluxes 

are downscaled using the DSQ formulation. To achieve this, basis functions are 

constructed and stored while performing the upscaling calculation. The procedure for 

assembling the basis matrix is outlined below. 

Let ,f fn N  be the number of active (each face has at least 2 neighbors) fine and 

coarse faces respectively. The flux basis matrix  of size 
f fn N  is obtained by solving 
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the localized DS upscaling calculations as described in Figure 4.11. One slight difference 

for downscaling exercise here is that no additional face pressure constraint is imposed on 

the coarse face as is the case with Figure 4.11. With the face pressure as isobar, the coarse 

flux is continuous. However, the fine scale flux need not be continuous across the face.  

Therefore, instead of imposing an additional isobar constraint on the face pressure which 

also acts as a gauge condition, the pore volume averaged fine scale pressure equal to coarse 

cell pressure is used as the gauge condition. This removes the discontinuity in fine scale 

flux across the coarse face which results due to the constant pressure condition. While 

Aarnes 2004 utilized the trace of permeability tensor in the source/sink terms, the current 

formulation uses the source/sink terms proportional to     LOD t    . Figure 7.1 

describes the downscaling formulation for DSQ method as an example. Notice, the coarse 

face pressure is no longer an isobar. 

 

 

Figure 7.1: DSQ downscaling 

 

Each column of  represents a basis function solution for a particular coarse face. 

The solution is nothing but the local fine scale face fluxes stored in a column as per the 

global fine scale face numbers. It can be constructed while performing the upscaling 
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calculation. Once the basis matrix  is assembled and the coarse solution is available 

from Eq.(7.3), the coarse face fluxes (
cq ) are downscaled to fine scale fluxes (

fq ) using 

superposition principle by multiplying the coarse fluxes with the basis matrix (Eq.(7.4)). 

The well fluxes are also downscaled using the same principle. 

f cq q   (7.4) 

The downscaled flux field is fed into the transport solver (Eq.(7.2)) to solve for 

fine scale saturations. Since, the flow problem is incompressible, the basis functions 

calculated using DS formulation do not always guarantee mass conservation on the fine 

scale due to finite time transient cutoff in the source/sink terms (Figure 7.2). Mass 

conservation on the fine scale is a necessary requirement when solving for saturations 

which was clearly documented by Chen and Hou 2003. Therefore, the downscaling 

exercise is performed using PSS basis functions (
2 4 1te   ) even though the 

transmissibilities are calculated using the transient PSS-DS upscaling method with 

thresholding based on Eq.(4.24). The superposition of PSS basis gives back the steady 

state profile on the fine scale as demonstrated earlier in the PSS upscaling chapter. In order 

to account for the steep pressure gradients in low permeability cells due to finite PSS 

source terms, an additional thresholding is proposed for downscaling the coarse flux. The 

thresholding is based on the average cell 
cell which is based on the arithmetic average of 

the directional cell diffusive time of flights as shown in Eq.(7.5). Once the 
cell is defined, 

a thresholding procedure is applied per a coarse cell using Eq.(4.14) and Eq.(4.17). Notice, 

there is no need to trace the  from any seed point. Instead, the individual cell diffusive 
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time of flights are used in this thresholding procedure. Effectively, the relatively low 

permeability cells in a coarse block are forced to steady state using this procedure. This 

way, the advantage of using a transient formulation is still retained. 

3

cell cell cell

x y zcell
  


 

  (7.5) 

 

 

Figure 7.2: Mass conservation issue for incompressible DS downscaling 

 

Two different choices for DS upscaling-downscaling are available – DSQ and DSP 

based on the work done in chapter 4. However, DSP method has the issue of flux 

continuity at all the coarse faces due to the leaky flux condition imposed at the upstream 

and downstream faces while solving the localized flow problems. This may require special 

treatment i.e., the projecting the discontinuous velocity field on to a different velocity basis 

to obtain a continuous mass conservative velocity field on the fine scale. Therefore, only 

DSQ downscaling method is explored in the current work.  

 

7.1.2 Multiscale Diffuse Source (MsDS) Workflow 

In this section, the new multiscale formulation is presented using the multiscale 

mixed finite element method framework. The formulation is very much similar to the one 
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proposed by Aarnes 2004,Aarnes et al. 2006. Instead of TPFA discretization, mimetic 

finite difference method (Brezzi et al. 2005) is utilized making it generally applicable to 

complex grids (see Aarnes 2004) . The mimetic discretization of the mixed form of the 

diffusivity equation (Eq.(6.5)) in matrix form reads as Eq.(7.6) where 
fq  represents 

outward the fine scale face fluxes, B is the inverse of the half-cell transmissibility matrix 

obtained from mimetic discretization and C is the gradient operator which maps the 

properties from cell centers to cell faces (e.g.: pressure gradient). 

0

0

f

T

B C q

C p q

     
     

     
 (7.6) 

The multiscale formulation begins with the following approximations for fine 

scale flux and pressure.  

,f c cq q q p p p     (7.7) 

Here, , , ,f c cq q p p  represent the fine and coarse face fluxes, fine and coarse cell 

pressures respectively. ,q p  are the fine scale residuals leftover after the multiscale 

approximations.   is the pressure basis matrix which for incompressible flow is replaced 

with simple prolongation operator I  that maps a uniform coarse pressure into each fine 

cell that represent the coarse block. The size of I  is number of fine cells by number of 

coarse cells ( c cn N ). The flux basis matrix   is obtained using the same procedure 

mentioned in the upscaling-downscaling section and Figure 7.3 summarizes the same 

calculation.  
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Figure 7.3: Calculation of flux basis for MsMFEM/MsDS method 

 

Substituting Eq.(7.7) in Eq. (7.6) and neglecting the flux residual q  gives rise to 

Eq.(7.8). 

0

c

T

c

qB CI Cp

pC q

     
        

 (7.8) 

Now, to restrict the solution to the coarse space, Galerkin restriction operator (

 ,T TR diag I  ) is multiplied to the above equation and the pressure residual is set to 

zero by utilizing the gauge condition as pore volume averaged coarse pressure set to zero. 

The final coarse system of equations reads: 

0

0

T T
c

TT T
c

qB I CI

p I qI C

      
         

 (7.9) 

Once the coarse solution is obtained, the fine scale solution may be reconstructed 

using Eq. (7.7).  For the current study, the basis functions are evaluated only once initially. 

However, an adaptive criterion (Jenny et al. 2005) may be employed to re-compute basis 

functions in the regions where mobility changes are appreciable. Again for incompressible 
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flow, the reconstruction is performed using PSS basis function instead of DS basis to 

honor the divergence free velocity field in the absence of external source/sinks. 

 

7.1.3 Numerical Experiments 

The multiscale workflows described above are tested on SPE10 synthetic reservoir 

model. The proposed methods are benchmarked against the MsMFEM proposed by 

Aarnes 2004, Aarnes et al. 2006. All of the multiscale work proposed here is non iterative. 

Therefore, the multiscale solutions are only an approximation to the fine scale flow field 

and there is will still be a finite residual leftover. In order to account for this leftover 

residuals, an iterative procedure may be employed as proposed by Lunati et al. 2011, Lie, 

K.-A. et al. 2012 so that the multiscale solutions converge exactly to the fine scale solution.  

 

2D SPE10 Two Phase Flow 

The multiscale methods proposed above were first tested on SPE10 top layer which 

has fairly continuous permeability distribution and the cross plot of permeability and 

porosity also show a clear linear trend on semi log scale (Figure 7.4). An injector-producer 

pair is placed at the corners as shown in Figure 7.4a. The coarsening ratio is 5 10  and 

the simulation time is 1 year. The producer is maintained at a constant bottomhole pressure 

of 100 bars and the injector is set to a rate constraint of 0.0027 pore volume injected (PVI) 

per day which results in a voidage replacement ratio of 1. The fluid viscosities for both oil 

and water are set to 1 cp and the Corey relative permeability exponent for oil and water is 
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2 (quadratic relative permeabilities). The fine scale simulation is performed using the 

usual two point discretization.  

 

 

 

(a) Permeability (b) Permeability vs porosity 

Figure 7.4: SPE10 layer 1 properties used for multiscale simulation 

 

Figure 7.5a and Figure 7.6a represent the reconstructed velocity and water 

saturation profiles at the end of simulation and the corresponding errors relative to the fine 

scale simulation respectively. The velocity visualized here is the total cell velocity plotted 

using 
10log v  to highlight the variability. The velocity and water saturation errors are also 

plotted as a function of time step in Figure 7.5b and Figure 7.6b respectively. The velocity 

error  ( )e v  and the saturation errors  ( )e S  are calculated based on the L2 norm given 

by Eq.(7.10).  
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(a) Velocity profile (b) Velocity error 

Figure 7.5: SPE10 layer 1 reconstructed fine scale velocity profiles at 1 PVI and the 

velocity error plot for MsMFEM and DSQ methods 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.6: SPE10 layer 1 water saturation profiles at 1 PVI and the Sw error plot 

for MsMFEM and DSQ methods 
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Figure 7.7: SPE10 layer 1 cumulative oil production and water cut for MsMFEM 

and DSQ methods 

 

The cumulative oil production and producer water cut are similar for both the 

methods (Figure 7.7) with DSQ giving slightly accurate predictions. The overall results 

indicate that the DSQ upscaling-downscaling workflow gives slightly better velocity 

profiles but MsMFEM gives slightly better water saturation profile. However, the MsDS 

workflow seems to give slightly accurate velocity and water saturation profiles relative to 

MsMFEM which is evident in Figure 7.8 and Figure 7.9.  The well rates and water cut 

also show the same performance for MsDS as DSQ method both of which are slightly 

accurate than MsMFEM (Figure 7.10). The similarity of performance for MsMFEM and 

MsDS is expected for a fairly continuous low contrast example such as the current one. 
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(a) Velocity profile (b) Velocity error 

Figure 7.8: SPE10 layer 1 reconstructed fine scale velocity profiles at 1 PVI and the 

velocity error plot for MsMFEM and MsDS methods 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.9: SPE10 layer 1 water saturation profiles at 1 PVI and the Sw error plot 

for MsMFEM and MsDS methods 
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Figure 7.10: SPE10 layer 1 cumulative oil production and water cut for MsMFEM 

and MsDS methods 

 

Now, the multiscale methods are tested on a high contrast channelized layer 68 of 

the SPE10 model (Figure 7.11). The permeability histogram in Figure 7.11a shows a 

bimodal distribution which is also evident in the two different clusters in the cross plot of 

permeability and porosity in semi log scale (Figure 7.11b). The clusters correspond to 

channel and non-channel features. The simulation input data is the same as the previous 

case with an injector-producer pair at the corners. 
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(a) Permeability (b) Permeability vs porosity 

Figure 7.11: SPE10 layer 68 properties used for multiscale simulation 

 

Figure 7.12 and Figure 7.13 show the velocity and water saturation profiles and 

their corresponding errors for the MsMFEM and DSQ methods. Both the reconstructed 

velocity and water saturation profiles show lower error for DSQ over MsMFEM. 

However, the cumulative oil production and the water cut profiles show better 

performance for MsMFEM over DSQ method (Figure 7.14). This indicates the source of 

error is the well index upscaling as the wells are located in the corners of the coarse block. 
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(a) Velocity profile (b) Velocity error 

Figure 7.12: SPE10 layer 68 reconstructed fine scale velocity profiles at 1 PVI and 

the velocity error plot for MsMFEM and DSQ methods 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.13: SPE10 layer 68 water saturation profiles at 1 PVI and the Sw error 

plot for MsMFEM and DSQ methods 
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Figure 7.14: SPE10 layer 68 cumulative oil production and water cut for MsMFEM 

and DSQ methods 

 

The MsDS method shows a much better performance than both DSQ and 

MsMFEM methods as shown in Figure 7.15 and Figure 7.16 for velocity and water 

saturation profile respectively. The spatial footprint of saturation error is very different for 

MsDS compared to MsMFEM. MsMFEM overestimates the water saturation in the low 

permeability zone towards the top left of the model whereas MsDS shows relatively less 

discrepancy. Both the well rates and the water cut show similar performance for MsDS 

and MsMFEM (Figure 7.17). 

 



 

158 

 

 

 

(a) Velocity profile (b) Velocity error 

Figure 7.15: SPE10 layer 68 reconstructed fine scale velocity profiles at 1 PVI and 

the velocity error plot for MsMFEM and MsDS methods 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.16: SPE10 layer 68 water saturation profiles at 1 PVI and the Sw error 

plot for MsMFEM and MsDS methods 
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Figure 7.17: SPE10 layer 68 cumulative oil production and water cut for MsMFEM 

and MsDS methods 

 

Overall, all the three methods that are tested show similar performance relative to 

the fine scale simulation. All the methods utilize source distributions to compute the basis 

functions. While MsMFEM responds to permeability, the MsDS and DSQ methods relies 

on the ratio of k    to generate the source functions. The source functions utilized in 

MsDS and DSQ methods are a direct consequence of the diffusivity equation which 

exploit the transient physics rather than the empirical source functions used in the current 

version of MsMFEM. 

 

3D SPE10 Two Phase Flow 

Two cases are considered for the 3D SPE10 model – the Tarbert formation (layers 

1-35) and the Upper Ness (layers 36-85). The zones are described in Figure 3.13 and the 

permeability distribution is given in Figure 7.18. The simulation input data is the same as 

the above section. The coarsening ratio is 5 10 5  . 
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(a) Tarbert  (b) Upper Ness 

Figure 7.18: SPE10 permeability distributions for the two geologic zones 

 

Figure 7.19 and Figure 7.20 represent the velocity and saturation profiles at the 

end of simulation for the DSQ method respectively for the Tarbert formation. The results 

for DSQ show higher accuracy over MsMFEM for velocity profile. However, the 

saturation error for MsMFEM is lower than DSQ although the difference is small which 

is evident from the velocity and saturation error plots in Figure 7.19 and Figure 7.20 

respectively. The well rates and water cut profiles also show comparable predictions for 

both the multiscale methods (Figure 7.21).  
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(a) Velocity profile (b) Velocity error 

Figure 7.19: SPE10 Tarbert formation reconstructed fine scale velocity profiles at 1 

PVI and the velocity error plot for MsMFEM and DSQ methods 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.20: SPE10 Tarbert formation water saturation profiles at 1 PVI and the 

Sw error plot for MsMFEM and DSQ methods 
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Figure 7.21: SPE10 Tarbert formation cumulative oil production and water cut for 

MsMFEM and DSQ methods 

 

As seen in the 2D examples, MsDS shows slightly better performance over DSQ 

as seen in the velocity and water saturation profiles for the Tarbert formation simulation 

(Figure 7.22 and Figure 7.23). Both the velocity and water saturation errors are now 

comparable to MsMFEM and the well rates, water cut profiles also show an excellent 

match to the fine scale performance (Figure 7.24). 
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(a) Velocity profile (b) Velocity error 

Figure 7.22: SPE10 Tarbert formation reconstructed fine scale velocity profiles at 1 

PVI and the velocity error plot for MsMFEM and MsDS methods 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.23: SPE10 Tarbert formation water saturation profiles at 1 PVI and the 

Sw error plot for MsMFEM and MsDS methods 
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Figure 7.24: SPE10 Tarbert formation cumulative oil production and water cut for 

MsMFEM and MsDS methods 

 

Now, the multiscale methods are tested on the Upper Ness formation which is the 

highly channelized fluvial unit in the lower section of the SPE10 model. Figure 7.25 and 

Figure 7.26 show the velocity and water saturation profiles for the DSQ method 

respectively. The DSQ method shows a higher error in velocity profiles which also shows 

up on the water saturation profile at the same places. However, the well rates show good 

agreement with the fine scale solution for both the multiscale methods (Figure 7.27). 
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(a) Velocity profile (b) Velocity error 

Figure 7.25: SPE10 Upper Ness formation reconstructed fine scale velocity profiles 

at 1 PVI and the velocity error plot for MsMFEM and DSQ methods 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.26: SPE10 Upper Ness formation water saturation profiles at 1 PVI and 

the Sw error plot for MsMFEM and DSQ methods 
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Figure 7.27: SPE10 Upper Ness formation cumulative oil production and water cut 

for MsMFEM and DSQ methods 

 

The performance of MsDS is again better than DSQ as shown in Figure 7.28, 

Figure 7.29 and Figure 7.30. The 3D water saturation error and the well rate, water cut 

prediction of MsDS is relatively closer to the fine scale performance than DSQ. The 

MsMFEM seems to performing consistently well for all the cases tested here. 
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(a) Velocity profile (b) Velocity error 

Figure 7.28: SPE10 Upper Ness formation reconstructed fine scale velocity profiles 

at 1 PVI and the velocity error plot for MsMFEM and MsDS methods 

 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.29: SPE10 Upper Ness formation water saturation profiles at 1 PVI and 

the Sw error plot for MsMFEM and MsDS methods 
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Figure 7.30: SPE10 Upper Ness formation cumulative oil production and water cut 

for MsMFEM and MsDS methods 

 

Overall, MsMFEM which relies on source distributions based on permeability 

gives the most accurate multiscale description for the 3D cases. This may be due 

permeability alone giving better source distributions for incompressible flow compared to 

porosity on which the DSQ and MsDS methods rely on. In fact, the incompressible flow 

formulation is independent of porosity and it shows up only while solving the transport. 

Nevertheless, the performance of transient MsDS is very much comparable to MsMFEM 

even though for incompressible flow. 

 

7.2 Multiscale Diffuse Source (MsDS) Method – Compressible Flow 

The governing flow and transport equations for compressible flow are written in 

terms of total velocity and water saturation given by Eq.(7.11) and Eq.(7.12) respectively. 

Here, , , ,o w o wc c f f  represent the oil, water compressibilities and fractional flows 

respectively, 1w wb B  is the inverse of the formation volume factor of water. 
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 (7.12) 

Notice in Eq.(7.12), the transport solution depends both on velocity as well as 

pressure unlike the incompressible flow case (Eq.(7.2)). Hence, for the application of 

MsDS method to compressible, subscale variation in pressure also must be specified 

making it a challenging problem. Krogstad et al. 2009 and Lie, K.-A. et al. 2012 proposed 

the pressure basis of the form Eq.(7.13) so that flux and pressure basis scale similarly. 

Here,  0

i idiag     is a diagonal matrix of the ratio of initial to current mobility so 

that the average mobility change is accounted. Here,   is the pressure basis matrix per 

each shared coarse face of the size, number of fine cells by number of coarse faces 

 c fn N . This pressure downscaling approach does not guarantee pressure continuity on 

the fine scale. 

c cp Ip q   (7.13) 

Herein, the upscaling-downscaling workflow proposed in the previous section is 

utilized for multiscale compressible flow application. The fine scale velocities are 

reconstructed using Eq. (7.4) and three variants of pressure downscaling are tested: retain 

the same formulation as incompressible flow, use Eq. (7.13) to downscale the coarse 

pressures using pressure basis matrix and the last one based on treating the coarse cell 

pressure as the pore volume average of the fine scale pressure as explained below. The 
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fine scale pressure of cell  is written in terms of a constant c and the superposition of 

pressure drops with respect to a gauge pressure weighted by the face flux (Eq.(7.14)).  

i

i faces

p c p


    (7.14) 

Eq.(7.14) is then integrated over the coarse block giving an equation for the 

constant c (Eq.(7.15)). 

c i

i faces

i

i faces

c

p PV p PV c PV PV p

PV p

c p
PV





   



 

    

 



 (7.15) 

The final equation for pressure downscaling now reads: 

i

i faces

c i

i faces

PV p

p p p
PV







   

 



 (7.16) 

Eq.(7.16) is similar to Eq. (7.13) with one additional term which represent the pore 

volume average of the pressure drops computed from the basis functions. 

 

7.2.1 Numerical Experiments 

The compressible flow formulation is tested on 2D examples taken from the lower 

and upper geologic units of the SPE10 model (Figure 7.31). The well configurations and 

the fluid, rock data are left to the default values of the SPE10 data set. The model has one 

central water injector maintained at a rate constraint of 5000 bbl/day and four corner 
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producers at a constant bottomhole pressure of 4000 psia. The initial reservoir pressure is 

6000 psia. The coarsening ratio is 5 10  and the simulation time is 5 years. 

 

  

(a) Layer 1  (b) Layer 85 

Figure 7.31: SPE10 permeability map for layers 1, 85 with one central injector and 

four producers 

 

 

The pressure downscaling based on Eq. (7.13) and Eq. (7.16) resulted in numerical 

instabilities when solving the transport. Therefore, the pressure downscaling was done by 

simply resampling the coarse pressure uniformly on to the fine scale. The DSQ upscaling 

approach is used as another reference for the MsDS compressible flow formulation. 

Figure 7.32, Figure 7.33 and Figure 7.34 represent the reconstructed fine scale 

velocity profile, water saturation profile and the cumulative oil volumes, producer water 

cuts for SPE10 layer 1 respectively. The saturation resolution for MsDS clearly improved 

from the coarse scale as seen in Figure 7.33. However, there seems to be only slight 
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improvement in well rates and water cut compared to the DSQ upscaling approach (Figure 

7.34). Both the upscaling and the multiscale methods show early water breakthrough 

relative to fine scale for producers P1 and P4. 

 

 

Figure 7.32: SPE10 layer 1 reconstructed fine scale velocity after 5 years for 

slightly compressible flow 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.33: SPE10 layer 1 water saturation profiles after 5 years and the Sw error 

plot for DSQ upscaling and MsDS methods 
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(a) Cumulative oil production (b) Producer water cut 

Figure 7.34: SPE10 layer 1 cumulative oil volumes and water cut for slightly 

compressible flow 

 

Figure 7.35, Figure 7.36 and Figure 7.37 represent the reconstructed fine scale 

velocity profile, water saturation profile and the cumulative oil volumes, producer water 

cuts for SPE10 layer 85 respectively. For the high contrast channelized layer 85, MsDS 

formulation shows improvement over the DSQ upscaling method not only with respect to 

the saturation profile (Figure 7.36) but also the well rates and water cut plots shown in 

Figure 7.37. The water cut plots for producers P1 and P3 are omitted as they did not 

experience water breakthrough by the end of simulation (Figure 7.37b). 
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Figure 7.35: SPE10 layer 85 reconstructed fine scale velocity after 5 years for 

slightly compressible flow 

 

 

 

(a) Water saturation (Sw) profile (b) Sw error 

Figure 7.36: SPE10 layer 85 water saturation profiles after 5 years and the Sw 

error plot for DSQ upscaling and MsDS methods 
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(a) Cumulative oil production (b) Producer water cut 

Figure 7.37: SPE10 layer 85 cumulative oil volumes and water cut for slightly 

compressible flow 

 

7.3 Discussion 

The PSS/DS upscaling formulation is extended to multiscale framework in this 

chapter. Two variants of the multiscale formulation were proposed for incompressible 

flow – the upscaling-downscaling workflow and the multiscale diffuse source workflow. 

The use of transient DS formulation for incompressible flow does not guarantee flux 

continuity on the fine scale. Therefore, the downscaling work for incompressible flow was 

performed using PSS basis functions even though the coarse solution is based on the 

transient basis functions. The applications to 2D and 3D SPE10 cases showed that the 

multiscale diffuse source formulation gives better reconstruction on the fine scale 

compared to the upscaling-downscaling workflow. All the test cases show the multiscale 

workflow results comparable to the benchmarked MsMFEM where the source 
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distributions are based on the cell permeability as opposed to the porosity for DSQ and 

MsDS. The multiscale framework proposed here is only an approximation to the fine scale 

problem and does not necessarily converge to the fine scale solution. In order to converge 

to the fine scale solution, an iterative framework may be employed. 

The application of the proposed multiscale framework to compressible flow 

requires the subscale variation of pressure also to be specified along with the velocity. For 

incompressible flow, the pressure is immaterial as the saturations depend only on the fine 

scale velocities. Therefore, the extra computational effort for specifying the pressure basis 

is avoided by specifying a piecewise uniform basis. In the current work, the pressure basis 

for compressible flow is retained to be the same as the incompressible flow since the 

proposed alternatives failed to converge while solving the saturations. This is still a first 

attempt in extending the mixed multiscale framework to compressible flow. Further 

research is required to make the algorithm stable and more applicable to realistic cases 

with complex physics. 
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 CHAPTER VIII 

SUMMARY AND CONCLUSIONS: MULTISCALE SIMULATION 

 

8.1 Summary and Conclusions 

A new multiscale framework is proposed using pressure transient diffuse source 

basis functions. The formulation is tested with incompressible and slightly compressible 

flow using SPE10 model. 

For incompressible flow, two workflows were evaluated: 

 Upscaling-downscaling workflow where coarse transmissibilities are 

calculated using DSQ upscaling and the downscaling is performed using 

the basis functions computed while upscaling. 

 Multiscale diffuse source workflow (MsDS) where the coarse set of 

equations are directly formulated using the basis functions. 

The numerical experiments on SPE10 model showed similar performance for both 

MsDS and the benchmarked MsMFEM while the DSQ upscaling-downscaling 

formulation showed slightly less accurate performance. 

For compressible flow, a first attempt was made to formulate the multiscale 

framework where the subscale pressure variation was neglected and the upscaling-

downscaling formulation was used. The results showed only a slight improvement 

compared to DSQ upscaling approach although the saturations were resolved on a higher 

resolution using the multiscale approach. 
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8.2 Future Research 

The multiscale formulation for incompressible flow was tested on simplistic grid 

geometries in the current work. However, the mixed formulation allows a natural 

extension to more general unstructured grids since the basis functions are completely 

localized and are constructed for a shared face. Unlike the multiscale finite volume 

method, there is no need to work with a dual grid and define the coarse cell centers. 

Therefore, the multiscale diffuse source formulation may be tested on complex grids. 

The compressible flow formulation experienced numerical instabilities due to 

discontinuous pressures on the fine scale. This area may be further explored by modifying 

the formulation so that the subscale variation in pressure is also included. A different 

pressure basis may be specified other than the piece wise uniform basis utilized in the 

current work. It would be even more beneficial if the entire framework is based solely on 

pressure rather than the mixed framework of velocity and pressure. An approach which 

combines the geometric adaptability of the mixed methods and the robustness of finite 

volume methods in complex physical scenarios is the ideal one which combines the best 

of both approaches. The current work is purely based on the mixed framework. However, 

it is more advantageous to have a formulation based on pressure basis as demonstrated by 

Møyner and Lie 2016a for the multiscale restricted smooth basis method which is inspired 

from the multigrid literature. 
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 NOMENCLATURE 

 

Property Description Unit of 

Measure 

Conversion to SI 

Symbols    

A   Cross sectional area 2ft   
2 20.3048 m

 

tc
  

Total compressibility 1 psi    1 6894.76 Pa
  

DX   Length of grid block in x 

direction 

ft  0.3048 m  

DY  Length of grid block in y 

direction 

ft  0.3048 m  

wf   
Fractional flow of water  1

 
 

h   Thickness ft  0.3048 m  

I   Injection matrix   

k  Permeability mD  
16 29.869233 10 m  

effk
 

Effective permeability mD  
16 29.869233 10 m  

rk
  

Relative permeability  1
 

 

n   Normal vector 2ft   
2 20.3048 m

 

p   Pressure psi  
36.89476 10 Pa  
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Property Description Unit of 

Measure 

Conversion to SI 

fp
  

Face pressure psi  
36.89476 10 Pa  

p   Average pressure psi  
36.89476 10 Pa  

p
  

Bulk volume averaged 

pressure 

psi  
36.89476 10 Pa  

wfp
  

Bottomhole pressure psi  
36.89476 10 Pa  

ip
  

Pressure in grid block i   psi  
36.89476 10 Pa  

op
 

Well cell pressure psi  
36.89476 10 Pa  

iPV
  

Pore volume of grid block i   3ft   
3 30.3048 m

 

P   Prolongation operator   

q  Flux 3ft day    3 30.3048 24 m hr
 

q̂  Normalized flux  1
 

 

wq
 

Well flux 3ft day    3 30.3048 24 m hr
 

faceq
  

Total face flux 3ft day    3 30.3048 24 m hr
 

PSSq
  

Pseudo steady state flux 3ft day    3 30.3048 24 m hr
 

SSq
 

Steady state flux 3ft day    3 30.3048 24 m hr
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Property Description Unit of 

Measure 

Conversion to SI 

r   Radial distance ft  0.3048 m  

or   
Equivalent grid block radius ft  0.3048 m  

wr  
Wellbore radius ft  0.3048 m  

R   Restriction operator   

wS
  

Water saturation  1
 

 

t  Time hr  hr  

Chart
 

Characteristic time hr  hr  

LODt
 

Time at the limit of 

detectability 

hr  hr  

PSSt
 

Time to reach pseudo steady 

state 

hr  hr  

T  Intercell transmissibility mD ft     1 360.309.869233 1048 m

 

CellT  Cell transmissibility mD ft     1 360.309.869233 1048 m

 

HalfT  Half cell transmissibility mD ft     1 360.309.869233 1048 m
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Property Description Unit of 

Measure 

Conversion to SI 

effT  Effective transmissibility mD ft     1 360.309.869233 1048 m

 

T
  

Intercell transmissibility in 

the direction   

mD ft     1 360.309.869233 1048 m

 

u  Darcy velocity vector ft day   0.3048 24 m hr
 

ru
  

Darcy velocity in the radial 

direction 

ft day   0.3048 24 m hr
 

u  
Darcy velocity in the 

azimuthal direction 

ft day   0.3048 24 m hr
 

pV
  

Pore volume 3ft   
3 30.3048 m

 

 V t
  

Transient drainage volume 3ft   
3 30.3048 m

 

WI   Well index mD ft     1 360.309.869233 1048 m

 

effWI  
Effective coarse well index mD ft     1 360.309.869233 1048 m

 

cx
  

1D cell center location ft  0.3048 m  
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Property Description Unit of 

Measure 

Conversion to SI 

Greek    

  Hydraulic diffusivity 2ft hr   
2 20.3048 m hr

 

SSp
 

Pore volume averaged steady 

state pressure drop 

psi  
36.89476 10 Pa  

DSp
 

Diffuse source pressure drop psi  
36.89476 10 Pa  

PSSp
 

Pseudo steady state pressure 

drop 

psi  
36.89476 10 Pa  

   Porosity  1
 

 

i  
Pressure basis   

   Dual grid pressure basis   

   Frequency domain   

   Domain of interest   

   Fluid viscosity cp   
310 secPa   

rt
  

Total relative mobility ratio 1cp

  
1310 secPa



 

   Mobility ratio matrix   

   Flux basis   

   Flux basis matrix   

   Diffusive time of flight hr   hr   
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Property Description Unit of 

Measure 

Conversion to SI 

e  
Diffusive time of flight to the 

edge 

hr  hr  

j  
Diffusive time of flight of 

cell j   

hr  hr  

  Average diffusive time of 

flight 

hr  hr  

min
  

Minimum diffusive time of 

flight 

hr  hr  

   Azimuthal angle radians   radians  

Abbreviations   

1D One dimensional   

2D Two dimensional   

3D Three dimensional   

ALG Adaptive local global   

APSS Approximate Pseudo Steady State  

DOI Depth of Investigation   

DS Diffuse Source   

EL Extended Local   

FGPT Field Gas Production Total   
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FMM Fast Marching Method   

FOPT Field Oil Production Total   

LOD Limit of Detectability   

MMSCF Million Standard Cubic Feet   

MsDS Multiscale Diffuse Source   

MsFEM Multiscale Finite Element Method  

MsFVM Multiscale Finite Volume Method  

MsMFEM Multiscale Mixed Finite Element Method  

MsRSB Multiscale Restricted Smooth Basis  

PSS Pseudo Steady State  

SS Steady State   

STB Stock Tank Barrel   

WCT Water Cut   

WOPT Well Oil Production Total   
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