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ABSTRACT

This dissertation includes three essays in the fields of public and behavioral economics with a

special focus on social preferences using both lab and field experiments. The first essay investigates

the impact that information about the value of a public good has on voluntary contributions. It is

costly for organizations to provide detailed information about their projects. Thus, organizations

would ideally like to spend their resources on information provision only if it would help increase

the contributions. We find that the impact of information depends on the generosity level of the

population. While providing more information increases average contributions in a relatively less

generous donor population, it actually hurts contributions in a relatively more generous population.

Thus, these findings suggest targeting information provision towards less generous donor groups.

The second essays studies the impact that scarcity of resources has on cheating and in-group

favoritism using a two-stage lab-in-the-field experiment with low-income coffee farmers in a small,

isolated village in Guatemala. Using the distinctive variance in income that comes from seasonal

coffee harvesting, we first conducted our experiment before the harvest (Scarcity period) and then

during the harvest season (Abundance period). First, we find that subjects cheat at high levels in

both periods when they are the beneficiary of the cheating. Scarcity does not impact this cheating

behavior. Secondly, we find significant in-group favoritism towards fellow villagers for cheating in

the Abundance period, which disappears during the Scarcity period. Finally, using a dictator game,

we show that this finding holds even when the cost of favoring an in-group member is monetary.

The last essay studies whether workers exert more effort when they work for a mission-oriented

job using a modified gift-exchange experiment. We find that workers exert more effort when they

work for a non-profit organization rather than a for-profit one, but only for high wages. Thus,

higher wages generate significantly higher profits in the non-profit firm compared to the for-profit

firm. We contribute to the literature by studying how intrinsic motivations may impact effort

choices in the workplace.
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1. GENERAL INTRODUCTION

This dissertation includes three essays in the fields of public economics and behavioral eco-

nomics with a special focus on social preferences using both lab and field experiments.

Most donors make contributions to public goods without doing any research. Organizations that

aim to increase cooperation can encourage more informed giving by providing more and detailed

information. However, information provision is costly and organizations have limited resources.

So, it is important to consider the benefits of such provision. The first essay investigates the capac-

ity of information to increase public good contributions. We examine the impact of information

provision on voluntary contributions to a linear public good with an uncertain individual bene-

fit (i.e. uncertain marginal per-capita return (MPCR)). Uninformed subjects make contribution

decisions based only on the expected MPCR (i.e. the prior distribution), while informed subjects

observe the realized MPCR before contributing. Using a theoretical model of other-regarding pref-

erences, we find that the impact of information on average contributions crucially depends on the

generosity level of the population, modeled as a stochastic increase in the pro-social preferences.

In particular, a less generous population substantially increases contributions in response to good

news of higher than expected MPCR and reduces contributions relatively little in response to bad

news of lower than expected MPCR. Thus, the overall impact of information is to increase average

contributions when the population is less generous. The opposite is true for a more generous pop-

ulation. We test these theoretical predictions using a two-stage lab experiment. First, we measure

subjects’ levels of generosity in the public good game using an online experiment. Then using

the data collected in the online experiment, we control for the level of generosity in the lab. Our

findings are in line with the theoretical predictions, and suggest that a more targeted information

provision may be a successful strategy to improve contributions to public goods.

The second essay studies the impact of scarcity on cheating and in-group favoritism using a

two-stage lab-in-the-field experiment with low-income coffee farmers in a small, isolated village

in Guatemala. During the coffee harvesting months, farmers in this village experience a significant

1



income boost from selling their coffee beans. However, during the non-harvesting months, they

experience a substantial decline in income, inducing a pronounced state of scarcity, while other

factors remain similar. Using this variance in income, we first conducted our experiment before

the coffee harvest (Scarcity), then repeated the experiment with the same group of subjects during

the harvest season (Abundance). First, using the Fischbacher and Föllmi-Heusi (2013) die-roll

paradigm, we find that subjects cheat at high levels in both periods when they are the beneficiaries

of the cheating. Scarcity does not impact this cheating behavior. Secondly, using subjects’ natu-

ral village identity, we find significant in-group favoritism for cheating in the Abundance period,

which disappears during the Scarcity period. Finally, using a dictator game, we show that this

finding holds when the cost of favoring an in-group member is monetary rather than moral.

When workers decide on the effort level to exert, they take many factors into account, including

not only extrinsic factors, such as the salary, but also the type of work and the mission of the

organization. In the third essay, we study whether workers exert more effort when they work for

a mission-oriented job using a modified gift-exchange experiment. In our experiment, there are

workers, managers and firm owners. Managers decide how much to pay to their workers, and

observing this, workers decide how much effort to provide. These decisions determine the profits

created for the firm. Firm owners receive a share of the profits along with the managers. There are

two treatments: profit and non-profit. The difference between these treatments is the identity of

the firm owner. In the profit treatment, the firm owner is another student in the lab who has been

randomly selected to be a firm owner and does not make any decisions but collects their share of

the profits. In the non-profit treatment, the firm owner is a non-profit organization. At the end of

this treatment, the accumulated earnings for the non-profit organization are donated online. While

we find that managers’ behavior across the two treatments is similar, workers exert more effort in

the non-profit treatment when the wage paid is high. This results in more profits being generated in

the non-profit treatment at high wage levels. We contribute to the literature by studying how other

motivations, such as altruism, may greatly impact effort choices in the workplace, particularly

when the job involves doing good.
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2. WHEN DOES LESS INFORMATION TRANSLATE INTO MORE GIVING TO PUBLIC

GOODS?

2.1 Introduction

Private voluntary contributions have been increasingly viewed as a vital source of funding for

public goods. For example, DonorsChoose, a fundraising platform for public school projects, has

quickly gained popularity since its inception in 2000 and has raised close to $640 million up-to-

date.1,2 Other crowdfunding platforms that fundraise for public projects include Public Good3, Ra-

zoo4, and Pledge Music5. Interestingly, while the non-profit sector is growing, with the number of

non-profits surpassing 1.5 million, recent evidence suggests that individual donors are often poorly

informed when making contributions. According to 2015 Camber Collective survey about private

charitable giving in the U.S., “49% of donors don’t know how nonprofits use their money”.6 Such

lack of information may have a significant effect on contributions if donors care about the impact

of their giving. Lab experiments find that this is indeed the case with subjects contributing higher

amounts to more valuable projects (see Ledyard et al., 1995 and Cooper and Kagel, 2016). This

suggests that donors would respond to more information by increasing contributions upon finding

out good news of higher than expected value of the public project and decrease contributions upon

observing bad news of lower than expected value. Thus, the overall impact of more information

on expected giving depends crucially on the relative response to good and bad news.

In this paper, we investigate theoretically and experimentally the impact of more information on

total contributions in the context of a linear public good game with an uncertain return. We restrict

our attention to public goods whose provision is always desirable from a social standpoint but free-

1For more information, visit https://www.donorschoose.org/about.
2According to Charity Navigator, the overall contributions to education related

causes in the US amounted to $59.77 billion in 2016. For more information, see
https://www.charitynavigator.org/index.cfm?bay=content.view&cpid=42.

3www.publicgood.com
4www.razoo.com
5https://www.pledgemusic.com/
6See http://www.cambercollective.com/moneyforgood/
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riding incentives are present at the individual level. The public good provided increases linearly

with total contributions, and the magnitude of this increase depends on the marginal per-capita

return (MPCR) of the public good. To determine the impact of information about the MPCR, we

consider two information environments corresponding to informed and uninformed populations.

With an uninformed population, subjects do not know the realized value of the MPCR, but only

know its prior distribution when making a contribution decision. With an informed population,

subjects observe the realized MPCR prior to contributing. This allows us to compare uninformed

and informed giving by studying how subjects respond to good and bad news about the MPCR.

On the theory side, the linear structure of the public good implies that for any value of the

MPCR, it is socially optimal to contribute all of the endowment, while it is individually payoff

maximizing to contribute nothing. Since lab experiments reveal that most of the contributions are

in-between the two extremes (Ledyard et al., 1995; Cooper and Kagel, 2016), we incorporate other-

regarding preferences into the agents’ utility function in spirit of Arifovic and Ledyard (2012).

In particular, agents are assumed to have pro-social motivations for giving, captured by agents’

preference for higher average contributions to the public good. We refer to agents with stronger

pro-social preferences as more generous since they have stronger propensity to contribute. In

addition, agents exhibit fairness concerns, which are captured by a dis-utility from contributing

a higher amount than the average contributions by others. In equilibrium, contributions increase

with the MPCR and the generosity level of the agent.

Interestingly, we find that the impact of information on expected contributions crucially de-

pends on the generosity level of the agent population, modeled as a stochastic increase in the

pro-social preferences. While information has the potential of increasing average contributions

for a less generous population, it may in fact reduce average contributions when the population

is more generous. The reason for this is in the differential response to good and bad news in the

two population types. For both types, the equilibrium contributions decrease upon observing bad

news of lower than expected MPCR and increase upon observing good news of higher than ex-

pected MPCR. Moreover, the equilibrium contributions feature increasing returns to MPCR when
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the MPCR is low (i.e. contributions are a convex function of the MPCR for low values) and di-

minishing returns when the MPCR is high (i.e. contributions are a concave function of the MPCR

for high values). This is because at low MPCR, an increase in the marginal return induces a large

number of agents to contribute, generating a substantial increase in overall giving. In contrast, at

high MPCR, a further increase induces a relatively small response since most agents are already

contributing large amounts and thus are less willing to further increase their giving. However, a

more generous population reaches diminishing returns faster since most of the agents are giving

significant amounts even at lower values of the MPCR. As a result, a more generous population is

less responsive to good news and more responsive to bad news and thus information has an over-

all negative effect on expected contributions. The opposite is true for a less generous population,

which features increasing returns for a wider range of the MPCR and thus is more responsive to

good news than bad news.

The novel findings of our model give rise to testable hypotheses, which we experimentally in-

vestigate in the lab. Since our theoretical model suggests that the generosity level of the population

plays a vital role in how donors respond to information, a defining feature of our experimental

design is controlling for the generosity level of the sessions. We accomplish this by running our

experiment in two stages. First, we conduct an online experiment to elicit subjects’ generosity

levels in the public good game prior to the lab experiment. Using this data, we create more and

less generous groups in the lab, and inform the subjects about the generosity level of their session

by using a neutral language. Subjects play a linear public good game in groups of three with un-

certain MPCR (either high (0.60) or low (0.40) with equal probability). There are two information

treatments. In the informed treatment, subjects know the randomly chosen MPCR before they

make their contribution decisions. In the uninformed treatment, they are only informed about the

distribution of the MPCR, and asked to make their contributions without knowing which MPCR is

chosen.

The experimental findings are in line with the theoretical predictions. In the sessions with more

generous subjects, average contributions in the uninformed treatment are significantly higher than
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the ones in the informed treatment. Subjects’ contribution level in the uninformed treatment is

closer to the contribution level in the informed treatment under good news (MPCR of 0.60) than

under bad news (MPCR of 0.40). Thus on average, information reduces contributions to the public

good in the relatively more generous sessions. The opposite is true for the less generous sessions.

Uninformed contributions to the public good are closer to the informed contributions under bad

news than under good news. Thus, information is good for giving in the relatively less generous

sessions.

The findings of this study have significant implications for fundraising. They suggest that

targeted information provision may be a successful strategy that improves contributions to public

goods. In particular, the model and experimental results reveal that less generous donors are more

responsive to good news about the returns to public goods. Thus, focusing on better informing

these donors, who are often overlooked in fundraising campaigns, may be a more fruitful strategy

than uniform information provision.

2.2 Related Literature

This paper connects two research strands that investigate factors that impact public good provi-

sion and cooperation: 1) information, 2) social preference composition of groups. In the following

section, we briefly review the related literature.

2.2.1 Information

Much of the earlier literature on public good provision assumes that donors operate under

complete and perfect information (Ledyard et al., 1995; Andreoni and Payne, 2013; Vesterlund,

2016). In reality, however, information is often limited, which has given rise to a more recent trend

of studying public good provision under incomplete and imperfect information.

On the theoretical front, there is sparse literature that studies public good provision under

incomplete information about the public good’s value. In particular, in the context of discrete

public goods, Menezes et al. (2001), Laussel and Palfrey (2003), and Barbieri and Malueg (2008,

2010) introduce private information about donors’ heterogeneous valuations of the public good,
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while Krasteva and Yildirim (2013) endogenize the choice of information acquisition and find that

more information about one’s own value improves giving. In contrast, our current setting features

a public good with homogeneous returns and finds that more information about the return is not

always beneficial.

Our paper is closer to the literature on continuous public goods under incomplete information,

which has modeled the public good as having uncertain (but homogeneous) returns (e.g. Vester-

lund, 2003; Andreoni, 2006; Lange et al., 2017). This literature, however, has mainly focused on

the information transmission about the quality of the public good to uninformed donors via lead-

ership giving (Vesterlund, 2003; Andreoni, 2006) 7 or costly gift provision to donors Lange et al.

(2017). Instead, our focus here is on studying the impact of more information on average total

provision.

Our model and experimental set-up is cast as a continuous linear public good with uncertain

MPCR. In this respect, our paper is closest to the experimental literature that considers limited in-

formation about the returns. Although some of this literature focuses on information about others’

valuation and/or endowment by incorporating heterogeneity in a non-linear public good environ-

ment (e.g. Marks and Croson, 1999; Chan et al., 1999), most of the focus has been on the impact of

uncertainty about the MPCR. In particular, Gangadharan and Nemes (2009), Levati et al. (2009),

Fischbacher et al. (2014), Stoddard et al. (2015), Boulu-Reshef et al. (2017), Butera and List (2017)

and Théroude and Zylbersztejn (2017) study how increasing the riskiness of the returns, in terms

of mean preserving spread, affects contributions. Although the findings are mixed, Levati and Mo-

rone (2013) and Stoddard (2017) show that the parameterization of the public good game can play

an important role in determining the direction of this effect.

In contrast, we are interested in the impact of information about the MPCR on contributions.

Because of that, we keep the distribution of the MPCR fixed and vary the amount of information

that people receive, which more closely represents people’s response to information. To the best of

our knowledge, our paper is the first to investigate public good contributions in this environment.

7Potters et al. (2005, 2007) experimentally investigate the information revelation through leadership giving.
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It is worth highlighting that our work is also related to an emerging literature studying the

role of information on charitable giving. Most of this literature studies the impact of variety

of information (such as cost-to-donation ratio, recipients’ or non-profits’ characteristics, or other

donors’ giving and so on) on donations (e.g. Eckel et al., 2007; Shang and Croson, 2009; Fong

and Oberholzer-Gee, 2011; Null, 2011; Karlan and Wood, 2014; Exley, 2015, 2017; Metzger and

Günther, 2015; Brown et al., 2017; Butera and Horn, 2017; Portillo and Stinn, 2018). In many of

these studies, however, donors’ beliefs in the absence of information are unobservable and outside

the experimenter’s control. In reality, donors may adopt different beliefs about non-profits’ charac-

teristics. Some may hold very optimistic beliefs, while others may hold very pessimistic beliefs in

absence of sufficient information. Thus, donors’ response to information is ambiguous and heav-

ily influenced by their prior beliefs. Without means of controlling for these beliefs, it is difficult

to gain a deeper insight into the channels through which information impacts giving. Indeed, the

findings of the existing studies are mixed, with donors sometimes using information to tailor their

donations up or down.

To gain more insight into the impact of information on donors’ giving, we control both for the

information that donors receive and the interpretation of this information by donors. To accom-

plish this, we use the linear public good game, in which subjects are assigned their valuations for

the public good by the experimenter and compensated based on these assigned values. By vary-

ing people’s information about their induced values (Smith, 1976), we are able to determine how

they respond to information about the value and how the informed contributions compare to the

uninformed contributions.

Finally, there is also charitable giving research studying how donors may strategically create a

"moral wiggle room" (Dana et al., 2007) to justify selfish behavior. For example, research shows

how donors use risk (Exley, 2015), ambiguity (Haisley and Weber, 2010), beliefs about others

(Di Tella et al., 2015), and performance metrics (Exley, 2017) as an excuse not to give. Unlike

our public goods framework, most of these studies use a dictator game type of environment where

subjects are given an endowment and asked to make a donation. In this respect, our study is more
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representative of cooperation rather than altruism. Additionally, in our study subjects are either

exogenously informed or uninformed depending on the treatment. Thus, information avoidance

as an excuse not to give is not a viable explanation for our findings. Granted, it is plausible that

subjects in the uninformed treatment could use the lack of information as an excuse not to give

despite knowing that each MPCR is equally likely. Although this could provide an alternative

explanation for our findings in the less generous sessions, it fails to explain the behavior observed

in more generous sessions.8

2.2.2 Social Preferences Composition of Groups

The second strand of related literature studies social preferences (i.e. other-regarding prefer-

ences) for giving. This literature has established that people have different motivations for giving

and they can be classified into different types based on these motivations (see the following sur-

veys: Camerer, 2011; Fehr and Schmidt, 2006; Cooper and Kagel, 2016). While some people are

selfish and do not give anything, others are conditional cooperators whose contributions depend on

what others give (e.g. Brandts and Schram, 2001; Fischbacher et al., 2001; Kurzban and Houser,

2005).

Groups consist of individuals with different social preferences (i.e. types). The existing liter-

ature mainly focuses on how group composition changes the level of cooperation and finds that

the composition of social preference types in groups matters in achieving and maintaining high

levels of cooperation (e.g. Burlando and Guala, 2005; de Oliveira et al., 2015; Gächter and Thöni,

2005; Page et al., 2005; Gächter, 2006; Gunnthorsdottir et al., 2007; Ones and Putterman, 2007).

One common finding in this literature is that contributions are higher in homogeneous groups with

members who are more generous. Moreover, the existence of one selfish person in the group is

enough to harm the groups’ ability to cooperate (de Oliveira et al., 2015).

Our theoretical model suggests that people’s reaction to information depends on the level of

generosity of their group (more in Section 2.3). We contribute to this research strand by studying

8If moral wiggle room is an explanation for our findings, it is not clear to us why it may yield different results
across treatments. Potentially, it is possible that information may be changing the social norms differently in more and
less generous sessions. Since this is beyond the scope of this paper, we leave this to future research.
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the impact of information across two groups with different levels of generosity. Finally, it is im-

portant to note that our findings about the impact of group composition on response to information

might also explain the mixed results regarding the impact of information on giving in the charitable

giving literature.

2.3 Theory and Hypotheses

The linear public good environment consists of groups of N ≥ 2 agents. Each agent i is en-

dowed with wealth W and chooses an amount gi to allocate to a public good that benefits everyone

equally in their groups. The monetary payoff of agent i is

Mi = W − gi + v
N∑
k=1

gk

where v ∈ ( 1
N
, 1) denotes the marginal per-capita return (MPCR) of the public good. Clearly,

the payoff maximizing strategy is gi = 0 and the socially optimal strategy is gi = W . Therefore, in

absence of other-regarding preferences all agents contribute zero in the unique Nash equilibrium.

Since the above equilibrium behavior is a drastic departure from the experimental evidence

(see Ledyard et al., 1995), the existing literature has considered the possibility of other-regarding

preferences (e.g. Rabin, 1993; Fehr and Schmidt, 1999; Bolton and Ockenfels, 2000; Charness and

Rabin, 2002; Falk and Fischbacher, 2006; Arifovic and Ledyard, 2012). In particular, following

the model of inequality aversion by Arifovic and Ledyard (2012)9, agent i’s utility function is given

by

ui(Mi,M) = Mi + βiM − γi max{M −Mi, 0} (2.1)

where M = 1
N

∑N
k=1Mk is the average earnings in the game. The agent-specific parameter

βi captures the agent’s preference for higher average earnings. In other words, βi is the strength

9We adopt the preference specification proposed by Arifovic and Ledyard (2012) since it most closely fits our
public good framework. However, the utility function given by eq. (2.1) is closely related to alternative preference
specifications proposed by the existing literature (e.g. Fehr and Schmidt (1999); Bolton and Ockenfels (2000); Char-
ness and Rabin (2002)), with utility representations that are equivalent up to linear transformations of one another. For
further discussion of this equivalence, see Arifovic and Ledyard (2012).
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of i’s pro-social motives for giving which we refer to as the individual i’s generosity level10. The

parameter γi captures her inequality aversion, which generates disutility if i’s earnings fall below

the average.

Letting g(v) denote the expected average giving in the public good game, i’s best response

function is given by

gi =


0 if βi ≤ β1(v)

g(v) if βi ∈ [β1(v), β2(v, γi)]

W if βi ≥ β2(v, γi)

(2.2)

where

β1(v) =
N(1− v)

Nv − 1
, β2(v, γi) =

N(1− v)

Nv − 1
+ γi

N − 1

Nv − 1
.

The best response function reveals that selfish agents (low βi) give 0, highly generous agents

(high βi) give all their endowment, and moderately generous agents (intermediate βi) are condi-

tional cooperators and match the expected average contributions by others.

Given this best response function, the expected equilibrium giving solves

g(v) = Pr(βi ≥ β2(v, γi))W + Pr(β ∈ [β1(v), β2(v, γi)])g(v), (2.3)

where the total expected giving is simply the weighted average giving of the highly generous

agents, who give all their endowment, and the moderately generous agents, who match the expected

average giving in the population. Rearranging terms, we can re-write eq. (2.3) as

g(v) =
1

1 + Pr(β≤β1(v))
Pr(β≥β2(v,γi))

W (2.4)

Thus, the expected equilibrium giving depends on the relative likelihood of the payoff max-

imizing (selfish) giving and socially optimum (generous) giving, i.e. R(v) = Pr(β≤β1(v))
Pr(β≥β2(v)) . As

10In Arifovic and Ledyard’s paper, this term is referred to as the level of altruism. Due to different definitions of
altruism in the economics and psychology literature, we opt to avoid confusion by referring to βi as the individual’s
generosity.

11



expected, the average giving is decreasing in the relative likelihood of selfish giving (i.e. R(v))

since it causes the conditional contributors to adopt more pessimistic beliefs about the average

giving in the population.

To determine how the expected equilibrium giving varies with the MPCR, v, we need to take

into account the distribution of other-regarding preferences since it affects the relative likelihood

of selfish giving, R(v). In particular, in order to focus attention on the comparative statics with

respect to the population’s generosity level, we simplify the model by letting γi = γ be identical

across the population.11 Furthermore, we model the pro-social preferences in the population as

distributed according to an exponential distribution βi ∼ Exp(1/λ) where higher λ represents a

(stochastically) more generous population.12 This specification allows us to conduct comparative

statics with respect to the generosity level of the population, captured succinctly by the parameter

λ.

Given the expected equilibrium giving function and the distribution of pro-social preferences

in the population, the following lemma describes how expected giving varies with the MPCR, v,

and the population’s generosity level λ.

Lemma 1. g(v) is increasing in v ∈
(

1
N
, 1
)

with limv→ 1
N
g(v) = 0 and limv→1 g(v) = W .

Moreover, there exists a unique ṽ(λ) ∈
(

1
N
, 1
]

with the following properties:

1) g′′(v) > 0 for v < ṽ(λ) and g′′(v) < 0 for v > ṽ(λ);

2) ṽ(λ) is decreasing in λ with limλ→0 ṽ(λ) = 1 and limλ→∞ ṽ(λ) = 1
N

.

The formal proof of Lemma 1 is relegated to Appendix A. Intuitively, it reveals that the equi-

librium giving is increasing in the MPCR since higher v increases the net social benefit of giving,

captured byNv−1, and decreases the individual cost of giving, captured by (1−v). Moreover, ex-

pected giving approaches zero as the net social benefit of giving becomes negligible (i.e. v → 1
N

)

11The results in this section readily generalize to a stochastic inequality aversion parameter γi as long as γi and βi
are independently distributed.

12The exponential distribution gives a convenient way of capturing heterogeneity in pro-social preferences as its
domain covers all non-negative real numbers and the parameter λ allows us to stochastically change the pro-social
preferences of the population in terms of first order stochastic dominance.
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and it approaches W as the marginal cost of giving becomes negligible (i.e. v → 1).

Interestingly, the first property reveals that the marginal benefit of increasing the MPCR is non-

monotone and tends to diminish at higher values of the MPCR. In particular, the average giving

g(v) exhibits increasing returns of higher MPCR for low values (v < ṽ(λ)), but diminishing returns

for high values (v > ṽ(λ)). To grasp the intuition behind these dynamics, note that for low values

(i.e. v < ṽ(λ)), there is a significant number of agents who do not contribute. Thus, raising the

MPCR in this case has an increasing marginal impact as it shifts a growing number of agents away

from selfish to conditional and generous giving. However, this impact of increasing the MPCR

eventually levels off as the number of selfish agents dwindles. Consequently, for high values of

the MPCR (v > ṽ(λ)), the marginal impact of further increasing the MPCR is diminishing as it

induces a smaller number of agents to move away from selfish giving.

The second property further reveals that a more generous population, characterized by a larger

λ, reaches diminishing returns of higher MPCR faste (i.e. ṽ(λ) is decreasing in λ). The reason

is that for a more generous population, composed of individuals with relatively high βi, inducing

most agents to give requires only a modest increase in the MPCR. The opposite is true for a less

generous population, in which significant portion of agents require a large increase in the MPCR

in order to contribute.

Figure 2.1 illustrates a numerical example for two different values of λ (low and high generosity

levels) and provides visual support for Lemma 1.13 It is evident from Figure 2.1 that g(v) is

increasing in v for both generosity levels. While g(v) is convex at low values of v, it is concave

at high values. Moreover, a more generous population (Figure 2.1 (a)) reaches diminishing returns

of higher MPCR faster as illustrated by the fact that it is concave for a wider region of v (i.e.

ṽ(16) < ṽ(6)).

The shape of the giving function described by Lemma 1 has an important implication on the

impact of information provision. To see this, suppose that, as in the experimental design in Section

2.4, the MPCR (v) is drawn from a discrete distribution with v = {vL, vH}, where 1
N
< vL <

13This numerical example is constructed by using the following parameters: γ = 4, vL = 0.4, vH = 0.6, and
pL = 0.5
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Figure 2.1: Informed and Uninformed Giving

(a) High Generosity (λ = 16) (b) Low Generosity (λ = 6)

vH < 1, and Pr(v = vr) = pr for r = {L,H}.14 In absence of information, the agent’s giving (gU )

is based on the expected MPCR, E[v]. In contrast, an informed agent gives based on the realized

MPCR, v, and thus the expected informed giving (gI) is the weighed average contributions under

high and low MPCR.

gU = g(E[v]); gI = pLg(vL) + pHg(vH) (2.5)

Clearly, information can either decrease giving by revealing low value vL (bad news), or in-

crease giving by revealing high value vH (good news). The relative magnitude of the response

to good and bad news depends of the shape of the giving function described by Lemma 1 and

illustrated in Figure 2.1. In particular, Figure 2.1 (a) illustrates the case of generous population for

which the giving function is mostly in the concave region. It is evident from the figure that expected

equilibrium giving responds more to bad news than good news, i.e. |gU − g(vL)| > |gU − g(vH)|.
14To ease the exposition, we present the theoretical results using a two-point distribution since it corresponds to our

experimental design in Section 2.4, but the theoretical results extend to any arbitrary non-degenerate distribution.
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Consequently, when the population is rather generous, information is on average bad for giving,

i.e. gU > gI . The opposite is true for a more selfish population that is likely to feature a convex

giving function for a wider range of v. Thus, as Figure 2.1 (b) illustrates, the response to good

news in this case is larger than the response to bad news (i.e. |gU − g(vH)| > |gU − g(vL)|), caus-

ing information to be on average beneficial for giving (i.e. gI > gU ). The following Proposition

formalizes this dynamics.

Proposition 1. There exist generosity levels 0 < λ1 ≤ λ2 <∞ such that expected informed giving

exceeds uninformed giving for λ ≤ λ1, while uninformed giving exceeds expected informed giving

for λ ≥ λ2.

The proof of Proposition 1 follows immediately from the Jensens’ inequality and is relegated

to Appendix A. The proposition states that while informed giving exceeds uninformed giving for a

less generous population, information is detrimental for giving if the population is more generous.

As discussed above, the key driver for these dynamics is that less generous population is more

responsive to good news than bad news, while the opposite is true for more generous population.

Lemma 1 and Proposition 1 provide testable hypotheses that we investigate by using a lab ex-

periment described in Section 2.4. In particular, our experimental design aims to test the following

hypotheses.

Hypothesis 1. In a less generous population, the agents’ average response to good news is higher

than their response to bad news.

Hypothesis 2. In a more generous population, the agents’ average response to good news is lower

than their response to bad news.

The implication of Hypothesis 1 is that the average contributions are higher when agents are

informed and thus information is good for giving. Hypothesis 2 implies just the opposite for a

more generous population- average uninformed giving exceeds the informed one and information

is bad for giving. In the next section, we describe the experimental design that we use to test these

hypotheses in the lab.
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2.4 Experimental Design

In order to test our hypotheses, we need to control for the level of generosity in each session. We

do this by conducting the experiment in two stages.15 In Stage 1, we measure subjects’ generosity

level in the public good game by using an online experiment. One to two weeks later, using the

information obtained from Stage 1, we invite some of these participants to the lab to participate in

the second stage of the experiment.

Our experiment is a 2x2 between subjects design16: Selfish vs. Generous and Informed vs.

Uninformed. Using the data collected in Stage 1, we create relatively more and less selfish sessions

in the lab. More specifically, we only invite subjects who were classified as relatively less generous

to the Selfish treatment; and we only invite subjects who were classified as relatively more generous

to the Generous treatment.

In Stage 2, subjects come to the lab to participate in a linear public good game described in

Section 2.3. Subjects are placed in groups of three and play a one shot linear public good game

with uncertain MPCR, which takes values of 0.4 or 0.6 with equal probability. They play the game

for 10 rounds with random rematching. In the Uninformed treatment, subjects make a contribution

decision without knowing which MPCR will be used for that round. However, subjects know that

each outcome of the MPCR is equally likely. In the Informed treatment, subjects are informed

about the realized MPCR for that round when they make their decisions. We pay subjects for one

of the rounds picked at random at the end of the experiment. Finally, they fill out a survey. Below,

we provide detailed information about each stage of the experimental design.

Stage 1: First, invitees receive an invitation email to participate in an incentivized online ex-

periment with a possibility of being invited to an experiment in our lab. The online experiment,

programmed in Qualtrics, consists of Fischbacher et al. (2001) (henceforth FGF) conditional con-

15This aspect of our design is inspired by and similar to Burlando and Guala (2005), Gächter and Thöni (2005), and
de Oliveira et al. (2015).

16We ran the Informed and Uninformed treatments within subjects. Although subjects knew that experiment had
two parts, they did not know anything about the second part when they played the first part. We only report the
data from the first treatment played, since the behavior in the first treatment contaminated the data from the second
treatment (i.e. ordering effect).
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Figure 2.2: Conditional Contribution Table

tribution game. In this game, each subject is endowed with 20 tokens (1 token=$0.40), assigned

to a group consisting of three other members, and asked to play a linear public good game with

an MPCR of 0.50. Each subject makes two decisions: Decision 1 and Decision 2. In Decision 1,

subjects state how many of their tokens, if any, they would like to contribute to a group project (un-

conditional contribution) that benefits everyone in their group equally. Next, in Decision 2, they fill

out a conditional contribution table (see Figure 2.2). In this table, they indicate how many tokens

they would like to contribute to the group project conditional on the other group members’ average

contribution in Decision 1. For example, they state how much they would like to contribute if the

other group members contributed 0 tokens on average in Decision 1, how much they would like to

contribute if others contributed 1 token on average in Decision 1, and so on. Thus, in Decision 2,

subjects make a total of 21 conditional contribution decisions.

After all subjects participate in the online experiment, we randomly construct groups of three.

Next, for each group, we randomly pick two group members for which Decision 1 will be im-

plemented. We implement Decision 2 for the other group member. In other words, we randomly

determine which two group members’ unconditional contribution decisions will be implemented.

Depending on the average unconditional contribution made by these two group members, we im-

plement the other group member’s conditional contribution as indicated in her conditional contri-

bution table. Then, we calculate the earnings accordingly. Payments for the online experiment are

delivered by Venmo, Paypal or cash. In order to avoid any potential contamination that may be
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created by the outcome of this stage, the subjects are not informed about the outcome and receive

their payments for the online experiment only after Stage 2 is conducted.

The FGF conditional contribution game described above is a good way to measure the gen-

erosity level (βi) of the subjects in the public good game. It is commonly used in the literature

(with over 2,000 citations) to classify subjects into types in the public good game: selfish (or free-

riders who contribute zero), conditional cooperator (subjects whose contributions depend on the

others’ average contribution) and pro-social (or full cooperators who contribute everything).17 As

described in Section 2.3, each subject’s type is determined by their level of generosity, βi. Those

with a relatively low βi are selfish, those with a high βi are pro-social and others with a βi some-

where in between are conditional cooperators. Since one of our goals is to create more and less

generous groups in the lab, we calculate a measure for each subject by using the data collected

from the conditional contribution game in Stage 1. More specifically, we calculate the following

parameter, that works as a proxy for the subject’s level of generosity (i.e. βi), for each subject:

β̂i =

∑20
j=0(g

i
j − j)∑20

j=0 j

where gij is subject i’s stated conditional contribution in Decision 2 for an average contribution

by others, j = 0, 1..., 20. If a subject is selfish, whose contribution is always zero independent of

others’ giving, then her β̂i is equal to −1. If a subject is pro-social, who always contributes all

of her endowment independent of others’ giving, her β̂i is equal to +1. If a subject is a perfect

conditional cooperator, whose giving perfectly matches others’ average contribution, then her β̂i

is equal to 0. In general, if a subject is more generous, she tends to contribute higher amounts for

any average contribution level of the other group members resulting in a larger β̂i.

Next, we rank all the subjects based on their β̂i and divide them into two equally populated

samples using the median. This gives us two samples, one below the median and one above the

median. The first sample includes selfish subjects as well as conditional cooperators, thus it is

17Boosey et al. (2018) shows the validity of this procedure to explain behavior in public goods games. Also see
Thöni and Volk (2018) that review 17 replication studies of FGF and show that FGF findings are stable.

18



relatively more selfish. The second sample is relatively more generous since it includes pro-social

subjects who contributed everything as well as conditional cooperators. More information on the

distribution of types in our experiment is provided in Section 2.5. Next, we use these two samples

to control for the generosity level in the public good game in the lab as explained below.

Stage 2: After dividing the subjects into two equally populated samples, we invite them to

participate in the second stage in the Economic Research Lab at Texas A&M University.

Subjects play a one shot linear public good game in groups of three for ten rounds in the lab.

The groups in each round are constructed randomly (stranger matching design). In each round,

subjects start out with 20 tokens (1 token =$0.50) in their individual accounts and are asked to

decide how many of these 20 tokens, if any, they would like to contribute to a group project (gi).

The monetary payoff function for this game is as follows:

Mi = 20− gi + v
3∑

k=1

gk

The MPCR (v) of the public good is either 0.40 with 0.5 probability or 0.60 with 0.5 prob-

ability, which is determined randomly and independently for each group in each round.18 In the

Uninformed treatment, subjects make their contribution decision about the public good without

knowing which MPCR is selected for that round, but they know that it is either 0.40 or 0.60 with

equal probability. In the Informed treatment, subjects are informed about the randomly chosen

MPCR for that round and then are asked to make their contribution decisions about the public

good. In both treatments, at the end of each round subjects receive feedback about their earnings,

other group members’ average contribution, and the randomly determined MPCR in the round.

In the Selfish (Generous) treatment, we only invite subjects whose β̂i was below (above) the

median. This is how we control for the level of generosity in each session. At the end of the

instructions, before the experiment starts, we remind subjects about their participation in the online

experiment and provide them with information about the level of generosity in their session. More

18The independent draw of the MPCR on the round and the group level eliminates any potential effect coming from
the order of the MPCR.
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Figure 2.3: Providing Info About the Session’s Generosity Level

specifically, using a neutral language, we explain how we have created a measure (i.e. β̂i) using

their responses in the online experiment and ranked everyone based on their measure as shown in

Figure 2.3. In the Selfish (Generous) treatment, we tell subjects that participants from Population

1 (2) were invited for that session.

2.5 Results

Six experimental sessions were conducted in the Economic Research Lab at Texas A&M Uni-

versity in April 2017. Subjects were recruited through ORSEE (Greiner et al., 2004), and the lab

experiment was coded in z-Tree (Fischbacher, 2007). Average earnings were $9.85 in the first

stage and $21 in the second stage (including a show up fee of $8 in the second stage).

A total of 360 subjects participated in the online experiment and 44 of these preferred not to be

invited to the lab experiment. From the remaining group, we excluded 13 as their behavior in the

online experiment seemed to be random. The final pool of subjects for Stage 2 was 303 and 111 of

those participated in the second stage.

2.5.1 Stage 1 Findings

The attrition rate from Stage 1 to Stage 2 is high since when recruiting for the online experi-

ment, it was impossible to predict whether a subject would be assigned to the Selfish or Generous

treatment sessions. This made it difficult to schedule session times that would be convenient for

a large number of subjects. Nevertheless, it is important to confirm that there is no systematic

difference in the generosity level of the subjects who participated in both stages versus the ones

who participated in the first stage only. For this purpose, we look at Figure 2.4 that presents the
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Figure 2.4: Distribution of β̂i
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percentage distribution of β̂i, as computed using (6), for the 303 participants who were invited to

Stage 2 in our experiment. The darker color represents the participants who participated in both

stages (111 subjects), whereas the lighter color- the participants who only participated in the first

stage (192 subjects). Using the Kolmogorov-Smirnov equality of distributions test, we confirm that

the difference between the distribution of β̂i across these two samples is not statistically significant

(p-value is 0.536).

The mean and median of β̂i from the online experiment are -0.25 and -0.11 respectively. The

median is the cut-off point for the Generous and Selfish sessions. The subjects whose β̂i is be-

low (above) the median are invited to the Selfish (Generous) treatment sessions. This is the only

difference between these two treatments.

Figure 2.5 illustrates the conditional contribution decisions made in Stage 1 by those who

also participated in Stage 2. A perfect conditional cooperator who always matches the others’

average contribution would be located on the 45 degree line. If a subject is located above this

45 degree line, it indicates that the subject contributed more than others for all possible average
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Figure 2.5: Average Contributions in Stage 1 for Each Possible Average Contribution of Others
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contributions made by other group members. On the contrary, a subject who contributed less than

the average would be located below this line. The average conditional contributions made for each

possible contribution level of others looks almost identical to FGF data. Figure 2.5 also illustrates

the average conditional contributions made by the subjects in Generous and Selfish treatments

separately.

2.5.2 Stage 2 Findings

First, we compare the average contributions made across treatments. We do this by taking the

average amount of tokens contributed across all ten periods by each subject and compare them us-

ing bootstrap t-test.19 Table 2.1 presents these average contributions made across treatments. First

of all, it is not surprising to see that average contributions in Generous treatment is always higher

than the Selfish treatment (p-value < 0.000 for all three conditions). Next, in the Selfish treatment

we find that Uniformed average contributions are not different than Informed contributions with

low MPCR (p-value is 0.333). However, Uninformed contributions are significantly different than

19Mann-Whitney U test also yield very similar p-values.
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Informed contributions with high MPCR (p-value is 0.015). Subjects in the Selfish treatment do

not respond to information when they receive bad news (MPCR of 0.40), but they significantly

increase their contributions when they receive good news (MPCR of 0.60). This is line with Hy-

pothesis 1. In the Generous treatment, we see the opposite as stated in Hypothesis 2. Average

Uninformed contributions are not statistically different from the Informed contributions with high

MPCR (p-value is 0.838), but they are different from the Informed contributions with low MPCR

(p-value is 0.039). Contrary to the Selfish treatment findings, subjects in the Generous treatment

do not respond to good news, but they significantly decrease their contributions upon obtaining

bad news.

Table 2.1: Average Contributions Across Treatments

Uninformed Informed
High MPCR Low MPCR

Selfish 3.56 (n=18) 6.67 (n=33) 4.37 (n=33)
Generous 12.41 (n=24) 12.14 (n=36) 9.24 (n=35)

This is also evident in Figure 2.6. Figure 2.6 shows the average contributions in all ten periods

in both Selfish (left) and Generous (right) treatments. As you can see in Figure 2.6, in the Selfish

treatment, uninformed contributions follow a similar path as the informed contributions for the

low MPCR over time. However, there is a jump in the level of average informed contributions

for the high MPCR. On the other hand, in the Generous treatment, while the average uninformed

contributions follow a similar path as the informed average contributions for the high MPCR,

there is a decrease in average informed contributions for the low MPCR relative to the uninformed

contributions. Finally, as expected, average informed contributions are always higher for the high

MPCR for both Selfish and Generous treatments.

To check the robustness of our findings, we next present the regression results. Since the low-

est possible contribution amount is zero tokens and the highest possible contribution amount is
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Figure 2.6: Mean Contributions
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20 tokens, we need to control for potential censuring. Although Tobit model is useful in order to

account for censoring, it restricts the data by not allowing different motives behind the contribution

of zero.20 In other words, Tobit model does not differentiate between the subjects who are selfish

and would always contribute zero no matter what, and those who contribute zero due to treatment

(for example due to receiving bad news). Following (Moffatt, 2015, Ch 11.), we use a double hur-

dle model (also see Brown et al., 2017 for another example of using hurdle model in experimental

data).

The double hurdle model treats the probability of being a contributor and the extent of contri-

bution separately. Thus, by using this model, we can examine the impact of information on the

extensive and intensive margin. The results are reported in Table 2.2. We first run a Probit model

regression using the cross section of all 111 subjects to analyze the factors that impact whether

subjects contribute or not (i.e. being a potential contributor or not). The dependent variable in

this probit model is Contributed which takes the value of one if the subject contributed a positive

amount in any of the ten periods; and zero otherwise. The estimates of the first hurdle are pre-

sented in the first column of Table 2.2. There are a total of six subjects who contributed zero in

all ten periods. Being in Informed treatment does not affect the probability of contributing to the

20A similar reasoning can also apply to subjects who contribute everything. Since we have only one subject who
contributed everything in all periods, we restrict our attention to only selfish types.
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public good. This means that information does not impact contributions on the extensive margin.

However, being in the Selfish treatment significantly decreases the probability of contributing. This

is not surprising given that we created the Selfish vs. Generous treatments based on the subjects’

level of generosity measured in Stage 1.

Table 2.2: Double Hurdle Model Regression Results

Selfish Treatment Generous Treatment
Probit Tobit Tobit

(1) (2) (3) (4) (5)
Selfish -0.836∗

(0.470)

Informed 0.00403 2.332∗∗ 0.865 -2.559∗ -4.675∗∗∗

(0.431) (1.144) (1.009) (1.379) (1.179)

Informed*High MPCR 3.211∗∗∗ 3.555∗∗∗

(0.773) (0.580)

Lagged Others’ Average 0.258∗∗∗ 0.275∗∗∗ 0.149∗∗∗ 0.148∗∗∗

(0.0741) (0.0705) (0.0460) (0.0536)

Beta -0.976 -0.816 9.695∗∗∗ 9.709∗∗∗

(2.365) (2.082) (2.367) (2.126)

Period -0.253∗∗ -0.288∗∗∗ -0.0822 -0.0203
(0.111) (0.102) (0.118) (0.116)

Constant 2.126∗∗∗ 2.891∗ 3.150∗ 11.91∗∗∗ 11.51∗∗∗

(0.458) (1.704) (1.612) (1.692) (1.393)
Observations 111 414 414 531 531
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. The robust standard errors clustered at the individual
level are in parentheses.
The dependent variable for the Probit model is Contributed which takes the value of 1 if the
subject contributed at least once, and otherwise zero. The dependent variable for the panel
data Tobit models is Contributions. The number of observations in column 1 is the total
number of subjects participated in this study. The numbers of observations in the remaining
four columns are the number of decisions made in 9 periods by subjects who contributed at
least once across all 10 periods.

Next, we run a Tobit model for Selfish and Generous treatments separately to study the factors

that impact contributions conditional on contributing at least once (i.e. conditional on being a
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potential contributor). Thus, we exclude the subjects who failed the first hurdle. In columns (2)-

(5), we report the marginal effects of the coefficients on the uncensored latent variable. The second

and the third columns are created using the data collected in the Selfish treatment and the last two

columns are created using the data collected in the Generous treatment. The dependent variable

for all four columns is the contributions to the public good in each round.

The first model in columns 2 and 4 shows the average impact of information on contribu-

tions. The variable Informed is a dummy variable for Informed treatment sessions. Thus, it takes

the value of 1 if the subjects were informed about the realized MPCR for that round before they

made their decisions. The model also controls for the following variables: Lagged Others’ Average

which is the average contributions made by other group members in the previous round, Beta which

is β̂i that was computed using the data from the online experiment (i.e. Stage 1), finally Period

which is simply the time trend. It is evident from these columns that, in Selfish treatment, informa-

tion has a positive and significant impact on contributions for those who are potential contributors.

On the other hand, in Generous treatment, information hurts the average contributions.

The second model in columns 3 and 5 studies the impact of information separately for good

and bad news. The variable Informed*High MPCR is the interaction term between Informed and

High MPCR. The baseline in columns 3 and 5 is the Uninformed treatment. Thus, the coefficient of

Informed shows the impact of receiving bad news. And, the coefficient of Informed*High MPCR

shows the impact of receiving good news relative to receiving bad news. Thus, the impact of

receiving good news relative to the Uninformed treatment is the summation of the coefficients of

Informed and Informed*High MPCR.

In the Selfish treatment, we see that when subjects are informed and if they find out that the

MPCR is low, then they do not significantly change their giving behavior relative to being un-

informed. In other words, they do not respond to bad news. However, when they are informed

and receive good news, then they respond to information by increasing their contributions. As

suggested by Hypothesis 1, the relative response to good news is larger than bad news, thus infor-

mation is good for contributions.
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On the other hand, in Generous treatment, when subjects are informed and if they receive

bad news, they significantly decrease their contributions relative to the contribution levels when

uninformed. When they receive good news, they respond to it by significantly increasing their

contributions relative to receiving bad news. Furthermore, as suggested by Hypothesis 2, the

negative response to bad news is stronger than the positive response to good news. Thus, on

average, information hurts contributions significantly on the intensive margin.

2.6 Conclusion

In this paper, we investigate the impact of information about the MPCR of a linear public

good on contributions. The theoretical model predicts that information provision has differential

impact on less and more generous groups. While information increases average contributions by

less generous subject groups, it reduces average contributions by more generous subject groups.

We experimentally test these hypotheses in the lab and the findings are in line with the theoretical

expectations. We find that information does not impact public good contribution on the extensive

margin. However, information impacts public good contributions on the intensive margin and the

sign of this impact depends on the generosity level of the sessions. In the relatively selfish sessions,

subjects who contributed at least once contribute more on average when they are informed com-

pared to when they are uninformed of the value of the public good. However, just the opposite is

true for the relatively generous sessions. In these sessions, subjects who are potential contributors

contribute less to the public good when they are informed. This is because their relative response

to bad news is greater than their response to good news.

The findings of this study have significant implications for fundraising. In particular, they sug-

gest that targeted information provision may be a more fruitful strategy of increasing public good

contributions than uniform information provision. Since donors themselves may be able to acquire

information by conducting research about non-profits prior to contributing, an important direction

for future research includes endogenizing the choice of information acquisition by donors. This

would allow us to glean further insight about the impact of information on public good provision

by studying how information acquisition incentives differ across donors.
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3. THE EFFECTS OF SCARCITY ON CHEATING AND IN-GROUP FAVORITISM

3.1 Introduction and Literature Review

Over 10% of the world’s population lives under extreme poverty.1 Even in developed coun-

tries, a significant proportion of the population suffers from scarcity of resources. For example,

in the United States, 41.2 million people (12.3% of the population) were food insecure in 2016,

meaning they did not have enough money or other resources to buy sufficient food to meet the

needs of all their household members (Coleman-Jensen et al., 2017). In addition to obvious detri-

mental effects, such as poor nutrition intake and health, an emerging literature proposes that living

under a prolonged state of scarcity impairs decision-making (Shah et al., 2012; Mani et al., 2013;

Mullainathan and Shafir, 2013; Haushofer and Fehr, 2014). Individuals living in poverty engage in

suboptimal behavior, such as excessive borrowing at high interest rates (Bertrand and Morse, 2011;

Dobbie and Skiba, 2013), playing lotteries (Haisley et al., 2008a,b), bad management of personal

finances and low saving rates (Barr, 2012). They are also less productive at work (Kim et al., 2006),

more impatient (Lawrance, 1991; Carvalho, 2010), more risk averse (Gloede et al., 2015) and have

lower self-control (Banerjee and Mullainathan, 2010; Spears, 2011; Bernheim et al., 2015).

There is a considerable amount of literature that connects poverty and crime, although causality

has not been robustly established (Ellis and McDonald, 2001; Sharkey et al., 2016). Notorious

criminals, from Al Capone to Pablo Escobar, use a lack of resources to justify initiating a lifetime

of illegal activities. For decades, the economic environment has been recognized as a critical factor

in criminal behavior (Sharkey et al., 2016). It should be noted, however, that recent literature

suggests a potential genetic predisposition to antisocial behavior and crime (Joseph, 2001; Raine,

2008; Mead et al., 2009; Raine, 2013; van Gelder and de Vries, 2014). The question of whether

criminal behavior is rooted in individual traits or influenced by scarcity is important to understand

in order to reduce criminal behavior.
1According to the World Bank, 766 million people live in extreme poverty with less than $1.90 per day.

http://www.worldbank.org/en/publication/poverty-and-shared-prosperity.
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In general, economic models that study criminal behavior suggest that an individual commits

a crime if the benefits outweigh the costs (i.e. potential punishments). In his seminal work, Gary

Becker (1968) argues that those who engage in criminal behavior do so not because their motiva-

tions differ from those of noncriminals but because their benefits and costs differ. Although crime

is more generally associated with violent felonies, the same economic rationale applies to other

types of lesser misconduct, such as cheating.

Cheating has recently received a considerable amount of interest from economists. Using in-

centivized games, researchers have shown that people cheat far less than standard economic theo-

retical predictions (e.g. Gneezy, 2005; Mazar et al., 2008; Hurkens and Kartik, 2009; Sutter, 2009;

Fischbacher and Föllmi-Heusi, 2013; Jiang, 2013).2 In these games, subjects have the opportunity

to increase their own monetary payoff by cheating. However, people do not cheat maximally and

exhibit an aversion to lying (Dufwenberg and Gneezy, 2000; Charness and Dufwenberg, 2006;

Mazar and Ariely, 2006; Lundquist et al., 2009; Battigalli et al., 2013; Erat, 2013). Many fac-

tors impact dishonesty, including self-image (e.g. Mazar et al. 2008), anonymity of decisions

(Fischbacher and Föllmi-Heusi, 2013; Gneezy et al., 2018), size of the stakes and incentives (Fis-

chbacher and Föllmi-Heusi, 2013; Kajackaite and Gneezy, 2017; Martinelli et al., 2018; Rahwan

et al., 2018), and fairness (Houser et al., 2012). Furthermore, research shows that cheating behav-

ior in the laboratory correlates with cheating behavior in the real world (Gächter and Schulz, 2016;

Potters and Stoop, 2016; Dai et al., 2018).

In this paper, we study the extent to which scarcity, in the form of a substantial reduction in

available resources, impacts cheating. We investigate this question by implementing a two-stage

lab-in-the-field experiment with poor coffee farmers from a small and relatively closed community

in Guatemala. Our participants derive their income almost exclusively from harvesting coffee

beans. As such, a sharp decline in their income during non-harvesting months provides a natural

variation in scarcity levels while other observables remain similar. We conducted our experiment

in two stages by using this distinctive variance in income. The first stage took place before the

2See Rosenbaum et al. (2014); Abeler et al. (2016); Capraro (2017); Jacobsen et al. (2018) for a more comprehen-
sive literature review.
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coffee harvest started (Scarcity period). We then repeated the same experiments, with the same

group of subjects, at the peak of the coffee harvest season (relative Abundance period).

We study differences in cheating behavior between the Scarcity and Abundance periods by us-

ing the die-roll game (Fischbacher and Föllmi-Heusi, 2013). Similar to the die-under-cup paradigm

(Shalvi et al., 2011), we place a fair six-sided die in a cup with a closed lid. Subjects roll the six-

sided die by shaking the cup and are asked to report the outcome to determine their earnings. The

experiment is designed such that it is not possible to detect cheating behavior at the individual

level; thus, no retribution can be pursued, and the full cost of cheating is exogenously borne by

the experimenters. Thus, if individual characteristics are the main driving force behind cheating,

there should be no change in the cheating behavior across periods. However, if the economic envi-

ronment influences cheating behavior, then we expect higher levels of cheating during the Scarcity

period.

Although standard economic theory suggests otherwise, people may also cheat to help others.

A student taking an online exam or writing an essay in place of his/her friend, a person taking the

blame for a minor traffic accident because his/her friend does not have insurance, a teenager lying

to his/her friend’s parents to help with his/her cover up story could be examples of such behavior.

The motives behind this kind of dishonesty may be due to generosity or could be driven by past or

expected reciprocity. In this paper, we also study the impact of scarcity on cheating for others by

using the same die-roll game. We ensure that reciprocity cannot be a driving force by keeping the

identities of the beneficiaries anonymous.

According to the social identity theory (Tajfel and Turner, 1979), individuals place themselves

and others into groups, such as female, Caucasian, American, economists, poor, and so on. People

also show favoritism (i.e. bias or preferential treatment) toward others within their group. This

is called in-group favoritism (or in-group bias). In-group favoritism has been studied in the psy-

chology and economics literature mainly by using people’s natural identities (e.g. Klor and Shayo,

2010; Ockenfels and Werner, 2014; Cadsby et al., 2016) or by experimentally inducing identities

(i.e. minimal group paradigm) (e.g. Eckel and Grossman, 2005; Buchan et al., 2006; Chen and Li,
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2009; Chen and Chen, 2011; Harris et al., 2015). In this paper, we use the subjects’ natural village

identities to study how scarcity impacts in-group favoritism in terms of cheating.

Economic research on pro-social dishonesty is fairly new (Lewis et al., 2012; Gino et al., 2013;

Okeke and Godlonton, 2014; Cadsby et al., 2016; Lupoli et al., 2017). Cadsby et al. (2016) ask

whether people cheat for an in-group member at the expense of an out-group member and report

significant cheating behavior. However, in-group favoritism in the absence of an externality to an

out-group member has not been studied. In our study, the cost of favoring an in-group member

is entirely borne by the experimenters. Furthermore, we compare in-group favoritism in cheating

across Scarcity and Abundance periods.

The geographical location and sample population of the experiment were carefully selected.

First, the residents of the village derive most of their yearly income from seasonal coffee harvest.

This ensures that participants experience a financially worse situation in Scarcity relative to the

Abundance period. Second, coffee is a perennial crop continuously harvested and sold weekly or

biweekly. As such, the coffee harvest provides steady income during the harvest season. Finally,

the village is relatively isolated. With limited transportation options, participants’ mobility for the

purposes of procuring outside income is impaired. All of these factors ensure that available re-

sources are indeed scarce during the Scarcity period relative to the Abundance period. Meanwhile,

other factors such as stress level, number of recent celebratory events attended, interactions with

others outside of the village, level of physical activity, and so on remain similar. We confirm this

by comparing survey measures across the two periods.

We contribute to the literature by studying how scarcity impacts dishonesty and in-group fa-

voritism in terms of cheating using a lab-in-the-field experiment; to the best of our knowledge, we

are the first to study these questions.3 Our results show that subjects cheat the most for themselves

and that this cheating behavior is not impacted by scarcity. We find that subjects also cheat for the

in-group member (although less) and that this cheating is also not impacted by scarcity. Subjects

3While we were in the process of writing this paper, we became aware of a working paper, Boonmanunt et al.
(2018), that studies poverty, social norms, and cheating. Their experiments were conducted around the same time as
ours; however, they focus on the impact of social norms on cheating and how this changes due to poverty.
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do not cheat for the out-group member in the Abundance period. Thus, we find in-group favoritism

in terms of cheating in the Abundance period.

However, in-group favoritism disappears in the Scarcity period. Although scarcity does not

impact the cheating behavior for oneself and for the in-group member, it significantly increases

cheating for the out-group member. In the Scarcity period, subjects cheat for the out-group member

just as much as they do for the in-group member.

We also contribute to the literature by studying the impact of scarcity on in-group favoritism in

terms of generosity. In our cheating game, the cost of favoring an in-group member is purely moral.

We also investigate the effects of scarcity on in-group favoritism when the cost of the preferential

treatment is monetary. We do this by using a dictator game where the recipient is either an in-group

member or an out-group member. In line with recent research (e.g. Ben-Ner et al., 2009; Whitt and

Wilson, 2007; Chen and Li, 2009; Chen and Chen, 2011; Balliet et al., 2014), we also find in-group

favoritism, but only in the Abundance period. While subjects send significantly more money to the

in-group member in the Abundance period, the difference vanishes during the Scarcity period. In

the Scarcity period, subjects are significantly more generous towards the out-group member which

abolishes the in-group favoritism.

Earlier papers studying the correlation between scarcity and other-regarding preferences have

mixed findings (e.g. Piff et al., 2010; Haushofer and Fehr, 2014; Andreoni et al., 2017). Bartos

(2016) exploits a shock in income similar to ours during an agricultural harvest season, and he finds

that the amount sent to an in-group member in a dictator game remained unchanged during scarcity

and abundance periods. This is in line with our findings. We contribute to the literature by studying

the causal impact of scarcity on other-regarding preferences as well as in-group favoritism.

3.2 Experimental Design and Procedures

3.2.1 Selection of Participants and Recruitment Procedure

The experiment was conducted in a small and relatively isolated village in Guatemala. The

village is home to about 190 families whose main source of income is derived from harvesting
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coffee beans. Coffee is a perennial crop that is continuously harvested and sold during a period of

five to six months (depending on the amount of rain and general climate conditions). In this part

of Guatemala, harvesting normally occurs between late September and early March. A few studies

have used agricultural harvest to separate scarce and abundant periods (e.g. Bartos, 2016; Mani

et al., 2013; Boonmanunt et al., 2018). However, they use annual crops (such as sugar cane and

rice), which means there is a one-time harvest and a single lump sum payment. In our case, our

subjects sell their coffee beans to their local cooperative and receive steady weekly or bi-weekly

payments during the five to six months long harvest season.

The selection of coffee farmers in this isolated community is crucial for identification pur-

poses. During the non-harvesting months, participants live mainly on accumulated savings made

during the harvest season. During this time, they also work on subsistence crops planted for self-

consumption and the maintenance of the coffee plants such as pruning, weeding, and fertilizing.

This is mostly a self-sustaining community. The closest settlement is about 45 minutes away by

car. However, villagers have limited transportation options since most of them do not own motor

vehicles. Thus, their mobility for the purposes of procuring outside income is severely impaired.

About 95% of our subjects derive the majority of their income from harvesting coffee, and their in-

teraction with people outside of their village is fairly constant across harvesting and non-harvesting

months. All of these factors provide an ideal environment to study our research questions.

We employed five local assistants from the vicinity of the community to help recruit partici-

pants to our study. During the recruiting process, the assistants informed potential participants that

the study consisted of economic decision-making and that they would be compensated with 20Q

(Quetzales, about $3) for their participation. Prospective participants were also informed that they

would have the opportunity to earn more money based on their decisions, the decisions of others,

and luck. However, they were not provided with any details about the experimental procedures.

Although Spanish is the most commonly used language in Guatemala, people in the rural areas also

speak other languages such as K’iche’ and Kaqchiquel. Thus, we instructed our study assistants to

only recruit people who could understand and speak Spanish. The assistants were also instructed
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to recruit people who were at least numerate.

Our decision sheets, script, and experimental procedures were prepared so that people with low

education levels could understand all parts of the experiment. Our decision sheets included visual

illustrations and were prepared based on de Oliveira et al. (2012, 2016). We used large, poster-size

laminated copies of each page in the booklets. While one of the experimenters was reading the

instructions from a script, an assistant illustrated examples and instructions on the large laminated

copies using a dry erase-marker. This helped the participants become familiar with each page in

the booklet and ensured that all participants understood how the game worked and where they were

supposed to indicate their decisions. Other study assistants were trained regarding the experimental

procedures and were available to go around and privately help participants with any questions.

The experiment was conducted in two stages using a lab-in-the-field framework. The first stage

took place in mid-September 2017, before the coffee harvest season (Scarcity period). The second

stage took place in early December 2017, during the harvest season (Abundance period). In both

periods, subjects played a sequence of games in the same order.4 Because of the limitations that we

faced in the field, we did not control for the potential order effects. However, Abeler et al. (2016),

in their meta analysis, show that playing the cheating game repeatedly does not significantly change

the cheating behavior. Additionally, our main research interest is the comparison of scarcity and

abundance periods. Thus, we do not think that order is an issue for this paper. In this paper, we only

use the data collected from two games: cheating games and dictator games. Below, we provide the

experimental design and details of each game.

4This project is part of a larger study we conducted in the field. The same subjects played a sequence of games
without feedback in the same order across all sessions in both periods. The games and the exact order is as follows:
trust game with an in-group member (game 1), trust game with an out-group member (game 2), dictator game with
an in-group member (game 3), dictator game with an out-group member (game 4), Eckel and Grossman (2002, 2008)
risk elicitation task (game 5), time preference elicitation task (game 6), and finally three Fischbacher and Föllmi-
Heusi (2013) cheating game treatments (games 7–9)(see Section 3.2.2. for details), and a survey. At the end of the
experiment, one game out of the first six games was randomly chosen to be the paying game. The payment details for
cheating games 7–9 are provided in Section 3.2.2.
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Table 3.1: Cheating Game Payoffs

Number Reported Payoff
1 5Q
2 10Q
3 15Q
4 20Q
5 25Q
6 0Q
Note: Q refers to Guatemalan Quetzales.
5 Q is equivalent to 0.70 USD.

3.2.2 Cheating Game

We used the Fischbacher and Föllmi-Heusi (2013) die-roll paradigm. In this game, subjects

are provided with an opaque cup with a closed lid, containing a fair six-sided die (similar to the

Shalvi et al. (2011) die-under-cup game). The cup is designed to ensure privacy. The only person

who can see the die (and the number rolled) inside the cup is the person holding it. This process

guarantees to participants that not even the experimenters would know the actual number rolled.

Subjects are instructed to shake the cup (thus roll the six-sided die) twice but to report only the

outcome of the first shake. The number reported determines the payment for completing a survey.

Table 3.1 reports the payment scheme used in this game.

We have a 3x2 within-subjects design: 1) Cheating for self (CheatingSelf), 2) Cheating for an

in-group member (CheatingInGroup), and 3) Cheating for an out-group member (CheatingOut-

Group) during 1) Abundance and 2) Scarcity periods. First, subjects played the cheating game for

themselves (CheatingSelf), which determined their earnings for completing the survey at the end of

the experiment. Then they played the same game for an anonymous person from the subject’s own

village (AP-InGroup), which is the CheatingInGroup treatment. Finally, they participated in the

CheatingOutGroup treatment and played the same game for an anonymous person from outside of

the village (AP-OutGroup). Thus, the only difference among these three treatments is the identity

of the beneficiary. The cheating games were played at the end of the experiment and were used

to determine the payments for completing the survey, similar to Fischbacher and Föllmi-Heusi
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(2013).

We used our subjects’ naturally occurring village identity to study in-group favoritism. Prior

to the experimental sessions, with the help of one of our local contacts, we randomly chose one

person from the village to be the AP-InGroup. This person was discretely approached by one of

the experimenters and asked to make decisions, not relevant to this paper, and to answer the same

survey questions as the participants. The AP-InGroup was informed that it was very important for

his/her identity to remain strictly confidential. Hence, he/she was instructed to avoid mentioning

anything about our visit to anyone. We followed the same procedure with the AP-OutGroup.

The only information we provided to the subjects about the identity of the AP-InGroup (or

AP-OutGroup) was that they were someone from their own village (or another village). The real

identities of the AP-InGroup and AP-OutGroup remained unknown to the subjects. We opted to

use an anonymous person as the out-group member mainly for the ease of implementation, since

traveling across villages is cumbersome. Thus, it was not feasible to bring together subjects from

different villages. We used the same procedure for an in-group member (i.e. AP-InGroup) in

order to keep the procedure consistent across treatments and to prevent contamination from other

potential effects. For example, if subjects knew the identity of the in-group member, then their

behavior toward the in-group member might be biased in an unpredictable way based on their

personal interaction, experience, and beliefs about this person.

Every participant was paid for their earnings in the CheatingSelf treatment. At the end of the

experiment, one subject was randomly chosen, and his/her decision in the CheatingInGroup treat-

ment determined the earnings for AP-InGroup. Similarly, another person was randomly chosen to

determine the payment of the AP-OutGroup.

3.2.3 Dictator Game

In the Dictator Game, there are two players: a dictator and a recipient. The dictator is given

an endowment of 30Q (about $4.2) and asked to decide how much, if any, to send to the recipient.

The recipient does not have any endowment.

We employ a 2x2 within-subjects design: 1) In-group recipient (InGroup) and 2) Out-group
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recipient (OutGroup) during 1) Abundance and 2) Scarcity periods. Subjects were always the

dictators, and the only difference between the InGroup and OutGroup treatments is the identity

of the recipient. In the InGroup (OutGroup) treatment, the recipient is the AP-InGroup (AP-

OutGroup).

As previously mentioned (see footnote 5), subjects played a total of nine games (including two

dictator games and three cheating games) and were paid for their decisions in the dictator game

only if one of the two dictator games was randomly selected for payment. Thus, if the InGroup or

OutGroup treatments were randomly chosen to be the paying game, subjects’ earnings were calcu-

lated according to their decisions. Furthermore, we randomly chose one subject whose decisions

determined the earnings for the AP-InGroup or AP-OutGroup depending on the randomly chosen

game. The APs were paid for their total earnings after we finished all the sessions.

3.3 Results

A total of 109 low-income coffee farmers participated in our experiment.5 Nearly all partic-

ipants (95%) derive the majority of their income from harvesting coffee beans, with an average

yearly income of 8,399 Quetzales (about 1,120USD). About 41% of participants are female. Ad-

ditionally, 35% are 18–30 years old, 36% are 30–50 years, and the rest are older than 50. Finally,

28% have no formal education, while 63% hold either an elementary or a middle school diploma,

and 9% hold a high school diploma.

In the results presented below, unless stated otherwise, the reported p-values are derived by

either McNemar’s χ2 test (for binary variables) or Wilcoxon signed rank test (for non-binary vari-

ables).
5A total of 144 subjects participated in the first stage (Scarcity period). We exclude 3 subjects from the analysis

since they either did not understand Spanish or slept during the experiment. Of the remaining 141 subjects, 109 also
participated in the second stage (Abundance period). Table C.1 in the appendix compares observables between the
109 subjects who participated in both stages and the 32 subjects who participated in the first stage only. We do not
find a systematic difference between these two groups, which suggests that self-selection is not an issue.
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3.3.1 Comparison of Scarcity and Abundance Periods

At the end of the experiment, subjects completed a survey. By comparing self-reported mea-

sures, we show that the main difference between the Scarcity and the Abundance periods is purely

financial; other observables are fairly constant across the two periods. See Table C.2 for the de-

scription of the survey measures, and Tables C.3 and C.4 for a more detailed comparison of these

measures across periods. The survey questions are provided in the online supplementary materials.

We asked participants to indicate whether they had experienced lack of money for various

needs in the preceding month. By using an index created with answers to these questions, we find

that a significantly higher proportion of subjects experienced lack of money in the Scarcity period

relative to the Abundance period (p-value = 0.004).6 While participants reported similar financial

conditions relative to others in the village (p-value = 1.000), they also indicated a worse state of

finances (p-value = 0.000) in the Scarcity period. This means that our participants experienced

harsher financial conditions in the Scarcity period. Additionally, they reported that everyone else

in the village was also experiencing similar financial situations. On the other hand, the proportion

of participants taking a credit/loan in the preceding six months is not significantly different (p-value

= 0.134). (It is important to note that farmers’ access to credit is limited.) Furthermore, there is no

difference in the frequency of celebratory events attended/organized (p-value = 0.414), and subjects

reported similar stress levels (p-value = 0.525) across the two periods. Finally, consistent with the

findings of Carvalho et al. (2016), participants’ risk preferences, measured by an incentivized

gamble (Eckel and Grossman, 2002, 2008), did not change across periods (p-value = 0.531).

In summary, these findings suggest that participants experienced more financial challenges and

hardship during the Scarcity period. However, other observables did not significantly differ across

the two periods.

6This index is created by summing the responses to four questions regarding lacking money in the preceding month
for the following situations: food, basic expenses (non-food), medical expenses, and farm.
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3.3.2 Cheating Game Findings

Table 3.2 provides detailed information about the data collected in the cheating game treat-

ments. Columns 4-9 report the frequency of each number reported across all treatments and pe-

riods.7 A visual comparison of these distributions can be found on Figure B.1. in the appendix.

First, we compare the distribution of reported numbers in each treatment to a uniform distribution

and report the p-values in the third column. Next, we compare the expected probability of each

number occurring (16.7%) to the reported frequencies by using a one-sided binomial test. The

resulting p-values are indicated with stars in each cell. Finally in the last column, we report the

average number reported in each treatment and period.8

Additionally, similar to Wang et al. (2017), we also examine cheating behavior as the high-

paying numbers (3, 4, and 5) being reported more often than the random occurrence of 50%.

In other words, if the subjects are honest and report the observed outcome, then on expectation,

the high payoffs should occur half of the time. Thus, reporting high payoffs more often than

50% represents the prevalence of cheating in order to increase earnings. Figure 3.1 shows the

frequencies of high payoffs reported across all treatments and periods.

Result 1: In the Abundance period, subjects cheat for themselves and for the in-group member

but not for the out-group member.

First, we compare the distribution of reported numbers in each treatment to a uniform distri-

bution (see p-values in the third column of Table 3.2). Only the CheatingOutGroup treatment in

the Abundance period is not significantly different from a uniform distribution. This means that

the only treatment in which subjects did not cheat was the CheatingOutGroup treatment during the

Abundance period.9

7We conducted a simulation analysis to assess the randomness of the sample with 109 subjects. We found that our
sample size provides a statistically valid random uniform distribution (p-value = 0.046). The details of the simulation
procedure are available in Appendix D.

8The expected number reported is 2.5 since six is coded as zero.
9Although our research questions (thus the experimental design) are different, Cadsby et al. (2016) also found that

people cheat not only for themselves but also cheat for an in-group member. However, it is important to note that
Cadsby et al. (2016) conducted their study in a lab and did not investigate the role of scarcity. While their environment
could be more analogous to our Abundance period, we need to be cautious about a one-to-one comparison of our
findings to theirs (or those of other similar papers).
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Table 3.2: Proportion of Subjects who Reported the Corresponding Numbers

Number Reported† Average
p-values 0 1 2 3 4 5 Number

A
bu

nd
an

ce Self 0.000 2.75*** 2.75*** 5.50*** 8.26*** 27.52*** 53.21*** 4.15

InGroup 0.000 6.42*** 7.34*** 12.84 19.27 22.94* 31.19*** 3.39

OutGroup 0.276 11.01* 21.10 14.68 12.84 19.27 21.10 2.72

Sc
ar

ci
ty Self 0.000 1.85*** 2.78** 9.26** 12.96 19.44 53.70*** 4.07

InGroup 0.000 6.48*** 6.48*** 12.04* 26.85*** 25 ** 23.15* 3.27

OutGroup 0.002 9.26** 12.04* 10.19** 20.37 28.70*** 19.44 3.06
† Since reporting a 6 paid nothing, it is coded as 0. * < 0.10, ** < 0.05, and *** < 0.01.
The p-values reported on the third column are obtained by Chi-Square Goodness of Fit test run against
a uniform distribution. The p-values indicated with stars in columns 4-9 are obtained from one-sided
binomial probability tests for the proportion being larger (smaller) than 16.67%. See Figure B.1 in the
appendix for a visual comparison of the distributions of each number reported across treatments and
periods.

We also find supporting evidence for Result 1 when we compare the high payoffs reported

across treatments. Figure 3.1 shows that, in the Abundance period, high payoffs are reported signif-

icantly more often than random chance would predict in both CheatingSelf (89%) and CheatingIn-

Group (73%) treatments (one-sided binomial probability test p-value is 0.000 for both). Moreover,

the high payoffs are not reported significantly more than half of the time in CheatingOutGroup

(53%) treatment (p-value = 0.2829).

Result 2: In the Abundance period, subjects exhibit in-group favoritism.

Comparing the average number reported across treatments (reported on the last column in

Table 3.2), we find evidence of in-group favoritism in the Abundance period. The average number

reported for the in-group member (3.39) is significantly higher than the one reported for the out-

group member (2.72) (p-value = 0.0002).

This in-group favoritism is also evident in Figure 3.1. Subjects favor the in-group member in

the Abundance period by reporting high payoffs significantly more often for the in-group member

(73%) than for the out-group member (53%) (p-value = 0.0005). Subjects behave more favorably

toward an anonymous person from their own village relative to an anonymous person from another

village. This finding in the Abundance period is in line with the social identity theory (Tajfel and
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Figure 3.1: Proportion of Subjects who Reported High Payoffs Across Treatments
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Turner, 1979).

Result 3: Scarcity does not impact cheating for oneself or for the in-group member.

The average numbers reported for oneself and the in-group member are 4.15 and 3.39 in the

Abundance period, and 4.07 and 3.27 in the Scarcity period respectively. The differences between

the Scarcity and the Abundance periods are not significant for neither CheatingSelf (p-value =

0.5492) nor CheatingInGroup (p-value = 0.4641) treatments.

This can also be seen in Figure 3.1. Participants’ cheating behavior for themselves is not

statistically different across the two periods (89% vs. 85%) (p-value = 0.4142).10 Additionally, we

also find that cheating behavior for the in-group member is not different across the two periods

(73% vs. 74%) (p-value = 0.8618). Although subjects cheat less for the in-group member than

for themselves, this behavior is not different across periods, implying that scarcity does not affect

participants’ cheating behavior for themselves or for the in-group member.

Result 4: In-group favoritism fades in the Scarcity period.

In the Scarcity Period, the average numbers reported for the in-group member and the out-group

member are 3.27 and 3.06 respectively and the difference is not statistically significant (p-value =
10This finding is line with Boonmanunt et al. (2018). In their experiment, when subjects were not reminded of social

norms, their cheating behavior was not impacted by poverty.
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0.3899).

Figure 3.1 shows that, in the Scarcity period, participants cheat for the out-group member

(68%) (i.e. the frequency of high-paying numbers being reported is significantly different than

50%, p-value = 0.000) as much as they do for the in-group member (74%) (the difference is not

significant, p-value = 0.2623). Scarcity sweeps away in-group favoritism. In-group favoritism

disappears not because cheating for the in-group member decreases but because subjects cheat

for the out-group member at the same rate as they do for the in-group member. In other words,

subjects cheat significantly more for the out-group member in the Scarcity (68%) compared to

the Abundance period (53%) (p-value = 0.0061). These findings suggest that scarcity produces

a general empathy toward out-group members. We further explore this issue in a dictator game

context in the following section.

Subjects cheat for themselves as well as for the in-group member, and this is not impacted

by scarcity. However, even in an experiment like ours, where there is no risk of being caught

and punished, participants do not cheat for others as much as they do for themselves. There are

two potential explanations. First, people may be envious and prefer others to earn less than they

do, which could also result in anti-social cheating. However, we do not see evidence for such

behavior. Second, there may be non-monetary costs associated with cheating behavior, which is in

line with lying aversion (Dufwenberg and Gneezy, 2000; Charness and Dufwenberg, 2006; Mazar

and Ariely, 2006; Lundquist et al., 2009; Battigalli et al., 2013; Erat, 2013). The costs of favoring

the in-group member in the cheating game treatments are non-monetary. In the next section, we

also study the impact of scarcity on in-group favoritism when the cost of this preferential treatment

is monetary.

3.3.3 Dictator Game Findings

In this section, we study the impact of scarcity on in-group favoritism using the dictator game

described in Section 3.2.3.

Result 5: In the Abundance period, subjects are more generous toward the in-group member

relative to the out-group member.
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Figure 3.2: Average Dictator Giving Across Treatments
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Figure 3.2 illustrates the average amount sent in the dictator game in each treatment across the

Abundance and Scarcity periods. The amount sent to the in-group member (10.13Q) is signifi-

cantly higher than the amount sent to the out-group member (6.85Q) during the Abundance period

(p-value = 0.000). This is in line with the findings in the literature (e.g. Whitt and Wilson, 2007;

Ben-Ner et al., 2009; Chen and Li, 2009; Chen and Chen, 2011; Balliet et al., 2014). While the

environment in these papers is more analogous to our Abundance period, we need to be cautious

about a one-to-one comparison of our findings to others that did not study for scarcity.

Result 6: In-group favoritism fades in the Scarcity period. This change is driven by a significant

increase in giving toward the out-group member.

There is no significant in-group bias in pro-social behavior during the Scarcity period. While

subjects send about 10.52Q to the in-group member, they send 9.36Q to the out-group member, and

the difference is not statistically significant (p-value = 0.1219). Scarcity eliminates the in-group

bias in pro-social behavior.

Again, and similar to the results of the cheating game, in-group bias disappears due to an

increase in giving to the out-group member rather than a decrease in giving to the in-group member.

The amount sent to the out-group member during the Scarcity period (9.36Q) is statistically higher
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Table 3.3: OLS Regression of the Amount Sent in the Dictator Game

Variable Abundance Scarcity
(1) (2) (3) (4)

Out-group Member -3.275∗∗∗ -3.433∗∗∗ -1.165 -1.217
(0.959) (1.016) (0.880) (0.932)

Female 0.518 -2.541∗∗∗

(1.066) (0.969)
Number of People in Household -0.444∗∗ 0.371∗

(0.217) (0.198)
Coffee Main Source of Income -0.475 -2.630

(2.164) (1.968)
Risk -0.0458 0.370

(0.270) (0.289)
Celebrations 2.112∗ -1.788

(1.195) (1.190)
Stress -0.730 -1.978∗

(0.914) (1.071)
Constant 13.40∗∗∗ 16.36∗∗∗ 11.69∗∗∗ 17.14∗∗∗

(1.516) (3.758) (1.391) (3.854)

No. Observations 218 194 218 184
No. people 109 97 109 92
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors are in parentheses. The dependent
variable is the amount sent in the dictator game.

than the amount sent during the Abundance period (6.85Q) (p-value: 0.0069). Meanwhile, there

is no difference in the amount sent to the in-group member between the Abundance and Scarcity

periods (p-value = 0.5594). The latter finding is in line with Bartos (2016), who also looked at the

impact of scarcity on giving behavior in the dictator game and found that scarcity does not impact

giving. In his study, the recipient was someone from the same village as the participants. Thus, his

findings can be compared to our InGroup treatment findings.

Table 3.3 presents the OLS regression results of the amount sent in the dictator game. We run

the regressions separately for each period. The first two columns report Abundance period results

while the last two report Scarcity period results. The dependent variable in all columns is the

amount sent in the dictator game. The reference group is the InGroup treatment. Looking at the
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first column, we see that subjects sent about 3.3Q less to the out-group member compared to the

in-group member in the Abundance period. This finding holds even after we control for some ob-

servables. This result indicates that subjects show a clear in-group favoritism in the dictator game

by sending significantly less to the out-group member. Furthermore, this in-group favoritism goes

away in the Scarcity period. The coefficient for the OutGroup treatment is no longer significant.

Thus, in the Scarcity period, we do not find a significant in-group favoritism in dictator giving.

3.4 Discussion and Conclusion

Previous literature documents that people living under precarious conditions of scarcity tend

to make suboptimal economic and financial decisions. Motivated by this emerging literature, we

study the impact of scarcity on moral and pro-social behavior. More specifically, we study whether

an individual’s propensity to cheat originates mostly in individual characteristics or in the sur-

rounding economic environment (i.e. scarcity). In addition, we also study the impact of scarcity

on in-group favoritism in cheating and pro-social behavior.

People engage in dishonest behavior in various forms. In this paper, we focus on two types of

cheating behavior. The first type results in a personal gain. While the plausible moral cost is borne

by the individuals, the monetary cost is entirely assumed by the experimenters. Although this type

of cheating does not create a negative externality on another subject, technically it cannot be con-

sidered a Pareto improvement since the increase in earnings is compensated by the experimenters

from their research budgets. This is relevant in many economic settings. For example, people often

misreport their income in order to pay lower taxes (Kettle et al., 2017), business executives misuse

corporate accounts and make unnecessary charges (Litzky et al., 2006). In most of these cases, the

monetary cost of cheating may not be salient to the individuals since the dishonesty hurts a large

corporation or institution rather than another individual (Smigel, 1956).

The second type of cheating studied in this paper is pro-social cheating. Subjects have the

opportunity to cheat to increase the payoff of another person, either an in-group or an out-group

member, with neither monetary costs nor benefits to the decision maker. In this case, the cheating

decision is made by comparing the utility coming from the pro-social act of increasing someone’s
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earnings and the disutility coming from the moral cost of cheating.

Using a lab-in-the-field experiment, we study these two types of cheating behavior across pe-

riods of Scarcity and Abundance. A significant increase in our subjects’ income during the Abun-

dance period allows us to study the role of scarcity on cheating and pro-social behavior. In order to

control for other potential factors changing across Scarcity and Abundance periods, we carefully

selected a rural community located in Guatemala that experiences similar conditions across the

two periods in terms of stress, risk, and physical activity levels.

We find that scarcity does not affect participants’ cheating behavior for themselves. Contrary

to Aristotle’s quote at the beginning of the paper, our findings suggest that cheating in an effort to

increase the participant’s own well-being is not impacted by the economic environment. However,

we also find that people cheat for others even though they do not directly benefit from it. While

people cheat more for the in-group member relative to the out-group member during the Abun-

dance period, this in-group favoritism in cheating vanishes during the Scarcity period. In fact,

subjects do not cheat at all for the out-group member during the Abundance period, but they cheat

for the out-group member during scarcity.

We also use a dictator game to study in-group favoritism in pro-social behavior. This allows us

to study the impact of scarcity on in-group favoritism when the cost of this preferential treatment is

monetary rather than moral. We find a similar pattern of behavior. While subjects send significantly

more to the in-group member during the Abundance period, this gap is no longer statistically

significant in the Scarcity period. Furthermore, the in-group favoritism in pro-social behavior is

swept away by an increase in giving to the out-group member rather than a reduction in giving to

the in-group member. Looking at the findings from both experimental games, we conclude that

scarcity eliminates in-group bias in terms of pro-social and moral behavior.

One limitation of our study is that we do not study the mechanism behind these results. One

potential explanation for our findings could be that scarcity may change and shift people’s social

identities. Future research can study how scarcity may impact social identity.
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4. DO WORKERS EXERT MORE EFFORT FOR MISSION-ORIENTED JOBS?

4.1 Introduction and Literature Review

There is a large literature that studies worker motivation and the factors that encourage workers

to exert higher levels of effort in the workplace. In general, this literature shows that there is a

reciprocal relationship between the employee and employer, and employees provide more effort

for higher wage levels. But workers may also exert more effort if their work has a mission. In

this paper, we are interested in understanding the nature of the relationship between the employee

and employer in two types of firms: for-profit and non-profit. More specifically, we ask whether

workers exert more effort, for a given a wage level, when they work for a non-profit firm rather

than a for-profit firm. We also ask whether managers who determine the wages offer different wage

levels across these two types of firms. We study these questions by using a modified gift exchange

environment where the decisions made by the worker and manager generate a payment to a third

party who is either another subject in the lab (which represents working for a for-profit firm) or a

non-profit organization.1

Our paper is closely related to the literature that studies the role that pro-social preferences play

on worker motivation. For example, Banuri and Keefer (2016) find that workers with higher pro-

social motives exert more effort in pro-socially motivated tasks. Similarly, Carpenter and Myers

(2010) find that the decision to volunteer as a firefighter is correlated with altruism.2 Tonin and

Vlassopoulos (2010) reports that warm glow altruism and pure altruism have been the two sources

of workers’ pro-social motivation considered in the literature. They disentangle these two sources

by using a controlled field experiment and find that men do not exhibit either of these pro-social

motivations. On the other hand, women exert more effort due to warm glow altruism, but there is

no additional impact coming from pure altruism.

1For a survey of lab labor experiments including gift-exchange game which is utilized in this paper, please see
Charness and Kuhn (2011).

2A recent paper by Brown et al. (2018) investigate why people donate their time although the opportunity cost of
their time is probably higher than the benefit created to the charity. They explain this by showing how people may
have differential warm glow preferences depending on the form of the donation.
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There are also some studies that compare worker’s behavior across for-profit and non-profit

sectors. Gregg et al. (2011) examine whether workers in non-profit firms behave more pro-socially

than workers in for-profit firms by comparing the amount of unpaid overtime labor provided across

these types of firms. They find that workers in the non-profit sector are more likely to do unpaid

overtime. Cowley and Smith (2014), using data from world values survey, show that intrinsically

motivated workers are more likely to work in the public sector. However, they report some variation

across countries and argue that this variation could be partially explained by public corruption at

those countries.

This raises the question of causality of whether more pro-social individuals select into the

non-profit sector or whether they become more pro-social as a result of working in this sector. By

comparing individuals’ pro-social behavior after they change their sector, Gregg et al. (2011) shows

that more pro-social individuals self-select into non-profit and public sectors. Banuri and Keefer

(2016) also find that a real world pro-social organization attracts workers who are more pro-social.

Additionally, Dur and Zoutenbier (2014, 2015) show that altruism plays a role into sorting into

public sector. In a related strand of literature, researchers have studied how employers’ decision

to make a donation (i.e. corporate social responsibility (CSR)) impacts workers’ motivation (e.g.

Koppel and Regner, 2014, 2015; Tonin and Vlassopoulos, 2015; Charness et al., 2016; Kajackaite

and Sliwka, 2017; Cassar, 2018).3

Literature also shows that although most workers care about the positive externality that their

firms create, they may also care about working for the right mission (i.e. mission alignment).

For example, Besley and Ghatak (2005) developed a theory regarding mission alignment and its

impacts on worker motivation. They predict that workers self select into missions, and this mission-

match enhances their efficiency at work. They show that if the workers are matched with the right

mission, they work hard even when the financial incentives are little. However, high-powered

incentives are needed to get workers to exert effort in the case of a mission mis-match. There

have been some studies testing the implications of this model and the findings are generally in line

3See Kitzmueller and Shimshack (2012) for a comprehensive literature review on CSR.
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with the predictions (e.g. Serra et al., 2011; Dur and Zoutenbier, 2014; Carpenter and Gong, 2016;

Smith, 2016; Banuri et al., 2018).

In more closely related literature, Fehrler and Kosfeld (2014) study whether workers exert more

effort if they choose the mission of their job. Using an experimental design that is very similar to

ours, they do not find any impact. The biggest difference between their design and ours is that

the random matching rule between the rounds. While they use a partners-matching design, ours

is a stranger-matching design. We suggest that this difference in the matching rule is the driving

force behind the differences between our findings. However, this claim should be approached with

caution since further investigation is needed. In a second experiment, they introduce endogeneity

where all subjects are assigned as workers and they decide whether they want to work for a profit

(generate donations to another student) or a non-profit (generate donations to an NGO) firm.4 They

find that subjects who choose to work for a non-profit firm exert more effort. As a result, they state

that self-selection into the non-profit sector is an important factor that could explain the empirical

findings in this sector.

In another related paper, Gerhards (2015) finds that mission-match increases workers’ efforts.

In their experiments, subjects are either matched with a mission of their preference (mission match

treatment) or a randomly and exogenously chosen mission (low mission match). Subjects exert

more effort in the mission match treatment. They have another experiment which is similar to our

paper. In this second experiment, subjects participate in the mission match and low mission match

treatments (within-subjects design) and play multiple rounds with the perfect stranger matching

rule. When the game is played repeatedly like this, they do not find any difference between the

two treatments. On the contrary, in another closely related study, Cassar (2018) does not find any

difference in the effort when the mission is matched compared to random mission assignment. She

suggests that increasing the quality of the mission-match does not generate any further gains.

In this paper, we study whether workers exert more effort when they are randomly assigned

to an exogenously chosen mission-oriented job. In our study, we randomly assign workers into

4Modifying the gift-exchange game like this takes away the reciprocity between the worker and the employer. It
would be interesting to test the robustness of these findings by using a design similar to their first experiment.
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either a non-profit firm or a for-profit firm. Thus, in our environment, self-selection into a mission

is not possible. In line with the prior literature, workers exert more effort for high wages in both

treatments. Similar to Cassar (2018), we also find that pro-social mission results in higher effort,

but only if the wage paid is high. In contrast to Cassar (2018), we find that managers offer the

same wages across the two treatments and thus their behavior is not impacted by the mission of the

firm. This results in higher profits generated in the non-profit treatment.

4.2 Experimental Design

We use a modified version of the Charness et al. (2004) gift exchange experiment. In this

modified version, there are three roles a subject can take to which they are randomly assigned:

a worker, a manager, and a firm owner. Subjects are put in groups of three that consist of one

worker, one manager, and one firm owner. First, the manager determines a wage level to be paid

to the worker. Then, the worker observes the wage and decides how much effort to provide. Both

the wage paid and the effort level provided determines the earnings for all three group members.

The payoff functions are as follows:

πW = wage− c(e) (4.1)

πM = 0.40 × Profit (4.2)

πF = 0.60 × Profit (4.3)

Profit = 2× e× (100− w) (4.4)

where W, M, and F represent worker, manager and firm owner respectively; and c(e) denotes

the cost of providing the effort level, e. Worker receives the wage (wage ∈ {10, 20, 30, 40, 50, 60})

determined by the manager and bears the cost of their chosen effort level. We use the Charness

et al. (2004) cost of effort schedule which is shown in Table 4.1.

While the wage increases the worker’s payoff, it decreases the profit. Both wage and effort
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Table 4.1: Worker’s Cost of Effort Schedule

e 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
c(e) 0 1 2 4 6 8 10 12 15 18

determine the profit which in turn determines the earnings for the manager and the firm owner.

The profit is calculated according to eq. (4.4) and is shared between the manager and the firm

owner. The firm owner receives 60% of the profit and the manager receives the remaining 40%. In

this game, the firm owner does not make any decisions. She simply collects her share of the profit.

First, the roles are assigned randomly at the beginning of the experiment and kept the same

for the duration of the experiment. Next, subjects are placed in groups of three that consist of one

worker, one manager and one firm owner. Subjects play this game for 20 rounds and are paid at

the end for two randomly selected rounds. Although the roles are fixed, groups are re-matched

randomly in each round. At the end of each round, we provide feedback about the wage chosen,

effort provided, and the earnings.

We have two treatments: Profit Treatment and Non-Profit Treatment. The only difference

between the two treatments is the identity of the firm owner. In the profit treatment, the firm owner

is another subject in the lab. Whereas in the non-profit treatment, the firm owner is a non-profit

organization. We chose Operation Kindness, which is the largest and oldest no-kill animal shelter

in North Texas, as the non-profit organization for this experiment. At the end of the experiment,

we randomly pick one of the subjects to be the monitor. The monitor is paid an extra $5 to stay a

little longer to make sure that earnings generated for Operation Kindness are donated to Operation

Kindness on the organization’s website.

4.3 Results

We ran a total of eleven sessions in the Economic Research Lab at Texas A&M University

in February and March 2018 with a total of 251 subjects. 141 subjects participated in the profit

treatment and the remaining 110 participated in the non-profit treatment. Thus, we have 47 workers

and managers in the profit treatment; and 55 workers and managers in the non-profit treatment.
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Table 4.2: Average Effort

Treatment Wage Paid
10 20 30 40 50 60

Profit 0.17
(0.18)
n=41

0.21
(0.13)
n=38

0.31
(0.18)
n=47

0.41
(0.19)
n=47

0.51
(0.23)
n=43

0.59
(0.33)
n=42

Non-Profit 0.15
(0.10)
n=46

0.21
(0.11)
n=45

0.34
(0.18)
n=53

0.49
(0.16)
n=55

0.64
(0.21)
n=55

0.72
(0.28)
n=47

p-values † 0.422 0.968 0.364 0.030 0.014 0.042
p-values ‡ 0.882 0.694 0.286 0.031 0.006 0.054
Standard deviations are in parentheses. †Bootstrapped t-test ‡Mann-Whitney test

The experiment was programmed in z-tree (Fischbacher, 2007), and the undergraduate students at

Texas A&M University were recruited through ORSEE (Greiner et al., 2004). Subjects earned $19

on average including a $10 show-up fee.

Similar to previous studies using the gift-exchange game (or variants of it), we do not find

support for Nash equilibrium (NE) predictions either. Although the managers are predicted to offer

the lowest possible wage of 10, the average wage offered across both treatments is 38.65 tokens.

Similarly, the workers provide significantly higher efforts (the average across both treatments is

0.44) than the NE of 0.1. In what follows, we first present findings on workers’ behavior, then

we present the findings on managers’ behavior and finally present and discuss the impact of these

observed behavior on firm profits.

4.3.1 Workers

As mentioned above, workers provide significantly higher efforts on average than the NE of

0.1. Table 4.2 and Figure 4.1 (a) show the average effort provided across treatments and for each

wage offered. In both treatments, there is a positive relationship between the wage offered and

the effort provided. This reciprocal relationship that we observe is similar to the findings in the

literature. When we compare the effort levels across treatments, we notice that the treatment does

not have an impact on effort for wages lower than 40. However, workers provide significantly
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Figure 4.1: Average Effort Provided
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higher levels of effort if the wage offered is 40 or higher.

The distribution of effort levels provided across treatments can be found in Figure B.3 for low

wages and Figure B.4 for high wages in the appendix. Using the Epps-Singleton test5, we compare

these distributions across profit and non-profit treatments. We find that the distributions are not

statistically significantly different if the wage offered is 10 (p-value: 0.105) or 20 (p-value: 0.311).

On the other hand, the distributions of efforts are significantly different across profit and non-profit

treatments if the managers offer 30 (p-value: 0.000), 40 (p-value: 0.000), 50 (p-value: 0.001), or

60 (p-value: 0.002).

Next, we look at the average effort provided over time. Looking at Figure 4.1 (b), we see

that the behavior seems fairly consistent with slight decline over time. Although there are some

fluctuations, the average effort provided in the non-profit treatment is mostly above the average

effort in the profit treatment.

To check the robustness of our findings, we also present the regression results. In our experi-

ment, workers cannot provide an effort lower than 0.1 or higher than 1. Thus, by using a panel data

Tobit model, we take this censuring into account. Table 4.3 presents the results. In both Panel A

and B, the dependent variable is Worker Effort which is the level of effort provided by the worker.

5Findings are similar if we use the Kolmogorov-Smirnov test.
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Table 4.3: Panel Data Tobit Regression Results

(1) (2) (3) (4)

Panel A
DV: Worker Effort
Wage 0.0149∗∗∗ 0.0151∗∗∗ 0.0151∗∗∗

(0.000771) (0.000859) (0.000798)

Non-Profit 0.106∗∗ 0.0987∗∗ 0.473∗∗

(0.0536) (0.0432) (0.187)

Period -0.00776∗∗∗ -0.00777∗∗∗

(0.00137) (0.00152)

Female -0.0848∗ -0.0665
(0.0479) (0.0563)

Society Oriented 0.110∗∗∗

(0.0393)

Society Oriented*Non-Profit -0.0987∗∗

(0.0474)

Constant -0.247∗∗∗ -0.126∗∗ -0.550∗∗∗

(0.0485) (0.0643) (0.156)
Observations 2040 2040 2040

Panel B
DV: Worker Effort
High Wage (40-60) 0.376∗∗∗ 0.334∗∗∗ 0.344∗∗∗ 0.344∗∗∗

(0.0222) (0.0214) (0.0333) (0.0304)

Non-Profit 0.113∗∗∗ 0.0622∗ 0.0580 0.444∗∗

(0.0405) (0.0366) (0.0508) (0.173)

High Wage*Non-Profit 0.0733∗∗ 0.0701 0.0695∗

(0.0340) (0.0434) (0.0365)

Period -0.00794∗∗∗ -0.00795∗∗∗

(0.00118) (0.00132)

Female -0.0775∗ -0.0587
(0.0404) (0.0495)

Society Oriented 0.113∗∗∗

(0.0333)

Society Oriented*Non-Profit -0.102∗∗

(0.0450)

Constant 0.0858∗∗ 0.114∗∗∗ 0.237∗∗∗ -0.198
(0.0410) (0.0368) (0.0464) (0.141)

Observations 2040 2040 2040 2040
Robust errors standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Wage is the wage offered by the manager to the worker in that period. Non-Profit is the dummy

variable that takes the value of 1 for the non-profit treatment, otherwise 0. Period is the trend
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variable, Female is the dummy variable for females. Society Oriented is constructed by using the

answers to the following item from the PSM (Public Service Measure) (Perry, 1996): "Making a

difference in society means more to me than personal achievements".6 It is between 1 (Strongly

Disagree) and 5 (Strongly Agree).

First, looking at Panel A, we see that workers are responsive to the wages offered. Workers

provide significantly higher effort for higher wage levels. Additionally, we see that workers pro-

vide significantly higher effort when they are in the non-profit treatment compared to the profit

treatment. Interestingly, we also find that caring about making a difference in society (i.e. being

society oriented) does not impact behavior in the non-profit treatment (the summation of the co-

efficients of Society Oriented and Society Oriented*Non-Profit is not significantly different from

zero). On the other hand, society-oriented individuals provide significantly higher levels of effort

when they are in the profit treatment.

We are also interested in the workers’ responsiveness to the wages in the non-profit treatment

compared to the profit treatment. We do not find a significant difference across the two treatments

(see Table C.5 in appendix).7

In Panel B of Table 4.3, we use a different measure for the wages. Instead using the actual

wage offered, we construct a dummy variable which takes the value of 1 if the wage offered was

high (i.e. 40, 50, or 60), and otherwise zero. We find that subjects are more responsive to high

wages in the non-profit treatment compared to the profit treatment.

4.3.2 Managers and Profits

In this section, we first study the managers’ behavior and then compare the profits created

across two treatments. Figure 4.2 (a) shows the average wage paid across treatments. Managers

paid workers 38 and 39 tokens, on average, in the profit and non-profit treatments respectively, and

they are not statistically different from one another (Mann-Whitney test p-value: 0.207). Figure

6This item is listed as PSM1 under the self-sacrifice subscale in Perry (1996).
7However, when we only include the first 15 periods, we find that workers in the non-profit treatment are sig-

nificantly more responsive to the wages compared to the profit treatment. Regressions using the first 15 periods are
presented on Table C.6.
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Figure 4.2: Average Wage Offered
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4.2 (b) shows the average wage offered over time across treatments. Average wages seem fairly

consistent over time and across treatments.

To check the robustness of these findings, we also ran a panel data tobit model regression

where the dependent variable is the wage paid in each period. Average marginal effects derived

from these regressions are presented in Table 4.4. According to these results, wages paid across

Table 4.4: Panel Data Tobit Regression Results for Wage

(1) (2)
DV: Wage Wage
Non-Profit 0.747 -0.447

(2.411) (2.625)

Female -1.639
(2.599)

Period 0.135∗

(0.0692)

Lagged Effort 13.82∗∗∗

(1.777)

Constant 38.68∗∗∗ 32.70∗∗∗

(1.815) (2.583)
Observations 2040 2040
Robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure 4.3: Average Profits Generated Across Treatments
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treatments are not statistically different. Although we see that managers respond positively to the

effort provided in the previous round, we do not find any evidence that managers respond to the

treatment.

Next, we compare the profits generated in the profit and non-profit treatments. Figure 4.3 (a)

shows the average profits generated across treatments. Average profits are 44.85 and 53.67 tokens

in the profit and non-profit treatments respectively. Looking at the first column of Table 4.5, we

see that profits are significantly higher in the non-profit treatment. We can also compare the profits

generated across different wage levels. This is illustrated in Figure 4.3 (b), and regression analysis

results are provided in the second column of Table 4.5. We find that wages of 40 and 50 result in

the highest profits generated in both treatments.

4.4 Conclusion

In this paper, we study whether workers exert more effort when they work for a non-profit

vs. a for-profit firm when they are randomly assigned to these firms. We find that workers exert

higher levels of effort in the non-profit treatment only when the wages are high. For low wages,

we do not find a significant difference in effort levels between the two treatments. Interestingly,

managers do not respond to the treatment so the average wages paid across the two treatments are
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Table 4.5: Panel Data Tobit Regression Results for Firm Profits

(1) (2)
DV: Profits
Non-Profit 9.255∗∗ 0.291

(4.035) (5.448)
Period -0.592∗∗∗ -0.610∗∗∗

(0.128) 0.104
Wage 20 6.422

( 3.908 )
Wage 30 13.513∗∗∗

(4.013 )
Wage 40 20.689∗∗∗

( 5.098 )
Wage 50 21.891∗∗∗

( 5.880)
Wage 60 16.269∗∗

(6.492)
Wage 20*Non-Profit -1.273

(5.020)
Wage 30*Non-Profit 5.214

(5.124)
Wage 40*Non-Profit 10.372∗

(6.078)
Wage 50*Non-Profit 12.653∗

(7.387)
Wage 60*Non-Profit 10.220

(8.161)
Constant 50.1060∗∗∗ 34.961∗∗∗

(3.080) (4.185)
Observations 2,040 2,040
Robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

not statistically different. This results in higher profits generated in the non-profit treatment.
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5. CONCLUSIONS

In the first essay of this dissertation, we investigate the impact of information about the MPCR

of a linear public good on contributions. The theoretical model predicts that information provision

has a differential impact on less and more generous groups. While information increases average

contributions by less generous subject groups, it reduces average contributions by more generous

subject groups. We experimentally test these hypotheses in the lab and the findings are in line with

the theoretical expectations. We find that information does not impact public good contribution

on the extensive margin. However, information impacts public good contributions on the intensive

margin and the sign of this impact depends on the generosity level of the sessions. In the relatively

selfish sessions, subjects who contributed at least once contribute more on average when they

are informed compared to when they are uninformed of the value of the public good. However,

just the opposite is true for the relatively generous sessions. In these sessions, subjects who are

potential contributors contribute less to the public good when they are informed. This is because

their relative response to bad news is greater than their response to good news.

The findings of this study have significant implications for fundraising. In particular, they sug-

gest that targeted information provision may be a more fruitful strategy of increasing public good

contributions than uniform information provision. Since donors themselves may be able to acquire

information by conducting research about non-profits prior to contributing, an important direction

for future research includes endogenizing the choice of information acquisition by donors. This

would allow us to glean further insight about the impact of information on public good provision

by studying how information acquisition incentives differ across donors.

Previous literature documents that people living under precarious conditions of scarcity tend

to make suboptimal economic and financial decisions. Motivated by this emerging literature, the

second essay studies the impact of scarcity on moral and pro-social behavior. In addition, we also

study the impact of scarcity on in-group favoritism in cheating and pro-social behavior. Using a

lab-in-the-field experiment, we study cheating behavior across periods of Scarcity and Abundance.
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We find that scarcity does not affect participants’ cheating behavior for themselves. Our findings

suggest that cheating in an effort to increase the participant’s own well-being is not impacted by

the economic environment. However, we also find that people cheat for others even though they

do not directly benefit from it. While people cheat more for the in-group member relative to the

out-group member during the Abundance period, this in-group favoritism in cheating vanishes

during the Scarcity period. In fact, subjects do not cheat at all for the out-group member during

the Abundance period, but they cheat for the out-group member during scarcity.

In this study, we also use a dictator game to study in-group favoritism in pro-social behavior.

This allows us to examine the impact of scarcity on in-group favoritism when the cost of this

preferential treatment is monetary rather than moral. We find a similar pattern of behavior. While

subjects send significantly more to the in-group member during the Abundance period, this gap is

no longer statistically significant in the Scarcity period. Furthermore, the in-group favoritism in

pro-social behavior is swept away by an increase in giving to the out-group member rather than a

reduction in giving to the in-group member. Looking at the findings from both experimental games,

we conclude that scarcity eliminates in-group bias in terms of pro-social and moral behavior.

The third essay investigates whether workers exert more effort when they work for a mission-

oriented job using a modified gift-exchange experiment. We find that workers exert higher levels

of effort in the non-profit treatment only when the wages are high. For low wages, we do not find

a significant difference in effort levels between the two treatments. Interestingly, managers do not

respond to the treatment so the average wages paid across the two treatments are not statistically

different. This results in more profits being generated in the non-profit treatment at high wage

levels.
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APPENDIX A

PROOFS

Proof of Lemma 1. To show that g(v) is increasing in v, note by eq. (4.3) that

g′(v) = −g(v)
R′(v)

1 +R(v)
(A.1)

Moreover, since βi ∼ Exp(1/λ), R(v) = 1−e−β1(v)/λ
e−β2(v)/λ

. Therefore, differentiating R(v) with

respect to v yields

R′(v) =
1

λ
β′2(v)eβ2(v)/λ − 1

λ
[β′2(v)− β′1(v)] e(β2(v)−β1(v))/λ = (A.2)

= −N(N − 1)

(Nv − 1)2
1

λ

[
eβ2(v)/λ + γR(v)

]
< 0

where the last equality takes into account that β′1(v) = −N(N−1)
(Nv−1)2 < 0 and β′2(v) = −N(N−1)

(Nv−1)2 (1+

γ) < 0. Given R′(v) < 0, eq. (A.1) implies that g′(v) > 0.

To show that limv→ 1
N
g(v) = 0, we need to show that limv→ 1

N
R(v) =∞. Note that limv→ 1

N
β1(v) =

limv→ 1
N
β2(v) =∞. Therefore, limv→ 1

N
e−β2(v)/λ = limv→ 1

N
e−β1(v)/λ = 0, resulting in limv→ 1

N
R(v) =

∞. To see that limv→1 g(v) = W note that limv→1 β1(v) = 0 and limv→1 β2(v) = γ. This implies

that limv→1R(v) = 0 and limv→1 g(v) = W .

To establish the existence and uniqueness of ṽ(λ) and its corresponding properties, we first

derive g′′(v) by differentiating g′(v) with respect to v, yielding

g′′(v) =
g(v)

(1 +R(v))

[
2

[R′(v)]2

1 +R(v)
−R′′(v)

]
(A.3)

Differentiating eq. (A.2) with respect to v and simplifying yields
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R′′(v) =
N2(N − 1)2

λ2(Nv − 1)4

[
(eβ2(v)/λ + γR(v))

(
2λ(Nv − 1)

(N − 1)
+ γ

)
+ (1 + γ)eβ2(v)/λ

]
(A.4)

Subsituting for R′(v) and R′′(v) in eq. (A.3) and simplifying results in

g′′(v) =
g(v)

(1 +R(v))

N2(N − 1)2

λ2(Nv − 1)4
[eβ2(v)/λ + γR(v)]×[

2
eβ2(v)/λ + γR(v)

1 +R(v)
− (1 + γ)eβ2(v)/λ

eβ2(v)/λ + γR(v)
− 2λ(Nv − 1)

(N − 1)
− γ
]

Note that

g′′(v)
sign
=

[
2
eβ2(v)/λ + γR(v)

1 +R(v)
− (1 + γ)eβ2(v)/λ

eβ2(v)/λ + γR(v)
− 2λ(Nv − 1)

(N − 1)
− γ
]

= Ω(v, λ).

To show the uniqueness of ṽ(λ), we first show that Ω(v, λ) is strictly decreasing in v, implying

that there is at most one solution to g′′(v) = 0. Substituting for R(v) in the above expression and

further simplifying yields

Ω(v, λ) = 2
1 + γ(1− e−β1(v)/λ)
1 + e−[β1(v)+β2(v)]/λ

− 1 + γ

1 + γ(1− e−β1(v)/λ)
− 2λ(Nv − 1)

(N − 1)
− γ (A.5)

It is immediately evident that Ω(v, λ) is strictly decreasing in v since β′1(v) < 0 and β′2(v) < 0.

Thus, there is at most one solution to Ω(v, λ) = 0.

To establish the existence of ṽ(λ), note that

lim
v→ 1

N

Ω(v, λ) = 1 + γ > 0, (A.6)

since limv→ 1
N
β1(v) = limv→ 1

N
β2(v) =∞, and
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lim
v→1

Ω(v, λ) =
2

1 + e−λ/γ
− 2/λ− 1, (A.7)

since limv→1 β1(v) = 0 and limv→1 β2(v) = γ. It is straightforward to verify that limv→1 Ω(v, λ)

is strictly decreasing in λ and takes negative values for all λ > λ̃ where λ̃ ∈ (0,∞) solves

lim
v→1

Ω(v, λ̃) = 0.

Thus, for λ > λ̃, ṽ(λ) uniquely solves Ω(ṽ(λ), λ) = 0 and ṽ(λ) ∈ ( 1
N
, 1), while for λ < λ̃,

Ω(v, λ) > 0 for all v ∈ ( 1
N
, 1) and thus ṽ(λ) = 1. This establishes the existence of a unique

ṽ(λ) ∈
(

1
N
, 1
]

with g′′(v) > 0 for v < ṽ(λ) and g′′(v) < 0 for v > ṽ, proving property 1).

To establish property 2, note first that for λ < λ̃ ṽ(λ) = 1. For λ > λ̃ implicit differentiation

of Ω(ṽ(λ), λ) = 0 results in

ṽ′(λ) = −∂Ω(v, λ)/∂λ

∂Ω(v, λ)/∂v

Recall that ∂Ω(v, λ)/∂v < 0. Moreover, straighforward differentiation reveals that ∂Ω(v, λ)/∂λ <

0. Therefore, it follows immediately that ṽ′(λ) < 0.

The property limλ→0 ṽ(λ) = 1 follow immediately from the fact that ṽ(λ) = 1 for λ < λ̃ ∈

(0,∞).

Finally, to establish that limλ→∞ ṽ(λ) = 1
N

, note that

lim
λ→∞

Ω(v, λ) = lim
λ→∞
−2

Nv − 1

N − 1
λ

By definition, Ω(ṽ(λ), λ) = 0 for λ > λ̃. Therefore,

lim
λ→∞

Ω(ṽ(λ), λ) = lim
λ→∞
−2

Nṽ(λ)− 1

N − 1
λ = 0 =⇒ lim

λ→∞
ṽ(λ) =

1

N

Proof of Proposition 1. Given 1
N
< vL < vH < 1, by Lemma 1, there exist λ1 > 0 be such that
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ṽ(λ1) = vH and λ2 > λ1 such that ṽ(λ2) = vL. Furthermore, by Lemma 1, g(v) is convex for all

v < vH if λ ≤ λ1. Thus, by definition of convexity,

pLg(vL) + pHg(vH) > g(pLvL + pHvH)

Analogously, for λ ≥ λ2, g(v) is concave for all v ≥ vL, implying the reverse inequality.
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APPENDIX B

FIGURES

Figure B.1: Distributions of Payoffs Reported in Cheating Game Treatments
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Figure B.2: Distributions of Amount Sent in Dictator Game Treatments
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Figure B.3: Frequency Distributions of Worker Effort Provided Across Low Wages and Treatments
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Figure B.4: Frequency Distributions of Worker Effort Provided Across High Wages and Treat-
ments
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APPENDIX C

TABLES

Table C.1: Comparing Subjects who Participated in Scarcity Only vs. Both Periods

Variable Scarcity Only Both Periods p-value
Female 0.27 (0.45) 0.41 (0.50) 0.1463†
Yearly Income 9,174 (7,906) 8,242 (7,794) 0.5531‡
Main Source of Income Coffee 0.97 (0.18) 0.94 (0.23) 0.5732 †
Finances Relative to Others 2.23 (0.43) 2.19 (0.57) 0.8219‡
Household Financial Situation 2.69 (0.65) 2.87 (0.61) 0.1595‡
No Money Index 2.22 (1.41) 2.17 (1.35) 0.9599 ‡

No Money for Food 0.41 (0.50) 0.40 (0.49) 0.9791 †
No Money for Basic Needs (non-food) 0.38 (0.49) 0.57 (0.50) 0.0536 †
No Money for Medical Expenses 0.56 (0.50) 0.48 (0.50) 0.3954 †
No Money for Farm 0.88 (0.34) 0.73 (0.45) 0.0807 †

Credit 0.19 (0.40) 0.17 (0.38) 0.8002†
Risk 3.16 (1.80) 2.91 (1.58) 0.5886 ‡
Stress Index 1.89 (0.48) 1.92 (0.46) 0.6019 ‡
Celebratory Events 0.78 (0.42) 0.82 (0.39) 0.6165 †
Cheating for Self 0.82 (0.39) 0.85 (0.36) 0.6261 †
Cheating for In Group 0.76 (0.44) 0.74 (0.44) 0.8672 †
Cheating for Out Group 0.58 (0.50) 0.68 (0.47) 0.2748 †
Dictator Giving -In Group 11.34 (7.38) 10.52 (6.38) 0.5758‡
Dictator Giving -Out Group 11.47 (6.22) 9.36 (6.61) 0.0969‡
Number of Subjects 31-33 97-109
†Two-sample test of proportions. ‡Two-sample Wilcoxon rank-sum (Mann-Whitney) test. Standard
deviations are in parentheses.
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Table C.2: Description of the Survey Measures and Risk Preferences

Variables Description
Finances Relative to Others 1-Better, 2-Similar, 3-Worse
Household Financial Situation 1-Excellent, 2-Good, 3-Not so good, 4-Poor
No Money Index Summation of the following four

No Money for Food 1-Experienced this situation in the last month,
0-otherwise

No Money for Basic Needs (non-food) 1-Experienced this situation in the last month,
0-otherwise

No Money for Medical Expenses 1-Experienced this situation in the last month,
0-otherwise

No Money for Farm 1-Experienced this situation in the last month,
0-otherwise

Credit 1- took a credit/loan in the last 6 months
0- otherwise

Stress Index Average of answers to ten stress related questions
(Cohen et al., 1983)

Celebratory Events 1- attended/organized a wedding or a celebratory
event in the last month, 0- otherwise

Risk Scale: 1 (risk averse) -6 (risk lover)
Incentivized Eckel and Grossman (2002, 2008)
Gamble Task
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Table C.3: Survey Measures of Financial Situation Across Abundance and Scarcity Periods

Variable Abundance Scarcity p-value
Finances Relative to Others 2.19 (0.55) 2.19 (0.57) 1.0000‡
Household Financial Situation 2.58 (0.78) 2.87 (0.61) 0.0002‡
No Money Index 1.71 (1.46) 2.17 (1.35) 0.0041 ‡

No Money for Food 0.26 (0.44) 0.40 (0.49) 0.0061†
No Money for Basic Needs (non-food) 0.44 (0.50) 0.57 (0.50) 0.0433†
No Money for Medical Expenses 0.41 (0.50) 0.48 (0.50) 0.2623†
No Money for Farm 0.60 (0.49) 0.73 (0.45) 0.0348†

†McNemar’s Chi Square test. ‡Wilcoxon matched-pairs signed-ranks test.
Standard deviations are in parentheses.This table includes all 109 participants who participated
in both periods. However, not all participants provided an answer to all questions. Thus, the
number of observations ranges between 97 and 109 depending on the period and the question.

Table C.4: Other Survey Measures and Risk Across Abundance and Scarcity Periods

Variable Abundance Scarcity p-value

Stress Index 1.91 (0.60) 1.92 (0.46) 0.5251‡

Credit 0.92 (0.28) 0.83 (0.38) 0.1336†

Celebratory Events 0.77 (0.43) 0.82 (0.39) 0.4142†

Risk 3.10 (1.93) 2.91 (1.58) 0.5311‡

†McNemar’s Chi Square test. ‡Wilcoxon matched-pairs signed-ranks test.

Standard deviations are in parentheses.This table includes all 109 participants who participated

in both periods. However, not all participants provided an answer to all questions. Thus, the

number of observations ranges between 97 and 109 depending on the period and the question.
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Table C.5: Tobit Regression Results

(1) (2) (3)
DV: Worker Effort
Wage 0.0134∗∗∗ 0.0138∗∗∗ 0.0138∗∗∗

(0.00154) (0.00135) (0.00134)

Non Profit 0.000906 0.00178 0.368∗

(0.0824) (0.0730) (0.201)

Wage*Non Profit 0.00258 0.00238 0.00236
(0.00198) (0.00180) (0.00171)

Period -0.00766∗∗∗ -0.00767∗∗∗

(0.00154) (0.00134)

Female -0.0848 -0.0666
(0.0555) (0.0469)

Society Oriented 0.109∗∗∗

(0.0376)

Society Oriented*Non Profit -0.0964∗

(0.0504)

Constant -0.188∗∗∗ -0.0724 -0.491∗∗∗

(0.0611) (0.0636) (0.149)
Observations 2040 2040 2040
Robust errors standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table C.6: Panel Data Tobit Regression Results Using the First 15 Periods

(1) (2) (3) (4) (5) (6)
DV: Worker Effort
Wage 0.0129∗∗∗ 0.0130∗∗∗ 0.0130∗∗∗

(0.00135) (0.00140) (0.00158)

High Wage (40-60) 0.317∗∗∗ 0.321∗∗∗ 0.321∗∗∗

(0.0306) (0.0344) (0.0292)

Non Profit -0.0474 -0.0559 0.291 0.0560 0.0486 0.402∗∗

(0.0804) (0.0958) (0.192) (0.0514) (0.0475) (0.173)

Wage*Non Profit 0.00368∗ 0.00369∗ 0.00366∗∗

(0.00201) (0.00208) (0.00186)

High Wage*Non Profit 0.0855∗ 0.0858∗ 0.0849∗

(0.0474) (0.0448) (0.0468)

Period -0.00552∗∗∗ -0.00553∗∗∗ -0.00519∗∗∗ -0.00520∗∗∗

(0.00172) (0.00166) (0.00189) (0.00191)

Female -0.0936∗ -0.0770 -0.0855∗∗ -0.0687
(0.0548) (0.0476) (0.0396) (0.0439)

Society Oriented 0.100∗∗ 0.102∗∗∗

(0.0403) (0.0357)

Society Oriented*Non Profit -0.0911∗∗ -0.0932∗∗

(0.0446) (0.0410)

Constant -0.138∗∗ -0.0439 -0.430∗∗ 0.151∗∗∗ 0.241∗∗∗ -0.153
(0.0568) (0.0615) (0.184) (0.0373) (0.0460) (0.152)

Observations 1530 1530 1530 1530 1530 1530
Robust errors standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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APPENDIX D

SIMULATION PROCEDURE TO ASSESS THE ACCURACY OF THE SAMPLE SIZE TO

GENERATE RANDOM DISTRIBUTION

The Simulation Procedure:

• Step 1: Given our sample size of 109 subjects, we first draw 109 random integers be-

tween 1-6 (i.e., virtual die roll).

• Step 2: We test whether the distribution of the random draws differs from a categorical

random uniform distribution using the Chi Square Goodness of Fit test.

• Step 3: We repeat the procedure in Steps 1 and 2 1000 times.

• Step 4: We record the number of times out of 1000 simulations that the distributions

were indeed categorical random uniform.

• Step 5: We compute a statistical inference measure which is the number of simulations

resulting in non-random distributions divided by the total number of simulations.
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