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ABSTRACT 

 

Geomagnetic disturbances (GMDs) can potentially impose operational challenges 

on power systems and cause damage to essential grid assets through geomagnetically 

induced currents (GICs). Therefore, to maintain power system efficiency and reliability, 

it is essential to study how GMDs impact power systems. This work contains two separate 

research topics related to GMDs.  The first research topic is associated with a spatially 

non-uniform GMD event called localized geomagnetic field enhancement. Characterized 

by geomagnetic fields substantially increasing in some areas, localized geomagnetic field 

enhancements cause the localized augmentation of geoelectric fields and flow of “extra” 

GICs in power grids. Considering that the distribution of the “extra” GICs directly affects 

the planning and operations of the grids, this work utilizes the superposition principle and 

defines a sensitivity associated with the “extra” GICs to study the impact scopes of 

localized geomagnetic field enhancements. Sensitivity analysis is performed on a small 

20-bus benchmark system and a large 10k-bus synthetic network, respectively. The results 

show that the impact scope of a square localized geomagnetic field enhancement area is 

generally less than one and a half times its width. In other words, the “extra” GICs are 

localized. The second research topic focuses on studying the impacts of GMDs/GICs on 

power system transient stability under different contingent conditions. In the work, various 

contingencies are applied to the 10k-bus synthetic network individually in the presence of 

time-invariant GMDs, while the changes in the transient stability margin are evaluated 

using different metrics. Several case studies are presented as examples of the potential 
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effects of GMDs. The results show that GMDs can alter power system transient margin. 

Therefore, this work suggests that relevant transient stability studies may need to be 

conducted to ensure secure power system operations under the effect of GMDs. 
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CHAPTER I 

INTRODUCTION 

Geomagnetic disturbance (GMD) is an emerging topic in the electric power 

industry, given that it has the potential to cause great challenges on system operations and 

damage to grid assets.  Detrimental effects of GMDs on power systems can be seen in the 

well-known March 13, 1989 GMD in the North America that led to a 9-hour blackout of 

Hydro-Quebec [1]. 

 Naturally occurring GMDs are usually caused by solar coronal mass ejections 

(CMEs). During a CME, a massive amount of charged particles are ejected from the sun’s 

surface. Carried by the solar wind, the particles sometimes travel toward the earth and 

instigate fluctuations in the earth’s magnetic fields [2], [3].  The disturbed magnetic fields 

will generate slowly-varying electric fields with frequencies in a range between 0.01 Hz 

and 0.5 Hz at ground level [2]. The quasi-dc geoelectric fields then induce dc voltages 

across transmission lines and cause geomagnetically induced currents (GICs) to flow in 

the transmission lines that are connected to wye-grounded transformers [2], [3]. With the 

imposition of dc-offsets (i.e. GICs) on the transformers’ ac waveforms, the transformers 

may experience saturation every half cycle. The direct effects of the transformer half-cycle 

saturation are increased harmonic currents, increased reactive power absorption, and 

internal localized heating in transformers [2]-[6]. The potential consequences 

corresponding to each of the direct effects are protection device maloperations, voltage 

collapse, and irreversible damage to the transformers [2]-[6].  
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To get bulk electric systems in North America prepared for GMDs, many research 

efforts and resources have been devoted to assessing and preventing the negative impacts 

of GMDs. For the same reason, this work is dedicated to studying two research topics 

related to GMDs (1) examining the GIC distribution during a spatially non-uniform GMD 

event called localized geomagnetic field enhancement (2) investigating the impact of 

GMDs on power system transient stability margin. The studies associated with these two 

separate research topics are presented in CHAPTER I and CHAPTER II, respectively. 
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CHAPTER II 

GRID IMPACT EVALUATION OF LOCALIZED GEOMAGNETIC FIELD 

ENHANCEMENTS USING SENSITIVITY ANALYSIS 

Background 

A. Description of Localized Geomagnetic Field Enhancements 

During a localized geomagnetic field enhancement, the resulting geoelectric field 

in an area on the order of a few hundreds of kilometers or less has a magnitude much 

higher than those at neighboring areas [7], [8]. Fig.1 from [8] provides spatial and 

magnitude scales for a localized field enhancement and the geoelectric fields at its 

neighboring areas. 

Fig.1.  A localized field enhancement and the geoelectric fields at its neighboring areas are indicated by 

the red rectangle and pink squares, respectively. The directions of the arrows show the fields’ 

orientations, while the lengths are proportional to the fields’ magnitudes. Reprinted from [8]. 
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The increase in the geoelectric field strength then induces “extra” GICs to flow across 

transmission lines, which directly affects the planning and operations of power grids. 

Therefore, it is necessary to develop a methodology to quantify the impact scopes of 

localized field enhancements. 

 

B. Literature Review and Proposed Methodology Overview 

The impact scope of the “extra” GICs due to localized geomagnetic field 

enhancements has not been assessed quantitatively in previous works. Without the 

localized field enhancements considered, earlier works such as [9] and [10] suggested that 

GICs are localized. Reference [8] illustrated the regional impact of a localized field 

enhancement by statistically showing that only a small set of transformers experience 

notable changes in GICs in the presence of a localized field enhancement. Moreover, the 

case study in [11] exhibited a negative correlation between the distance from a transformer 

to a localized field enhancement and the change in GIC experienced by the transformer. 

As the application of linear superposition in GIC modeling is justified in [11], [12], 

this work decomposes a localized enhanced geoelectric field into a base field and an 

“extra” field.  A sensitivity associated with the “extra” GICs is defined and utilized to 

quantify the impact of the localized field enhancement on transformers. The results from 

sensitivity analyses, performed on a small 20-bus benchmark system [13] and a large 10k-

bus synthetic network [14]-[16] show that “extra” GICs are localized. To be specific, the 
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results suggest that the impact scope of a square localized field enhancement area is 

generally less than one and a half times its width. 

 

C. GIC Modeling Overview 

This section gives an overview of the GIC calculation used here [10], [17], [9]. 

Consider a power system containing b buses, s substations, m transmission lines, and r 

transformers. Let N equal to the sum of b and s. Therefore, the system has N nodes in total 

which comprise b buses and s substation neutrals. The nodal voltage vector V can be found 

by using 

 V = G - 1 I. (1) 

 

where G is an N-dimensional symmetric matrix resembling the bus admittance matrix but 

altered to account for substation neutral buses and substation grounding resistances; I is 

an N-dimensional vector with each entry holding the value of the Norton equivalent dc 

current injection at the corresponding node [17], [9], [18].  

According to [19], the GMD induced voltage across line m, symbolized as Um, can be 

determined by integrating the geoelectric field along the route of line m 

 

 
Um = 

R

E 
-

m · d l 
-

m (2) 
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where E 
-

m is the geoelectric field in the line segment d l 
-
m and R represents the geographic 

path of line m. In this study, a variable with a bar on its top denotes a vector.  In the case 

of a uniform geoelectric field, (2) is equivalent to 

 

 Um = Em Lm cos(E,m – L,m) (3) 

 

where Em and E,m represent the magnitude (V/km) and direction of the geoelectric field 

in line m; Lm and L,m represent the length and the direction of line m (“from” bus – “to” 

bus). In this study, all the directions are defined in degrees and referred to the north. The 

Norton current injection at bus b can be determined by solving  

 

 Ib = 
m = 1

H

  Im = 
m = 1

H

 gmUm = 
m = 1

H

  gm Lm cos(E,m – L,m)Em (4) 

 

where Im is the Norton current injection contributed by line m from a set of lines with direct 

connections to bus b (The set contains H lines.); gm is the three-phase conductance of line 

m (in siemens); the total Norton current injection at bus b, Ib, equals the sum of the Norton 

current injections (Im) contributed by the H lines [11], [18]. As for the substation neutrals, 

since they are not directly connected to any lines, their Norton current injections are all 

zeros [18]. According to (4), (1) can be modified as 
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 V = G-1 B A E (5) 

 

where E is an m-dimensional vector with entry m equal to the magnitude of the geoelectric 

field in line m; A is an m-dimensional diagonal matrix with its diagonal entry m equal to 

the cosine of the angle difference between the geoelectric field and line m; B is an N-by-

m matrix where column m is associated with line m and only has non-zero values in the 

rows corresponding to the “from” and “to” buses of line m; each non-zero entry in B has 

a magnitude equal to the product of the three-phase conductance and length of the 

associated line and follows the sign convention that a positive sign (a negative sign) is 

assigned to a “from” bus entry (“to” bus entry) [17], [9], [18]. Based on Ohm’s law, GIC 

flowing through any connections can be obtained by using  

 

 IGIC,i,j = gi,j (Vi – Vj ) (6) 

 

where Vi and Vj are the voltages at node i and j, respectively; gi,j represents the per-phase 

conductance of the connection between nodes i and j; IGIC,i,j  represents the GIC flowing 

through the connection [9], [11], [18].  

 GICs participate in the power flow as additional reactive loads on transformers 

which are assumed to vary linearly with the “effective” GICs of the transformers. The 

effective GIC of transformer r is defined as 
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IEff,r = | IGICH,r  +  

IGICL,r

 at,r

 | (7) 

 

where IGICH,r  and IGICL,r  are the per-phase GICs flowing into the high side winding (or the 

series winding of an autotransformer) and low side winding (or the common winding) of 

transformer r, respectively;  at,r is the turns ratio of transformer r [20], [17], [9], [18]. In 

combination with (5), the effective GIC of transformer r can be determined from the nodal 

voltages using a row vector Cr  

 

 IEff,r = | Cr V | = | Cr G-1 B A E | (8) 

 

where Cr is an N-dimensional row vector. Cr is sparse and only has non-zero values at 

entries associated with transformer r’s primary winding, secondary winding, and 

substation neutral [9], [18].  Equation (8) shows that the linearity is preserved for the 

product of Cr and (5), considering that the linearity of (5) has been proved in [11] and the 

matrix multiplication of Cr and (5) is essentially a linear operation. For simple reference 

in the later text, define 

 

 IAEff,r = Cr V = Cr G-1 B A E (9) 

 

where IAEff,r is the “actual effective GIC” of transformer r. The principle of superposition 

can be applied to any linear operations involving IAEff,r. 
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Proposed Methodology 

A. Derivation of Localized Field Enhancement Associated Sensitivity 

A uniform geoelectric field cannot be assumed in the presence of a localized field 

enhancement, since the geoelectric field inside the localized field enhancement area is 

higher in magnitude and even has a different direction than that in the surrounding areas. 

In this case, the GMD-induced dc voltage across each line can be estimated by summing 

the segment-wise GMD-induced voltages due to different fields, under the assumption 

that the field in each segment is uniform [9]. 

 

 

Fig.2.  An L km long transmission line with x km long segment falling inside a localized field 

enhancement area, indicated by the rectangle. The magnitudes and directions of the geoelectric fields 

inside and outside the area are indicated by the densities and orientations of the orange and blue arrows, 

respectively. 
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Refer to Fig.2 and consider a scenario where line m of Lm km and L,m degrees was 

originally in a uniform geoelectric field of Eu,m V/km and Eu,m degrees. The GMD-induced 

dc voltage in line m, Uu,m, can be obtained by solving 

 

 
Uu,m =E 

-
u,m ∙ L -m  (10) 

 

where E 
-

u,m and L 
-
m represent the uniform geoelectric field and line m in vector notation. 

Then, a localized field enhancement occurs and the geoelectric field inside the localized 

enhancement area changes to Eh,m V/km and h,m degrees. The segment of line m residing 

within the localized field enhancement area has a length of x km. Based on [9] and [11], 

now the GMD-induced dc voltage in line m changes to 

 

 Un,m = E 
-

u,m ∙ (L- m  –  x
-

m ) + E 
-

h,m ∙ x-m  (11) 

 

where Un,m is the new GMD-induced dc voltage across line m;  x
-

m denotes the segment 

residing within the localized field enhancement area. To facilitate the derivation, define  

 

 
E 
-

c,m = E 
-

h,m  –  E 
-

u,m  (12) 

 

where E 
-

c,m is the vector notation of the change in the geoelectric field due to the localized 

field enhancement and will be referred as the “extra” field. The extra voltage source across 
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line m, Um, induced solely by the extra field can be obtained by subtracting (10) from 

(11) gives 

 
      Um = E 

-
c,m ∙ x-m = Ec,m xm cos(Ec,m – L,m) (13) 

 

where Ec,m and Ec,m are the magnitude and direction of the extra field in line m. Since [11] 

has justified that the total GIC induced in a transmission line by multiple geoelectric fields 

equals to the combination of the GICs induced by each individual geoelectric field, the 

GIC flowing in line m equals to the sum of the GICs induced respectively by the extra 

field and base field. Given (9) and (13), the change in the actual effective GIC for 

transformer r can be determined by solving 

 

 IAEff,r = Cr V = Cr G - 1 B  c Ec (14) 

 

where IAEff,r is the extra actual effective GIC for transformer r caused by the extra field, 

which will be referred to as EAEr;  is an m-dimensional diagonal matrix with entry m on 

the diagonal equal to the fraction of the length of line m falling inside the localized field 

enhancement area; Ac is an m-dimensional diagonal matrix with its diagonal entry m equal 

to the cosine of the angle difference between the extra field and line m; Ec is an m-

dimensional vector with entry m equal to the magnitude of the extra field in line m. For 

simplicity of notation, define the following row vector for transformer r 
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 dIAEff,r

 dEc,T 
 = Cr G - 1 B  = Sc,T,r (15) 

 

where Ec,T is an m-dimensional vector with entry m equal to the magnitude of the extra 

field tangent to line m; Sc,T,r is an m-dimensional row vector with entry m equal to EAEr 

with 1 V/km variation in the extra field tangent to line m. In combination of (15), (14) can 

be transformed into a summation form 

 

 
   IAEff,r  = Sc,T,r Ac Ec = 

m = 1

m
 (Sc,T,r [m] cos(Ec,m – L,m) Ec,m) (16) 

 

where Sc,T,r [m] represents entry m in Sc,T,r. Under the assumption that the extra field is 

uniform in magnitude within the localized field enhancement area, the sensitivity used to 

quantify the impact of the localized field enhancement on transformer r can be defined as  

 

 
dIAEff,r

 dEc 
 = 

m = 1

m
 (Sc,T,r [m] cos(Ec,m –L,m)). (17) 

 

where Ec represents the magnitude (assumed uniform) of the extra field. The sensitivity 

defined in (17) will be referred to as SEAE (sensitivity of the extra actual effective GIC 

of a transformer). When the extra field is 1 V/km, SEAE of a transformer equals the sum 

of the EAEs contributed by each individual line. To account for an extra field with a 

nonuniform magnitude, scaling factors can be combined with corresponding summation 
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terms in (17) as multipliers of the assumed extra field magnitude. In the worst-case 

scenario, SEAE for transformer r can be written as  

 

 
dIAEff,wc,r

 dEc 
 = 

m = 1

m
 | Sc,T,r [m] |. (18) 

 

The worst-case scenario occurs when a nonuniform extra field (nonuniform in terms of 

direction) is aligned with every line segment residing within the localized field 

enhancement area. Regardless of the likelihood of the worst-case scenario, the worst-case 

SEAE is used as the upper limit of SEAE when the consideration of angle differences is 

not preferred. During a localized field enhancement, the effective GIC of transformer r 

can be determined by using superposition 

 

 IEff,r,n = | IAEff,r,u + IAEff,r | (19) 

 

where IEff,r,n represents the effective GIC of transformer r; IAEff,r,u is the part of the actual 

effective GIC contributed by the base field; IAEff,r, or EAEr, is the part of the actual 

effective GIC contributed by the extra field. Equation (19) can be further generalized to 

account for multiple localized field enhancements by adding more IAEff,r terms associated 

with different localized enhancements. Moreover, SEAEs can be determined to facilitate 

the calculation of the effective GICs. Thus, equation (19) provides a flexible and prompt 
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way of analyzing the impact of localized field enhancements by decoupling the impact of 

the base field and that of the extra field. 

 

Localized Geomagnetic Field Enhancement Case Studies 

A. 20-bus Benchmark System 

In this section, a localized field enhancement impact study is conducted on a 20-

bus benchmark system [13]. The SEAEs for two selected transformers are determined as 

functions of the extra field’s angle. 

 

 
Fig.3.  A geographic view of a 20-bus system with the shaded area indicating the location of the localized 

field enhancement area. The locations of all substations and some buses of interest (in parentheses) are 

shown. 

 

A geographic view of the 20-bus system is shown in Fig.3. The yellow lines and 

purple lines represent the single-circuit lines and double-circuit lines, respectively. A 

localized field enhancement occurs in a 100 km by 100 km area, indicated by the shaded 

rectangle centered at (34º N, 84º W). Assume that a uniform base geoelectric field of 1 
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V/km is applied to the footprint shown in Fig.3, except the localized field enhancement 

area. The geoelectric field inside the localized field enhancement area has a magnitude of 

2 V/km and the same direction of the base field. The base field and localized enhancement 

field are rotated simultaneously from 0 to 360 degrees in increments of 10 degrees so that 

the extra field is always 1 V/km in the same direction as the base field.  

 

 

Fig.4.  The variation in SEAE for the transformer at substation 3 and transformer at substation 2 as the 1 

V/km extra field varies from 0 to 360 degrees in steps of 10 degrees. 

 

For the autotransformer at substations 3 and generator step-up (GSU) transformer 

at substation 2, SEAEs are shown in the left plot and right plot in Fig.4, respectively, as 

functions of the angle of the extra field. The transformer at substation 3 and transformer 

at substation 2 are located 51 km and 220 km away from the center of the localized field 

enhancement area, respectively. The significant magnitude difference shown in Fig.3 
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implies that the impact of the localized field enhancement on the transformers decreases 

rapidly as their distances from the localized field enhancement area increase. Also, the 

plots in Fig.3 appear to be in phase. However, this situation is not universal and only 

occurs due to the limited size of the system. There will be more discussions on this matter 

later. 

 

Table 1 

SEAE and EAEs for Two Transformers under an Eastward Extra Field 

 Transformer at Sub 3 Transformer at Sub 2 

SEAE 16.32 1.80 

EAE From Line 15-6,1 8.16 0.90 

EAE From Line 15-6,2 8.16 0.90 

EAE From Line 21-11 0 0 

 

  

 Next, with the extra field fixed at 90 degrees (eastward), EAEs contributed by lines 

are recorded in Table 1 for the transformers at substation 3 and substation 2 in the second 

column and third column, respectively. As the lines making zero EAE contribution are 

omitted from Table 1, it is found that only three lines make contributions to EAEs. Line 

21-11 is not omitted from Table II, because the values of EAEs contributed by line 21-11 

are actually not zero (on the order of 10-6) but rounded to zero. Since the magnitude of the 

extra field is 1 V/km, the EAE contributed by each line corresponds to a summation term 

in (17). Therefore, as shown in the second row of Table 1, the SEAE for each of the 
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transformers can be obtained by summing the EAEs contributed by the lines in the 

corresponding column. 

With reference to Fig.3, line 15-6,1 and line 15-6,2 comprise the double-circuit 

line (in purple) between substation 3 and substation 6, while the line 21-11 comprises the 

single-circuit line (in yellow) between substation 5 and substation 7. It is observed that 

only the three lines passing through the localized field enhancement area make 

contributions to EAEs, considering that the extra field giving rise to EAEs only exists in 

the localized field enhancement area. 

Another observation is that the EAEs contributed by line 15-6,1 and line15-6,2 are 

much higher than that contributed by line 21-11 (small enough to be grounded to zero) for 

both of the transformers. With reference to Fig.3, line 15-6,1 and line 15-6,2 are found to 

have much longer segments passing through the localized field enhancement area than 

line 21-11. This observation suggests that localized field enhancements tend to impact 

transformers through lines with longer segments falling inside the localized field 

enhancement than through lines with shorter segments. It is worth noting that the 

foregoing is just a tendency, since the values of EAEs also depend on the angle differences 

between the lines and extra field, based on (16).  

 Moreover, it is observed that the phase angles of the two plots in Fig.4 are both 

around 110 degrees. The observation can be explained by the fact that the phase angles of 

the plots in Fig.4 exclusively depend on the compass angles of line 15-6,1 and line 15-6,2, 

which are both 108.54 degrees. In other words, the appearance of the two plots in phase is 
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attributed to the little diversity of the lines passing through the localized field enhancement 

area and less likely to be observed in large cases. 

 

B. 10k-bus Synthetic Network 

In this section, sensitivity analysis is conducted on a 10k-bus synthetic network 

[14]-[16] in three stages. In stage one, five localized field enhancement areas with different 

locations and dimensions are applied to the system individually. The impact scope of each 

localized field enhancement is evaluated using the worst-case SEAE. In stage two, SEAEs 

for six selected transformers are determined, as the extra geoelectric field varies in 

direction. In stage three, effective GICs for two transformers are determined using (19) as 

the extra geoelectric field varies in magnitude. 

The motivation for stage one is to investigate the relationship between the physical 

characteristics such as location and dimension of a localized field enhancement and its 

impact scope. For the sake of convenience, the worst-case SEAE is preferred over SEAE 

to avoid the SEAE’s dependence on the angle differences between the lines and extra field. 

Therefore, the magnitude and direction of the extra field are not necessarily to be specified 

here. 0.1 A·km/V and 1 A·km/V are arbitrarily chosen as the thresholds with which the 

worst-case SEAE of each transformer is compared to determine whether the transformer 

is classified as impacted by the localized field enhancement. The impact scope of a 

localized field enhancement is quantified by the radius of the smallest circle that contains 

all the transformers with their worst-case SEAEs exceeding the threshold. The smallest 

circle is referred as the minimal circle in this work. 
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Table 2 

Impact Scopes of Five Localized Field Enhancements 

Local Enhancement Center 47º N, 120º W 39.5º N, 105º W 36º N, 116.5º W 40.5º N, 111º W 39.5º N, 119º W 

Local Enhancement Width 300 km 400 km 500 km 500 km 600 km 

Radius of the Minimal Circle 

(Threshold = 0.1 A·km/V) 

726 km 565 km 678 km 735 km 718 km 

Ratio of Radius to Width 

(Threshold = 0.1 A·km/V) 

2.42 1.41 1.36 1.47 1.20 

Radius of the Minimal Circle 

(Threshold = 1 A·km/V) 

556 km 403 km 521 km 675 km 706 km 

Ratio of Radius to Width 

(Threshold = 1 A·km/V) 

1.85 1.00 1.04 1.35 1.18 

 

Five square localized field enhancements, with their centers and widths shown in 

the first and second rows of Table 2, are applied to the 10k-bus synthetic network 

individually. The impact scopes for the five localized field enhancements are evaluated 

based on different impact evaluation criteria (0.1 and 1 A·km/V) and shown in the third 

and fifth rows, respectively. The ratio of the minimal circle’s radius to the square localized 

field enhancement’s width is used to illustrate the relationship between the impact scope 

and the dimension of the localized field enhancement and presented in the fourth and sixth 

rows of Table 2. The impact scopes of most of the examined localized field enhancements 

are observed to be similar in size to themselves. To be specific, the radii of their impact 

scopes are less than 1.5 times their own widths, even given a conservative evaluation 

criterion (0.1 A·km/V). However, an exception is also observed in this study that the 

smallest localized field enhancement (300 km by 300 km) has a comparatively large 
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impact scope with respect to its own size (1.85 times its width with 1 A·km/V criterion 

and 2.42 times its width with 0.1 A·km/V criterion). It is found that multiple high-voltage 

(765 kV) long-distance transmission lines emanating from the localized field enhancement 

area bring its impact farther through the power grid. To avoid electric field concentration, 

long-distance high-voltage transmission lines are designed with lower resistances and 

subject to higher GICs [2], [21]. Therefore, the worst-case SEAEs for the transformers 

with close electrical connections to these lines are high. 

 

 

Fig.5.  The impact scopes of the five selected localized field enhancements versus different evaluation 

criteria (thresholds) with which the worst-case SEAEs of transformers are compared to determine whether 

the transformers are under impact. 
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Considering the variation in the impact scopes based on different thresholds, Fig.5 

provides an approximate mapping between the impact scopes and impact evaluation 

criteria for the five localized field enhancements.  

 

 

Fig.6.  The portion of the 10k-bus system that includes the power grids in Washington, Oregon, Idaho, 

and Montana.  The system is synthetic and does not represent the actual grids in these states. The boundary 

of the 300 km by 300 km local enhancement area is indicated by the red square. The geoelectric fields 

inside and outside the area are 2 V/km and 1 V/km, respectively, and both of 90 degrees. The yellow 

arrows represent GICs and A-F fields show the locations of the selected transformers. 

 

In stage two, six transformers are selected to undertake the same sensitivity 

analysis performed on the 20-bus system from the previous section. The same GMD 

scenario is taken here, but with the center and width of the square localized field 
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enhancement changed to (47º N, 120º W) and 300 km. Fig.6 shows the portion of the 10k-

bus system that includes the power grids in Washington, Oregon, Idaho, and Montana. 

The boundary of the localized field enhancement area is marked by the red square and the 

locations of the six selected transformers are indicated as the A-F text fields. Transformer 

A, D, E are 345/138 kV autotransformers, while transformer B, C, and F are 765/22 kV 

GSU, 138/13/13 kV three-winding transformer, and 345/14 kV GSU, respectively.  The 

yellow arrows in Fig.6 show the magnitudes and directions of the GICs, where the system 

is subjected to a 90-degree base field and extra field.  

 

 

Fig.7.  The variation in SEAE for the transformer A, B, C, and E with the compass angle of the extra field 

varying from 0 to 360 degrees in steps of 10 degrees. 
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Considering that GICs flow in the same direction as the yellow arrows and have 

magnitudes proportional to the size of the yellow arrows, the high-voltage transmission 

lines (765kV lines are in green and 345kV lines are in red in Fig.6.) are subjected to high 

GICs.  

 SEAE is determined for each of the six selected transformers as the extra field 

varies in direction from 0 to 360 degrees in increments of 10 degrees. The SEAEs for 

transformers D and F are found to be negligible and not explicitly presented here, while 

the SEAEs for the rest of the transformers are presented in Fig.7. The plots in Fig.7 are 

observed to be out of phase with each other, which contradicts the seemingly in-phase 

plots shown in the previous section. Since the phase angle of such a plot depends on the 

characteristics of both the network and localized field enhancement, the plots associated 

with different transformers most likely have different phase angles. 

 Another observation from Fig.7 is that the plots for the transformers inside the 

localized field enhancement area have much higher magnitudes than those for the ones 

outside the area. This indicates that the impact of a localized field enhancement area 

doesn’t propagate far outside the area. In this specific case, transformer F, located about 

600km away from the center of the localized field enhancement area, is not impacted 

anymore. This result is consistent with the observation made in stage one where worst-

case SEAEs were used to measure the impact. However, it is worth noting that the plot for 

transformer C, outside but near the boundary, has a similar magnitude as that for 

transformers E, far from the boundary. This observation indicates that a transformer’s 

proximity to a localized field enhancement does not guarantee a large impact from the 
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localized field enhancement, since various factors such as the transformer’s voltage level, 

transmission lines’ orientations, and localized field enhancement’s physical characteristics 

all affect the degree of impact. Yet, at first glance, the distance between a transformer and 

a localized field enhancement gives a reasonable approximation of the likelihood of the 

transformer being impacted. 

 

 

Fig.8.  The extra field is fixed at 90 degrees (eastward). The red square indicates the boundary of the (300 

km by 300 km) localized field enhancement, while the ovals represent transformers. The sizes of the ovals 

are proportional to the magnitudes of the transformers’ SEAEs, while the fill colors illustrate the actual 

values of the SEAEs.  

 

 To show the distribution of the impacted transformers, with the extra field fixed at 

90 degrees, the SEAEs for the transformers are visualized in Fig.8 using geographic data 

views [22]. At each substation, one transformer is selected to represent all its transformers. 
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Each representative transformer has the largest SEAE magnitude among the set of 

transformers with the highest voltage levels. Each oval indicates a representative 

transformer where the size of the oval is proportional to the absolute value of the SEAE 

and the fill color of the oval shows the actual value of the SEAE. To keep consistent with 

the impact evaluation criterion used in stage one, the ovals for the representative 

transformers with their SEAE magnitudes lower than 1 A·km/V are omitted from Fig.8. 

Considering that the red square shows the boundary of the localized field enhancement 

area, it is observed that most of the transformers outside the area are not subjected to the 

impact of the localized field enhancement just with a few exceptions west of the boundary. 

 During the previous two stages, the impact of a localized field enhancement was 

examined from the sensitivities’ point of view. In stage three, based on (19), the effective 

GICs for transformers A and C are determined under an extra field with a varying 

magnitude. The 300 km by 300 km localized field enhancement centered at (47º N, 120º 

W) is considered here again.  

 

Table 3 

Effective GICs for Transformer A as Extra Field Varies in Magnitude 

Eu (V/km) Ec (V/km) IAEff,u () IAEff (A) IEff (A) 

1 1 14.410 15.600 30.010 

1 2 14.410 31.200 45.610 

1 3 14.410 46.800 61.210 
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Table 4 

Effective GICs for Transformer C as Extra Field Varies in Magnitude 

Eu (V/km) Ec (V/km) IAEff,u () IAEff (A) IEff (A) 

1 1 -11.951 1.076 10.874 

1 2 -11.951 2.153 9.798 

1 3 -11.951 3.229 8.721 

 

Except the localized field enhancement area, the 10k-bus network is subjected to a 90-

degree base geoelectric field of 1 V/km. Meanwhile, the localized field enhancement area 

is subjected to a 90-degree geoelectric field where its magnitude increases from 2 to 4 

V/km in steps of 1 V/km. Table 3 and Table 4 show the base field magnitudes (Eu), extra 

field magnitudes (Ec), the actual effective GICs (IAEff,u) due to the base field, the extra 

actual effective GICs (IAEff or EAE) due to the extra field, and the effective GICs (IEff) 

for transformer A and transformer C, respectively. According to Table 3 and Table 4, the 

SEAEs for transformer A and transformer C are 15.6 and 1.076 A·km/V. For both of the 

transformers, IAEff (EAE) is observed to vary linearly with the extra field magnitude, 

whereas IEff is observed to vary nonlinearly. It is also observed that the IEff of transformer 

A is positively correlated with the extra field’s magnitude, whereas the IEff of transformer 

C is negatively correlated.  

 In fact, such a negative correlation is observed in many transformers near the 

boundary of the localized field enhancement area and with their nearby lines (The nearby 

lines of a transformer are defined as the lines connecting the transformer to the neighbor 

buses.) passing through the area. For each of these boundary transformers, the IAEff 
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contributed by the line segments falling inside the localized field enhancement area has 

the opposite sign of the IAEff,u contributed by all the lines. In other words, if the GICs 

induced by the extra field flow in the opposite direction as the GICs induced by the base 

field, a negative correlation between the transformer’s IEff and extra field’s magnitude can 

be observed.  
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CHAPTER III 1 

IMPACT OF GEOMAGNETIC DISTURBANCES ON POWER SYSTEM 

TRANSIENT STABILITY 

 

Background 

A. Motivation for Research 

In contrast to the impacts of GMDs on systems’ static characteristics (i.e. steady-

state operating conditions), the impacts of GMDs on systems’ dynamic characteristics (i.e. 

transient) have been seldomly studied or considered in reliability criteria. To promote 

research on system dynamic response under the effect of GMDs, it is crucial to show that 

GMDs can alter power system transient stability margin. 

 

B. Literature Review and Research Approach Overview 

Using the same 10k-bus synthetic network [14]-[16] from Chapter 1, this work 

examines the impacts of GMDs on the power system transient stability following different 

single element contingencies. Previous works such as [23] and [24] investigated the 

transient voltage stability of small systems under the effect of GMDs. Reference [23] 

examined how the ramping rates of electric fields, load models, and voltage controls 

influence the voltage stability. Reference [24] studied how different characteristics of 

electric fields impact the transient voltage stability during a high-altitude electromagnetic 

                                                 

1 © [2018] IEEE. Reprinted, with permission, from [Yiqiu Zhang, Impact of Geomagnetic Disturbances on 

Power System Transient Stability, 2018 North American Power Symposium (NAPS), Sept. 2018] 
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pulse (HEMP), a special GMD event as a result of a nuclear explosion. Both of the papers 

used GMDs as the disturbances to the systems, with the severity levels of the disturbances 

dependent on the characteristics of the electric fields such as rise time, decay time, and 

duration. Instead, this study uses the typical single element contingencies as the 

disturbances and assumes a constant electric field throughout each simulation. The 

assumption of a constant electric field is justified by the fact that naturally-occurring 

GMDs, usually with frequencies much below 1 Hz, do not vary much during the transient 

time frame of several dozen seconds. Moreover, the variations in voltage stability and 

rotor angle stability [25] of the 10k-bus system are evaluated using different metrics (e.g. 

maximum voltage drop and critical clearing time). 

 

C. GIC Modeling in Transient Stability 

This section gives an overview of how GICs are modeled in transient stability 

analysis in [24]. GICs induced in transmission lines impact power systems by causing 

half-cycle saturation of transformers and in turn increasing the reactive power losses in 

the transformers. For each of the transformers, the reactive power loss due to GICs can be 

determined by solving 

 

 QLoss,pu = VpuKIGIC,pu (1) 

 

where QLoss,pu is the reactive power loss; Vpu is the ac voltage of the transformer’s high-side 

terminal bus; K is a constant which maps the GICs to the losses and depends on the 
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characteristics of the transformer; IGIC,pu is an adjusted version of the GIC where the 

transformer parameters are incorporated [26], [17], [18]. All the variables with the subscript 

“pu” are expressed in per unit. GICs participate in the dynamics of the system as additional 

constant current reactive loads and alter the reactive power balance equations of the 

transient stability model [24] as follows. 

 

QGen,i – QL,i – QLoss,i –
k=1

n

  ViVkYik sin(i –k –ik ) = 0, 

i =1, …, m 

(2) 

– QL,i – QLoss,i –
k=1

n

  ViVkYik sin(i –k –ik) = 0, 

i = m+1, …, n 

(3) 

 

Equation (2) and equation (3) show the reactive power balance at a generator bus and a 

load bus, respectively. The system has n buses in total, m among which are the generator 

buses. The reactive power consumed by loads at bus i is represented as QL,i. At a high-side 

terminal bus i of a transformer, the reactive power loss due to GICs is represented as QLoss,i. 

At a generator bus i, the reactive power supplied by generators is represented by QGen,i. V  

and    are the bus voltage and bus angle with the subscript (i, k) showing the bus number. 

The admittance between bus i and bus k and associated angle are given by Yik and ik, 

respectively [24]. With combination of a set of differential equations and other constraints 

[27], the system states can be determined using numerical integration. Equation (1) will be 

performed at each iteration to update QLoss,i in (2) and (3). 
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GMD Transient Stability Case Studies 

A. Voltage Transient Stability Analysis for a Generator Outage 

 In the presence of a time-invariant and uniform electric field, the voltage transient 

stability of the 10k-bus system is examined following the loss of one of the biggest 

generators in Arizona. The electric field has a direction of 77 degrees, with north as the 

reference (0 degrees). A 77-degree electric field is chosen, because it will result in the 

maximum reactive power loss for the system. The electric field is increased from 0 to 7 

V/km (The power flow does not converge beyond 7 V/km.) in steps of 1V/km. 0 V/km 

electric field is equivalent to “in the absence of a GMD”. Under the electric field, the 

generator is opened at the first second and the next nineteen seconds of voltage response 

is recorded for a bus in Arizona and a bus in Oregon, respectively. These buses are selected 

for their relatively large variations in their maximum voltage drops in the presence of 

GMDs.  

 The opened generator in Arizona is connected to a high voltage bus (765 kV) 

though a generator step-up (GSU) transformer. Under normal conditions (i.e. in the 

absence of a GMD), the generator provides 1397.5 MW, and is at its maximum Mvar 

output limit of 516.4 Mvar, with its maximum MW output limit to be 1403.2 MW. 

The impact of the GMDs on the voltage transient stability of a bus in Arizona is evaluated. 

The bus of interest is the high-side terminal bus of a 500kV-115kV transformer. 
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Fig.9.  The actual pre-contingency voltage values and transient voltage response of a bus in Arizona after 
the occurrence of the generator outage in Arizona under the effect of different GMDs. Reprinted with 
permission from [Yiqiu Zhang, Impact of Geomagnetic Disturbances on Power System Transient Stability, 
2018 North American Power Symposium (NAPS), Sept. 2018] 

 

Fig.9 shows the actual initial voltage values in the first second (before the occurrence of 

the contingency) and voltage transients for the next nineteen seconds of the bus. The 

curves in different colors represent the voltages of the same bus, with the system subjected 

to the 77-degree electric fields with different magnitudes (i.e. 0, 3, 5, and 7 V/km), 

respectively.  Since power flow solutions determine the initial voltages prior to the 

contingency and the electric field magnitudes determine the reactive power losses due to 

GICs, the initial voltage of the bus in Arizona is observed to vary with different electric 

field magnitudes. However, the initial voltage is not positively correlated to the electric 

field magnitude, given that the yellow curve (E = 5 V/km) is above the green curve (E = 
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3 V/km) in Fig.9. This observation is caused by the inclusion of shunt switching in the 

power flow. In the presence of the 5 V/km electric field, discrete capacitor switching near 

the bus in Arizona is observed, which explains why the initial voltage under this condition 

is greater than that under a lower electric field level.   

 

 

Fig.10.  The actual pre-contingency voltage values and transient voltage response of a bus in Oregon after 
the occurrence of the generator outage in Arizona under the effect of different GMDs. Reprinted with 
permission from [Yiqiu Zhang, Impact of Geomagnetic Disturbances on Power System Transient Stability, 
2018 North American Power Symposium (NAPS), Sept. 2018] 

  

 Following the generator outage, the transient voltage response of a bus in Oregon 

is also recorded and shown in Fig.10, which is organized the same way as Fig.9. The bus 

of interest is the high-side terminal bus of a 765kV-345kV transformer and connected to 

four small generators, through GSU transformers. The same set of observations made from 
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Fig.9 can also be made from Fig.10. Under the effect of GMDs, changes in voltage 

dynamics, reflected by changes in the maximum voltage drop, are also observed and 

shown in Table 5 and Table 6 for the bus in Arizona and the bus in Oregon, respectively.  

 

Table 5 

Bus (Arizona) Voltage Summary under Electric Fields with Various Magnitudes 
Reprinted with permission from [Yiqiu Zhang, Impact of Geomagnetic Disturbances on Power System 

Transient Stability, 2018 North American Power Symposium (NAPS), Sept. 2018] 
Electric Field Magnitude 

(V/km) 
Initial Voltage (p.u.) 

Maximum Voltage Drop 
(p.u.) 

Lowest Voltage (p.u.) 

0 1.0142 0.0185 0.9957 

3 0.9887 0.019 0.9697 

5 0.9952 0.0193 0.9759 

7 0.9873 0.0197 0.9676 

 

 

Table 6 

Bus (Oregon) Voltage Summary under Electric Fields with Various Magnitudes 
Reprinted with permission from [Yiqiu Zhang, Impact of Geomagnetic Disturbances on Power System 

Transient Stability, 2018 North American Power Symposium (NAPS), Sept. 2018] 
Electric Field Magnitude 

(V/km) 
Initial Voltage (p.u.) 

Maximum Voltage Drop 
(p.u.) 

Lowest Voltage (p.u.) 

0 1.0448 0.0108 1.0340 

3 1.0465 0.0115 1.0350 

5 1.0237 0.0117 1.0120 

7 1.0075 0.0122 0.9953 

 

 Table 5 and Table 6 show the actual initial voltages, maximum voltage drops, and 

actual lowest voltages for the bus in Arizona and the bus in Oregon under the effect of the 

different electric fields, respectively. It is observed that the variation in initial voltage of 

either bus is on the order of 0.01 p.u., while the variation in maximum voltage drop for 
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either bus is on the order of 0.001 p.u. Therefore, the variations in lowest voltages are 

more dependent on the changes in initial voltages than on the changes in system dynamics. 

Moreover, there is a positive correlation between the maximum voltage drop and electric 

field magnitude observed in Table 5 and Table 6, which suggests that GICs may tend to 

negatively impact the voltage transient stability of the system. Given the monitored buses’ 

distances from the contingency, GICs can not only impact the voltage transient of the 

buses near the contingency, but also those of the buses far from the contingency. 

 

B. Rotor Angle Transient Stability Analysis for a Transformer Outage 

 In this section, the rotor angle transient stability of the system is examined 

following the loss of an EHV transformer in Arizona. The rotor angle transient of a 

generator in Arizona is monitored in the absence of a GMD or in the presence of a 77-

degree uniform electric field (with north as 0 degrees) of 1 V/km or of 2 V/km. Since the 

generator experiences an unacceptable increment and instability in its rotor angle under 

the 1 V/km electric field and under the 2 V/km electric field, respectively, the usage of a 

metric becomes unnecessary in this case. 

 A 500kV-115kV autotransformer with both its windings grounded is opened at the 

first second in Arizona. Under the electric field of 1 V/km, the reactive power absorbed 

by the transformer is 35.36 Mvar. With the magnitude of the electric field increasing to 2 

V/km, the reactive power absorption increases to 70.71 Mvar. Since the reactive power 

loss imposed on the transformer due to GICs is modeled as a constant current reactive 

load, the system will experience a sudden reactive load loss upon the transformer outage. 
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 The generator of interest is located at a substation, named NOGALES, in Arizona 

and connected to the high-side terminal bus of a 500kV-115kV wye-wye grounded 

autotransformer through a GSU transformer. The generator can provide a maximum of 27 

MW and 13.743 Mvar. The substation containing the opened transformer is connected to 

substation NOGALES by a 500kV 77km long transmission line. The machine, exciter, 

governor, and stabilizer models of the monitored generator are GENROU, EXPIC1, 

GGOV1, and IEEEST, respectively [28]. 

 

 

 

Fig.11.  An EHV transformer in Arizona is opened at t = 1 sec. The rotor angle of a generator at a 
substation, named NOGALES, in Arizona is monitored in the absence or presence of GMDs. Reprinted 
with permission from [Yiqiu Zhang, Impact of Geomagnetic Disturbances on Power System Transient 
Stability, 2018 North American Power Symposium (NAPS), Sept. 2018] 
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 The rotor angle of the monitored generator in Arizona in the absence or presence 

of a GMD is presented in Fig.11. Fig.11 shows the pre-contingency rotor angle in the first 

second and the rotor angle transient for the next twenty four seconds following the 

transformer outage. In the absence of a GMD, the rotor angle increases from -27 to 63.7 

degrees and eventually reaches an equilibrium rotor angle of 37.6 degrees. In the presence 

of the 77-degree electric field of 1 V/km, the rotor angle of the generator experiences a 

425.7-degree increment, settling at 405.9 degrees.  

 

 

Fig.12.  State variable variations for the monitored generator in the absence of a GMD or in the presence 
of different GMDs. Reprinted with permission from [Yiqiu Zhang, Impact of Geomagnetic Disturbances 
on Power System Transient Stability, 2018 North American Power Symposium (NAPS), Sept. 2018] 
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However, such a significant change in a generator rotor angle is prohibited in actual power 

system operations, since the change can cause an unacceptable power swing and make the 

system less secure. Practically, a generator experiencing a significant change in its rotor 

angle will be disconnected from the system by out-of-step protective relays to prevent 

equipment damage, and other system effects. The red curve in Fig.11 indicates that the 

rotor angle of the generator becomes unstable under the effect of the 77-degree electric 

field of 2 V/km. 

 Fig.12 provides the variations in different state variables of the monitored 

generator. The first two subplots show flux linkage variations (i.e. PsiDpp and PsiQpp) of 

the generator, while the third and fourth subplots show the Mvar injection and terminal 

voltage magnitude, respectively. The black, yellow, and red lines in each subplot show the 

variations in the corresponding state variable at E = 0 V/km (in the absence of a GMD), E 

= 1 V/km, and E = 2 V/km, respectively. Upon the transformer outage (at t = 1 sec), the 

terminal voltage of the generator spikes as the result of a sudden increase in Mvar flow 

into substation NOGALES. The generator reduces its Mvar injection into the network and 

even starts to absorb Mvar out of the network, as the Mvar flow into substation NOGALES 

gradually increases. The above description and explanation apply to all three GMD 

scenarios considered here. At E = 1 V/km, the rate of change of the Mvar flowing into 

substation NOGALES starts to increase around t = 12 sec until the valve opening/closing 

rate limit of the generator’s governor is violated around t = 13.5 sec. This violation may 

trigger a control action which causes the reactive power injection to change from 

decreasing to increasing and stabilizes the generator’s rotor angle around t = 13.5 sec, as 
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shown in Fig.11. At E = 2 V/km, the same limit violation occurs around t = 8.3 sec. The 

same reasoning can also be used to explain why the red line in the third subplot changes 

from decreasing to increasing at that time. This case suggests that GMDs can potentially 

cause rotor angle instability through a relatively low electric field. During a severe GMD 

event, GICs will substantially increase and saturate transformers, especially EHV and 

UHV transformers. The transformers can be permanently damaged from overheating. The 

outage of the transformers in such an event will result in more serious consequences, given 

that the system is burdened with a high reactive power demand and faced with a large 

disturbance caused by the sudden loss of a significant amount of reactive load.  

 

Average Bus Frequency Responses at Substations in the Presence of Different Electric Fields 

   
(a) E=0 V/km (b) E=1 V/km (c) E=2 V/km 

Fig.13.  An EHV transformer in Arizona is opened at t =1 sec. The average of bus frequencies at each 
substation is shown for different electric fields. Reprinted with permission from [Yiqiu Zhang, Impact of 
Geomagnetic Disturbances on Power System Transient Stability, 2018 North American Power Symposium 
(NAPS), Sept. 2018] 

 

 Fig.11 shows the rotor angle of a single generator under different GMD conditions. 

We now look at bus frequency responses of the same set of simulations, such as those that 
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may be recorded by devices such as PMUs, to assess the system wide effects. The average 

of bus frequencies at each substation is the selected signal in this analysis.   

 

 

Fig.14.  Modes of oscillation versus their damping ratios where the largest weighted percentage signal is 
from substation NOGALES. Reprinted with permission from [Yiqiu Zhang, Impact of Geomagnetic 
Disturbances on Power System Transient Stability, 2018 North American Power Symposium (NAPS), 
Sept. 2018] 

 

 In the absence of a GMD, both Fig.11 and Fig.13 (a) indicate that the system is 

stable. Fig.13 (b) shows the sudden commencement of oscillations observed at several 

buses at around t = 13 sec, which coincides with the onset of the rotor angle instability in 

Fig.11. Similarly, Fig.13 (c) shows oscillations earlier, at around t = 9 sec. There is a 

certain periodicity in these results (i.e. t = 9, 13, 17 and so), which match up with the times 

when the “notches” occur in the red curve in Fig.11. Fig.14 also shows the key modes 
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with low damping ratios (i.e. < 10%) for each scenario. The damping of these modes 

reduces progressively as the applied electric field increases. Moreover, the electric field 

introduces instabilities, by causing negatively damped oscillations most from one 

particular generating substation named NOGALES. These are shown in Fig.14. 

 

C. Rotor Angle Transient Stability Analysis for a Temporary Balanced Three-Phase Line 

Fault 

 In this section, the rotor angle transient stability of the system is examined 

following a balanced three-phase fault on a line in Utah. The critical clearing time (CCT) 

of the fault is determined by observing the first occurrence of rotor angle instability under 

the effect of an electric field at 77 degrees, with north as the reference. The magnitude of 

the electric field varies from 0 to 4 V/km in steps of 1 V/km. 0 V/km electric field is 

equivalent to “in the absence of a GMD”. 

 CCT is a commonly used metric for evaluating the transient stability of a system 

in a short circuit analysis [29]. CCT is defined as the maximum duration for which a short-

circuit fault can last without the system losing its synchronism [29]. This section 

determines the CCT by gradually increasing the fault duration in the steps of 0.001s and 

using the time just before the observation of the first unstable rotor angle of a generator. 

 A balanced three-phase fault is applied to a 56.8 km long 500kV transmission line 

in Utah. The substations connected by the line have no generators. With no GMD or 77-

degree electric fields of varying magnitudes applied to the 10k-bus system individually, 

the critical clearing time of the fault is determined. 
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Table 7 

CCTs under Electric Fields with Various Magnitudes 
Reprinted with permission from [Yiqiu Zhang, Impact of Geomagnetic Disturbances on Power System 

Transient Stability, 2018 North American Power Symposium (NAPS), Sept. 2018] 
Electric Field Magnitude (V/km) Critical Clearing Time (s) 

0 0.427 

1 0.421 

2 0.419 

3 0.411 

4 0.404 

 

 Table 7 shows that CCT decreases as the electric field magnitude increases. 

Moreover, it is observed that the rotor angle of the generator nearest to the faulted line 

always becomes unstable first regardless of the magnitude of the applied electric field. 

This observation can be explained by the fact that generators, especially the ones close to 

the contingency, are more stressed due to increased reactive power demand under the 

effect of increased GICs. In this specific case, the CCTs in the presence of GMDs are 

shorter than that in the absence of a GMD. As a result of a decreased CCT, the circuit 

breakers designed for normal conditions (in the absence of a GMD) may not be able to 

react promptly in the presence of GMDs. Equipment damage and service interruption are 

more likely to occur in this situation. 
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CHAPTER IV  

SUMMARY AND CONCLUSION 

 

The work specified in Chapter II investigated the impact scopes of localized field 

enhancements by using the superposition principle and defining sensitivities, SEAEs, 

associated with the “extra” fields. The results from sensitivity analysis, conducted 

respectively on a 20-bus system and on a 10k-bus system, suggest that the impact scope 

of a square localized field enhancement area is generally less than 1.5 times its width. An 

exception may occur when high-voltage long-distance transmission lines emanate from 

the localized field enhancement area and propagate the impact farther out (The studied 

example showed that the impact scope of such a square localized field enhancement area 

might reach 2.5 times its width.). It is also found that localized field enhancements tend to 

impact transformers more through the lines with longer segments falling inside the 

localized field enhancement areas than through the lines with shorter segments. For some 

transformers near the boundary of a localized field enhancement, their effective GICs are 

observed to vary negatively with the magnitude of the “extra” field, as the GICs induced 

by the extra field flow in the opposite direction as the GICs induced by the base field. 

The work specified in Chapter III investigated the impacts of GMDs on power 

system transient stability following different single element contingencies, by performing 

case studies on the 10k-bus synthetic network. Both of the voltage stability and rotor angle 

stability were evaluated using the maximum voltage drop and critical clearing time as the 

metrics, respectively. The results of the case studies suggest that power system transient 
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margin can be altered by the presence of GMDs. After the occurrence of a generator 

outage, the maximum voltage drop of a bus near the generator and a bus far from the 

generator was observed to vary positively with the electric field magnitude. Moreover, 

GICs due to a relatively low electric field were observed to be detrimental to the rotor 

angle transient stability and synchronism of certain generators following the loss of an 

element such as a transformer. Also, the change in rotor angle dynamics evaluated using 

the critical clearing time of a balanced three-phase fault was observed under the effect of 

GMDs. The key takeaway from the research is that in addition to steady state power flow 

studies, transient stability studies may also need to be conducted to adequately plan and 

prepare for operating grids securely in the presence of GMDs.  
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