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ABSTRACT 

Membrane desalination provides fresh water product beyond the hydrologic cycle, and is 

promising especially for coastal regions with a freshwater shortage. Membrane lifetime and 

permeate flux are affected by the concentration polarization (CP) phenomenon and membrane 

surface fouling. A numerical simulation model based on the lattice Boltzmann method (LBM) is 

developed and an effective flux boundary scheme is proposed in this study to predict CP and 

inorganic fouling growth. 

Results of the CP and permeate flux prediction are compared with published results in a 

complete rejection condition. When the membrane rejection rate is considered, prediction results 

show that a higher membrane rejection rate results in not only better product water quality but 

also higher CP and lower permeate flux. CP and permeate prediction results in a spacer filled 

desalination channel indicate that there is a higher fouling potential immediately behind the 

spacer filaments. 

Coupling of the CP prediction model with gypsum growth kinetics provides an approach to 

study inorganic fouling growth on the membrane surface at a single crystal level. The axially 

asymmetric growth of the gypsum crystal shown in the fouling growth result could be explained 

by the concentration field result that the salt concentration decreases from the crystal frontal 

flow-stagnation edge to the rear of the crystal. Predicted equivalent radius and accumulated mass 

of the growing gypsum crystal agree with analytical results and published test data. 

A vibration assisted desalination process is proposed and experimentally realized using a 

periodically oscillating desalination cell. Test data shows that CP near membrane surface can be 

reduced in the vibration assisted desalination. A slower flux decline can be observed in the 

vibration assisted desalination with a larger vibration velocity. Experimental observations 
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validate that the proposed vibration assisted desalination process helps enhance the permeate flux 

and mitigate the formation of inorganic fouling on the RO membrane surface. 

A novel desalination centrifuge is designed in this study to reduce desalination hardware 

cost and mitigate membrane fouling. An estimation of energy consumption of the designed 

centrifuge shows that under certain conditions, the power usage by the desalination centrifuge is 

less than the industrial average. 
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NOMENCLATURE 

u  fluid velocity vector, [m/s] 

C  solute concentration, [kg/m3] or [g/L] 

C0  feed water concentration, [kg/m3] or [g/L] 

Cb  feed water buck flow concentration, [kg/m3] or [g/L] 

Cp  permeate water concentration, [kg/m3] or [g/L] 

Cw  solute concentration at the boundary wall nodes, [kg/m3] or [g/L] 

Cf  solute concentration at the boundary fluid nodes, [kg/m3] or [g/L] 

Cs  solute saturation concentration, [kg/m3] or [g/L] 

D  diffusion coefficient or diffusivity, [m2/s] 

δc  concentration polarization boundary layer thickness, [m] 

k  mass transfer coefficient, k = D/δc, [m/s] 

ρ  fluid density, [kg/m3] 

n  unit normal vector to a boundary 

u0  centerline (maximum) velocity of the fluid in a plain channel, [m/s] 

Hc  height of the desalination channel, [m] 

Wc  width of the desalination channel, [m] 

Lc  length of the desalination channel, [m] 

dh  hydraulic diameter, [m] 

L  characteristic length, [m] 

ν  kinematic viscosity of fluid, ν = μ/ρ, [m2/s] 

μ  dynamic viscosity or absolute viscosity of fluid, [(N·s/m2)] or [kg/(m·s)] 

Re  Reynolds number, Re = uL/ν with u the fluid velocity with respect to the object 
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Sc  Schmidt number, Sc = ν/D 

Sh  Sherwood number, Sh = kdh/D 

Pe  Peclet number, Lu/D with u the fluid velocity with respect to the object 

vw  permeate flux (volumetric flux), [m/s] 

SI  supersaturation ratio 

req  equivalent radius of fouling formation, [m] 

Robser  observable removal efficiency of membrane 

Rtrue  true removal efficiency of membrane 

γ  shear rate, [1/s] 

Rej  membrane rejection rate 

rc  desalination system permeate water recovery ratio 



 

ix 

 

TABLE OF CONTENTS 

 Page 

ABSTRACT .............................................................................................................................. ii 

DEDICATION ........................................................................................................................... iv 

ACKNOWLEDGEMENTS......................................................................................................... v 

CONTRIBUTORS AND FUNDING SOURCES ....................................................................... vi 

NOMENCLATURE ..................................................................................................................vii 

TABLE OF CONTENTS ........................................................................................................... ix 

LIST OF FIGURES ..................................................................................................................xii 

LIST OF TABLES .................................................................................................................... xv 

1. INTRODUCTION................................................................................................................... 1 

1.1. Research Background ....................................................................................................... 1 

1.2. Studies of CP .................................................................................................................... 4 

1.3. Studies of Membrane Fouling ........................................................................................... 5 

1.3.1. Simulation of Membrane Fouling ............................................................................... 5 

1.3.2. Membrane Fouling Mitigation ................................................................................... 8 

1.4. Summary ........................................................................................................................ 12 

2. DEVELOPMENT AND VALIDATION OF THE NUMERICAL MODEL .......................... 14 

2.1. Introduction .................................................................................................................... 14 

2.2. Development of the LBM Model .................................................................................... 15 

2.2.1. The Boltzmann Equation.......................................................................................... 15 

2.2.2. The Lattice Boltzmann Equation .............................................................................. 16 

2.2.3. LBM Model for Convection-Diffusion ..................................................................... 16 

2.2.4. Force Term Implementations ................................................................................... 20 

2.3. Basic Boundary Schemes in LBM .................................................................................. 22 

2.3.1. Basic Boundary Schemes for Fluid Dynamics .......................................................... 22 

2.3.2. Basic Boundary Schemes for Mass Transport .......................................................... 25 

2.3.3. Periodic and Symmetrical Boundary Conditions ...................................................... 27 

2.4. Validation of the LBM Model ........................................................................................ 29 

2.4.1. 2D Poiseuille Flow................................................................................................... 29 

2.4.2. 2D Thermal Poiseuille Flow..................................................................................... 31 

2.5. Design of a Flux Boundary Scheme ................................................................................ 33 

2.6. Validation of the Flux Boundary Scheme ....................................................................... 38 



 

x 

 

2.6.1. The Neumann Boundary .......................................................................................... 38 

2.6.2. The Robin Boundary ................................................................................................ 40 

2.6.3. The Reaction Boundary ........................................................................................... 43 

3. PREDICTION OF THE CONCENTRATION POLARIZATION .......................................... 47 

3.1. Model Setup and Boundary Conditions........................................................................... 47 

3.1.1. Simulation Model Setup ........................................................................................... 47 

3.1.2. Boundary Conditions in CP Prediction ..................................................................... 48 

3.2. Treatment of the Large Peclet Number ........................................................................... 50 

3.3. CP Prediction in a Plain Channel .................................................................................... 53 

3.4. CP Prediction in a Spacer Filled Channel ........................................................................ 57 

4. PREDICTION OF THE FOULING FORMATION ............................................................... 60 

4.1. Gypsum Growth Kinetics ............................................................................................... 60 

4.2. Implementation of the Crystal Growth Model in LBM .................................................... 63 

4.2.1. Implementation of Gypsum Growth Kinetics ........................................................... 63 

4.2.2. Implementation of a Reaction Boundary .................................................................. 64 

4.3. Crystal Growth Simulation Results ................................................................................. 66 

5. VIBRATION ASSISTED DESALINATION ........................................................................ 73 

5.1. Experimental Setup ........................................................................................................ 73 

5.1.1. Membrane and Chemicals ........................................................................................ 73 

5.1.2. Feed Water Composition.......................................................................................... 73 

5.1.3. Desalination Cell Apparatus ..................................................................................... 74 

5.1.4. Flow Loop Components ........................................................................................... 75 

5.2. CP Reduction in Vibration Assisted Desalination ........................................................... 76 

5.3. Fouling Reduction in Vibration Assisted Desalination .................................................... 80 

5.3.1. Metrics of Membrane Fouling .................................................................................. 80 

5.3.2. Experimental Procedures ......................................................................................... 81 

5.3.3. Evaluation of MFI in Vibration Assisted Desalination .............................................. 83 

5.3.4. Correlation Between Vibration Velocity and Permeate Flux ..................................... 86 

6. DESIGN OF A DESALINATION CENTRIFUGE ................................................................ 88 

6.1. Features of the Desalination Centrifuge .......................................................................... 88 

6.1.1. Vibration Assisted Fouling Mitigation ..................................................................... 89 

6.1.2. Reduced Energy Consumption ................................................................................. 89 

6.1.3. Reduced CP by Local Flow Instabilities ................................................................... 90 

6.2. Centrifuge Design........................................................................................................... 90 

6.3. Vibration System Dynamic Analysis .............................................................................. 93 

6.3.1. Analytical Modeling ................................................................................................ 93 

6.3.2. Results and Discussions ........................................................................................... 96 

6.4. Centrifuge Power Consumption ...................................................................................... 98 

7. CONCLUSIONS ................................................................................................................. 102 



 

xi 

 

REFERENCES ....................................................................................................................... 106 

APPENDIX A ......................................................................................................................... 114 

APPENDIX B ......................................................................................................................... 119 

 



 

xii 

 

LIST OF FIGURES 

 Page 

Figure 1.1 Illustration of CP Near the Membrane ........................................................................ 3 

Figure 2.1 Illustration of a Straight Bottom Boundary ............................................................... 23 

Figure 2.2 Illustration of the Periodic Boundary Condition ........................................................ 28 

Figure 2.3 Illustration of the Symmetrical Boundary Condition ................................................. 28 

Figure 2.4 Velocity Profile of the 2D Poiseuille Flow................................................................ 30 

Figure 2.5 Accuracy Order of the 2D Poiseuille Flow................................................................ 31 

Figure 2.6 Illustration of the 2D Thermal Poiseuille Flow ......................................................... 31 

Figure 2.7 Temperature Profile of the 2D Thermal Poiseuille Flow ........................................... 33 

Figure 2.8 Simplified Illustration of a Straight Top Boundary ................................................... 36 

Figure 2.9 Concentration Distribution in the Pure Diffusion Process ......................................... 39 

Figure 2.10 Concentration Distribution in the Convection-Diffusion Process ............................ 40 

Figure 2.11 Transient Concentration in Different Simulation Durations..................................... 42 

Figure 2.12 Relative Error Versus Mesh Size in the Robin Boundary Case ................................ 43 

Figure 2.13 Illustration of Boundary Conditions in the Reaction Boundary Case ....................... 44 

Figure 2.14 Steady State Concentration Contours in the Reaction Boundary Case ..................... 45 

Figure 2.15 Relative Error Versus Mesh Size in the Reaction Boundary Case ........................... 46 

Figure 3.1 Illustration of Boundary Conditions for a Desalination Channel ............................... 48 

Figure 3.2 Pure Diffusion with Spatially Variable Diffusion Coefficients .................................. 52 

Figure 3.3 Concentration in the Diffusion-Coefficient Heterogeneity Case ................................ 52 

Figure 3.4 CP and Permeate Flux in a Plain Channel ................................................................. 54 

Figure 3.5 CP in a Plain Channel in Different Simulation Durations .......................................... 55 



 

xiii 

 

Figure 3.6 CP in a Plain Channel with Different Reynolds Numbers ......................................... 55 

Figure 3.7 Concentration Profile and CP Boundary Thickness in a Plain Channel ..................... 56 

Figure 3.8 CP and Permeate Flux with Different Membrane Rejection Rates ............................ 57 

Figure 3.9 CP Near Top and Bottom Boundaries in a Spacer Filled Channel ............................. 58 

Figure 3.10 Cross-flow Velocity in a Spacer Filled Channel ...................................................... 59 

Figure 3.11 Concentration Distribution in a Spacer Filled Channel ............................................ 59 

Figure 4.1 Implementation of the Fouling Growth Model in LBM ............................................. 63 

Figure 4.2 Implementation of the Flux Scheme in Staircase Fouling Structure ........................... 65 

Figure 4.3 Fouling Formation: Present Scheme (Left) and Kang’s Scheme (Right).................... 67 

Figure 4.4 Asymmetric Growth of Gypsum Crystal Fouling ...................................................... 67 

Figure 4.5 Cross-flow Velocity: Present Scheme (Left) and Kang’s Scheme (Right) ................. 68 

Figure 4.6 Field Concentration: Present Scheme (Left) and Kang’s Scheme (Right) .................. 68 

Figure 4.7 Equivalent Radius of Fouling with Different Bicarbonate Concentration .................. 70 

Figure 4.8 Mass Accumulation of Crystals with Different Supersaturation Ratios ..................... 71 

Figure 4.9 Fouling Equivalent Radius and Accumulated Mass Along Channel Length .............. 72 

Figure 5.1 Cross-Section Diagram of the Desalination Cell ....................................................... 74 

Figure 5.2 Mechanical System of the Vibratory Desalination Cell ............................................. 75 

Figure 5.3 Flow Loop System of the Vibratory Desalination Cell .............................................. 75 

Figure 5.4 Velocity and Concentration Profiles in the Desalination Channel.............................. 76 

Figure 5.5 Approximated and Measured CP Modulus................................................................ 79 

Figure 5.6 CP with Different Reynolds Numbers by Stagnant Film Model ................................ 80 

Figure 5.7 Temperature Correction Factors from a Variety of Sources ...................................... 83 

Figure 5.8 Normalized Permeate Flux with Different Vibration Frequencies ............................. 83 



 

xiv 

 

Figure 5.9 Illustration of the Modified Fouling Index ................................................................ 84 

Figure 5.10 MFI Values with Different Vibration Frequencies .................................................. 85 

Figure 5.11 Normalized Flux with Different Vibration Velocities.............................................. 86 

Figure 5.12 Correlation between Permeate Flux and Vibration Velocities ................................. 87 

Figure 6.1 Design of the Desalination Centrifuge ...................................................................... 91 

Figure 6.2 Flow Path of the Desalination Centrifuge ................................................................. 92 

Figure 6.3 Rotation Driven System of the Desalination System ................................................. 92 

Figure 6.4 Cross-Section of Commercial Spiral Wound RO Membrane ..................................... 93 

Figure 6.5 Dynamic Model of the Desalination Centrifuge ........................................................ 93 

Figure 6.6 Required Driving Force with and without Resonant Vibration .................................. 96 

Figure 6.7 Driving Force with Different Vibration Frequencies and Damping Ratios ................ 97 

Figure 6.8 Validation of the Centrifuge Vibration Response ...................................................... 97 

Figure 6.9 Illustration of an Idealized Centrifuge Desalination Process ..................................... 98 

Figure 6.10 Desalination Centrifuge Power Usage Chart ......................................................... 101 

 



 

xv 

 

LIST OF TABLES 

 Page 

Table 1.1 Energy Consumption of Main Desalination Processes (A. Al-Karaghouli, 2013) ......... 2 

Table 5.1 Artificial Seawater Formula ....................................................................................... 73 



 

1 

 

1. INTRODUCTION 

This section covers a background introduction of the present research in saline water 

desalination, recent studies in predictions of the concentration polarization (CP) and membrane 

fouling formation, and a summary of membrane fouling mitigation strategies in academia and in 

industry. 

1.1. Research Background 

Water covers 71% of the earth surface and plays a vital role in the survival of all living 

organisms. Fresh water is vital for people and wildlife, and its withdrawal is necessary for 

agriculture, industry and domestic use. Fresh water is usually defined as water with less than 500 

ppm (parts per million) of total dissolved salts. Out of all water sources on earth, saline water 

such as seawater and saline groundwater makes up about 97% of all water sources, and only 3% 

of earth water sources is fresh water in nature. About 2/3 of fresh water in nature is frozen in 

glaciers and polar ice caps and most of the rest 1/3 is fresh groundwater and soil moisture (only 

1% of the fresh water in nature is surface fresh water in lakes, swamps and rivers). The fresh 

groundwater, soil moisture and surface fresh water is considered available fresh water, which is 

about 0.5% - 0.8% of the total water resource on earth. 

Fresh ground water and surface fresh water is not always sufficiently available, and the 

scarcity is expected to increase in the future [1]. Regions with limited water resources and rapid 

population growth are facing an increasing freshwater shortage. Freshwater scarcity is not only a 

regional challenge but also a global crisis. Therefore, people are seeking alternative water 

sources such as wastewater and saline water to provide supplementary freshwater to human 

societies and to relieve the water shortage pressure. However, different from traditional fresh 

water sources, intensive treatments are needed for these alternative water sources to obtain fresh 
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water, and such treatments like wastewater reclamation and saline water desalination. Although 

wastewater reclamation is more energy efficient than salt water desalination, its freshwater 

product is not enough to meet the increasing demand. 

Freshwater product from saline water desalination is beyond the hydrologic cycle, which 

refers to the continuous exchange of water within the hydrosphere, between the atmosphere, soil 

water, surface water, groundwater, and plants. Besides water purification techniques for 

wastewater and saline water, a coordinated approach involving water management, water 

purification, and water conservation [2] could be adopted to address the freshwater shortage. 

Two most commercially successful saline water desalination technologies are thermal 

distillation and membrane separation. The thermal distillation technology includes multi-stage 

flash (MSF), multi-effect distillation (MED), vapor compression (VC), etc., whereas the 

membrane technology includes reverse osmosis (RO) and electro-dialysis (ED), etc. The energy 

consumption of these most commonly used methods in seawater desalination are shown in Table 

1.1 [3], which indicates that thermal distillation requires higher energy than RO membrane 

desalination. By 2010, the membrane separation technologies accounted about 38%, 87% and 

79% of the total water production from sources of seawater, brackish water and wastewater, 

respectively [4]. RO desalination has been widely applied and is recognized as the leading saline 

water desalination technology [5]. 

Table 1.1 Energy Consumption of Main Desalination Processes (A. Al-Karaghouli, 2013) 

Properties SWRO BWRO MSF MED 

Electrical (kW h/m3) 4-6 1.5-2.5 2.5-5 2-2.5 
Thermal (MJ/m3) None None 190-282 145-230 
Total (kW h/m3) 4-6 1.5-2.5 19.58-27.25 14.45-21.35 
Water Quality (ppm) 400-500 200-500 ≈10 ≈10 

 



 

3 

 

Although membrane desalination consumes less energy than thermal distillation [3], it still 

suffers several aspects of limitations. For example, membrane desalination usually is feedwater 

quality sensitive, has relatively low production rate, and suffers membrane fouling. Membrane 

lifetime and permeate flux are primarily affected by CP and membrane fouling [2]. CP arises 

when a portion of water solvent passes through the membrane and rejected solute ions tend to 

accumulate in the vicinity of the membrane surface, as illustrated in Figure 1.1. A steady-state 

concentration gradient will be established when the solute convection process is balanced by the 

solute back-diffusion process. Thus, CP leads to an elevated solute concentration near the 

membrane surface. The development of CP in a membrane desalination channel is affected by 

local hydrodynamic conditions and mass transport conditions. True CP values usually are 

difficult to observe experimentally [6]. Thus, a numerical CP prediction model is useful and even 

crucial for the performance estimation and process improvement in membrane desalination [7]. 

 
Figure 1.1 Illustration of CP Near the Membrane 

The inherent CP reduces transmembrane pressure and plays a vital role in triggering 

membrane fouling. Membrane surface fouling enhances CP in turn since it hinders back-

diffusion of salt ions, this is called the cake-enhanced CP phenomenon [8]. One popular opinion 

says that the rapid decline of permeate flux over time is a result of membrane fouling, especially 
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inorganic fouling [9], which is a also major obstacle for the wide application of membrane 

desalination [10][11]. Membrane fouling in saline water desalination results in reduced plant 

productivity, deteriorated permeate quality, increased energy consumption, higher treatment cost, 

and shorter membrane life span [12]. 

Despite extensive studies in CP and membrane fouling in membrane desalination processes, 

fundamental mechanisms in terms of fluid dynamics and mass transport for in CP formation and 

fouling growth are still not fully understood. 

1.2. Studies of CP 

The CP phenomenon has been widely studied for membrane desalination processes. The 

stagnant film model (or the classical film theory) provided an intuitive explanation of the CP 

phenomenon [13]. However, in the stagnant film model, the assumption of a uniform CP layer 

and invariant permeate flux along the desalination channel is not accurate for cross-flow 

membrane desalination, where the CP layer develops gradually along the desalination channel. 

Also, the constant permeate flux assumption also leads to significant errors in the CP prediction 

[14]. In later studies, numerical methods were used to solve the solute transport equation 

involving convection and diffusion in a desalination channel, such numerical methods like the 

finite difference method [6][14] and the finite element method [15]. However, all these works 

employed a simplified laminar velocity profile in a porous wall channel with a theoretical 

solution proposed by Berman [16]. Thus, the detailed interaction between flow momentum and 

mass transport in the membrane desalination process was not sufficiently reflected. 

The presence of the feed spacer (or so-called turbulence promoter) in the desalination 

channel affects the concentration distribution in the channel, thus special attention is required for 

the feed spacer during the simulation. It has been reported in the literature [17] that feed spacers 
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can significantly alter hydrodynamic conditions and mass transfer patterns in the membrane 

desalination channel. The commercial computational fluid dynamics (CFD) software has been 

applied as a rigorous tool to predict CP with different feed spacer configurations. The main 

advantage of the CFD software lies in its ability to represent hydrodynamics and mass transfer 

properties in complex geometries utilizing finite element or finite volume numerical approaches 

[18][19]. The enormous improvements in computational methods facilitate the developing of 

more flexible and advanced algorithms that surpass the commercial CFD software to solve 

hydrodynamics coupling mass transport problems. Song [20] developed a two-dimensional 

streamline finite element model to numerically solve the convection-diffusion equation and 

Navier-Stokes equations in a feed channel to predict CP with the presence of the feed spacer. 

The impact of the spacer filament geometry on CP and permeate flux was further studied by 

Song [21] with the same method. 

Kromkamp [22] developed a numerical model in the lattice Boltzmann method (LBM) to 

predict CP in microfiltration of suspension flow. This study [22] assumed that suspended 

particles are fully retained by applying non-flux boundary conditions on the membrane. 

However, this study [22] didn’t consider influences of the membrane rejection rate and spacer 

filaments in the desalination channel on the CP prediction. 

1.3. Studies of Membrane Fouling 

1.3.1. Simulation of Membrane Fouling 

Increased concentration near the membrane surface may cause over-saturation of sparingly 

soluble salts, such as calcium sulfate dihydrate (gypsum, CaSO4·2H2O), calcium carbonate 

(calcite, CaCO3), and barium sulfate (barite, BaSO4), especially in desalination of brackish water 

with higher recovery ratios. When the mineral salt concentration exceeds its saturation, mineral 
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scaling on the membrane surface appears (due to homogenous and heterogeneous mineral salt 

crystallization) which decreases the available permeation surface for fresh water, leading to a 

decline of overall permeate flux [23]. Crystallization on the membrane surface [24] by inorganic 

salts such as the aforementioned CaSO4, CaCO3 and BaSO4 is a common fouling mechanism. 

During the pressure-driven membrane desalination process, ions of inorganic salts are rejected 

and a CP layer will be formed, which results in an initial flux decline due to the increase of 

osmotic pressure. If nucleation of inorganic salts occurs in an over-saturation condition, a scaling 

layer will be formed at the nucleation position on the membrane surface, then a further flux will 

be induced. 

Permeate flux decline due to membrane surface fouling was explained by two mechanisms, 

cake formation (modeled by resistance-in-series) and surface crystallization (modeled by surface 

blockage). Okazaki [25] proposed a cake-filtration mechanism to explain permeate flux decline 

due to gypsum precipitation on the membrane. However, Hasson [26] argued that the flux 

decline mechanism actually involves blockage of the membrane surface by lateral growth of the 

deposit rather than the hydraulic resistance of a cake building up at the membrane surface. 

Thereafter, a flux decline model was proposed by Hasson [27] based on the surface blockage 

mechanism, which fitted flux decline data better than previous studies with the speculatively 

assumed cake filtration mechanism. The cake formation and the surface blockage may occur 

simultaneously as the bulk phase becoming supersaturated when the membrane operates at high 

recovery ratios. Thus, the resulting permeate flux due to membrane fouling can be represented by 

combining the cake filtration and the surface blockage model [4]. In addition to characterize 

formed fouling on the membrane surface using permeate flux, Hasson [28] and Cohen [29] 

derived gypsum growth kinetics and directly quantified gypsum fouling accounting factors that 
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affect crystal growth, such as the mass transfer coefficient and the solution supersaturation ratio. 

Inorganic fouling growth is often a slow kinetic process, and fouling mitigation strategies 

typically rely on thermodynamic solubility calculations and experimental trial and error. 

Numerical modeling could be an effective and economical method for the direct simulation of 

fouling growth and the characterization of local flow and concentration fields. 

Visual inspection and microscopy, although require disassembly of test modules, are direct 

methods to evaluate the extent of inorganic fouling in certain operating conditions and to check 

effects of fouling mitigation strategies. Cohen [30] developed a visual inspection method to 

study the gypsum scale formation in a plate-and-frame RO module via flux decline measurement 

and membrane surface imaging. Thereafter, Cohen [31] utilized the aforementioned direct visual 

observation method in [30] to quantify mineral scale nucleation and crystal growth on the RO 

membrane surface, and to test the effectiveness of antiscalants in retarding mineral scale 

formation. However, this direct observation method was constrained by dimensions of the test 

module, such as the membrane surface area, the membrane length, and the channel height, thus it 

may not be effective as a prediction tool for other desalination systems. Also, the development of 

the hardware module, as well as the destructive testing feature of this method are also 

uneconomical. Furthermore, the fouling attachment will be disturbed during the disassembly 

process, thus the accuracy of this observation method will be reduced. Although a non-

destructive scale observation detector consisting of a plate-and-frame RO cell with an optical 

window, an optical microscope, and a high-resolution digital camera, was developed for a real-

time monitoring of the mineral surface scaling on the RO membrane [32]. Except the real-time 

fouling observation function, this direct observation method still does not provide field results, 

such as fluid dynamics and solute concentration distribution. 
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Numerical modeling should be an effective and economical method for a direct simulation 

of fouling growth and to provide local field results. Picioreanu [33] developed a two-dimensional 

mathematical model integrating fluid dynamics and mass transport to study gypsum 

(CaSO4·2H2O) scaling in a spacer filled desalination channel. The thickness of the outer scaling 

layer during the precipitate expansion is tuned by fitting experimental data while the inner 

precipitate layer does not grow. However, this study [33] only focused on crystal mass 

accumulation on a two-dimensional cross-section of the feed channel, while the expansion of 

gypsum fouling on the membrane surface parallel to channel plates was not addressed. Johns 

[34] performed a three-dimensional simulation for biofilm growth in porous media, which 

showed a promising applicability of LBM in mass transport problems. However, literatures 

involving the modeling and the prediction of inorganic fouling growth on the membrane surface 

to facilitate direct fouling simulation and visualization are still very limited. 

1.3.2. Membrane Fouling Mitigation 

RO membrane fouling is a complicated problem affected by a number of complex physical 

and chemical parameters. Parameters include: 1) feed solution chemistry, particle size, foulant 

concentration and solution pH values; 2) membrane hydrophilicity and surface roughness; and 3) 

operating pressure, cross flow velocity and feed temperature etc. Fane [12] summarized these 

factors into three categories: feed water characteristics, membrane properties, and hydrodynamic 

conditions. 

Thus, the most common fouling mitigating techniques can be correspondingly grouped into 

three categories: 1) feed water pretreatment; 2) RO membrane modification; and 3) optimization 

and alteration of operating conditions. Besides these fouling mitigating techniques, membrane 

cleaning process is vital to reduce already formed fouling. 
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1.3.2.1. Pretreatment 

Feed water pretreatment focuses on removing source water constituents and adjusting feed 

water chemistry, and is necessary to prevent membrane fouling and prolong the membrane 

lifetime. Currently, conventional pretreatment includes disinfection, coagulation and filtration, 

while non-conventional pretreatment includes microfiltration, ultrafiltration and the beach-well 

system [35]. The high ionic strength in seawater reduces the effectiveness of traditional 

pretreatment, thus making it difficult to remove problematic constituents. From the energy 

consumption point of view, the overall energy consumption of new SWRO plants is three to four 

times higher than the theoretical minimum due to the need for extensive pretreatment and 

posttreatment steps [36]. Another effect of pretreatment is that coagulant residuals from the 

pretreatment process may negatively affect reverse osmosis membrane performance [37]. 

1.3.2.2. Antiscalants 

The application of antiscalants in membrane desalination is also a pretreatment process in 

saline water desalination. Low dosage levels of antiscalants in pretreatment can prevent 

precipitation of scale-forming salts by retarding growth of mineral salt crystals and reduce the 

use of hazardous acids since one of the methods to prevent scaling is to reduce the feed water pH 

value [38]. Unluckily, the antiscalants are prone to enhancing biofilm growth on the RO 

membrane (up to 10 times of the membrane’s normal biofilm growth rate) by either altering 

membrane surface properties or by serving as a nutritional source for microorganisms [4][39]. 

1.3.2.3. Membrane Properties 

An innovative method involving the changing of membrane properties shows that by the 

membrane surface modification one can inhibit formation of membrane fouling, especially 

organic fouling and biofouling. 
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A validation case of this method was proposed by Elimelech [40] which used four 

polyamide thin-film composite membranes with different surface characteristics to test the 

influence of the membrane surface roughness on colloidal fouling. AFM analysis revealed that 

particles preferentially accumulate in the valleys of rough membranes and more severe flux 

decline was observed than smooth membranes. 

Based on the finding that the RO membrane with a hydrophobic surface is particularly 

susceptible to organic fouling, Gilron [41] modified commercial RO membranes to get a 

hydrophilic RO membrane. And such modified membranes potentially show better resistance to 

hydrophobic foulants. 

Lee [42] experimentally investigated a method to improve the fouling resistance to more 

general foulants by using hydrophilic epoxy compound on the membrane surface, hydrolyzed 

functional groups were then formed so that less foulants will be brought to the membrane. 

However, given that this membrane surface modification approach aims at increasing the 

hydrophilicity, this method cannot be applied to types of fouling resulting from the deposition of 

small organic molecules or inorganic salts since small particles are less likely to be affected by 

the hydrophilic membrane than hydrophobic foulants. 

And one has to admit that advantages of membrane modification could be hardly observed 

under severe fouling conditions. Once the deposition of foulants has taken place, the surface 

modification is no longer effective to prevent fouling. This is because the effect of solute-

membrane interaction is severely reduced and fouling could be dominated by foulant-deposits-

foulant interaction instead of foulant-membrane interaction. Thus, the surface properties will no 

longer play a role in affecting further deposition of foulants [12][43]. Strategies like alternating 
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properties of hydrodynamics and thermodynamics in operating conditions are promising ideas to 

prevent the deposition of foulants on the membrane surface. 

1.3.2.4. Near Membrane Hydrodynamics 

Membrane fouling is strongly affected by membrane operating conditions, such as the cross-

flow velocity and permeate flux. It is possible to improve the membrane filtration performance 

by altering hydrodynamic conditions near the membrane surface. In general, severe fouling 

occurs at larger permeate flux or smaller cross flow. The cross-flow velocity is defined as the 

superficial velocity of the feed stream travelling parallel (tangential) to the membrane surface. 

The cross-flow velocity has a direct influence on the near membrane mass transfer coefficient. 

Ackerberg [44] experimentally examined the enhancement of mass transfer in pulsatile flow. A 

higher near membrane mass transfer coefficient promotes back-diffusion of salt ions and reduces 

CP. Kennedy [45] proposed that a large near wall velocity induced by pulsating flow helps 

counteract CP. Therefore, the enhancement of the back-diffusion process by altering operating 

conditions are helpful to reduce CP and accordingly reduce membrane fouling. 

Feasible methods of altering membrane operating conditions include: 1) increase the cross-

flow velocity to promote solute back-diffusion; and 2) move the membrane to disturb the fluid-

solid interface boundary layer. In the cross-flow RO system, solely increasing the cross-flow 

velocity is usually achieved by increasing operating pressure. However, both surface 

crystallization and bulk crystallization favor high operating pressure [4], thus this approach tends 

to promote membrane fouling. Bertram [46] experimentally investigated a tubular ceramic MF 

unit with periodically interrupted cross-flow to enhance flux of yeast suspension. The cross flow 

was interrupted periodically (6.3-6.8 Hz) by a pulsation generator. There was a maximum of 

102% flux enhancement for the pulsating feed flow compare to the steady feed flow. However, 
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there are still very limited experimental and theoretical studies in altering the near membrane 

hydrodynamics reported in literatures for membrane desalination processes. One commercial 

application of the membrane moving approach to enhance the cross-flow velocity in RO 

membrane filtration is the vibratory shear enhanced process (VSEP) featuring a torsional 

membrane motion [47]. The VSEP unit operates at a fixed shaking frequency of approximately 

55 Hz with an angular amplitude of 0° - 13°, corresponding to a linear motion of 0 - 3.2 cm at the 

outer edge of a disk with a 28 cm diameter. Experimental studies showed that there is an 

increased natural organic matter removal efficiency [48] and reduced inorganic scaling [49] with 

the VSEP technique. An increased shear rate γ was adopted to explain the mechanism of the 

effect in VSPE [50]. The shear rate, defined as γ = (velocity scale)/(length scale) (s-1) relates the 

cross-flow velocity gradient near the membrane. A larger cross-flow velocity gradient induces a 

higher shear rate and results in increased back-transport of particles away from the membrane 

surface. This phenomenon is termed as shear-induced diffusion [51]. The rotational shaking 

method in VSPE is limited by inconsistent shaking amplitudes throughout the membrane area 

due to radial differences, thus the vibration benefit is not fully achieved. Another approach 

associated with membrane operating conditions is the rotation of the RO module. The rotation of 

the RO module takes advantage of a high shear rate and the Taylor vortex instability to reduce 

the permeate flux decline due to reduced CP and membrane fouling [52]. 

1.4. Summary 

CP and surface fouling are remarkable features affecting the performance of membrane 

desalination processes. In the present work, a numerical model for CP prediction and membrane 

fouling simulation is developed based on the lattice Boltzmann method. Boundary conditions 

involving hydrodynamics, mass transport and reactions are discussed and validated in the LBM 
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framework. A flux boundary scheme is developed to prescribe mass flux directly on the 

boundary, without the normal derivative calculation nor the boundary neighboring nodes 

interpolation. The flux boundary scheme is numerically validated with a number of cases with 

different flux boundary conditions. Successful applications of the proposed flux boundary 

scheme to large Peclet number convection-diffusion desalination processes reveal the CP and 

fouling phenomena. 

A vibration assisted desalination process is proposed to reduce membrane surface CP and 

fouling. This process is realized experimentally by a vibratory desalination cell. The 

experimental setup is introduced and results about CP values and membrane fouling indices are 

discussed. 

Finally, the design of a desalination centrifuge is introduced for a centrifugal reverse 

osmosis desalination idea. The design of the desalination centrifuge in intended to reduce energy 

consumption, mitigate membrane fouling and increase fresh water product during seawater 

desalination process. Details of the design and system dynamics are discussed. The power 

consumption of the centrifuge is also estimated in this work. 
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2. DEVELOPMENT AND VALIDATION OF THE NUMERICAL MODEL 

In this section, a numerical model based on the lattice Boltzmann method (LBM) to predict 

CP and fouling in membrane desalination is developed. First, the basic derivation process from 

the Boltzmann equation to the lattice Boltzmann method is introduced. Thereafter, an LBM 

model solving coupled fluid dynamics and mass transport is developed. Then, basic boundary 

schemes for fluid dynamics and mass transport are introduced and validated. Finally, a flux 

boundary scheme for the numerical study of CP and membrane fouling is designed and validated 

with a variety of cases. 

2.1. Introduction 

The lattice Boltzmann method is a fluid simulation method originated from the kinetic 

theory of gases. The fundamental idea is that gases can be imagined as consisting of a large 

number of small particles moving with random motions. The exchange of momentum and energy 

is achieved through the particle streaming and the particle collision instead of solving Navier–

Stokes equations. Although the streaming and collision processes are applied across a limited 

number of particles, the intrinsic particle interactions in viscous flow can be sufficiently 

represented. 

LBM has been developed as a viable and effective computational method for the simulation 

of fluid dynamics and mass transport. Different from conventional numerical methods, which are 

based on the discretization of macroscopic continuum equations, LBM stems from kinetic theory 

and describes a system from the macroscopic scale [53]. Beyond successful applications in 

complex flows [54][55][56], LBM possesses wide applications in the energy and environmental 

science (such as heat and mass transfer in heterogeneous media [57]), chemical engineering 
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(such as chemical dissolution in porous media [58]), geology (such as mass transport in saturated 

karst [59]), and so on. 

2.2. Development of the LBM Model 

2.2.1. The Boltzmann Equation 

For ideal gas, after the integration of the molecules motion, the Boltzmann transport 

equation can be obtained, as shown in Equation (2.1). 

   , ,f t f
t m


       

r ξ

F
ξ r ξ    (2.1) 

In Equation (2.1), the distribution function f(r,ξ,t) is a fundamental variable in kinetic theory 

representing the density of particles with a velocity of ξ = (ξx,ξy,ξz) at space x and time t, F 

denotes the external force acting on particles at a point of (r,ξ), and the source term Ω(f) is the 

collision operator representing the local redistribution of the distribution function f due to 

collisions, which is actually the rate of change between final and initial status of the distribution 

function. 

The Boltzmann equation is difficult to solve because the collision term Ω(f) is very 

complicated. The original collision operator considers all the possible outcomes of two-particle 

collisions. Bhatnagar, Gross and Krook (BGK) [60] in 1954 introduced a simplified model for 

the collision operator, called the BGK collision operator, as shown in Equation (2.2). 

   eq1
f f f


       (2.2) 

In Equation (2.2), the parameter τ is the relaxation time related to the fluid viscosity in 

hydrodynamics or the diffusion coefficient in mass transport, and feq is the equilibrium 

distribution function such as the Maxwell-Boltzmann distribution function, as shown in Equation 
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(2.3). The BGK relaxation term as a replacement of the original collision operator indicates a 

relaxation of the distribution function towards an equilibrium state. 

   
 

 
 

23 2
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mm
f t
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    

ξ ξ r
r ξ r

r r
   (2.3) 

In Equation (2.3), m is the particle mass, k is the Boltzmann constant, and ρ(r) and T(r) are 

the local density and temperature, respectively. The final Boltzmann-BGK model without 

external forces can be written in Equation (2.4) based on Equation (2.1). 

 eq1f f
f f

t 
 

    
 

ξ
r

    (2.4) 

2.2.2. The Lattice Boltzmann Equation 

By discretizing the Boltzmann-BGK model shown in Equation (2.4), the lattice Boltzmann 

equation (LBE) can be derived, as shown in Equation (2.5). 

       eq1
δ , δ , , ,i i i i if t t t f t f t f t


      x e x x x    (2.5) 

Equation (2.5) is also called the LBGK model. The subscript i in the discretized distribution 

function fi indicates a discrete lattice direction, ei denotes a discrete lattice velocity, δx is the 

lattice spacing, and δt is the time increment. A common terminology used in LBM to refer the 

dimension of the problem and the number of speeds is DnQm, where n represents the dimension 

of the problem (2 for 2D and 3 for 3D) and m refers to the speed model. For example, in a 

commonly used D2Q9 lattice model, the discrete speeds and distribution functions are in 9 

directions, thus the subscript i = 1 ~ 8 in Equation (2.5). 

2.2.3. LBM Model for Convection-Diffusion 

Mass transport of salt ions in feed water during membrane desalination can be described by 

the convection-diffusion process. 
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The convection-diffusion equation for a physical quantity without sources or sinks can be 

expressed in Equation (2.6). 

  0
C

C D C
t


     


u      (2.6) 

In Equation (2.6), C is the variable of interest (such as the species concentration in mass 

transport, or the temperature in heat transfer), D is the diffusivity or diffusion coefficient (such as 

the mass diffusivity in mass transport, or the thermal diffusivity in heat transfer), and u is the 

given velocity that the quantity is moving with. 

The feed water is assumed to be incompressible in this study due to the low cross-flow 

velocity (about 0.1 m/s) in the desalination channel. Two sets of particle distribution functions 

are employed to simulate the convection-diffusion process. One set of distribution function is 

adopted to solve fluid dynamics and another set of distribution function is adopted to solve mass 

transport. The evolution of distribution functions describing the convection-diffusion process is 

governed by the LBGK model shown in Equation (2.7) [61][62]. 
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
       

x e x x x

x e x x x

   (2.7) 

In Equation (2.7), fi(x,t) and gi(x,t) are the distribution functions for the fluid field and the 

concentration field, respectively, at space x and time t, and fi
eq and gi

eq are the equilibrium 

distribution functions for fi and gi, respectively. Again, the subscript of the distribution functions 

i is used to distinguish lattice speed directions, ei denote a lattice velocity, δt is the time 

increment, τ and τs are the dimensionless relaxation times which control the rates approaching 

equilibrium for fi and gi, respectively. The kinematic viscosity ν and the diffusion coefficient D 

are related to the dimensionless relaxation times by Equation (2.8) [61]. 
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The equilibrium distribution functions must be defined appropriately so that the mass and 

momentum are conserved [63]. For small fluid velocities and small Mach numbers, the 

equilibrium distribution functions in Equation (2.7) can be written in Equation (2.9) [64] in order 

to recover the Navier-Stokes equations [65] and the convection-diffusion equation [66]. 
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    (2.9) 

In Equation (2.9), u is the fluid velocity, ρ is the fluid density, C is the solute mass 

concentration, and wi is the weight coefficient. Note that the equilibrium distribution function gi
eq 

can also be written as a similar form like fi
eq [61]. Also, the lattice sound speed cs = c/√3, and in 

which the lattice speed c = δh/δt = 1 for a standard square lattice with the lattice spacing δh = δx 

= δy = 1 and the lattice time step δt = 1. Weight coefficients w0 = 4/9, wi = 1/9 for i = 1~4, and wi 

= 1/36 for i = 5~8 for a D2Q9 lattice model. The discrete velocity ei can be given by Equation 

(2.10). 
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Macroscopic properties, such as the fluid density ρ, velocity u, pressure p, and concentration 

C, are readily available from the distribution functions, as shown in Equation (2.11). 
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Equation (2.11) indicates that macroscopic variables for the fluid mass density ρ and mass 

flux ρu can be directly recovered by the zeroth order moment and the first-order moment of the 

fluid field distribution functions, respectively. The second-order moment Π of the fluid field 

distribution functions relates the momentum flux tensor M. The equilibrium part of the second-

order moment leads to the pressure (isotropic stress) and the convective term in the momentum 

flux tensor [67], as seen in Equation (2.12). 

   
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In Equation (2.12), α and β are coordinates, δαβ is the Kronecker delta, and the equilibrium 

part of the distribution function fi
(0) is equal to the equilibrium distribution fi

eq [68]. The non-

equilibrium part of the second-order moment relates to the shear stress, as shown in Equation 

(2.13). 
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   (2.13) 

In Equation (2.13), sαβ is the shear linear deformation component (rate-of-strain tensor 

component), σαβ is the shear stress component. The non-equilibrium part of the particle 

distribution function fi
(1) is equal to (fi-fi

(0)) [69]. Consequently, the component of the total 

momentum flux tensor M can be expressed in Equation (2.14). 

   0 11
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   (2.14) 

Equation (2.11) also indicates that the concentration C can be calculated by the zeroth order 

moment of the concentration field distribution functions resembling the fluid filed treatment. 
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Both Navier-Stokes equations and the convection-diffusion equation can be recovered from 

the equilibrium distribution functions shown in Equation (2.9) via the Chapman-Enskog analysis 

with a second-order accuracy [70]. In LBM, the domain and boundary are discretized and the 

distribution functions are solved locally at each node through the collision process and the 

streaming process, as shown in Equation (2.15). Then the macroscopic parameters are 

determined following Equation (2.11) using the post-streaming form of the distribution 

functions. 

       

   

eq1
, , , , , Collision

δ , δ , , Streaming

i i i i

i i i

t t t t

t t t t



   


 





     

   

x x x x

x e x

  (2.15) 

In Equation (2.15), the distribution function φi stands for either the fluid filed distribution 

function fi or the concentration field distribution function gi, and φi
+ is the post-collision form of 

the distribution function of φi. In the computing process, each lattice site at point x and time t 

stores m populations of φi for a DnQm LBGK model. In the collision step (or called the 

relaxation step), each population φi(x,t) receives a collisional contribution and becomes φi
+(x,t). 

The collision process is a local and algebraic operation. In the streaming step (or called the 

propagation step), all post-collision populations stream along their associated direction ei to 

reach a neighboring lattice site where they become φi(x+eiδt,t+δt). The streaming process is a 

non-local operation [71]. 

2.2.4. Force Term Implementations 

LBE for hydrodynamics without external forces can be expressed in Equation (2.5). In the 

presence of a force density term F = ρα (force per volume or pressure gradient, with a unit of 

N/m3 or Pa/m), where α is the acceleration due to F, the LBE must be modified to account for the 

force by adding an additional term to the LBE, as shown in Equation (2.16). 
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       eq1
δ , δ , , , δi i i i i if t t t f t f t f t F t


       x e x x x   (2.16) 

Note that during the implementation process, the force term Fi, which can be calculated by 

Equation (2.17) in order to match the correct Navier-Stokes equations [72], should be added to 

the post-collision distribution function fi before the post-streaming process. And the lattice time 

step δt in Equation (2.16) is unity. 
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In Equation (2.17), Fi has a unit of kg/(m3·s). The calculation of the fluid velocity u in 

Equation (2.11) should be updated with Equation (2.18) with the external force term F. 
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For a thermal lattice Boltzmann model, the LBE with a source term can be expressed in 

Equation (2.19). 
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The term Hi represents the effect of viscous heating and can be determined by Equation 

(2.20) [73]. 
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In Equation (2.20), Φ is viscous heating term due to viscous dissipation, as shown in 

Equation (2.21) with a unit of kg/(m·s3), cp is the specific heat at constant pressure, and τh is the 

dimensionless relaxation time in heat transfer LBM. 
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For incompressible flow, the divergence of the flow velocity ∇·u = 0, then Φ can be 

simplified, as shown in Equation (2.22). 

2
2 s s s          (2.22) 

In Equation (2.21) and Equation (2.22), sαβ is the rate-of-strain tensor component, which can 

be calculated by the non-equilibrium part of the second-order moment shown in Equation (2.13). 

2.3. Basic Boundary Schemes in LBM 

Same as in other numerical methods, boundary schemes in LBM are critical for successful 

simulations of both fluid dynamics and mass transport. Usually the inward distribution functions 

from the solid boundary toward the fluid domain are unknown in the streaming process, and need 

to be determined following boundary condition constraints at the fluid-solid interface. There are 

a variety of boundary schemes existing for general or specific applications. 

2.3.1. Basic Boundary Schemes for Fluid Dynamics 

2.3.1.1. The Bounce-back Boundary Scheme 

In hydrodynamics, the most common fluid-solid interface condition is the no-slip boundary. 

The bounce-back scheme in LBM can be used to model the no-slip boundary (stationary or 

moving) or flow-over obstacles. The bounce-back scheme follows a rule that distribution 

functions hitting a rigid wall during streaming are reflected back to where they originally came 

from. The bounce-back scheme indicates that there is no flux (no mass flux in fluid dynamics or 

in mass transfer) across the boundary since all particles are bounced back, and that there is no 

slip on the wall since there is no relative transverse motion between fluid and boundary [71]. 

For a stationary boundary wall, the bounce-back scheme can be expressed by Equation 

(2.23). In Equation (2.23), fi
+ is the known post-collision distribution function at node xf, fi* is the 

unknown post-streaming distribution function in the opposite direction of fi
+. After the collision 
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process and in the streaming step, the post-collision distribution function fi
+ at the boundary 

nodes xf leave xf at time t and encounter the wall surface at time t+δt/2 where it is reflected back 

with a velocity ei* = -ei, arriving at time t+δt at the node xf from which they came. 

   * *δ 2 δ 2, δ ,i f i i i ff t t t t f t   x e e x     (2.23) 

After the standard streaming step, unknown post-streaming distribution functions at 

boundary nodes should be calculated by Equation (2.23). For example, as illustrated in Figure 

2.1, distribution functions f1, f3, f4, f7 and f8 are known from the streaming process, and the 

unknow distribution functions can be specified as f2 = f4
+, f5 = f7

+, and f6 = f8
+. 

 
Figure 2.1 Illustration of a Straight Bottom Boundary 

The standard bounce-back formula shown in Equation (2.23) should be corrected to count a 

given amount of momentum for a moving boundary wall, as shown in Equation (2.24) [74], in 

order to prescribe a no-slip wall boundary with a wall velocity vector uw. 
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e u
x e e x    (2.24) 

Equation (2.24) shows that only the velocity component along the link direction (ei*·uw) is 

included in the calculation of unknown post-streaming distribution functions. Also, in Equation 

(2.24), ρw is the fluid density defined at the wall location xw = xf + 1/2eiδt. The bounce-back 

scheme for a moving boundary shown in Equation (2.24) can be used to prescribe a known 

velocity boundary, i.e. a Dirichlet boundary condition. 
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It is known the bounce-back scheme in LBM assumes that the boundary is located midway 

between solid and boundaries. So, if in a validation simulation, a half lattice spacing should be 

taken into consideration when using the bounce-back scheme. 

2.3.1.2. The Zou-He Velocity Scheme 

In LBM, a general approach to find the fluid density on a straight boundary subject to a 

Dirichlet velocity boundary is through the fluid velocity u and mass flux ρu calculated in 

Equation (2.11). For a straight bottom wall shown in Figure 2.1, the zeroth order moment and the 

first-order moment of the fluid field distribution functions can be calculated as shown in 

Equation (2.25). 
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  (2.25) 

In Equation (2.25), the boundary velocity to be prescribed uw = (uw,x, uw,y), the lattice speed c 

is unity. The fluid density at the wall node can first be determined from Equation (2.25) as 

shown in Equation (2.26). 

 0 1 3 4 7 8
,

1
2

1w

w y

f f f f f f
u

        
   (2.26) 

However, f2, f5 and f6 remain underdetermined. To close the system, Zou and He [75] 

proposed that bounce-back rule is still correct for the non-equilibrium part of distribution 

functions normal to the boundary. Thus, for the bottom boundary shown in Figure 2.1, f2-f2
eq = 

f4-f4
eq. With f2 obtained, f5 and f6 can be found, as shown in Equation (2.27). 
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   (2.27) 

Equation (2.27) is only viable for the bottom boundary, and similar procedures can be used 

to obtain the calculation equations on top, left and right boundaries. This boundary scheme is the 

so-called wet-node approach and is feasible on straight boundaries. This boundary scheme can be 

used prescribe the known velocity boundary and is also called the Zou-He boundary condition. 

2.3.2. Basic Boundary Schemes for Mass Transport 

Robin boundary conditions (or called third type boundary conditions), which are a weighted 

combination of Neumann boundary conditions and Dirichlet boundary conditions as shown in 

Equation (2.28), are widely applied in simulating mass transport processes governed by the 

convection-diffusion equation shown in Equation (2.6). 

1 2 3 , 0 ,s

C
C t t  


    


x

n
   (2.28) 

In Equation (2.28), n is a unit normal vector for the boundary ∂Ω pointing outward from the 

solid phase to the fluid phase, coefficients αk (k=1,2,3) should be given functions of space x and 

time t, and ts is a pre-specified simulation time. Specifically, if α1 = 0 and α2 ≠ 0, Equation (2.28) 

represents a Dirichlet boundary condition; if α1 ≠ 0 and α2 = 0, Equation (2.28) represents a 

Neumann boundary condition. 

For a Dirichlet boundary in mass transport, a constant wall concentration Cw = α3/α2 should 

be prescribed on the boundary. Zhang [61] proposed that the Dirichlet boundary can be 

implemented using an anti-bounce-back scheme shown in Equation (2.29) for a stationary 

boundary. 
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   * , , 2f i f i wi
g t t g t w C    x x     (2.29) 

In Equation (2.29), gi
+ is the known post-collision distribution function at node xf, gi* is the 

unknown post-streaming distribution function in the opposite direction of gi
+, and wi is the 

weight coefficient. 

For interpolation type boundary schemes, unknown post-streaming distribution functions 

can be calculated by interpolating known post-collision distribution functions at boundary-

neighboring nodes with a series of carefully chosen interpolation coefficients [76][77]. However, 

interpolation-based schemes for treatment of curved boundaries destroy mass conservation near 

the boundary and the interpolation-free approaches in LBM for curved boundaries can improve 

the accuracy of the computed results [78]. 

When the boundary moves with a nonzero velocity uw, Equation (2.29) should be corrected 

as shown in Equation (2.30) for a Dirichlet boundary condition [61] on a moving wall. 
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In LBM, a Neumann boundary can be transformed into a Dirichlet boundary by the finite 

difference method to approximate the normal derivative [61][62]. For example, the normal 

derivative of the concentration in a mass transport process can be approximated by the unknown 

wall concentration Cw at a wall node xw and the known concentration Cf at a neighboring fluid 

node xf along the normal direction, as shown in Equation (2.31). 

f w

f w

C CC
D D




 n x x
     (2.31) 

Note that in the right-hand side of Equation (2.31), the numerator of the finite difference 

approximation should always be (Cf -Cw) when considering the direction of the unit normal 
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vector n. Then the calculated wall concentration Cw will be imposed to calculate the unknown 

post-streaming distribution functions following exactly the Dirichlet boundary treatment by the 

anti-bounce-back scheme shown in Equation (2.29) and Equation (2.30). 

Yoshino [64] proposed a flux boundary scheme in LBM which can be used to impose the 

flux boundary directly without using the finite difference nor the interpolation treatment. 

However, this boundary scheme was based on an assumption that mass flux of σ-species normal 

through the boundary is zero, and the unknown wall concentration at the boundary Cw is 

specified by Equation (2.32). 
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The calculated wall concentration Cw will be used to calculate the unknown distribution 

functions by gi = wiCw (ei·n>0). Since this flux boundary scheme assumes that normal flux 

through the boundary is zero, thus it could be called a zero-flux boundary scheme. This zero-flux 

boundary scheme can be used to predict membrane CP under a complete rejection assumption (a 

100% rejection rate). 

2.3.3. Periodic and Symmetrical Boundary Conditions 

The periodic boundary condition and the symmetric boundary condition can be used both in 

fluid dynamics LBM and in mass transport LBM. 

2.3.3.1. The Periodic Boundary Condition 

In a numerical simulation, if the fluid filed or the concentration field is periodically varying 

in space or is infinitely large in a direction, a periodic unit can be used to represent the whole 

domain, and periodic boundary conditions will be adopted at corresponding boundaries [71]. The 

Periodic boundary condition states that fluid leaving the domain on one side will, 
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instantaneously, re-enter at the opposite side. The periodic boundary condition can be illustrated 

in Figure 2.2. 

 
Figure 2.2 Illustration of the Periodic Boundary Condition 

The periodic boundary illustrated in Figure 2.2 can be prescribed using Equation (2.33). 
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In Equation (2.33), the distribution φi represents either fi or gi, and nodes at i = 0 or i = Nx+1 

are solid nodes. 

2.3.3.2. The Symmetrical Boundary Condition 

A symmetrical boundary, where one half of the domain is the mirror image of the other, can 

be implemented to save computer resources. The symmetrical boundary condition can be 

illustrated in Figure 2.3. 

 
Figure 2.3 Illustration of the Symmetrical Boundary Condition 

The symmetrical boundary illustrated in Figure 2.3 can be prescribed using Equation (2.34). 
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Distribution functions φ4,8,7(i,0) in post-streaming form in Equation (2.34) equal post-

collision distribution functions on real fluid nodes (i,1) in corresponding directions. A free-slip 

boundary condition, which enforces a zero normal fluid velocity un = 0 with a nonzero tangential 

fluid velocity ut, can be implemented exactly the same way as the symmetry boundary condition. 

2.4. Validation of the LBM Model 

2.4.1. 2D Poiseuille Flow 

Fully developed two-dimensional Poiseuille flow driven by a pressure gradient (external 

force) has a parabolic velocity profile as shown in Equation (2.35). 

 1
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p
u y H y

x
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  


    (2.35) 

In Equation (2.35), ux is the velocity along the channel length direction (uy = 0), μ is the 

dynamic viscosity in the bulk, and H is the channel height. The pressure gradient G is a constant 

relating to the channel centerline velocity u0 by Equation (2.36) [75]. 
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
    (2.36) 

In Equation (2.36), the driving acceleration ax is in the channel length direction, the 

kinematic viscosity ν = μ/ρ, and the flow density ρ is a constant. The Reynolds number relates 

the channel centerline velocity u0 through Re = u0H/ν. Thus, the analytical velocity profile can be 

obtained as shown in Equation (2.37). The pressure gradient in Equation (2.36) can be 

implemented in LBM following Equation (2.16). 
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   (2.37) 

In the validation simulation, the kinematic viscosity ν = 1.0×10-6 m2/s, the channel height H 

= 10 m, the Reynolds number is selected to be Re = 200, the solution density ρ = 1×103 kg/m3. 
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The channel centerline velocity is calculated to be u0 = umax = 2×10-5 m/s using the selected 

Reynolds number. The no-slip bounce-back boundary scheme is used for the top boundary (y = 

0) and the bottom boundary (y = H) of the channel flow. Analytical and LBM simulation results 

of the Poiseuille flow velocity profile can be seen in Figure 2.4. 

 
Figure 2.4 Velocity Profile of the 2D Poiseuille Flow 

Figure 2.4 shows that the simulation result with LBM matches well with the analytical 

result. The accuracy of the LBM model is examined by the relative l2-error norm versus the mesh 

size. The relative error norm in the whole computational domain is defined with Equation (2.38). 
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The summation in Equation (2.38) covers all nodes in the simulation domain. The velocities 

unum and uana denote the numerical value and the analytical solution, respectively. Three 

Reynolds numbers Re = 100, 200, 300 are selected for a better evaluation. For each Reynolds 

number, eight different meshes with node number in y direction NY = 10, 20, 30, …, 80 are 

adopted. The relative error calculation results are shown in Figure 2.5. 
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Figure 2.5 Accuracy Order of the 2D Poiseuille Flow 

Figure 2.5 indicates that the developed LBM model with the bounce-back boundary scheme 

has a convergence order of 2. 

2.4.2. 2D Thermal Poiseuille Flow 

In this validation case, the two-dimensional Poiseuille flow problem with a constant wall 

temperature Tt is considered, as illustrated in Figure 2.6. 

 
Figure 2.6 Illustration of the 2D Thermal Poiseuille Flow 

For incompressible flow with a constant specific heat capacity and a constant thermal 

conductivity, the equation of the conservation of energy can be written in Equation (2.39). 
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In Equation 2.39, cp is the specific heat capacity at constant pressure, k is he thermal 

conductibility with a unit of W/(m·K) or kg·m/(s3K) with K the temperature unit Kelvin, T is the 
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temperature, and Φ is the viscous heating source given in Equation (2.22). For strictly 

incompressible solids and liquids, the density does not depend on the temperature, and then the 

constant volume and constant pressure specific heat capacities are equal, cp = cv. The thermal 

diffusivity is defined as α = k/(ρcp) with a unit of m2/s, and a dimensionless Prandtl number is 

defined as the ratio of momentum diffusivity to thermal diffusivity as Pr = ν/α = μcp/k. Thus, the 

temperature distribution is given in Equation (2.40) [79]. 
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In Equation (2.40), -h ≤ y* ≤ h, 0 ≤ y ≤ H, h = H/2, and y* = y-H/2. The pressure gradient in 

Equation (2.40) can be given by Equation (2.36) for two-dimensional Poiseuille flow. Thus, 

Equation (2.40) becomes Equation (2.41). 
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  (2.41) 

In Equation (2.41), Pr* = Pr/cp = μ/k. In the numerical simulation, two Pr* are selected as 

Pr* = 0.5×106, 1.5×106 K·s2/m2 (K is a temperature unit, Kelvin), Pr is fixed to be 0.6 from the 

constant viscosity ν = 1.0×10-6 m2/s and the thermal diffusivity α = 1.6667×10-6 m2/s (α is 

calculated based on the selected dimensionless relaxation time τh = 1.0), and the calculated 

specific heat capacity at constant pressure cp = 1.2×10-6, 1.2×10-6 m2/(K·s2) for Pr* = 0.5×106, 

1.5×106 K·s2/m2, respectively. The thermal LBM model with a source term shown in Equation 

(2.19) is used for the simulation. Analytical and simulation results of the Poiseuille flow 

temperature profile can be seen in Figure 2.7, which shows that the simulation result with LBM 

matches well with the analytical result for both of the two selected characterizing numbers Pr*. 
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Figure 2.7 Temperature Profile of the 2D Thermal Poiseuille Flow 

Thus, selected validation cases for the developed LBM model in fields of fluid dynamics 

and heat transfer (the mass transport problem is similar to hear transfer problem without the 

heating source term) show that the developed numerical model is viable for the simulation of 

membrane desalination processes. 

2.5. Design of a Flux Boundary Scheme 

Flux is an important physical variable in heat transfer and mass transport involving both 

convection and diffusion. A general mathematical definition of the total flux Jσ due to 

convection and diffusion governed by Equation (2.6) can be given by Equation (2.42). Note that 

flux here is by default the heat flux in heat transfer or the mass flux in mass transport, instead of 

the flow mass flux ρu in hydrodynamics. 

C D C   J u      (2.42) 

Chai [66] proposed a numerical method to calculate boundary mass flux in the LBM 

framework, however, this method was not extended as a boundary scheme to prescribe boundary 

flux. Physically, heat and mass flux can be calculated directly through the flux definition shown 
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in Equation (2.42), and the gradient of the variable on boundary nodes or in interior lattice nodes 

can be computed by Equation (2.43) [76][80]. 
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Note that Equation (2.43) is slightly different than the form in reference [76] since the lattice 

speed c is included in the discrete velocity ei as shown in Equation (2.10). After a rearrangement 

of Equation (2.43), Equation (2.44) can be obtained. 

28

0

δ
=

3 δi i
i

h
g C C

t





  
     

   
 e n u n     (2.44) 

The present flux boundary scheme is based on a finding that total flux normal through the 

boundary equals the projection of the first-order moment of distribution functions on the surface 

normal, and in which, the known distribution functions should be in a post-collision form while 

the unknown distribution functions should be in a post-streaming form, as shown in Equation 

(2.45). 
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   (2.45) 

The detailed derivation of Equation (2.45) can be seen in Appendix A. In the present flux 

scheme, the unknown post-streaming distribution functions can be calculated from the post-

collision distribution functions and the prescribed flux constraint. The calculation of the normal 

derivative in flux Jσ with the finite difference method or boundary-neighboring nodes 

interpolation treatment can be avoided. Although the derivation of Equation (2.45) in Appendix 

A utilizes the finite difference approximation, the implementation of this boundary scheme to 

calculate the unknown post-streaming distribution functions only involves boundary local nodes. 
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The very important step is to construct approximation equations for unknown distribution 

functions to close the system since Equation (2.45) only provides one equation. One 

approximation method for these unknown distribution functions was proposed by Yoshino [64] 

for a zero-flux boundary. In the present study, the same approximation method is adopted and 

test cases demonstrate that the approximation is still valid although the present boundary scheme 

removes the zero-flux assumption. On boundary nodes, unknown distribution functions are 

approximated by Equation (2.46) [64]. 

i i wg w C       (2.46) 

The approximation equation shown in Equation (2.46) is actually the equilibrium 

distribution function for the concentration field shown in Equation (2.9) with the fluid velocity 

term eliminated. It can be demonstrated that if the concentration field equilibrium distribution 

functions are used directly as approximation equations without eliminating the velocity term, the 

final result is the same as using reduced approximation equations shown in Equation (2.46). 

Another approximation method to close the system was proposed by Kang in [81][82][83], 

which stated that the non-equilibrium portion of the distribution functions on the boundary are 

equal in magnitude but take on opposite signs in reverse directions, as shown in Equation (2.47). 

neq neq
*i ig g        (2.47) 

In Equation (2.47), subscripts i and i* are used to denote distribution functions in opposite 

directions, i.e. ei* = -ei. The proposed flux boundary scheme is explained using a straight top 

boundary illustrated in Figure 2.8. 
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Figure 2.8 Simplified Illustration of a Straight Top Boundary 

The projection of the first-order moment of distribution functions on the boundary normal n 

can be calculated following Equation (2.45) and shown in Equation (2.48). 
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In Equation (2.48), c is the lattice speed which is unity, Jy is the flux magnitude through the 

top boundary. Substitute the approximate equations for g4, g7 and g8 in Equation (2.46) into 

Equation (2.48), the wall concentration Cw can then be calculated, as shown in Equation (2.49). 
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The unknown post-streaming distribution functions g4, g7 and g8 can be calculated by the 

approximation equation in Equation (2.46) and the calculated wall concentration Cw in Equation 

(2.49). From Equation (2.45) and as discussed in Appendix A, the generalized calculation 

method for the wall concentration Cw can be given by Equation (2.50). 
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If the approximation of unknown distribution functions adopts Equation (2.47), and 

combining Equation (2.47) with local equilibrium distribution functions in Equation (2.9) yields 

Equation (2.51). 
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   (2.51) 

Substitute the approximate equations for g4, g7 and g8 in Equation (2.51) into Equation 

(2.48), the wall concentration Cw can be calculated, as shown in Equation (2.52). 
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The unknown post-streaming distribution functions g4, g7 and g8 should be calculated by the 

approximation equation in Equation (2.51) and the calculated wall concentration Cw in Equation 

(2.52). Then the generalized calculation method for the wall concentration Cw should be given by 

Equation (2.53). 
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Note that each approximation method has a specific generalized form of the wall 

concentration Cw, and unknown post-collision distribution functions should be calculated 

through Cw and the corresponding approximation approach in Equation (2.46) or in Equation 

(2.47). In most cases, the two approximation methods expressed by Equation (2.46) or Equation 

(2.47) provide identical results. In this study, the first approximation method expressed by 

Equation (2.46) is adopted in validation and application cases. 

The calculation of the wall concentration by Equation (2.50), and then the calculation of the 

unknown distribution functions based on the approximation equations following Equation (2.46), 

show that the present boundary scheme only involves boundary local nodes. Such a local 

boundary scheme is desirable in simulating transport processes in complex geometries, such as in 

porous media. 
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2.6. Validation of the Flux Boundary Scheme 

Cases with different types of flux boundary conditions are investigated to validate the 

present flux boundary scheme. These flux boundary conditions cover the general Neumann 

boundary (for the diffusive flux boundary), the zero normal derivative Neumann boundary (for 

the convective flux boundary), and the total flux boundary (for the convective plus diffusive flux 

boundary). 

2.6.1. The Neumann Boundary 

The Neumann boundary is usually used to prescribe the normal derivative of a variable on 

the boundary. A pure mass diffusion problem is invested with top and bottom boundary 

conditions expressed in Equation (2.54). The rectangular simulation domain L×H is prescribed 

with a Dirichlet boundary at bottom (y = 0) and a Neumann boundary at top (y = H). Both the left 

boundary (x = 0) and the right boundary (x = L) are periodic boundaries. Since it is a pure 

diffusion problem, there is no fluid flow through the simulation domain, i.e. u = 0 in Equation 

(2.45). Also, from Equation (2.54), the concentration derivative normal to the top boundary (y = 

H) varies sinusoidally along the horizontal x direction. 
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In Equation (2.54), the wave number β = π/24 for convenience. The system is analytically 

solvable and the exact solution of this problem is shown in Equation (2.55) [62]. 
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The height of the simulation domain H = 20, and the length of the simulation domain L = 48. 

The Dirichlet boundary condition is applied on bottom (y = 0) according to Equation (2.29) with 
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selected concentrations C0 = 1 and Cs = 0.01 [62]. All simulation parameters are in lattice units 

(dimensionless), and conversion procedures between physical units and LBM units are shown in 

Appendix B. When the developed flux boundary scheme in Equation (2.50) is applied on the top 

Neumann boundary, the calculated wall concentration can be shown in Equation (2.56). 
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The simulation result can be expressed by the concentration distribution at 5 different 

horizontal positions (x = 1/4L, 3/8L, 1/2L, 5/8L, 3/4L) from the bottom wall to the top wall. 

Figure 2.9 shows simulation results using different boundary schemes, which indicates that the 

predicted concentration distribution using the present flux boundary scheme is identical to the 

result using the finite difference scheme, and both results match well with the analytical solution. 

 
Figure 2.9 Concentration Distribution in the Pure Diffusion Process 

Besides the above pure diffusion case, a convection-diffusion process is tested for further 

validation. The fluid flow is added for the convection-diffusion transport with a Reynolds 

number Re = 10 and a Peclet number Pe = 10. For the flow field, a pressure-driven Poiseuille 

flow is assumed for the x direction (horizontal direction) velocity with a maximum centerline 

velocity umax = 0.0833 in a lattice unit. The bottom boundary (y = 0) is a no-slip boundary and 

the top boundary is a velocity boundary with ux = 0 and uy = 0.001 in a lattice unit. The adoption 
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of the velocity boundary uy on the top boundary is intended to generate mass convection through 

the boundary. For the concentration field, all parameters and boundary conditions stay the same 

as in the pure diffusion case. Thus, the top boundary (y = H) of the concentration field is a mass 

flux boundary involving both convection and diffusion. The left boundary (x = 0) and the right 

boundary (x = L) are periodic boundaries for both flow field and concentration field. 

Concentration distributions at 5 different horizontal positions (x = 1/4L, 3/8L, 1/2L, 5/8L, 

3/4L) from the bottom wall to the top wall with the finite difference scheme and the present flux 

scheme can be seen in Figure 2.10. 

 
Figure 2.10 Concentration Distribution in the Convection-Diffusion Process 

Results in Figure 2.10 show that the present boundary scheme matches with the finite 

different scheme, and the total concentration in the simulation domain is reduced due to mass 

convection through the top boundary. However, at the top boundary, the concentration gradients 

at different horizontal positions are the same as the pure diffusion case because of the same 

constraint of the Neumann boundary shown in Equation (2.54). 

2.6.2. The Robin Boundary 

The Robin boundary is a weighted combination of the Dirichlet boundary and the Neumann 

boundary, which can be used to prescribe the total flux boundary composed of convection flux 

and diffusion flux. This validation case focuses on a time-dependent convection-diffusion 
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problem in a two-dimensional domain L×H with constant mass flux as the input from the inlet (x 

= 0). For the concentration field, the detailed initial and boundary conditions can be described 

using Equation (2.57). For the flow field, the inlet (x = 0) is a velocity boundary. The bottom 

boundary (y = 0) and the top boundary (y = H) of the simulation domain are symmetric 

boundaries for the flow field and the concentration field. 
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In Equation (2.57), D = 0.01 m2/s, Cf = 50 mol/m3, and L = 1 m. The non-dimensional Peclet 

number Pe = uxL/D = 1. The inlet velocity ux can be calculated using the Peclet number. The 

Neumann boundary defined in Equation (2.57) at the outlet (x = L) indicates that there is no 

diffusion flux through this boundary. When t is sufficiently small, the above problem has an 

asymptotic solution shown in Equation (2.58) [76]. 
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  (2.58) 

In Equation (2.58), exp is the exponential function and erfc is the complementary error 

function. The present flux boundary scheme Equation (2.45) is used to prescribe the Robin 

boundary at the inlet (x = 0) and the Neumann boundary at the outlet (x = L). The simulation 

results of concentration distribution with the present flux boundary scheme matches well with 

the analytical asymptotic solution at different time spots, as seen in Figure 2.11. These results 

show that the concentration on the left inlet boundary increases with time, and it is foreseeable 
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that the concentration in the whole domain will finally reach Cf if the simulation time is long 

enough. 

 
Figure 2.11 Transient Concentration in Different Simulation Durations 

The accuracy of the boundary scheme is examined by the relative l2-error norm versus the 

mesh size. The relative error norm in the whole computational domain is defined with Equation 

(2.59). 
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The summation in Equation (2.59) covers all nodes in the simulation domain. 

Concentrations Cnum and Cana denote the numerical value and the analytical solution, 

respectively. The simulation time t = 5s, and four different concentration relaxation times τs = 

0.05, 0.8, 1.0, 2.0 are selected for a better evaluation. For each relaxation time, eight different 

meshes are adopted with the node number in x direction NX = 10, 20, 30, …, 80. The relative 

error calculation results are shown in Figure 2.12, which indicates that the new flux boundary 

scheme has a convergence order of 1. 
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Figure 2.12 Relative Error Versus Mesh Size in the Robin Boundary Case 

The convergence order evaluation result is within expectation since the approximation 

equation shown in Equation (2.46) for the unknown distribution functions is first order. A higher 

convergence order, if desirable, may be achieved with a higher order approximation algorithm as 

a replacement of Equation (2.46). 

2.6.3. The Reaction Boundary 

To further validate the proposed flux boundary scheme, a reaction boundary in a rectangular 

domain with the length and the height as L×H is selected and for which there exists an analytic 

solution. Refer to Figure 2.13 and Equation (2.60), the reaction takes place at the top boundary (y 

= H) with first-order linear kinetics, which is actually a Newman boundary. At the bottom 

boundary (y = 0) and the right boundary (x = L), zero concentration gradient normal to the 

boundary is specified. Solute is allowed to diffuse into the domain from the left boundary (x = 0), 

thus there should be a Dirichlet boundary condition (C = C0) specified there. 
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Figure 2.13 Illustration of Boundary Conditions in the Reaction Boundary Case 
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   (2.60) 

In Equation (2.60), the reaction rate kr = 0.1, the diffusion coefficient D = 1/6, the 

equilibrium concentration Ceq = 1, the inlet concentration C0 = 10, the length of the simulation 

domain L = 100, and the height of the simulation domain H = 80 (all parameters are in lattice 

unit). The analytical solution for C(x,y) can be obtained by separation of variables, as shown in 

Equation (2.61) [82]. 
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The variable βn in Equation (2.61) can be determined from the transcendental equation in 

Equation (2.62). 
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The left Dirichlet boundary is prescribed using Equation (2.29), the right and the bottom 
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(2.45). Two boundary schemes are used on the top reaction boundary for a comparison purpose, 

which are Kang’s (improved) reaction boundary scheme [83] and the present flux boundary 

scheme Equation (2.45). The analytical result as well as the simulation result for the solute 

concentration at steady state are shown in Figure 2.14. 

 
Figure 2.14 Steady State Concentration Contours in the Reaction Boundary Case 

Figure 2.14 shows that near the top reaction boundary, simulation result by the present flux 

boundary scheme matches better with the analytical result. 

The accuracy of the boundary scheme for the reaction boundary is examined by the relative 

l2-error norm versus the mesh size following Equation (2.63). 
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Two reaction rates are selected as kr = 0.1, 0.01. For each reaction rate, seven different mesh 

plans with node number in y direction NY = 40, 60, 80, 100, 120, 140, 160 are adopted. The 

relative error calculation results are shown in Figure 2.15. 
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Figure 2.15 Relative Error Versus Mesh Size in the Reaction Boundary Case 

Figure 2.15 shows that although both Kang’s reaction boundary scheme [83] and the present 

flux boundary scheme have an accuracy order of 1, the present flux boundary scheme has lower 

relative error for both of the reaction rates. 
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3. PREDICTION OF THE CONCENTRATION POLARIZATION* 

This section covers the application of the developed LBM model in the CP study. First, the 

setup of the simulation model and its boundary conditions are introduced. Then viable treatment 

to deal with the large Peclet number problem existing in seawater desalination is discussed and 

adopted to improve the numerical stability of the LBM model. Thereafter, CP and permeate flux 

in a plain channel are predicted and compared with a finite element method (FEM) benchmark 

with a complete membrane rejection assumption. Then CP and permeate flux are studies with 

different membrane rejection rates. Finally, CP and permeate flux in a spacer filled desalination 

channel are predicted with the LBM model. 

3.1. Model Setup and Boundary Conditions 

3.1.1. Simulation Model Setup 

A benchmark model is selected for the verification of the CP prediction model. Song [21] 

developed a finite element model for the CP prediction, in which both fluid dynamics and mass 

transport can be simultaneously solved either in a plain channel and in a spacer filled channel. In 

this study, the simulation domain covers the initial 1 cm length upstream of the desalination 

channel, since CP develops faster at this initial length and then increases very slowly along the 

extra channel length. The height (in y direction) of the desalination channel Hc = 1 mm and the 

length (in x direction) of the channel Lc = 1 cm. The width (in z direction) of the channel is 

                                                

 

*Part of this section is reprinted with permission from “Numerical Modeling of Concentration Polarization and 
Inorganic Fouling Growth in the Pressure-Driven Membrane Filtration Process” by Wende Li, et al., 2019. Journal 
of Membrane Science, 569, 71-82 (https://doi.org/10.1016/j.memsci.2018.10.007), Copyright [2019] by Elsevier. 
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assumed to be sufficiently large in spanwise direction, thus a two-dimensional simulation 

domain is targeted to represent the desalination channel. 

3.1.2. Boundary Conditions in CP Prediction 

The geometry of the spacer filled feed channel in the pressure-driven membrane desalination 

process and applied boundary conditions are illustrated in Figure 3.1. Boundary schemes in LBM 

for the fluid dynamics and the mass transport are applied separately. The distribution functions φi 

in Figure 3.1 denotes fi for the fluid field or gi for the concentration field. 

 
Figure 3.1 Illustration of Boundary Conditions for a Desalination Channel 

3.1.2.1. Hydrodynamics Boundary Conditions 

The known velocity boundary condition is applied for the bottom boundary and the top 

membrane boundary by the Zou-He boundary scheme [75] to prescribe the permeate flux normal 

through the membranes. The tangential velocity on the bottom and top boundaries is set to be 

zero to meet the no-slip condition. The bounce-back scheme is used to prescribe the no-slip 

boundary condition at the circumference of the spacer filaments. Following the bounce-back 

scheme, the unknown populations in post-streaming form on boundaries can be calculated 

through Equation (2.23). 

3.1.2.2. Mass Transport Boundary Conditions 

In solving the convection-diffusion equation, a zero-flux boundary scheme will be used at 

the membrane boundary (if in a full membrane rejection condition) and around the feed spacer 
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filaments. Yoshino zero-flux boundary scheme [64] comprising a wall concentration Cw 

calculation equation shown in Equation (2.32) and approximation equations for unknown post-

streaming distributions functions is suitable to prescribe zero-flux boundaries in the desalination 

channel illustrated in Figure 3.1. Also, in mass transport problems governed by the convection-

diffusion equation shown in Equation (2.6), the mass particles bounce-back boundary [84] 

resembling the non-slip bounce-back boundary in hydrodynamics shown in Equation (2.23) can 

also be used prescribe the zero-flux boundary. 

The membrane mass rejection rate is defined as Rej = (conductivity of feed-conductivity of 

permeate)/(conductivity of feed)×100% = (1-Cp/C0)×100%, and in which Cp is the permeate 

water concentration, and C0 is the feed water concentration. For a complete rejection membrane, 

the rejection rate Rej = 100% since the permeate flux salinity Cp = 0. Usually the permeate flux 

(volumetric flux, with a unit of m·s-1) through the membrane can be measured, and salt ion mass 

flux (rate of mass flow per unit area, with a unit of kg·s-1·m-2) through the membrane can be 

treated as a convection process. This is because the RO membrane is very thin, and if the mass 

flux is assumed a constant through the membrane, there should be no accumulation of salts ions 

within the membrane. This assumption indicates a constant salt concentration and a negligible 

concentration gradient in the membrane. Thereafter, the mass diffusion process is ignored (the 

concentration gradient is negligible) and only the mass convection process is considered.  

Thus, referring to the flux boundary scheme proposed in Equation (2.46) and Equation 

(2.50), the mass flux boundary scheme incorporating the rejection rate can be designed and 

shown in Equation (3.1). 
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3.2. Treatment of the Large Peclet Number 

In many mass transport cases, small particles such as ions in dilute solution have a very 

small diffusion coefficient. For example, the self-diffusion coefficients of the five major ions in 

seawater at 25 °C are all in the order of 1×10-9 m2/s [85]. Following the conversion procedures 

shown in Appendix B between lattice units and physical units, the solute relaxation time can be 

calculated by Equation (3.2). 

  1, 121 2 3 3 1 2c t

LBM s s LBMD c t D           (3.2) 

The diffusion coefficient DLBM with a lattice unit in Equation (3.2) can be calculated from 

the diffusion coefficient DPHY = 1.5×10-9 m2/s with a physical unit. Then the calculated relaxation 

time τs = 0.5008, which is actually near the instability value of 0.5 in LBM [61]. Sometimes, in a 

coupled simulation of Navier-Stokes equations and the convection-diffusion equation, the 

correlation between the fluid field relaxation time τ and the concentration field relaxation time τs 

should be strictly controlled to accurately represent the ratio of convective mass transport to 

diffusive mass transport. The Peclet number can be defined to be the ratio of advection by the 

flow for a physical quantity to the rate of diffusion by an appropriate gradient, as shown in 

Equation (3.3). 
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Lu Lu

D D
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In Equation (3.3), L is the characteristic length, u the local flow velocity, D the mass 

diffusion coefficient, ν is the kinematic viscosity, and Sc is the Schmidt number. Take seawater 

for example, the kinematic viscosity ν = 1×10-6 m2/s, and the calculated Schmidt number Sc ≈ 

667. From Equation (3.3), for a channel flow with Re = 100, the calculated Peclet number Pe ≈ 

66700. In a mass transport process with such a large Peclet number, the mass diffusion can 

actually be ignored in the desalination channel bulk flow since mass convection is dominant. 
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However, in other cases, such as mass transport in membrane filtration, although bulk flow mass 

transport is convection dominant, near-membrane mass transport is not necessarily convection 

dominant. Mass diffusion plays an important role near the boundary layer since permeate flow 

induced convection is comparable with the concentration gradient induced back diffusion near 

the membrane surface. Thus, the simulation of such a complex convection-diffusion process is 

challenging with a regular LBM routine. 

Perko developed an effective lattice Boltzmann scheme to deal with the instability problem 

featuring large diffusion-coefficient heterogeneities and high-advection [86] in convection 

diffusion processes. The basic idea is to divide the physical diffusion coefficient into a reference 

value Dref, which is constant over the entire domain, and a fluctuating residue value Dres, which 

represents a deviation from the reference, as D = Dref + Dres. Then, the fluctuating residue 

diffusion part is transferred to an advection term by introducing a diffusion velocity ud, as shown 

in Equation (3.4). 

   ref res ref dC D D C D C C        J u u u    (3.4) 

In Equation (3.4), the diffusion velocity can be calculated by Equation (3.5). Note that all 

variables in Equation (3.5) should be in lattice unit. 
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For a transport process with a very small diffusion coefficient and a very large Peclet 

number, such as in seawater desalination, the reference diffusion coefficient can be selected to be 

a large value for a better numerical stability, and then the calculated residue fluctuating diffusion 

part should be negative. A validation case is adopted to investigate the feasibility of the present 
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boundary scheme in the application of the Peclet number transport process following the 

treatment proposed by Perko [86]. 

A validation case focusing on a pure mass diffusion process in a simulation domain 

comprised of three regions is selected, as seen in Figure 3.2. The first and last 2 cm regions have 

a small diffusion coefficient Dlow = 1×10-11 m2/s, while the middle 0.06 m region has a much 

larger diffusion coefficient Dhigh = 2000Dlow. The reference diffusion coefficient is selected to be 

Dlow for the whole domain. The initial concentration C(x,t0) = 0.1 mol/m3. The left boundary of 

the simulation domain is prescribed with a constant concentration as a Dirichlet boundary, and 

the right boundary is a zero diffusive flux Neumann boundary (zero gradient normal to the 

boundary). Symmetric boundaries are assumed on the top boundary and the bottom boundary. 

Simulation time is selected to be 500 days. A numerical solution was obtained in reference [86] 

using commercial FEM-based COMSOL Multiphysics software. 

 
Figure 3.2 Pure Diffusion with Spatially Variable Diffusion Coefficients 

Simulation results of the present flux boundary scheme, as well as the finite difference 

boundary scheme are compared with the reference solution, as shown in Figure 3.3. 

 
Figure 3.3 Concentration in the Diffusion-Coefficient Heterogeneity Case 

Dlow

0.02 m

D·∂C(L,t)/∂n=0 mol/(m2·s)

C(x,t0) = 0.1 mol/m3

Dhigh Dlow

C(0,t) = 0 mol/m3

0.02 m

L=0.1 m
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Well match of results shown in Figure 3.3 from different numerical methods and boundary 

schemes demonstrate the feasibility of the present flux boundary scheme in the simulation of 

large Peclet number convection-diffusion process. 

3.3. CP Prediction in a Plain Channel 

Pressure-driven RO seawater desalination is a convection dominant large Peclet number 

process since the diffusion coefficient of salt ions in the feed flow is very small (in an order of 

10-9 m2/s). Treatment for the numerical instability problem due to a large Peclet number 

discussed in Section 3.2 is used to improve the numerical stability. 

The transmembrane permeate flux will be calculated in each time step and then be 

prescribed on membrane boundaries of the desalination channel. The permeate flux vw = Per·(Δp-

Δπ), as given by reference [87], in which Per = 7.3×10-12 m/(s·Pa) is a permeability constant of 

the RO membrane, Δp = 5.5×106 Pa is the transmembrane pressure, and Δπ is the osmotic 

pressure between the feed side and the permeate side of the RO membrane. The concentration of 

the feed seawater C0 = 32,000 mg/L, the diffusion coefficient of salt ions in the feed seawater D 

= 1.5×10-9 m2/s. The flow in the desalination channel (with or without spacers) is driven by a 

pressure gradient (G=-∂p/∂x, in a unit of N/m3), which can be achieved by adding a body force 

density term in LBM shown in Equation (2.16) following Guo’s force term implementation 

method [72]. The pressure gradient for the feed flow in the desalination channel ∂p/∂x = -800 

Pa/m. 

First, the zero-flux boundary by the proposed flux boundary scheme is prescribed on 

membrane boundaries located at top and bottom of a plain desalination channel, which means 

there is no mass flux through the membrane and all salt ions are rejected by the membrane. The 

bounce-back scheme in LBM is used to prescribe the zero-flux boundary for a comparison 
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purpose. Simulation results of CP and permeate flux, as well as the FEM benchmark by Song 

[21], are shown in Figure 3.4. 

 
Figure 3.4 CP and Permeate Flux in a Plain Channel 

Figure 3.4 shows that results from the proposed flux boundary scheme match better with 

published FEM benchmark results than the bounce-back scheme especially at the vicinity of the 

inlet. For the bounce-back scheme, the post-streaming distribution functions are calculated using 

the post-collision distribution functions in the collinear opposite directions only (along the link 

direction). This means all mass particles are bounced back without any slip at the membrane 

boundary. However, the no-slip constraint is released in the present flux boundary scheme, in 

which the post-collision distribution functions in multiple non-collinear directions are accounted 

to calculate the post-streaming distribution functions. Since the no-slip constraint of the bounce-

back boundary scheme delays the relative transverse motion between mass particles and 

boundaries, the predicted CP near the inlet is higher than that using the present flux boundary 

scheme. While far from the inlet and near the steady state CP region, the difference vanishes for 

the two schemes. This can explain the better match of the simulation results with the present flux 

boundary scheme near the inlet region shown in Figure 3.4. 
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To check whether CP and permeate flux reach steady state, simulations with different 

durations (2s, 4s, and 8s) are performed, and results shown in Figure 3.5 demonstrate that the 

settling time for CP and permeate flux is less than 2s. 

 
Figure 3.5 CP in a Plain Channel in Different Simulation Durations 

The CP development in feed flow with different Reynolds numbers can be seen in Figure 

3.6. In Figure 3.6, reduced CP and increased permeate flux can be observed for feed flow with 

higher Reynolds numbers. This is because in feed flow with higher Reynolds numbers, the back-

diffusion process tends to be promoted thus the solute accumulation near the membrane surface 

is reduced. 

 
Figure 3.6 CP in a Plain Channel with Different Reynolds Numbers 
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The thicknesses of CP boundary layers in feed flow with different Reynolds numbers can be 

seen in Figure 3.7. All boundary thicknesses in different Reynolds numbers are about 0.125 mm. 

But a detailed view in Figure 3.7 shows that a higher Reynolds number not only induces a lower 

CP value but also causes a thinner CP layer thickness. 

 
Figure 3.7 Concentration Profile and CP Boundary Thickness in a Plain Channel 

The CP prediction with the membrane salt rejection rate varying from 50% ~ 100% is 

performed by applying the rejection rate coupled mass flux boundary scheme shown in Equation 

(3.1). Prediction results for CP and permeate flux with different membrane rejection rates are 

shown in Figure 3.8, which indicate that CP is lower with a lower membrane rejection rate. This 

is because more salt ions will be transported though the membrane to the permeate side in a 

lower rejection rate situation and less amount of salt ions will be accumulated near the 

membrane surface. 
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Figure 3.8 CP and Permeate Flux with Different Membrane Rejection Rates 

Also, permeate flux prediction results in Figure 3.8 show that the membrane designed with a 

higher salt rejection rate has lower permeate flux. This conclusion indicates a trade-off between 

the membrane selectivity (salt rejection) and the membrane permeability (permeate flux), as 

reported by reference [88] that highly permeable membranes lack the selectivity and vice versa. 

Detailed review and discussion about the permeability-selectivity trade-off for synthetic 

membranes can be seen in reference [88]. 

3.4. CP Prediction in a Spacer Filled Channel 

The staggered configuration of the spacer filaments in a desalination channel is illustrated in 

Figure 3.1. The diameter of the spacer filament is 0.5 mm, and the distance between adjacent 

spacer filaments is 2.5 mm. In this study, the distance between the center of a cylindrical 

filament to the nearest membrane is set to be 0.3 mm.  
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CP prediction results in the spacer filled channel with different Reynolds numbers can be 

seen in Figure 3.9. Reynolds numbers in Figure 3.9 are calculated using maximum velocities in 

the channel. 

 
Figure 3.9 CP Near Top and Bottom Boundaries in a Spacer Filled Channel 

Results in Figure 3.9 show that CP values near the corner of spacer filaments are higher than 

those far from spacer filaments. This is because the fluid velocity around the corners of spacers 

is lower than the velocity far from the spacer elements. However, CP values far from spacers are 

lower than the plain channel CP values, this is because the cross-flow velocity far from spacer 

filaments (such as the position between two spacer filaments) in a spacer filled channel are larger 

than the cross-flow velocity in a plain channel at the same position. Whereas the comparison 

between a plain channel CP and a spacer filled channel CP with a same Reynolds number (Re = 

29.6) shown in Figure 3.9 indicates that plain channel CP is lower than spacer filled channel CP 

at the spacer filament locations. CP curves shown in Figure 3.9 also shows that the maximum CP 

near the bottom membrane is almost the same as the maximum CP near the top membrane for 
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the same Reynolds number. Also, as in the plain channel, a larger CP value can be observed in 

feed flow with a lower cross-flow Reynolds number Figure 3.9. 

The cross-flow velocity in the spacer filled channel with different Reynolds numbers can be 

seen in Figure 3.10. 

 
Figure 3.10 Cross-flow Velocity in a Spacer Filled Channel 

The concentration distribution profile in the spacer filled channel can be seen in Figure 3.11. 

 
Figure 3.11 Concentration Distribution in a Spacer Filled Channel 

Figure 3.11 shows that more rejected salt ions accumulate immediately behind the spacer 

filaments. This observation conforms to the cross-flow velocity profile shown in Figure 3.10, in 

which the fluid velocity immediately behind the spacer filaments is lower than that in front of the 

filaments. Also, a larger Reynolds number reduces the concentration accumulation at this fouling 

potential area immediately behind the spacer filaments. 
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4. PREDICTION OF THE FOULING FORMATION* 

This section covers the simulation of inorganic fouling growth in terms of the fouling size, 

formation and mass accumulation. Gypsum scale is selected as a representative for the inorganic 

fouling, and a single gypsum crystal is focused. First, gypsum growth kinetics is introduced. 

Thereafter, the implementation of the gypsum growth kinetics and a reacting boundary condition 

is discussed in the LBM framework. Finally, simulation results of gypsum growth are validated 

and discussed. 

4.1. Gypsum Growth Kinetics 

In order to develop effective fouling mitigation strategies, there is a need for a direct 

quantification of fouling formation on the RO membrane surface. 

Q. Kang et. al. proposed a lattice Boltzmann model for crystal growth in a supersaturated 

solution [81], but the influence of the fluid flow on the growth of the crystal was not considered, 

and the crystal growth model was also lattice grid dependent. In the present study, a 2×2 mm2 

membrane surface area is targeted. The top and bottom edges of the simulation domain are 

assumed to be symmetric boundaries. Both hydrodynamic conditions and mass transfer 

parameters are set to be the same as those in the CP prediction model, except the pressure 

gradient (G = -∂p/∂x) in the feed channel since the cross-flow velocity near the membrane 

surface should be lower than the cross-flow velocity in the bulk flow. The pressure gradient is set 

                                                

 

*Part of this section is reprinted with permission from “Numerical Modeling of Concentration Polarization and 
Inorganic Fouling Growth in the Pressure-Driven Membrane Filtration Process” by Wende Li, et al., 2019. Journal 
of Membrane Science, 569, 71-82 (https://doi.org/10.1016/j.memsci.2018.10.007), Copyright [2019] by Elsevier. 
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to be 160 Pa/m and the cross-flow velocity near the membrane surface is approximately 0.2 

times of the cross-flow velocity in bulk flow. 

Calcium sulfate dihydrate (gypsum) is selected as the mineral scalant, given its common 

occurrence in desalination of ground brackish water as well as its tenacity of the formed gypsum 

scale [31][89]. While calcite scaling can be controlled by pH adjustment, gypsum scaling 

remains one of the major factors that limits the product water recovery [30]. In this study, a 

direct simulation of the gypsum scale formation at a single crystal level is targeted with respect 

to different solution supersaturation levels on the membrane surface. 

Two pathways for the crystallization have been identified [90]: surface (heterogeneous) 

crystallization and bulk (homogeneous) crystallization. A variety of studies showed that at low 

supersaturation levels (supersaturation ratio SI < 3), the gypsum nucleation mechanism was 

heterogenous [91][92]. Thus, only the dominant surface crystallization mechanism in the 

pressure-driven membrane filtration process by inorganic salts CaSO4 is considered here. 

According to Cohen [29], the growth of a single gypsum crystal on the membrane surface can be 

described by standard diffusion gypsum growth kinetics as shown in Equation (4.1). 

 m c s

dM
k A C C

dt
       (4.1) 

In Equation (4.1), M is gypsum crystal mass, Ac is the single crystal surface area in contact 

with the solution, C and Cs are the solution concentration and saturation concentration, 

respectively, and km is the solute mass transfer coefficient in crystal growth. 

Equation (4.1) shows that growth of gypsum crystal mass, at a given solution saturation with 

respect to the gypsum (i.e., SIg), is directly proportional to the gypsum crystal surface area. Also, 

surface gypsum crystals gradually grow into rosette structures as reported in [29] for RO 
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membrane desalination. A hemispherical geometry is taken to represent the gypsum rosette, thus, 

Equation (4.2) can be derived from Equation (4.1). 

 
3

2 2

2
3

2 2
eq g

eq

g eq m eq s

d r
drdM

r k r C C
dt dt dt

 
 

 
 
        (4.2) 

In Equation (4.2), req is the equivalent radius of the coverage area by a single crystal, ρg is 

the effective density of the gypsum crystal. Thus, the gypsum crystal growth equation can be 

derived and given by Equation (4.3). 

 eq m
s

g

dr k
C C

dt 
       (4.3) 

Hasson [28] proposed that the radial growth of gypsum crystals is described by the widely 

adopted kinetic expression shown in Equation (4.4). 

 n

g w s

dr
k C C

dt
        (4.4) 

In Equation (4.4), Cw is the solute mass concentration at the membrane surface, k is the 

crystallization rate coefficient, and n is the order of the kinetic equation. 

The value of n is either 1 or 2 [4][28] in Equation (4.4). When the crystallization process is 

diffusion controlled, n = 1 and k = km (mass transfer coefficient in crystal growth). When the 

crystallization process is controlled by a surface reaction, n = 2 and k = kr (surface integration 

rate coefficient). 

It should be noted that Cohen [31] and Lee [93] stated that CaSO4 crystallization in the 

cross-flow membrane system follows a first-order equation (n = 1). Thus, the derived crystal 

growth equation shown in Equation (4.3) should be the same as Hasson’s kinetic expression 

show in Equation (4.4). In this study, gypsum growth kinetics expressed in Equation (4.1) and 

Equation (4.3) will be implemented in the crystal growth LBM model. 
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4.2. Implementation of the Crystal Growth Model in LBM 

4.2.1. Implementation of Gypsum Growth Kinetics 

A node number independent crystal growth implementation scheme is developed in LBM 

for the direct evaluation and quantification of crystal growth radius and mass. If a constant mass 

transfer coefficient km is supposed, the rate of surface crystallization is directly proportional to 

the membrane wall concentration of CaSO4 salts [93]. Discretizing Equation (4.3) yields 

Equation (4.4). 

 m
eq w s

k
r C C t


        (4.4) 

The saturation concentration Cs of calcium sulfate at a given temperature can be estimated 

through Equation (4.5). 

   3 31846 9 10 g L or kg m , 15 30 CsC T T           (4.5) 

The saturation concentration Cs of calcium sulfate is calculated to be 2.071 g/L at a given 

temperature of 25 °C. The concentration of CaSO4 in seawater near the membrane surface Cw = 

SI×Cs, in which SI is the supersaturation ratio. Since the crystal growth in LBM may not 

necessarily be a circle, the equivalent radius req is used record the crystal size by transforming 

the arbitrary shape into a circular form, as seen in Figure 4.1. 

 
Figure 4.1 Implementation of the Fouling Growth Model in LBM 
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A node coverage ratio of the gypsum crystal Rsc is defined to record the growth of the 

crystal, as shown in Equation (4.6). 

1, fully covered

: 0 1, partially covered, growing

0, not covered

sc

sc sc

sc

R

R R

R


  
 

   (4.6) 

The value of Rsc for partially covered nodes (light green areas in Figure 4.1) will increase in 

each time step by Δreq. The boundary nodes may not necessarily be at the boundary; they 

actually include all partially covered and still growing nodes. A fully covered node, although at 

the boundary, will not contribute to the radius growth, but its mass increase will be ongoing. 

Once a partially covered node becomes a fully covered node, one of the nearest liquid nodes 

becomes a solid partially covered node, following Kang’s crystal nodes expansion scheme [81]. 

At each time step, the grown portion of the fouling mass Δmeq is distributed equally to all solid 

fouling nodes including both the fully covered nodes and the partially covered nodes. The 

developed node number independent LBM implementation scheme is capable of predicting the 

crystal morphology and quantifying the crystal growth size. 

4.2.2. Implementation of a Reaction Boundary 

Gypsum growth kinetics depends highly on the solute concentration around growing 

fouling. Thus, the curved boundary condition at the fluid-solid interface is critical in simulating 

the fouling size and the fouling morphology. In this study, the first-order kinetic-reaction model 

[81] shown in Equation (4.7) is used at the fluid-fouling interface. 

 r sD C k C C   n      (4.7) 

In Equation (4.7), D is the diffusivity of salt ions, C is the solute concentration at the 

interface, Cs is the solute saturation concentration, kr is the local reaction rate, and n is the 

direction normal of a staircase boundary pointing toward the fluid phase. 
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From Equation (4.7) and discussions in Appendix A, the term (-D∂C/∂n) is diffusion flux 

flowing out of the solid phase toward the fluid phase, thus the term (D∂C/∂n) on the left-hand 

side of the Equation (4.7) represents reaction flux of the gypsum ions from the fluid phase to the 

solid phase to provide ions for continuous crystallization of the fouling crystal. In this study, the 

curved reaction boundary is prescribed using the proposed flux boundary scheme in Equation 

(2.45) and Kang’s reactive transport method [81]. 

The implementation of the present boundary scheme is illustrated in Figure 4.2. In Figure 

4.2, the rosette structure of the surface gypsum crystal is illustrated by a circular structure and 

then numerically approximated by zig-zag staircases. Indicators will be defined to find and mark 

different types of cells in the simulation domain. 

 
Figure 4.2 Implementation of the Flux Scheme in Staircase Fouling Structure 

All staircase edges at the interface between a solid boundary cell and a fluid boundary cell 

are reaction edges, which will be applied with the reaction boundary shown in Equation (4.7). 

Substitution of the reaction boundary Equation (4.7) into the present boundary scheme expressed 

in Equation (2.45) yields Equation (4.8). 
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Equation (4.8) indicates that there is always a negative sign attached to the term kr(C-Cs) at 

reaction edges with different unit normal vectors n on different boundaries. This means that 

reaction mass flux is always in the opposite direction of the unit normal vector n, and the 

reaction mass flux should flow from the fluid phase toward the solid phase. 

4.3. Crystal Growth Simulation Results 

The initial plate-like gypsum crystal grows radially outward from a growth center, forming a 

rosette structure which blocks the permeation area of a membrane. To validate the proposed 

gypsum crystal growth model in LBM, results of an experimental study by Cohen [94] about the 

influence of bicarbonate on membrane gypsum scaling are used for comparison. 

In the experimental study by Cohen [94], bicarbonate concentration was varied (HCO3
- ≤ 

7.81 mM) for a fixed initial gypsum saturation index at the membrane surface of 2.0. Time 

evolutions of crystal rosettes clearly demonstrate that there was a remarkable retardation of 

gypsum scale growth with the increase of the bicarbonate concentration. Simulation results from 

the LBM model are compared with experimental data of crystal rosette radii under different 

bicarbonate concentrations. In the experimental study by Cohen [94], linear growth of crystal 

rosettes with time was observed. Consequently, experimental data is linearly fitted to obtain the 

mass transfer coefficient in Equation (4.4) based on the proposed method in [29]. The calculated 

mass transfer coefficient is 2.949×10-5 m/s, which is located in the range of 1.4×10-5 ~ 8.1×10-5 

m/s estimated under operating conditions in [31][94] using a mass transfer coefficient estimation 

method proposed in [87]. The size of a nucleus originated by the primary nucleation is usually 

less than 10-8 m [95], so in this paper, the initial equivalent radius of the nucleus is selected to be 

1×10-8 m. The initial mass of the nucleus is estimated using a gypsum crystal density of 2310 

kg/m3. 
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In the first study, the gypsum crystal growth simulation is performed in the absence of the 

bicarbonate and with a CaSO4 supersaturation ratio SI = 2.0. Simulation results of crystal size 

and mass accumulation using the present boundary scheme and Kang’s reaction boundary are 

shown in Figure 4.3. The dashed crosslines in Figure 4.3 show the initial nucleation positions, 

which clearly indicate that crystals are more prone to grow in the opposite direction of the feed 

flow (feed flow direction is from left to right). This conforms to experimental observations [29] 

shown in Figure 4.4, in which growth of gypsum crystals is more prone in the direction opposite 

to that of feed flow. This phenomenon could be explained by local fluid and concentration 

simulation results, shown in Figure 4.5 and Figure 4.6, that the salt concentration decreases from 

the crystal frontal flow-stagnation edge to the rear of the crystal, and higher concentration 

induces faster growth in the direction opposite to the feed flow direction. 

 
Figure 4.3 Fouling Formation: Present Scheme (Left) and Kang’s Scheme (Right) 

 
Figure 4.4 Asymmetric Growth of Gypsum Crystal Fouling 

Figure 4.5 also shows that crystals on the membrane surface act as solid obstacles and affect 

the local cross-flow velocity due to applied no-slip boundaries around crystals. 
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Figure 4.5 Cross-flow Velocity: Present Scheme (Left) and Kang’s Scheme (Right) 

Axially asymmetric growth of the gypsum crystal could be explained by concentration 

simulation results as shown in Figure 4.6. The salt concentration decreases from the crystal 

frontal flow-stagnation edge to the rear of the crystal, and a higher concentration induces faster 

growth of the crystal toward the direction opposite to the feed flow direction. The reduced 

calcium sulfate concentration at the rear of the crystal results from mixing eddies caused by the 

abrupt obstacle of the non-permeation crystal. Gypsum crystallization gradually consumes salt 

ions around the crystal, thus the salt concentration layer around the crystal is lower than the 

concentration in bulk flow. 

 
Figure 4.6 Field Concentration: Present Scheme (Left) and Kang’s Scheme (Right) 
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Simulation results from the present boundary scheme and Kang’s reaction scheme [81] show 

that equivalent radii of fouling crystals are 0.190 mm, 0.286 mm, 0.381 mm, and 0.475 mm, for 

growing time of 2 hours, 3 hours, 4 hour, and 5 hours, respectively. Inorganic fouling growth 

simulation results in Figure 4.3 and Figure 4.6 show that when used to prescribe the reaction 

boundary condition in Equation (4.7), the present boundary scheme agrees well with Kang’s 

reaction scheme in terms of the crystal size, mass accumulation and concentration distribution 

around the fouling crystal. Implementation procedures of the present boundary scheme in 

staircase approximated curve boundaries are actually the same with those in straight boundaries.  

Linear growth of crystal rosettes with time was observed experimentally with a nearly 

constant rate that decreased with rising bicarbonate concentration [94]. Bicarbonate adsorption 

was assumed as a plausible explanation for the observed gypsum scale retardation following the 

Langmuir isotherm. For growth of gypsum crystal rosettes on RO membranes, the relevant 

Langmuir adsorption isotherm for a monolayer of bicarbonate adsorbed onto the gypsum crystal 

surface can be represented by Equation (4.9). 

3 lm

3 lm

HCO

1 HCO

T

A

T

A

K

K





   
   

    (4.9) 

In Equation (4.9), Θ is the fraction of a crystal surface area occupied by the bicarbonate 

adsorbed layer, the HCO3
- term is the local bicarbonate concentration at the membrane surface 

(mM), and KA is the adsorption equilibrium constant (mM-1). From Equation (4.1), the growth of 

the gypsum crystal mass is directly proportional to the gypsum crystal surface area at a given 

solution supersaturation. Therefore, the rate of the crystal rosette radius growth can be derived as 

shown in Equation (4.10). 
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     1 1eq eqm
s

g

dr drk
C C

dt dt


        (4.10) 

In Equation (4.10), (1-Θ) is the fraction of the gypsum surface area free of bicarbonate. 

Figure 4.7 shows a comparison of simulation results and test data in terms of the gypsum 

crystal equivalent radius under different bicarbonate concentrations. The mass transfer 

coefficient in the crystal growth model Equation (4.1) with bicarbonate is set the same 

(2.949×10-5 m/s) as without bicarbonate (HCO3
-<0.01 mM). The adsorption equilibrium constant 

KA is set to be 0.25±0.05 mM-1 for all cases with bicarbonate [94]. Simulation results by the 

LBM agree well with test data, and indicate a stronger gypsum scaling retardation with increased 

dosage of bicarbonate. Also, the LBM simulation based on the Langmuir adsorption isotherm 

supports the hypothesis that the bicarbonate adsorption onto the gypsum crystals is the 

mechanism for the retardation of the surface gypsum crystal development. 

  
Figure 4.7 Equivalent Radius of Fouling with Different Bicarbonate Concentration 
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Mass accumulations of gypsum scale under different supersaturation conditions are plotted 

in Figure 4.8. Simulation results agree well with analytical results based on the hemisphere 

hypnosis of the crystal structure following Equation (4.2). 

  
Figure 4.8 Mass Accumulation of Crystals with Different Supersaturation Ratios 

Crystal growth results in terms of the equilibrium radius and mass accumulation along the 

channel length of the spacer filled desalination channel are obtained analytically and numerically 

with a growth time of 4 hours, as shown in Figure 4.9. CP values (Re = 97.6) along the top 

membrane are used as supersaturation ratios by assuming that ions in the feed flow are fully 

saturated for simplicity. The analytical result is obtained using Equation (4.4) and CP prediction 

data. Figure 4.9 shows that crystals grow larger at corner areas immediately in front of and 

behind spacer filaments along the channel length direction. Locations of the spacer filaments 

along the channel length direction (in x-axis) are also shown in Figure 4.9. 
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Figure 4.9 Fouling Equivalent Radius and Accumulated Mass Along Channel Length 

Figure 4.9 shows that numerical results of crystal growth on the membrane along the 

channel length match well with analytical results. Without the fully saturation assumption of feed 

flow, the CP prediction result can still be used to calculate corresponding supersaturation ratios, 

since CP is a relative value between the concentration near the membrane and that in feed flow. 
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5. VIBRATION ASSISTED DESALINATION* 

A novel vibration assisted desalination technique is proposed in this study to address the 

membrane fouling problem resulting from inorganic salt foulants, with the aim of increasing 

permeate flux and enhancing the overall RO membrane performance. The vibration assisted 

desalination process is realized by a linear motor driven vibratory desalination cell. Test results 

about CP values and membrane fouling indices are discussed in this section.  

5.1. Experimental Setup 

5.1.1. Membrane and Chemicals 

In this experimental study, flat sheet RO membranes are obtained from a spiral wound 

polyamide RO membrane module for seawater desalination. Each membrane sheet has an active 

membrane surface area of 60 cm2 (3 cm × 20 cm, W × L) after installation. All membrane sheets 

are stored in distilled water in a 10 ℃ environment. Feed spacers and permeate carriers for the 

desalination cell are obtained from the same spiral wound module.  

5.1.2. Feed Water Composition 

Artificial seawater is selected as feed solution with a calculated formula shown in Table 5.1. 

The total dissolved solids (TDS) is about 32000 ppm for the artificial seawater. 

Table 5.1 Artificial Seawater Formula 

Reagent Quantity (for 1 Liter Distilled Water) 

NaCl 26.726 [g] 
MgCl2 2.260 [g] 
MgSO4 3.248 [g] 
CaCl2 1.153 [g] 

                                                

 

*Part of this section is reprinted with permission from “Reverse Osmosis Membrane, Seawater Desalination with 
Vibration Assisted Reduced Inorganic Fouling” by Wende Li, et al., 2019. Desalination, 417, 102-114 
(https://doi.org/10.1016/j.desal.2017.05.016), Copyright [2017] by Elsevier. 
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5.1.3. Desalination Cell Apparatus 

This study utilizes a desalination cell to investigate the effect of the proposed vibration 

assisted desalination technique on reducing CP and inorganic fouling in membrane desalination 

processes. As seen in Figure 5.1, the desalination cell is comprised of a top plate with a feed port 

and a retentate port, a bottom plate with two permeate ports, membrane elements including a 

feed spacer, a permeate carrier and a piece of the RO membrane sheet, and sealing elements 

including O-rings and rubber gaskets. High pressure artificial seawater flows into the feed port of 

the desalination cell as feed water. Fresh product accumulates in the permeate carrier and flows 

out of the permeate ports, and will be collected by the feed tank after measurement. Concentrated 

water flows out of the retentate port and will also be collected by the feed tank to form a 

recycling system and keep the concentration of the feed solution constant. 

 
Figure 5.1 Cross-Section Diagram of the Desalination Cell 

The desalination cell is driven by a linear actuator according to a variety of signal 

trajectories with frequencies and amplitudes set by a driver unit. The mechanical system of the 

desalination cell apparatus can be seen in Figure 5.2, in which the cell is supported on two shafts 

and four linear bearings. The stiffness of the springs is specified to achieve a resonance vibration 

of the cell in order to reduce the energy consumption of the vibration. 

Feed Port Retentate Port

Permeate Port

Feed Spacer
RO Membrane

Permeate Carrier

O-Ring O-Ring

Top Plate
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Figure 5.2 Mechanical System of the Vibratory Desalination Cell 

5.1.4. Flow Loop Components 

The flow loop of the experimental setup is shown in Figure 5.2, which contains a feed tank, 

a diaphragm pump, and several transducers for water pressure and flowrate measurement. 

 
Figure 5.3 Flow Loop System of the Vibratory Desalination Cell 

A diaphragm pump is used to provide feed water to the desalination cell with pressure of 

800 psi and flowrate of 0.1 gpm. A conductivity meter is used to measure concentrations of feed, 

permeate and concentrate water. A pressure relief valve is used to control the pressure in flow 

loop, and a flow regulating valve is used to regulate the feed flowrate. Finally, a pressure 
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dampener is used to stabilize the feed pressure and eliminate pressure fluctuations during the 

desalination process. 

5.2. CP Reduction in Vibration Assisted Desalination 

As illustrated in Figure 5.4, a fully developed velocity profile in a desalination channel 

without spacers can be modeled as two-dimensional Poiseuille flow. Rejected solutes tend to 

accumulate near the membrane surface during membrane desalination and form the 

concentration boundary layer with a thickness of δc, as shown in Figure 5.4. The solute 

concentration is higher in the concentration boundary layer than in bulk flow. Rejection solutes 

also increase along the channel length (in horizontal direction), thus permeate flux decreases 

along the channel length, as shown in Figure 5.4. 

 
Figure 5.4 Velocity and Concentration Profiles in the Desalination Channel 

The steady state concentration profile can be described by the classical stagnant film model 

[13] and is expressed in Equation (5.1). 
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In Equation (5.1), Cw is the salt concentration at membrane walls, Cp is the salt 

concentration at permeate side, Cb is the salt concentration in feed bulk flow (Cb = C0), D is the 

solute diffusion coefficient, k = D/δc is the solute mass transfer coefficient, δc is the concentration 
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boundary layer thickness, and Jv is the convective flux (volumetric flux, with a unit of m/s). 

Equation (5.2) can be derived from Equation (5.1) after introducing two removal efficiencies. 

1 1
ln ln

,

obser true v

obser true

b p w p

obser true

b w

R R J

R R k

C C C C
R R
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     
     

    


   

    (5.2) 

In Equation (5.2), Robser is the observable removal efficiency of a membrane based on the 

concentration in bulk flow which is actually the membrane rejection rate discussed in Section 

3.1.22, and Rtrue is the true removal efficiency of a membrane based on the concentration near the 

membrane wall. The observable removal efficiency Robser is known since the concentration in 

bulk flow and the concentration in the permeate side can be measured by the conductivity meter, 

whereas the true removal efficiency usually is difficult to measure directly. However, the true 

removal efficiency can be derived from Equation (5.2) and shown in Equation (5.3).  

1

v

v

J k

obser
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 
     (5.3) 

The concentration at the membrane surface Cw can be calculated by Rtrue. In Equation (5.3), 

the only unknown variable that cannot be measured directly during test is the mass transfer 

coefficient k. However, the mass transfer coefficient can be numerically estimated according to 

hydrodynamics conditions. For laminar flow in a thin rectangular channel, the mass transfer 

coefficient k relates the Sherwood number (Sh) through Equation (5.4) [96]. 
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    (5.4) 

In Equation (5.4), Re is the Reynolds number, dh is the hydraulic diameter (for flat 

rectangular channels, dh = 2Hc, with Hc being the channel height), Sc is the Schmidt number, and 
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Lc is the channel length. There are different relations between the Sherwood number and the 

mass transfer coefficient [97] but the basic form is similar. The mass transfer coefficient can be 

derived from Equation (5.4), as shown in Equation (5.5). 

1 3 1 32 2

1.62 1.62
2 12c c c

uD D
k

H L L

   
    

   
    (5.5) 

In Equation (5.5), γ is the shear rate with a unit of s-1 at the membrane surface. For a 

rectangular channel, the shear rate can be estimated by Equation (5.6). 

2

6 6

c c c

Q u

W H H
        (5.6) 

In Equation (5.6), the feed flowrate Q = uA, with A = WcHc the channel cross-sectional area, 

and Wc is the channel width. 

For turbulent flow, perhaps the best-known mass transfer correlation for fully developed 

turbulent flow is Equation (5.7) [96]. 

0.8 0.33Sh 0.023Re Sc      (5.7) 

Substituting Equation (5.7) into Equation (5.4) yields the equation of the mass transfer 

coefficient in turbulent flow, as shown in Equation (5.8). 

0.8 0.67
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0.02
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u D
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H 
      (5.8) 

Finally, with the mass transfer coefficient obtained, the CP modulus can be calculated by 

Equation (5.9). 

 1 expw v
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    (5.9) 

Figure 5.5 is a plot of the CP modulus versus Jv/k with three observable removal efficiencies 

(or membrane rejection rates) Rej = 0.8, 0.9, 1.0. It can be seen that the CP modulus increasingly 
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deviates from unity with the increasing of the term Jv/k. Parameters are in accordance to test 

conditions, which include the cross-flow velocity u = 0.2804 m/s, convective flux Jv = 1.5×10-5 

m/s, channel height Hc = 0.75 mm, channel length Lc = 200 mm, diffusion coefficient D = 1.61×

10-9 m2/s, and observable removal efficiency Robser = 97%. The CP moduli with mass transfer 

coefficients in laminar flow shown in Equation (5.5) and in turbulent flow shown in Equation 

(5.8) are plotted in Figure 5.5. A predicted CP value of 1.52 for a plain channel in LBM is also 

plotted in Figure 5.5. 

 
Figure 5.5 Approximated and Measured CP Modulus 

Test results of CP modulus shown in Figure 5.5 is based on a mass transfer coefficient 

measurement method proposed in reference [98]. In this method, high-pressure pure water and 

salt water are used to feed the desalination cell separately with permeate flux measured. The 

mass transfer coefficient can be calculated through Equation (5.10) [98]. 
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   (5.10) 

In Equation (5.10) Δp is applied pressure, (πb - πp) is the transmembrane pressure, permeate 

flux (Jv)pure and (Jv)salt are obtained by feeding the desalination cell with pure water and salt 
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water, respectively. Figure 5.5 shows that measured CP values are smaller than the estimated CP 

value using the laminar approximation, this is mainly due to the existing of feed spacers in the 

desalination channel during test. However, the estimated CP value using turbulent flow is still 

lower than measured CP values, since the desalination channel is too narrow for turbulence to 

fully develop inside the channel [20]. Test data in Figure 5.5 also shows that in vibration assisted 

desalination, CP moduli can be reduced from 1.6 to about 1.2 (with fluctuations). The reduction 

of CP moduli is due to the enhancement of the cross-flow velocity in vibration assisted 

desalination. Plots in Figure 5.6 are relations between estimated CP moduli (in laminar flow and 

in turbulence flow) with different cross-flow velocity Reynolds numbers. 

 
Figure 5.6 CP with Different Reynolds Numbers by Stagnant Film Model 

Figure 5.6 shows that with the increasing of the cross-flow velocity Reynolds numbers, CP 

moduli will be reduced. This can explain the CP reduction in vibration assisted desalination. 

5.3. Fouling Reduction in Vibration Assisted Desalination 

5.3.1. Metrics of Membrane Fouling 

Many studies adopted permeate flux decline [99][89] as an index for membrane fouling. The 

permeate flux decline (the decline of permeate flux due to fouling divided by initial permeate 

flux) can be used to quantify the effect of fouling on the productivity of a given desalination 

process, but does not give an insight into detailed fouling formation [100]. Two commonly used 
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fouling indices in the industry are the silt density index (SDI) and the modified fouling index 

(MFI) [101]. It should be noted that MFI is an extension of SDI. 

MFI is a very useful method to explain and predict the extent of fouling in membrane 

desalination. MFI was derived by Schippers [102] based on the well-known cake filtration 

equation, which is one of the well accepted and mature theories to explain inorganic fouling 

formation [9] in membrane desalination. Thus, MFI is selected in this study to characterize 

inorganic fouling formation in desalination tests with and without vibration. The principle of 

MFI was frequently might not be directly mentioned in literatures. For example, in reference 

[103], filtration data of different feed compositions was compared and membrane resistance was 

estimated by the cake filtration theory, which is exactly the MFI method. Although MFI was 

developed for dead-end filtration, its fouling interpretation idea can be applied in cross-flow 

membrane desalination [42][101][103]. The vibration assisted desalination can be tested by 

comparing MFI values with and without vibration under same operating conditions. In this study, 

both permeate flux decline and MFI are selected as membrane fouling indices during tests. 

5.3.2. Experimental Procedures 

There is no pretreatment procedure applied to the artificial seawater, so the fouling 

formation time is correspondingly reduced in this study. To disassociate any flux decline due to 

membrane compaction, membrane sheets are compacted using distilled water until filtration flux 

is stable before fouling tests are performed [100]. As a result, any flux decline measured in tests 

is assumed to be caused by surface fouling only. 

A used membrane sheet will be replaced with a new one after each test. The running period 

of the desalination cell for one test is about 7 to 8 hours. The fresh product is collected with a 

graduated cylinder at an interval about 5 to 10 min and then weighed with a digital balance. 
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Permeate water will be recycled to the feed tank after measurement in order to maintain a 

constant feed concentration. 

Feed water temperature is one of the key factors affecting the performance of reverse 

osmosis membranes. The RO membrane productivity is very sensitive to changes in the feed 

water temperature, and as the water temperature increases the permeate flux increases almost 

linearly, due primarily to the higher diffusion rate of water through the membrane. Permeate flux 

is corrected according to the temperature correction factors (TCF) for polyamide membrane to 

eliminate the effect of temperature fluctuations of feed water in controlled group tests. 

Membrane manufacturers usually provide the temperature correction factors. In this study, an 

empirical formula in Equation (5.11) is given by the membrane manufacturer of the polyamide 

RO membrane. 

 1 298 1 273TCF tk t
e

         (5.11) 

In Equation (5.11), kt is a membrane coefficient for a given membrane material, and t is the 

feed water temperature in degree Celsius. A temperature of 25 °C is the reference temperature 

point and TCF = 1 for t = 25 °C. The membrane coefficient of kt = 2700 is usually used [87]. 

Tests are performed to determine a suitable set of temperature correction factors for the current 

desalination cell system. It is found that TCF vary with feed water concentrations. In TCF test, 

feed water contains 32000 ppm of NaCl without any other chemicals is used to eliminate 

membrane fouling. The membrane is compacted before the test and the temperature vary from 

25 °C to 45 °C. TCF data from an industrial database, from the empirical formula in Equation 

(5.11) and from the TCF test are plotted in Figure 5.7. 
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Figure 5.7 Temperature Correction Factors from a Variety of Sources 

In this study, the feed water temperature is usually above 25 °C, and all measured permeate 

flux will be corrected using the tested TCF. 

5.3.3. Evaluation of MFI in Vibration Assisted Desalination 

Temperature corrected normalized permeate flux under different vibration frequencies can 

be plotted in Figure 5.8. 

 
Figure 5.8 Normalized Permeate Flux with Different Vibration Frequencies 
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Figure 5.8 shows that permeate flux declines in all three control groups in about 400 min. 

Permeate flux declines about 29% without vibration, about 20% with vibration at 20 Hz, about 

16% with vibration at 53 Hz, and about 15% with vibration at 55 Hz. 

Mechanisms involved in membrane desalination include blocking filtration, cake filtration 

without compression, and cake filtration with compression [104], etc., as shown in Figure 5.9. 

 
Figure 5.9 Illustration of the Modified Fouling Index 

RO membranes have no pores in general, and cake formation will not be preceded by the 

pore blocking mechanisms [101]. Thus, cake filtration and electrostatic interaction between 

impurities and the RO membrane surface are the main fouling mechanisms. So, there may be no 

blocking filtration observed during typical tests. The permeate product rate [102] relates to the 

cake fouling model through Equation (5.12). 

 
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p AdV

dt R R
 
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     (5.12) 

In Equation (5.12), V is the accumulated filtrate volume with a unit of m3, Δp is the applied 

transmembrane pressure, Rm is the clean membrane resistance with a unit of m-1, Rk is the 

resistance of the cake or gel per unit of area, Am is the membrane area, and μ is the dynamic 

viscosity. If there is no cake compression, then Rk = I×V/Am, in which I is the fouling potential 

index (m-2). Integrating both sides of Equation (5.12) assuming a constant Δp yields Equation 

(5.13). 
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The MFI value serving as an index for the membrane fouling tendency is actually the slope 

of the t/V versus V plot, as illustrated in Figure 5.9 and Equation (5.13). The level of fouling on 

RO membranes can be quantified by evaluating their MFI values, and a higher MFI value 

indicates severer fouling occurs on the membrane surface due to a larger decline of permeate 

flux [42]. As discussed by Brauns [105], the linear relation between t/V and V with its slope 

being defined as the MFI value will hold only if the assumption of a linear relation between cake 

resistance and permeate volume according to Rk = I×V/Am is valid. Calculated MFI values are 

shown in Figure 5.10 based on test data shown in Figure 5.8 with linear correlation R-Squared 

values at least 0.98. Figure 5.10 also shows that a higher vibration frequency results in a lower 

MFI value, or less formed membrane surface fouling on the membrane surface. 

 
Figure 5.10 MFI Values with Different Vibration Frequencies 

Slopes of the linear section of the curves in Figure 5.10 provide information about the extent 

of membrane surface fouling based on the cake filtration theory. However, absolute values of the 

curves in Figure 5.10 reflect absolute values of measured permeate flux which usually differ in 

different control groups due to the concentration variance of feed water. 
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5.3.4. Correlation Between Vibration Velocity and Permeate Flux 

The vibration of the desalination cell disturbs the CP boundary layer and promotes back-

diffusion of inorganic salts from the membrane surface. There are a variety of vibration forms, 

and the vibration velocity is a good index to characterize these vibration forms, since the 

vibration velocity affects the cross-flow velocity directly. Thus, the correlation between the 

vibration velocity and permeate flux is studied. Fouling control publications quite often use 

normalized permeate flux to express the fouling control effect [30]. The normalized flux is 

defined as the ratio of permeate flux to initial permeate flux (J/J0, with initial permeate flux 

around 1.5×10-5 m/s). In this study, the average flux is used, which is defined the time 

integration of permeate flux over the test duration of 450 min, as shown in Equation (5.14). 

 1 b

a

t

Nave N
t

b a

F F t dt
t t


       (5.14) 

In Equation (5.14), FN(t) is the time varying normalized flux and FNave is the time averaged 

normalized permeate flux. The relation between the vibration velocity and permeate flux is 

studied, as shown in Figure 5.11, based on a group of tests results with different vibration 

frequencies shown in Figure 5.8 and an extra test with a 10~40 Hz chirp signal. 

 
Figure 5.11 Normalized Flux with Different Vibration Velocities 

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

m
ea

te
 F

lu
x

Time (min)

 Without Vibration
 20 Hz, 1.2 mm, V_rms=0.0557 m/s
 10~40 Hz Chirp, V_rms=0.0793 m/s
 53 Hz, 1.2 mm, V_rms=0.1351 m/s
 55 Hz, 1.2 mm, V_rms=0.1450 m/s



 

87 

 

Figure 5.12 is a plot of the correlation between the vibration velocity and the time averaged 

normalized permeate flux. 

 
Figure 5.12 Correlation between Permeate Flux and Vibration Velocities 

Figure 5.12 shows that the increase of the vibration velocity results in increased normalized 

flux over the 450 min test duration, and a linear fitting of the test data is obtained, as seen in 

Equation (5.15). 

0.3202 0.8268Nave RMSF V       (5.15) 

This correlation can be used as an permeate flux prediction tool in further applications of the 

vibration assisted desalination technique. The correlation shown in Equation (5.15) should be 

used for a vibration velocity less than 0.15 m/s and in the initial 8 hours of operation. 
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6. DESIGN OF A DESALINATION CENTRIFUGE 

The challenges of improving the membrane desalination performance include the increase of 

permeate freshwater flux, and the decrease of membrane fouling, power consumption and 

hardware cost. A novel desalination centrifuge is designed in this study to accomplish these 

goals by eliminating the cost of the high-pressure feed pump and mitigating membrane fouling 

through the vibration assisted desalination technique. Energy consumption calculations show that 

under certain conditions, the power usage of the desalination centrifuge is less than the industrial 

average. 

6.1. Features of the Desalination Centrifuge 

Despite major advancements in desalination technologies, seawater desalination is still more 

energy intensive compared to conventional technologies for fresh water production, such as the 

waste water reclamation. Although RO membrane desalination consumes least energy compare 

to other types of desalination techniques, energy consumption is the largest variable cost for 

seawater RO plants, varying from a third to more than a half of the total cost. For example, 

reference [106] summarized that the energy usage can be up to 50% of the operation and 

maintenance cost in a SWRO facility. 

From the membrane side, it is argued that by increasing the membrane permeability, the 

feed pressure and energy consumption of RO desalination can be reduced. However, a trade-off 

exists between the membrane selectivity (salt rejection) and the membrane permeability 

(permeate flux), that highly permeable membranes lack the selectivity and vice versa. Thus, the 

increase of the membrane permeability will allow more ions to pass through the membrane and 

thus reduce the membrane salt rejection. Also, as discussed by Elimelech [36], the amount of 
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energy that can be saved by using nanotube-based or aquaporin-based membranes is likely to be 

very small.  

Current SWRO plants are already operating near the thermodynamic limit of 1.06 kWh/m3 

as power usage (about 3 - 4 times higher than the limit). Thus, a reasonable effort for energy 

saving desalination is to still utilize the SWRO technology but reduce the energy consumption 

from the feed side and energy collection point of view. Vickers [107] proposes an ideal energy 

consumption model for centrifugal reverse osmosis (CRO) and concluded that the ideal energy 

saving of CRO is 70% if the permeate recovery rate is 15%. 

6.1.1. Vibration Assisted Fouling Mitigation 

The centrifuge incorporates the vibration assisted desalination process. This process is based 

on the idea of membrane moving to alter hydraulics near membrane surface, in order to increase 

the local cross flow velocity and disturb the fluid-solid interface boundary layer. Simulation 

results and test observations show that the vibration assisted desalination process facilitate the 

reduction of the CP by increasing the cross-flow velocity and enhancing the mass transfer 

coefficient at the filtration boundary. A reduced level of permeate flowrate decline indicates that 

there is less inorganic fouling on the membrane surface in the vibration assisted desalination 

compared to the traditional (non-vibrating) desalination process. 

6.1.2. Reduced Energy Consumption 

In traditional desalination plants, pumps are needed to provide 600 - 800 psi high-pressure 

feed water to squeeze the permeate product out from the feed side. The generation of high-

pressure feed water consumes the most portion of electric energy. Also, high-pressure 

concentrated water coming out of the membrane module also contains hydraulic energy. Thus, 

energy recovery devices are usually installed at the concentrated side to recover the hydraulic 
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energy and reduce energy waste. For the desalination centrifuge, only low-pressure pumps are 

needed to provide feed water with required feed flowrate. The centrifuge will generate 600 - 800 

psi pressure for the RO membrane. The hydraulic energy of the concentrated water (which 

contains approximately 90% of the feed water energy) will be collected by the centrifuge since 

the concentrated water coming out of the centrifuge is in low pressure. 

6.1.3. Reduced CP by Local Flow Instabilities 

Rotating RO takes advantage of high shear and the Taylor vortex instability to reduce CP 

and membrane fouling. For example, a developed rotating RO in reference [52] takes advantage 

of Taylor-Couette flow instabilities to reduce CP and membrane fouling, and control CaSO4 

scale formation. Belfort [108] proposed that controlled centrifugal instabilities (Dean vortices) 

resulting from flow around a curved channel could be used to reduce both CP and membrane 

fouling during microfiltration. 

6.2. Centrifuge Design 

The design of the desalination centrifuge in intended to reduce energy consumption, mitigate 

membrane fouling and increase fresh water product during the seawater desalination process. 

The desalination centrifuge has an overall dimension of 1.1 m × 0.61 m × 0.68 m (L × W × H), 

and will rotate at 4500 rpm to provide 600 psi feed water, as seen in Figure 6.1. The centrifuge 

can vibrate axially with a vibration frequency about 20 Hz and a peak-to-peak amplitude about 

1.2 mm. The mass of total vibrating parts is about 100 kg. The estimated flowrate increase is 

about 5% with vibration. To reduce the vibration driving force, the centrifuge will vibrate at the 

resonant frequency designed to be 20 Hz. Feed flowrate to the centrifuge is about 40 - 60 gpm, 

and estimated permeate flowrate is about 0.84 - 1.26 gpm. 
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Figure 6.1 Design of the Desalination Centrifuge 

The rotation of the centrifuge provides 600 psi pressure to the RO membrane wrap, thus, the 

high-pressure pumps required in conventional desalination plants can be eliminated for the 

desalination centrifuge. Also, the energy contained in concentrated water can be collected by 

centrifuge spokes, and energy consumption will be reduced. 

The flow path of the desalination centrifuge can be illustrated in Figure 6.2. Low-pressure 

feed water goes into the centrifuge from the inlet side of the rotor through a rotary union. The 

rotating of the centrifuge increases the feed water pressure and part of feed water is squeezed 

through the RO membrane becoming permeate fresh water. Permeate water flows out of the 

membrane wrap through the permeate carrier to the permeate collector on the centrifuge. The 

rest of the water (concentrated brine) flows out from the right end of the rotor, and at this step the 

hydraulic energy in concentrated brine will also be collected. 
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Figure 6.2 Flow Path of the Desalination Centrifuge 

The centrifuge is v-belt driven with an electric motor to rotate at the required speed, as 

shown in Figure 6.3. 

 
Figure 6.3 Rotation Driven System of the Desalination System 

The most widely used commercial RO membrane is the spiral wound membrane module. 

This configuration can separate feed spacers from permeate carriers with RO membrane sheets. 

As shown in Figure 6.4, one membrane envelop is comprised of two layers of RO membrane and 

one layer of permeate carrier. And membrane envelops are separated by feed spacers, in which 

high-pressure feed water will flow by. The commercial spiral wound membrane wrap usually 

contains several envelops connecting to the center permeate tube with permeate carrier glued on 
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it. Thus, the permeate water flows to the center permeate tube and then flows out of the 

membrane module. 

 
Figure 6.4 Cross-Section of Commercial Spiral Wound RO Membrane 

The RO membrane should be glued on the centrifuge permeate cylinder in the same form 

with the commercial membrane wrapping. 

6.3. Vibration System Dynamic Analysis 

The centrifuge vibration system can be simplified as a vibrating mass with a spring with 

stiffness k and a damping component with a damping coefficient c, as illustrated in Figure 6.5. 

 
Figure 6.5 Dynamic Model of the Desalination Centrifuge 

6.3.1. Analytical Modeling 

If a force acts on a viscously damped spring-mass system, the equation of motion can be 

obtained using Newton’s second law, as shown in Equation (6.3). 

 mx cx kx F t  ɺɺ ɺ      (6.3) 
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Since this equation is nonhomogeneous, its solution x(t) is given by the sum of the 

homogeneous solution, xh(t), and the particular solution, xp(t). The homogeneous solution is the 

solution of the homogeneous equation shown in Equation (6.4). 

0mx cx kx  ɺɺ ɺ      (6.4) 

Equation (6.4) represents the free vibration of the system. This free vibration dies out with 

time under each of the three possible conditions of damping (underdamping, critical damping, 

and overdamping) and under all possible initial conditions. Thus, the solution of Equation (6.3) 

eventually reduces to the particular solution xp(t), which represents the steady-state vibration. 

The steady-state motion is present as long as the forcing function F(t) is present. The part of the 

motion that dies out due to damping (the free-vibration part) is called transient. The rate at which 

the transient motion decays depends on the values of the system parameters k, c, and m. 

For an underdamped system (ζ < 1), the homogeneous solution xh(t) can be shown in 

Equation (6.5). 

     2 2
1 2cos 1 sin 1nt

h n nx t e C t C t           
  (6.5) 

Equation (6.4) can be rearranged as shown in Equation (6.6). 

20 2 0n n

c k
x x x x x x

m m
       ɺɺ ɺ ɺɺ ɺ    (6.6) 

In Equation (6.6), relations between parameters can be shown in Equation (6.7). 
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For any damped system, the damping ratio ζ is defined as the ratio of the damping 

coefficient c to the critical damping coefficient cc. If F(t) = F0sinωt, the corresponding steady-

state solution is shown in Equation (6.8). 

 
   

 0
1 22 22

sinp

F
x t t

k m c

 
 

 
    

    (6.8) 

In Equation (6.8), the phase φ is defined in Equation (6.9). 
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


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      (6.9) 

Finally, by combining the homogeneous solution and the particular solution, the solution of 

Equation (6.3) can be given in Equation (6.10). 
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…

  (6.10) 

In Equation (6.10), C1 and C2 are arbitrary constants to be determined from initial 

conditions. 

For an initially steady state system, the initial conditions x(t=0) = 0, and x’(t=0) = 0, thus C1 

and C2 can be found through Equation (6.11). 
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6.3.2. Results and Discussions 

The vibration mass of the centrifuge m = 100 kg, the vibration natural frequency f = 20 Hz, 

thus the angular velocity ωn = 2πf = 125.66 rad/s. The required spring stiffness can be calculated 

for a resonant frequency, as k = ωn
2m = 1.58×106 N/m. The system damping ratio ζ is selected to 

be 0.05, 0.1, 0.15, 0.2, 0.5 to investigate different damping situations. The required peak-to-peak 

amplitude of the centrifuge vibration is 1.2 mm. The linear actuator will drive the desalination 

centrifuge according to a determined displacement function x = x0sin(ωt), in which x0 = 0.6 mm. 

The required force for the linear actuator can be calculated through Equation (6.12). 

     2
0 0 0sin cos sinmF m x t c x t kx t           (6.12) 

If the centrifuge vibration is not resonant, the driving force can also be calculated by 

Equation (6.12) without the spring term. Suppose the system damping ratio ζ = 0.3, the required 

driving force with and without using resonant vibration can be seen in Figure 6.6. 

  
Figure 6.6 Required Driving Force with and without Resonant Vibration 

Figure 6.6 shows that the required driving force is about 570 N to achieve the required 

steady-state shaking amplitude in the resonant vibration. However, the required driving force is 
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about 1100 N while without using the resonant vibration. Figure 6.7 shows that the required 

driving force is minimum at the resonant frequency. 

 
Figure 6.7 Driving Force with Different Vibration Frequencies and Damping Ratios 

The calculated driving force F0 = FE = 570 N is used and the vibration response is obtained 

for a validation purpose. Both the MATLAB ODE numerical solution and the analytical solution 

shown in Equation (6.10) are used to obtain the centrifuge vibration response. 

The centrifuge vibration response can be shown in Figure 6.8. 

 
Figure 6.8 Validation of the Centrifuge Vibration Response 

Figure 6.8 demonstrates that the centrifuge system can be vibrated at the desired vibration 

frequency f = 20 Hz and a peak-peak amplitude 1.2 mm. 
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6.4. Centrifuge Power Consumption 

The process pressure of a centrifuge can be denoted with Equation (6.13). 

2 2 2cP R      (6.13) 

In Equation (6.13), ρ is the fluid density, ω is the centrifuge angular velocity, and R is the 

centrifuge radius. 

The illustration of an idealized continuous flow centrifuge can be shown in Figure 6.9. The 

feed water will be continuously driven by the centrifuge to gain a certain amount of angular 

momentum as described in reference [107]. 

 
Figure 6.9 Illustration of an Idealized Centrifuge Desalination Process 

The angular momentum gained in feed water can be expressed in Equation (6.14). 

2
d fQ R        (6.14) 

In Equation (6.14), Qf is feed water volumetric flow rate with a unit of m3/s. The permeated 

fresh water is assumed to be thrown out through the centrifuge orifice, while the concentrated 

exhaust water will be collected by spoke pipes at outlet collection side. The recovered angular 

momentum is expressed in Equation (6.15). 

  21e fQ R         (6.15) 
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In Equation (6.5), δ is the recovery ratio which describes the fraction of fresh water 

collected from feed water. By conservation of angular momentum, the lost angular momentum 

by permeate water is shown in Equation (6.16). 

2
p fQ R       (6.16) 

Thus, ideally, the power consumption in each step can be shown in Equation (6.17). 
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   (6.17) 

In Equation (6.17), Pp is the power consumption by permeate water which is also the only 

power consumption, Pe is the power consumption by exhaust water which will be collected by 

the centrifuge, Pd is the total power consumption by driving the centrifuge. Thus, the total power 

consumption in an ideal centrifuge desalination process is the power consumption by permeate 

water only, as shown in Equation (6.18). 

2 2 2des p d e p f f cQ R Q P         P P P P   (6.18) 

In Equation (6.18), Pc is the centrifugal pressure. In this study, the recovery ratio of the 

desalination process is supposed to be δ = (permeate flow rate, gpm/(feed flow rate, gpm)×100% 

= 2%, the feed water volumetric flowrate Qf = 0.00252 m3/s (40 gpm), and the centrifugal 

pressure is 4.137×106 Pa (600 psi), thus final power consumption during the centrifugal 

desalination process can be calculated by Equation (6.18) and shown in Equation (6.19). 

3 6 22 2 0.02 0.00252 4.137 10 417des f cQ P m s N m W      P  (6.19) 

If the power collection process is not ideal, part of the energy in exhaust water will not be 

recovered. An energy recovery ratio to λ is defined which is the percentage of the recovered 

energy from the total energy consumption. For example, if 99% of the energy in exhaust water 
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(Pe) can be collected, thus λ = 0.99, and the final power consumption in the centrifugal 

desalination process is shown in Equation (6.20). 
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   (6.20) 

In the derivation of Equation (6.20), the friction loss due to roller bearings of the centrifuge 

Pf is ignored, and the windage loss of the centrifuge Pwin is also be ignored assuming the 

centrifuge is running in a vacuum housing. Thus, the total power consumption Pt = Pdes. 

The calculated permeate flux is Qp = rcQf = 0.8 gpm = 0.1816 m3/h for the desalination 

centrifuge. Thus, in the ideal case, the unit power consumption can be calculated as shown in 

Equation (6.21). 

  3 3417 0.1816 Wh/m 2.3 kWh/mp t pU Q  P    (6.21) 

Typical SWRO system energy usage is about 3.0 kWh/m3, thus, ideally there would be 

23.3% energy saving per cubic meter of water production. 

For the non-ideal case with 99% energy recovery ratio, the unit power consumption can be 

calculated as shown in Equation (6.22). 

  3 3621 0.1816 Wh/m 3.42 kWh/mp t pU Q  P    (6.22) 

In an ideal case, the energy consumption by exhaust water will all be collected or recovered. 

In a non-ideal case, the energy recovery ratio of the exhaust water power consumption Pe above 

99% is calculated by Equation (6.20) and plotted in Figure 6.10. 
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Figure 6.10 Desalination Centrifuge Power Usage Chart 

Figure 6.10 shows that at a 2% permeate recovery ratio, if the energy recovery ratio is above 

99.4%, the power usage of the desalination centrifuge is less than the industrial average. For all 

other permeate recovery ratio, the power usage of the desalination centrifuge is less than the 

industrial average if the energy recovery ratio is above 99%. 
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7. CONCLUSIONS 

Concentration polarization (CP) is an inherent phenomenon in membrane desalination 

processes. CP is affected by local hydrodynamic and mass transport properties during membrane 

desalination. Numerical prediction of CP is crucial for the design of membrane separation 

modules, the optimization of the desalination system performance, and especially the 

understanding of membrane surface fouling. CP initiates and exacerbates membrane surface 

fouling. When the mineral salt concentration exceeds the saturation, mineral scaling will be 

formed on the membrane surface. A numerical prediction of membrane fouling provides an 

alternative approach for a direct an evaluation of fouling growth, local fluid dynamics and salts 

concentration distributions in a wide range of operating conditions. 

The CP and membrane fouling prediction model is based on the lattice Boltzmann method 

(LBM). The LBM model allows a simultaneous solution of Navier-Stokes equations and the 

convection-diffusion equation in a membrane desalination channel. A simple and effective flux 

boundary scheme is proposed and validated in this study, which involves only the boundary local 

nodes without utilizing the finite difference approximation or the boundary-neighboring nodes 

interpolation. The proposed flux boundary scheme is applied to predict CP and simulate fouling 

growth. 

The CP and permeate flux prediction result from LBM agrees well with the FEM benchmark 

case in a complete rejection condition. With the removal of the complete rejection assumption 

and with the rejection rate considered, CP is reduced with a lower rejection rate, since more salt 

ions would be transported through the membrane and accumulated salt ions will be reduced. A 

higher CP and lower permeate flux in a larger rejection rate condition indicates a trade-off 

between the membrane selectivity (salt rejection) and the membrane permeability (permeate 
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flux). Also, prediction results show that the CP boundary layer thickness is almost invariant with 

different salts rejection rates. 

Thereafter, CP in a spacer filled channel shows that there is a higher fouling potential near 

the spacer-membrane contact corners just in front of and behind the spacer filaments due to 

higher CP values in these areas. 

The LBM model for membrane fouling simulation enables a direct simulation of inorganic 

fouling growth at a single crystal level with respect to given solution supersaturation near the 

membrane surface. Both cross-flow velocity and solute concentration are lower around the 

formed crystal than those in the bulk flow. The predicted gypsum crystal equivalent radius and 

accumulated mass agree well with published experimental data and analytical results. Simulation 

result of the gypsum scale retardation by the bicarbonate indicates a stronger gypsum scaling 

retardation with higher dosage of the bicarbonate and supports the hypothesis that the 

bicarbonate adsorption onto the gypsum crystals is a plausible mechanism for the retardation of 

the surface gypsum crystal development. 

The present numerical model for the membrane surface fouling growth also enables a direct 

evaluation of the impacts of antiscalants on the surface fouling development. It also serves as a 

design tool to aid in identifying suitable operating conditions for membrane filtration processes, 

or in the dose selection of antiscalants to mitigate inorganic fouling. Antiscalants are surface 

active materials that interfere with precipitation reactions primarily in ways such as keeping 

supersaturated solutions of sparingly soluble salts, distorting crystal shapes to get non-adherent 

scale, or separating crystals from solutions by adsorption. The present LB model only considers 

the supersaturation altering effect and the surface adsorption effect by the antiscalants, and can 

be used to provide initial and elementary instructions for dose selection of these mentioned types 
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antiscalants. However, several parameters are required as inputs for the present simulation 

model, such as the diffusion coefficient of salts, the supersaturation ratio of solution after the 

antiscalant effect, the mass transfer coefficient of foulants, and the adsorption equilibrium 

constant of antiscalants, to predict the CP and fouling formation with antiscalants added. The 

current model is limited by the availability of the required input parameters for some commercial 

antiscalants, and by not considering the inherent interactions between different antiscalants, or 

other chemical effects. A more comprehensive model will better instruct the desalination 

antiscalant dose selection, and the current numerical study should be viewed as a significant step 

in that development. 

The vibration assisted desalination process is proposed in this study based on the idea of 

changing the hydrodynamics of the operating conditions, especially increasing the local cross 

flow velocity. Simulation results and test observations validated that the proposed fouling 

mitigation technique facilitated reducing CP in membrane desalination processes. Also, the flux 

decline is slower in vibration assisted desalination than conventional desalination. For example, 

test results show that after about 7 hours of operation, permeate flux declines 29% without 

vibration, 20% with 20 Hz vibration, 16% with 53 Hz vibration, and 15% with 55 Hz vibration 

(all with 1.2 mm vibration amplitude). Selected membrane fouling metrics indicated that there is 

less fouling formed on the membrane surface under these vibration conditions. Also, correlation 

between permeate flux and the vibration velocity is established based on test data. 

The challenges of improving the membrane desalination performance include the increase of 

permeate freshwater flux, and the decrease of membrane fouling, power consumption and 

hardware cost. A novel desalination centrifuge is designed in this study to accomplish these 

goals by eliminating the cost of the high-pressure feed pump and mitigating membrane fouling 
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through the vibration assisted desalination technique. Energy consumption calculations show that 

under certain conditions, the power usage of the desalination centrifuge is less than the industrial 

average. Typical SWRO system energy usage is about 3.0 kWh/m3. Ideally, the energy usage of 

the desalination centrifuge is about 2.3 kWh/m3, thus there would be 23.3% energy saving per 

cubic meter of water production. For a 2% permeate recovery ratio of the desalination centrifuge, 

if the energy recovery ratio is above 99.4%, the power usage of the desalination centrifuge is less 

than industrial average. For all other permeate recovery ratio, the power usage of the desalination 

centrifuge is less than the industrial average if the energy recovery ratio of the centrifuge is 

above 99%. 

Future studies may involve the simulation of the crystal nucleation, which is the basis of the 

crystal growth study for multiple crystals. The developing of a second-order accuracy flux 

boundary scheme in the LBM framework is also a promising topic.  
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APPENDIX A 

Appendix A covers the derivation of the proposed flux boundary scheme. Since curved 

boundaries can be approximated by zig-zag staircases, a straight boundary will be used for the 

illustrating the derivation process. Substituting concentration distribution functions (in post-

streaming form) on the top boundary illustrated in Figure A1.1 into Equation (2.44) yields 

Equation (A1.1). 

   
2

2 5 6 4 7 8

known unknown

δ δ δ
δ δ 3 δy

y y y C
g g g g g g u C

t t t y

 
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������� �������
  (A1.1) 

In Equation (A1.1), c = δy/δt is the lattice speed contained in the discrete velocity ei. There 

are no available distribution functions streaming from wall nodes (y = NY+1) to the boundary 

nodes (y = NY), thus g4, g7, g8 are unknown distribution functions after the streaming operation. 

These unknown distribution functions should be prescribed and constrained by certain boundary 

conditions. For all interior nodes in the simulation domain, post-streaming distribution functions 

will be calculated based on neighboring post-collision distribution functions. Similarly, unknown 

post-streaming distribution functions of g4, g7 and g8 on boundary mass nodes can also be 

calculated by post-collision distribution functions g2
+, g5

+, and g6
+.  

 
Figure A1.1 Illustration of a Top Boundary 
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Referring to Figure A1.1, calculated post-streaming distribution functions g2, g5 and g6 at 

boundary wall nodes (y = NY+1) equal post-collision distributions g2
+, g5

+, and g6
+ at boundary 

mass nodes (y = NY), respectively, as expressed in Equation (A1.2). 
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    (A1.2) 

From the approximation equation shown in Equation (2.46), concentration gradients can be 

estimated by distribution functions at boundary wall nodes and boundary mass nodes, as shown 

in Equation (A1.3). 
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  (A1.3) 

Note that in Equation (A1.3), the variation of the wall concentration at a given node along 

the x direction is linearized using the first order Taylor expansion around the given node. 

Combining of Equation (A1.2) and Equation (A1.3) yields the relation between unknown post-

streaming distribution functions and known post-collision distribution functions at boundary 

mass nodes, as shown in Equation (A1.4). 

       2 5 6 2 5 6 2 5 61 6 δ δ 1 6 δw f
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y
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
(A1.4) 

In Equation (A1.4), weight coefficients in the lattice Boltzmann model are substituted, as w2 

= 1/9, w5 = 1/36, w6 = 1/36, and w2+w5+w6 = 1/6. Also, the first-order normal derivative ∂C/∂n 
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on the right-hand side of Equation (A1.4) is the replacement of the finite difference scheme 

approximation (Cw-Cf)/δy on the right-hand side of Equation (A1.3). Finally, Equation (A1.5) 

can be derived when substitute (g2+g5+g6) from Equation (A1.4) into Equation (A1.1). 
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 (A1.5) 

The right-hand side of Equation (A1.5) is actually total mass flux flowing from the top wall 

to the fluid phase (the surface normal n direction), and the coefficient term of the concentration 

gradient is the diffusion coefficient, i.e. D = (τs-1/2)(δh)2/(3δt) from Equation (2.8). Equation 

(A1.5) is the general implementation form appearing in the mass flux boundary scheme for a top 

straight boundary. During the implementation process, unknown post-streaming distribution 

functions g4, g7 and g8 can be calculated by the post-collision form of known distribution 

functions g2
+, g5

+, and g6
+. The implementation form of Equation (A1.5) can be expressed in a 

general form shown in Equation (A1.6) or Equation (2.45). 
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  (A1.6) 

Although Equation (A1.6) is the general form of Equation (A1.5) which is valid for top 

boundaries, as will be discussed, Equation (A1.6) is also correct for the bottom boundary. The 

top and the bottom boundaries are also representatives to the right and left boundaries due to the 

similarity of surface normal directions. Consequently, Equation (A1.6) is valid for curved 

boundaries with staircase approximations comprising all straight boundaries. 

For the bottom boundary illustrated in Figure A1.2, substituting concentration distribution 

functions (in post-streaming form) on the bottom boundary illustrated in Figure A1.2 into 

Equation (2.44) yields Equation (A1.7). 
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  (A1.7) 

 
Figure A1.2 Illustration of a Bottom Boundary 

Similar to Equation (A1.2) and referring Figure A1.2, calculated post-streaming distribution 

functions g4, g7 and g8 at boundary wall nodes (y = 0) equal post-collision distributions g4
+, g7

+, 

and g8
+ at boundary mass nodes (y = 1), respectively, as expressed in Equation (A1.8). 
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    (A1.8) 

From the approximation equations in Equation (2.45), concentration gradients can be 

estimated by distribution functions at boundary wall nodes and boundary mass nodes, as shown 

in Equation (A1.9). 
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Combining of Equation (A1.8) and Equation (A1.9) yields the relation between unknown 

post-streaming distribution functions and known post-collision distribution functions at boundary 

mass nodes, as shown in Equation (A1.10). 

       4 7 8 4 7 8 4 7 81 6 1 6w f

C
g g g g g g y C C y g g g y

y
        

          


(A1.10) 

Finally, Equation (A1.11) can be derived when substitute (g4+g7+g8) from Equation (A1.10) 

into Equation (A1.7). 
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      


 (A1.11) 

So, it is demonstrated that Equation (A1.11) can also described by the general form of 

Equation (A1.6). For a standard square lattice, the non-dimensional lattice spacing δh = δx = δy = 

1. The lattice time step δt is set to 1 so that the particles travel one lattice spacing during one 

time-step. So, in Equation (A1.6), both ei and n are unit vectors. The mass flux vector Jσ in 

Equation (A1.6) is defined in the Cartesian coordinate system. The surface normal vector n 

pointing outward to the fluid phase works to redirect total mass flux to the normal vector 

direction (mass flux flows out of the solid phase toward the fluid phase, normal to the boundary). 

Also, the unit normal vector n should be in one of the three cartesian coordinate directions. Thus, 

the present boundary scheme works for curved boundaries in staircase form. Finally, the relation 

between the first-order moment of distribution functions and heat/mass flux shown in Equation 

(A1.6) is valid for both interior nodes and boundary nodes of the simulation domain. 
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APPENDIX B 

Appendix B covers the conversion procedures between physical SI units (International 

System of Units) and dimensionless LBM units. In the lattice Boltzmann method, units of 

physical quantities are usually dimensionless. Also, lattice spacing and time step are usually 

selected to be unity (δx = δy = δt = 1), thus the lattice speed c = 1. Furthermore, some special 

dimensionless numbers are frequently used to characterize the target system. For example, flows 

with same Reynolds numbers (Re = uL/ν) are equivalent for hydrodynamics, and solutions with 

same Schmidt numbers (Sc = ν/D) are equivalent for mass transport. A physical quantity Q can 

be written with a number and a unit, as Q = Q̅×CQ, in which, Q is a physical quantity with a 

physical unit [Q], Q̅ is a dimensionless quantity with a dimensionless unit [Q̅] = 1 and CQ is the 

conversion factor from Q̅ to Q with a unit [CQ] = [Q]. Dimensionless numbers such as the 

Reynolds number and the Schmidt number should be invariant whether in a physical unit or in a 

dimensionless LBM unit. Assuming that flows with the same Re and Sc are equivalent, thus the 

conversion factors should be 1, as shown in Equation (2.1). 

ReRe Re 1C  ≐      (A2.1) 

There are a variety of conversion methods between physical SI units and dimensionless 

LBM units. The following procedures are followed in this paper. Note that a symbol with an 

overhead bar denotes a dimensionless quantity. 

(1) General input parameters include: Channel height: H = 1×10-3 [m]; Kinematic viscosity 
of water: ν = 1×10-6 [m2/s]; Density of water: ρ = 1×103 [kg/m3]; Diffusion coefficient of ions in 
seawater: D = 1.5×10-9 [m2/s]; 

(2) Mesh resolution or node number of the channel height HLBM = 100. 

Conversion factor of length: CH = H/HLBM, [m]. 

(3) LBM density is generally selected to be 1: ρLBM = 1. 

Conversion factor of density: Cρ = ρ/ρLBM, [kg/m3]. 
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(4) Set the relaxation time for concentration field: τs = 0.51. 

(5) Set a reference diffusion coefficient Dref = kD (k>0, the coefficient k is case dependent); 

For convenience, choose a unit lattice spacing and a unit time step, as shown in Equation 
(A2.2). 

1, 1 1x t c x t            (A2.2) 

(6) Schmidt number: Sc = ν/Dref; 

(7) Conversion factor of time can be shown in Equation (A2.3). 

 2 1 2

3
H s

T

ref

C
C

D

 
     (A2.3) 

(8) Conversion factor of velocity: CU = CH/CT; 

(9) Conversion factor of force per volume: CF = CρCH/CT
2; 

(10) Diffusion coefficient in dimensionless unit can be shown in Equation (A2.4). 
2

ref T HD D C C     (A2.4) 

(11) Kinematic viscosity in dimensionless unit can be shown in Equation (A2.5). 

ScD        (A2.5) 

(12) Relaxation time for fluid can be shown in Equation (A2.6). 

3 1 2        (A2.6) 

Usually, the calculated Mach number in the LBM unit system is larger than calculated in the 

physical unit system due to the smaller sound speed in LBM, otherwise the simulations would be 

too expensive. LBM simulates incompressible flow under a low Mach number condition (Ma = 

u/cs<0.3, where u is the macroscopic flow velocity and cs is the speed of sound) with a weak 

variation in density. 


