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ABSTRACT

Methods for transferring heat through convection are highly variable and numerous in appli-

cation. Still, the principle mechanisms that drive convective heat transfer can be reduced down to

thermal conditions, fluid properties, turbulent characteristics, and geometric features. Several of

these principles will be analyzed through individual projects, which isolate the mechanism under

consideration. Using high fidelity computational fluid dynamics (CFD), simulations that encom-

pass variations in thermal properties in fuel rods, buoyancy driven flow within a closed system, and

turbulence within a helical coil heat exchanger will be made. Turbulent statistics will be generated

and then assessed through various methodologies. Sensitivity to modeling parameters, validation

with experimental measurements, and analyzing higher order statistics will be some of the tech-

niques to ensure the accuracy of the simulation.

The main objective of this work is to evaluate the advantages of using high fidelity CFD for

heat exchanger applications and add to the wealth of knowledge for improving modeling of com-

plex flows. Understanding the underlying physics for each problem will enable greater confidence

in identifying the aspects of a simulation that need further investigation and whether chosen as-

sumptions are justified. Moreover, the resolution and modeling parameters have been documented

as a guideline to the minimum size and cost to conduct high resolution simulations of these flows.

By using scaling of geometry and Reynolds number, future engineers will be able to use these

turbulent quantities as a reference to more effectively improve the efficiency and safety of new

designs that involve heat exchangers.
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NOMENCLATURE

CFD computational fluid dynamics

PDE partial differential equation

RANS Reynolds-averaged Navier-Stokes

URANS unsteady Reynolds-averaged Navier-Stokes

PANS partially-averaged Navier-Stokes

LES large eddy simulation

HRL hybrid RANS-LES

DNS direct numerical simulation

Re Reynolds number

St Strouhal number

Sc Schmidt number

Sct turbulent Schmidt number

Gr Grashof number

Pr Prandtl number

Prt turbulent Prandtl number

U velocity vector

U velocity in x-direction

V velocity in y-direction

W velocity in z-direction

y+ non-dimensional wall normal distance

uτ friction velocity

τw wall shear stress
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ρ density

µ dynamic viscosity

ν kinematic viscosity

νt eddy diffusion for momentum transfer

α thermal diffusivity

αt eddy diffusion for heat transfer

cp specific heat

TKE turbulent kinetic energy

k turbulent kinetic energy

η Kolmogorov length scale

τη Kolmogorov time scale

g body force vector

ε turbulent dissipation rate

HCSG helical coil steam generator

P/D pitch-to-diameter

FFT fast Fourier transform

PSD power spectral density

SEM synthetic eddy method

IC initial condition

BC boundary condition

N polynomial order in Nek5000

GLL Gauss-Lobatto-Legendre

OIFS operator integrating factor splitting

EVM entropy viscosity method

POD proper orthogonal decomposition
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BM Boussineq approximation

LM low-Mach
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1. INTRODUCTION

1.1 Computational Fluid Dynamics

The focus of this dissertation features high fidelity simulations to quantify turbulent flows for

heat transfer applications in three different scenarios using computational fluid dynamics (CFD).

Due to the advancement of engineering technologies, methods for exchanging heat with convection

are vast in variability and complexity. Traditionally, the design process involves scaled experiments

into development of statistical correlations. Now, the advent of supercomputing introduces feasi-

bility of a more physics-based approach, using CFD for large fluid domains to obtain whole-field

information within the domain of interest. This enables researchers to discover the mechanisms

that govern why certain quantities increase or decrease, making it easier to make decisions on

which parameters should be modified. This enables the reduction of the number of iterations for

experimental tests, and the design process can be sped up.

The basis for CFD usually entails finding solutions to the Navier-Stokes equations. Its deriva-

tion can be found in any fluid dynamics book, such as Pope [4], hence only some information will

be presented as background. Starting from the law of conservation, the balance of momentum can

be derived using an infinitesimal control volume, and the partial differential equation (PDE) can

be written in the form of the Cauchy equation

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+∇ · σ + ρg (1.1)

where the stress tensor σ for an infinitesimal fluid volume is unknown. Using the linear constitutive

theory, the expression for this deviatoric stress tensor can be expressed as

σ = ζ(∇ · u)I + µ(∇u + (∇u)T − 2

3
(∇ · u)I) (1.2)

Combining Equations 1.1 and 1.2, the general form the Navier-Stokes equations can be derived.
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Often, the flow under consideration is incompressible, allowing for divergence-free conditions for

velocity. Furthermore, other fluid properties such as viscosity are often assumed to be constant as

well. This simplifies mass conservation into the incompressible continuity equation and allows the

derivation of the Poisson equation. Now, the number of terms in the Navier-Stokes equations can

be reduced tremendously as such

∂u

∂t
+ (u · ∇) u = −1

ρ
∇p+ ν∇2u + g (1.3)

∂u

∂x
= 0 (1.4)

This is known as the instantaneous incompressible Navier-Stokes equations. Due to the chaotic

nature of turbulence, it becomes necessary to develop a statistical representation of the important

quantities for engineering applications. Rather than wanting the signal of pressure drop or the

instantaneous velocity at the outlet, the average pressure drop and average mass flow rate are

often quantities of interest. The most common technique to obtain averages is using Reynolds

decomposition, where the instantaneous velocity and pressure can be represented using their mean

and fluctuating components as such

u = U + u′ (1.5)

p = P + p′ (1.6)

where the overline denotes the Reynolds ensemble average and the prime denotes the fluctuating

component. Applying Equations 1.5 and 1.6 to Equation 1.3, taking the ensemble average of

the entire equation, and then applying the statistical properties of Reynolds averaging allows the

Reynolds-averaged Navier-Stokes (RANS) equations to be derived as

∂U

∂t
+
(
U · ∇

)
U + u′u′ = −1

ρ
∇P + ν∇2U + g (1.7)
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∂U

∂x
= 0 (1.8)

where the Reynolds stress tensor u′u′ can be written as u′iu′j in Einstein notation. This form of

the Navier-Stokes equations can be used to derive other conservation transport equations such as

for turbulent kinetic energy or turbulent dissipation. Since the number of knowns remains larger

than the number of equations, additional modeling methodologies – which provides closure to the

RANS equations – are required before solutions can be found. Many methods have been explored,

but the use of eddy viscosity has gained widespread influence for solving the closure problem. One

of the most renown eddy viscosity assumptions is the Boussinesq hypothesis [5]

− u′iu′j = 2νtS
∗
ij −

2

3
kδij (1.9)

S∗ij =
1

2
(
∂Ui
∂xj

+
∂Uj
∂xi
− 2

3

∂Uk
∂xk

δij) (1.10)

where νt is the eddy viscosity. Typically, the larger the ratio of eddy viscosity to molecular vis-

cosity indicates how much turbulence is modeled, and the higher the Reynolds number (Re) is,

the more scales of motion need to be modeled using eddy viscosity or another method based off

similar principles. Re is defined as UcLc/ν where Uc, Lc, and ν are the characteristic velocity,

characteristic length, and kinematic visosity respectively. Often, Uc is based on inlet velocity or

bulk velocity, and Lc is based on hydraulic diameter of the inlet or a geometric parameter.

In order of the most amount of turbulence modeled, the steady Reynolds-averaged Navier-

Stokes (RANS) models all the kinetic energy as well as its temporal effects. Then comes the

Unsteady Reynolds-averaged Navier-Stokes (URANS), which can capture temporal effects. Next

is hybrid RANS-LES (HRL) that encompasses methods that control modeling only some of turbu-

lence, such as bridging methods. After that is Large Eddy Simulation (LES), which can capture

most of the subinertial energy by basing its subgrid model off of grid size. And finally, there

is Direct Numerical Simulation (DNS) that does not require any model and resolves all motions
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Figure 1.1: Triangle of turbulence modeling relative to the amount that needs to be modeled versus
their computational costs.

within turbulence governed by the Navier-Stokes equations. As more turbulence is modeled, the

less expensive it becomes to simulate as shown in Fig. 1.1. Each of these methods will be discuss

briefly as how it relates to the work in this dissertation.

1.2 Turbulence Modeling

1.2.1 Direct Numerical Simulation

The “brute force” method for solving the Navier-Stokes equations is known as DNS. This tech-

nique removes the need for any turbulence model, which makes it the most accurate method. For

laminar flows there are less challenges, however for turbulent flows the scales of motion become

exponentially small and requires an extremely fine computational mesh to resolve them. In 1941,

Kolmogorov made his similarity hypotheses that continues to be influential today [6]. It is sys-

tematically derived and concluded that at sufficiently high Reynolds number, the smallest scales

of motion are governed by the kinetic viscosity ν and dissipation rate of turbulent kinetic energy

ε. Knowing the relationship between ε is the velocity scale cubed divided by the length scale, the

following is derived

uη = (νε)1/4 (1.11)
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and knowing that the smallest scale of motion should be of order one, i.e. Reη ∼ O(1), the

Kolmogorov length scale can be written as

η = (
ν3

ε
)1/4 (1.12)

and knowing that the velocity scale is the ratio of the length and velocity scale, the Kolmogorov

time scale becomes

τη = (
ν

ε
)1/2 (1.13)

Using Equations 1.11 and 1.12, it can be shown that for three-dimensional turbulence, the num-

ber of grid points is proportional to Re9/4. And by using the number of floating-point operations

for a given number of grid points, the computational costs will scale to Re3. Therefore, even mod-

erate Reynolds numbers becomes too expensive for practical purposes [4]. Still, this method has

the highest fidelity for the Navier-Stokes equations and serves as a baseline for improving more

practical turbulent models. For scientific studies, it is important to ensure that Re is low to enable

reasonable computational costs before starting calculations.

1.2.2 Large Eddy Simulation

In Kolmogorov’s second similarity hypothesis, it is shown that isotropic turbulence has a com-

mon trend in the energy spectrum. At small wave numbers, the large scales of motion are governed

by turbulent production. At intermediate scales – known as the subinertial range – energy cascades

at a constant rate without significant energy gain or loss. At the largest wave numbers, turbu-

lence is governed by molecular dissipation. The purpose of LES is to model dissipation while still

capturing the energy cascade of turbulence. Common techniques involve modeling the residual

stress tensor (analogous to the Reynolds stress tensor), which can be derived by applying filtering

methods rather than ensemble averaging [4]. The final equation has a similar form to Equation 1.7

∂〈U〉
∂t

+ 〈U〉 · ∇〈U〉+ 〈u′u′〉 = −1

ρ
∇〈P 〉+ ν∇2〈U〉+ g (1.14)
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Figure 1.2: The Kolmogorov spectrum for incompressible turbulence showing how LES can re-
solve some inertial range and models viscous dissipative range.

where solving the term 〈u′u′〉 often uses the sub-grid scale (SGS) model and includes the popular

classical Smagorinsky and dynamic Smagorinsky models [7]. However, there are other techniques

available for filtering the equations such as pseudo-DNS techniques where numerical dissipation

is used.

LES for this research uses a less conventional method that dampens out the smaller scales of

motion using a filter at the end of each time step. This is based on the spectral element method

with Legendre polynomials, where the higher orders (or modes) that contain the largest oscillations

are dampened with this filter. Additional details regarding this particular LES method will be

discussed in Section 1.3. Still, the fundamental theory functions the same way, essentially adding

more dissipation for mesh elements that cannot fully resolve the turbulence. The energy spectrum

shown in Fig. 1.2 demonstrates how smaller wavenumbers will be resolved with LES while still

modelling the dissipative motion at the Kolmogorov length scales.

1.2.3 Unsteady Reynolds-Averaged Navier-Stokes

Ensemble averaging of the Navier-Stokes equations produces Equation 1.7 and closure is often

provided by finding solutions for the eddy viscosity νt. The k-ε turbulence model is one of the most

common and will be discussed briefly [8]. Derivations of the transport equations for both turbulent
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kinetic energy k and dissipation rate of turbulent kinetic energy ε are done using manipulations of

Equation 1.7 and can be found in any book on turbulence [4].

∂k

∂t
+ Uj

∂k

∂xj
= P − ε+

∂

∂xj
((νtσk + ν)

∂k

∂xj
) (1.15)

∂ε

∂t
+ Uj

∂ε

∂xj
= C1ε

Pε

k
− C2ε

ε2

k
+

∂

∂xj
((νtσε + ν)

∂ε

∂xj
) (1.16)

νt = Cµ
k2

ε
(1.17)

There are many other turbulence models for URANS such as the well-known k-ω by Mentor

(1994) and its variants [9]. These new transport equations introduce turbulent coefficients (such as

σk, σε, C1ε and C2ε) that have to be calculated empirically. This is the fundamental reason why

these equations are not universal and can become very inaccurate when considering flows with

different physics and high Re. However, they are advantageous because the computational costs of

RANS and URANS are significantly less than LES or DNS and, in fact, can be extremely accurate

if a suitable turbulent model, wall function, and grid resolution are properly selected.

The purpose of high fidelity methods such as DNS is to calculate the turbulent budgets, which

can be used to empirically derive the best turbulent coefficients. Often, it is assumed that these

turbulent coefficients can be scaled to higher Re or to flows with similar physics. Since k is such

an essential quantity of turbulence, often its turbulent budgets are calculated from DNS. From the

definition of k, the production and dissipation term can be described as

k =
1

2
uiui (1.18)

Pij = −uiuk
∂Uj
∂xk
− ujuk

∂Ui
∂xk

(1.19)
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εij = 2ν
∂ui
∂xk

∂uj
∂xk

(1.20)

1.2.4 Partially-Averaged Navier-Stokes

Hybrid methods are classified under HRL, because they are often more expensive than URANS

but cheaper than LES. In the present work, the only HRL method explored is the partially-averaged

Navier-Stokes (PANS) model [10, 11]. This turbulent bridging method allows an arbitrary mesh

resolution by controlling the amount of turbulent kinetic energy filtered. Decomposition is similar

to LES except that instead of wave number, k is implicitly controlled. The two parameters that

control this filter width are the following unresolved-to-total ratio of kinetic energy fk and ratio of

dissipation rate fε

fk =
ku
k

(1.21)

fε =
εu
ε

(1.22)

where ku and εu are the unresolved turbulent kinetic energy and the unresolved turbulent dissipa-

tion rate, respectively. The advantage of PANS is that it can be implemented in any turbulence

solver, because the ku and εu transport equations take the same form as RANS after derivation.

∂ku
∂t

+ Uj
∂ku
∂xj

= Pu − εu +
∂

∂xj
((νuσku + ν)

∂ku
∂xj

) (1.23)

∂εu
∂t

+ Uj
∂εu
∂xj

= C1ε
Puεu
ku
− C∗2ε

ε2
u

ku
+

∂

∂xj
((νuσεu + ν)

∂εu
∂xj

) (1.24)

where the unresolved eddy viscosity νu and the turbulent coefficients are defined as

νu = Cµ
k2
u

εu
(1.25)
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C∗2ε = C1ε +
fk
fε

(C2ε − C1ε) (1.26)

σku = σk
f 2
k

fε
(1.27)

σεu = σε
f 2
k

fε
(1.28)

Comparing these equations to Equation 1.15 and 1.16, it is apparent that the only difference

is the quantity the transport equation is solving and their turbulent coefficients. In the same sys-

tematic manner that the RANS coefficients were derived, the PANS coefficients can be derived.

The present implementation of PANS keeps fk and fε constant throughout the domain, and when

fk = fε = 1, it is observed that the RANS equations are being solved. When fk and fε approach

0, the unresolved eddy viscosity goes to zero and the Navier-Stokes equations are being directly

solved. Intermediate values are difficult to predict, however it is recommended when there is a

clear distinction between high energy and dissipative scales, fε = 1 and fk < 1 [10].

1.3 Spectral Element Method

The spectral element method allows high-order approximations of PDEs within each domain

of integration, which will be called an element for the context of this work. By subdividing the

entire computational domain into a combination of smaller piecewise elements, a system of alge-

braic equations can be generated and solved using linear algebra or numerical techniques. This

procedure is identical to the finite element method where the weak formulation is made and solved

with a set of basis functions. To illustrate this framework, the generalized Galerkin method by

Quarteroni and Valli (1994) [12] begins with finding uN for

AN(uN , v) = FN(v) (1.29)

where AN and FN are approximations derived from Gaussian quadrature rules defined within the
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element. The difference between spectral elements versus finite elements is the particular choice

of trial and test functions. Low-order finite elements are numerically efficient, but spectral ele-

ments become increasingly more efficient at higher-orders [13]. In summary, the spectral element

approximation can be defined as

ueN(ξ) =
N∑
j=0

uejπj(ξ) (1.30)

where the associated interpolation basis of polynomial order N is given as

πj(ξ) =
−1

N(N + 1)

(1− ξ2)L′N(ξ)

(ξ − ξj)LN(ξj)
(1.31)

indent where L is the Lagrange polynomial. The present work focuses on using the Gauss-Lobatto-

Legendre (GLL) quadrature for each element. Although spectral elements are appealing, it is less

flexible for complex element shapes whereas finite elements formulations have been established

for any element type. This makes it more difficult for spectral elements to conform to complex

geometries and preserve important features.

This method is implemented in open-source FORTRAN code Nek5000 [14]. It is able to

scale well with a very high number of processors as shown by others using the same code [15].

The Helmholtz equation is solved for velocity, while the Poisson’s equation is solved for pressure

using the generalized minimal residual (GMRES) method. There are two solvers that are available:

PNPN [16] and PNPN-2 [17] where N indicates the polynomial order. Hence, PNPN means that

the discretization of pressure is the same order and slightly more accurate. Also, pressure and

velocity are decoupled from each other, which allows for the option of solving non-divergence free

flows. Since the discretization of pressure is lower for PNPN-2, the solver is optimized to reduce

computational costs and lower pressure iterations at the expense of pressure accuracy.

Within every element, the highest mode in the Legendre polynomials described in Equation ??

has a filter applied at the end of each time step. This filtering attentuation filter α is specified a prior

and should be adjusted depending on the resolution of the mesh [18]. This technique is similar to
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an explicit low-pass filter, since it removes high frequency oscillations contained within the highest

modes. When the flow is properly resolved (as it is in DNS), the energy content within the highest

mode approaches zero and the filter will have negligible influence on the solution. However, if the

elements are coarser and only LES is under consideration, the filter is required to stabilize the flow

and dampen high frequencies.

Temporal discreziation in Nek5000 is based on the high-order operator integrating factor split-

ting (OIFS) method developed by Maday et al. (1990) [17]. Subintegration of the convective

term allows larger timestep sizes with larger Courant-Friedrich-Lewy (CFL) number up to 2-5

while maintaining stability. Time stepping without using extrapolation is also an option to increase

speed when smaller time steps are required. Also, the order of accuracy can be selected to be

second- or third-order. In the present work, all cases are conducted using second-order temporal

discretization.

1.4 Turbulent Processes for Heat Exchanger Applications

To characterize the reliability and importance of high fidelity CFD for heat exchanger applica-

tions, a subset of three different cases will be analyzed. Heat exchangers are devices to efficiently

transfer heat from one medium to another. The need for cooling or heating is widespread in almost

all engineering applications including power plants, refineries, refrigeration, computer cooling, and

chemical processing. The driving mechanisms are often multifaceted, involving complex geome-

try, convection with turbulence, multiphase flow, varying fluid properties, and more. The following

three cases analyze some of the most universal processes where turbulence, buoyancy, and fluid

properties, respectively, are analyzed

1. Turbulence within the complex heat exchanger of a helical coil geometry.

2. Mixing in a purely buoyancy-driven system with low mass diffusion.

3. Heat transfer within a bare rod bundle with different Prandtl numbers.

This will provide the breadth needed to encompass the mechanisms involved in heat exchang-

ers, yet still provide the depth into each project’s applications and technical challenges. Although
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high fidelity methods are deemed reliable, it is still important to validate the results with an ex-

perimental facility to ensure correctness of boundary conditions and fluid properties. Validation

will be conducted on each case at measured region of interests, and then additional information

for each project will be extended into other parts of the domain. This will complement exist-

ing measurements and provide further insight into the physics involved with the heat exchanger

mechanism.
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2. HELICAL COIL HEAT EXCHANGER∗

2.1 Literature Review

Almost all power plants function using a heat source in order to produce steam to turn an elec-

trical turbine. This process typically uses two fluids, a hot primary coolant that exchanges heat with

water which is then converted into steam. Due to their simplicity and ease of construction, the most

popular geometries for these heat exchangers are straight or U-shaped tubes. In the recent decades,

the chemical, nuclear, and other power industries have explored the use of helically banked tubes.

It has been discovered that the helical coil steam generator (HCSG) can transfer more heat per unit

volume than straight ones. Prabhanjan et al. studied this geometry using fluid-to-fluid heat trans-

fer, whereas similar studies used constant wall temperature or constant flux boundary conditions.

This work shows that helical coil heat exchangers can produce heat transfer coefficients from 16%

to 43% larger than straight tubes [19]. Also, their capability to resist flow-induced vibrations and

thermal expansion is an additional feature that makes HCSG appealing for small modular reactors

and other future power plants [20, 21]. Although their geometry is unique, its physical process can

be related to a shell and tube heat exchanger with physics that resemble crossflow over a cylinder.

Interests for HCSG range from both within the tubes and around the shell, however this work

will focus only on the single-phase flow across the shell in order to isolate the turbulent process

within this geometry. Its wide application to many engineering problems makes crossflow a heavily

studied research topic. A heat transfer study by Simoneau and VanFossen (1984) investigated both

in-line and staggered array of rods with Reynolds numbers from 5000 to 125,000. For in-line

rods, one extra row of rods upstream increased the heat transfer by 50%, while adding up to five

extra rows did not increase heat transfer any more. For a staggered array of rods, the addition of

up to five extra rows of rods continued to increase heat transfer by amounts from 21% to 64%

[22]. Sumner’s (2010) literature review of this phenomenon shows that flow behavior in the wake

∗Part of this section is reprinted with permission from “Large Eddy Simulation of the Flow Behavior in a Simpli-
fied Helical Coil Steam Generator” by J. K. Lai, E. Merzari, Y. A. Hassan, 2019. Journal of Fluids Engineering, Vol.
141, 021401-1, Copyright 2019 [1].
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and in proximity to the rods can change drastically depending on the pitch-to-diameter (P/D) ratio

between rods [23]. The unique aspect of helical coils is that lateral ratio constantly changes due

to its geometric nature, while the transverse ratio is generally controlled. An example of this is

NuScale Power’s steam generator that have rods banked in alternating opposite directions, a patent

that has been used as a guideline for the present work’s geometry [24]. This rate of change in

the lateral ratio, characterized by its banked angle, is a new geometric parameter for HCSG that

introduces a wide range of new studies.

Simulations for helical coils has been a prevalent tool for studying their performance. In a

study by Rivas and Rojas (2016) using the realizable k-ε RANS model, the simulation results are

validated an integrated HCSG experiment with molten salts in Rome. Correlations found in litera-

ture were not suitable for the helical coil geometry, hence a new Nusselt number (Nu) correlation

has been derived and validated for Re between 400 and 1200 for Pr between 4 to 11 [25]. A

similar heat transfer correlation study conducted by Kharat et al. (2009) had to account for addi-

tional dependent variables such as the gap between concentric coils, the tube diameter, and the coil

diameter. First, validation with experiments using load percentage and temperature relationships

were confirmed with reasonable error. Then, optimization techniques were utilized on the new Nu

correlation that is valid for the range of Re studied, roughly between 20,000 to 140,000 [26]. More

intricate experimental facilities have also been considered such as Jayakumar et al.’s (2008) study

where the fluid interaction between the shell and tube is accounted for. At first, RANS simulations

were employed using constant temperature boundary conditions and then constant flux boundary

conditions, but it is concluded that accurate predictions of Nu requires conjugate heat transfer [27].

As essential as heat transfer correlations are for design, the mechanisms that dictate enhanced heat

transfer coefficients per unit volume can only be investigated with the transience of higher fidelity

simulations.

Previously mentioned studies have only considered RANS models, whereas more suitable mod-

els for higher accuracy require HRL, LES, or DNS. Since difficulty already exists with predicting

turbulence on the shell side, including heat transfer is superfluous and studies rather investigate the
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forces on the rods to access structural integrity. Yuan et al. (2017) had one-way coupling between

LES with a structural analysis code for HCSG. Although focus was on flow-induced vibrations, a

comparison between LES and RANS reveal that LES captures larger velocity variances, suggesting

the presence of coherent structures that cannot be predicted with Reynolds-averaging techniques

[28]. A study by Lee et al. (2018) discovered these vortical structures near the rib surface of

a HCSG-like geometry. This investigation is very similar to the present work, where LES and

URANS simulations within STAR-CCM+ are validated with experimental measurements. While

LES shows better mean velocities, significant improvements are shown in the Reynolds stresses

compared to URANS [29].

Most literature for HCSG consider cases where adjacent rods are banked with the same coil

angle. However, more complex geometric configurations are also in development such as the

design in previously mentioned NuScale Power’s steam generator [24]. The alternating curvature

of this HCSG enhances turbulent mixing but introduces undesired forces on both sides of the rod

which can compromise their integrity. Based on the same patent, Joh (2011) analyzed the thermal

hydraulic performance using the standard k-ε method. To reduce the size of the geometry, a 1

degree wedge and 5% of the central region is modeled using periodic boundary conditions in the

axial and streamwise direction. The predicted pressure drop is roughly 50% larger than those

predicted by correlations [30]. The current work analyzes a simplified version of HCSG where

an experimental facility is constructed with a smaller fluid domain. In this case, only the region

between two half-rods is built, greatly reducing the number of rods required for modeling while

still preserving the essential physics. This reduction in the computational domain makes parametric

studies using high-fidelity simulations feasible.

2.2 Experimental Facility

While details of the experiment can be found in Delgado et al.’s (2018) paper [31], essential

information will be briefly discussed in this section. The experimental design consists of 12 rods

that embody a single-column region, maintaining a transverse P/D ratio of 2.98. The lateral P/D

ratio constantly changes along the axial direction of the rods as observed in Fig. 2.1. The rod
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diameter is 15.875 mm, and the angle between the alternating rods is 12◦. The working fluid para-

cymene is kept at 20±1◦C throughout each closed-loop experimental run. The volumetric flow

rate of 189±4 LPM yields an average inlet velocity of 523.5 mm/s. Using the rod diameter and

average inlet velocity as the characteristic length and velocity scale, the Reynolds number is 8643.

Figure 2.1: Slices of (left) Section A, (center) Section B, and (right) Section C with nomenclature
for geometric directions. Reprinted with permission from [1].

The static gauge pressure transducers (OMEGA PX419) measure the pressure dorp above and

below the rods to be 2849.8±0.2 Pa, where the uncertainty is the summation of manufacturer

uncertainty and statistical error from multiple tests with the same fluid temperature. Particle image

velocimetry (PIV) reads the velocity at 10,000 frames/s for the streamwise (lateral) and spanwise

(transverse) direction of the flow with a frame size of roughly 24.5×23.2 mm capturing 896×848

pixels. PIV measurements are taken at Sections A, B, C, and D as shown in Fig. 2.2. Sections

A, B, and C represent 1/4, 1/2, and 3/4 of the axial length, while Section D is located where Lee

et al. (2017) conducted their analyses [32]. Before para-cymene enters the test section, it enters

a honeycomb straightener into a mesh grid to replicate uniform inlet boundary conditions. To

prove uniformity, PIV measurements with uniform spacing at the inlet are taken and interpolated

to create an experimental BC for CFD. Pressure drop measurements for varying Re have been
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taken to find similar trends between the simplified test section and multirod test section [33]. Still,

the present work will only focus on the lowest Reynolds number to reduce the computational costs

for validation. The length and location of the pressure drop is presented in Fig. 2.2, showing that

all 12 rods are encapsulated.

Figure 2.2: Geometry of fluid domain with locations of slices and pressure drop length. Reprinted
with permission from [1].

2.3 Computational Domain

LES is conducted using aforementioned spectral element method code, Nek5000. A fully

structured hexahedral mesh is created in ANSYS ICEM CFD for the geometry in Fig. 2.2 with

extrusions at the inlet and outlet. O-grids are needed at each of the 12 rods, and connectivity is
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resolved by filling in the center region with hex elements. After adding refinements near the wall,

the elements total to 430,000. Besides than the inlet and outlet, all other surfaces are walls and

treated as no-slip BCs for velocity. The skewed elements in the channel center is due to continuous

change of the lateral P/D ratio.

Figure 2.3: Slice of mesh for a 3rd-order polynomial order expansion with GLL points in geometry.
Modified with permission from [1].

Discretization into GLL points yields 149×106 unique grid points for N = 7 and 316×106

unique grid points for N = 9. A lower polynomial order mesh is shown for visualization purposes

in Fig. 2.3, which only has 12×106 grid points and is not considered for LES. The time step of N

= 7 and N = 9 are 1.2×10-5s and 0.9×10-5s respectively. Characteristic time stepping with OIFS

extrapolation enables stability for higher Courant numbers, allowing the average CFL number to

be roughly 2.
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2.4 Synthetic Eddy Method

To replicate realistic inlet boundary conditions, the synthetic eddy method (SEM) is used to

generate fluctuations at the inlet. Coherent structures are superimposed on the velocity signal with

symmetric shape functions as described by Jarrin et al. (2006) [34]. For a 1D case, the shape

function can be defined as

1

∆

∫ ∆/2

−∆/2

f 2
σ(x)dx = 1 (2.1)

where ∆ = b−a+ 2σ with a and b as the interval of the inlet and σ is the size of the eddy. Writing

these equations in 2D, the local instantaneous velocity signal can be defined as

u′j(x, t) =
1

Ψ

Ψ∑
i=1

εijfj(x− xi(t)) (2.2)

where ε is a random step of value +1 or−1, xi is drawn randomly from [a−σ, b+σ], and Ψ is the

number of eddies. Additional information about implementation of these equations can be found

in Jarrin et al.’s work in [34] and [35]. Using the mesh grid at the inlet BC as a reference, the value

of Ψ is adjusted based on the number of holes in the mesh grid and the value of σ is based on the

size of the square holes.

In addition to adding fluctuations to the inlet, an experiment inlet BC can be developed by in-

terpolating the seven inlet PIV measurements shown in Fig. 2.4 onto the surface. Inaccuracy arises

from interpolation, especially for secondary flow measurements, so only the primary component

of PIV are mapped. This is a proper assumption, since the secondary flow is less than 5% of the

streamwise velocity. Measurements reveal that the turbulent fluctuations yield a turbulent intensity

of approximately 6%. Therefore, the root-mean-square (RMS) of the streamwise velocity fluctu-

ations for SEM is specified as a constant value to reproduce an inlet signal comparable to that of

the experiment.
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Figure 2.4: Normalized inlet velocity profile using interpolated values from PIV measurements
(shown with black lines). Locations of y+ lines are taken are shown with dashed arrows. Reprinted
with permission from [1].

2.5 Verification

2.5.1 Inlet Boundary Condition Sensitivity

The purpose of simulating all 12 rods is to capture fully developed flow characteristics that are

independent of the inlet and outlet. Ideally, periodic flow should be used to minimize computa-

tional costs, but the complex twisting geometry makes it difficult to properly model periodicity.

Analysis at the sixth rod should exhibit the same characteristics regardless of the inlet BC in an

ideal scenario. The mapped experimental inlet velocity profile is shown in Fig. 2.4, where data

is interpolated from measurements at the black lines. To test the sensitivity of the inlet BCs, the

following cases are considered:

1. Const BC: a constant mean velocity calculated using the mass flow rate and cross-sectional

area of the inlet.

2. Exp BC: the mean experimental velocity profile using linear interpolation of the seven PIV

measurements at the inlet.

3. Exp SEM BC: the experimental velocity profile using SEM to generate the same turbulent

intensity as the experiment.

The consequence of interpolating between largely spaced lines is that mass will not always be

conserved, therefore velocity measurements have been scaled by a small factor (which was nearly
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1) so that Re remains consistent after linear interpolation. Mapping the velocity measurements to

GLL points is coded at an additional cost in computational time, especially when higher polyno-

mial orders are considered.

Fig. 2.5 gives a quantitative description of the effects of SEM BC on the variance of streamwise

velocity. It is observed that without SEM, the flow becomes fully developed by the fifth rod, while

with SEM, the flow becomes fully developed by the fourth rod. The only other discrepancies

are due to difference in time integration, i.e. the time averaging was shorter for SEM due to the

heavy cost of calculating continuous eddies. It can be concluded that the sixth rod exhibits fully

developed flow characteristics and is independent of the inlet BCs.

Figure 2.5: Variance of streamwise velocity normalized by inlet velocity (a) without SEM inlet
BCs and (b) with SEM inlet BCs. Reprinted with permission from [1].
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To substantiate the independence of inlet BCs, Table 2.1 has the pressure drop for each inlet

BC under consideration. As expected, Exp SEM BC increases the pressure drop because of the

additional turbulence introduced into the system. Still, there is a less than a 1% difference between

Exp BC and Exp SEM BC, proving that a turbulent intensity of 6% has a small influence on the

overall energy needed to drive the flow. The Const BC case has the smallest pressure drop, but still

has less than a 1% difference in comparison with the other cases. The higher pressure drop with

experimental BC is due to the introduction of crossflow due to non-uniformity. Overall, it can be

concluded that the inlet will not have much effect on the overall solution within the test section and

that results for Const BC will still properly represent the physics in the experiment.

Polynomial order Inlet boundaries Pressure drop (Pa) Percent difference (%)
N = 7 Const BC 2960.0 3.9
N = 7 Exp BC 2973.4 4.3
N = 7 Exp SEM BC 2984.4 4.7

Table 2.1: Seventh-order pressure drop with varying BCs compared with experimental value of
2849.8±0.2 Pa. Reprinted with permission from [1].

2.5.2 Spatial Discretization Sensitivity

Now that suitable boundary conditions are established, sensitivity to the spatial discretization

should be verified. Although multiple methodologies exist for grid convergence, p-refinement is

the most straight-forward technique for the spectral element method. Solutions for varying degrees

of the piecewise polynomial functions are made from N = 5, 7, and 9. In addition to the increase

of unique grid points, the time step also decrease as GLL points get closer to the wall, greatly

increasing computational costs. To achieve converged statistics for 1.5 seconds, 1×106 core-hours,

3×106 core-hours, and 10×106 core-hours are required for N = 5, 7, and 9 respectively. This

simulation time is equivalent to the physical time measured in the experiments. Instantaneous

snapshots are gathered for N = 7 due to the high computational cost of I/O from N = 9.
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The pressure drop across the 12 rods at aforementioned locations for the different polynomial

orders are shown in Table 2.2. Results are intuitive as a lower pressure drop for greater spatial

resolution is the result of more energy being captured from the smaller scales of motion. There is

a 6.8% difference between N = 5 and N = 7, while there is only a 1.7% difference between N = 7

and N = 9. This large difference in pressure drop for N = 5 hints that important dissipative char-

acteristics are not being resolved, which are present in the higher polynomial orders. In addition

to results presented in Table 2.2, further tests were performed at higher polynomial order with dif-

ferent meshing strategies, but with less time integration, confirming consistency in pressure drop

with results for N = 9.

Polynomial order Inlet boundaries Pressure drop (Pa) Percent difference (%)
N = 5 Const BC 3162.3 11.0
N = 7 Const BC 2960.0 3.9
N = 9 Const BC 2909.7 2.1

Table 2.2: Constant velocity BC with varying polynomial order compared with experimental value
of 2849.8±0.2 Pa. Reprinted with permission from [1].

2.5.3 Wall Refinement

The curvature of the inner and outer channel have radii of 60.6D and 62.1D, respectively,

meaning that the 1.5D wide cross section of the inlet and outlet can be assumed to resemble

classical channel for analysis. This analogy can be used to validate wall refinements with wall

distributions in literature to ensure the low y+ regions are resolved. To normalize the wall distance

and velocity, the friction velocity uτ is calculated as such

y+ =
yuτ
ν

(2.3)

uτ =

√
τw
ρ

(2.4)
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where

τw = µ(
∂u

∂y
)y=0 (2.5)

and the velocity gradient can be calculated using the velocity at the nearest grid point. For the

spectral element method, the nearest GLL point from the polynomial basis function can be used

as a conservative estimate of the velocity gradient. Values are extracted from spectral space at

the inner and outer diameter wall locations drawn in Fig. 2.4. Assuming this region is a straight

channel, the first y+ for N = 5, 7, and 9 are 0.79, 0.44, and 0.28 respectively.

Normalized velocities are overlaid with the theoretical viscous sublayer and Österlund’s log-

law regime in Fig. 2.6 [36]. For all cases, the viscous sublayer where y+ equals U+ is identical. It is

not until the buffer layer that the different cases deviate from each other and have minor differences

within the logarithmic region. Typically, the constants κ and B+ are 0.41 and 5.0, respectively,

however literature shows that deviations from the log law can occur and are even more likely

for three-dimensional flows [37]. Since the curvature of the channel appears to underpredict the

y-intercept in Fig. 2.6, the chosen variation of the log-law regime is κ = 0.38 and B+ = 4.1 [36].

Comparisons between the inner and outer walls show variation in the log-law region. Ob-

servations show the outer wall has larger U+ values compared to those on the inner wall for all

simulations. This entails that the curvature of the bent channel introduces crossflow that affects

typical channel flow characteristics. The largest deviations between the inner and outer wall are

for the experimental BC cases. This is an expected consequence since the nonuniform inlet means

that results are spatially dependent. Nonetheless, normalized velocity values from y+ of 30 to 50

show relatively good correlation with the slope in the log-law regime regardless of the wall under

consideration. Therefore, the wall refinement for LES can be considered sufficient for all intents

and purposes.
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Figure 2.6: Freestream U+ for inner and outer diameter walls of the curved channel. Reprinted
with permission from [1].

2.5.4 Resolving Turbulence

Since turbulence exhibits similar wavenumber evolutions when isolated, the freestream region

away from the walls should exhibit behavior similar to behavior described in Section 1.2. With

a fast Fourier transform (FFT), the temporal scales can be shown to be resolved by analyzing the

turbulence cascade in time. Using Taylor’s hypothesis of frozen turbulence [38], autocorrelation

can be used assuming that turbulent fluctuations at one point in the channel center is transported

by the mean flow to a second point. Therefore, the point selected must be far from the walls where

it is not affected by the BCs. The power spectrum in this freestream region between the two rods is

shown in Fig. 2.7. The slope of normalized power over frequency is approximately -5/3, indicating

that the temporal scales match the cascade for theoretical turbulence.

In addition to resolving turbulence temporally, the proper spatial scales can be compared with

the Taylor microscale, which is a length scale where viscosity begins to influence the turbulent

eddies in the flow. Similar to the Kolmogorov length scale, the mesh can be compared to the
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Figure 2.7: Power spectrum at a point in the freestream region with the theoretical slope for the
inertial subrange. Reprinted with permission from [1].

Taylor microscale to ensure it is refined enough to capture large eddy effects. Using theory from

isotropic turbulence, Taylor derived the length scale as

λt =

√
15
ν

ε
u′ (2.6)

where u′ is the RMS of the velocity fluctuation and ε is the turbulent dissipation rate. A prior

studies were conducted using the realizable k-ε model with STAR-CCM+. Using the same mesh-

ing structure, a mesh of 31×106 elements is built and imported. Wall functions for an average y+

of 0.6 and maximum y+ of 12 are used with the Const BC for inlet. Since large errors exist for

RANS for this problem, URANS calculations are made for 1.5 seconds to calculate the variables

needed for Equation 2.6. The average pressure drop is calculated to be 2805.6 Pa, meaning that

it underpredicts it by 1.6%. This is an expected result as RANS methodologies tend to dampen

velocity fluctuations.

The contour of Taylor length scales at the region of interest (at the sixth rod) is presented in
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Figure 2.8: Taylor length scale normalized by the diameter of the rod at Section A. Reprinted with
permission from [1].

Fig. 2.8. The magnitude of the length scales become relatively the same by the sixth rod, similar

to the variance shown in Fig. 2.5. The smallest Taylor microscales are located at the walls and in

the wake where the flow separates. Overall, the mesh size is generally half the microscale, since

the average ratio of mesh size to Taylor length scale is 0.54, 0.41, and 0.32 for N = 5, 7, and 9,

respectively. At local regions, this ratio can be larger, but the Taylor length scale still remains

smaller than the mesh size.

2.5.5 Instantaneous Characteristics

A qualitative description of the physics can be made before validating results. As previously

mentioned, this geometry has many similiarities with crossflow for an array of rods. In Fig. 2.9,

the top right recirculation zone can be observed to have a growing and shrinking effect. This

occurs due to the vortex shedding that is common for most rod-based geometries, and following

the vectors downstream of this recirculation zone shows that vector arrows alternate in direction

accordingly. This pulsating physics can be detrimental for safety concerns, since it amplifies the

amount of force that impacts the rods. Instantaneous pressure histories from this data can be used

for flow-induced vibrations, such as the study conducted by Yuan et al. (2017) [28]. Future studies

can implement these methods to quantify the amount HCSG rods move when under such flow
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conditions.

When analyzing the experimental video of instantaneous velocity vectors (not shown), it is

observed that the same oscillatory effects are present. If the experimental facility undergoes large

fluctuations, it is possible small flow-induced vibrations are present in the test section. Nonethe-

less, this case study is the first towards this goal and such uncontrolled factors can be assumed

negligible. Due to the large fluctuations present in the instantaneous velocity vectors, there will be

large magnitudes of RMS velocities relative to the average quantities. Moreover, there could be

large flow structures that will be analyzed with techniques discussed in the sections after validation.

2.6 Validation

2.6.1 Velocity Contours

Velocity statistics from LES and PIV are extracted at the sixth and seventh rods from Sections

A, B, and C. Measurements have an uncertainty of 17.9 mm/s, which is ±1.7% based on the

average gap velocity magnitude of roughly 1.0 m/s. Moreover, it is not out of the question that

PIV measurements near the wall could have additional uncertainty due to the camera resolution

and lighting on certain regions during measurements. Details have been documented in Delgado

et al. [33]. The streamwise velocities in Fig. 2.10 are normalized by the inlet velocity and reveal

that the primary flow between LES and PIV are similar in terms of magnitude and shape. Within

subchannel center the velocity is at its largest, while within the ribs there is backflow due to flow

recirculation. As the location progresses from Section A to Section C, it is clear how the curvature

affects P/D ratios and will change the physics as flow separates from the rods. This is less evident

with the average velocities but is a crutial factor when analyzing the instantaneous velocities.

One important aspect to observe is the discrepancy between geometry that can accumulate to

over one millimeter. Whereas the measured width of Section C covers 23.7 mm, the model covers a

length of 22.5 mm. This difference can be explained by manufacturing tolerances and uncertainty

of the laser angle. Moreover, it is possible that the theoretical rod diameters do not match the

experimental ones. For example, Section B is aligned using the top of the right rod at Y/D of 0.4,
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(a) t = 3.2 convective seconds (b) t = 4.92 convective seconds

(c) t = 6.72 convective seconds (d) t = 9.18 convective seconds

Figure 2.9: Instantaneous normalized vector contour at various normalized times to show oscilla-
tory physics and flow behavior.

29



but the bottom of the right rod of the experiment shows that it is 5% larger than the model. Section

B also shows that the alignment is not perfect, since the location of the left rod is not identical.

Still, the magnitudes of both contours are very similar and should only introduce minor errors.

Overall, it can be stated that primary characteristics are all captured using LES.

The streamlines in Fig. 2.11 show that freestream regions and recirculation zones are well cap-

tured with LES. The general locations of stagnation points from flow impingement and after flow

separation are very similar between PIV and LES. The low stagnation point after flow separation

imply the flow is highly turbulent and consists of frequent vortex shedding. The spanwise veloci-

ties are also normalized by the inlet velocity and show more deviations compared to the expeirment

than the primary flow. The magnitudes of transverse flow are generally smaller for PIV than LES,

which is most noticeable in Section B. Generally, LES predicts nearly symmetric flow between the

left and right rods regardless of the section under consideration. However, PIV has less symme-

try and is most evident in Section C, where the magnitudes of the spanwise velocity on the left

rods are much greater than on the right. In ideal conditions, the flow should exhibit symmetric

characteristics because the slices are far from the side walls, and it is not out of the question that

experimental uncertainty could be a factor.

2.6.2 Velocity Profiles

It is difficult to make wall-to-wall comparisons, since width slices are different and zeros do

not match. Therefore, comparisons will be made from the wall to freestream regions and adjusted

accordingly. Generally, local wall comparisons have similar features with a few regions with poorer

results. This is due to the reasons mentioned before. Therefore, Section A is selected due to its

higher quality and more symmetric secondary flows, and in Fig. 2.12 lines are extracted from for

quantitative comparisons.

Line A1 is located at a point where the flow has not separated from the rod. It is observed that

the primary flow is much greater than the secondary flow in Fig. 2.13. The flat profile of the pri-

mary flow is due to the large amount of turbulence generated by rib-like geometric changes as the

flow crosses the rods. Compared to experimental measurements, gradients in streamwise velocity
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(a) LES Section A (b) PIV Section A

(c) LES Section B (d) PIV Section B

(e) LES Section C (f) PIV Section C

Figure 2.10: Streamwise mean velocity contour for LES and PIV at Section A, Section B, and
Section C.
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(a) LES Section A (b) PIV Section A

(c) LES Section B (d) PIV Section B

(e) LES Section C (f) PIV Section C

Figure 2.11: Spanwise mean velocity contour and streamlines for LES and PIV at Section A,
Section B, and Section C. Reprinted with permission from [1].
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Figure 2.12: Locations of lines extracted from Section A. Reprinted with permission from [1].

for LES near the wall tend to be larger than gradients for PIV. This is a reasonable consequence

of having a wider PIV iterrogation area than the extracted width of the model. When compar-

ing the profiles between different simulations for sensitivity, there are little discrepancies for the

streamwise direction. Spanwise velocities show greater differences, especially at the center of the

subchannel. Here, it is confirmed that that solutions at N = 5 is too coarse to properly resolve the

secondary flows in the system.

Line A2 in Fig. 2.14a-b is located in the region after the flow separates from the rod and near

the point where it begins to recirculate. This flow is more interesting as when the primary flow is

near zero, the magnitude of the secondary flow is very large. Overall, this large transverse flow and

minimal primary flow near the wall are captured by LES. The trend where the spanwise velocity

is overpredicted and the streamwise velocity is slightly underpredicted is present in other lines not

shown. The similarities between N = 7 and N = 9 show that results are consistent and are not

highly sensitive to spatial discretization. The use of exp BC introduces greater spanwise velocities,

an outcome of having a non-uniform inlet boundary condition. This also explains the source of the

larger pressure drop when using BCs that incorporate the interpolated experimental measurements.

Still, the differences between LES and PIV are minor for first-order statistics and most prominant

characteristics have been captured.
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(a) (b)

Figure 2.13: Velocity at line A1 for (a) streamwise mean and (b) spanwise mean direction.
Reprinted with permission from [1].

2.6.3 Reynolds Stresses

The fluctuating components of the velocity are presented as RMS in Fig. 2.14c-d and are nor-

malized by the inlet velocity. Streamwise fluctuations show good correlation with the experiment,

with significant improvement with N = 9. The peak of at X/D of 0.27 where the flow separates from

the rod tends to be overpredicted for both components of flow. Greater overprediction compared to

PIV in the transverse direction occurs, since the magnitude of the these velocities are much larger.

The polynomial order appears to have a greater effect on higher-order statistics, where N = 9 shows

notable differences compared to N = 5 and N = 7. On the other hand, the inlet BC only has minor

differences between the various LES simulations as the peaks for both N = 7 cases are the same.

This reinforces the fact that results within the region of interest are independent of the inlet BCs.

The shear stress in Fig. 2.14e and shows the similar trend of overprediction at the peak where

there is flow separation. Still, the shape is similar to PIV with smaller magnitudes near the wall

and larger ones at flow separation. Solutions at N = 9 produce much better results at the near-wall

regions, indicating that the only method to get more accurate results for the Reynolds stress is to

increase the resolution. Since smaller eddies are being resolved with N = 9, it can be deduced that
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(a) (b)

(c) (d)

(e)

Figure 2.14: Velocity at line A2 for (a) streamwise mean, (b) spanwise mean, (c) streamwise RMS,
(d) spanwise RMS, and (e) shear Reynolds stress. Reprinted with permission from [1].
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these dissipative effects (which improved the pressure drop) also improve the fluctuations inside

the HCSG. The experimental measurement time has been used as a reference for the simulation

time, so difficulty in converging higher-order statistics becomes another source of the discrepancies

for these sensitivity analyses. Nonetheless, the overall trend and magnitude of the flow matches

well with PIV showing that LES simulations have been validated.

2.6.4 Proper Orthogonal Decomposition

A prevailing method for studying turbulence is proper orthogonal decomposition (POD) due

to its simple description and its ability to characterize spatial-temporal effects by decomposing

them into their most energetic modes. Quantifying instantaneous field data into matrices makes

this method a powerful tool for studying the physics in both PIV and LES. Large flow structures

are present in the mode with most turbulent kinetic energy and can be visualized in the first modes,

while smaller flow characteristics are contained in later modes. Although the initial work in POD

for turbulence was introduced by Lumley (1967) [39], this work will discuss one of the most

popular techniques for solving these equations, known as the method of snapshots by Sirovich

(1987) [40]. Nonetheless, the mathematical basis of POD is the same and starts with finding a

solutions to the following equation

∫
Ω

R(x,x′)Φ(x′)dx′ = λΦ(x) (2.7)

where Ω is the spatial domain, R is the two-point correlation tensor, λ are the eigenvalues, and

Φ are the eigenfunctions. By using numerical approximations for the two-point correlation and

writing the basis modes as the original dataset, the system of equations can be written as the

following eigenvalue problem

CA = λA (2.8)

where C corresponds to the auto-covariance matrix and A are the coefficients for the basis modes,

which are defined as
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C = C(i, j) =
1

N
(uT (x, ti)u(x, tj))i, j = 1, ..., N (2.9)

A = A(tn), n = 1, ..., N (2.10)

Once the eigenvalues are found, they must be arranged in descending order such that the first

mode contains the most energy. This mathematical simplicity allows the original snapshots to be

recovered through matrix algebra. Additional details on implementation can be found in Cavar and

Meyer (2012) [41]. Since POD calculations from PIV involve only two components of the flow,

local regions of the LES domain are isolated for analyses. Usage of POD in Nek5000 has also

been implemented by Merzari et al. (2013) [42] and Fick et al. (2017) [43].

Figure 2.15: Fraction of kinetic energy for the first 12 modes from POD. Reprinted with permission
from [1].

Lee et al. (2017) conducted 2D POD analysis on Section D for 1.0 seconds with a resolution of

10,000 frames/s at the sixth rod [32]. The first mode for PIV is calculated as having 94.4% of the

kinetic energy, meaning the turbulent kinetic energy in the system is 5.6%. For N = 7 simulations,

two-dimensional POD for LES is processed with 2500 snapshots over 1.5 s. LES predicts that
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the first mode has 90.6% energy, meaning that the simulation overpredicts turbulent fluctuations

as previously shown in line plots. The energy content within each mode is show in Fig. 2.15 on

a log scale. Since the first mode from PIV holds more energy than LES, it is expected that LES

will overpredict the energy within the other modes. Hence, the decay of energy for higher modes

is larger for the experiment compared to LES.

The first mode is showin Fig. 2.16a-b, where the velocity magnitude is calculated from the

x- and y-components of the velocity. Here, the larger PIV energy content in the first mode can

be attributed to the larger magnitudes in the freestream region. This is consistent with the fact

that mean streamwise velocities are slightly larger for PIV than LES. The vectors on this plot also

provide insight on the flow direction within the recirculation regions. After the flow separates from

the rod, fluid has a bias toward the inner wall. Fluid is directed away from the walls at the next rod

and then accelerates toward proceeding rods.

The velocity associated within each POD mode can be calculated by multiplying the mode

with its POD coefficient, obtained by projecting the flow field onto the mode. Flow structures can

be observed using the second mode show in Fig. 2.16c-d. Large recirculation regions form within

the subchannel close to rod walls and advect the flow between rod columns. The intensity of the

structures is highest immediately before the flow impinges on the rod and could be a source of high

pressures and fluctuations. The region where the flow separates from the rod for LES is generally

larger than for PIV. Still, the agreement is remarkable, proving that LES is capable to capturing the

main features from higher-order statistics.

Detailed POD analysis is only conducted for this 2D slice due to the availability of experimental

calculations. However, 3D POD has been conducted as well (not shown) to find other rods regions

have much different flow structures, a feature not present when observing the RMS velocities and

Reynolds stress. Whereas high-order modes present a high degree of symmetry and coherence,

this is not the case for the lower energy POD modes. The lower energy modes reveal features of

decorrelation and asymmetry that requires much higher resolution and time integration for both

PIV and LES to properly validate.
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(a) LES Mode 1 (b) PIV Mode 1

(c) LES Mode 2 (d) PIV Mode 3

Figure 2.16: POD of mode 1 for (a) LES and (b) PIV and POD of mode 2 for (c) LES and (d) PIV.
Reprinted with permission from [1].
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2.6.5 Coherent Structures

To visualize coherent structures in the flow, the Lambda-2 (λ2) vortex criterion is calculated

from an instantaneous flow field [44]. Fig. 2.17 presents the motion of vortices for λ2 = -1×106

s-2 superimposed on the contour of pressure in the system. The effect of geometry is clear, since

the friction from the rib-like channel generates large turbulence structures. The highlighted upper

region consists of many vortical structures, perhaps associated with entrance effects. On the other

hand, the highlighted downstream region has less vortices in the outer wall-bounded area. This

instantaneous time frame has bias attributed to vortex shedding that occurs after the flow separates

from the rods at regions with high variance, as observed previously in Fig. 2.5. Typically, the full

Kármán vortex street should be observed in regular crossflow, but the additional walls to simplify

the geometry dampen this effect.

Coherent structures are generated in regions of flow separation and advected in a pulsatile

fashion by modes of the type shown in Fig. 2.16c-d. The presence of vortex shedding manifests

itself within a smaller scale, causing recirculation regions to grow and shrink in an oscillatory

manner. Unlike previous analyses, the Lambda-2 vortex criterion gives insight into the 3D transient

effects in this geometry. Local regions in the z-direction have less vortices while other regions are

grouped at the location of the large eddies.

2.7 Conclusions

LES of the simplified, single-column HCSG reveals the capabilities of CFD for investigating

the detailed physics for this type of heat exchanger. Results can be used as a guideline on the

requirements necessary to properly capture the physics in this flow for future design and RANS

simulations. It is discovered that the pressure drop shows little sensitivity to the inlet BCs, while

minor differences are found for the lowest spatial resolution under consideration. The law of

the wall and turbulence length scales were also analyzed to justify that the mesh is sufficient for

capturing important dissipative effects. Instantaneous velocity vectors and λ2 vortex criterion show

that flow oscillations are present due to vortex shedding from the rods.
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Figure 2.17: Instantaneous isosurfaces of λ2 = -1×106 s-2 with contour of normalized pressure
imposed. Reprinted with permission from [1].
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Contours of first-order statistics using the mean flow show remarkable similarities with PIV

measurements. The difference in spanwise velocities can be attributed to the fact that experimental

measurements were not as symmetric as LES, perhaps due to tolerances or uncertainty with mod-

eling an ideal geometry. Quantitative comparisons of lines at Section A reveal good agreement

despite minor geometric differences. The shapes of the Reynolds stresses and fluctuations match

well, but the peaks are overpredicted. POD is also conducted to show primary modes agree well

with experimental measurements. However, LES shows a lower decay rate for POD when ana-

lyzing the energy content of higher modes. Overall, simulations of the complex heat exchanger is

validated with experimental results, and the resolution and boundary conditions are documented to

be used as guidelines for larger scale HCSG efforts.

Deeper insight into modeling requirements and necessary physics have been provided with

high fidelity simulations. Although turbulence can aid in heat transfer, an excessive amount can

have adverse effects and reduce the heat transfer cofficient. Future work can include the addition

of heat flux at the rods, similar to an actual HCSG, and investigate its efficiency per unit volume

compared to other types of heat exchangers. Moreover, the main goal of this project is to obtain

accurate pressure signals from the turbulent field for future work and use them for flow-induced

vibrations. Though outside the scope of this work, future researchers can use data from stored

history points to do structural analyses.
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3. BUOYANCY DRIVEN FLOW∗

3.1 Literature Review

The next phenomenon under consideration for heat exchanger applications is turbulent mixing

between fluids of different properities due to buoyancy. Nonlinear hydrodynamics give rise to

instabilities, coherent structures, and anisotropy that continues to challenge scientists and engineers

alike. When there are changes in viscosity between fluids, there are significant impacts to the

rate of mixing as well as changes the effective Reynolds number. Even with lower Re, viscosity

differences between two fluids impacts the mixing characteristics during fluid injection as shown

by Campbell and Turner (1985) [45]. Moreover, a study by Youngs (1991) on varying density

differences show large changes in turbulent kinetic energy and density fluctuations [46].

One parameter that describes hydrodynamic instabilities is the Atwood number (A), which is

defined as the density difference divided by their sum. The most simple, yet effective model for

buoyancy is the Boussinesq approximation whose applicability corresponds to A→ 0 and lumps

density difference effects into a single source term. Still, its practicality extends to predicting more

complex instabilities such as Rayleigh-Taylor even at higher A, with reasonable error as shown

by Mikaelian (2014) [47]. Livescu and Ristorcelli (2008) investigated isolated buoyancy driven

turbulence to show that although mixing rates can drastically change at high A, the Boussinesq

approximation can still be useful for lower-order integrated quantities. Also, they discovered large-

scale influences when varying other non-dimensional parameters, such as the Schmidt number on

the integral legnth scale [48]. Another study by Mueschke et al. (2009) on the Schmidt number

indicates that there are large effects on mixing for even small Reynolds numbers [49].

Mixing of variable-density fluids has a critical role for nuclear power safety during the accident

scenario of emergency core cooling (ECC) injection. This is due to a phenomena known as pres-

surized thermal shock (PTS) where rapid cooling of reactor vessel walls lead to dire consequences,

∗Part of this section is reprinted with permission from “Sensitivity analyses in a buoyancy-driven closed system
with high resolution CFD using Boussinesq approximation and variable density models” by J. K. Lai, E. Merzari, Y.
A. Hassan, 2019. International Journal of Heat and Fluid Flow, Vol. 75, 0142-727X, Copyright 2019 [2].
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such as jeopardizing the integrity of the material. Turbulent mixing quantities such as density gra-

dients are essential in the cold leg-downcomer region where cold water enters the reactor vessel

region [50]. Early studies by Wolf et al. (1987) analyzed experimental temperature measurements

for the cold leg-downcomer region and concluded that thermal mixing can mitigate extreme ther-

mal shocks. However, stress fields due to the cold plume region causes large axial stresses near

the cold leg nozzle [51]. Experimental data from multiple test facilities has been gathered by The-

ofanous and Yan (1991) and interpreted by various transient codes to predict cooling. This is due

to the complicated three-dimensional mixing within the cold leg-downcomer junction [52]. Ad-

vancements in supercomputing and CFD have now made it possible to predict mixing with higher

fidelity.

Both experimental and numerical investigations on ECC injection indicate the dominance of

buoyancy effects between hot and cold water. After verification through grid and model sensitivity,

transient analyses by Scheuerer and Weis (2012) show turbulent mixing near the nozzle tends to be

underpredicted with RANS simulations [53]. Another RANS calculation of PTS was performed

by Shams et al. (2016) with different Re, Pr, and geometrical considerations to design a DNS

benchmark case. Predictions show that even with a simplified geometry, over a billion grid points

are needed to resolve the calculated Kolmogorov length scales [54]. Therefore, the only feasible

method for high fidelity CFD for such a phenomenon is with scale-resolving simulations such

as LES. Investigation on identifying the required mesh resolution for LES has been discussed

among Loginov et al. (2010), and it is found that mixing in the downcomer is very sensitive to

the fluctuations of the fluid injection for single phase flow [55]. Hence, sensitivity to boundary

conditions must be examined for such cases.

Unlike previous studies, this buoyancy driven flow case focuses on LES of a completely closed

system where the only contribution of energy are differences in density between two isothermal,

miscible fluids. Due to dissipation from walls and entropy from mixing, system equilibrium will

be reached when all momentum is lost and the fluids homogenize. However, the phenomena of

interest is fully transient and must be analyzed using small time averaging windows rather than
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statistically stationary methods. The Cold Leg Mixing CFD-UQ benchmark has been developed

for the Nuclear Energy Agency (NEA-OECD), and LES of this case will be used to judge the

capabilities of chosen governing equations and Schmidt numbers. Sensitivity analyses will be

conducted for the case where the heavy fluid (NaCl and water mixture) and light fluid (ethanol

and water mixture) yield an Atwood number of 0.05, which approaches the Boussinesq limit.

Investigation of higher A will also be discussed.

3.2 Experimental Facility

The experimental facility consists of a cylindrical tank and annulus geometry connected by a

transfer pipe. The pipe fitting nozzle is straight for the cylindrical tank, while the nozzle is smooth

for the annulus as shown in Fig. 3.1. The valve that initially separates the heavy fluid from the

light fluid is located off-center of the pipe, meaning that there will be asymmetry with the flow. The

heights of the two fluids are adjusted depending on the Atwood number, such that the static pressure

difference at the valve is zero (i.e. ρHhH = ρLhL). Although the top of the cylindrical tank is

actually a free surface, it is treated as a wall for simplicity in the numerical simulation. This is safe

assumption, since the free surface is far from the region of interests. Fluid properties are presented

in Table 3.1, where the Atwood numbers are rounded to 0.05 and 0.10 to simplify the reporting of

results. Additional details about the geometry, initial conditions, and boundary conditions can be

found at Texas A&M University’s Thermal-Hydraulic Research Laboratory (https://thrlab.tamu.

edu/pressurized-thermal-shock-pts-facility-the-cold-leg-mixing-cfd-uq-benchmark/).

Light Fluid Heavy Fluid Light Fluid Heavy Fluid
Density (kg/m3) 956.54 1064.7 920.0 112.3
Dynamic viscosity (Pa-s) 0.00245 0.00109 0.002867 0.001377
(ρH-ρL)/ρ0 10.7% 18.9%
A 0.05 0.10

Table 3.1: Fluid properties of both Atwood number cases for buoyancy driven flow. Reprinted with
permission from [2].

45

https://thrlab.tamu.edu/pressurized-thermal-shock-pts-facility-the-cold-leg-mixing-cfd-uq-benchmark/
https://thrlab.tamu.edu/pressurized-thermal-shock-pts-facility-the-cold-leg-mixing-cfd-uq-benchmark/


(a) (b)

Figure 3.1: Geometry of fluid domain for (a) isometric view and (b) planar slice at z = 0 m.
Reprinted with permission from [2].

3.3 Computational Domain

Similar to the validation work for HCSG, the measurement tool for the Cold Leg Mixing CFD-

UQ benchmark is PIV. PIV is conducted using a match-index-of-refraction technique at the regions

of interests on the symmetric plane of z = 0 m within the cold leg and downcomer [56]. Two

cameras for PIV with a temporal resolution of 250 frames/s are positioned at locations in Fig. 3.6.

The disc valve in Fig. 3.1b separates the heavy fluid (red) and light fluid (blue) from one another.

Data acquisition is setup such that once the disc valve moves, both cameras simultaneously start

to record data at what will be called time zero. At time zero, the disc opens in the position y-

direction in approximation 0.028 s, where the fluids are allowed to mix. Energy loss in the closed

system can be attributed to fluid mixing that dissipates potential energy and the walls that dissipate

momentum. The bottom of the annulus will be filled before the cylindrical tank, since the volume

of heavy fluid is larger than light fluid.

The fluid domain consists of roughly 1.5 million elements solved using N = 5 (190 million

unique grid points) for A = 0.05 and using N = 7 (520 million unique grid points) for A = 0.10.

This requires a time step of 2×10-4 s and 8×10-5 for A = 0.05 and A = 0.10 respectively. All
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(a) (b)

Figure 3.2: GLL points of N = 5 mesh for (a) three slices at cold leg and (b) z = 0 m slice at nozzle.
Reprinted with permission from [2].

boundary conditions are treated as walls, hence refinements are made such that near-wall grid

points are sufficiently small. Similar to the LES grid requirements in Marin et al. (2016) and for

analysis done on the HCSG, wall-normal grid sizes (y+ ) are calculated using the friction velocity

and viscous length [57]. On average, the first wall grid y+ is roughly 0.1 within the cold leg and

0.3 within the downcomer. For the entire domain and length of the transience, the maximum wall

y+ only goes up to 0.7 for both Atwood numbers and occurs for a short time. This ensures that the

viscous sublayer can be resolved throughout the simulation.

For LES using the spectral element method, a structured hexahedral mesh is built in ANSYS

ICEM CFD with blocking, O-grids, and controlled wall-refinement to produce previously men-

tioned y+ values. The mesh is exported into exodusII format and using Nek5000’s exo2nek tool,

element curvature, sidesets, and connectivity are imported. Aspect ratios are kept as small as pos-

sible for far-wall regions, allowing pressure iterations to average around 30 per time step for entire

transience. The mesh is shown in Fig. 3.2, where elements are locally finer at regions of interest in

the cold leg and downcomer than in regions where there is minimal flow movement.
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3.4 Models

3.4.1 Boussinesq Approximation

For buoyancy driven flows, the Boussinesq approximation (BA) proves to be accurate for a

large number of problems, as shown in [47, 58, 59]. Under the assumptions that density differences

are sufficiently small, the buoyancy force can be accounted for in the momentum equation [60].

The new form of the incompressible Navier-Stokes equations that will be used is

ρ0

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · µ

[
∇u +∇uT

]
+ (ρ− ρ0)g (3.1)

∇ · u = 0 (3.2)

where the reference density ρ0 can be arbitrarily chosen to be (ρH + ρL)/2 and ρ is the local density.

The source term can be further simplified to the temperature differences times the coefficient of

thermal expansion, in scenarios where buoyancy arises due to temperature differences. Since the

problem under consideration is isothermal, the body force will only include density and gravity.

Additionally, the full stress tensor is written out for this problem to account for variable viscosity.

It is assumed both local density and viscosity are functions of concentration φ. Fluid properties are

presented in Table 3.1 and intermediate values are calculated as such

µ = µL − (µL − µH)(φ− φL)/(φH − φL) (3.3)

ρ = ρL + (ρH − ρL)(φ− φL)/(φH − φL) (3.4)

where µ is the local dynamic vicsosity, φ is the local concentration, and the subscripts L and H

indicate fluid properties of the light and heavy fluids respectively.
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3.4.2 Low-Mach Navier-Stokes

Under scenarios where BA is not applicable, divergence-free conditions do not apply and a

new equation-of-state must be included to close the system of equations. The low-Mach (LM)

approximation formulation of the Navier-Stokes equations become suitable for this problem and is

evaluated as [16]

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇P +∇ · µ

[
∇u +∇uT − 2

3
(∇ · u)I

]
+ (ρ− ρ0)g (3.5)

∇ · u = −1

ρ

dρ
dφ

(
∂ρ

∂t
+ u · ∇φ

)
(3.6)

Now, the divergence of velocity is a function of the density and concentration. Due to the

linear dependence of concentration on density, the beta coefficient is known. Since pressure and

velocity are not coupled with the PNPN formulation [16], these governing equations can be solved

in Nek5000 with minor modifications to the source code.

3.4.3 Concentration

For both BA and LM models, the concentration of the two fluids are calculated using the

following advection-diffusion equation

ρ

(
∂φ

∂t
+ u · ∇φ

)
= ∇ · (ρD)∇φ (3.7)

whereD is the mass diffusion rate. This quantity is calculated using the molecular Schmidt number

(Sc) as

Sc =
ν

D
(3.8)

where ν is the kinematic viscosity based on local dynamic viscosity and local density. Since the

Schmidt number is not known for the experimental fluids and the filtering method for LES does
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not use a turbulent Schmidt number (Sct), a suitable Sc must be chosen. Finding the exact value

of Sc for these mixtures is not clear-cut, although literature of pure quantities estimates Sc = 620

for coefficients of water-NaCl and a magnitude of 103 for water-ethanol [49, 61]. Since Sct adds

an effective diffusion based on the eddy viscosity, the magnitude of Sct can be analogous to its

molecular quantity since the viscosity ratio is often larger than one for turbulent flows. Literature

shows that Sct of unity is often employed for many applications [62]. This implies that Sc = 1 may

be a valid option for this type of flow since there are no issues with excessive mass diffusion with

the same concentration. Therefore, sensitivity analysis of the Schmidt number will be conducted

with ranges from 100 to 103, where 103 is roughly the actual molecular diffusivity.

3.4.4 Entropy Viscosity Method

High-order numerical approximations for the nonlinear term in the advection-diffusion equa-

tion can become very unstable, requiring the need for a large eddy diffusivity. Over-integration,

spectral vanishing viscosity, and entropy viscosity method (EVM) are some recommended tech-

niques for spectral elements when considering high Re as discussed by Malm et al. (2013) [63].

Although the effective Re for this problem is relatively low, the flow remains turbulent due to

vortex shedding and the presence of Kelvin-Helmholtz instability from countercurrent flow. More-

over, the Schmidt number in this problem is in order of 103, so the Batchelor scale becomes three

orders of magnitude smaller than the Kolmogorov length scales. This makes it impossible to re-

solve the gradients between the two fluids with the available computational resources. Thus, EVM

by Guermond et al. (2011) is chosen such that more dissipation will be added proportional to local

entropy production [64]. An upper bound is put on the following entropy viscosity

νE(x, t) = cEh
2(x)R(Dh(x, t))/

∣∣∣∣E(uh)− E(uh)
∣∣∣∣
∞,Ω (3.9)

where cE is a tunable constant, h is a the local mesh size, R is a function that depends on the

entropy residual Dh, E is entropy, and uh is local velocity. Details of these functions and values

can be found within [64, 65]. By increasing mass diffusion at regions of high entropy, the steep
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gradients between the two mixing fluids can be smoothed to stabilize the solution at regions where

the mesh is too coarse.

3.5 Taylor Microscales

Similar to Section 2.5.4 for the HCSG, it is important to ensure that the mesh distribution is

appropriate and can be done by using the Taylor microscale. Equation 2.6 describes the formulation

to calculate this length scale. A priori calculations using RANS are made with OpenFOAM 2.4.0

using the k-ε turbulent model [66]. Using a 3.5 million element structured mesh with the same

blocking structure as Fig. 3.2, a pseudo-transient solution is developed with the finite volume

method using the solver called "twoLiquidMixingFoam" with pressure-implicit with splitting of

operators (PISO) algorithm [67]. This volume of fluid solver incorporates Fick’s law of diffusion to

calculate the mixing between the incompressible fluids, where Sct for this case is set to unity. The

low-Re Launder-Sharma (1974) k-ε is used, since preliminary numerical tests reveal the effective

Reynolds number is low [68]. The extra source terms remove the need for wall functions and allow

k and ε to be solved within the viscous sublayer. Initial conditions are the same as previously

mentioned, now with k and ε also being initialized to zero. The coarser mesh allows the time

step to be set at 2×10-4 s with low courant numbers. Since the purpose of this work is sensitivity

analyses for high fidelity LES, minimal verficiation was conducted on RANS.

Figure 3.3: Taylor microscales (in meters) within the cold leg at t = 8 s. Reprinted with permission
from [2].
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Within the cold leg, velocities reach their peak when the two fluid fronts initially propogate

through the transfer pipe and then begin to decay. Hence, the Taylor length scales are show in

Fig. 3.3 at t = 8 s, a time roughly before the front reaches the end of nozzle and where length scales

are smallest. For the downcomer, the smallest microscales appear at roughly t = 16 s. The largest

ratio between local Taylor microscale and mesh size for the downcomer is 0.56 and 0.38 for N =

5 and N = 7 respectively. This means that regardless of the chosen polynomial order, the spatial

discretization will resolve the large turbulent eddies and some dissipative effects as well.

3.6 Sensitivity Analyses and Validation

3.6.1 Initial Conditions

The opening of the valve described in Section 3.3 is difficult to characterize, because physics

involve filling a vacuum once the disc is lifted. Sensitivity on initial conditions have been investi-

gated to judge the long term effects on the fluid front and bulk quantities. Two-dimensional studies

would be more efficient, however 2D over-predicts the growth of large scale structures compared

to 3D as demonstrated by Youngs (1991) [46]. For this reason, the full 3D geometry has been

numerically tested with various treatments of t = 0 s as shown in Fig. 3.4a-d.

1. IC1: Fluids are separated by a vertical plane at valve center (x = 0 m).

2. IC2: A smooth gradient for concentration of heavy and light fluids is defined across valve.

3. IC3: Fluids are separated by a slant plane to prevent fluid entrapment within valve ports.

4. IC4: Same density as IC1 but initial velocity of 1.8 m/s is specified at disc surfaces that do

not touch the walls.

The reason for the large initial velocity is due to approximating its value using the height of the

valve and the fast average experimental valve opening time of 0.028 s. Although IC4 represents

experimental conditions most accurately, the time step must be reduced by an order of magnitude

to maintain stability, making simulating the first second extremely expensive and impractical for

other sensitivity analyses. Additionally, investigation of the ICs has been conducted at N = 3
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Slice of initial conditions t = 0 s at valve for density of (a) IC1, (b) IC2, (c) IC3, and
velocity for (d) IC4. Slice of fluid front at t = 8 s at cold leg for densities of (e) IC1, (f) IC2, (g)
IC3, and (h) IC4. Reprinted with permission from [2].

to reduce computational costs. Note that the words “density” and “concentration” will be used

interchangeably for analysis within the context of the buoyancy driven flow due to their linear

relationship.

The instantaneous density contours at 8 s are presented in Fig. 3.4e-h to show there are insignif-

icant changes to location and shape of the fluid front. The location of the front of IC3 lags behind

slightly, because the slanted IC has inherently more stable and has less potential energy. The wake

of the front for IC2 shows less instabilities than its counterpart, because the smooth gradient of

concentration suppresses the initial Kelvin-Helmholtz instabilities. Qualitatively, other locations

also show almost no influence from these various ICs once the flow has developed through the cold

leg and into the downcomer.

Statistics are taken to quantify whether ICs influence the bulk movement of the flow. The

first several seconds after the front passes, there are clear differences in the valve between the four

cases. This is due to the complexity of the Navier-Stokes equations where even small perturbations

can drastically change how instabilities evolve [4]. However, these effects are eliminated once the

flow reaches both tanks, and averaging from the time in Fig. 3.5a shows minor change in the bulk
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(a) (b)

Figure 3.5: Streamwise (a) mean and (b) fluctuations in cold leg at x = 0.1 m for various ICs from
7 to 17 s. Reprinted with permission from [2].

flow. The velocity fluctuations show greater differences even after time integration, which can be

seen in Fig. 3.5b. The additional energy from IC4 creates greater fluctuations at the bottom of

the pipe but less at the top. Generally, IC1 appears to have the closest RMS values compared to

IC4. Although IC4 represents the valve physics most accurately, it is too expensive due to model

a velocity of 1.8 m/s impinging onto the wall. Hence, other results for buoyancy driven flow will

use IC1 due to its cheaper computational costs.

3.6.2 Time Integration of Transience

Selecting a suitable time window for a fully transient problem where system energy constantly

decays irregularly is difficult. In order to obtain relatively time-independent statistics for compar-

ing with PIV measurements, Taylor’s hypothesis of frozen turbulence is used. This assumption

allows the autocorrelation to be related with the two-point correlation, and the integral time scale

can be computed as

Tint =

∫ ∞
0

Bnorm(τ)dτ (3.10)
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(a) (b)

Figure 3.6: Locations of line profiles and points at (a) cold leg and (b) downcomer. Reprinted with
permission from [2].

whereBnorm is the autocorrelation at a given point in space [4]. This yields the time scale of energy

within the largest eddy for a given temporal window. By computing Tint as the time window (∆T )

increases, time invariant data should show that the integral time scale does not change. Although

this only occurs in statistically steady problems, it can still be used as a tool to justify time windows

in a fully transient case.

Instantaneous monitoring points are indicated in Fig. 3.6 where cold leg points are numbered

from bottom to top and downcomer points from left to right. Points are evenly spaced in fourths

such that CL1 is located 1/4 of the pipe height from the bottom, CL2 is 1/2 of the height, and CL3

is 3/4 of the height. Results for different models can produce different profiles, so Fig. 3.7 is for

LM Sc = 1000 since it has the most difficult convergence. It is shown that the time scale becomes

relatively steady in 10 s for cold leg and in 5 s for downcomer. Therefore, it can be concluded that

an averaging window of 10 s will be sufficient for gathering relatively stable statistics. Overall, it

is impossible to have converged values, since the energy within the system is constantly decaying.

This decay is observed in the downcomer of Fig. 3.7b, where the time scale of the largest eddy
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(a) (b)

Figure 3.7: Integral time scale every 1 s as statistics are taken starting from (a) 5 s for cold leg and
(b) 10 s for downcomer. Reprinted with permission from [2].

decreases as ∆T increases. Generally, flow on the inner wall has a smaller time scale due to its

larger velocities than the outer wall for the early transience. For the cold leg, convergence is faster

in some regions than others due to variations in physics. The upper region of the pipe at CL3 has

less fluctuations due to the light fluid’s higher viscosity, and the slower oscillations take longer to

converge. The high instabilities at the middle of the pipe at CL2 has the smallest time scale due to

its quicker velocity fluctuations and smaller frequencies.

Qualitative observations are also made within the transfer pipe to describe this complex behav-

ior to develop a greater understanding of the physics. The fluid stripe of heavy fluid undergoes

interesting behavior immediately after the smooth nozzle. Countercurrent flow, instabilities, and

the presence of vortex shedding at the pipe fittings create at least three transient phases, which can

be observed in Fig. 3.8.

1. At t = 18 s, the countercurrent flow is stable in wake of the fluid front because of larger

concentration gradients due to mixing. The fluid stripe has few oscillations and moves from

attached-to-outer-wall to detached.

2. At t = 27.5 s, waves that grow from Kelvin-Helmholtz instabilities occur due to the steep
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(a)

(b)

(c)

Figure 3.8: Instantaneous density contours at smooth nozzle of heavy (red) and light (blue) fluid
mixtures using LM Sc = 1000 at (a) t = 18 s, (b) t = 27.5 s, and (c) t = 38.5 s. Reprinted with
permission from [2].
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Time window 10 to 20 s 20 to 30 s 30 to 40 s
Frequency [Hz] 0.1 0.3 1.16
Strouhal number 0.05 0.15 0.57

Table 3.2: Frequencies and Strouhal number using the spectral peak from power spectral density.
Adapted with permission from [2].

concentration gradients. The fluid stripe now oscillates, constantly moving from attached to

detached from the walls.

3. At t = 38.5 s, multiple waves of various wavelengths arise from propogation of vortex shed-

ding within the nozzles. The fluid stripe now tends to detach to hit the inner wall and fluctu-

ations more than at t = 27.5 s.

The time to transition between these phases can vary anywhere between 10 to 20 s. This re-

inforces the reason why the integral time scale never fully converges. These contour plots also

demonstrate that these phases drastically change the velocity fluctuations entering the downcomer.

More mixing occurs before the flow reaches the region of interest as oscillations grow larger within

the cold leg. Hence, accurate prediction of the flow within the transfer pipe is essential for predict-

ing physics within the downcomer.

To further demonstrate the instabilities that occur within the pipe, the power spectral density is

calculated at CL1 to capture the spectral peak for various time intervals. The dominant frequencies

shown in Table. 3.2 proves there is no dominant frequency for the first 10 s and has increasing

frequencies for later time frames. Using the transfer pipe diameter of 5.3 cm as the reference

length and the fluid front velocity of 10.8 cm/s as the reference velocity, the Strouhal numbers are

shown to be as large as 0.57. For a Reynolds number of roughly 3200 (using the same characteristic

values), it is shown that oscillations can be very large and grow over time due to instabilities and

propogation of vortex shedding from the nozzle geometry.
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3.6.3 Verification

Although many techniques have been developed for uncertainty quantification for the spectral

element method, there is no generally accepted best practice method [69]. Therefore, a couple

methods will be investigated for a short period of time due to computational costs of running LES.

The first is an a posteriori error estimate by summing the truncation error and quadrature error

from a given spectral element as done by Deville et al. (2002) [13]. The approximate form for a

polynomial order discretization is

ueN(r) =
N∑
n=0

aenLn(r) (3.11)

where Ln is the Legendre polynomial and aen is the spectral coefficient. Using the last four points

of the spectrum, the decaying function [a(n)] can be constructed and the error estimate can be

written as

εest =

(
a2
N

1
2
(2N + 1)

+

∫ ∞
N+1

[a(n)]2

1
2
(2N + 1)

dn

)1/2

(3.12)

Figure 3.9: Density contour of heavy (red) and light (blue) fluids at t = 1 s with line locations at
slice z = 0 m using LM Sc = 1.

The second method considered is quantifying error using p-refinement. By making assump-
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tions to Oberkampf and Roy’s (2010) mathematical formulation [70], Legendre polynomials can

be analogous with the terms in the Taylor series expansion, allowing Equation 3.11 to take the

same general form used for Richardson extrapolation as such

fh = f + gph
p + gp+1h

p+1 + gp+2h
p+2 + ... (3.13)

where f is the exact solution. Therefore, the expansions for N = 5 and N = 7 can be combined for

the same mesh and after dropping higher order terms, the error can be simplified to

ε = Fs |fN=7 − fN=5| (3.14)

where the factor of safety Fs is equal to 3 for cases with only 2 grids. This method to quantify error

will be denoted as “error bar”, while the former method will be denoted as “error estimate.” Now,

errors can be developed for the lines shown in Fig. 3.9. Lines are chosen such that the fluid front

has already passed so zeros will not be included in the window of statistics. Results are developed

only for its initial transience to save computational costs, so streamwise velocities are averaged

between 1.0 s to 3.0 s.

For LM Sc = 1000, errors are presented in Fig. 3.10 where red is from using the error bar and

blue is from error estimate calculations. It is evident that the front of the countercurrent flow in

Lines 1 and 2 have almost no error. This is because the locations of the lines are after the fluid front

and does not capture its turbulent wake. On the other hand, Lines 3 and 4 still captures much of the

turbulence that occurs after the front passes and, hence, both methods predict larger errors at these

locations. The inflection point where concentration transitions from light to heavy is where a large

source of error exists. Since the instabilities and turbulence due to density differences occur here,

it is impossible to properly solve the Navier-Stokes equations and error will be larger. At near wall

regions, there is more error at the bottom due to the passing of the fluid front (where concentration

transitions from light to heavy), while the error at the top of the transfer pipe remains small due

to concentration remaining light fluid for the entire time window. Nonetheless, errors from both
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(a) Line 1 (b) Line 2

(c) Line 3 (d) Line 4

Figure 3.10: Error estimate and error bar of streamwise velocity between t = 1 s and t = 3 s for LM
Sc = 1000 at lines indicated in Fig. 3.9.
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methods remain relatively small everywhere except at the velocity’s inflection point where the flow

has instabilities due to buoyancy.

3.6.4 Cold Leg Model and Schmidt Number

Six production runs are simulated at N = 5 for 41 s, which required approximately 200 h wall

clocks each using 1024 nodes, totaling 16,384 cores. The influence of varying the model and Sc

is shown in Fig. 3.11 to Fig. 3.15 for the cold leg at Line A, which is located x = 0.730 m from

valve center. Since the streamwise components are over 50 times larger than the secondary flow,

they have much better validation than the spanwise velocity. The first 10 s averaging window

for streamwise velocity matches well with PIV measurements in Fig. 3.11. In fact, even velocity

fluctuations remain similar regardless of the modeling parameters as shown in Fig. 3.12. This is

attributed to the time window capturing primarily the fluid front, which is dominated by buoyancy

forces rather than turbulent mixing or mass exchange. For time windows starting from t = 16.5 s

and t = 26.5 s, there are initially less fluctuations than PIV, but for later times LES begins to show

better urms. This implies that the experiment may transition to Fig. 3.8c sooner than LES because

of possible difficulty in predicting the onset of instability within the transfer pipe. Differences in

RMS will have an impact on the mean, because larger RMS means more energy will be dissipated

from the closed system. Fluctuations also have an impact within the downcomer, which will be

observed in the next section. Regardless, the cold leg’s inflection point for the mean moves in the

positive y-direction at the same rate as the experiment.

The effects of the diffusive parameter for streamwise velocity are evident in the cold leg. For

smaller Sc, RMS values are damped for later time windows. Between t = 26.5 to 36.5 s, fluctuations

gradually increase from Sc = 1 to Sc = 1000 for LM. This trend correlates with the hypothesis that

less mass diffusion creates greater instabilities, which causes larger velocity fluctuations. On the

other hand, the influence of buoyancy model is not as clear. Generally, RMS streamwise velocity is

better when using LM compared to BA, but is not as definitive as the effect of Sc on the simulations.

The mean spanwise velocities has less trends as magnitudes of these values tend to be extremely

low in Fig. 3.13. As mentioned before, there is better correlation for the first averaging window due
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Figure 3.11: Sensitivity comparisons of cold leg at Line A for streamwise mean. Reprinted with
permission from [2].

Figure 3.12: Sensitivity comparisons of cold leg at Line A for streamwise fluctuations. Reprinted
with permission from [2].

Figure 3.13: Sensitivity comparisons of cold leg at Line A for spanwise mean.

Figure 3.14: Sensitivity comparisons of cold leg at Line A for spanwise fluctuations.
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Figure 3.15: Sensitivity comparisons of cold leg at Line A for shear Reynolds stress.

to the buoyancy-dominant characteristics than later time frames. For later times, the magnitude of

PIV appears to hover around 0.5×10-3, whereas the simulations tend to be roughly twice as large.

The shape is not as correlated for later times and is due to the transient nature of the problem. If the

measurement line is shifted even a centimeter (not shown), the shape of spanwise velocities change

drastically, whereas the streamwise direction had less variation. The Schmidt number appears to

have less improvement on the spanwise velocities and, in fact, appears to be better for lower Sc.

However, this is fortuitous and happens to be the result of additional mass diffusion decreasing

velocities in general. Proof can be observed in Fig. 3.14 where RMS of the spanwise velocity

is nearly zero for low Sc. One important feature to notice is the lack of fluctuations at the top

of transfer pipe for LES. This distinct difference in RMS could be the source of discrepancies.

The shear Reynolds stress in Fig. 3.15 also show the same relationships and it is obvious that the

Reynolds stress is larger and arguably better for high Schmidt numbers.

3.6.5 Downcomer Model and Schmidt Number

The downcomer physics are much more complex, because it heavily depends on the flow com-

ing from the smooth nozzle into the annulus. Line B is located at y = -0.161 m from the valve center

and comparisons in Fig. 3.16 and Fig. 3.17 have different trends than the cold leg. Whereas the

streamwise fluctuations vrms trend to match well with PIV for cases at Sc = 1000, mean velocities

vary more for the first time window. The first 10 s window for streamwise averages has a different

shape than PIV, but tends to readjust itself when waves begin to develop within the transfer pipe at
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Figure 3.16: Sensitivity comparisons of downcomer at Line B for streamwise mean. Reprinted
with permission from [2].

Figure 3.17: Sensitivity comparisons of downcomer at Line B for streamwise fluctuations.
Reprinted with permission from [2].

later times. The RMS tends to be close to PIV regardless of the time window. Again, experiments

show qualitatively that physics are more similar to Fig. 3.8c earlier than LES, enforcing the idea

that resolving the tight gradients of the molecular Schmidt number is essential for this type of flow.

The Schmidt number plays a huge role for the downcomer in the bias towards the inner wall.

Sc = 1 reduces the amount of momentum mixing due to greater mass diffusion, allowing the flow

hug the inner wall. Less mass diffusion means the presence of instabilities and wave propogation

that causes greater turbulence above the region of interest, leading to a more evenly distributed

velocity profile. This trend is noticable in both average and RMS streamwise velocity. Similar to

the cold leg, the downcomer shows that BA can do quite well in predicting flow at A = 0.05, even

with the assumption of incompressibility.

The spanwise velocity tends to be overpredicted at early times but becomes better at later
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Figure 3.18: Sensitivity comparisons of downcomer at Line B for spanwise mean.

Figure 3.19: Sensitivity comparisons of downcomer at Line B for spanwise fluctuations.

Figure 3.20: Sensitivity comparisons of downcomer at Line B for shear Reynolds stress.

66



times in Fig. 3.18. This is most likely due to difficulty in predicting the fluctuations for the initial

transience. Like the streamwise component, the secondary flow in Fig. 3.19 stays relatively the

same for the entire duration of the simulations for high Sc. The large mixing upstream in the

smooth nozzle causes the RMS to be flatter. For the shear Reynolds stress in Fig. 3.20, results

prove to be better for higher Sc than lower Sc. Although not measured, the spreading in the z-

direction (not shown) becomes an important factor for the secondary flow as well. Magnitudes are

comparable, if not larger, than those in the x-direction, and future work should consider capturing

all secondary flow components to improve validation.

Overall, validation results reveal the challenges of predicting transient physics in buoyancy

and the importance of capturing fluctuations for this type of flow. It is recommended for future

simulations to make refinements at regions with tight concentration gradients at the center of the

transfer pipe to minimize numerical diffusion. Additional sensitivity tests will be investigated

in the next sections to uncover other reasons why downcomer simulations were not as accurate

compared to PIV.

3.6.6 Nozzle Geometry

The downcomer is analyzed by investigating the effect of junction geometry between transfer

pipe and annulus. Solutions with LM Sc = 1000 for meshes of the same structure as Fig. 3.2 are

made for a straight nozzle geometry as shown in Fig. 3.21. An interesting set of physics occurs

for the straight fitting where the flow hits the inner wall immediately, causing mixing start earlier.

Moreover, vortex shedding that is nearly non-existent in the smooth nozzle appears quickly for the

straight nozzle case after the annulus begins to fill. Instabilities that occurs within the pipe become

fundamentally different at early stages of the flow, although this is not the focus of the study.

Since the region of interest is before the flow reaches the geometrical changes, velocity pro-

files for the cold leg are identical for the first 10 s averaging window. Only the downcomer has

different behavior due to earlier mixing and exhibits momentum loss due to hitting the inner wall

immediately. This effect is observed in Fig. 3.22. Mean velocities can deviate up to 20% between

the two geometries. Moreover, the bias towards the inner wall is less pronounced due to enhanced
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(a) (b)

Figure 3.21: Geometry of (a) smooth fitting of experiment and geomtery of (b) straight fitting used
for sensitivity analyses. Reprinted with permission from [2].

(a) (b)

Figure 3.22: Streamwise velocity for (a) mean and (b) RMS for smooth vs. straight fitting in the
downcomer at Line B between 11.0 to 21.0 s. Reprinted with permission from [2].
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mixing upstream of the measurement line. RMS velocity is roughly the same with slightly more

bias towards the inner wall. Generally, the first time frame matches better with PIV measurements.

However, this benefit only appears for the first 10 s time window, and the straight nozzle begins to

have an adverse effect at later times leading to increases in percent error. An additional sensitivity

test was conducted for small kinks in smooth nozzle, however negligible changes in mean quanti-

ties are present within the downcomer for the first time window. This is evidence that the vortex

shedding is not the source of discrepancies, and another form of physics is missing.

3.6.7 Perturbation Sensitivity

Although it was demonstrated that statistics in the cold leg show little change with different

ICs, the more turbulent downcomer can still be sensitive to small changes in ICs. Even the Lorenz

equations can exhibit extreme sensitivity to 0.001% perturbations [4]. Unfortunately, testing IC4

at N = 5 is too expensive because of the small time step required for stability, so another technique

must be investigated. During the quick opening of the valve, it is reasonable to assume some

residual energy exists around the supports that hold the fittings. Hence, adding some type of

perturbation becomes a viable sensitivity test. Solutions are initiated from LM Sc = 1000 at 9.0

s, since at this time the fluid front has not reached nozzle. Random perturbations are added in the

smooth nozzle with TKE of 5% and 10% at the region shown in Fig. 3.23. This percentage is based

on the average speed of the front, which is documented in Table 3.3. Using the mean velocity in

the downcomer, the TKE percentage would be roughly 2% and 4% respectively.

Observations of these different scenarios qualitatively show the small perturbations do not

change the fluid front nor the instabilities that occur in this region. In fact, no definitive conclusion

can be made from analyzing videos of the flow from various angles, since the perturbations are

very small. However, quantitative comparisons in Fig. 3.24 actually show that there is a significant

change in mean quantities. Like previous geometric sensitivity tests, there is momentum loss due

to additional mixing upstream from Line B. Consequently, the RMS values are smaller for 5%

perturbations than without them. The case with 10% perturbations appear to be too large and have

a negative influence on the percent error for both mean and RMS quantities. These results prove
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Figure 3.23: Location of added energy at t = 9 s, before the front reaches nozzle, for sensitivity
analysis, superimposed on the contour of velocity magnitude [m/s]. Reprinted with permission
from [2].

(a) (b)

Figure 3.24: Streamwise velocity for (a) mean and (b) RMS for cases with and without pertur-
bations in the downcomer at Line B between 11.0 and 21.0 s. Reprinted with permission from
[2].
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Figure 3.25: Temporal evolution of fluid front with entrance and exit times of PIV for A = 0.05.
Reprinted with permission from [2].

that small residual energy due to the valve opening must be present, which has a large influence

on downcomer quantities. Also, it is shown that the perturbations are very small compared to the

energy in the bulk flow.

3.7 Additional Analyses

3.7.1 Atwood Number

The density’s furthest point in the flow every 0.5 s is tracked for all simulations in Fig. 3.25.

For PIV, the velocity is used to track the time when the front enters and exits the frame of interest.

Despite minimal data due to difficulty in experimentally tracking the fluid front, it can be concluded

that LM cases match with PIV better than BA cases. This is the result of having a greater fluid

resistance when BA uses the reference density, which is larger than light fluid, rather than the local

density.

Using linear regression on Fig. 3.25, the velocity front is computed for the chosen models and

Atwood numbers in Table 3.3. When the Schmidt number is small, the fluid front is faster while

when there is little mass diffusion, there is more resistance for the front to evolve. This trend is

prevalent when going from Sc = 1 to Sc = 10, and less change is observed when Sc gets closer to
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A Model Sc Velocity of Fluid Front (cm/s)
0.05 LM 1000 10.8336
0.05 LM 100 10.8459
0.05 LM 10 10.9016
0.05 LM 1 11.0438
0.05 BA 1000 10.6792
0.05 BA 1 10.7671
0.10 LM 1000 14.8250

Table 3.3: Average fluid front speed using the slope of Fig. 3.25 where all R2 values are greater
than 0.999. Reprinted with permission from [2].

the molecular magnitude of 1000. BA predicts slower velocities than their LM counterparts. When

analyzing every case, the maximum difference between velocities only goes up to 3%, hence it can

be concluded that the velocity of the fluid front is not heavily affected by changing these fluid

parameters and models.

Transience makes it difficult to compare results of different Atwood numbers. Still, the fluid

front speed can be used as a reference for comparing the stage the system is in. For example, the

ratio between velocities (for A = 0.05 and A = 0.10 with LM Sc = 1000) of 1.37 means that times

at 10.0 s for A = 0.05 should show similar characteristics as results at 13.7 s for A = 0.10.

Using this analogy, statistics with different Atwood numbers are compared for the time window

between 13.0 and 37.0 s for A = 0.05 with the time window between 9.5 and 27.0 s for A = 0.10

in Fig. 3.26 for LM Sc = 1000 in the cold leg. All values are normalized by the fluid front velocity

(which will be denoted as Uff) and proves to be a good normalization factor when analyzing the

inflection point of the mean streamwise velocity. The additional buoyancy forces with A = 0.10

actually decreases the gradients near the wall, perhaps due to different vortex shedding effects. The

fluctuations close to the wall are expectedly higher for the greater Atwood number but appears to

be roughly the same in other regions of the pipe.

Although the magnitude of the spanwise velocities are low, the overall shape is very similar for

both A. In fact, the top of the transfer pipe shows almost identical normalized magnitudes for span-

wise mean and RMS. Because of the larger streamwise RMS for the higher A, the shear Reynolds
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(a) (b)

(c) (d)

(e)

Figure 3.26: Velocity (a) streamwise mean, (b) streamwise RMS, (c) spanwise mean, (d) spanwise
RMS, and (e) shear Reynolds stress for cold leg at Line A for both Atwood numbers, normalized
by fluid front, for times mentioned previously. Reprinted with permission from [2].
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stress is also larger at this wall region. However, other regions of the flow show similar charac-

teristics, giving confidence that the time window of comparison is accurate and the characteristic

velocity is reliable.

The downcomer for LM Sc = 1000 is also compared for the time window between 13.0 and

37.0 s for A = 0.05 with the time window between 9.5 and 27.0 s for A = 0.10 in Fig. 3.27. Here,

it is less clear whether Uff is a good characteristic velocity. The streamwise flow appears to be

lower for the higher A, most likely due to loss of momentum from greater mixing upstream of the

measurement line. Streamwise RMS shows bias towards the outer wall for A = 0.10, while the

bias favors the inner wall for A = 0.05. Since the initial velocity is higher for A = 0.10, the flow

resembles the physics when changing the geometry in Fig. 3.21 and exhibits hitting the inner wall

much sooner. This is why the profile appears to have a greater bias towards the inner wall than the

lower Atwood number.

There is less variation for the spanwise velocity, and little can be said about changing A since

the magnitudes are so low. For this reason, there is more variation for the shear Reynolds stress in

the center region for Line B. Overall, the sensitivity of the downcomer due to nozzle effects makes

it difficult to predict how physics will change with varying Atwood numbers. Nonetheless, the

general shapes are captured and analytical equations could be made for predicting flows at other

Atwood numbers.

3.7.2 Proper Orthogonal Decomposition

As mentioned in Section 2.6.4, POD can be a useful method to study the transient nature of the

flow. Instantaneous values in the entire domain are saved every 0.02 seconds, meaning every 10

seconds will be composed of 500 snapshots. This is obviously too small to ensure independence on

the number of fields, but it has already been established that this fully transient problem will never

truly reach convergence. Nonetheless, POD can provide further insight into the various phases the

flow undergoes as waves develop within the transfer pipe as shown in Fig. 3.8. Now, it can be

quantified how the waves propogates into their respective energetic modes.

The first mode in Fig. 3.28 and Fig. 3.29 represents the average velocities for the x- and y-
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(a) (b)

(c) (d)

(e)

Figure 3.27: Velocity (a) streamwise mean, (b) streamwise RMS, (c) spanwise mean, (d) span-
wise RMS, and (e) shear Reynolds stress for downcomer at Line B for both Atwood numbers,
normalized by fluid front, for times mentioned previously. Reprinted with permission from [2].
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(a) 11 to 21 s.

(b) 21 to 31 s.

(c) 31 to 41 s.

Figure 3.28: POD mode 1 x-velocity at both (left) straight nozzle connected to tank and (right)
smooth nozzle connected to annulus between various time windows.
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(a) 11 to 21 s.

(b) 21 to 31 s.

(c) 31 to 41 s.

Figure 3.29: POD mode 1 y-velocity at both (left) straight nozzle connected to tank and (right)
smooth nozzle connected to annulus between various time windows.
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direction respectively. It is observed that there is no discernable difference for the streamwise flow.

There is a small decay in the primary velocity that has been quantitatively shown previously for

validation. For the spanwise y-velocity, it is easy to tell there is a lack of convergence in statistics,

because there are traces of vortex shedding exists in the straight nozzle region. Comparisons

between different 10 s time averages show that there are more waves later in the time than earlier,

a physical observation mentioned previously. Since the magnitudes have little deviation, it can be

said the average transfer of mass from both regions has almost no variation for this 30 s time of

interest.

The second mode in Fig. 3.30 reveal greater differences between the time intervals. Within the

straight nozzle, the mean streamwise velocity has the largest magnitude in 21 to 31 s compared

to the other times. In the first 10 s time frame, there is more energy in the negative direction as

the dominant force is the initial vortex shedding. In the last 10 s, this characteristic swaps and the

positive direction begins to have a larger magnitude. This feature represents the waves from the

smooth nozzle influencing the flow within the straight nozzle. In Fig. 3.31, the spanwise velocities

also show larger magnitudes from 11 to 21 s compared to later times. For these contours, it is more

interesting to look at the smooth nozzle where the last time window shows evidence of vortex

shedding and wave propogation. This distinctingly shows the time frame where the waves from

one end of the transfer pipe affects the other end.

The third mode in Fig. 3.32 shows similar features as the second mode except the magnitude

of energy is less, and the switches between negative and positive are more frequent. This is a

reasonable consequence of the waves and instabilities that occur where turbulent eddies break

down energy to higher modes. It is observed that the first time window in the smooth nozzle still

has few structures, representing its smaller amount of turbulence compared to the straight nozzle.

This can also be observed in the spanwise mode in Fig. 3.33, where traces of energy can only be

found in the smooth nozzle starting from the 21 to 31 s window. Compared to the second mode,

this contour reveals much more frequent sign changes in energy content and shows the waves from

vortex shedding has multiple frequencies associated with it.

78



(a) 11 to 21 s.

(b) 21 to 31 s.

(c) 31 to 41 s.

Figure 3.30: POD mode 2 x-velocity at both (left) straight nozzle connected to tank and (right)
smooth nozzle connected to annulus between various time windows.
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(a) 11 to 21 s.

(b) 21 to 31 s.

(c) 31 to 41 s.

Figure 3.31: POD mode 2 y-velocity at both (left) straight nozzle connected to tank and (right)
smooth nozzle connected to annulus between various time windows.
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(a) 11 to 21 s.

(b) 21 to 31 s.

(c) 31 to 41 s.

Figure 3.32: POD mode 3 x-velocity at both (left) straight nozzle connected to tank and (right)
smooth nozzle connected to annulus between various time windows.
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(a) 11 to 21 s.

(b) 21 to 31 s.

(c) 31 to 41 s.

Figure 3.33: POD mode 3 y-velocity at both (left) straight nozzle connected to tank and (right)
smooth nozzle connected to annulus between various time windows.
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3.8 Conclusions

Sensitivity analyses for this buoyancy driven, closed system at A = 0.05 show how different

ICs, fluid models, and Sc change the system behavior. For ICs, instantaneous velocities are highly

sensitive to any changes, but time averaging reveals that nearly no changes appear within the cold

leg. On the other hand, the more turbulent downcomer is much more sensitive to any perturba-

tions, since the flow involves entry to the nozzle, impingement on the inner wall, and spreading

effects of going around the annulus. When validating against PIV measurements, the magnitude

of Sc is observed to have a high influence on the velocity profile, especially at later times when

predicting energy decay becomes important. Comparisons between LM and BA show insignficant

differences that imply this Atwood number does approach the Boussinesq limit. There are several

key discoveries from this study for this type of heat exchanger system:

1. The speed of the fluid front is insensitive to the chosen ICs and modeling parameters. The

buoyancy term proves to have a larger effect on the evolution of the fluid front compared

to the advection and viscous terms. This means that future validation studies need to ana-

lyze results after the fluid front passes before making any firm conclusions about modeling

parameters.

2. Capturing the instabilities and fluctuations from using high Sc has proven to be essential

for predicting the mean velocity. Therefore, it is recommended for future engineers to use

the highest Sc available in literature when simulating this transience. Though resolving the

small Batchelor length scale is impossible, added diffusion (either numerical or via another

technique) will be present regardless to lower the effective Schmidt number.

3. Mixing immediately after the nozzle has shown to have an influence on mean quantities.

Depending on how the flow enters the annulus, the mean can show a large bias towards one

wall or another. Moreover, added turbulence can make the velocity profile more flat. This

has been shown through adding small perturbations to the nozzle and even a 5% TKE has

shown to increase the spreading in spanwise direction and decrease the streamwise veloc-
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ities. Future studies should investigate the inclusion of smaller perturbations in the entire

domain at earlier times to improve results for LES.

4. Studies on the Atwood number has shown that the fluid front is a good characteristic velocity

for this transient geometry. Cold leg results for A = 0.05 and A = 0.10 match well when

scaling the temporal windows using the fluid front ratios, while downcomer results have

many similarities. Overall, correlations can be developed using simple regression analysis

to predict Atwood numbers of greater or lower magnitudes.

Additional analyses such as the integral time scale show that statistics become relatively smooth

even though full convergence cannot be obtained. Uncertainty methods show that errors are largest

at the transition region between heavy and light fluids, and that there is difficulty in calculating

errors for this transience in the large domain. Lastly, POD has shown that the overall decay of

modes in the straight and smooth nozzles are fundamentally different. Alternating vortices are

prevalent throughout the straight nozzle, but within the smooth nozzle they are nonexistant at early

times windows. Overall, there have been many challenges for modeling a completely transient

buoyancy driven flow. For this study, it has been shown that a closed system with valve opening can

introduce undesired features that is difficult to capture with high fidelity simulations. Simulation

parameters and resolution requirements have been documented to help future investigators of PTS

or similar fluid scenarios to model this case.
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4. LOW PRANDTL NUMBER FLOW

4.1 Literature Review

The last mechanism of heat exchangers under consideration is the effect of thermal conduc-

tivity on heat transfer with turbulence. The Prandtl number (Pr) is the dimensionless number that

quantifies this and is defined as ν
α

, the ratio between diffusion of momentum over diffusion of

thermal energy. For practical purposes, not all scales of motion in the thermal field are resolved to

reduce computational costs and hence, a new parameter must be introduced, known as the turbu-

lent Prandtl number (Prt ). It is defined as νt
αt

where the eddy viscosity is known and the turbulent

thermal diffusivity is unknown. Prt can be assumed to be near unity due to the Reynolds analogy

and has proved to be very accurate for most scenarios involving heat transfer [62]. This is because

most experiments use more common fluids such as air or water for their measurements. However,

fluids with very high thermal conductivity such as liquid metals show that the Reynolds analogy

fails, because the relationship between momentum and heat transfer becomes less correlated [71].

Low Pr flows often involve liquid metal as their fluid due to high thermal conductivity. A

review of multiple sets of liquid metal experiments for rod bundles by Mikityuk (2009) has shown

current Nusselt number (Nu) versus Peclet number (Pe) correlations are poor and a new correlation

is developed [72]. A heated rod validation experiment has shown that RANS has good comparisons

with velocity measurements, but heat transfer comparisons show errors up to 7% when using Prt =

0.9. It is concluded that discrepancies arise from a poor prediction of the thermal boundary layer

[73]. In the 2000s, a collaborative project called ASCHLIM worked towards Prt investigations by

establishing a set of benchmarks for CFD. It has also been established that current models cannot

predict the thermal boundary layer and suggests that new wall-functions should be developed based

on measurements [74]. To recmedy this issue, Kays and Crawford (2012) investigated developing

a new formulation for Prt by taking empiricial data using the turbulent Peclet number and fit it to

a curve [75]. More recently, Shams et al. (2014) developed an algebraic turbulent heat flux model
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that accounts for low Pr flows by using DNS data from channel flow. DNS that incorporated

natural, mixed, and forced convection allowed for the improvement to their model correlations and

coefficients [76]. The advantage of using DNS is that it eliminates the need for eddy diffusivity,

including Prt , by having all momentum and thermal scales of motion captured.

DNS for liquid metals is available for basic geometries such as channel flow and backward-

facing step. Kasagi and Ohtsubo (1993) has made simulations for Pr = 0.025 and compared their

results with previous DNS of Pr = 0.71. Thermal turbulent statistics are taken to show major

differences in heat transfer between Prandtl numbers [77]. Higher Reτ simulations with DNS have

also been conducted for channel flow by Abe et al. (2004) as well [78]. Niemann and Frohlich

(2016) investigated the effect of low Pr on a backward-facing step geometry with and without

buoyancy. Again, characteristics have different shapes due to differences in molecular heat transfer

properties [79]. Low Pr DNS in literature only extends to these simple cases because of its high

computational costs. However, modern high performance computing is allowing DNS of a more

complex geometry to be more feasible.

The case under consideration is a tight lattice square rod bundle for advanced nuclear reactor

core applications. This geometry is rich in physics while being simple enough for setting up a

properly resolved DNS mesh. Moreover, a wide range of Reynolds numbers allows for the selec-

tion of the lowest Reh to reduce computational costs for DNS. Data for bare rod bundle flows are

prevalent, as discussed by Meyer (2010) in his literature review. Many works discovered difficulty

of RANS to predict statistics due to anisotropy and presence of coherent structures, because the

tight gap introduces flow oscillations and momentum transfer [80]. DNS of rod bundles have been

conducted by Baglietto et al. (2006) [81], but to the author’s knowledge none has been done to

investigate the effects of heat transfer for low Pr in this geometry using DNS.
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4.2 Channel Flow

4.2.1 Computational Domain

Before conducting DNS of liquid metals in rod bundles, it is advantageous to analyze low Pr

DNS in existing cases such as Kasagi and Iida (1999) [82]. In addition to their previous work,

simulations for Reτ = 150 and 640 with Pr = 0.025 and 0.71 are considered with and without buoy-

ancy for channel flow. This section will summarize the author’s contribution to the collaborative

work between Texas A&M University, University of Oklahoma, Mississippi State University, and

our partners in national lab and industry as done in [83]. The high fidelity method that will be

presented is PANS, which has been previously discussed in Section 1.2.4. The geometry under

consideration is a rectangular prism where periodic boundary conditions are used for the x- and

z-directions, while faces in the y-direction are no-slip and constant wall temperature for the walls.

By using a heat sink in the energy equation, a constant heat flux scenario is replicated [77]. The

turbulent coefficient Prt is specified to be 0.85 for the RANS and PANS simulations.

Using an 83 element channel with uniformly distributed streamwise elements and a wall refined

distribution in the wall-normal direction, a total of 643 GLL points is used for N = 7 for Reτ of 150.

The domain size is selected to be the same as Kasagi and Iida (1999) as 5πδ×2δ×2πδ, where δ is

channel half height [82]. For Reτ of 640, a slightly larger mesh with 963 GLL points is selected for

baseline comparisons. The time step needed for stability for Reτ = 150 and Reτ = 640 is 1.0×10-4

and 2.5×10-5s respectively. Although the mesh should be more refined for PANS, especially when

investigating small filter widths, it is kept the same as a baseline to have comparable computational

costs with methods by other collaborators. By keeping the resolution the same for both URANS

and PANS, this will allow for proper turbulent modeling comparisons.

It has been derived – using the Kolmogorov length scale as a reference by Girimaji and Abdol-

Hamid (2005) [10] – that the minimum grid size can be calculated as a function of the filter width

in the following equation
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(a) Reτ = 150. (b) Reτ = 640.

Figure 4.1: PANS grid size over estimated minimum grid size for fk = 0.10 at Reτ = 150 and 640.

∆ = C1.5
µ

f 1.5
k

fε

k1.5

ε
(4.1)

where these quantities are solved from a RANS simulation. Using the distance between GLL

points to calculate the relative grid size ∆PANS, the ratio between grid size over the theoretical

minimum can be made. Fig. 4.1 shows that the mesh is under-resolved for PANS for fk = 0.10

since the ratio remains over 1 for most locations. This is expected, since the grid was chosen for

URANS and the usage of fk = 0.10 indicates that it requires higher resolution. Still, comparisons

can still be made keeping in mind the low resolution. The present work investigates the sensitivity

of fk in increments of 0.10.

4.2.2 Filter Width Sensitivity

Sensitivity of fk is conducted to determine which filter width is appropriate for channel flow.

A previous study using PANS recommends that when there is clear separation between primary

energy and its dissipation, fε = 1 while fk < 1. For an external flow case, an fk of 0.50 is used for

a relatively large Reynolds number to get good results [10]. However, channel flow is very stable

and the Reynolds numbers, at which DNS was conducted, is low. Hence, filter widths are varied
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(a) Mean temperature (b) RMS temperature

Figure 4.2: Mean and RMS temperature values for channel for Reτ = 150 and Pr = 0.71.

from 0.1 to 1.0 in increments of 0.1 for this study. It is observed that the flow laminarizes for fk

equal to or greater than 0.4, even with large perturbations of up to 20% of turbulent kinetic energy.

Therefore, only fk values from 0.1 to 0.3 can properly simulate resolved components of turbulent

kinetic energy and dissipation.

To calculate the actual kinetic energy and dissipation, the sum of the unresolved and resolved

components must be considered to get the total value for PANS. The following are the equations

used to get the correct quantities in channel flow for comparisons where the subscripts r, u, and

tot are the resolved, unresolved, and total quantities respectively.

u′u′tot =
2

3
ku + u′u′r (4.2)

u′v′tot = 2Cµ
k2
u

εu
(
∂U

∂y
+
∂V

∂x
) + u′v′r (4.3)

ktot = ku +
1

2
(u′u′r + v′v′r + w′w′r) (4.4)

Since velocity and temperature profiles have identical trends when Pr = 0.71, only temperatures

will be discussed for brevity to make conclusions regarding PANS. Here, constant heat flux BCs
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(a) Reτ = 150, Pr = 0.71. (b) Reτ = 150, Pr = 0.025.

Figure 4.3: Mean temperature for different Prandtl numbers with constant heat flux on both walls.

are replicated at the walls and temperatures are normalized by the wall temperature Tw in the same

manner as Kasagi and Iida (1999) [82]. In Fig. 4.2, the trend for decreasing fk becomes obvious.

Larger fk values consist of larger mean flow due to excessive modeling of the turbulent kinetic

energy. For both the mean and fluctuating components, the temperature profiles are overpredicted

when fk = 0.3 and approaches DNS results as it goes to fk = 0.1. Even better results can be obtained

by increasing the mesh resolution and decreasing fk slightly more, but to make fair comparisons

between RANS and PANS, results for the smaller mesh are presented.

4.2.3 Temperature Profiles

RANS simulations have been conducted by W. D. Jock and Dr. D. K. Walters from University

of Oklahoma [83]. Although the URANS equations are actually implemented, the stable nature of

channel flow makes it impossible to capture transience at this Re and can be simply called steady

RANS. The trends between velocity and temperature are identical when comparing RANS, PANS,

and DNS results, hence again only temperature can be discussed for all intents and purposes. Also,

simulations at Reτ = 640 show very similar trends as Reτ = 150, so only the lowest Reτ is shown

since the higher Reτ does not presently have buoyancy DNS comparisons. Here, the PANS label

indicates that an fk of 0.1 is being shown, since it yields the best results. Fig. 4.3 shows that the

lack of fluctuations in RANS causes the mean velocity to be underpredicted with RANS. Profiles
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(a) Reτ = 150, Pr = 0.71, Gr = 0. (b) Reτ = 150, Pr = 0.71, Gr = -1.3×106.

(c) Reτ = 150, Pr = 0.71, Gr = 4.4×106. (d) Reτ = 150, Pr = 0.71, Gr = 9.6×105.

Figure 4.4: Mean temperature for buoyancy cases with different Tw .

for PANS is better, at the cost of additional computational resources due to its transient nature

and longer convergence. When analyzing the difference between Prandtl numbers, temperature

comparisons actually show no significant relative differences in how RANS or PANS predicts heat

transfer. This indicates that the Reynolds number and geometry under consideration can use a

constant Prt of near unity and do well in predicting heat transfer effects. It is also important to add

that at Reτ = 640, identical trends are observed.

DNS results also incorporate cases with buoyancy where the wall temperatures Tw of the top

and bottom are different. When buoyancy is not included for these new BCs, it is evident that the

trend is the same as the case with constant heat flux as shown in Fig. 4.4a. After adding buoyancy

effects, there becomes a larger discrepancy between RANS and PANS, most likely due to PANS
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capturing the transient effects. For Gr = -1.3×106, PANS largely overpredicts the temperature

profile while RANS has a more similar magnitude. However, the shape of RANS with the addi-

tional buoyancy term appears to share the same shape as the case with Gr = 0 (which indicates

the buoyancy term in the equation has little influence on the flow for stable Grashof numbers).

PANS predicts the shape better, although has difficulty with magnitude likely because the mesh is

too coarse for the small fk . The difference in shape can be observed in both Gr = 4.4×106 and

9.6×105. Overall, it appears that the introduction of buoyancy makes it difficult for both RANS

and PANS to predict the average temperature profiles.

Additional results regarding the channel flow aspect of this project can be found in Bhushan et

al. (2018) [83], where comparisons with other simulations are presented as well. Since modeling

efforts at Reτ = 150 and Reτ = 640 still show reasonable heat transfer predictions at low Pr, it is

determined that a more complex flow is required before the Reynolds analogy breaks down and

the usage of Prt around unity becomes an issue.

4.3 Rod Bundle Validation

4.3.1 Computational Domain

For an applied DNS test case, the tight square lattice rod bundle experiment conducted by

Hooper and Wood (1984) is considered due to its simple geometry yet complex physics as previ-

ously mentioned [3]. The facility consists of six 14 cm diameter rods spaced with P/D = 1.107

and a hydraulic diameter of 7.84 cm. The low P/D ratio and large range of Reh makes it a good

candidate for a DNS benchmark. The experiment has an axial length of 128 hydraulic diameters,

which is sufficiently long enough to be considered fully developed. Spacers are placed to hold the

rods and create two subchannel regions as shown in Fig. 4.5. The labeled “unit cell” represents the

smallest symmetric geometry that represents a square lattice bundle. It is possible to simulate this

flow using only one unit cell for RANS, but since there are oscillatory effects and more complex

fluid motion, 16 unit cells will be required for DNS. Additionally, it is important to capture no-slip

BCs from the spacers to get accurate representation of the physics. Measurements documented in
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Hooper and Wood’s database are radial from the rods θ = -10◦ to 55◦ with increments of 10◦ [84].

This means that the line at θ = 0◦ is from rod wall at x = 0 to the gap center (origin), a located

between the two center rods. The line at θ = 45◦ goes towards the subchannel center, a location

furthest from rod walls.

Figure 4.5: Geometry of rod bundle where θ is measured from gap center (origin) and lines are
measured normal to rod surface.

The mesh is designed for spectral element method with Nek5000 where aspect ratios far from

the wall are as close to unity as possible, as shown in Fig. 4.6. Hence, elements in the z-direction

have the same side length as the center diamonds to maintain good aspect ratios. Through pre-

liminary sensitivity tests, it has been confirmed that mean statistics with an axial length of 24.0

rod diameters become invariant with the domain length. For each unit cell, there are 6 elements in

the θ-direction, 6 elements in the r-direction, and 480 elements in the z-direction, which totals to

829,440 hexahedral elements. Element growth away from the wall is 2.0 for the first 4 elements,

meaning that GLL point spacing becomes smaller as N increases. Near-wall elements are spaced

such that the first near-wall GLL point has an average of y+ of 0.15 for N = 7 and at least 3 GLL

points within y+ < 1.

93



Figure 4.6: Element distribution for each spectral element on the xy-plane before discretization in
GLL points.

Simulations are set up such that all values are normalized by rod diameter (D), bulk velocity

(Vb), and Reynolds number (Reh ). This means D = 1.0, Vb = 1.0, Dh = 0.56023, ρ = 1.0, and ν =

2.478867×10-5 to yield Reh = 22600. The energy equation is also normalized, so that heat capacity

cp = 1.0 and thermal diffusivity α = ν/Pr. Since the values of temperature become arbritary, the

average temperature is maintained at 100.0, by using a flux φ = 0.1 at rod walls and heat sink of

φ/L×(rod surface area) = 0.6282. For the spacers, Neumann BCs are specified with a zero flux so

only rod walls will have an influence on the heating of the fluid.

4.3.2 Analyses

As mentioned in Section 1.2.1, the Kolmogorov length, time, and velocity scales can be cal-

culated using the dissipation of turbulent kinetic energy. Therefore, one method to check if length

scales are properly being resolved is to calculate the ratio of relative mesh size (∆x) divided by the

Kolmogorov length scale (η). As long as these ratios are smaller than 1, there can be confidence

that the simulation is properly resolving the turbulence. Using the spacing between GLL points

to calculate ∆x, the ratios for each polynomial order can be calculated as shown in Table 4.1. As

one would expect, as the polynomial order increases, the mesh size ratio decays at an exponential

fashion. The difference between N = 5 and 7 is more significant than between N = 7 and 9. The
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time step is much smaller than the Kolmogorov time scale for all cases and will not introduce any

temporal errors.

Polynomial order N max(∆x / η) ∆t / max(τ η)
5 0.30 0.19
7 0.17 0.08
9 0.10 0.02

Table 4.1: Ratios of local mesh and time step to Kolmogorov length and time scales.

Kármán vortices appear within the gap center due to the tight gap between the rods, which has

been shown in literature of similar cases [80]. Hence, a similar analysis is conducted for DNS

where instantaneous velocity is recorded at various points across the domain as shown in Fig. 4.7.

A location at the gap center (where the origin is) and at the subchannel center (a location furthest

from rod walls) is selected to be a good candidate for analysis. For the gap center, there is an

oscillatory effect where viscosity becomes dominant due to no-slip BCs. At the subchannel center,

it is much more difficult to differentiate how the signal is behaving. Therefore, analysis using FFT

can be used to quantify the oscillatory behavior.

Using Welch’s method to estimate the power spectral density (PSD) [85], the frequency spec-

trums for both locations are shown in Fig. 4.8. At gap center, it is evident that there is a dominant

frequency that holds a majority of the energy, whereas higher frequencies have little influence.

This spectral peak lies at roughly 40 Hz. Calculation of the Strouhal number using the charac-

teristic dimensions (St = f Dh/Vb) can be equated to 22, revealing that oscillations are extremely

large. PSD of the subchannel center more resembles turbulence, where energy cascades to higher

frequencies at a steady rate. Still, it is possible to see the large 40 Hz frequency within this PSD,

hinting that this mode of energy can propogate to other locations as well.
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(a) Gap center

(b) Subchannel center

Figure 4.7: Instantaneous velocity fluctuations of x-velocity in m/s at (a) gap center and (b) sub-
channel center.

4.3.3 Wall Shear Stress

The first step in validating the simulations is to compare the wall shear stress distribution across

the θ-direction of the rod. To properly compare data, the distribution must be normalized by the

mean wall shear stress τw,m between 0◦ ≤ θ ≤ 45◦ . Results for N = 9 every 5 ◦ are extracted

radially across the rods to estimate the wall velocity gradients. In Fig. 4.9, comparisons show

that the wall distribution closely resembles those of Hooper and Wood (1984) [3]. There are

minor differences due to both numerical and experimental imperfections. Distributions for DNS

are not as smooth due to the lower resolution in the θ-direction and due to statistics not being

completely converged. For the experiment, there is a lack of symmetry due to possible uncertainties

in measuring techniques. Nonetheless, it is confirmed that the wall distribution is validated and that

DNS shear stress closely resembles reality.

4.3.4 Velocity

The instantaneous velocity contour can be shown in Fig. 4.10. Flow oscillations mentioned

previously can be observed by the complex scales of motion captured by DNS. Other studies of

rod bundles with RANS shows a steady oscillation at the gap center [86, 87], while DNS reveals
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(a)

(b)

Figure 4.8: Power spectral density of x-velocity at (a) gap center and (b) subchannel center.
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Figure 4.9: Wall shear stress across the surface of the rods.

other turbulent effects in this region. As fluid oscillates side-to-side around the gap center, mass is

exchanged from one subchannel to another. Moreover, as TKE in one subchannel increases, energy

in the other decreases. For an infinite array of rods, these oscillations would be generated at every

gap, but the effect of wall spacers suppress the oscillations at other locations for this geometry.

Since simulations have been normalized, velocities are scaled multiplying velocity by experi-

mental bulk velocity. The bulk velocity can be calculated using Vb = νReh/Dh to convert it to m/s.

The “original” label in Fig. 4.12 shows that velocities are consistently overpredicted even though

the model is identical to the experiment. It is possible that there are laminarizing effects within

DNS, so a test is done where the Reynolds number is increased and then decreased. However, this

sensitivity test did not change results. Moreover, the length of the domain was increased as previ-

ously mentioned to find no difference in magnitudes either. It is not out of the question that the fluid

properties of the experiment could be inaccurate up to 10%, so the viscosities of various Reynolds

numbers are presented in Fig. 4.11. It is shown that documented kinematic viscosities vary in a

nonlinear fashion, and although fluid property discrepancies up to 10% appear innocuous, they

change DNS velocity calculations significantly. Hence, values from literature are gathered [88]

and justified using a linear fit calculation of Hooper and Wood’s data to be ν = 1.54×10-5 m2/s.

This hints that it is possible the experimental Reh could be larger than reported. Therefore, the bulk
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Figure 4.10: Instantaneous velocity contour in the streamwise direction at a slice y = 0.

velocity used for the “scaled” dataset is calculated to be 4.4393 m/s.

The new normalization factor in Fig. 4.12 reveals that the bulk velocity matches well with the

experiment. Simulations at both N = 7 and N = 9 overlap and show that the simulation is not sen-

sitive to the spatial discretization. However, simulations at N = 5 (not plotted) have discrepancies

due to the lack of grid points within y+ < 1 as well as the coarse regions at 22.5 ◦ , where the ratio

∆x / η can become large. Therefore, it is determined that simulations must be at least N = 7 to

be considered DNS. Closer inspection of Fig. 4.12 show that for both N = 7 and N = 9, near wall

velocity validation is consistently smaller than the experiment. This difference is present at every

angle, and discrepancies in wall velocity gradients will have a large impact when analyzing the

wall normalized velocity U+.

The average velocity profile at two different locations are presented in Fig. 4.13a-b. For these

plots, U+ = W/uτ and y+ = uτ r/ν. Now, it is demonstrated that even with scaling that there are

differences between DNS and the experimental case. Still, the original dataset matches with the

log-law region at 45◦ where κ = 0.41 and B = 5.1, giving confidence to simulation results. With the

presence of the tight gap at 0◦ , normalized velocities go above the log-law. The viscous sublayer is
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Figure 4.11: Kinematic viscosities from Hooper and Wood (1984) [3] with respect to the Reynolds
number.

Figure 4.12: Streamwise velocity validation along various locations normal to rod surface.

captured at all locations under consideration, showing that the theoretical wall gradient is resolved.

The difference between the original and scaled dataset within the viscous sublayer is impossible

to observe, and thus proves the difficulty in knowing the exact normalization value. One possible

explanation of the differences between DNS and experimental results is the location of the buffer

layer. The log-law region appears to occur earlier in Hooper and Wood’s database than predicted

by DNS.

Since the friction velocity does not have the same value as DNS, there will also be differences in
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(a) Mean velocity at θ = 0◦ (b) Mean velocity at θ = 45◦

(c) TKE at θ = 0◦ (d) TKE at θ = 45◦

Figure 4.13: Mean velocity profile and TKE at locations radial from rods.
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TKE since presented data is normalized by u2
τ . In Fig. 4.13c-d, the wall distance is now normalized

by ymax (radial distance to y = 0) as done in Hooper and Wood (1984) [3]. For both θ = 0◦ and 45◦

, there is symmetry for DNS around ymax = 1 due to geometrical symmetry. The magnitudes at 0◦

have poor comparisons with experiments but share the same shape for the available data. On the

other hand, TKE at θ = 45◦ appears more accurate. This effect is due to the much smaller friction

velocity at the gap center compared to the angle furthest from other rod walls. Reinforced with

the information that the documented experimental accuracy of Reynolds stresses is 10-15%, the

fluctuating velocities for DNS has been validated. Moreover, the overprediction of TKE is simply

due to the larger wall shear stress of the experiment compared to DNS calculations. Overall, the

discrepancies are the consequences of possible different experimental conditions compared to the

theoretical model, such as having a more turbulent field within the test facility. Measurements with

Preston tubes has some inaccuracies in measuring the secondary flow, albiet small.

4.4 Rod Bundle Heat Transfer

4.4.1 Qualitative Temperature

It has been confirmed that DNS calculations closely resemble a real rod bundle and can be a

good benchmark for studying heat transfer with different Prandtl numbers. Since experiments and

simulations do not perfectly match each other, comparisons with this DNS benchmark should be

standalone, rather than comparing with Hooper and Wood’s database. The addition of temperature

does not require higher resolution, because the Batchelor length scale for the energy equation can

be defined as η/Pr0.5. This means that as long as Prandtl numbers under investigation are less than

1, the length scales of temperature will never be larger than η. This means that previous ratio

studies in Table 4.1 will be smaller for Batchelor length scales and remain valid.

The Prandtl numbers simulated are 0.71, 0.1, 0.02, 0.01, and 0.002 to demonstrate the effects

when approaching the thermal conductivity of liquid metals. Instantaneous temperature profiles at

the symmetric plane in Fig. 4.14 reveal the difference in complexity of length scales when the ther-

mal conductivity changes for the system. When Pr is close to unity, the scales of motion tend to be
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(a) Pr = 0.71 (b) Pr = 0.1

(c) Pr = 0.01 (d) Pr = 0.002

Figure 4.14: Instantaneous temperature contours at the symmetry plane y = 0 for various Prandtl
numbers.
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(a) Pr = 0.71 (b) Pr = 0.1

(c) Pr = 0.01 (d) Pr = 0.002

Figure 4.15: Instantaneous temperature contours at z = 0 for various Prandtl numbers.

very similar to those for momentum. Since the constant flux φ = 0.1 does not change, higher con-

ductivity means lower temperature differences within the system. The legend in Fig. 4.14 is scaled

by its local maxima, so qualitative comparisons can be easily made. Even at the lowest Prandtl

number, there are still oscillations within the gap center. This indicates there is enough momentum

in the system to push thermal energy from subchannel to subchannel even for conductivities of

liquid metal.

To visualize motion in the radial and azimuthal direction, Fig. 4.15 shows a slice at z = 0. For

Pr = 0.71, the scales of temperature appear very similar to velocity, where near-wall scales are

small and grow as they get further from the rod walls. At Pr = 0.1, there is already a significant

difference in complexity of temperature movement and can be analogous to a more “viscous ve-

locity distribution.” Relative wall temperature gradients are smaller, and this trends continues as

Pr decreases. At the lowest Prandlt number, almost no change is observed in the r- and θ-direction.

This characteristic of behaving so different than velocity makes it difficult to use Prt = 1 for this
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type of flow.

4.4.2 First and Second Order Statistics

Taking line profiles as conducted in Fig. 4.16 proves that the temperature gradients for the

highest Prandtl number are largest, while little temperature change is observed for the lowest Pr.

Although Pr = 0.71 and Pr = 0.1 vary by almost an order of magnitude, the bulk temperature at

y/ymax > 0.2 remains relatively the same. However, when Pr is changed from 0.02 to 0.01, the bulk

temperature is much different even though it has been changed by a magnitude of only 2. This

characteristic highlights difficulty for accurately predict the bulk temperature at Prandtl numbers

of these magnitudes using turbulence modeling techniques.

Figure 4.16: Average temperature profile at θ = 45◦ normalized by bulk temperature.

To relate this temperature profile for developing thermal wall functions, the distribution is

normalized by the square root the characteristic temperature in Fig. 4.17. The characteristic tem-

perature is equal to the heat flux times length divided by thermal conductivity. The distribution of

temperature for Pr = 0.71 is identical to velocity, aside from its magnitude due to the definition of

normalization. For Pr = 0.1, the logarithmic region begins earlier and has a steeper slope than for

higher Pr. Both Pr = 0.01, 0.02, and 0.002 have the same shape with different magnitudes, alluding
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that the same wall function could be used for Pr of magnitude 1×10-2 and 1×10-3. This finding

proves that it may be possible to develop a universal thermal wall function for liquid metals. How-

ever, additional investigation will be required at other locations and closer analysis should be done

for future work.

Figure 4.17: Average temperature profile at θ = 45◦ normalized by square root of characteristic
temperature.

The temperature fluctuations in Fig. 4.18 reveal that the shape of Pr = 0.71 closely resembles

TKE. On the other hand, every other Prandtl number under consideration has a different shape.

When observing the peaks of the temperature fluctuations, they gradually increase as the Prandtl

number decreases with the exception of Pr = 0.002. This is because when conductivity is extremely

high, temperature fluctuations in the far-wall regions become negligible. Pr = 0.01 and Pr = 0.02

have identical peak locations for RMS of temperature, albiet different magnitudes. This trend is

relatively the same at most locations except at the gap center.

At the gap center, it is easier to compare trends by normalizing the values by their local maxima

as shown in Fig. 4.19. Here, the peak occurs at roughly y/ymax = 0.15 for the highest Prandtl

number, while other Prandtl numbers have their peak occur at the point of symmetry at y/ymax =

1.0. Therefore, it is concluded that any Prandtl number of 0.1 or less for this Reynolds number has
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Figure 4.18: RMS of temperature at θ = 45◦ normalized by bulk temperature.

Figure 4.19: RMS of temperature at θ = 0◦ normalized by local maximum.

its largest source of temperature fluctuations at gap center, rather than near the rod surface.

4.5 Conclusions

The influence of fluid properties on heat transfer has been analyzed for a rod bundle heat

exchanger application. First, available data on DNS of channel flow is analyzed to discover that

RANS methodologies predicts heat transfer reasonably well compared to DNS. This indicates that

a more complex geometry is necessary before using Prt = 1 becomes an issue. The higher fidelity

method of PANS is used to discover that low fk values are required to obtain transience and prevent

107



laminarization. Although its comparison with DNS is better than RANS, the computational cost

of PANS show that the method is not necessary to improve low Prandtl modeling for channel flow.

Through literature review, a bare rod bundle geometry is chosen as the more applied and com-

plex test case for liquid metal investigations. Validation of both average quantities and turbulent

energy shows that the DNS benchmark is a suitable case for replicating realistic fully developed

rod bundles. Analyses with the Kolmogorov length and time scales show that all scales are being

resolved in the simulation. Moreover, the negligible differences between N = 7 and N = 9 for

mean values reveal the simulation is independent of the grid. A constant heat flux is imposed for

simulations of different Prandtl numbers, and calculations investigate the influences of changing

the thermal conductivity. It is evident that Prandtl numbers near unity show similar characteristics

for both average and RMS temperature, however very different features are observed for Pr < 0.1.

For instance, near wall gradients are reduced as the Prandtl number decreases. Differences in bulk

temperature are found even when moving from Pr = 0.02 to 0.01 due to the effects of the thermal

conductivity on this flow.

Now that DNS data is developed for this bare rod bundle, engineers can develop their own

thermal wall functions for the Prandtl number under consideration. Plots of normalized tempera-

ture distributions are presented, and once the database is released, values for all locations can be

used as empirical data. It is evident that the near-wall tempreatures are heavily impacted by the

molecular Prandtl number. Moreover, investigations of the turbulent Prandtl number can be made

through algebraic calculations. Although focus lies within the energy equation, studies on improv-

ing RANS and LES models when there is a tight gap between rods can also be conducted. The

statistics gathered from DNS can be used to calculate the production and dissipation of TKE at ev-

ery location and be matched with current turbulent modeling techniques. Overall, this high fidelity

database becomes a useful tool for fine tuning liquid metal modeling in this complex application.

Some passages, analyses, and figures in this section reference or are quoted from the author’s

previously published work in [83] and [89].
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5. SUMMARY AND CONCLUSIONS

5.1 Summary of Cases

The advantages and disadvantages of high fidelity CFD for studying turbulence have been pre-

sented for applied heat exchanger scenarios. The required grid sizes to obtain spatially-independent

calculations become excessively large and impractical for design efforts. However, a deeper under-

standing of the physics through their transient nature and ability to capture greater scales of motion

allows higher order analyses that uncover more information than lower resolution techniques. The

individual projects that isolate heat exchanger mechanisms investigate turbulence within a complex

geometry, mixing within a buoyancy-driven system, and heat transfer within low Pr rod bundles.

5.1.1 HCSG

Turbulence within the HCSG is complex due to its three-dimensional physics. Its geometry

resembles flow over a cylindrical rod, however its P/D ratio changes constantly along the axial

direction. Rather than having the rods bank in the same direction, the rods curve with different

angles and add to its complexity. Whereas vortex shedding commonly occurs for flow over a

cylinder, the axial flow can distrupt the transverse movement. The LES model is confirmed by

testing the sensitivity of the inlet BC and the polynomial order to see if quantities of interest

change. Then, comparisons with established fluid dynamical features in literature are made such

as the law of the wall, the subinertial range of the energy spectrum, and the Taylor length scales.

These tests reveal that the spectral discretization at N = 7 and N = 9 for the given mesh are able to

capture the expected turbulent characteristics.

LES calculations are validated with experimental results involving both first and second order

statistics. Through instantaneous velocity observations from CFD, there are still characteristics of

flow oscillations, although not as dominant as one who would observe in typical vortex shedding

with FFT analysis. Recirculation zones grow and shrink with long temporal wavelengths, which

was also observed from the experimental test section. This evolution indicates that the full geom-
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etry will also have flow oscillations which can cause vibrations within the system. Additionally,

POD analysis from both LES and PIV quantify some of the coherent structures that appear within

the first modes around the center region furthest from the rods. The overall turbulent characteristics

have been analyzed for the HCSG geometry, and the requirements for high fidelity LES for this

case have been documented.

5.1.2 Buoyancy Driven Flow

The mixing within a system purely driven by buoyancy isolates an important aspect of heat

exchangers: momentum generated via potential energy within fluid property differences. Although

this particular case is isothermal, its turbulent mixing can be analogous to scenarios where fluids

have different densities based on temperature changes. Using the Atwood number to characterize

the magnitude of buoyancy and the Schmidt number to characterize mixing due to mass diffusion,

an experimental benchmark is established to help validate CFD methods. The geometry consists of

a cylindrical tank and annulus connected by a transfer pipe. Within the pipe, a disc valve separates

two fluids with different densities and viscosities. The high fidelity technique of LES is utilized to

predict the transience immediately after the disc valve opens when the two fluids begin to mix.

Verification is conducted in two ways: through sensitivity of the buoyancy model and mixing

parameters, and through simulations of varying spatial discretization to quantify error bars. Due

to the transient nature of the problem, analyses using the integral time scale are utilized to estab-

lish psuedo-steady time windows, where statistical validation can be made with the experimental

benchmark. This is needed since the fluid undergoes multiple stages of wave formation, as well as

instabilities within the transfer pipe that are difficult to quantify. Comparisons with experiments

show that velocity statistics are reasonable within the pipe, and less accuracy is found within the

downcomer. Further investigation – through sensitivity analyses in the geometry and introducing

perturbations – show that this closed system can be largely influenced by small motions, artifacts

that cannot be measured. Nonetheless, it can be concluded that the high fidelity simulation closely

resembles the experimental facility. Additional studies are made to investigate the structures within

the transfer pipe using POD as well as to investigate how increasing the Atwood number changes
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mixing characteristics. The importance of mixing due to Schmidt number diffusion and sensitivity

of the flow for a closed system has been established to support heat exchangers of this application.

5.1.3 Low Prandtl Number Flow

Heat transfer within rod bundles with lower than typical Prandtl numbers is critical, since

literature shows that lower fidelity CFD has difficulty in proper temperature predictions. This

project first analyzes data based on existing DNS data that incorporate liquid metal properties.

Using channel flow data, the higher fidelity method of PANS is utilized to judge its suitability for

low Prandtl number flows. However, it is shown that the accuracy of RANS and PANS for Pr =

0.71 is just as good as it is for Pr = 0.025. Therefore, a more complex scenario must be considered

in order to contribute to improvement of modeling low Pr flows. Through literature review, the

simple yet complex case of a tight lattice bare rod bundle is chosen for heat transfer analyses using

DNS with different Prandtl numbers.

Development of the DNS benchmark, first, involves ensuring the Kolmogorov length scales are

resolved and that the time step is never lower than the temporal scales. Since these ratios remain

lower than one and the sensitivity on the polynomial order show statistics do not change, indepen-

dence of spatial discretization is ensured. Validation with experimental results in wall shear stress,

velocity, and turbulent kinetic energy show some discrepancies in the near-wall regions, hence

comparisons with this benchmark must be conducted standalone rather than with both databases.

A constant heat flux is added to the simulation with cases that have different Pr to find drastic

differences in temperature profiles as well as its fluctuating component. Even when changing Pr

by only a magnitude of 2 at Pr = 0.01, the bulk temperature varies much more than expected. Tem-

perature distributions from the wall are presented to reveal significantly different shapes between

all Prandtl numbers. Overall, the DNS benchmark has been developed and will be distributed to

collaborators in efforts to aid modeling of Prt for liquid metal applications.
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5.2 Further Study

Since the present HCSG study involves a simplified test section, future work necessitates a

full geometry which becomes much more difficult to conduct. Experimental work has already

been completed in Texas A&M University by Delgado et al. (2019) [90]. Additional analyses

will be presented to obtain statistics useful for CFD validation as well as pressure fluctuations that

supports flow-induced vibrations studies. Moreover, high fidelity simulations are being conducted

by Yildiz et al. (2018) [91] and future studies involves additional comparisons. This will provide

whole-field calculations that will be valuable for next generation HCSG designs. Future studies

could also include simulations of flow-induced vibrations with Nek5000 as done by Brockmeyer

et al. (2017) in [92].

The Cold Leg Mixing CFD-UQ benchmark project is still ongoing and will come to a close in

the coming year of this writing. Blind test submissions for Atwood number of 0.10 are complete for

Nek5000 in this present work and will be evaluated with the many participants of this NEA-OECD

benchmark at the end of the project. After blind test results are released, future work will involve

judging the accuracy of the chosen grid, buoyancy model, and mixing parameters. The instabilities

and wave propogation within the transfer should be discussed for the higher A, so designers of

nuclear safety can choose proper geometrical features and materials to prevent accident scenarios.

Meetings with other participants will be held to complete these studies within a year of this writing.

Future work will also be conducted on the rod bundles for low Pr applications. Additional

statistics will be documented from the DNS benchmark, and all information for collaborators to

fine tune Prt modeling will be provided. The same turbulence modeling techniques used for channel

flow mentioned in Bhushan et al. (2018) [83] will be utilized for the rod bundle benchmark.

Moreover, implementation of different Prt modeling covered in literature will be investigated for it.

The available information regarding turbulent kinetic energy and higher order statistics will prove

beneficial for preventing difficulties that isotropic URANS methods had in previous literature.

Finally, the DNS database of different Pr will contribute to making improvements to heat transfer

modeling of liquid metals. Ideally, a universal thermal wall function and suitable Prt correlation
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will be empirically derived from this database for low Pr modeling.
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