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ABSTRACT 

 

Polarimetric remote sensing technologies have been demonstrated to be irreplaceable and 

effective for inferring cloud, aerosol, and ocean properties. To infer atmospheric and 

oceanic constituent properties from observational data, an efficient and accurate retrieval 

algorithm is needed. The accuracy and efficiency of the retrieval algorithm depends on the 

radiative transfer model (RTM) used in the forward calculations involved in implementing 

the retrieval algorithm. 

If a radiative transfer calculation is implemented in-line as part of a retrieval 

algorithm, rather than simply generating and interpolating from a look-up table, the 

atmospheric profiles and surface properties can be directly incorporated into the retrieval 

system to improve accuracy. Some interpolation errors can also be avoided. However, an 

in-line radiative transfer calculation usually does not satisfy computational efficiency 

requirements for an operational remote sensing application. To fully exploit the capability 

of satellite polarimetric instruments, it is imperative to develop an accurate and fast vector 

RTM. 

The reported research develops a fast vector RTM in support of atmospheric and 

oceanic polarimetric remote sensing. This model is capable of simulating the Stokes vector 

observed at the top of the atmosphere and at the terrestrial surface by considering 

absorption, scattering, and emission in the atmosphere and ocean. Gas absorption is 

parameterized in terms of gas concentration, temperature, and pressure. The 

parameterization scheme uses a regression method and can be easily applied to an 
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inhomogeneous atmospheric path. An efficient two-component approach combining the 

small-angle approximation and the adding-doubling method is utilized to solve the vector 

radiative transfer equation (RTE). The thermal emission source is approximated as a linear 

function of optical thickness in homogeneous layers. Based on this approximation, the 

thermal emission component of the RTE solution can be obtained by an efficient doubling 

process. The air-sea interface is treated as a wind-ruffled rough surface in the model to 

mimic a realistic ocean surface. Several bio-optical models are introduced to model ocean 

inherent optical properties. 

It is shown that the developed RTM can be used in a retrieval algorithm by 

comparing the simulation results with observations by POLDER and MODIS satellite 

instruments. 
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CHAPTER I  

INTRODUCTION  

 

1.1 Background 

Radiative transfer is a process where electromagnetic radiation interacts with a medium 

by scattering, absorption, and emission. In the earth system, the atmosphere and terrestrial 

surface absorb and scatter incoming solar radiation. The absorbed radiation is eventually 

reemitted in the whole electromagnetic spectrum, particularly at meteorological 

temperature ranging from near infrared (NIR) to microwave bands. The radiative transfer 

process in the atmosphere and ocean is not only a flow of radiation, but also a flow of 

information about the earth system. The variations of radiance and polarization of the 

radiation contain useful information about atmospheric gases, clouds, aerosols, and the 

terrestrial surface including the ocean. 

Spaceborne remote sensing instruments have provided decades of continuous 

observations of the earth system by measuring the outgoing radiation from the earth. The 

instruments are designed for different observation purposes with different observation 

capabilities. Passive instruments such as the Moderate Resolution Imaging Radiometer 

(MODIS) (King et al. 1992) and the Visible Infrared Imaging Radiometer Suite (VIIRS) 

(Cao et al. 2014) measure reflected solar radiation and thermal emission, whereas active 

instruments such as Cloud-Aerosol Lidar with Orthogonal Polarization (Winker et al. 

2009) and Cloud Profiling Radar onboard CloudSat (Stephens et al. 2002) emit radiation 

to the earth and measure backscattered signals. Passive instruments usually have a larger 
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field of view than active instruments so that they can obtain wider spatial coverage with 

each orbit. Active instruments can easily measure the vertical profile of the atmosphere 

with much better resolution than passive instrument. 

Different instruments may conduct measurements in different spectral bands. For 

example, MODIS and VIIRS measure radiation ranging from visible (VIS) to thermal 

infrared (TIR) bands, in which radiation is sensitive to cloud and aerosol microphysical 

and optical properties. VIS to NIR bands are also used for ocean remote sensing because 

water and the atmosphere above it have relatively low absorption. The Advanced 

Microwave Scanning Radiometer for EOS (Kawanishi et al. 2003) measures microwave 

radiation, which is sensitive to precipitation and cloud water content. The instruments also 

have different spectral and spatial resolution. For example, in TIR bands, MODIS has 16 

channels with moderate spectral resolution and spatial resolution less than 1 km, whereas 

Atmospheric Infrared Sounder (Aumann et al. 2003) has 2378 channels with hyperspectral 

resolution and with spatial resolution over 10 km. Compared to atmospheric gas 

concentration measurement, which requires high spectral resolution because gases have 

very narrow absorption lines, spatial resolution may be more demanding for cloud and 

aerosol remote sensing. Cloud and aerosol optical properties do not vary significantly in a 

typical spectral band, but they usually have large spatial variation. 

 

1.2 Introduction to Polarimetric Remote Sensing 

Although spaceborne observations have tremendously enriched our knowledge of 

variations in the earth system, and their responses to climate change, there are still 
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substantial uncertainties in inferring global cloud, aerosol and ocean properties due to 

limited capabilities of remote sensing instruments and techniques. In addition to gradually 

improving instrument spatial and spectral resolutions, spaceborne and airborne passive 

polarimetric remote sensing has more recently become feasible (e.g. Mishchenko and 

Travis 1997; Parol et al. 2004; Dubovik et al. 2011; Chowdhary et al. 2012). 

In particular, the Polarization and Directionality of the Earth’s Reflectances 

(POLDER) (Deschamps et al. 1994) and Airborne Multiangle SpectroPolarimetric Imager 

(AirMSPI) (Diner et al. 2013) have been demonstrated to be effective in inferring cloud, 

aerosol and ocean properties. The polarimeters not only measure the radiance, but also 

measure the state of polarization of the radiation reflected and emitted by cloud, aerosol 

and oceans. Furthermore, for the same target, they conduct nearly simultaneous 

measurements in multiple angles. Specifically, POLDER and AirMSPI use VIS to NIR 

bands to observe reflected solar radiation. Recent studies (e.g. Gong and Wu 2017; Gong 

et al. 2018) show that spaceborne and airborne microwave/submillimeter polarimetric 

radiometers such as Global Precipitation Measurement Microwave Imager (Draper et al. 

2015) and Compact Scanning Submillimeter-wave Imaging Radiometer (Evans et al. 

2005) have considerable potential for measuring microphysical properties of ice cloud by 

observing thermal emission from the earth atmosphere. 

The radiation of a beam of light at any location and with any wavelength can be 

completely expressed by the Stokes vector, 



 

4 

 

 , (1.1) 

in which I, Q, U, and V are Stokes parameters with the units of irradiance or flux (W/m2) 

(Wendisch and Yang 2012). I is the intensity of the beam. The Q, U, and V parameters are 

defined as (Chandrasekhar 1960) 

 , (1.2a) 

 , (1.2b) 

 , (1.2c) 

where all variables and terms are explained as follows. 

 

 
Figure 1 Polarization ellipse formed by the end point of the electric vector of the beam. 
 

Fig. 1 shows the definitions of the angles c (0 £ c £ p) and b (-p/4 £ b  £ p/4), and 

other quantities to describe a beam with general polarization. In Fig. 1, the beam direction 

(r´l) is vertically into the paper. A reference plane is arbitrarily chosen along the 

propagation direction with direction l parallel to or in the reference plane and r 
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perpendicular to the plane. Both r and l are perpendicular to the propagation direction of 

the beam. c is the angle between l and the electric vector of the beam. b defines the 

ellipticity of the polarization ellipse and the rotation direction of elliptical polarization. Q 

is the linear polarization component in the r and l directions, U is the linear polarization 

component in directions 45° and 135° relative to the l direction, and V is the circular 

polarization component. Clockwise rotation by viewing toward the source of the beam is 

defined as right-handed polarization in this dissertation. The polarization ellipse in Fig. 1 

represents right-handed polarization. 

Because the choice of reference plane is arbitrary, the values of Q and U may be 

different for different reference planes. The Stokes vectors of the same beam but with two 

reference planes defined by r and l, and r¢ and l¢ are related by a rotation matrix, 

 , (1.3) 

in which L is the rotation matrix, and a is the angle between r and r¢ or l and l¢. a is 

positive if r and l are rotated clockwise by an angle of a to r¢ and l¢ when viewing toward 

the source of the beam. The rotation matrix is defined as (Hovenier et al. 2004) 

 . (1.4) 

Solar radiation and thermal emission are unpolarized, so their Stokes vectors are 

written as . The scattering properties of particles such as aerosols and 

phytoplankton can be expressed by a 4´4 Mueller matrix M, 

ʹI =L α( )I

L α( ) =
1 0 0 0
0 cos2α sin 2α 0
0 −sin 2α cos2α 0
0 0 0 1
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⎝

⎜
⎜
⎜
⎜
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⎠

⎟
⎟
⎟
⎟
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 , (1.5) 

where Mij (i,j=1, 2, 3, 4) are matrix elements. The particles scatter both incident solar 

radiation and thermal emission. The Stokes vector of scattered radiation is linearly related 

to the counterpart of incident radiation through M, 

 , (1.6) 

where subscripts ‘sca’ and ‘inc’ represent scattering and incidence respectively. k is the 

wavenumber of the radiation. d is the distance between the particles and the location where 

Isca is observed.  

From Eqs. (1.5) and (1.6), the scattered radiation is polarized even though the 

incident radiation is unpolarized, because the Mueller matrix off-diagonal elements are 

nonzero except for in the 0 and 180° scattering angles. In the scattered Stokes vector, Eq. 

(1.6), the element I carries the information of M11. Q, U, and V carry the information of 

all Mueller matrix elements. Eq. (1.6) only describes a single scattering process. In a cloud, 

aerosol or ocean layer, the incident radiation is always scattered multiple times. Compared 

with radiance-only measurement, polarization measurement contains more information of 

particle optical properties including scattering, absorption, and emission properties, from 

which we can infer more information about clouds, aerosols and oceans. 

The spaceborne and airborne polarimeters measure I, Q, and U components of the 

Stokes vector. The reflectance, defined as 

M =

M11 M12 M13 M14

M 21 M 22 M 23 M 24
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 , (1.7) 

and polarized reflectance, defined as 

 , (1.8) 

are usually used to infer particle properties if the polarimeter receives reflected solar 

radiation. µ0 is the cosine of the solar zenith angle. F0 is the solar irradiance. 

Because thermal emission from the atmosphere is independent of azimuth angle, 

only I and Q components are nonzero. The polarimetric instrument measures horizontal 

and vertical polarized intensities of thermal emission instead of I and Q components. The 

intensities I in the horizontal (H) and vertical (V) polarization directions are defined as 

 , (1.9a) 

and 

 . (1.9b) 

 

1.3 Motivation 

Both theory and practice have proved the potential of polarimetric remote sensing. The 

consensus study report Thriving on Our Changing Planet: A Decadal Startegy for Earth 

Observation from Space from the National Academies of Sciences, Engineering and 

Medicine (NASEM 2018), considers the observations of aerosol and cloud properties and 

vertical profile with backscatter lidar and multi-channel and multi-angle polarimeter to be 

the highest priority for future development. Earth observation projects such as the 

R = π I
µ0F0

Rp =
π Q2 +U 2

µ0F0

IH = I +Q( ) / 2

IV = I −Q( ) / 2
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Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) (PACE Technical Report Series 

2018), the Multi-Angle Imager for Aerosol (MAIA) (Liu and Diner 2017), 

Aerosol/Cloud/Ecosystem mission (ACE) (da Silva et al. 2016) and the Multi-viewing -

channel -polarisation Imager (3MI) (Marbach et al. 2015) will deploy such more advanced 

polarimeters. In addition to enhanced polarimetric capabilities, these future new remote 

sensing instruments will have higher spectral and spatial resolutions. 

The tremendously enhanced data to be obtained from the future instruments will 

contain much more information about the atmosphere and oceans such as aerosol 

composition and phytoplankton characterization. Because of the large volume of remote 

sensing observational data, an efficient retrieval algorithm is needed while achieving 

accuracy comparable to in-situ measurements. Fig. 2 illustrates the schematic of a retrieval 

algorithm. The top row of Fig. 2 shows the observation process. A remote sensing 

instrument measures the radiation coming from the atmosphere and ocean through 

radiative transfer process. The bottom row of Fig. 2 shows the simulation process. A 

radiative transfer model (RTM) computes radiation by assuming model atmospheric and 

oceanic properties. The middle row of Fig. 2 shows the inversion process. The inversion 

algorithm interprets the observation based on the simulation to generate retrieval results 

such as cloud optical thickness and chlorophyll concentration. 
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Figure 2 Schematic overview of radiative transfer calculations in retrieval algorithm. 
 

To support polarimetric remote sensing, RTM should be able to compute the state 

of polarization of radiation. An RTM that outputs the Stokes vector of a radiation is named 

as vector RTM. Also, the RTM must be applicable in various spectral bands dealing with 

reflected solar radiation and thermal emission from the earth. The usages of RTM 

simulations are different in retrieval algorithms. In general, the roles an RTM plays in the 

retrieval algorithm can be classified as off-line and in-line simulators. An off-line 

simulator computes the radiative quantities under various atmospheric and oceanic 

conditions. The results are organized as a look-up table (LUT) to be used in retrieval 

implementation. Interpolation is always involved in using an LUT, which introduces 

interpolation error. An in-line simulator is a part of the retrieval algorithm. Radiative 

transfer calculation is implemented when the retrieval is ongoing. An in-line simulator can 

incorporate atmospheric and oceanic properties directly into the retrieval algorithm, so 

there is no interpolation error. Obviously, both off-line and in-line radiative transfer 

calculations must be accurate and have errors less than measurement uncertainties. The 

in-line simulator must also work as fast as other parts of the retrieval algorithm, which 

however is not required for an off-line simulator. 
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and Oceanic Properties 
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Over the years, tremendous efforts have been expended on developing in-line 

RTMs for remote sensing applications. Most fast hyperspectral RTMs (e.g. Strow et al. 

2003; Liu et al. 2006; Moncet et al. 2008) are limited to clear-sky cases where only gas 

absorption and emission contribute to the top of atmosphere (TOA) radiation. Some fast 

hyperspectral RTMs (e.g. Han et al. 2006; Wang et al. 2015; Liu et al. 2016) and wideband 

RTMs (e.g. Liu et al. 2015) consider both gas absorption and multiple scattering in aerosol 

and cloud layers. However, these models do not consider polarization of radiation. 

Polarimetric remote sensing certainly needs an appropriate RTM to account for the 

polarization state of the radiation field. Without consideration of polarization, radiative 

transfer calculation has varying degrees of inaccuracy, depending on specific applications. 

For example, in a Rayleigh scattering atmosphere, neglecting polarization can result in 

errors up to 10% for radiance simulation (Kattawar et al. 1976; Lacis et al. 1998). The 

errors are much larger than the instrument calibration error and noise level. The errors 

have complex dependence on viewing geometry and optical thickness, so it is difficult to 

correct them (Lacis et al. 1998). 

In this study, we develop a fast vector RTM for applications to atmospheric and 

oceanic remote sensing. The model efficiently simulates the full Stokes vector with 

various specified spectral resolutions by employing an improved gas absorption 

parameterization scheme and a flexible vector radiative transfer equation (RTE) solver. 

Efforts to infer aerosol, cloud, and oceanic properties with the PACE, MAIA, ACE and 

3MI observations will benefit from this research. The RTM can also improve remote 

sensing techniques based on the existing POLDER, AirMSPI, MODIS and VIIRS 
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instruments. Chapter II presents an overview of the developed model. Chapters III to VI 

describe the details of the model. Chapter VII show calculation results and comparisons 

with satellite observations. Chapter VIII summarizes the study. 
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CHAPTER II  

AN OVERVIEW OF THE RTM 

 

2.1 Model Layer Setup and Geometry 

The developed vector RTM is capable of simulating the full Stokes vector with variable 

spectral resolution under various atmospheric and oceanic conditions. The vector RTM is 

based on a plane-parallel approximation, and is a one-dimensional model. The model 

atmosphere and ocean in the RTM is illustrated in Fig. 3. The atmosphere is composed of 

multiple homogeneous layers. Each layer composition includes gases, and possibly 

clouds, aerosols, or a mixture. The ocean layer of Case I water contains pure water, 

phytoplankton, non-algae particles (NAP) and Colored Dissolved Organic Matter 

(CDOM) (Chowdhary et al. 2006). There is an interface between the atmosphere and 

ocean. The transmission and reflection properties of the interface are related to the ocean 

surface condition. The absorption, scattering and emission by the atmosphere and ocean 

are considered in the calculation. 
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Figure 3 An illustration of the atmosphere and ocean layers in the RTM. 
 

The vector RTE with the plane-parallel approximation is written as 

  (2.1) 

in which I is the Stokes vector, P is the phase matrix, B is the Planck function vector, v 

is the single-scattering albedo, T is temperature, t is optical thickness, u is the cosine of 

zenith angle, and j is the azimuth angle. The wavelength dependences of I, P, B, t and v 

are implied but not shown in Eq. (2.1). B is , in which B is the 

Planck function. 

The zenith and azimuth angles involved in the RTM are shown in Fig. 4. Incident 

and outgoing zenith angles (q¢ and q), and incident and outgoing azimuth angles (j¢ and 
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−ϖ (τ )
4π

d ′u d ′ϕ
0

2π

∫ P τ ,u, ′u ,ϕ − ′ϕ( )I τ , ′u , ′ϕ( )
−1

1

∫ − 1−ϖ (τ )⎡⎣ ⎤⎦B T (τ )⎡⎣ ⎤⎦ ,

B T (τ )⎡⎣ ⎤⎦ 0 0 0( )T
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j) describe the viewing geometry. The zenith angle is in the interval (0, p). The zenith 

angle is the angle between zenith and beam propagation directions. The azimuth angle is 

the angle between the x-axis and the horizontal projection of the beam propagation 

direction, which is measured clockwise when looking toward the zenith direction. The 

azimuth angle is in the interval (0, 2p). The relative azimuth angle Dj=j-j¢ is in the 

interval (0, p) due to symmetry with respect to Dj=p. The absolute value of the cosine of 

the zenith angle µ=|u| is also used to describe polar directions, and µ and -µ specify 

upward and downward directions respectively. One exception is the solar zenith angle µ0. 

Although the incident solar radiation is always downward in a plane-parallel atmosphere, 

µ0 rather than -µ0 specifies its direction. 

 

 
Figure 4 Illustrations of incident zenith angle (q¢), outgoing zenith angle (q), incident azimuth 
angle (j¢), outgoing azimuth angle (j), and relative azimuth angle (j-j¢). 
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2.2 RTE with Solar and Thermal Emission Sources 

The Stokes vector in Eq. (2.1) can be written as I=Is+It. Is and It are the solution 

components when solar radiation and thermal emission by the atmosphere and surface are 

sources. Because Eq. (2.1) is a linear integro-differential equation, it can be written as two 

decoupled equations, 

  (2.2a) 

  (2.2b) 

Eqs. (2.2a) and (2.2b) can be solved separately so the sum of their solutions is the 

total Stoke vector of the radiation field. The boundary condition of Is in downward 

direction at the TOA (t=0) is 

 , (2.3) 

in which d is the Delta function, and j0 is the solar azimuth angle. The incident solar 

radiation is assumed unpolarized. The boundary condition of It in downward direction at 

the TOA is a zero vector. Eqs. (2.2a) and (2.2b) are solved separately in the model. In the 

ultraviolet (UV) to NIR band, the atmospheric thermal emission is very small and is 

ignored so the solution to Eq. (2.2b) is zero. Similarly, in the far infrared to microwave 

band, solar radiation can be ignored so the solution to Eq. (2.2a) is zero. 

u
∂Is τ ,u,ϕ( )

∂τ
= Is τ ,u,ϕ( )

−ϖ (τ )
4π

d ′u d ′ϕ
0

2π

∫ P τ ,u, ′u ,ϕ − ′ϕ( )Is τ , ′u , ′ϕ( )
−1

1

∫ ,

u
∂I t τ ,u,ϕ( )

∂τ
= I t τ ,u,ϕ( )

−ϖ (τ )
4π

d ′u d ′ϕ
0

2π

∫ P τ ,u, ′u ,ϕ − ′ϕ( )I t τ , ′u , ′ϕ( )
−1

1

∫ − 1−ϖ (τ )⎡⎣ ⎤⎦B T (τ )⎡⎣ ⎤⎦.

Is 0,−µ,ϕ( ) = F0δ (µ − µ0 )δ (ϕ −ϕ0 ) 1 0 0 0( )T
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In a clear-sky atmosphere, if Rayleigh scattering is ignored and v is equal to zero, 

the solutions to Eq. (2.2a) and (2.2b) in the upward direction at the TOA are 

 , (2.4a) 

 , (2.4b) 

where b is the optical thickness from the TOA to the surface, Rsurf is the reflection matrix 

at the surface, and esurf is surface emissivity. The first term on the right-hand side of Eq. 

(2.4b) is thermal emission by the surface. The monochromatic transmittance is defined as 

 . (2.5) 

Eq. (2.4) can be written as 

 , (2.6a) 

 . (2.6b) 

 

2.3 Introduction to Each Module in the RTM 

The remote sensing instrument always receives the channel-averaged radiance defined as 

 , (2.7) 

where  is the channel-averaged radiance, I(n) is the radiance at wavenumber n, and S(n) 

is the normalized spectral response function (SRF) of the receiver at wavenumber n. 

Is 0,µ,ϕ( ) = µ0F0
π
e
− b
µ0Rsurf µ0 ,ϕ0 ,µ,ϕ( ) 1 0 0 0( )T e−

b
µ

I t 0,µ,ϕ( ) = εsurfB T (b)⎡⎣ ⎤⎦e
− b
µ + B T (τ )⎡⎣ ⎤⎦e

−τ
µ dτ
µ0

b

∫

t(τ ,µ) = e
−τ
µ

Is 0,µ,ϕ( ) = µ0F0
π
t(b,µ0 )Rsurf µ0 ,ϕ0 ,µ,ϕ( ) 1 0 0 0( )T t(b,µ)

I t 0,µ,ϕ( ) = εsurfB T (b)⎡⎣ ⎤⎦ t(b,µ)− B T (τ )⎡⎣ ⎤⎦
dt(τ ,µ)
dτ

dτ
0

b

∫

I = I (ν )S(ν )dν
ν1

ν2∫

I
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The optical properties of cloud, aerosol and ocean vary slightly in the spectral 

range of a band with moderate and higher spectral resolution such as bands of MODIS 

and POLDER. However, the absorption by atmospheric gases varies considerably even in 

a narrow spectral range. If we use Eq. (2.7) to compute , though it is accurate, we have 

to do radiative transfer calculations in many wavelengths, which is computationally 

expensive and impractical for an in-line RTM. 

Instead, we utilize channel-averaged radiative transfer calculation as an 

approximation to Eq. (2.7). The optical properties (i.e. absorption, scattering and 

emission) of the model atmosphere and ocean are averaged in the spectral range of a 

channel. Thus, only one radiative transfer calculation is needed to obtain approximate 

channel-averaged radiance . The channel-averaged optical property is defined as 

 , (2.8) 

where X and  are an arbitrary optical property and its channel-averaged counterpart 

respectively. 

2.3.1 Gas Absorption 

Gas absorption is a critical process in radiative transfer. We consider channel-averaged 

transmittance (CAT) in the channel-averaged radiative transfer calculation, defined in a 

transmission path as 

 , (2.9) 

in which tn is the monochromatic optical thickness of gas absorption along the 

transmission path. The monochromatic transmittance in Eq. (2.6) should be replaced by 

I

I

X = X (ν )S(ν )dν
ν1

ν2∫

X

t = S(ν )exp[−τν (ν )]dνν1

ν2∫
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CAT. tn is a function of wavelength as well as gas concentration, pressure and 

temperature. Eq. (2.9) can be implemented by a line-by-line (LBL) method (e.g. Clough 

et al. 2005) that is very time-consuming. Because of the complicated dependence of CAT 

on atmospheric profiles, we perform CAT computation as a part of the RTM. Thus, the 

LBL method is impractical due to the large computational burden. 

Many research efforts have been devoted to efficient and accurate computation of 

CAT (also called spectral transmittance if the SRF is ignored). Band model methods (e.g. 

Goody 1952; Malkmus 1967) approximate spectral transmittance as analytical equations. 

The parameters in the equations are functions of pressure, temperature and gas 

concentration. For an inhomogeneous atmosphere, the band model methods use various 

scaling schemes (e.g. Curtis 1952; Godson 1953; Chou and Arking 1980; Fu and Liou 

1992a) to scale the parameters to account for pressure, temperature and gas concentration 

variations in inhomogeneous atmospheric paths. Band model methods and their scaling 

approximations are accurate for flux and heating rate calculations (e.g. Fu and Liou 1992a; 

Bernstein et al. 1996). 

Another spectral transmittance calculation approach is the correlated k-distribution 

(CKD) method (e.g. Lacis et al. 1979; Goody 1989; Fu and Liou 1992b). By sorting the 

absorption coefficients in a spectral range, the k-distribution method can efficiently 

compute spectral transmittance as accurately as the LBL method. If we assume the orders 

of absorption coefficients after sorting are the same for all atmospheric conditions, CKD 

can conveniently deal with an inhomogeneous atmosphere. The errors of CKD are from 

the correlation assumption. CKD has been successfully implemented (e.g. Edwards and 
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Francis 2000; Liu et al. 2015) to compute CAT for remote sensor channels. It can easily 

account for the SRF and solar constant, and be integrated into multiple scattering 

calculations (Liu et al. 2015). 

Except for band model and CKD methods, many other approaches have been 

developed to compute CAT for remote sensor channels. For example, a Principal 

Component Radiative Transfer Model (Liu et al. 2006; Liu et al. 2016) is developed for 

hyperspectral instruments. The Optimal Spectral Sampling (OSS) method (Moncert 2008) 

selects a few monochromatic absorption coefficients to compute spectral transmittance. 

The Stand-Alone Radiative Transfer Algorithm (Strow et al. 2003), the Optical Path 

Transmittance algorithm (McMillin et al. 1995), and the Radiative Transfer TIROS 

Operational Vertical Sounder (Matricardi and Saunders 1999) are all regression-based 

methods. They construct regression equations between CAT values and atmospheric 

variables. The regression coefficients are obtained by fitting to LBL results. 

Among the approaches mentioned above, the band model method does not 

precisely account for a detailed SRF and may not be accurate for remote sensing 

applications. The errors of the CKD method are hard to control under various atmospheric 

conditions. The PCRTM and OSS are complicated to implement. The regression-based 

methods have been proven accurate and efficient in many operational retrieval algorithms, 

and are relatively easy to implement. Thus, we develop a regression-based algorithm to 

compute CAT. The previous regression-based methods perform regression layer by layer. 

In our method, we only perform one regression for an inhomogeneous atmospheric path, 
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which is more efficient especially for solar bands. The details will be discussed in Chapter 

III. 

2.3.2 Multiple Scattering 

Eqs. (2.2a) and (2.2b) have a multiple scattering term. An efficient vector RTE solver is 

needed to account for multiple scatterings in cloud, aerosol and ocean layers. The 

Successive Order of Scattering (SOS) method (e.g. Min and Duan 2004; Lenoble et al. 

2007; Zhai et al. 2010), the Adding-Doubling (AD) method (e.g. de Haan et al. 1987; 

Evans and Stephens 1991; Hovenier et al. 2004), the Discrete Ordinate (DO) method (e.g. 

Siewert 2000; Rozanov and Kokhanovsky 2006; Ota et al. 2010) and the Monte Carlo 

(MC) method (e.g. Tynes et al. 2001; Iwabuchi 2006; Emde et al. 2011) are widely used 

in solving a vector RTE. In our model, the AD method based on the program developed 

by Huang et al. (2015) is used as the vector RTE solver, because it is numerically stable 

and easily accounts for multiple layers. 

The phase matrices of atmospheric and oceanic particles are highly anisotropic. 

Especially in the forward direction, the diagonal elements of the phase matrix always have 

strong forward peaks. Thus, a number of terms are needed to represent the phase matrix 

accurately in terms of general spherical functions (GSF) (Wendish and Yang 2012), which 

will make radiative transfer calculations very time-consuming. To overcome this 

difficulty, many approaches are developed to truncate the forward peak in the phase 

function (e.g. Potter 1970; Wiscombe 1977; Hu et al. 2000) and the phase matrix (Zhai et 

al. 2009; Sanghavi and Stephens 2015; Hioki et al. 2016) so that fewer GSF terms are 

needed in radiative transfer calculations to attain decent accuracy. Some correction 
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methods such as the TMS and IMS methods (Nakajima and Tanaka 1988) are also 

developed to correct the single-scattering errors caused by the truncation operation. 

A previous study (Hioki et al. 2016) shows that the errors in reflection and 

polarized reflection calculation caused by the Delta-M truncation method (DMM) 

(Wiscombe 1977) can be substantially reduced by the TMS single-scattering correction 

method. However, in the forward direction, there are still large errors. Although for a solar 

source, remote sensing instrument only receives radiation in reflection directions, an 

accurate radiative transfer calculation in forward directions is still necessary, since it 

affects the simulation in reflection directions under certain conditions. For example, 

forward transmitted solar radiation reflecting off the sea surface leads to sun glint that is 

received by airborne or spaceborne instruments. The sun glint phenomenon has been 

utilized to measure sea surface characteristics (Cureton 2015) and proved to have rich 

information content about aerosol properties (Ottaviani et al. 2013) such as aerosol 

absorption (Kaufman et al. 2002). Coupled with polarimetric observation, sun glint is 

useful in detecting ocean surface oil slicks (Lu et al. 2017). Also, transmitted solar 

radiation through the air-sea interface accounts for as much as 30% of the polarization of 

water-leaving radiance (Kattawar and Adams 1989). Thus, a method is needed to keep 

both reflection and transmission accurate while significantly improving the speed of 

solving the vector RTE. 

In this study, a two-component method is developed to solve the vector RTE. The 

highly anisotropic phase matrix of atmospheric and oceanic particles is decomposed into 

the forward and diffuse components. The forward component is nonzero only in a small 
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range of angles. The diffuse component is much more isotropic. Similarly, the Stokes 

vector of the RTE solution is also decomposed into forward and diffuse components. After 

some approximations, we obtain decoupled forward and diffuse RTEs. The forward RTE 

is solved by the small-angle approximation (SAA) method (Sun et al. 2017a). The diffuse 

RTE is solved by the AD method (Huang et al. 2015). The AD computation is substantially 

accelerated due to the fact that the diffuse phase matrix can be expanded with a much 

lower order of the GSF. The derivations and detailed descriptions are given in Chapter IV. 

2.3.3 Thermal Emission 

In Eq. (2.2b), the thermal emission comes from the atmosphere and the surface. In a clear-

sky condition, Eq. (2.2b) can be solved if we know the CAT and temperature of each layer. 

If scattering layers are present, thermal emission experiences multiple scattering. Previous 

studies (e.g. Wiscombe 1976; Heidinger et al. 2006; Liu and Weng 2006) discuss the 

thermal emission multiple scattering calculation in the AD method. However, none of 

them consider the state of polarization. In this study, we develop an efficient thermal 

emission calculation approach incorporated into the AD method. The approach is 

illustrated in Chapter V. 

2.3.4 Air-Sea Interface and Ocean Model 

The radiative transfer processes in the atmosphere and oceans are coupled through the air-

sea interface. The vector RTE is solved under the atmosphere-ocean system (AOS). The 

SOS method is one of the most popular vector RTE solver of an AOS (e.g. Zhai et al. 

2010, 2017; Chami et al. 2015). Other AOS vector RTE solvers include the MC method 

(e.g. Kattawar and Adams 1989), the matrix-operator method (e.g. He et al. 2010), the DO 
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method (e.g. Spurr 2006) and the AD method (e.g. Chowdhary et al. 2006). In this study, 

we extend the AD vector RTE solver by Huang et al. (2015) to an AOS. 

The air-sea interface is assumed to be a rough surface in the model to mimic the 

realistic ocean surface. There are two schemes for generating the rough surface. The first 

scheme approximates the rough surface as a number of hypothetical small facets. The 

orientations of the facets follow a 2-dimensional Gaussian distribution whose variance is 

determined by wind speed (Cox and Munk 1954). The second scheme expresses the 

surface wave height variation with a superposition of temporal- and spatial-dependent 

plane waves (e.g. Schwenger and Repasi 2003). The magnitude and phase of the plane 

waves are functions of wind speed and direction. The second scheme is much more 

computationally expensive so we adopt the first scheme to compute the interface reflection 

and transmission matrices in the RTM. 

 Pure water, phytoplankton, NAP and CDOM are included in the model of ocean 

inherent optical property (IOP) computation. Currently, only one homogeneous ocean 

layer is considered in the model. The details are described in Chapter VI. 

The computational setup of the RTM is shown in Fig. 5. Atmospheric gas 

absorption is computed in terms of CAT. Properties of the atmosphere, ocean, and the 

interface are then input into the vector RTE solver, which outputs Stokes parameters in 

different locations. 
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Figure 5 Computational setup of the RTM. 
 

Radiative transfer equation (RTE) 
solver 

Atmospheric Profile Oceanic Profile 

Stokes parameters at 
• TOA 
• Just above the ocean 
• Just below oceanic surface 

  

Model Output 

	
	
	
	
	
	
	
	
	
	
	
	
	
 

• Gas absorption 
• Ice/water cloud scattering & 

absorption 
• Aerosol scattering & 

absorption 

Air-sea interface 

• Pure water scattering & absorption 
• Colored dissolved organic matter 

(CDOM) absorption 
• Phytoplankton and non-algae 

particles (NAP) scattering & 
absorption 



 

25 

 

CHAPTER III  

GAS ABSORPTION CALCULATION 

 

3.1 Channel-averaged Transmittance and Optical Thickness 

As illustrated in Chapter II, CAT is needed for channel-averaged radiative transfer 

calculation if the atmospheric gases are absorptive. Replacing the monochromatic 

transmittance in Eq. (2.4b) with the corresponding CAT, Eq. (2.4b) can be written in the 

discrete form, 

 , (3.1) 

in which Tsurf is surface temperature, ls is the number of layers from the surface to TOA, 

where ls is smaller or equal to the number of layers in the model L. The first layer is at the 

TOA. The last layer is the bottommost layer.  is the CAT from the layer l to the layer 

1. The model has 100 pressure layers corresponding to 101 pressure levels ranging from 

0.05 hPa to 1100 hPa to be consistent with the pressure layer setup in Strow et al. (2003). 

In a clear-sky atmosphere, as indicated in Eq. (3.1), the layer-to-TOA CATs are needed in 

the channel-averaged RT calculation for a thermal emission source. Similarly, for a solar 

incidence source, as indicated in Eq. (2.4a), the surface-to-TOA CAT is needed. If there 

are scattering layers, we also need CATs among scattering layers, the surface and TOA as 

well as CATs within the scattering layers. Therefore, the gas absorption calculation 

module should be able to compute layer-to-layer CATs between two arbitrary layers in 

the model in order to account for all the atmospheric conditions. 

I t 0,µ,ϕ( ) = εsurfB(Tsurf )tls~1(µ)+ B(Tl )
l=1

ls

∑ t( l−1)~1(µ)− tl~1(µ)⎡⎣ ⎤⎦

tl~1
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The layer-to-layer CAT is defined as 

 , (3.2) 

in which  is the CAT from layer i to layer j. M is the number of absorption coefficients 

considered in the spectral range. Sm is the discretized SRF at the m-th wavenumber in the 

spectral range.  is the monochromatic optical thickness in the layer l at the m-th 

wavenumber. a is the secant of the zenith angle (1/µ).  is a function of gas 

concentration, temperature, pressure and a. We develop a regression approach to 

parameterize the layer-to-layer CAT with atmospheric variables (e.g. pressure, 

temperature and gas concentrations). It is shown in Eq. (3.2) that  exponentially 

depends on monochromatic optical thickness, but the optical thickness is linearly 

proportional to gas concentration, for which it is difficult to directly parameterize CAT 

with respect to atmospheric variables. Alternatively, we define the layer-to-layer channel-

averaged optical thickness (CAOT) as 

 , (3.3) 

which is parameterized with respect to atmospheric variables. 

Eight gases are considered in the absorption calculation, namely, water vapor 

(H2O), carbon dioxide (CO2), ozone (O3), nitrous oxide (N2O), carbon monoxide (CO), 

methane (CH4), oxygen (O2), and nitrogen (N2). Three kinds of absorption are considered: 

line absorption by H2O, CO2, O3, N2O, CO, CH4, and O2, continuum absorption by H2O, 

CO2, O2 and N2, and O3 UV absorption. If more than one gas is an absorber in a channel, 

ti~ j = Sm exp −a τ m
l

l=i

j

∑⎡

⎣
⎢

⎤

⎦
⎥

m=1

M

∑

ti~ j

τ m
l

ti~ j

ti~ j

τ i~ j ≡ − ln ti~ j
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the CAOTs of all the gases are parameterized and computed separately, and then combined 

to obtain total CAOT. Note that the total CAOT is not equal to the sum of CAOTs of each 

gas, since Beer’s law is invalid for CAT. To keep the total CAOT correct, we define the 

CAOT of each gas as 

 , (3.4) 

in which N is the number of absorptive gases in the channel. The second subscript in each 

CAOT is the index of the gas in the CAOT calculation. For example,  is the CAOT 

for gases 1, 2, … N, while  is the CAOT of the single gas N. The CAOTs on the 

right-hand side of Eq. (3.4) are computed by the Line-by-line Radiative Transfer Model 

(LBLRTM) (Clough et al. 2005). The total CAOT is 

 . (3.5) 

 

3.2 Regression Method 

The next step is to find a relation between  and the atmospheric variables, and use a 

polynomial regression approach to quantify this relation. To make regression numerically 

stable, we define the relative CAOT of a single gas n as, 

 , (3.6) 

τ i~ j ,1 ≡ τ i~ j ,1~N −τ i~ j ,2~N ,

τ i~ j ,2 ≡ τ i~ j ,2~N −τ i~ j ,3~N ,

…,
τ i~ j ,N−1 ≡ τ i~ j ,N−1~N −τ i~ j ,N .

τ i~ j ,1~N

τ i~ j ,N

τ i~ j ,tot ≡ τ i~ j ,1~N = τ i~ j ,n
n=1

N

∑

τ i~ j ,n

τ r ,i~ j ,n ≡
τ i~ j ,n
τ ref ,i~ j ,n
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in which  is the reference CAOT of single gas n computed under the U.S. standard 

atmospheric profile.  is a function of atmospheric temperature, pressure, and gas 

concentrations in layers i to j, 

 , (3.7) 

in which Ti is the temperature of layer i, Pi the pressure of layer i, and ui,n the concentration 

of gas n in layer i. 

After numerous tests, we construct a polynomial equation to parameterize , 

 , (3.8) 

in which Gi~j,n is the gas n concentration predictor. The exponent g ranges from 0 to 1. Ti~j 

is the temperature predictor. ckh is a polynomial coefficient. K can be 1, 2, 3, or 4; H can 

be 0, 1, 2 or 3. K and H are determined to satisfy accuracy and computation speed 

requirements. 

Ti~j is defined as 

 , (3.9) 

where Tref, i is the layer i temperature in the reference atmospheric profile. Eq. (3.9) 

suggests that Ti~j is the sum of pressure-weighted temperature divided by its counterpart 

for a reference atmospheric profile. 

Gi~j,n has nine different forms, 

unweighted gas concentration: 

τ ref ,i~ j ,n

τ r ,i~ j ,n

τ r ,i~ j ,n = τ r ,i~ j ,n Ti ,Ti+1,!,Tj | Pi ,Pi+1,!,Pj |ui,n ,ui+1,n ,!,uj ,n( )

τ r ,i~ j ,n

τ r ,i~ j ,n = ckh G i~ j ,n
γ( )k Τ i~ j( )h

h=0

H

∑
k=1

K

∑

Τ i~ j = TlPl
l=i

j

∑⎛⎝⎜
⎞
⎠⎟

Tref ,l Pl
l=i

j

∑⎛⎝⎜
⎞
⎠⎟
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 , (3.10a) 

pressure-weighted gas concentration: 

 , (3.10b) 

temperature-weighed gas concentration: 

 , (3.10c) 

pressure difference-weighted gas concentration: 

 , (3.10d) 

temperature and pressure difference-weighted gas concentration: 

 , (3.10e) 

temperature and pressure-weighted gas concentration: 

 , (3.10f) 

pressure and pressure difference-weighted gas concentration: 

 , (3.10g) 

squared pressure-weighted gas concentration: 

 , (3.10h) 
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and square root pressure-weighted gas concentration: 

 , (3.10i) 

in which DPl is the pressure difference between the top and bottom of a layer.  

We compute Gi~j,n and  for various spectral bands with an atmospheric 

profile dataset used in Strow et al. (2003). The profiles cover varied atmospheric 

conditions on the earth. Fig. 6 shows the Gi~j,n~  relations for H2O and O3 in MODIS 

band 17 and 30 respectively. The SRFs of MODIS bands are obtained from the website 

(https://mcst.gsfc.nasa.gov/calibration/parameters). For H2O at band 17, the pressure-

weighted gas concentration has the smoothest relation with , whereas for O3 at band 

30, the square root pressure-weighted gas concentration has the smoothest Gi~j,n~  

relation. If the Gi~j,n~  relation is smooth, the polynomial parameterization should be 

accurate. The form of Gi~j,n that has the smallest polynomial fitting error is selected for 

each specific gas in a band. 
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Figure 6 Relative CAOT of H2O and O3 in all model pressure layers versus various gas 
concentration predictors in two MODIS bands. Left: MODIS band 17; Right: MODIS band 30. 
 

As examples, we select the forms of Gi~j,n by a trial-and-error approach for all 36 

MODIS bands and assumptive hyperspectral channels in UV to shortwave infrared 

(SWIR) bands (0.3 to 2.4 µm wavelength range). The spacing between two hyperspectral 

channels is 5 nm, which is consistent with the Ocean Color Imager in PACE project 

(PACE Technical Report Series 2018). The channel width is set to be 1/1200 of its central 

wavenumber. The SRF for the hyperspectral channels is assumed to be a rectangular 

window. Figs. 7 and 8 show the Gi~j,n forms of H2O, O3 and CO2 for MODIS bands and 

hyperspectral channels in 0.3 to 2.4 µm. All of the 9 forms in Eq. (3.10) are selected for 

MODIS bands. For the hyperspectral channels, only the first 3 forms are used. The 

variation of the selected Gi~j,n for different gases and channels suggests the complexity of 

gas absorption properties. The various formulas in Eq. (3.10) are analogous to various 

scaling approximations for an inhomogeneous atmosphere. 

 



 

32 

 

 
Figure 7 Gas concentration predictor forms of H2O, CO2 and O3 for 36 MODIS bands. The 
letters in the y-axis correspond to the formulas in Eq. (3.10). If the gas in a band is not 
absorptive, no predictor form is derived. 
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Figure 8 Gas concentration predictor forms of H2O, CO2 and O3 for hyperspectral channels in the 
0.3 to 2.4 µm wavelength range. The letters in the y-axis correspond to the formulas in Eq. 
(3.10). If the gas in a channel is not absorptive, no predictor form is derived. 
 

The exponent g in Eq. (3.8) is also determined by a trial-and-error approach to 

obtain the smallest fitting error. Figs. 9 and 10 show the g values for H2O, CO2 and O3 in 

different channels. The variation of g is due to different relations between CAOT and gas 

concentration. The spectral transmittance in Goody’s statistical band model (Goody 1952) 

can be written as 

 , (3.11) 

where Du is the mean absorption line spacing, a the absorption line width, and Am the 

mean absorption line intensity. From the definition of CAOT in Eq. (3.3) and Eq. (3.11), 

t = exp −
uAmα

Δυ α 2 +
uAmα
π

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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the CAOT is proportional to  in the statistical band model. Because Am and a are not 

constant, g varies in the band model. Although the Goody’s statistical band model is an 

approximation, it shows the reasonableness of including the exponent g in the gas 

concentration predictors. 

 

 
Figure 9 The exponent g  in Eq. (3.8) for H2O, CO2 and O3 for 36 MODIS bands. If the gas in a 
band is not absorptive, no exponent g  is computed. 

 

uγ
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Figure 10 The exponent g  in Eq. (3.8) for H2O, CO2 and O3 for hyperspectral channels in the 0.3 
to 2.4 µm wavelength range. If the gas in a channel is not absorptive, no exponent g  is 
computed. 
 

Many channels have more than one absorptive gas as shown in Figs. 7 to 10. 

According to Eq. (3.4), except for gas N, the CAOT of an absorptive gas depends on the 

CAOTs of other gases with larger indices. For example,  is dependent on the CAOTs 

of gases 2~N. To simplify the parameterization of CAOT, the CAOT interdependence is 

ignored in the channels where one gas is much more absorptive than others. The most 

strongly absorptive gas is assigned to be gas N. Its CAOT is computed by Eq. (3.2). In 

most of the channels in the UV-IR band, only one gas dominates absorption. There are a 

few channels in the IR band where CO2 and other gases dominate absorption. Because the 

CO2 concentration variation is small, we choose CO2 as gas N in these channels. The 

CAOT of other gases is affected by the CO2 concentration. We thus add an extra CO2 

predictor term in Eq. (3.8), 

τ i~ j,1
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 , (3.12) 

in which  is the predictor for CO2. 

If the polynomial coefficients in Eqs. (3.8) or (3.12) are known for a channel, for 

a specific atmospheric profile, we can first compute predictors , and then use Eqs. 

(3.8) or (3.12) to compute CAOTs of the atmosphere for the channel. The polynomial 

coefficients are determined by a regression approach. The regression can be described by 

a matrix equation, 

 , (3.13) 

in which G is the predictor matrix, C the regression coefficient vector and O the relative 

CAOT vector. G is 

 , (3.14) 

in which M here is the number of atmospheric profiles used in the regression calculation. 

G has dimension M ´ K(H+1) for Eq. (3.8), and M ´ (K+1)(H+1) for Eq. (3.12). C is 

 . (3.15) 

O is 

 . (3.16) 

τ r ,i~ j ,n = ckh G i~ j ,n
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The regression coefficient vector Eq. (3.15) can be computed by 

 , (3.17) 

which, however, is not numerically stable. An alternative approach to solve Eq. (3.13) is 

to use singular value decomposition (SVD) to first decompose G, 

 , (3.18) 

in which  and  are orthogonal matrices, and S is a diagonal matrix. Substituting Eq. 

(3.18) into Eq. (3.17), the regression coefficient vector is obtained by 

 . (3.19) 

For one atmospheric profile, radiative transfer calculations are usually implemented in 

multiple viewing geometries, so CATs are needed in different zenith angles. The secant 

of zenith angle a is a variable in Eq. (3.2), but a can be a regression variable, which 

however, makes regression inaccurate according to our tests. Instead, a is set to be a 

constant in regression. The regressions are performed with 7 secants of zenith angles (1, 

1.1, 1.5, 2.0, 3.0, 5.0, and 10.0) respectively, which correspond to zenith angles from 0 to 

over 84°, and cover the applicable solar and viewing zenith angle ranges in remote sensing. 

To compute the total CAOT at an arbitrary zenith angle, first, the CAOTs of all absorptive 

gases are computed at the two a values above and below the desired a value. Then, the 

total CAOT at the desired zenith angle is obtained by linear or spline interpolations. As 

shown in Fig. 11, the total CAOT is a smooth function with respect to a, though it is not 

linear. Interpolation does not reduce accuracy a lot. 

 

C = GTG( )−1GTO

G = V1ΣV2
T

V1 V2

C = V1
TΣ−1V2O
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Figure 11 Total CAOTs in MODIS bands 17, 26, 30 and 34 in all pressure layers of the model 
versus the secant of zenith angle. 
 

3.3 Validation 

The regression calculations are performed for all MODIS bands and the hyperspectral 

channels mentioned above. The regression coefficients are used to compute CAOTs for 

independent atmospheric profiles. Two illustrative examples are shown in Figs. 12 and 

13. 

Fig. 12 shows the hyperspectral CAT with 5 nm resolution computed by the 

regression method and the line-by-line method. The independent atmospheric profiles are 

from the Borbas et al. (2005) training database of global profiles. We obtain the 

temperature profile, H2O mixing ratio, O3 mixing ratio, surface pressure, and surface 

temperature of each atmospheric profile from the database. Global mean mixing ratios for 
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other gases are used in the computation. We randomly select 50 clear-sky profiles from 

the database and compute CAT from the surface to TOA for two zenith angles. The root-

mean-square error (RMSE) is computed by comparing with line-by-line results. As shown 

in Fig. 12, in UV-SWIR bands, there is significant absorption in certain wavelength 

ranges. Most of the channels have RMSE less than 0.005. The channels around 2.0 µm 

have larger errors, since around 2.0 µm both H2O and CO2 dominate absorption, which 

makes regression not very accurate. The surface to TOA CATs can be directly used in 

solar clear-sky radiative transfer calculations using Eq. (2.4a). 

 

 
Figure 12 Hyperspectral CAT with 5 nm resolution computed by the regression method and the 
rigorous LBLRTM for two zenith angles q =18° and q =75°. The bottom row shows the RMSE 
of CAT. 
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For MODIS TIR bands, we compute the layer-to-TOA CATs by the regression method, 

line-by-line method and CKD method for the same atmospheric profiles as described 

above. The layer-to-TOA CATs are used in Eq. (3.1) to compute the brightness 

temperature (BT) at the TOA. The CKD implementation here is similar to Liu et al. (2015) 

and uses 64 integration points. Fig. 13 shows the comparisons of BTs at the TOA in 16 

MODIS TIR bands computed by the three methods. In terms of RMSE relative to 

LBLRTM, the regression method performs more accurately than the 64-point CKD 

method. At band 25, the CKD has a large RMSE. Seven gases are absorptive in band 25. 

The absorption line overlapping may cause extra errors in the CKD method. 

 



 

41 

 

 
Figure 13 MODIS TIR band TOA BT simulation with CAT computed by LBLRTM, 64-point 
CKD, and the proposed regression method. The bottom row shows the RMSE of BT compared 
to LBLRTM. 
 

In terms of implementation speed, the regression method is four orders of 

magnitude faster than the line-by-line method. It is also twice as fast as the 64-point CKD 

method. Compared with previous regression-based methods, the strength of the new 

regression method is that it directly parameterizes the CAOT for an inhomogeneous 

atmospheric path rather than making parameterizations for each homogeneous layer. This 

strength makes regression more efficient, especially for solar band radiative transfer 

calculations. For example, in Eq. (2.4a), only the surface-to-TOA CAT is needed so only 

one calculation is needed to compute the surface-to-TOA CAT by the new regression 
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method in the study. However, previous regression-based methods have to do 

computations for each layer and then combine the results to obtain the surface-to-TOA 

CAT. In other words, the speed of the new regression method is independent of the number 

of layers. In TIR bands, all of the layer-to-TOA CATs are needed so the speed of the new 

regression method is not significantly faster. 
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CHAPTER IV  

TWO-COMPONENT METHOD IN MULTIPLE SCATTERING CALCULATION 

 

4.1 Derivation of the Two Components 

The two-component method (referred to as SAA+AD) combines the improved SAA 

scheme by Sun et al. (2017a) and the AD method by Huang et al. (2015). Before 

introducing the method, some variables are defined as follows. The phase matrix in Eq. 

(2.1) is defined as 

 , (4.1) 

where F is the scattering matrix of the scattering medium. F is related to the Mueller 

matrix, Eq. (1.5) by 

 , (4.2) 

where  is the bulk-averaged scattering cross section of a particle in the scattering 

medium. h1 is the angle between the incident meridional plane and scattering plane, and 

h2 is the angle between scattering plane and scattering meridional plane. The expressions 

for h1 and h2 are given in Hovenier et al. (2004). 

Here we assume the particles in the scattering medium are randomly oriented with 

mirror symmetry so F can be explicitly written as 

P τ ,u, ′u ,ϕ − ′ϕ( ) = L π −η2( )F τ ,Θ( )L −η1( )

F = 4π
k 2Csca

M

Csca
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 , (4.3) 

in which a1, a2, a3 and a4 are diagonal elements, and b1 and b2 are off-diagonal elements. 

Q is the scattering angle defined as 

 . (4.4) 

Following Sun et al. (2017a), the a1 element (i.e. scattering function) can be written 

as 

 , (4.5) 

where  and  are forward (superscript ‘f’) and diffuse (superscript ‘d’) 

scattering functions respectively. f1 is a constant representing the proportion of total 

scattering energy that is in the forward directions.  is 

 , (4.6) 

and  is 

 , (4.7) 
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in which Qt is the truncation angle. The forward scattering function is nonzero only with 

scattering angles smaller than Qt. The function  is introduced to keep the diffuse 

scattering function nonzero in forward scattering angles. The goal is to make  a 

less anisotropic and smooth function so that it can be expanded accurately with a few GSF 

terms. Thus,  should be a smooth function without sharp peaks. Here the  

function is consistent with Sun et al. (2017a), 

 , (4.8) 

where z is a parameter that determines the gradient of . A value of z is selected to 

make the expansion of Eq. (4.7) accurate for radiative transfer calculations with certain 

number of GSF terms. The forward and diffuse scattering functions are all normalized, so 

f1 is computed by 

 . (4.9) 

The forward and diffuse scattering matrices are defined as 

 , (4.10a) 

 . (4.10b) 

Thus, the forward and diffuse scattering matrices satisfy 

 . (4.11) 
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a1
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Fig. 14 shows an example of a forward scattering matrix that is nonzero only 

within a few degrees of the forward scattering direction. Fig. 15 shows the corresponding 

original and diffuse scattering matrix. The diffuse scattering function is smooth in forward 

scattering directions. 

 

 
Figure 14 Forward scattering matrix elements of an ice cloud with effective radius 30 µm at 
wavelength 0.865 µm. The ice particle shape is a roughened 8-hexagonal column aggregate 
defined in Yang et al. (2013). 
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Figure 15 Diffuse scattering matrix elements of an ice cloud with effective radius 30 µm at 
wavelength 0.865 µm. The inset plot shows the a1 elements of F and Fd at 0 to 5° scattering 
angles. The ice particle shape is a roughened 8-hexagonal column aggregate defined in Yang et 
al. (2013). 
 

The forward and diffuse phase matrices can be obtained by Eq. (4.1), 

 , (4.12a) 

 , (4.12b) 

so that we have 

 . (4.13) 

The Stokes vector in Eq. (2.1) can be written as the sum of forward and diffuse 

components, 

 . (4.14) 

Substituting Eqs. (4.13) and (4.14) into Eq. (2.1), we obtain two equations, 

 

P f τ ,u, ′u ,ϕ − ′ϕ( ) = L π −η2( )F f τ ,Θ( )L −η1( )

Pd τ ,u, ′u ,ϕ − ′ϕ( ) = L π −η2( )Fd τ ,Θ( )L −η1( )

P τ ,u, ′u ,ϕ − ′ϕ( ) = f1P f τ ,u, ′u ,ϕ − ′ϕ( )+ (1− f1)Pd τ ,u, ′u ,ϕ − ′ϕ( )

I τ ,u,ϕ( ) = Id τ ,u,ϕ( )+ I f τ ,u,ϕ( )
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  (4.15) 

and 

  (4.16) 

Eqs. (4.15) and (4.16) are the diffuse and forward RTEs respectively. The last two 

terms on the right-hand side of Eq. (4.15) serve as sources of the diffuse RTE. Note that 

the energy of the forward solution is concentrating on the forward several degrees of 

scattering angle around the incident direction, and the contribution of the forward solution 

to reflection is negligible. Thus, for convenience, the non-negative variable µ instead of u 

is used to denote zenith directions of the forward solution. The source of incident radiation 

in the forward RTE is solar, so its boundary condition at the TOA is 

 . (4.17) 

The boundary condition of Eq. (4.15) at the TOA is a zero vector. The solution to Eq. 

(4.16) is one of the source terms in Eq. (4.15). We have to first solve Eq. (4.16) and use 

the solution to solve Eq. (4.15). Sun et al. (2017a) uses the SAA and SOS methods to solve 
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the coupled forward and diffuse RTEs. In this study, we use SAA to solve Eq. (4.16) and 

use the AD method to solve Eq. (4.15). 

 

4.2 Forward Component Solution 

To simplify the process to solve the forward part using SAA, we consider the scalar 

version of Eq. (4.16), 

  (4.18) 

where  is forward radiance. The polarizations are approximated by first and 

second order scatterings, which have exact analytical solutions. Hovenier et al. (2004) 

shows that polarization calculations converge faster in terms of scattering orders than 

radiance. In this study, Eq. (4.18) is solved by the SAA method introduced by Sun et al. 

(2017a). Sun et al. (2017a) only considers a single-layer case. Here we further extend the 

SAA method to a multi-layer case so that it can be applied to an inhomogeneous 

atmosphere. 

Using the SAA (Sun et al. 2017a), the solution to Eq. (4.18) is approximated by a 

2-dimensional Gaussian function, 

 , (4.19) 

where F, Vnx, and Vny are parameters determined by the scattering media properties, and 

nx and ny are defined as 
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 , (4.20a) 

 , (4.20b) 

where qb is defined below. 

By substituting Eq. (4.19) into Eq. (4.18) and applying a suitable approximation 

(Sun et al. 2017a), we can obtain the analytical equations of F, Vnx, and Vny. In Sun et al. 

(2017a), the parameters are given for a single layer. In this study, we derive the iterative 

expressions of the three parameters for multiple layers, 

 , (4.21a) 

 , (4.21b) 

 , (4.21c) 

 , (4.21d) 

in which the subscripts ‘n’ and ‘n-1’ denote the parameters in layers n and n-1, 

respectively. The incident light (e.g. solar radiation) enters the first (top) layer and exits 

the last (lower) layer. The parameters in the first layer are, 

 , (4.22a) 

nx = sinθ cosϕ cosθb − cosθ sinθb

ny = sinθ sinϕ

Vny ,n =
sn
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 , (4.22b) 

 , (4.22c) 

 . (4.22d) 

The variables on the right-hand side of Eqs. (4.21) and (4.22) are defined as, 

 , (4.23a) 

 , (4.23b) 

 , (4.23c) 

 , (4.23d) 

 , (4.23e) 

 , (4.23f) 

 , (4.23g) 

 , (4.23h) 

in which v0,n and tn are the single-scattering albedo and optical thickness of the scattering 

media in the nth layer. t in Eq. (4.19) is the sum of tn.  is the scattering function of the 
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nth layer. f1,n is the f1 parameter for the layer n phase function. q0 is the incident zenith 

angle. 

The two-order scattering approximation is used to compute polarization of the 

forward RTE, Eq. (4.16), and can be expressed as 

 , (4.24) 

where subscripts “1” and “2” denote the first and second orders of scattering. The first 

order scattering is expressed as, 

 , (4.25) 

where ttl and tbl are the optical thicknesses above and below the layer l respectively. The 

function c (Hovenier et al. 2004) is written as, 

 . (4.26) 

The second order scattering is expressed as 

  (4.27) 

I f τ ,−µ,ϕ( ) ≈ I1f τ ,−µ,ϕ( )+ I2f τ ,−µ,ϕ( )
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where tlm is the optical thickness between layer l and m. The function h is defined as 

 (4.28) 

The first term on the right-hand side of Eq. (4.27) applies when the two orders of scattering 

occur in the same homogeneous layer. The second term applies when the two orders of 

scattering occur in two different layers. 

Except for polarization, Eqs. (4.25) and (4.27) also contain an accurate radiance 

solution for the first and second orders of scattering. The SAA solution, Eq. (4.19), as an 

approximation, is the sum of all orders of scattering. To improve the accuracy of the 

forward solution, we can replace the first and second orders of scattering components in 

Eq. (4.19) with the accurate counterparts in Eqs. (4.25) and (4.27) (Sun et al. 2017a). 

 

 

 

h τ ,µ,µ0 , ′µ( ) =
1

4 µ0 − ′µ( )
µ0

µ0 − µ
e
− τ
µ0 − e

−τ
µ

⎛

⎝
⎜

⎞

⎠
⎟ −

′µ
′µ − µ

e
− τ

′µ − e
−τ
µ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, µ,µ0 and ′µ aredifferent

1
4 µ0 − ′µ( )

τ
µ0
e
− τ
µ0 − ′µ

′µ − µ0
e
− τ

′µ − e
− τ
µ0

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, µ = µ0 ≠ ′µ

1
4 µ0 − µ( )

µ0
µ0 − µ

e
− τ
µ0 − e

−τ
µ

⎛

⎝
⎜

⎞

⎠
⎟ −

τ
µ
e
−τ
µ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, µ0 ≠ µ = ′µ

1
4 µ0 − µ( )

τ
µ0
e
− τ
µ0 − µ

µ0 − µ
e
− τ
µ0 − e

−τ
µ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, µ ≠ µ0 = ′µ

τ 2

8µ0
2 e

− τ
µ0 , µ = µ0 = ′µ

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪



 

54 

 

4.3 Diffuse Component Solution 

In the diffuse RTE, Eq. (4.15), the forward phase matrix can be approximated as a Delta 

function matrix, 

 , (4.29) 

where 1 is a 4´4 identity matrix. The validity of Eq. (4.29) can be seen in Fig. 14. The 

forward scattering matrix is nonzero only when the scattering angle is less than 5°. In this 

scattering angle range, the off-diagonal scattering matrix elements are close to zero while 

the diagonal scattering matrix elements are almost the same as a1. 

Eq. (4.19) can be approximated as (Sun et al. 2017a) 

 , (4.30) 

where ts is 

 . (4.31) 

In the diffuse RTE, Eq. (4.15), applying Eq. (4.30), the forward Stokes vector can be 

approximated as, 

 , (4.32) 

which is equal to the incident solar radiation after attenuation with optical thickness ts. 

Substituting Eqs. (4.29) and (4.32) into Eq. (4.15), we obtain 

P f ≈ 4πδ µ − µ0( )δ ϕ −ϕ0( )1

I f ≈ F0e
−
τ s
µ0δ µ − µ0( )δ ϕ −ϕ0( )

τ s = 1− f1ϖ( )τ

I f ≈ F0e
−
τ s
µ0δ µ − µ0( )δ ϕ −ϕ0( ) 1 0 0 0( )T
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  (4.33) 

where vs is 

 . (4.34) 

From Eqs. (4.31), (4.33) and (4.34), the diffuse RTE is equivalent to a scaled RTE 

based on the similarity relation (Liou 2002). The scaled diffuse RTE, Eq. (4.33) is now 

decoupled from the forward RTE, Eq. (4.16). Eq. (4.33) is then solved by the AD method 

as follows. 

In the formulism of the AD method, all quantities relate to the diffused RTE. The 

superscript “d”, and subscript “s” for ts and vs are omitted. The Stokes vectors at the top 

( ) and the bottom ( ) of all scattering layers can be computed by 

 , (4.35) 

and 

 , (4.36) 

where Iinc is the incident Stokes vector. 

u
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For incident solar radiation, Iinc is equal to Eq. (2.3). R and T are reflection and 

transmission matrices of the scattering medium respectively. Except for R and T, upward 

and downward matrices U and D are also used in the adding-doubling formulism. R, T, U 

and D describe incident radiation from above. If incident radiation is from the bottom, we 

use an asterisk to denote the equivalent quantities (R*, T*, U* and D*). R, T, U, D, R*, T*, 

U* and D* are multiple scattering matrices, which are computed by the adding-doubling 

process. Once the multiple scattering matrices are computed, the solution to the RTE can 

be easily obtained from Eqs. (4.35) and (4.36). 

For accurate numerical implementation, the multiple scattering matrices and 

Stokes vector are expanded in Fourier series in terms of j-j¢. For illustration, R can be 

written as 

 , (4.37) 

where  is the Kronecker delta. The diagonal matrices F1 and F2 are defined as 

 , (4.38a) 

 . (4.38b) 

The Fourier component in Eq. (4.37) can be computed by 

 . (4.39) 

The adding-doubling calculation is implemented in each independent Fourier 

expansion term. Although in Eq. (4.37) the Fourier series is infinite, only the first few 
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terms are needed in the calculation to satisfy the specified accuracy requirement. In later 

descriptions, the multiple scattering matrix notations all imply Fourier components unless 

specified otherwise. The Fourier order index is omitted in their subscript for brevity. 

The following equations are used to compute reflection and transmission matrices 

of a layer combined with two sublayers, 

 , (4.40a) 

 , (4.40b) 

 
, (4.40c) 

 , (4.40d) 

 , (4.40e) 

 , (4.40f) 

 , (4.40g) 

in which superscripts “u” and “l” denote upper and lower sublayers respectively. Q 

accounts for repeated reflections at the interface of the two sublayers. E is the exponential 

decay matrix that accounts for direct transmission. D and U represent downward and 

upward radiations at the interface of the two layers respectively. 

Matrix multiplications and matrix-vector multiplications in Eq. (4.40) and the rest 

of this dissertation are discretized definite integrals as follows: 

 , (4.41a) 

for two matrices A and K, and 

Q1 = R
*uR l

Qp+1 =Q1Qp

Q = Qp
p=1

∞

∑

D = Tu +QE(τ u )+QTu

U = R lE(τ u )+R lD

R = Ru +E(τ u )U +T*uU

T = E(τ l )D+TlE(τ u )+TlD

AK = 2 ′µ d ′µ A µ, ′µ( )K ′µ ,µ0( )
0

1

∫



 

58 

 

 , (4.41b) 

for matrix K and vector X. 

Eq. (4.40) is the adding computation. If the two sublayers have the same optical 

thickness and scattering properties, the multiple scattering matrices in the two sublayers 

are the same. In this case, Eq. (4.40) can be used as the doubling computation. 

 

4.4 Validation 

After we obtain the diffuse solution by the AD method and the forward solution by the 

SAA method, we obtain the solution to the vector RTE by Eq. (4.14). To validate the two-

component method, we first compare its computation results with a published dataset by 

Kokhanovsky et al. (2010). They use several numerically accurate vector RTE solvers to 

compute the reflected and transmitted Stokes vectors by a liquid cloud and an aerosol layer 

at wavelength 0.412 µm. The cloud and aerosol single-scattering properties are computed 

by Lorenz-Mie theory. Two size distributions are used to obtain the size-averaged 

scattering matrices of the cloud and aerosol models. 

Figs. 16-19 show the SAA+AD multiple scattering computations compared with 

the published results in Kokanovsky et al. (2010). In the computation, the diffuse 

scattering matrices are expanded by GSF up to 32 orders. Figs. 16 and 17 show the Stokes 

vector elements of the reflected and transmitted radiation in the case of an aerosol layer. 

The aerosol layer has optical thickness 0.3262 and is assumed as nonabsorptive. Figs. 18 

and 19 show the Stokes vector elements of the reflected and transmitted radiation in a 

liquid cloud layer. The liquid cloud layer has optical thickness t=5. 

KX = 2 ′µ d ′µ K µ, ′µ( )X ′µ( )
0

1

∫
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Figure 16 Stokes vector elements of the reflected radiation and the differences in the case of an 
aerosol layer. The Stokes vector elements are computed by the SAA+AD method and compared 
with the published results in Kokhanovsky et al. (2010). The solar zenith angle is 60° and the 
azimuth angles are 0, 90°, and 180°. The aerosol optical thickness is 0.3262. DI/I is relative 
difference in percentage, and DQ, DU and DV are absolute differences. The Stokes vector 
elements are normalized by the incident radiance so they are dimensionless. 
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Figure 17 Stokes vector elements of the transmitted radiation and the differences in the case of 
an aerosol layer. The Stokes vector elements are computed by SAA+AD method and compared 
with the published results in Kokhanovsky et al. (2010). The solar zenith angle is 60° and the 
azimuth angles are 0, 90°, and 180°. The aerosol optical thickness is 0.3262. DI/I is the relative 
difference in percentage, and DQ, DU and DV are absolute differences. The Stokes vector 
elements are normalized by the incident radiance so they are dimensionless. 
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Figure 18 Stokes vector elements of the reflected radiation and the differences in the case of a 
cloud layer. The Stokes vector elements are computed by the SAA+AD method and compared 
with the published results in Kokhanovsky et al. (2010). The solar zenith angle is 60° and the 
azimuth angles are 0, 90°, and 180°. The aerosol optical thickness is 5. DI/I is the relative 
difference in percentage, and DQ, DU and DV are absolute differences. The Stokes vector 
elements are normalized by the incident radiance so they are dimensionless. 
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Figure 19 Stokes vector elements of the transmitted radiation and the differences in the case of a 
cloud layer. The Stokes vector elements are computed by the SAA+AD method and compared 
with the published results in Kokhanovsky et al. (2010). The solar zenith angle is 60° and the 
azimuth angles are 0, 90°, and 180°. The aerosol optical thickness is 5. DI/I is the relative 
difference in percentage, and DQ, DU and DV are absolute differences. The Stokes vector 
elements are normalized by the incident radiance so they are dimensionless. 
 

For reflected radiation calculation in Figs. 16 and 18, the SAA+AD method is 

accurate in most directions. At the backscattering direction, which has viewing zenith 

angle 60° and relative azimuth angle 180°, the error is larger due to enhanced 

backscattering by aerosol and cloud. As viewing zenith angles approach to 90°, the results 

become worse since the cosine of the zenith angle becomes very small. Large numerical 

errors are introduced by the very small value in the denominator. 
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For transmitted radiation calculations in Figs. 17 and 19, the SAA+AD method is 

also accurate in most directions. In the forward scattering direction, which has viewing 

zenith angle 120° and azimuth angle 0, the SAA+AD is accurate for the aerosol layer since 

its optical thickness is small. The first and second scattering dominates the signal in the 

forward direction. The percentage error of the I component is smaller than 1% in the 

forward scattering direction. For a cloud layer, the error in the forward scattering direction 

is larger but still smaller than 10% due to larger optical thickness so there is more high-

order (more than 2) scattering contribution in the forward direction signal. 

The forward solution contains all orders of scatterings. In the calculations, the first 

and second order scatterings are replaced by the accurate solutions as mentioned above. 

The remaining high order scatterings are less accurate because of SAA. Thus, when the 

first or second order scatterings dominate the signal, the solution can be accurate. In 

contrast, when the high order scatterings dominate the signal, the error in the solution is 

large. Although SAA performs worse with a large optical thickness, there is little effect 

on a remote sensing application. The transmitted radiation is only utilized in remote 

sensing when the atmosphere has small optical thickness where the sky is clear or only a 

thin aerosol layer exists. 

Next, we validate the two-component vector RTE solver in the case of multiple 

scattering layers. The model atmosphere has three layers. From the top to bottom, there 

are an ice cloud layer, an aerosol layer and a liquid cloud layer. The optical thicknesses 

are 2, 0.3 and 3 respectively. The effective radii are 5, 1.0 and 10 µm respectively. The 

surface in the calculation is assumed to be completely absorptive so there is no interaction 
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between the atmosphere and the surface. The wavelength is 0.865 µm. The ice cloud 

model is the MODIS Collection 6 model (Platnick et al. 2017), which has the particle 

shape of roughened 8-hexagonal column aggregate defined by Yang et al. (2013). The 

aerosol layer is assumed to be a dust layer. The dust particle shape is a hexahedron 

ensemble defined in Yang et al. (2019). The refractive index of dust aerosol is from a 

compiled dataset by Stegmann and Yang (2017). The dust single-scattering properties are 

computed by a synergistic combination of the invariant imbedding T-matrix (IITM) (Bi 

and Yang 2014) and physical-geometric optics method (PGOM) (Sun et al. 2017b). 

As a benchmark, the rigorous AD method is used to compute the Stokes vector in 

reflection and transmission directions. In the calculation, the scattering matrices of the 

scattering layers are expanded in terms of GSF up to 2000 terms, which is accurate enough 

to represent the scattering matrices. We also do the computation with the DMM 

(Wiscombe 1977) and the TMS single-scattering correction (Nakajima and Tanaka 1988), 

for comparison with the two-component approach. Figs. 17 and 18 show results by the 

rigorous AD, and the approximate SAA+AD method and DMM + AD with the TMS 

single-scattering correction (DMM&TMS+AD). 
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Figure 20 Stokes vectors of reflected radiation computed by the rigorous AD, and the 
approximate SAA+AD and DMM&TMS+AD methods for a three-layer atmosphere (from top to 
bottom: ice cloud, aerosol, and liquid cloud with optical thickness at 0.865 µm wavelength 2, 
0.3, and 3 respectively; and effective radii 5.0, 1.0, and 10 µm respectively). The solar zenith 
angle is 60°. The relative azimuth angle is 90°. DI/I is the relative difference in percentage, and 
DQ, DU, and DV are absolute differences. The Stokes vector elements are normalized by the 
incident radiance so they are dimensionless. 
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Figure 21 Stokes vectors of transmitted radiation computed by the rigorous AD, and approximate 
SAA+AD and DMM&TMS+AD methods for a three-layer atmosphere (from top to bottom: ice 
cloud, aerosol, and liquid cloud with optical thickness at 0.865 µm wavelength 2, 0.3, and 3 
respectively; and effective radii 5.0, 1.0, and 10 µm respectively). The solar zenith angle is 60°. 
The relative azimuth angle is 0. DI/I is the relative difference in percentage, and DQ is the 
absolute difference. The Stokes vector elements are normalized by the incident radiance so they 
are dimensionless. 
 

In reflection directions as shown in Fig. 20, the SAA+AD and DMM&TMS+AD 

methods are accurate in most directions compared with the rigorous AD. In transmission 

directions as shown in Fig. 21, the SAA+AD is much more accurate than 

DMM&TMS+AD in the forward transmitted direction (i.e. viewing zenith angle 120°). 

Note that, the total optical thickness of the model atmosphere is 5.3. The percentage error 

in the forward direction is less than 10%, which is similar to the single-layer cloud case. 
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This may suggest that the SAA+AD method works for the multi-layer case as well as for 

the single-layer case. In the calculation, the diffuse scattering matrices in SAA+AD 

method are expanded using 32 GSF terms. For DMM&TMS+AD, the scattering matrices 

are truncated at the 32nd expansion term. The SAA+AD is more than 3 orders of 

magnitude faster than the rigorous AD method, and slightly faster than the 

DMM&TMS+AD method. 
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CHAPTER V  

THERMAL EMISSION IN ADDING-DOUBLING 

 

5.1 From Adding to Doubling 

As in Eq. (2.2), Eq. (4.33) can also be written as two decoupled vector RTEs with solar 

and thermal sources respectively. The thermal emission is isotropic in a plane-parallel 

atmosphere, so we only need to consider the azimuth-independent solution, which 

corresponds to the zero order Fourier expansion term. The azimuth-independent vector 

RTE is written as 

 , (5.1) 

where  is the zero order Fourier component of the phase matrix, and is computed 

by 

 . (5.2) 

As shown in the Planck function term in Eq. (5.1), the thermal emission source is 

dependent on the temperature. In a planetary atmosphere, although the layer scattering 

property may be homogeneous, the temperature is hardly constant in the vertical direction. 

A direct idea for solving the vector RTE with thermal emission is to use the adding 

process. The adding equations of the thermal emission vector are as follows, 

 , (5.3a) 

 , (5.3b) 

u
∂I τ ,u( )

∂τ
= I τ ,u( )−ϖ (τ )

2
d ′u

−1

1

∫ P τ ,u, ′u( )I τ , ′u( )− 1−ϖ (τ )⎡⎣ ⎤⎦B T (τ )⎡⎣ ⎤⎦

P τ ,u, ′u( )

P τ ,u, ′u( ) = 1
2π

P τ ,u, ′u ,ϕ − ′ϕ( )d ′ϕ
0

2π

∫

SD = SuT +QSuT +QRuSlR +RuSlR

SU = Sl R +R lSD
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 , (5.3c) 

 , (5.3d) 

where S is the thermal emission vector. The superscripts “R” and “T” represent upward 

and downward emission at the upper and lower boundaries of a layer respectively. The 

superscripts “U” and “D” represent upward and downward emission at the interface of 

two layers. Due to the symmetry of the multiple scattering matrix in the zero order Fourier 

component, R*=R and T*=T are considered in the formulation. Eq. (5.3) computes the 

total thermal emission by the two layers when the thermal emission vectors of the upper 

and lower layers are known. 

If the two scattering layers have identical scattering properties, Eq. (5.3) can be 

simplified as 

 , (5.4a) 

 , (5.4b) 

 , (5.4c) 

 . (5.4d) 

Even though, as shown in Eq. (5.4), the multiple scattering matrices are identical 

in the two layers, the thermal emission vectors are still different in the two layers due to 

different temperatures. Thus, we cannot implement the doubling calculation, which is 

more computationally efficient than the adding calculation. However, if we make some 

assumptions, the inhomogeneous thermal source can be decomposed into the sum of 

homogenous components. 

SR = SuR +E(τ u )SU +TuSU

ST = SlT +E(τ l )SD +TlSD

SD = SuT +QSuT +QRuSlR +RuSlR

SU = SlR +R lSD

SR = SuR +ESU +TlSU = SuR + (E+Tu )(1+Q)(SlR +RuSuT )

ST = SlT +ESD +TuSD = SlT + (E+Tu )(1+Q)(SuT +RuSlR )
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For convenience in the followed discussion, we define the two matrices, 

 , (5.5a) 

 , (5.5b) 

so Eqs. (5.4c-d) can be expressed as 

 , (5.6a) 

 . (5.6b) 

We introduce the following notation: 

 
, (5.7a) 

 
, (5.7b) 

in which tn, qn, and Rn are the matrices at optical thickness 2nDt, and Dt is the optical 

thickness where the single-scattering approximation and homogeneous source 

approximation are applied. In other words, Dt is small enough so the multiple scattering 

matrices in the thin layer with optical thickness Dt can be computed by the first order 

scattering, and the variation of temperature in the thin layer is ignored. The subscript 

“0,2n” indicates that the quantity is for the layer with the upper boundary at optical 

thickness 0 and lower boundary at optical thickness 2nDt. The subscript “2n,2n+1” indicates 

that the quantity is for the layer with the upper boundary at optical thickness 2nDt and 

lower boundary at optical thickness 2n+1Dt. 

We first discuss the general case where the source can be written as the product of 

two decoupled parts. One is only dependent on the optical thickness, and the other is only 

t ≡ E+Tu

q ≡ 1+Q

SR = ʹS R + tq( ʹ́S R + ʹR ʹS T )

ST = ʹ́S T + tq( ʹS T + ʹR ʹ́S R )

SR
0,2n+1

= SR
0,2n

+ tnqn (S2n ,2n+1
R +RnS0,2n

T )

S
0,2n+1
T = S

2n ,2n+1
T + tnqn (S0,2n

T +RnS2n ,2n+1
R )
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dependent on the zenith angle (Wiscombe 1976). Assuming the source vector (e.g. the 

thermal source and solar source in Eq. (4.33)) can be written as 

 , (5.8) 

where P is the source vector, matrix  only depends on the zenith angle, and vector 

 only depends on optical thickness. The thermal emission vector of a thin layer with 

optical thickness Dt can be expressed as 

 
, (5.9) 

in which the subscript “i,i+1” indicates that the quantity is for a layer with the upper 

boundary at optical thickness 2iDt and lower boundary at optical thickness 2i+1Dt. The 

vector si is defined as the average of  in a thin layer with optical thickness Dt, 

 
. (5.10) 

The matrix  can be expressed as 

 , (5.11) 

where  and  are constants to be determined, “+µ” and “R” indicate the upward 

direction, and “-µ” and “T” indicate the downward direction. Substituting Eqs. (5.9) into 

Eq. (5.7), we get, 

 
, (5.12a) 

 
. (5.12b) 

Then, we define 

Π = N(µ)s(τ )

N(µ)

s(τ )

Si ,i+1
R,T =Ξin

R,Tsi

s(τ )

si =
1
Δτ

s(τ )
iΔτ

(i+1)Δτ
∫ dτ

Ξin
R,T

Ξin
R,T = A+N(±µ)+ A−N(∓µ)

A+ A−

SRi ,i+2 = S
R
i ,i+1 + t0q0 (Si+1,i+2

R +R0Si ,i+1
T ) = Ξin

R + t0q0R0Ξin
T( )si + t0q0ΞinRsi+1

Si ,i+2
T = Si+1,i+2

T + t0q0 (Si ,i+1
T +R0Si+1,i+2

R ) = t0q0Ξin
T si + Ξin

T + t0q0R0Ξin
R( )si+1
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, , (5.13a) 

 
, . (5.13b) 

Thus, Eq. (5.12) can be written as 

 
, (5.14a) 

 
. (5.14b) 

Note that Eq. (5.14) is still an adding process. Carrying out the adding process one step 

further, we get 

 
, (5.15a) 

 
. (5.15b) 

By observing Eqs. (5.14) and (5.15), we obtain two general equations inductively, 

 
, (5.16a) 

 
. (5.16b) 

The VR,T matrices at iteration n are determined by V at n-1. Assigning i in Eq. (5.16) to be 

0 and 2n, we obtain 

 
, , (5.17a)

 

 
, , (5.17b) 

V1,1
R =Ξin

R + t0q0R0Ξin
T V2,1

R = t0q0Ξin
R

V1,1
T = t0q0Ξin

T V2,1
T =Ξin

T + t0q0R0Ξin
R

SRi ,i+2 =V1,1
Rsi +V2,1

R si+1

Si ,i+2
T =V1,1

T si +V2,1
T si+1

SRi ,i+4 =V1,2
R si +V2,2

R si+1 +V3,2
R si+2 +V4,2

R si+3

Si ,i+4
T =V1,2

T si +V2,2
T si+1 +V3,2

T si+2 +V4,2
T si+3

S
i ,i+2n
R = Vk ,n

R si+k−1
k=1

2n

∑

S
i ,i+2n
T = Vk ,n

T si+k−1
k=1

2n

∑

S
0,2n
R = Vk ,n

R sk−1
k=1

2n

∑ S
2n ,2n+1
R = Vk ,n

R s
2n+k−1

k=1

2n

∑

S
0,2n
T = Vk ,n

T sk−1
k=1

2n

∑ S
2n ,2n+1
T = Vk ,n

T s
2n+k−1

k=1

2n

∑
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which suggests that  and  have common terms . This provides the clue to 

convert Eq. (5.7) into a doubling process. 

We have to know the temperatures at all height in the layer to compute thermal 

emission accurately, which, however, is usually unknown in the real atmosphere. Instead, 

we assume that layer top and bottom temperatures are known. Assuming that in a 

scattering layer, the Planck function is linear with optical thickness, we have 

 , (5.18a) 

 , (5.18b) 

 
, (5.18c) 

where b is the total optical thickness of a homogeneous layer. B0 and B¢ are defined as 

 , (5.19a) 

 , (5.19b) 

 . (5.19c) 

Substituting Eq. (5.18c) into Eq. (5.10), we obtain 

 
. (5.20) 

For i=k-1 and 2n+k-1 in Eq. (5.20), we have 

 
, (5.21a) 

S
0,2n
R,T S

2n ,2n+1
R,T Vk ,n

R,T

Π = N(µ)s(τ )

N(µ) = (1−ϖ )1

s(τ ) = B0 + ′B τ( ) 1 0 0 0( )T ,0 ≤ τ ≤ b

B0 = B T (0)⎡⎣ ⎤⎦

BN = B T (b)⎡⎣ ⎤⎦

′B =
BN − B0
b

si =
1
Δτ

B0 + ′B τ( )
iΔτ

( i+1)Δτ

∫ dτ 1 0 0 0( )T

= B0 +
1
2

′B (2i +1)Δτ⎡

⎣
⎢

⎤

⎦
⎥ 1 0 0 0( )T

sk−1 = B0 +
1
2

′B 2(k −1)+1⎡⎣ ⎤⎦Δτ
⎧
⎨
⎩

⎫
⎬
⎭
1 0 0 0( )T



 

74 

 

 
. (5.21b) 

Substituting Eq. (5.21) into Eq. (5.17), we obtain 

 
. (5.22) 

The relation between  and  is explicitly established by Eq. (5.22). We define 

the summation on the right-hand side of Eq. (5.22) as 

 
. (5.23) 

By comparing with Eq. (5.17), it can be seen that  is the source vector that is 

homogeneous in optical thickness, because its s vector is , which is 

independent of the optical thickness. 

Now we can use the doubling rule to compute the Y vector as follows: 

 , (5.24a) 

 . (5.24b) 

According to Eqs. (5.8)-(5.11) and Eq. (5.18), the Y vector in a thin layer with optical 

thickness Dt is 

 , (5.25) 

s
2n+k−1

= B0 +
1
2

′B 2(k −1)+1⎡⎣ ⎤⎦Δτ + 2
n ′B Δτ

⎧
⎨
⎩

⎫
⎬
⎭
1 0 0 0( )T

S
2n ,2n+1
R,T = Vk ,n

R,Ts
2n+k−1

k=1

2n

∑ = S
0,2n
R,T + 2n ′B Δτ Vk ,n

R,T

k=1

2n

∑ 1 0 0 0( )T

S
0,2n
R,T S

2n ,2n+1
R,T

Yn
R,T = Vk ,n

R,T

k=1

2n

∑ 1 0 0 0( )
T

Yn
R,T

1 0 0 0( )
T

YR
n+1 =Y

R
n + tnqn (Yn

R +RnYn
T )

Yn+1
T =Yn

T + tnqn (Yn
T +RnYn

R )

Y0
R,T = (1−ϖ )(A+ + A− ) 1 0 0 0( )T
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which implies that Y vectors are identical in the upward and downward directions at the 

iteration order n=0. It can be deduced from Eq. (5.24) that upward and downward Y 

vectors are identical at all iteration orders. Thus Eq. (5.24) can be simplified to 

 
, (5.26) 

which is the doubling rule of the Y vector. 

Substituting Eq. (5.22) into Eq. (5.7), we obtain 

 
, (5.27a) 

 
. (5.27b) 

Adding Eqs. (5.27a) and (5,27b), we get 

 
. (5.28) 

Subtracting Eq. (5.27a) from Eq. (5.27b), we get 

 
. (5.29) 

Then, we define 

 
, (5.30) 

 
, (5.31) 

 , (5.32) 

So Eqs. (5.28) and (5.29) can be written as 

 
, (5.33) 

Yn+1 =Yn + tnqn (Yn +RnYn ) = 1+ tnqn (1+Rn )⎡⎣ ⎤⎦Yn

SR
0,2n+1

= SR
0,2n

+ tnqn (S0,2n
R +RnS0,2n

T + 2n ʹB ΔτYn )

ST
0,2n+1

= ST
0,2n

+ 2n ʹB ΔτYn + tnqn (S0,2n
T +RnS0,2n

R + 2n ʹB ΔτRnYn )

ST
0,2n+1

+SR
0,2n+1

= 1+ tnqn 1+Rn( )⎡
⎣

⎤
⎦ S

T
0,2n

+SR
0,2n

+ 2n ʹB ΔτYn( )

ST
0,2n+1

− SR
0,2n+1

= ST
0,2n

− SR
0,2n

+2n ′B ΔτYn + tnqn 1−Rn( ) ST 0,2n − SR0,2n − 2n ′B ΔτYn( )

Wn = S
T
0,2n

+SR
0,2n( ) 2

Zn = S
T
0,2n

−SR
0,2n( ) 2 ʹB

gn = 2
n−1Δτ

Wn+1 = 1+ tnqn 1+Rn( )⎡
⎣

⎤
⎦ Wn + ʹB gnYn( )
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. (5.34) 

Assume that Wn is related to the Y vector by 

 . (5.35) 

When n is 0, it is easy to see from Eq. (5.21a) and Eqs. (5.30)-(5.32), 

 
. (5.36) 

Substituting Eq. (5.35) into Eq. (5.33), we obtain, 

 
, (5.37) 

so the expression of an is 

 . (5.38) 

Now, we can directly obtain the S vector from the Y and Z vectors, 

 
, (5.39a) 

 
. (5.39b) 

The Y and Z vectors are computed by the doubling rules in Eq. (5.26) and Eq. (5.34). 

Then, the two thermal emission vectors ST and SR are directly obtained in Eq. (5.39). 

From the definition of the Z vector, Eq. (5.31), we know that Z0 is zero, since  

and are the same for the initial layer with optical thickness Dt. The initial Y vector 

(Y0) can be computed by a single-scattering approximation. 

Zn+1 = Zn + gnYn + tnqn 1−Rn( ) Zn − gnYn( )

Wn =αnYn

α0 = B0 +
1
2

ʹB Δτ

Wn+1 = 1+ tnqn 1+Rn( )⎡
⎣

⎤
⎦Yn αn + ʹB gn( ) = αn + ʹB gn( )Yn+1

αn = B0 + ʹB gn

S
0,2n
T =Wn + ʹBZn = B0 + ʹB gn( )Yn + ʹBZn =

1
2
B0 + Bn( )Yn + ʹBZn

S
0,2n
R =Wn − ʹBZn = B0 + ʹB gn( )Yn − ʹBZn =

1
2
B0 + Bn( )Yn − ʹBZn

ST 0,1

SR0,1
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From Eq. (5.18b), the source for the Y vector is isotropic. The non-scattering 

contribution to Y0 is 

  (5.40a) 

  (5.40b) 

Using the SOS method (Hovenier et al. 2004), the single-scattering source J1 is written as 

  (5.41) 

The single-scattering term is computed from the single-scattering source, Eq. (5.41), 

  (5.42) 

With some manipulation, Eq. (5.42) can be written as 

I0
T τ ,−µ( ) = 1−ϖ( ) 1 0 0 0( )T d ′τ

µ0

τ

∫ exp −(τ − ′τ ) / µ⎡⎣ ⎤⎦

= 1−ϖ( ) 1− e−τ /µ( ) 1 0 0 0( )T ,

I0
R τ ,µ( ) = 1−ϖ( ) 1 0 0 0( )T d ′τ

µτ

Δτ

∫ exp −( ′τ −τ ) / µ⎡⎣ ⎤⎦

= 1−ϖ( ) 1− e−(Δτ−τ )/µ( ) 1 0 0 0( )T .

J1 =
ϖ
4π

d ′µ
0

1

∫ d ′φ P(µ, ′µ ,φ − ′φ )I0
T + P(µ,− ′µ ,φ − ′φ )I0

R⎡⎣ ⎤⎦0

2π

∫
= ϖ (1−ϖ )

2
1 0 0 0( )T

⋅ d ′µ P(µ, ′µ ) 1− e−τ / ′µ( )+ d ′µ P(µ,− ′µ ) 1− e−(b−τ )/ ′µ( )
0

1

∫0

1

∫⎡⎣⎢
⎤
⎦⎥
.

I1 =
d ′τ
µ
J1 exp − τ − ′τ

µ
⎡

⎣
⎢

⎤

⎦
⎥0

Δτ

∫

= ϖ (1−ϖ )
2

1 0 0 0( )T

⋅ P µ, ′µ( )
0

1

∫ 1− e
−Δτ
µ + ′µ

µ − ′µ
e
−Δτ

′µ − e
−Δτ
µ

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
d ′µ

⎧
⎨
⎪

⎩⎪

+ P µ,− ′µ( )
0

1

∫ 1− e
−Δτ
µ − ′µ

µ + ′µ
1− e

−Δτ ( 1
µ
+ 1

′µ
)⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
d ′µ

⎫
⎬
⎪

⎭⎪
,
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  (5.43) 

in which R1 and T1 are the first order reflection transmission matrices defined as 

 , (5.44a) 

 . (5.44b) 

The initial Y vector is equal to Eq. (5.43). 

 

5.2 Adding with Surface Emission 

In a radiative transfer calculation involving thermal emission, emission from the surface 

is usually non-negligible. Here we consider the interaction of thermal emissions between 

the atmosphere and surface. 

The general multiple scattering matrices of the atmosphere-surface system are 

 , (5.45a) 

 , (5.45b) 

 
, (5.45c) 

 , (5.45d) 

 , (5.45e) 

I1 = 1 0 0 0( )T ϖ (1−ϖ ) 1− e
−Δτ
µ

⎛

⎝
⎜

⎞

⎠
⎟ P µ,− ′µ( )+ P µ, ′µ( )⎡⎣ ⎤⎦0

1

∫ d ′µ
⎧
⎨
⎪

⎩⎪

−2(1−ϖ ) ′µ
0

1

∫ T1 µ, ′µ( )+R1 µ, ′µ( )⎡⎣ ⎤⎦d ′µ },

R1 µ, ′µ( ) = ϖ
4 ′µ + µ( ) 1− e

−Δτ 1
′µ
+ 1
µ

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
P −µ, ′µ( )

T1 µ, ′µ( ) = ϖ
4 ′µ − µ( ) e

−Δτ
′µ − e

−Δτ
µ

⎛

⎝
⎜

⎞

⎠
⎟ P µ, ′µ( )

Q1 =Ra
*R s

Qp+1 =Q1Qp

Q = Q p
p=1

∞

∑

D =QTa +QE+Ta

U =R sD+R sE



 

79 

 

 , (5.45f) 

where subscript “s” denotes the quantities for the surface, and subscript “a” denotes the 

quantities for the atmosphere. For example,  is the transmission matrix of the 

atmosphere, and  is the reflection matrix of the surface. For a Lambertian surface with 

albedo r,  is expressed as, 

 . (5.46) 

Based on the multiple scattering matrices, Eq. (5.45), the thermal emission vectors 

are derived as follows: 

 
, (5.47a) 

 , (5.47b) 

 , (5.47c) 

where  and  are the upward and downward thermal emissions at the surface-

atmosphere interface,  is the thermal emission by the surface-atmosphere system, and 

 is the thermal emission vector by the surface. If the surface emits radiation 

isotropically,  is expressed as, 

R =Ra +Ta
*U+EU

Ta

R s

R s

R s µ,µ0 ,ϕ −ϕ0( ) =
r 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

SD = 1+Q( ) SaT +Ra
*Ss( )

SU = Ss +R sS
D

SR = Sa
R + E+Ta

*( )SU

SU SD

SR

Ss

Ss
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 , (5.48) 

where  is the surface temperature, and  is the surface emissivity. 

 

5.3 Adding with a Non-scattering Layer 

In a practical application, the thermal emission calculation usually involves only gas 

absorption in one of the two layers. In this case, there is no repeated reflection between 

the two layers, and thus the adding calculation can be simplified. 

In a calculation of adding thermal emissions from two layers, the upper layer only 

has gas absorption, and the lower layer has multiple scattering. Thermal emission by the 

atmospheric gas layer has been computed by Eq. (3.1). The thermal emission by the lower 

scattering layer has been computed by the doubling approach. We need to know the total 

thermal emission by the two layers. The adding equations are as follows: 

 , (5.49a) 

 , (5.49b) 

 , (5.49c) 

 . (5.49d) 

If the upper layer has multiple scattering, and the lower layer only has gas 

absorption, the adding equations are as follow: 

 , (5.50a) 

Ss µ( ) =
εsB Ts( )
0
0
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Ts εs

SD = SuT

SU = SlR +R lSD

SR = SuR +E(τ u )SU = SuR +E(τ u ) SlR +R lSuT( )

ST = SlT +E(τ l )SD +TlSD = SlT + E(τ l )+Tl( )SuT

SD = SuT +RuSlR
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 , (5.50b) 

 , (5.50c) 

 . (5.50d) 

 

5.4 Validation 

We use the Discrete Ordinate Radiative Transfer (DISORT) model developed by Stamnes 

et al. (1988) to validate the adding-doubling thermal emission calculation approach. In the 

validation, the model atmosphere has an ice cloud layer above a Lambertian surface with 

albedo 0.3. The surface temperature is set to 288 K. The cloud top and bottom 

temperatures are 255 K and 260 K respectively. The ice cloud has effective radius 30 µm. 

The MODIS Collection 6 model is used as the ice cloud model. The wavelength is 3.8 µm 

in the simulation. Figs. 22 and 23 show the upward TOA thermal emission and downward 

thermal emission at the surface simulated by the adding-doubling approach and DISORT. 

The radiance is converted to brightness temperature in Figs. 22 and 23. 

 

SU = SlR

SR = SuR +E(τ u )SU +TuSU = SuR + E(τ u )+Tu( )SlR

ST = SlT +E(τ l )SD = SlT +E(τ l ) SuT +RuSlR( )
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Figure 22 TOA thermal emission at 3.8 µm simulated by adding-doubling and DISORT. The 
model atmosphere has an ice cloud layer with varied cloud optical thicknesses (COT=1.0, 3.0, or 
10.0) and effective radius 30 µm. Cloud top and bottom temperatures are 255 K and 260 K 
respectively. A Lambertian surface with temperature 288 K and emissivity 0.3 is assumed in the 
simulation. Solid lines: adding-doubling; Dots: DISORT. 
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Figure 23 Surface downward thermal emission at 3.8 µm simulated by adding-doubling and 
DISORT. The model atmosphere has an ice cloud layer with varied cloud optical thicknesses 
(COT=1.0, 3.0, or 10.0) and effective radius 30 µm. Cloud top and bottom temperatures are 255 
K and 260 K respectively. A Lambert surface with temperature 288 K and emissivity 0.3 is 
assumed in the simulation. Solid lines: adding-doubling; Dots: DISORT. 
 

Three different cloud optical thicknesses (COTs) are assumed in the simulation. 

The adding-doubling and DISORT results are consistent in all cases to at least four 

decimal places. As shown in Fig. 22, for larger COT, the TOA emission is smaller, which 

suggests a cloud radiative cooling effect at the TOA. In contrast, as shown in Fig. 23, a 

larger COT makes the downward surface emission increase, which suggests a cloud 

radiative warming effect at the surface. Because DISORT is a scalar RTM, polarization is 

not considered in the validation, although the adding-doubling approach is able to consider 

polarization of thermal emission. 
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CHAPTER VI  

AIR-SEA INTERFACE AND OCEAN MODEL 

 

6.1 Air-Sea Interface 

Because the atmosphere and ocean have different refractive indices, radiation traveling 

through the air-sea interface will experience refraction and reflection. The optical 

properties of the ocean are determined by the morphology of the ocean surface and the 

properties of the ocean water. We first consider the general case where the optical 

properties of the interface are expressed by a reflection matrix and a transmission matrix 

in the adding-doubling scheme. 

In the adding-doubling scheme, the multiple scattering matrices of an atmosphere-

ocean system are computed as follows: 

 , (6.1a) 

 , (6.1b) 

 
, (6.1c) 

 
, (6.1d) 

 
, (6.1e) 

 
, (6.1f) 

 
, (6.1g) 

Q1 = Ra
* Tint

* RoTint +R int( )
Q p+1 =Q1Q p

Q = Q p
p=1

∞

∑

Dai = Ta +Q E(τ a )+Ta( )

Uai = R int +Tint
* RoTint( ) Dai +E(τ a )( )

Doi = Tint +R int
* RoTint( ) Dai +E(τ a )( )

Uoi = RoTintE(τ a )+RoDoi
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, (6.1h) 

 
, (6.1i) 

where subscripts “a” and “o” denote atmosphere and ocean respectively, and subscript 

“int” denotes the interface.  and  are reflection and transmission matrices of the 

interface when the radiation is incident from air to water (air-incident case).  and  

are reflection and transmission matrices of the interface when the radiation is incident 

from water to air (water-incident case).  and  are upward and downward matrices 

just above the interface at the bottom of the atmosphere.  and  are upward and 

downward matrices just below the interface at the top of the ocean.  is the reflection 

matrix of the atmosphere-ocean system at the TOA.  is the transmission matrix of the 

atmosphere-ocean system at the ocean bottom.  is the optical thickness of the ocean.  

In the formulation Eq. (6.1), the ocean bottom is assumed to be completely 

absorptive so there is no reflection by the ocean bottom. Unlike a scattering layer, there is 

no repeated reflection between the interface and atmosphere or ocean layers. Note that all 

the matrices in Eq. (6.1) are Fourier components of the corresponding matrices. 

6.1.1 Rough Surface Model 

The explicit expressions of the reflection and transmission matrices of the interface 

are given below. Here we assume the ocean surface is a wind-ruffled rough surface. The 

surface model is a collection of tilted facets whose normal directions are randomly 

Rao = Ra + E(τ a )+Ta
*( )Uai

Tao = E(τ o )Doi +To Doi +TintE(τ a )( )

R int Tint

R int
* Tint

*

Uai Dai

Uoi Doi

Rao

Tao

τ o
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oriented. The distribution of the facets’ normal directions follows the Cox-Munk model 

(Cox and Munk 1954). 

If the wind direction is assumed isotropic, the probability density of a facet’s 

orientation is expressed as 

 , (6.2) 

where sx and sy are the slope vector components of the facet.  is the probability 

density function of the slope distribution. dS is the horizontal projection area of the facets 

that have the slope vector (dsx, dsy). S is the horizontal projection area of all facets. 

 is defined as 

 , (6.3) 

in which the variance  is a function of the wind speed at 41 feet above sea level (Cox 

and Munk 1954), 

 , (6.4) 

where W is the wind speed with unit m/s. 

The slope vector components sx and sy are defined as 

 , (6.5a) 

 , (6.5b) 

dS
S

= p(sx ,sy )dsxdsy

p(sx ,sy )

p(sx ,sy )

p(sx ,sy ) =
1

πσ 2 exp −
sx
2 + sy

2

σ 2

⎛

⎝
⎜

⎞

⎠
⎟

σ 2

σ 2 = 0.003+ 0.00512W

sx =
∂z
∂x

= tanθ f cosϕ f

sy =
∂z
∂y

= tanθ f sinϕ f
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where  and  are facet tilting zenith and azimuth angles. The geometry of the tilted 

facet and angles in Eq. (6.5) are shown in Fig. 24. 

 

 
Figure 24 The geometry of a tilted facet of the ocean surface model. x, y and z are relative 
coordinate axes, where the x-y plane is horizontal and z is vertical. qf and jf are facet tilting 
zenith and azimuth angles respectively. n is the normal direction of the tilted facet. 
 

Substituting Eq. (6.3) and Eq. (6.5) into Eq. (6.2), we obtain 

 , (6.6) 

where . Eq. (6.6) is consistent with the description of the Cox-Munk model 

for a rough ocean surface in Lenoble et al. (2007) and Zhai et al. (2010). Note that Eq. 

(6.6) is only a function of tilting zenith angle . The right-most three terms in Eq. (6.6) 

constitute a differential solid angle term  around the facet’s normal 

direction. 

 

θ f ϕ f

 

x 

y 

z 
n 

jf 

qf 

dS
S

= 1
πσ 2µ f

3 exp −
1− µ f

2
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6.1.2 Reflection Matrix 

Fig. 25 illustrates the reflection geometry by the rough sea surface in the air-incident case. 

Since the orientation distribution of the facets is uniform in the azimuthal direction, only 

a 2D plot is shown in Fig. 25. On a real ocean surface, the reflection direction is 

determined by the incidence direction and the local normal direction of the incident 

location. In our ocean surface model, incidence and reflection directions determine the 

local normal direction. 

 

 
Figure 25 An illustration of reflection by the rough sea surface in the air-incident case. n is the 
local normal direction. v¢ and v are direction vectors of incident and reflected radiation, 
respectively. q¢ and q are incident and outgoing zenith angles. qi and qr are local incidence and 
reflection angles. dS is the area of a facet’s horizontal projection. S is the area of all facets’ 
horizontal projection. 
 

The incidence (v¢) and reflection (v) direction vectors are 

 , (6.7a) 

 . (6.7b) 

 

dS 

S 

p-q¢ q 

n 

v¢ 

v 

qr 
qi 

′v = sin ′θ cos ′ϕ , sin ′θ sin ′ϕ , cos ′θ( )
v = sinθ cosϕ , sinθ sinϕ , cosθ( )
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where q¢ and j¢ are incident zenith angle and azimuth angles, and q and j are outgoing 

zenith angle and azimuth angles. 

Based on Snell’s law, the local normal vector n can be expressed by 

 . (6.8) 

The angle between the local normal and incident direction is the local incident angle qi, 

and the angle between the local normal and reflection direction is the local reflection angle 

qr. qi and qr are obtained by 

 , (6.9a) 

 , (6.9b)  

where Q is the scattering angle, , which is consistent with the definition in 

Eq. (4.4). Using Eqs. (6.7) and (6.8),  in Eq. (6.6) can be obtained by 

 . (6.10) 

Using the local incidence, reflection and tilting angles obtained above, we can 

derive the reflection matrix of the rough ocean surface with specified incident and 

outgoing directions in the air-incident case as follows. 

First, let us consider the scalar case where polarization is ignored. If the incident 

flux immediately above the ocean surface is Fo, the incident radiation (with the unit of 

power here) on the facet with area dS is 

n = v − ′v
v − ′v

θ i = arccos −n ⋅ ′v( ) = π −Θ
2

θr = arccos n ⋅v( ) = π −Θ
2

arccos(v ⋅ ′v )

µ f

µ f =
cosθ − cos ′θ
2− 2cosΘ
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 . (6.11) 

The radiation reflected from the facet is 

 , (6.12) 

where  is the power reflection coefficient at incident angle qi.  is the 

shadowing function (Smith 1967; Sancer 1969) that considers the incident and reflected 

radiation to be partially blocked by the rough surface. The shadowing function term in Eq. 

(6.12) computes the reflected radiation  a statistically averaged quantity. If the surface 

normal direction distribution is described by Eq. (6.6),  can be explicitly 

expressed as (Sancer 1969) 

 , (6.13) 

where  is 

 , (6.14) 

in which erfc is the complementary error function. 

If the ocean surface with area S is viewed as a whole, the reflected radiation in the 

v direction is expressed as 

 , (6.15) 

ψ i = Fo cosθ i
dS
µ f
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µ f
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Λ(µ)

Λ(µ) = 1
2

σ 2(1− µ2 )
πµ2

exp − µ2

σ 2(1− µ2 )
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⎣
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′ψ r = µI τ a ,µ,ϕ( )SdΩ
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where  is the radiance along the v direction at the bottom of atmosphere (i.e. 

immediately above the ocean surface).  is the differential solid angle 

around the reflection direction. 

Statistically, Eqs. (6.12) and (6.15) are equal, so we have 

 , (6.16) 

where Eq. (6.6) is used. The two differential solid angle terms in Eq. (6.16) can be 

simplified using the relation between them. The differential terms are unchanged in 

different Cartesian coordinates. In a Cartesian coordinate with v¢, and two directions 

perpendicular to v¢ and each other as axes,  and  are 

 , (6.17a) 

 , (6.17b) 

 , (6.17c) 

 . (6.17d) 

Thus,  and  in Eq. (6.16) can be written as 

 , (6.18a) 

 , (6.18b) 

I τ a ,µ,ϕ( )
dΩ = sinθdθdϕ

I τ a ,µ,ϕ( ) = Fo cosθ i dS
Sµµ f dΩ

!r(θ i )ξ µ, ′µ ,σ( )

= Fo cosθ i
r(θ i )ξ µ, ′µ ,σ( )

πσ 2µµ f
4 exp −

1− µ f
2

σ 2µ f
2

⎛

⎝
⎜
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⎠
⎟
dΩ f

dΩ

(θ f ,ϕ f ) (θ ,ϕ )

θ f = θ i

ϕ f =ϕ i

θ = 2θ i

ϕ =ϕ i

dΩ f dΩ

dΩ f = sin(θ i )det
∂(θ f ,ϕ f )
∂(θ i ,ϕ i )

= sinθ idθ idϕ i

dΩ = sin(2θ i )det
∂(θ ,ϕ )
∂(θ i ,ϕ i )

= 4sinθ i cosθ idθ idϕ i
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where the ‘det’ terms are the determinants of Jacobian matrices. Substituting Eq. (6.18) 

into Eq. (6.16), we obtain 

 . (6.19) 

According to the definition of reflectance, Eq. (1.7), the bidirectional reflectance 

distribution function (BRDF) at the air-sea interface is expressed as 

 . (6.20) 

The reflection matrix is obtained by generalizing Eq. (6.20) to consider polarization: 

 , (6.21) 

in which  is the Fresnel reflection matrix in the air-incident case. The rotation matrix 

 rotates the reference plane of the incident Stokes vector from the incident plane 

to the local reflection plane.  rotates the reference plane of the reflected Stokes 

vector from the local reflection plane to reflection plane. The incident and zenith directions 

define the incident plane. The local normal and incident directions define the local 

reflection plane. The reflection and zenith directions define the reflection plane. 

6.1.3 Transmission Matrix 

The transmission geometry by the rough sea surface in the air-incident case is illustrated 

in Fig. 26. The radiation transmitting through the interface experiences refraction. The 
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⎜
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⎠
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local refraction angle  is defined as the angle between refraction direction and the local 

normal direction. 

 

 
Figure 26 An illustration of transmission through the rough sea surface in the air-incident case. n 
is the local normal direction. v¢ and v are direction vectors of incident and transmitted radiation, 
respectively. q¢ and q are incident and outgoing zenith angles. qi and qt are local incidence and 
refraction angles. dS is the area of a facet’s horizontal projection. S is the area of all facets’ 
horizontal projection. 
 

As in the reflection case, the local normal direction n is determined by the 

incidence direction v¢ and the refraction direction v: 

 , (6.22) 

where the scattering angle  is equal to . Using Snell’s law 

, in which  and  are real parts of refractive indices in the atmosphere 

and ocean respectively,  and  are obtained by 

 , (6.23a) 

θt
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 . (6.23b) 

 is determined by 

 . (6.24) 

The transmission and reflection matrices are derived in an analogous way. The 

incident radiation is given in Eq. (6.11). The transmitted radiation through the facet is 

 , (6.25) 

where  is the power transmission coefficient at incident angle qi. Similar to Eq. 

(6.15), the transmitted radiation can also be expressed as 

 , (6.26) 

where  is the radiance along v direction at the top of the ocean. is the 

optical thickness of the interface, which is infinitesimal. In the model,  is assumed to 

be zero.  here is the differential solid angle around the transmission direction. 

Because Eqs. (6.25) and (6.26) are equal, we have 

 . (6.27) 

In a Cartesian coordinate system with v¢, and two directions perpendicular to v¢ and each 

other as axes,  are 

 , (6.28a) 
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 . (6.28b) 

Using Snell’s law,  in Eq. (6.27) is 

 . (6.29) 

Combining Eqs. (6.18a), (6.27) and (6.29), analogous to deriving BRDF, we obtain 

the bidirectional transmission distribution function (BTDF) at the air-sea interface: 

 . (6.30) 

The transmission matrix is obtained by generalizing Eq. (6.30) to consider polarization: 

  (6.31) 

in which  is the Fresnel transmission matrix. 

Eqs. (6.21) and (6.31) are reflection and transmission matrices in the air-incident 

case. The counterparts in the water-incident case are obtained in the same way, 

 , (6.32) 

and 

  (6.33) 
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where  and  are Fresnel reflection and transmission matrices in the water-

incident case. 

The Fresnel reflection and transmission matrices mentioned above are defined as 

(Zhai et al. 2010) 

 , (6.34a) 

 , (6.34b) 

 , (6.34c) 

 

 , (6.34d) 
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where the subscripts || and ^ denote the polarization directions parallel and perpendicular 

to the incident plane respectively. The power reflection coefficient  in Eq. (6.20) is 

the 1, 1-element in Eq. (6.34a), and the power transmission coefficient  in Eq. (6.30) 

is the 1, 1-element in Eq. (6.34c). 

The Fresnel coefficients in Eq. (6.34) are 

 , (6.35a) 

 , (6.35b) 

 , (6.35c) 

 , (6.35d) 

 , (6.35e) 

 , (6.35f) 

 , (6.35g) 

 . (6.35h) 
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The adding-doubling calculations Eq. (6.1) involve the reflection and transmission 

matrix Fourier components at the interface. The Fourier components are computed by Eq. 

(4.39). Gaussian quadrature is utilized to evaluate the integral in Eq. (4.39). 

Note that the local incidence ( ), reflection ( ) and refraction ( ) angles are 

related to the scattering angle Q by 

 , (6.36a) 

 . (6.36b) 

Because ,  and  are in the angle range (0, p/2), the range of Q is limited to (0, p) in 

computing reflection matrix, and limited to (0, arccos(na/no)) in computing transmission 

matrix. The scattering angle Q is determined by the incident and outgoing directions, and 

varies from 0 to p. Thus, if Q is out of the range (0, arccos(na/no)), transmission is 

impossible to happen, and the transmission matrix is set to zero matrix. The transmission 

matrix as a function of zenith and azimuth angles may be discontinuous. Also, in the water-

incident case, total internal reflection may occur. The Fresnel coefficients change abruptly 

around the total internal reflection angle, which introduces derivative discontinuity to both 

reflection and transmission matrices.  

These discontinuities from different reasons increase the number of Gaussian 

quadrature orders needed to compute angular integrations involving the interface 

reflection and transmission matrices to attain certain numerical accuracy. 
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6.2 Ocean Model 

Because the ocean floor is assumed to be fully absorptive, we only consider the radiative 

properties of ocean water in developing the ocean model. In nature, the composition of 

ocean water is very complicated and varies spatially and temporally. In the ocean model, 

the ocean water contains pure water, phytoplankton pigments, CDOM and NAP. The IOPs 

that are significant in ocean optics and remote sensing include spectral scattering and 

absorption coefficients, and the Mueller matrix. In our RT calculation, the needed input 

parameters are optical thickness, single-scattering albedo and scattering matrix. The IOPs 

can be easily converted to the RTM input parameters using proper assumptions. 

We assume that the IOPs of ocean water are the sums of each composition’s 

corresponding properties. For Case I water defined in Morel and Prieur (1977), the total 

absorption coefficient  is 

 , (6.37) 

where the subscripts “w”, “c”, and “p” represent water, CDOM, and phytoplankton with 

associated NAPs respectively. Similarly, the total scattering coefficient  is 

 , (6.38) 

in which the scattering by CDOM is ignored. 

The optical thickness of the ocean water is 

 , (6.39) 

atot

atot = aw + ac + ap

btot

btot = bw + bp

τo = atot +btot( ) lo
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in which  is the geometric depth of the ocean. In Eq. (6.39), the absorption and scattering 

coefficients are assumed to be constant with depth in the vertical direction. The single-

scattering albedo of the ocean water is 

 . (6.40) 

The scattering matrix of the ocean water is 

 . (6.41) 

The absorption and scattering coefficients of the ocean water compositions are 

functions of the compound concentrations as well as wavelength. Previous studies (e.g. 

Bricaud et al. 1981, 1995, 1998; Loisel and Morel 1998; Morel and Maritorena 2001; Huot 

et al. 2008) measure and analyze the relation between the IOPs and phytoplankton 

concentration. Here the bio-optical models in previous studies are adopted in the ocean 

water model. 

For the CDOM absorption coefficient, the wavelength dependence relation of the 

absorption coefficient proposed by Bricaud et al. (1981) is used: 

 , (6.42) 

where S is a parameter independent of wavelength. The mean value of S estimated from 

measurements is 0.014 nm-1 (Bricaud et al. 1981).  is the absorption coefficient at 

a reference wavelength  that has unit nm. The unit of absorption coefficient is m-1. Here 

the reference wavelength  is chosen at 440 nm so the relation (Bricaud et al. 1998) 

lo

ϖ o =
btot

atot +btot

Fo =
bwFw + bpFp

btot

ac (λ) = ac (λ0 )exp −S λ − λ0( )⎡⎣ ⎤⎦

ac (λ0 )

λ0

λ0
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 , (6.43) 

can be used. k is often chosen as 0, 0.1 or 0.2 to produce a different increase rate (Bricaud 

et al. 1998).  

The spectral pure water absorption coefficient  is from the measurement by 

Pope and Fry (1997). The spectral phytoplankton and associated NAPs absorption 

coefficients  are parameterized by Bricaud et al. (1998) as 

 , (6.44) 

where the wavelength-dependent parameters  and  are kindly provided by 

Dr. Annick Bricaud.  is the chlorophyll concentration with the unit mg/m3. 

The water scattering coefficient  (Mobley 1994) is computed by 

 . (6.45) 

The scattering coefficient of phytoplankton and associated NAPs  is given by the bio-

optical model proposed by Huot et al. (2008): 

 , (6.46) 

in which r  is a parameter dependent on : 

 . (6.47) 
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 is the scattering coefficient at 660 nm wavelength. It is parameterized with 

respect to  as (Huot et al., 2008) 

 . (6.48) 

The scattering properties of pure water can be described by Rayleigh scattering 

theory. The scattering function (the 1, 1-element of the scattering matrix) of pure water is 

(Mobley 1994) 

 , (6.49) 

in which multiplication by 4p normalizes it to be dimensionless. If the depolarization 

effect is considered, the scattering matrix elements of Rayleigh scattering can be expressed 

as (Hovenier et al. 2004) 

 , (6.50a) 

 , (6.50b) 

 , (6.50c) 

 , (6.50d) 

 , (6.50e) 

 , (6.50f) 

where  and  are parameters related to the depolarization effect, and  and  are 

related by 

bp(660)

Chl

bp(660) = 0.347 Chl
0.766

a1
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 . (6.51) 

Comparing Eqs. (6.50a) and (6.49), we find that when  is equal to 0.87097, Eqs. (6.49) 

and (6.50a) are equivalent. Thus, the scattering matrix of pure water is obtained. 

For the scattering matrix of phytoplankton and associated NAPs, we use the 

distorted hexahedron ensemble model proposed by Xu et al. (2017). The single-scattering 

properties of the model are computed by a synergistic combination of the IITM method 

and the PGOM method. The relative refractive indices used in the model development 

cover the range of aquatic particles (Chowdhary et al. 2012; Zhang and Gray 2015). 

In Case II water as defined by Morel and Prieur (1977), the inorganic particles 

have higher concentration than organic particles such as phytoplankton so inorganic 

particles dominates the IOP of the ocean water (Zhang et al. 2017). The organic particles 

have smaller relative refractive indices than inorganic particles (Zhang and Gray 2015). 

In Case II water, the bio-optical model introduced above may not be valid. 

 

6.3 Illustrative Results 

Currently, there is no published benchmark radiative transfer calculation results involving 

an air-sea interface. The main characteristic of the atmosphere-ocean coupled RTM is that 

it includes both the reflection and transmission matrices of the interface. Fig. 27 shows the 

simulated Stokes vectors of upward radiation immediately above the air-sea interface 

when the atmosphere is ignored. 

 

d = 5c − 2
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Figure 27 The Stokes vectors of upward radiation computed immediately above the air-sea 
interface with four different surface wind speeds (w). The solar zenith angle is 60°, and the 
azimuth angle is 90°. The ocean is assumed to have chlorophyll concentration 1.2 mg/m3, and 
has optical thickness 10. The complex refractive index of the phytoplankton and associated 
NAPs is set to 1.06+i0.005. The atmosphere optical thickness is zero. The Stokes vectors are 
normalized by the incident radiation so they are dimensionless. 
 

Four surface wind speeds are considered in the calculations. The upward radiation 

comes from reflected radiation by the interface, and the radiation transmitted out of the 

interface. With larger surface wind speed, the upward radiance (Stokes vector element I) 

is larger. The absolute values of the Stokes vector elements Q, U and V are also larger for 

larger surface wind speed. Obviously, the intensity and polarization of the upward 

radiation are sensitive to the surface wind speed. 
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The angular distribution of the upward radiance tends to be more isotropic when 

the wind speed increases. In the rough surface model introduced above, when the wind 

speed increases, the variance of the probability density function of the surface 

orientation becomes larger so the rough surface orientation distribution is less anisotropic. 

The radiation coming from different directions have more uniform chances to be reflected 

and refracted so the radiance angular distribution is more isotropic. 

Using the bio-optical models and Eqs. (6.39) and (6.40), the ocean optical 

thickness ( ) and single-scattering albedo ( ) are computed. Fig. 28 shows the 

examples of simulated spectral  and . As the chlorophyll concentration increases,  

and increase since the scattering effect is more strongly enhanced than the absorption 

effect. With the same chlorophyll concentration,  and  do not vary much at 

wavelengths less than 550 nm. At wavelengths larger than 550 nm,  increases but  

decreases, because water absorption substantially strengthens in this wavelength range. 

 

σ 2
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Figure 28 Simulated ocean optical thickness and single-scattering albedo in the wavelength 
range 400 to 700 nm for various chlorophyll concentrations. The ocean depth is set to 10 m. The 
k factor in Eq. (6.43) is chosen to be 0.2. 
 

Using the spectral  and  in Fig. 28, we compute the spectral Stokes vectors 

of the upward radiation immediately above the air-sea interface in a specific viewing 

direction, as shown in Fig. 29. At the same wavelength, the radiance is larger for higher 

chlorophyll concentration, and the absolute values of Stokes elements Q, U and V are also 

larger, since the scattering ability of the ocean water inceases. With the same chlorophyll 

concentration, the radiance and the absolute values of other Stokes elements decrease 

almost monotonically from 400 nm to 700 nm wavelengths, since the ocean water 

absorption ability increases. Fig. 29 shows that the upward radiation is sensitive to ocean 

τ o ϖ o
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chlorophyll concentration in terms of both intensity and polarization. The sensitivities of 

the upward radiation to the ocean surface wind and water properties are the physical bases 

of ocean remote sensing. 

 

 

Figure 29 The Stokes vectors of upward radiation computed immediately above the air-sea 
interface with the spectral ocean optical thickness and single-scattering albedo data shown in 
Fig. 28. The surface wind speed is set to be 7 m/s. The solar zenith angle is 60°, viewing zenith 
angle is 40°, and the azimuth angle is 90°. The atmosphere optical thickness is zero. The Stokes 
vectors are normalized by the incident radiation so they are dimensionless. 
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CHAPTER VII  

COMPARISON WITH SATELLITE OBSERVATIONS 

 

All vector RTM modules introduced in previous chapters are integrated into a simulator 

of satellite instruments. In this chapter, the simulation results are compared with POLDER 

and MODIS observations. For POLDER observations, the reflectance and polarized 

reflectance at 0.865 µm band are simulated. For MODIS observations, the radiance at band 

31 (10.78~11.28 µm) is simulated. 

 

7.1 Simulation Region and Input Data 

The simulation region is shown in Fig. 30. Fig. 30 is an RGB image plotted using 

reflectance data in 0.490 µm (blue), 0.565 µm (green) and 0.670 µm (red) bands obtained 

from the Polarization & Anisotropy of Reflectances for Atmospheric Sciences Coupled 

with Observations from a Lidar (PARASOL) Level-1B product (Fougnie et al. 2007), 

which was derived from the observations of POLDER instrument on board the PARASOL 

satellite. The region is over the Indian Ocean southwest of Sri Lanka, so no land surface 

pixels are analyzed in this study. The observation time is July 1st, 2008 around 0845 UTC. 
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Figure 30 RGB image plotted using the data from PARASOL Level-1B product. The location is 
over the Indian Ocean southwest of Sri Lanka. The observation time is July 1st, 2008 around 
0845 UTC. 
 

We collocate the PARASOL pixels in Fig. 30 with the Aqua MODIS Level-2 Collection 

6 cloud product (Platnick et al. 2017). The collocated cloud phase information is shown 

in Fig. 31. Many pixels have ice clouds. Other pixels have liquid clouds, clear sky, or 

mixed phase or unknown clouds. 
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Figure 31 Cloud phase information collocated with the pixels in Fig. 30. The cloud phase data 
are from Aqua MODIS Level-2 Collection 6 cloud product. 
 

For the pixels in Fig. 30, we only consider cloudy and clear-sky cases in the 

simulation and ignore aerosol since aerosol loading is low in this area during the 

observation period. The cloud phase, cloud optical thickness, cloud effective radius, cloud 

top height, cloud top pressure, and cloud top temperature are from the collocated Aqua 

MODIS Level-2 Collection 6 cloud product.  

The atmospheric profile data are obtained from collocated Modern-Era 

Retrospective Analysis for Research and Application, Version 2 (MERRA-2) (Gelaro et 

al. 2017) instantaneous 3h 3-dimensional assimilated meteorological fields, and CO and 

CO2 mixing ratios. The ice and liquid cloud models utilized in the simulations are 

consistent with those used in the MODIS Collection 6 cloud product retrieval algorithm. 
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7.2 Simulation Procedure 

A flowchart in Fig. 32 shows the data flow in the simulations. 

 

 
Figure 32 Flowchart to show the data flow of the simulation process using the developed 
radiative transfer model. 
 

Cloud phase data determines the type of cloud model (liquid or ice) to be used in 

radiative transfer calculations. For a mixed phase or unknown phase, the liquid cloud is 

assumed in the calculation. The cloud optical thickness is computed at the 0.55 µm 
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wavelength in MODIS data. It can be converted to the optical thickness at another 

wavelength l by 

 , (7.1) 

where subscript “cld” denotes cloud. Qext is the extinction efficiency of the cloud. Because 

the cloud model single-scattering properties are pre-computed at discrete effective radii, 

linear interpolations are applied to obtain the cloud scattering matrices at specific effective 

radii provided by the MODIS cloud effective radius data. 

The MODIS cloud top height, pressure and temperature, and MERRA-2 

atmospheric profile data are used to determine the above-cloud atmospheric gas 

absorption and Rayleigh scattering. There is no cloud base data available in either dataset. 

We use the cloud mass fraction information in the MERRA-2 product to estimate the cloud 

base height, pressure and temperature, which are used to compute the below-cloud 

atmospheric gas absorption and Rayleigh scattering. The cloud top and base temperatures 

are also utilized in cloud thermal emission calculations. The sea surface temperature data 

in the MERRA-2 product is used to compute ocean surface thermal emission. The sea 

surface emissivity is set to 0.98 in TIR bands (Wang et al. 2015). 

The gas absorption module computes the air absorption optical thickness using 

MERRA-2 atmospheric profile data. For wavelengths ranging from UV to NIR, the 

Rayleigh scattering optical thickness by atmospheric gases is comparable to the typical 

aerosol and thin cirrus cloud optical thickness, and thus should not be ignored in radiative 

transfer calculations. The Rayleigh optical thickness calculation method and related data 

τ cld λ( ) = Qext λ( )
Qext 0.55( )τ cld 0.55( )
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in Bodhaine et al. (1999) are used to compute air scattering optical thickness. The Rayleigh 

scattering matrix is given by Eq. (6.50). The parameter  is related to the air 

depolarization ratio  (Hovenier et al. 2004) by 

 , (7.2) 

where  is wavelength-dependent and obtained from Bodhaine et al. (1999). The total 

optical thickness and single-scattering albedo in a model atmospheric layer is 

 , (7.3a) 

 , (7.3b) 

where  and  are air absorption and scattering optical thicknesses. The total 

scattering matrix is 

 . (7.4) 

The surface wind speed data in the MERRA-2 product are utilized to compute the 

ocean surface reflection matrix, Eq. (6.21). The wavelengths involved in the simulations 

are in IR bands, where the contribution of water-leaving radiance is very small due to 

strong absorption by ocean water. Thus, only the reflection by the ocean surface is 

considered in the simulations. The layer properties and surface reflection matrix are input 

to the vector RTE solver that outputs the Stokes vectors at specified positions and 

directions. 

 

c

ρn

c =
2 1− ρn( )
2+ ρn

ρn

τ a = τ cld +τ air
abs +τ air

sca

ϖ a =
τ cldϖ cld +τ air

sca
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τ air
abs τ air
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Fa (Θ) =
τ cldϖ cldFcld (Θ)+τ air
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7.3 Simulated Satellite Observations 

7.3.1 Simulated POLDER Observations 

The comparison between the observed and simulated POLDER reflectance is shown in 

Fig. 33 for the region illustrated in Fig. 30. The simulation looks very similar to the 

observation, especially in the pixels that have large reflectance. In the pixels that have 

small reflectance, the difference between the observation and simulation is significant. 

 

 
Figure 33 Comparison between the observed (left) and simulated (right) POLDER reflectance at 
0.865 µm band for the region in Fig. 30. 
 

To show the difference more clearly, the observed and simulated pixels are 

compared, as shown in Fig. 34. The data points show almost no systematic bias. When the 

observed reflectance is smaller than 0.5, the data point distribution is wider around the 

one-to-one line than for a larger reflectance. A larger reflectance usually corresponds to a 

larger optical thickness. The data point distribution in Fig. 34 implies that the uncertainty 

in the simulation is large for optically thin clouds. 

 

 

Observation Simulation 
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Figure 34 The pixel-by-pixel comparison of the observed and simulated reflectance shown in 
Fig. 33. The black diagonal line is the one-to-one line. 
 

Fig. 35 shows the observed and simulated POLDER polarized reflectance images. 

In the left lower part of the images, the polarized reflectance signal is very strong since 

this part is close to the sun glint area and the clouds are optically thin. In other parts of the 

two images, it is hardly possible to see the difference. 
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Figure 35 Comparison between the observed (left) and simulated (right) POLDER polarized 
reflectance in the 0.865 µm band for the region in Fig. 30. 
 

The pixel-by-pixel comparison is shown in Fig. 36. Most of the polarized 

reflectance values are between 0.01 and 0.04. The data points are distributed almost 

symmetrically on the two sides of the one-to-one diagonal line. Note that the MODIS 

cloud product retrieval algorithm is only based on MODIS reflectance observations. The 

similarity between the observed and simulated polarized reflectance to some extent shows 

the accuracy of the developed RTM as well as the polarization consistency of the cloud 

models used in MODIS retrieval algorithms. 

 

 

 

Observation Simulation 
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Figure 36 The pixel-by-pixel comparison of the observed and simulated polarized reflectance in 
Fig. 35. The black diagonal line is the one-to-one line. 
 

7.3.2 Simulated MODIS Observations 

The radiance in MODIS band 31 is the sum of thermal emission by the atmosphere and 

reflected solar radiation. The solar irradiance  data are obtained from the AER solar 

irradiance dataset (Clough et al. 2005). The Planck function in the simulation is spectrally 

averaged within the band: 

 , (7.5) 

where wavenumbers  and  are the end points of the band interval.  

F0

B(T ) = 1
!ν2 − !ν1

B( !ν ,T )d !ν
!ν1

!ν2∫

!ν1 !ν2
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The radiance can be converted to BT by inverting the Planck function at the band 

central wavenumber. Fig. 34 shows the observed and simulated MODIS band 31 radiance 

in terms of BT. The observation and simulation are similar. 

 

 
Figure 37 Comparison between the observed (left) and simulated (right) MODIS radiance at 
band 31 (10.78~11.28 µm) for the region in Fig. 30. The radiance is shown in terms of BT. 
 

The gas absorption in MODIS band 31 is weak. The thermal emission from the 

surface and lower atmosphere can penetrate through the atmosphere and be received by 

the instrument. If there are clouds, the clouds block the transmission of part of the thermal 

emission from lower layers, and emit radiation with a colder temperature, which is 

received by the instrument. Thus, the BT values of cloudy pixels are generally colder than 

the clear-sky pixels. 

Fig. 38 shows the pixel-by-pixel comparison of the observed and simulated 

MODIS band 31 radiance. For BT smaller than 270 K, the simulation overestimates the 

radiance. For BT larger than 270 K, the data points are almost unbiased. 

 

 

 

Observation Simulation 
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Figure 38 The pixel-by-pixel comparison of the observed and simulated radiance shown in Fig. 
37. The black diagonal line is the one-to-one line. 
 

We also compute the simulated horizontal minus vertical polarization brightness 

temperature difference (BTD) as shown in Fig. 39, with the simulation results in MODIS 

band 31. MODIS does not have polarization capability, so there is no observed MODIS 

polarization data. Except for the cloud properties, the BTD is also strongly dependent on 

the viewing zenith angle. Along the satellite track, the viewing zenith angles are close to 

zero, and the corresponding BTD values are almost zero. For pixels with large viewing 

zenith angles, the positive BTD values are close to 1 K. The BTD values of optically thick 

clouds are negative, whereas the BTD values of optically thin clouds are positive. The 

value of BTD tends to be inversely related to the cloud optical thickness, which is 
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consistent with the POLDER polarized reflectance observations in the 0.865 µm band as 

shown in Fig. 35. 

 

 
Figure 39 Simulated MODIS band 31 (10.78~11.28 µm) brightness temperature difference 
(BTD) for the region in Fig. 30. 
 

7.4 Discussions 

The differences between the observation and simulation are attributed to errors in 

calculation and uncertainties of the input data. The developed RTM is based on the plane-

parallel assumption so earth curvature and cloud 3D effects are ignored in the calculation. 

Also, all calculations are channel-averaged. Even though the spectral bands considered in 

the simulation are narrow, the channel-averaged RT calculation still introduces some 

errors compared with the monochromatic counterpart. These assumptions and 

approximations affect the accuracy of all computational modules of the model. Each 

module also has additional local error factors. 
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In the gas absorption calculation, the regression method has regression error. The 

atmosphere is divided into a finite number of homogeneous layers. The discretization may 

introduce some errors. The pressure levels are fixed in the model, and the input 

atmospheric profiles are interpolated onto the model pressure levels, which adds 

interpolation errors in the calculation. 

In the multiple scattering calculation, the two-component (SAA+AD) method is 

an approximation so it has errors compared with numerically accurate RTE solvers. Errors 

also exist in the ocean surface reflectance calculation, because the air-sea interface model 

is a simple approximation of the complicated real interface. 

In the thermal emission calculation, the assumption that the Planck function 

changes linearly from the cloud base to top may introduce errors, especially for an 

optically thick cloud. As shown in Figs. 37 and 38, the simulated thermal emissions by 

optically thick clouds have larger biases than optically thin clouds. The errors in the 

absorption calculation also propagate into the air thermal emission calculation. All thermal 

emission calculations assume local thermal equilibrium (LTE) in the atmosphere. The 

LTE assumption is valid if the density of the atmospheric gases is large. However, in the 

upper atmosphere, the gas density may not be large enough to make the LTE assumption 

valid (Lópeze-Puertas and Taylor 2001). The invalid LTE assumption also introduces 

errors in thermal emission calculations in the upper atmosphere. 

The input cloud properties and atmospheric profiles in the simulations are all 

obtained from retrievals and data assimilation. The input data have uncertainties compared 

with exact atmospheric properties. The atmospheric profile data have lower spatial and 
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temporal resolution than the MODIS and POLDER data. Interpolation is used to obtain 

atmospheric profiles at each specific pixel location and time. The interpolation error 

increases the uncertainties of input data. 

The comparison between observation and simulation using a single satellite scene 

may not be enough to prove the global accuracy of the developed RTM. It can only show 

that the RTM can work as a simulator in a retrieval algorithm. The efficiency of 

implementation is another big concern. The number of pixels in the calculation is over 

50,000. The reflectance and polarized reflectance calculations take less than one hour with 

one core on the TAMU Ada supercomputer. The thermal emission calculation is even 

faster. 
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CHAPTER VIII  

SUMMARY 

 

In this dissertation, a fast vector RTM is developed in support of polarimetric remote 

sensing of atmospheric and oceanic properties. The RTM can serve as an in-line forward 

model in a retrieval algorithm to fulfill the accuracy and efficiency requirements of the 

algorithm implementation. The RTM has three main components: a gas absorption 

calculation module, a vector RTE solver, and an ocean module. 

The gas absorption module computes the channel-averaged atmospheric gas 

transmittance. The gas transmittance is the input to the vector RTE solver. A regression-

based method is applied to parameterize the CAOT versus atmospheric variables such as 

pressure, temperature and gas concentration, and zenith angle. Compared with traditional 

regression-based methods that carry out regression in each homogeneous layer, the current 

method takes multiple homogeneous layers as one and only employs one parameterization, 

which significantly reduces the computational time. The CAOT is found to be a smooth 

and monotonic function of the weighted sum of gas concentration in different layers. The 

weights are functions of pressure and temperature. Because a gas absorption property 

depends on gas types and wavelengths, the CAOTs of various gases are parameterized 

separately in each channel and then added up. The regression equation is constructed as a 

polynomial function of the weighted sum of the gas concentrations. An LBLRTM is used 

to compute the CAOTs for each gas in each channel for an atmospheric profile dataset. 

Then, a numerically stable SVD is applied to solve the regression equations to obtain the 
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regression coefficients. The regression method is implemented in 36 MODIS bands and a 

hyperspectral spectrum from UV to NIR bands. The RMSE of the transmittance compared 

with LBLRTM results is as small as 0.005 for most channels. The developed regression 

method is over 4 orders of magnitude faster than LBLRTM. 

The vector RTE solver assumes both an incident solar source and an atmospheric 

thermal emission source. A two-component (SAA+AD) method is utilized to solve the 

vector RTE. The anisotropic scattering matrix of atmospheric and oceanic particles is 

decomposed into forward and diffuse components. The forward component is nonzero 

only in a small range of angles. The diffuse component is much more isotropic. The Stokes 

vector of the RTE solution is also expressed as a sum of forward and diffuse components. 

After some approximations, we obtain decoupled forward and diffuse RTEs. The forward 

RTE is solved by the SAA method, in which the forward solution is approximated as a 

two-dimensional Gaussian function. The SAA method in this study is generalized to multi-

layer cases so it can be applied to the calculation involving an inhomogeneous medium. 

The diffuse RTE is solved by the AD method. The forward Stokes vector computation 

with SAA is quite fast because the solution is an approximate analytical equation. The AD 

computation is substantially accelerated due to the fact that the diffuse scattering matrix 

can be expanded with a much lower order of the GSF. The two-component (SAA+AD) 

method is more than 3 orders of magnitude faster than the rigorous AD method. 

In thermal infrared and microwave bands, thermal emission from the atmosphere 

and terrestrial surface has a nontrivial contribution to the observed radiation. The thermal 

emission by the air can be computed if we know the gas transmittances and temperature 
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profiles. Thermal emission by clouds and aerosols experiences multiple scattering. An 

efficient thermal emission calculation method with multiple scattering is developed based 

on the AD method. In the RTE with only a thermal emission source, the source function 

is the Planck function, which is dependent on temperature. In the atmosphere, layer optical 

properties may be homogeneous, but the vertical temperature varies. The adding process 

can be used to compute thermal emission by a scattering medium. For a scattering layer 

with homogeneous optical properties, it is preferable to use the doubling process since it 

is more efficient than the adding process. In this study, the source function in the RTE is 

approximated by a linear profile with respect to altitude in a homogenous cloud. The layer 

top and bottom temperatures are the boundary conditions. Based on this approximation, a 

doubling process can be utilized to compute the thermal emission by the homogeneous 

layer, which is much faster than directly adding the inhomogeneous thermal emission from 

each thin layer. 

The ocean module includes an air-sea interface model and an ocean IOP model. A 

beam incident on the interface experiences reflection and transmission. The reflection and 

transmission properties of the ocean are determined by the interface morphology and the 

ocean optical properties. The interface is assumed to be a wind-ruffled rough surface 

composed of infinite hypothetic small facets. The orientation slopes of the facets follow a 

2-dimensional Gaussian distribution whose variance is determined by wind speed, which 

is consistent with the Cox and Munk model. The reflection and transmission matrices are 

computed based on the rough interface assumption, and these matrices are directly 

incorporated into the RTE solver as boundary conditions. The ocean is assumed to be a 
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homogeneous layer in the model. The ocean IOPs include scattering and absorption 

properties of pure water, phytoplankton, NAP and CDOM. The scattering and absorption 

coefficients are obtained from measurements and bio-optical models in published studies. 

The Rayleigh scattering matrix is adopted as the pure water scattering matrix. An 

ensemble-averaged irregular hexahedron model is assumed to represent phytoplankton 

and associated NAP shapes to compute a scattering matrix. 

As illustrations, the developed RTM is used to simulate the reflectance and 

polarized reflectance from POLDER observations, and radiance from MODIS 

observations. In general, the simulation results are comparable to the observations. The 

errors in the approximations of the RTM and the uncertainties of the input data can explain 

the differences between the simulations and observations. 

Further development is needed to improve the RTM in both accuracy and 

efficiency aspects. Although the RTM is based on a plane-parallel assumption, the gas 

absorption calculation could be modified to consider earth curvature without reducing 

computational speed. For thermal emission calculations in the upper atmosphere, non-

LTE radiative transfer can be applied to reduce the error of the current LTE assumption 

in the upper atmosphere. The two-component (SAA+AD) vector RTE solver is the most 

time-consuming part of the model. More approximations may be introduced to improve 

the efficiency of the vector RTE solver such as using the discretization scheme of the 4p 

solid angle in evaluating the solid angle integration (Wang et al. 2013). In addition, the 

RTM only considers an ice-free ocean as the lower boundary. The RTM should 
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incorporate a land reflection matrix model to be able to do calculations over a land surface 

with various conditions. 
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