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ABSTRACT

The advancements in science and technology in recent years have extended the scale of engi-

neering problems. Discovery of new materials with desirable properties, drug discovery for treat-

ment of disease, design of complex aerospace systems containing interactive subsystems, conduct-

ing experimental design of complex manufacturing processes, designing complex transportation

systems all are examples of complex systems. The significant uncertainty and lack of knowledge

about the underlying model due to the complexity necessitate the use of data for analyzing these

systems. However, a huge time/economical expense involved in data gathering process avoids ac-

quiring large amount of data for analyzing these systems. This dissertation is mainly focused on

enabling design and decision making in complex uncertain systems.

Design problems are pervasive in scientific and industrial endeavors: scientists design experi-

ments to gain insights into physical and social phenomena, engineers design machines to execute

tasks more efficiently, pharmaceutical researchers design new drugs to fight disease, and environ-

mentalists design sensor networks to monitor ecological systems. All these design problems are

fraught with choices, choices that are often complex and high-dimensional, with interactions that

make them difficult for individuals to reason about. Bayesian optimization techniques have been

successfully employed for experimental design of these complex systems.

In many applications across computational science and engineering, engineers, scientists and

decision-makers might have access to a system of interest through several models. These mod-

els, often referred to as “information sources", may encompass different resolutions, physics, and

modeling assumptions, resulting in different “fidelity" or “skill" with respect to the quantities of

interest. Examples of that include different finite-element models in design of complex mechani-

cal structures, and various tools for analyzing DNA and protein sequence data in bioinformatics.

Huge computation of the expensive models avoids excessive evaluations across design space. On

the other hand, less expensive models fail to represent the objective function accurately. Thus,

it is highly desirable to determine which experiment from which model should be conducted at
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each time point. We have developed a multi-information source Bayesian optimization framework

capable of simultaneous selection of design input and information source, handling constraints,

and making the balance between information gain and computational cost. The application of

the proposed framework has been demonstrated on two different critical problems in engineering:

1) optimization of dual-phase steel to maximize its strength-normalized strain hardening rate in

materials science; 2) optimization of NACA 0012 airfoil in aerospace.

The design problems are often defined over a large input space, demanding large number of

experiments for yielding a proper performance. This is not practical in many real-world problems,

due to the budget limitation and data expenses. However, the objective function (i.e., experiment’s

outcome) in many cases might not change with the same rate in various directions. We have intro-

duced an adaptive dimensionality reduction Bayesian optimization framework that exponentially

reduces the exploration region of the existing techniques. The proposed framework is capable of

identifying a small subset of linear combinations of the design inputs that matter the most relative

to the objective function and taking advantage of the objective function representation in this lower

dimension, but with richer information. A significant increase in the rate of optimization process

has been demonstrated on an important problem in aerospace regarding aerostructural design of an

aircraft wing modeled based on the NASA Common Research Model (CRM).
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1. INTRODUCTION

1.1 Bayesian Optimization in Multi-Information Source Systems

For many applications, there exist multiple models that simulate the same system. These mod-

els typically rely on different mathematical formulae or make varying assumptions that simplify

the problem. This leads to models with varying degrees of discrepancy from the true output, or

fidelity. Generally speaking, a high fidelity model is more accurate than a low fidelity one at the

cost of computational expense. Intuitively, using the high fidelity model leads to a reduction in un-

certainty due to model inadequacy. However, a low fidelity model can still provide information that

should be considered in any decision making process. A method is needed to fuse the information

from both models to create a single, fused distribution for the quantities of interest. The goal of

this study is to propose a method to utilize the information of all models to generate a fused model

with superior predictive capability than any of its constituent models. The other goal of this study

is sequential decision making to identify the next design point and information source to evaluate,

in order to create a fused distribution using data from models of varying fidelity. To achieve these

goals, our methodology estimates the correlation between each model using a model reification

approach that eliminates the observational data requirement. The correlation is then used in an

updating procedure whereby uncertain outputs from multiple models may be fused together to

better estimate some quantity or quantities of interest. These ingredients are used in a decision-

theoretic manner to query from multiple information sources sequentially to achieve the maximum

expected value-gradient utility per unit cost.

1.2 Bayesian Optimization in Large-Scale Systems

The real practical systems are often complex and defined over large input design space. Finding

the design point with the highest quantity of interest is a common goal in these systems. Since

the information regarding these systems are often available through data, surrogate models such as

Gaussian processes are usually used for modeling these systems. The optimization of these systems

1



demands querying a number of samples in a sequential fashion, and the knowledge gradient is a

popular technique to find the optimal solution with minimum function evaluations. The knowledge

gradient method requires a finite set of alternatives to decide the best point in the alternative set

which leads to the highest one-step look-ahead expected improvement in the maximum of the

objective function. While the method has been successfully applied to many domains, it usually

requires a large number of queries to perform well for optimization of systems with large number

of input design variables. Indeed, the alternative set exponentially grows by the number of input

variables. Furthermore, the set of alternatives has the direct effect on the performance of the

optimization problem, since large and naive set increases the exploration process as opposed to

the exploitation. This requires a large number of function evaluations to solve the optimization

problem. Our aim is to develop a rigorous methodology to provide a rich set of alternatives which

is exponentially smaller than the original set. Such a strategy boosts the speed of optimization for

systems with large input space. We propose to develop a two-step knowledge gradient method.

The method first employs the active subspace technique to adaptively map the original space to a

low-dimensional space. Then, the knowledge gradient is performed over this small-dimension to

select a design point to query. The inverse mapping of the selected point leads to a hyperplane in

the original space, therefore we perform the second knowledge gradient to select a sample in this

hyperplane.
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2. BAYESIAN OPTIMIZATION IN MULTI-INFORMATION SOURCE SYSTEMS*

2.1 Overview

Design decisions for complex systems often can be made or informed by a variety of informa-

tion sources. When optimizing such a system, the evaluation of a quantity of interest is typically

required at many different input configurations. For systems with expensive to evaluate available

information sources, the optimization task can potentially be computationally prohibitive using

traditional techniques. This section presents an information-economic approach to the constrained

optimization of a system with multiple available information sources. The approach rigorously

quantifies the correlation between the discrepancies of different information sources, which en-

ables the overcoming of information source bias. All information is exploited efficiently by fusing

newly acquired information with that previously evaluated. Independent decision makings are

achieved by developing a two-step look-ahead utility policy and an information gain policy for ob-

jective function and constraints respectively. The approach is demonstrated on a one-dimensional

example test problem and an aerodynamic design problem, where it is shown to perform well in

comparison to traditional multi-information source techniques.

2.2 Introduction

Design decisions for complex engineered systems are increasingly being informed by queries

to multiple sources of information. These information sources may consist of variable fidelity

models, expert opinions, historical data, or newly conducted physical experiments. Our aim here

is to create a systematic procedure for enabling the efficient exploitation of all available informa-

tion sources. The context we focus on is constrained optimization problems with expensive to

evaluate information sources. For such problems, traditional optimization strategies, such as the

*Reprinted with permission from “Multi-Information Source Constrained Bayesian Optimization” by S. F. Ghoreishi,
and D. Allaire., 2018. Structural and Multidisciplinary Optimization, Copyright Springer-Verlag GmbH Germany,
part of Springer Nature 2018.
*Reprinted with permission from “Multi-information source fusion and optimization to realize icme: Application to
dual-phase materials” by S. F. Ghoreishi, A. Molkeri, A. Srivastava, R. Arroyave, and D. Allaire., 2018. Journal of
Mechanical Design, Copyright 2018 by ASME.
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employment of gradient-based algorithms or heuristic techniques can be inappropriate. This can

be, for example, due to sheer expense in the case of heuristics, and the need to calculate finite

differences of say an experimental information source in the case of gradient-based algorithms,

where resources often would not be spent on queries in such close proximity in input space. Given

such considerations, the approach we propose for multi-information source optimization focuses

on Bayesian global optimization strategies, where query points are selected based on expected

contribution to such quality metrics as information gained regarding a constraint or expected im-

provement in an objective. Such a strategy enables the natural fusion of information from multiple

sources, which we exploit here to ensure that all available information can be used for the opti-

mization task at hand.

Our work builds generally on concepts from multifidelity optimization, where several differ-

ent computational models are available for a given task. One common approach in multifidelity

optimization is to treat the models as a hierarchy and replace or calibrate low-fidelity information

with high-fidelity results [2–9]. Trust region methods are used to approximate the high-fidelity

model for optimizing an objective function when the derivatives of the objective are available. In

Refs. [10] and [11], a trust region based model-management method is employed in which the gra-

dients of the low-fidelity objective function and constraints are scaled or shifted to match those of

a high-fidelity model. Ref. [12] presents a convergent multifidelity optimization algorithm using

the trust region method that does not require the high-fidelity derivatives, and considers hierar-

chies between the low and high-fidelity models. In Ref. [13], a multifidelity sequential kriging

optimization method is proposed which uses the expected improvement as a measure to determine

the next design point and the level of fidelity model to evaluate, and the autoregressive assumption

is used to build the multi-fidelity model based on hierarchical relationships among the information

sources. In practice, the fidelity of information sources can vary over the design space. Therefore,

the assumption of hierarchical relationship among the information sources might not be practical,

and all the available data from different information sources need to be fused to take into account

all potential information any given source may bring to bear on the optimization problem.
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There are several techniques used in practice for achieving the fusion of information from mul-

tiple information sources. Among them are the adjustment factors approach [14–16], Bayesian

model averaging [17–24] which believe that each model has some probability of being true and the

fused estimate is a weighted average of the available models. The other available techniques are

fusion under known correlation [25–32], and covariance intersection method [33, 34]. Covariance

intersection algorithm has a tendency to discard lower fidelity information sources to achieve the

most conservative estimate possible in cases with scalar quantities of interest. It requires that the

information source with the highest fidelity be used for the fused estimate. While using the high

fidelity model at all points in the design space leads to a reduction in uncertainty due to model

inadequacy, this approach leads to a loss of information provided by the low fidelity models that

could be used to better estimate the model output if the correlation coefficients were known. Ac-

counting for correlation is critical in information fusion. Aggressive approaches, such as assuming

each model is independent from all others, are often incorrect, and can lead to potentially serious

misconceptions regarding confidence in quantity of interest estimates.

In this section, we propose a method for the constrained optimization of a quantity of inter-

est where multiple information sources, which are generally expensive to evaluate, are available

for approximating the quantity of interest and constraints. To enable informed querying of infor-

mation sources and to account for each source’s discrepancy, we construct Gaussian processes for

each source using available evaluations from a given source and that source’s discrepancy informa-

tion. Following standard practice for the fusion of normally distributed data [35], we create fused

Gaussian processes for the objective function and constraints, that contain all currently available

information from each information source. A novel aspect of this work is the use of fusion tech-

niques that support the rigorous incorporation of correlation both within information sources in

terms of information source estimates, and between information sources in terms of information

source estimate errors. This latter aspect enables the mitigation of bias among information sources.

Specifically, traditional fusion techniques estimate a quantity of interest as a weighted average of

information source estimates. This average always resides within the extremes of the information
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source estimates. That is, if all information sources are biased in the same direction with respect

to a quantity of interest, traditional fusion techniques cannot overcome this bias and will produce

a similarly biased estimate. Our work employs a novel model reification technique described in

detail in Ref. [36], that overcomes this limitation in the fused Gaussian processes.

By constructing the fused Gaussian processes, the next design to evaluate and the informa-

tion source to query for the objective function are determined based on our proposed two-step

look-ahead policy. This policy is achieved by sequential augmentation process and the knowledge

gradient policy as a one-step look-ahead policy to maximize (or minimize) an objective [37–40].

Notice that our proposed two-step look-ahead policy goes beyond the existing Bayesian optimiza-

tion techniques which only take the next step into account for decision-making process. The next

design to evaluate and the information source to query for the constraints are determined based

on our proposed information gain policy achieved by sequential augmentation process and the

Kullback-Leibler divergence. This is the novel aspect of our methodology that decision-making

for querying from constraint information sources is independent of objective function decision-

making, and the constraint information sources can be queried at different design locations than

the objective information source during the same optimization iteration, and involve entirely sepa-

rate information sources than those of the objective. The proposed method yields several benefits

summarized as follows

• Incorporation of correlations both within and between information sources;

• Direct decision-making on the fused model regarding which information source to query

next and where to query it;

• A two-step look-ahead policy and an information gain policy for sequential objective func-

tion and constraints decision-making;

• Independent decision-making for querying from constraints and objective function informa-

tion sources.

Our proposed multi-information source optimization approach is applied to optimize a one-

dimensional example test problem and an aerodynamic design example, and the results are com-
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pared with a traditional multi-information source optimization method presented in Ref. [1] which

is currently the state of the art in constrained Bayesian optimization. It is shown that our proposed

method results in higher quality solutions for the demonstrations presented, particularly in the case

of a limited budget available for querying.

2.3 Problem Statement

We consider the problem of optimizing a quantity of interest subject tom inequality constraints,

where multiple sources of information are available for both the objective and constraints. A

mathematical statement of the problem is formulated as

x∗ = argmax
x∈χ

f(x)

s.t. gj(x) ≤ 0, j = 1, 2, . . . ,m,

(2.1)

where f is the real-world objective function, gj , where j = 1, 2, . . . ,m, are the m real-world

constraints, and x is a set of design variables in the vector space χ. In the optimization process, the

real-world objective function and the real-world constraints must be estimated at each iteration.

For this estimation task, often several information sources, such as numerical simulation mod-

els, experiments, expert opinions, etc., are available. These sources have varying fidelities, or ap-

proximation accuracies over the design space, and varying computational costs. The approach we

describe here enables the exploitation of all available sources of information, in an information-

economic sense, that balances the cost and associated fidelity of each information source when

choosing how to estimate the quantity of interest and the constraints. In our formulation, the core

issue is how to manage dynamic querying to choose what new information sources to sample and

with what input, at each step of the overall decision process. The choice of next design point to

query must be based on how much a sample tells us about the design goal at hand and if that sample

is expected to satisfy the current constraints. This choice must trade off the costs associated with a

particular information source query and the utility or information gained by executing the query.

Here, we assume we have available some set of information sources, fi(x), where i ∈ {1, 2, . . . , S},
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that can be used to estimate the quantity of interest, f(x), at design point x. In order to predict the

output of each information source at locations that have not yet been queried, an intermediate sur-

rogate is constructed for each information source using Gaussian processes [41]. These surrogates

are denoted by fGP,i(x). We consider the prior distributions of the information sources modeled

by Gaussian processes as

fGP,i(x) ∼ GP (0, ki(x,x)) , (2.2)

where ki(x,x) is a real-valued kernel function over the input space. For the kernel function, we

consider the commonly used squared exponential covariance function, which is specified as

ki(x,x
′) = σ2

s exp

(
−

d∑
h=1

(xh − x′h)2

2l2h

)
, (2.3)

where d is the dimension of the input space, σ2
s is the signal variance, and lh, where h = 1, 2, . . . , d,

is the characteristic length-scale that indicates the correlation between the points within dimension

h. The parameters σ2
s and lh associated with each information source can be estimated via maxi-

mum likelihood. Assuming we have available Ni evaluations of information source i denoted by

{XNi
,yNi
}, where XNi

= (x1,i, . . . ,xNi,i) represents the Ni input samples to information source

i and yNi
= (fi(x1,i), . . . , fi(xNi,i)) represents the corresponding outputs from information source

i, the posterior distribution of information source i at design point x is given as

fGP,i(x) | XNi
,yNi

∼ N
(
µi(x), σ2

GP,i(x)
)
, (2.4)

where
µi(x) = Ki(XNi

,x)T [Ki(XNi
,XNi

) + σ2
n,iI]−1yNi

,

σ2
GP,i(x) = ki(x,x)−Ki(XNi

,x)T [Ki(XNi
,XNi

) + σ2
n,iI]−1Ki(XNi

,x),

(2.5)

where Ki(XNi
,XNi

) is the Ni × Ni matrix whose m,n entry is ki(xm,i,xn,i), and Ki(XNi
,x) is

the Ni × 1 vector whose mth entry is ki(xm,i,x) for information source i. Note that here we have

included the term σ2
n,i, which can be used to model observation error for information sources based
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on experiments and can also be used to guard against numerical ill-conditioning.

To these Gaussian process surrogates, in order to estimate the fused value as will be discussed

in Section 3.5, we further quantify the uncertainty of each information source with respect to the

true quantity of interest by adding a term associated with the fidelity of the information source.

Specifically, we quantify the total variance which captures both the variance associated with the

Gaussian process representation and the quantified variance associated with the fidelity of the

information source over the input space, as

σ2
i (x) = σ2

GP,i(x) + σ2
f,i(x), (2.6)

where σ2
f,i(x) is the fidelity variance of information source i that has been estimated from, for

example, expert opinion or available real-world data. Here, we estimate the fidelity variance of

each information source by computing the error values which are the absolute difference between

the available data from the true quantity of interest and the information source. A Gaussian process

is then performed using the square of these error values as training points to estimate the fidelity

variance over the input space as mean of the Gaussian process. Figure 2.1 shows a depiction of

total variance for an information source represented by Gaussian process.

Our approach to information sources that can be used to evaluate any of the m constraints in

Problem (2.1) follows that of our approach to the objective based information sources. For any

given constraint, gj , where j ∈ {1, 2, . . . ,m}, we have available some set of information sources,

gi,j(x), where i ∈ {1, 2, ..., Gj}, that can be used to estimate the quantity of interest, gj(x), at

the design point x. Following the same approach taken for the objective information sources, we

quantify the total variance of the ith information source of the j th constraint as

σ2
i,j(x) = σ2

GP,i,j(x) + σ2
gj ,i

(x), (2.7)

where σ2
GP,i,j(x) is the variance associated with the Gaussian process representation of gi,j and

σ2
gj ,i

(x) is the quantified fidelity variance of the information source.
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Figure 2.1: A depiction of total variance, which includes both the variance associated
with the Gaussian process and variance associated with the fidelity of the information
source.

2.4 Approach

This part describes our multi-information source constrained Bayesian optimization approach.

We first present how we fuse the knowledge from information sources, and construct fused Gaus-

sian processes for the objective function and them constraints, required for finding the solution for

the maximization problem in Equation (2.1). Then, we present our proposed strategies for choos-

ing the next design points and information sources of objective function and constraints to query.

We conclude this section with a complete algorithm for implementing our approach.

2.4.1 Fusion of Information Sources

A fundamental claim in this work is that any information source can provide potentially useful

information to a given task at hand. That is, information sources are not assumed to be hierarchical

and the goal is not to just optimize whatever is deemed the highest fidelity source. Indeed, accord-

ing to Equations (2.6) and (2.7), the discrepancy of an information source can vary over its domain.

Thus, a strict hierarchy of information source fidelity is an unlikely and restrictive assumption.

To take into account all potential information any given source may bring to bear on the opti-
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mization problem (i.e., objective or constraint information at a given input), we fuse our informa-

tion sources following standard practice for the fusion of normally distributed data [35], since our

information sources are represented as Gaussian processes. According to the method of Winkler,

the fused mean and variance at point x can be computed as [35]

µWink(x) =
eT Σ̃(x)−1µ(x)

eT Σ̃(x)−1e
, (2.8)

σ2
Wink(x) =

1

eT Σ̃(x)−1e
, (2.9)

where e = [1, . . . , 1]>, µ(x) = [µ1(x), . . . , µS(x)]> contains the mean values of S models at point

x, and Σ̃(x) is the covariance matrix between the models given as

Σ̃(x) =



σ2
1(x) · · · ρ1S(x)σ1(x)σS(x)

ρ12(x)σ1(x)σ2(x) · · · ρ2S(x)σ2(x)σS(x)

... . . . ...

ρ1S(x)σ1(x)σS(x) · · · σ2
S(x)


, (2.10)

where σ2
i (x) is the total variance of model i at point x and ρij(x) is the correlation coefficient

between the deviations of information sources i and j at point x.

To estimate the correlations between the model deviations, we use the reification process de-

fined in [36, 42], which refers to the process of treating each model, in turn, as ground truth.

Following this process, the correlation between the errors is computed as follows

ρij(x) =
σ2
j (x)

σ2
i (x) + σ2

j (x)
ρ̃ij(x) +

σ2
i (x)

σ2
i (x) + σ2

j (x)
ρ̃ji(x), (2.11)

where σ2
i (x) and σ2

j (x) are the total variances of information sources i and j at point x, and ρ̃ij(x)
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and ρ̃ji(x) are computed by reifying models i and j respectively as

ρ̃ij(x) =
σi(x)√

(µi(x)− µj(x))2 + σ2
i (x)

,

ρ̃ji(x) =
σj(x)√

(µj(x)− µi(x))2 + σ2
j (x)

,

(2.12)

where µi(x) and µj(x) are the mean values of models i and j respectively at design point x.

Note that the correlation between the errors in (2.11) is the variance weighted average of the two

correlation coefficients in (2.12). The detailed process of estimating the correlation between the

errors of two models can be found in [36, 42].

To imbue the fused model with the complete learned information, we construct a fused Gaus-

sian process (which also accounts for correlation between design points). To accomplish this,

we construct the Gaussian process from a finite set of samples x1:Nf
⊂ χ. Let µWink(x1:Nf

) and

Σ(x1:Nf
) = diag

(
σ2
Wink(x1), . . . , σ2

Wink(xNf
)
)

be the vector of fused means and a diagonal matrix

containing the fused variances at x1:Nf
obtained according to Equations (2.8) and (2.9) respectively.

Considering the squared exponential covariance function (other options could be employed) and

obtaining the hyperparameters via maximum likelihood, we construct the fused Gaussian process.

The posterior predictive distribution of fused estimate at any set of samples X in the design space

can be obtained as

f̂ fused(X) ∼ N (µfused(X),Σfused(X)), (2.13)

where

µfused(X) = K(x1:Nf
,X)T [K(x1:Nf

,x1:Nf
) + Σ(x1:Nf

)]−1µWink(x1:Nf
),

Σfused(X) = K(X,X)−K(x1:Nf
,X)T [K(x1:Nf

,x1:Nf
) + Σ(x1:Nf

)]−1K(x1:Nf
,X).

(2.14)

Fused Gaussian processes are also constructed for each of the constraints to predict the feasibility

of the design to evaluate. This approach follows that of the approach taken above for the fused

Gaussian process of the objective function.
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2.4.2 Two-Step Look-Ahead Utility Function for Objective Function Query

Equipped with fused Gaussian processes for the objective and each constraint, the next step

of our methodology for solving Equation (2.1) is identification of the next design point location

to query and with which information source to execute the query. The design point to evaluate is

based on the fused Gaussian processes of the objective function and constraints. This choice must

trade off the goals of learning or exploring the fused model of objective function and maximizing

or exploiting this function. Further, this choice must eventually be feasible with respect to the

fused constraint models. We denote the feasible design space by χfeas where χfeas ⊂ χ.

To determine the next design point and information source to query, we generate Latin Hyper-

cube samples in the input design space as alternatives denoted as Xalt. Among these alternatives,

we seek to identify a set of feasible design points, as determined by dynamically updated con-

straints described below. From this feasible set denoted by Xfeas, we seek to determine which

design point and which information source to query that design point will lead to the maximum

utility in the fused Gaussian process of the objective function with minimum cost of query. This

utility is also described below.

We define a two-step look-ahead policy as the utility function which is able to consider both

our current best design given a potential query result and the ability we would have, armed with

this potential query, to find an even better design on the next query. In our proposed method,

unlike most Bayesian optimization techniques which are developed based on a one-step look-ahead

procedure, a two-step look-ahead optimization is achieved.

Let (x1:N , y1:N) be the design points and the corresponding objective values, and i1:N be the

indices of the queried information sources of the objective function up to time step N . We define

the utility obtained by querying the design point x ∈ Xfeas from information source i as

Ux,i = E
[

max
x′∈χfeas

µfused(x′) + max
x′′∈χfeas

EIx,i(x
′′)

∣∣∣∣ x1:N , y1:N , i1:N ,xN+1 = x, iN+1 = i

]
, (2.15)

where EIx,i(x′′) is the one-step look-ahead expected increase in the maximum of the fused Gaus-
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sian process given xN+1 = x and iN+1 = i as

EIx,i(x
′′) = E

[
max

x′∈χfeas

µfused(x′) | xN+2 = x′′
]
− max

x′∈χfeas

µfused(x′). (2.16)

The exact computation of Equation (2.15) is not possible. Thus in this paper, we provide a Monte

Carlo technique for its approximation. For a given point x at information source i, the objective

function values are normally distributed based on the mean and variance of the corresponding

Gaussian process. Drawing Nq independent samples from this normal distribution as f qi (x) ∼

N
(
µi(x), σ2

GP,i(x)
)
, q = 1, . . . , Nq, results in the following approximation of Equation (2.15)

Ux,i ≈
1

Nq

Nq∑
q=1

(
max

x′∈χfeas

µfused,q
x,i (x′) + max

x′′∈χfeas

EIqx,i(x
′′)
)
, (2.17)

where µfused,q
x,i (x′) denotes the mean of the fused Gaussian process upon temporarily augment-

ing (x , f qi (x)), one at a time, to the available samples of information source i, and EIqx,i(x
′′) is

the one-step look-ahead expected increase in the maximum of the fused Gaussian process upon

augmentation of query (x , f qi (x)) to information source i. Note that for each generated sample,

q = 1, . . . , Nq, the previously added sample is removed and the next new sample is augmented,

then the Gaussian process of information source i and as a result, the fused Gaussian process of

the objective function are updated temporarily. We compute the second term in Equation (2.17)

by the Knowledge Gradient (KG) approach over the temporary fused Gaussian process in a closed

form solution [38–40]. Letting SN+1
x′′ = E[f̂ fused(x′′) | x1:N , y1:N , i1:N ,xN+1 = x, yN+1 = f qi (x),

iN+1 = i] be the knowledge state, the value of being at state SN+1 is defined as V N(SN+1) =

max
x′′∈χ

SN+1
x′′ . The knowledge gradient which is a measure of expected increase in the maximum of

the objective function, if the design point x′′ would be queried at the next time step, can be defined

as

νKG,N+1
x′′ = E[V N+2

(
SN+2(x′′)

)
− V N+1(SN+1) | SN+1],

where the expectation is taken over the stochasticity in the posterior distribution of the fused model
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representing the objective function at design point x′′.

The utility is evaluated for all feasible, as feasibility will be discussed in the following subsec-

tions, alternatives and all information sources. By denotingCx,i as the cost of querying information

source i of the objective function at design point x, we find the query (iN+1,xN+1) that maximizes

the utility per unit cost, given by

(iN+1,xN+1) = argmax
i∈[1,...,S],x∈Xfeas

Ux,i

Cx,i

. (2.18)

Figure 2.2 shows a depiction of computation of our proposed two-step look-ahead utility func-

tion for choosing the next query for an objective function with two information sources. The left

column shows the Gaussian processes of the two information sources and the fused Gaussian pro-

cess constructed from these information sources. The right column shows the temporary Gaussian

processes of information source 1 and the fused model after augmenting the query (x, q) to infor-

mation source 1 (i = 1). The terms of the two-step look-ahead utility function are shown on the

temporary fused Gaussian process.

2.4.3 Information Gain Policy for Constraints Query

We propose to use the information gain for selection of the next design point and information

source of the constraints to query. In order to measure the information gain, we use the Kullback-

Leibler (KL) divergence [43–46] which is a criterion for evaluating the difference between two

probability distributions P and Q with densities p(x) and q(x), defined as

DKL(P ‖ Q) =

∫ +∞

−∞
p(x) log

p(x)

q(x)
dx. (2.19)

Latin Hypercube sampling is again used for generating alternatives denoted as Xg in the design

space. For a given point x at information source i of constraint gj , the constraint values are nor-

mally distributed based on the mean and variance of the corresponding Gaussian process. By

drawing Nr independent samples from this normal distribution denoted by gri,j(x), r = 1, . . . , Nr,
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Figure 2.2: A depiction of computing our proposed two-step look-ahead utility function for choos-
ing the next design and information source of objective function to query.

and temporarily augmenting each sample, one at a time, to the available samples of the corre-

sponding information source, the Gaussian process of information source i and consequently, the

fused Gaussian process of constraint gj are temporarily updated. We denote the temporary fused
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Gaussian process of constraint gj after augmenting sample (x , gri,j(x)) to information source i by

ĝfused,rx,i,j , and the current actual fused Gaussian process before augmenting any sample by ĝfusedj . We

repeat this process for all Nr generated samples. Then, we compute the Information Gain (IG) for

the potential query of design point x at information source i of constraint gj which is the average

Kullback-Leibler divergence between the current and the temporary Gaussian processes over the

design space as

IGj
x,i =

1

Nr

Nr∑
r=1

Ns∑
s=1

DKL

(
ĝfused,rx,i,j (x′s) ‖ ĝfusedj (x′s)

)
, (2.20)

where the Kullback-Leibler divergence over the design space of two Gaussian processes is approx-

imated by Monte Carlo technique at Ns samples x′s ∈ χ. The information gain is then evaluated

for all the alternatives and all the information sources of constraint gj . By denoting Cj
x,i as the cost

of querying information source i of constraint gj at design x, we find the query (ijN+1,x
j
N+1) that

maximizes the information gain per unit cost, given by

(ijN+1,x
j
N+1) = argmax

i∈[1,...,Gj ],x∈Xg

IGj
x,i

Cj
x,i

. (2.21)

2.4.4 Feasibility of a Design Point

The specifics of our constraint handling methodology are as follows. The value of fused con-

straint gj at a design point x is estimated to be distributed normally with mean µfused
j (x) and stan-

dard deviation σfused
j (x), according to the fused Gaussian process representation of that constraint.

In the first iterations of the approach, since the constraints are not learned, we aim to avoid over-

restricting the search space and to involve the infeasible samples in the search process to explore

the information they might carry. We achieve this by considering the fused standard deviation of

constraints at each design point in addition to the fused mean value of the constraints at that point.

Therefore, the design point x must satisfy

µfused
j (x)− 3σfused

j (x) ≤ 0, j = 1, . . . ,m. (2.22)
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In this strategy, variances are large in the first iterations, which helps the methodology to explore

the design space, and as the process goes on, the fused Gaussian processes of the constraints are

updated, which results in decreases in the value of their respective variances. This reduces the

possibility of an infeasible sample to be selected. Here, a practitioner can control the level of

acceptability in terms of constraint violation by modifying the coefficient of σfused
j (x) in Equa-

tion (2.22) as deemed appropriate. It should be noted that in the final step for returning the optimal

solution, only the fused means of the constraints are considered for determining the feasibility of

the design points, as will be discussed in the next subsection. Figure 2.3 shows this strategy that

the feasible region shrinks and gets closer to the true feasible region after one query.
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Figure 2.3: A depiction of our constraint handling strategy that the feasible region shrinks and gets
closer to the true feasible region after one query.

2.4.5 Multi-Information Source Constrained Bayesian Optimization Approach

Our complete proposed multi-information source constrained Bayesian optimization approach

is presented in Figure 2.4. In our proposed approach, the first step is constructing a Gaussian

process for each information source of the objective function and all the constraints based on their
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available data. These information sources are combined together and the fused Gaussian processes

of the objective function and constraints are constructed as discussed in subsection 2.4.1. The

next design points and information sources to query are selected based on our proposed two-step

look-ahead utility function for the objective function and the information gain measurement for

the constraints. After querying the selected design points from the selected information sources,

the corresponding Gaussian processes are updated. Therefore, the mean, variance and correlation

coefficient values are also updated, resulting in new fused Gaussian processes of the objective

function and constraints based on the Gaussian processes of the information sources learned so

far in the process and their learned correlations. This process repeats until a termination criterion,

such as exhaustion of the querying budget, is met.

Finally, the feasible design point with maximum fused mean of the objective function is se-

lected as the optimum solution of Equation (2.1), as

x∗ = argmax
x∈χfeas

µfused(x),

χfeas := {x | µfused
j (x) ≤ 0, j = 1, . . . ,m}.

(2.23)

In order to find the best approximation to the optimum solution, we discretize the design space.

This discretization must be sufficiently fine to ensure a good approximation of the continuous

design space solution. Then, the values of the predicted mean of the objective function and the

constraints are computed at each point according to Equation (2.8). Among all the feasible points,

the point that has the maximum function value is selected as the optimum solution. We note here,

that alternatively, we could also optimize the fused objective function subject to the fused constraint

functions using standard gradient-based techniques on the mean functions of the processes.

2.5 Application and Results

In this section, we present the key features of our multi-information source constrained Bayesian

optimization approach on three demonstrations. The first case is an analytical problem with one-

dimensional input and output, the second demonstration is the minimization of the drag coefficient
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Figure 2.4: A depiction of our proposed multi-information source constrained Bayesian optimiza-
tion approach.

of a NACA 0012 airfoil subject to a constraint on the lift coefficient, and the third case is opti-

mization of dual-phase steel to maximize its strength-normalized strain hardening rate in materials

science.

2.5.1 One-Dimensional Problem

The first example is maximization of a one-dimensional constrained function shown in Fig-

ure 2.5 and defined as
x∗ = argmax

x∈[0 1.2]
−(1.4− 3x) sin(18x)

s.t. x2 − 1.2 ≤ 0.

(2.24)

The feasible optimal solution for this problem is (x∗, f(x∗)) = (1.0954, 1.4388). We consider two
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Figure 2.5: One-dimensional optimization problem of Equation (2.24).

information sources of f1(x) and f2(x) for the objective function, with constant discrepancies of

σ2
f,1 = 0.04 and σ2

f,2 = 0.2, and evaluation costs of C1 = 25 and C2 = 20, given as

f1(x) = −(1.6− 3x) sin(18x),

f2(x) = −(1.8− 3x) sin(18x+ 0.1).

(2.25)

We note that in our methodology, two Gaussian processes are constructed for these two information

sources based on their available data and σ2
f,1 and σ2

f,2 are added to the uncertainty associated with

the Gaussian processes to obtain the total uncertainties.

Two information sources, denoted as g1,1(x) and g2,1(x), are considered for the constraint.

These sources have constant discrepancies of σ2
g1,1

= 5e− 6 and σ2
g1,2

= 0.002, and evaluation

costs of C1
1 = 10 and C1

2 = 5, given as

g1,1(x) = (x− 0.001)2 − 1.2,

g2,1(x) = (x+ 0.02)2 − 1.2.

(2.26)

We note that the constant discrepancies used in this example are not restrictions of the work. In

the next application problem the discrepancies are permitted to vary over the design space.
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Figure 2.6 shows the Gaussian processes of the two objective information sources, the fused

objective function, and the fused constraint function. We note that owing to the constant discrep-

ancies, we can refer specifically to the information sources as low-fidelity and high-fidelity, where

high fidelity refers to the source with lower discrepancy. The fused models shown in the figure rep-

resent what has been learned after applying our methodology with a computational budget limited

to 450 and 20 Latin Hypercube samples as alternatives. The red solid lines show the true function

f(x) and the true constraint g(x), and the black solid lines show the learned mean functions of the

Gaussian processes. It is shown that after querying 6 samples from the high-fidelity model and 9

samples from the low-fidelity model of objective function, the fused model provides a reasonable

estimate of the true objective function and the feasible optimal solution.

In order to asses the performance of our approach, we compare our methodology with a stan-

dard multi-information source optimization method presented in Ref. [1]. We refer to this method

as the MF algorithm. This algorithm is the state of art in constrained Bayesian optimization and

has been used as a benchmark for many Bayesian optimization techniques [?, 47–51]. In Ref. [1],

each information source has a separate Gaussian process, and predictions are obtained by fusing

the information via the method presented in Ref. [35] without considering the correlation between

the information sources. In this algorithm, the acquisition function selects the point to sample and

the information source to query separately. The next design to evaluate is selected by applying the

expected improvement function on the multi-fidelity surrogate, and the next information source of

objective function to query is chosen based on a heuristic that aims to balance information gain

and cost of query. It should be noted that there is no decision making with regards to the infor-

mation sources used for constraints in the MF algorithm. In the MF algorithm, it is assumed that

the constraint information source is identical to the objective function information source and the

query is based on that of the objective.

Table 2.1 represents the expectation and variance of the design points obtained by our proposed

approach and the MF algorithm, as well as the expectation and variance of the objective function

at these points over 100 independent replications of the simulations for two different cost values
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Figure 2.6: The learned low-fidelity, high-fidelity and fused objective functions and
fused constraint after applying our approach on optimization problem of Equations
(2.24-2.26).

for information sources and budget of 1000 as the stopping criterion. As can be seen, in the case

of C1 = 20, C2 = 20 in which the cost of the first information source is lower, better results

are obtained in the fixed budget as more samples can be queried from the information sources

in comparison to C1 = 25, C2 = 20. Figure 2.7 shows the average maximum function values

obtained by our approach and MF algorithm for different budgets.

As can be seen, our approach improves on the work of Ref. [1], as the expectations of the ob-
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Table 2.1: Expectation and variance of the results obtained by our proposed approach and the MF
Algorithm [1] over 100 replications of the simulations of optimization problem in Equations (2.24-
2.26) for two different cost values for information sources and budget of 1000 as the stopping
criterion. The feasible optimal solution is (x∗, f(x∗)) = (1.0954, 1.4388).

C1 = 25, C2 = 20 C1 = 20, C2 = 20

E[x∗] var(x∗) E[f(x∗)] var(f(x∗)) E[x∗] var(x∗) E[f(x∗)] var(f(x∗))

Proposed Approach 1.0819 0.0070 1.4139 0.0215 1.0886 0.0068 1.4279 0.0173

MF Algorithm [1] 1.0415 0.0389 1.2216 0.0471 1.0591 0.0308 1.3083 0.0406

Figure 2.7: The average maximum function value obtained by our proposed approach and the MF
Algorithm [1] over 100 independent replications of the simulations of the optimization problem in
Equations (2.24-2.26) for different budgets as the stopping criterion.

tained results are closer to the true optimal values and the variances of the estimations are lower.

This is due to the fact that our methodology allows for the rigorous exploitation of correlations

between information sources and across the design space. This results in reduced uncertainty by

querying one new design sample, even if it is queried from an information source with lower fi-

delity. Thus, we obtain more accurate estimates of the true objective function and also constraint

from each sample. Furthermore, allowing for separate decision making with regards to the con-
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straints adds flexibility to our approach that can also be exploited for efficiency gains. With regards

to the exploitation of correlation, we note here that the value of the low fidelity information source

at the true optimum is 1.2240 and the value of the high fidelity information source is 1.2862 at

the same location. The true objective function value at that point is 1.4388. As can be seen from

the table, the estimated objective function value is greater than either information source using

our fusion-based approach built with model reification. This is not the case for the MF algorithm,

which has no means for overcoming bias. Finally, it should be mentioned that the higher per-

formance of the proposed method comes with higher computational cost. Indeed, our proposed

method constructs |Xfeas| ×Nq × S more Gaussian processes for each query in comparison to the

MF algorithm, while these computations are negligible in comparison to the actual experiments’

costs. Notice that the computation involved for each query due to the need for multiple Gaussian

processes by the proposed method can be done in parallel.

2.5.2 NACA 0012 Drag Coefficient with Lift Coefficient Constraints

The second demonstration of our multi-information source constrained Bayesian optimization

approach is a two-dimensional constrained aerodynamic design example. The airfoil of interest

is the NACA 0012, a common validation airfoil [52, 53]. In this demonstration, we consider two

information sources for the objective and constraint. The sources are the computational fluid dy-

namics programs XFOIL [54] and SU2 [55]. Figure 2.8 shows an example output of the two

simulators that illustrates the difference in fidelity levels.

XFOIL is a solver for the design and analysis of airfoils in the subsonic regime. It combines a

panel method with the Karman-Tsien compressibility correction for the potential flow with a two-

equation boundary layer model. This causes XFOIL to overestimate lift and underestimate drag

[56]. SU2 uses a finite volume scheme and Reynolds-averaged Navier-Stokes (RANS) method

with the Spalart-Allmaras turbulence model, which allows SU2 to be significantly more accurate

than XFOIL in the more turbulent flow regimes at higher values of Mach number and angle of

attack.

In this problem, we are particularly concerned with finding the Mach number M and angle of
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Figure 2.8: Example outputs of NACA 0012 airfoil from XFOIL and SU2.

attack α that minimize the coefficient of drag CD of a NACA 0012 airfoil subject to maintaining a

minimum coefficient of lift CL
x∗ = argmax

x∈χ
−CD(x)

s.t. 0.4− CL(x) ≤ 0,

(2.27)

where x∗ = (M∗, α∗). The design space is χ = IM × Iα with IM = [0.15 0.75] and Iα =

[−2.2 13.3]. To validate our approach, wind tunnel data from NASA and AGARD are used to

construct true models using spline interpolation to determine values between the given data points.

The true models of the objective and the constraint constructed from the wind tunnel data, as well

as a contour plot of objective and constraint are shown in Figure 2.9. These data are also used to

estimate the model discrepancy at all points in the design space by taking the difference between

the true model and the simulator, XFOIL or SU2. The differences at all available samples are used

as training data for a Gaussian process regression. We set the evaluation costs of the objective

information sources to be C1 = 100 and C2 = 70, and for information sources of the constraint,

we set the evaluation costs to be Cg11 = 50 and Cg21 = 20. The number of Latin Hypercube

samples as alternatives is set to 100.

Figures 2.10 and 2.11 show the Gaussian processes and contour plots of XFOIL and SU2

coefficient of drag obtained by our proposed approach and the MF Algorithm respectively. As
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Figure 2.9: Optimization problem of Equation (2.27).

can be seen, in our proposed approach by querying 61 samples from SU2 and 56 samples from

XFOIL, the regions around the optimal solution of both information sources are well explored,

and the optimal solutions of the learned surrogates of the information sources are close to the

optimal design points of the real information sources. However, in the MF algorithm, 8 and 131

samples are queried from the SU2 and XFOIL information sources respectively and the Gaussian

process of SU2 is not properly explored, therefore the optimal solution is far from the true value.

Table 2.2 represents averaged results and their variances obtained by our approach and the MF

algorithm for a computational budget limited to 100,000. The expected results are averaged over

1000 replications of the simulations. The true models used to validate the method and estimate the

model discrepancies are the full set of real-world NACA 0012 wind tunnel data, which include 68

data points for objective (CD) and 64 data points for constraint (CL) throughout the design space.

The feasible optimal design point and the corresponding coefficient of drag for the true model are

x∗ = (0.6574, 3.0132) and CD∗ = 0.0064 respectively. It is clear that our proposed methodology

outperforms the MF Algorithm by obtaining the lower expected objective value, which is closer to
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the optimal solution obtained from the true model. Furthermore, our approach obtained expected

design points closer to the true feasible design points with lower variances. We emphasize here

that our approach is developed to best approximate the true optimum design and objective and

not to identify the optimal point on the highest fidelity model. In this case, as in the previous

demonstration, the fusion of our information sources, with the incorporation of model reification,

enabled a more accurate estimate of the true optimal point, which could not have been achieved

with either model in isolation, or with traditional fusion techniques.

Table 2.2: Expectation and variance of the results obtained by our proposed approach and MF
Algorithm [1] over 1000 replications of the simulations of optimization problem in Equation (2.27).
True optimal values are x∗ = (0.6574, 3.0132) and CD∗ = 0.0064.

E[M∗] var(M∗) E[α∗] var(α∗) E[CD
∗] var(CD

∗)

Proposed Approach 0.6169 0.0135 3.0240 0.0696 0.0071 0.0018

MF Algorithm [1] 0.4258 0.0231 4.3744 2.3556 0.0088 0.0018

2.5.3 Strength-Normalized Strain Hardening Rate in Dual-Phase Materials

In this part, we demonstrate the application of our framework to the optimization of the ground

truth strength normalized strain hardening rate for the dual-phase steel application. We stress here

that the purpose of our framework is the optimization of ground truth. Thus, we seek to identify

the best candidate for a ground truth experiment with whatever resources we have available. Once

those resources are exhausted, a ground truth experiment takes place based on the recommendation

of our framework. The result of that experiment can then be fed back into the framework. If more

resources are then allocated, perhaps on the basis of promising results, then the framework can be

employed again.

The specific demonstration consists of the use of the three reduced-order models (isostrain,
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Figure 2.10: Gaussian processes and contour plots of XFOIL and SU2 coefficient of drag obtained
by our proposed approach.

isostress, and isowork) to query the impact of quantifiable microstructural attributes on the me-

chanical response of a composite microstructure—in this case a dual-phase steel. The ground truth

in this case is the finite element model of the dual-phase material. The objective is the maximiza-

tion of the (ground truth) normalized strain hardening rate at εpl = 1.5%. The design variable is

the percentage of the hard phase, fhard, in the dual-phase material. The variation of the strength

normalized strain-hardening rate, (1/τ)(dτ/dεpl), with the volume fraction of the hard phase, fhard,

estimated at a strain level, εpl = 1.5%, using the microstructure-based finite element calculations,

is shown in Figure 2.12.

We assume that our resources limit us to five total queries to (any of) the information sources

before we must make a recommendation for a ground truth experiment. Given promising ground
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Figure 2.11: Gaussian processes and contour plots of XFOIL and SU2 coefficient of drag obtained
by MF Algorithm.

truth results, five more queries can be allocated to the information sources. The framework is

initialized with one query from each information source and one query from the ground truth. This

information is used to construct the initial intermediate Gaussian process surrogates.

The value-gradient policy per unit cost of our framework is used to select the next information

source and the location of the query in the input space for each iteration of the process. For

comparison purposes, the KG policy operating directly on the ground truth is also used to reveal

the gains that can be had by considering all available information sources. For this, a Gaussian

process representation is created and updated after each query to ground truth. The convergence

results of our proposed approach using all information sources and the KG policy on the ground

truth are shown in Figure 2.13. On the figure, the dashed line represents the optimal value of
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Figure 2.12: Comparison of the variation of the strength normalized strain-hardening rate,
(1/τ)(dτ/dεpl) at εpl = 1.5%, with the volume fraction of the hard phase, fhard, as predicted
by the three reduced-order models and the microstructure-based finite element model.

Figure 2.13: The optimal solution obtained by our proposed approach and by applying the knowl-
edge gradient on a GP of only the true data (RVE) for different number of samples queried from
the true model.

the ground truth quantity of interest. It is clear from this figure that our approach outperforms

the knowledge gradient applied to directly to ground truth, and in doing so, saves considerable

expense by reducing the number of needed ground truth experiments. The superior performance
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of our approach can be attributed to its ability to efficiently utilize the information available from

the three low fidelity information sources to better direct the querying at ground truth. We note that

the original sample from ground truth used for initialization was taken at fhard = 95%, which is far

away from the true optimal. This can be seen below in Figure 2.14 in the left column. Thus, the

framework, by leveraging the three inexpensive available information sources, is able to quickly

direct the ground truth experiment to a higher quality region of the design space.

Table 2.3 presents the results of each ground truth experiment conducted according to the

recommendation of our framework. From the table we see that the third recommendation for a

ground truth experiment produces a nearly optimal design. The final three experiments show that

little more is gained in terms of ground truth objective and that the fused model has learned more

about the ground truth in that region. At this point, it is likely that more resources would not be

allocated to this design problem and the framework is able to successfully find the best design.

Table 2.3: The optimal solution obtained by the fused model, and the true value at the obtained
optimum design point. The true optimal solution by the RVE model is (x∗ , f ∗) = (8.54 , 16.77).

Experiment x∗fused f ∗fused ftrue(x
∗
fused)

2 28.64 7.50 13.66
3 10.05 11.98 16.69
4 10.55 13.92 16.64
5 9.55 15.47 16.73
6 8.80 16.71 16.75

Updates to each information source Gaussian process surrogate model and the fused model

representing our knowledge of ground truth are also shown in Figure 2.14 for iterations 1, 15, and

30 of the information source querying process. Here, an iteration occurs when an information

source is queried. This is distinct from any queries to ground truth. As can be seen from the left

column, the first experiment from ground truth and the first query from each information source

told us little about the location of the true objective. However, on iteration 15, the fused model,
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shown by the smooth red curve, has identified the best region of the design space, although it

under-predicts the ground truth at this point. We note that at this point, only 3 expensive ground

truth experiments have been conducted. By iteration 30, the fused model is very accurate in the

region surrounding the optimal design for ground truth. At this point, six ground truth experiments

have been conducted. From Figure 2.12 and this figure, it is clear that none of the information

sources share the ground truth optimum. The ability of the framework to find this optimum rested

upon the use of correlation exploiting fusion, and would not have been possible using traditional

methods.

To conclude this demonstration we present the history of the queries to each information source

and the ground truth. This information is provided in Fig. 2.15. Note, that the iteration now counts

queries to each information source as well as ground truth experiments. From the figure, it is clear

that all three information sources are exploited to find the ground truth optimal design, implying

that, however imperfect, all sources available to the designer must be used, in an optimal manner,

in order to identify the optimal ground truth.

Figure 2.15: Number of samples queried from the true model (RVE) and the information sources
in each iteration.
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Figure 2.14: The fused model and Gaussian processes of the isowork, isostrain and isostress mod-
els in comparison with the true (RVE) model in iterations 1, 15 and 30.

34



3. BAYESIAN OPTIMIZATION IN LARGE-SCALE SYSTEMS*

3.1 Overview

Available computational models for many engineering design applications are both expen-

sive and black-box. This renders traditional optimization techniques difficult to apply, including

gradient-based optimization and expensive heuristic approaches. For such situations, Bayesian

global optimization approaches, that both explore and exploit a true function while building a

metamodel of it, are applied. These methods often rely on a set of alternative candidate designs

over which a querying policy is designed to search. For even modestly high dimensional problems,

such an alternative set approach can be computationally intractable, due to the reliance on exces-

sive exploration of the design space. To overcome this, we have developed a framework for the

optimization of expensive black-box models, which is based on active subspace exploitation and

a two-step knowledge gradient policy. We demonstrate our approach on three benchmark prob-

lems and a practical aerostructural wing design problem, where our method performs well against

traditional direct application of Bayesian global optimization techniques.

3.2 Introduction

For many engineering design applications, available computational models are expensive and

of a black-box nature. In such situations, Bayesian global optimization techniques, such as ef-

ficient global optimization [57–59], sequential Kriging optimization [60–62], value-based global

optimization [63–66], and the knowledge gradient [38, 67, 68] can be very effective. These tech-

niques generally rely on the simultaneous learning and optimization of a metamodel, or surrogate,

of the true model. Often, a querying policy is implemented over a set of alternatives to explore

and exploit information from the true function. In many cases, the size of this alternatives set in-

creases exponentially with the input dimension of the true function. This renders even modestly

*Reprinted with permission from “Adaptive Dimensionality Reduction for Fast Sequential Optimization with Gaussian
Processes” by S. F. Ghoreishi, S. Friedman, and D. Allaire., 2019. Journal of Mechanical Design, Copyright 2019 by
ASME.
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high dimensional problems intractable, and requires recourse to gradient-based Bayesian global

optimization approaches, which can be susceptible to local minima. To better understand the

challenges in high-dimensional problems, consider a d-dimensional design space where a simple

discretization of each dimension to n points, results in nd different alternative samples for the

exploration process. This number increases to nd+m in a (d + m)-dimensional problem. This ex-

ponential growth in the alternatives set makes the optimization process slow or intractable, limiting

the applicability of alternative-based Bayesian optimization techniques to problems with less than

4 or 5 dimensions.

To enable the use of alternatives-based Bayesian global optimization for the optimization of ex-

pensive black-box functions, we develop here a novel two-step knowledge gradient policy that ex-

ploits potential active subspaces of a given true function. In our approach, with previously queried

data, the active subspace method [69] is used to map the problem to one of smaller dimension

based on directions of greatest variability of the true function. Exponentially fewer alternatives are

required on this smaller dimensional problem and the knowledge gradient can readily be applied.

The solution to the problem on the active subspace is then mapped to the original space where a

second knowledge gradient is applied to a hyperplane orthogonal to the active subspace. The re-

sult is a method that enables the application of the alternatives-based knowledge gradient policy to

moderately high dimensional problems. Further, due to the fact that the initial knowledge gradient

step is focused in directions defined by the largest variability of the true function, our method is

significantly more efficient than direct application of the knowledge gradient to the true function.

That is, exploiting the active subspace, when one exists, can lead to significant gains in terms of

iterations required for convergence.

3.3 Background

Optimization of expensive to evaluate black-box models is often made tractable by the incor-

poration of lower fidelity metamodels, or surrogate models. These methods have seen significant

application in engineering design optimization. Most of these approaches build corrections to low-

fidelity information from higher fidelity sources, such as adding global response surface corrections
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to low-fidelity models [70–72], using low-fidelity information for coarse-grained search while us-

ing high-fidelity function values for fine grained decisions [73–76], creating a response surface

using both high- and low-fidelity results [77, 78], and running higher-fidelity models when two

or more lower-fidelity models disagree [79, 80]. More formal multifidelity optimization frame-

works use either a local approach, such as trust region model management and other surrogate

management techniques [81–88], or a global approach constructed via interpolation of the high-

fidelity objective function. For example, efficient global optimization (EGO), sequential Kriging

optimization (SKO), and knowledge gradient (KG) optimization use a Gaussian process model to

estimate the location of high-fidelity optima and guide multifidelity sampling [38, 57, 60, 89–92].

Another common means of optimizing expensive to evaluate problems is the use of either local

or global sensitivity analysis. In local sensitivity analysis, gradient information is obtained (e.g.,

using finite differences for black-box functions). This information can then be used to inform the

search direction and plays a significant role in several of the surrogate model management frame-

works noted above. For certain optimization methodologies, the dimension of the design vector is

a key contributor to computational expense. For example, in many Bayesian global optimization

techniques, such as EGO and KG, an optimization problem should be solved over the alternative

set according to an acquisition function over the surrogate model. This can be computationally

expensive or intractable for large alternative sets. To handle this situation, methods for reducing

the dimension of the design vector in the alternative set are desired. Global sensitivity analysis pro-

vides a well-known technique for dimension reduction that maintains the original design variables.

By considering total effect sensitivity indices [93–95], design variables that do not play a signifi-

cant role can be fixed to a nominal value. However, in situations where effective lower dimensional

approximations do not align well with the design variable directions, alternative subspace approx-

imation techniques can be employed. It should be noted that while global or local sensitivity

information can be used for dimensionality reduction, the process of obtaining this global/local

information is still affected by the curse of dimensionality, since it is based on sampling of the

black box model or of a surrogate constructed from samples of it. Hence, the problems that can be
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solved by sensitivity analysis techniques are still limited by the size of the original design space.

Subspace approximation approaches are widely used in optimization [96], model reduction

[97], optimal control [98], and other tasks. The proper orthogonal decomposition technique, also

known as principal component analysis [99], has been developed to reduce the dimension of the

state space of high-order systems. In this method, data are projected to a new coordinate system de-

fined by principal components. Singular value decomposition is a common approach for selection

of dimensions using principal component analysis [100]. These techniques are used in model-

ing and optimization strategies to solve high-dimensional design problems with computationally-

expensive black-box functions and are surveyed in Refs. [101–103]. These techniques are typically

used to either reduce the dimension of the output space, for example the objectives of a multidi-

mensional optimization; or the dimension of an input space that has been conditioned by some

process, for example on the optimized samples on a pareto-front [104].

A recent approach to subspace approximation is the Active Subspace method [69, 105, 106].

In this method, the directions in which a function has the largest variability are detected to con-

struct an approximate model in a low-dimensional subspace of the function’s input design space.

This is achieved using first order derivatives. These derivatives can be computed by several tech-

niques, such as adjoint methods [107, 108] and algorithmic differentiation [109]. Upon compu-

tation of the function’s gradients at a set of input design points, the active subspace technique

detects the important directions, followed by rotating the input design space in the directions in

which the function has the highest variability. Then, the input design space is projected to the

low-dimensional subspace where the function is then approximated. Following Ref. [69], this low-

dimensional subspace is called the active subspace [105]. This approach has been applied to design

optimization [110, 111], inverse analysis [112], spatial sensitivity analysis [113], aerospace shape

optimization [104], and uncertainty quantification for multiphysics scramjet models [114].

In the following section, we state the problem we seek to solve. Our approach to solving

this problem then follows. This approach brings to bear the tools and techniques of Bayesian

global optimization with the active subspace method in a novel manner that enables more efficient

38



optimization of expensive black-box models when an active subspace is present.

3.4 Problem Statement

We consider the problem of constrained optimization of an expensive to evaluate and black-

box objective function f(x) with design space, χ ⊆ Rm. The specific problem is to find a design

according to

x∗ = arg max
x∈χ

f(x)

s.t. cj(x) ≤ 0, j = 1, 2, . . . , s,

(3.1)

where x is a set of design variables in the input design space χ, and cj(x), where j = 1, 2, . . . , s,

are a set of constraints that must be satisfied. These constraints are also assumed to be expensive

to evaluate black-box functions.

For problems such as that given by Equation 3.1, it is common to employ sequential querying

policies built off of learned surrogate models as part of a Bayesian global optimization process

designed to both explore and exploit based on learned function values. For this, there are two

traditional techniques for choosing what to query next [37]. These are efficient global optimiza-

tion [57] and its extensions, such as sequential Kriging optimization [115] and value-based global

optimization [63], and the knowledge gradient [27,32,38,116,117]. EGO uses a Gaussian process

but assumes no noise [118,119]. SKO also uses Gaussian processes, but includes a tunable weight-

ing factor to lean towards decisions with higher uncertainty [37]. KG uses Gaussian processes and

differs from EGO in that the overall best objective value, as determined by a current learned sur-

rogate is used, rather than a best queried value. In Ref. [40] the superiority of the KG policy was

demonstrated on several benchmark functions.

The KG policy, as with other Bayesian optimization techniques, performs poorly in systems

with large input design spaces. This is generally due to the scaling of the alternatives set with input

dimension. In other words, Bayesian optimization techniques rely on proper exploration of the

design space at the beginning of the optimization process, which gets exponentially more expensive

as the dimension of the input space increases. Thus, in this paper, we develop an approach based
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on the active subspace method and a two-step knowledge gradient technique to adaptively reduce

the dimension of the input design space and boost the speed of the optimization process. In the

following subsections, the key ingredients of our approach which include the active subspace,

Gaussian process regression, and the knowledge gradient policy are discussed.

3.4.1 Active Subspace Method

The active subspace method is a technique for discovering the directions of largest variability

of a function. Once discovered, an approximation of the function can then be constructed on a

lower dimensional subspace defined by these directions. The result is the potential for learning a

subspace with significantly lower dimension than that of the original problem [69]. This potential,

when it exists, can be exploited to create significant efficiency gains in the application of knowledge

gradient policies to expensive black-box optimization problems.

Following Ref. [105], let f be a scalar objective function of m input variables x in the input

design space χ, and∇xf be the column vector of gradient of f at design point x. That is

f = f(x), ∇xf = ∇xf(x), x ∈ χ. (3.2)

The goal is to find an n-dimensional, n < m, active subspace of the input variables that contains

most of the variability of the objective function, and a function g : Rn → R that is the approximate

representation of f in the active subspace.

The first step is estimating the covariance of the gradient by computing the expectation over

the probability density function of x on χ. We note here that the use of concepts from probability

is entirely for convenience. There are no requirements of stochasticity in the underlying variables

or functions. Thus, the expectation is usually taken considering uniformly distributed design vari-

ables. The m×m covariance matrix C is defined as

C = E[∇xf(x)∇xf(x)>]. (3.3)
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The exact computation of the covariance matrix in Equation 3.3 is not possible in most problems,

especially in the case of black-box functions. However, it can be approximated using Monte Carlo

methods. This can be achieved by first drawing M samples in the design space and computing the

gradient values at those points (e.g., using finite differences). Then the covariance matrix can be

estimated as

C ≈ 1

M

M∑
i=1

∇xf(xi)∇xf(xi)
>. (3.4)

In order to identify the most effective directions of the input design space, the eigenvectors of

the covariance matrix, which is a symmetric and positive semidefinite matrix, are computed. The

covariance matrix can then be written based on the eigenvalue decomposition as

C = WΛW>, (3.5)

where W is a m × m column matrix of eigenvectors, and Λ is a diagonal matrix of eigenval-

ues. Note that here, the eigenvalues and eigenvectors are placed in descending order. The first n

eigenvectors are then selected to form a reduced-order basis. This partitions the eigenvectors and

eigenvalues as

W =

[
U V

]
, Λ =

 Λ1

Λ2

 , (3.6)

where U contains the first n columns of W, and defines the active subspace of the input design

space. Now, the original full space can be transferred to the active subspace as

z = U>x, (3.7)

and the function f can be approximated in this active subspace as

f(x) ≈ g(U>x) = g(z), (3.8)
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where the domain of g is

Z = {z = U>x, x ∈ χ} ⊂ Rn. (3.9)

3.4.2 Gaussian Process Regression

Gaussian processes are powerful statistical tools for probabilistic modeling purposes. A Gaus-

sian process can be thought of as a generalized version of the Gaussian distribution applied over

a continuous input space. In other words, it is an infinite-dimensional normal distribution where

each sample in the input space has a corresponding normal distribution that is characterized by

mean and covariance functions [41]. This class of models is widely used in engineering applica-

tions due to its flexibility, the ability to incorporate prior knowledge, and the ability to work with

small sample sizes.

Gaussian process regression is a non-parametric Bayesian approach that conditions a proba-

bilistic function to training data. Following Ref. [41], Gaussian process regression is approached

by conditioning a multivariate normal distribution as

f ∼ N (µ,Σ) , (3.10)

where f is a normally distributed function with mean µ and covariance matrix Σ. Assuming that

N training data are available, represented by XN = (x1, . . . ,xN) and yN = (y1, . . . , yN) as input

and output samples respectively, the posterior distribution of f at any design point x in the input

design space is given as

f(x) | XN ,yN ∼ N
(
µ(x), σ2(x)

)
, (3.11)

where

µ(x) = K(XN ,x)T [K(XN ,XN) + σ2
nI]−1yN , (3.12)

σ2(x) = k(x,x)−K(XN ,x)T [K(XN ,XN) + σ2
nI]−1K(XN ,x), (3.13)

where k is a real-valued kernel function over the input space, K(XN ,XN) is the N × N matrix
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whose m,n entry is k(xm,xn), and K(XN ,x) is the N × 1 vector whose mth entry is k(xm,x).

Note that the term σ2
n,i can be used to model observation error and can also be used to guard

against numerical ill-conditioning. In this paper, the following exponential kernel function has

been employed

k(x,x′) = σ2
f exp

(
−||x− x′||22

2l2

)
, (3.14)

where ||.||22 is square of the L2-norm, σ2
f determines the prior variance and l denotes the charac-

teristic length-scale. The parameters of the Gaussian process, i.e., σ2
f , l and σ2

n, can be updated

at each time new information is obtained by using a maximum likelihood approach or Bayesian

techniques [41].

3.4.3 Knowledge Gradient

Given a Gaussian process representation of the underlying function to be optimized, the next

requirement is the decision on where to query next. For this, we incorporate the knowledge gradient

policy. Let {x1:N , y1:N} be the set of design points and the corresponding objective values that

have been used to construct the Gaussian process of the objective function. Let f(x) represent this

posterior distribution of the function given this available information. The best expected objective

value can be computed as

f ∗N = max
x∈χ

E[f(x) | x1:N , y1:N ]. (3.15)

Similarly, if one additional design point can be queried to update the posterior distribution of the

model, the best expected objective value would be

f ∗N+1 = max
x∈χ

E[f(x) | x1:N+1, y1:N+1]. (3.16)

The difference f ∗N+1−f ∗N specifies the improvement in value of the function resulting from the ad-

ditional query. The idea is to select a design point to query that maximizes this improvement. Since

the Gaussian process is the probabilistic representation of the objective function, when choosing

xN+1, there is stochasticity in the value of the objective function, i.e., yN+1, upon querying xN+1.
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Thus, one needs to compute the expected value of improvement using the posterior predictive

distribution of the objective function.

The knowledge gradient technique [31, 37–39, 120] is a method for selecting the design point

that maximizes the expected increase in the objective value. Letting SN = E[f(x) | x1:N , y1:N ]

be the knowledge state, the value of being at state SN is defined as V N(SN) = max
x∈χ

SN . The

knowledge gradient which is a measure of expected improvement, if the design point x would be

queried at the next time step, can be defined as

νKG,Nx = E[V N+1
(
SN+1(x)

)
− V N(SN) | SN ], (3.17)

where the expectation is taken over the stochasticity in the posterior distribution of the objective at

design point x, i.e., f(x).

Now, let χalt be the alternative set, which denotes a finite set of design samples. The knowledge

gradient policy for sequentially choosing the next query is then given as

xKG,N = arg max
x∈χalt

νKG,Nx . (3.18)

Calculation of the knowledge gradient, which is based on a piecewise linear function, is discussed

in detail in two algorithms presented in Ref. [40].

3.5 Approach

Our approach to solving Equation 3.1 is based on bringing together the ideas of Bayesian global

optimization, via the knowledge gradient, and subspace approximation, via the active subspace.

From a general standpoint, the approach alternates between applying the knowledge gradient on a

learned active subspace and applying the knowledge gradient on a hyperplane of the original design

space (and orthogonal to the active subspace). The result is an efficient method for the solution of

Equation 3.1 when an active subspace exists. We stress here that the learned active subspace itself

is adaptive in our methodology, allowing for rapid initial progress followed by better and better
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approximation of the true underlying subspace. The details of our approach are provided in the

following paragraphs. The section concludes with an algorithm for implementing our approach

and a flowchart depicting the main steps.

The approach starts by constructing Gaussian processes for the objective function, f(x), and

the constraints, cj(x), j = 1, . . . , s, in the original m-dimensional input design space based on

their available data. As discussed in Section 3.4.2, these Gaussian processes are given as

f(x) | XN ,yN ∼ N
(
µh(x), σ2

h(x)
)
, (3.19)

cj(x) | XNj
, cNj

∼ N
(
µcj(x), σ2

cj
(x)
)
, (3.20)

where µh and σ2
h are the mean and variance of the objective function at design point x in the

original high-dimensional space, and µcj and σ2
cj

are those of constraint j given the available data

XNj
and cNj

.

After constructing the Gaussian processes of the objective function and constraints, the next

step is to choose the next design point to query. Here, this is achieved via a two-step knowledge

gradient process. Rather than directly applying the knowledge gradient on the potentially high

dimensional original space, we first map the original space to an active subspace. In this lower

dimensional space we apply the knowledge gradient policy. Since this lower dimensional space is

an active subspace, useful objective function improvement is expected at significantly less com-

putational expense. The active subspace itself is found by evaluating the gradient of the function

at the N currently available samples. This can be done through finite differences with the current

Gaussian process or other means that may be available for a given function. Then, the covariance

matrix is estimated according to Equation 3.4 and the normalized eigenvalues are computed for

this matrix. The eigenvectors associated to the normalized eigenvalues larger than a user defined

threshold specify the transformation matrix U to find the active subspace. Notice that this threshold

should take value between 0 and 1. Setting larger values for this threshold results in more dimen-

sionality reduction, whereas smaller values are associated with active subspaces with a number of
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dimensions closer to the original space. In practice, this value could be chosen adaptively during

the optimization process. This could be done in such a way that larger values are selected at the

beginning of the process for fast exploration, and as more queries are made and the covariance

matrix of gradients is better approximated, smaller values of the threshold are selected to avoid

unnecessary reduction and error in the optimization process.

After identifying the active subspace, the N available input vectors are projected onto the

subspace as

ZN = U>NXN , (3.21)

where ZN are the input vectors in the low-dimensional space, UN is the active subspace, and XN

are the available input vectors in the original space. We note again that this active subspace is

adaptive. In the initial stages of the approach, the covariance matrix might be estimated inaccu-

rately due to its sensitivity to the initial quality/accuracy of the surrogate model and its correlation

parameters, which can result in inaccurate detection of the active subspace in early stages. As the

Gaussian process of the objective function is updated, a new active subspace is computed. Thus,

as the more points are queried, the approximation of the active subspace becomes closer to the true

active subspace as a result of the Gaussian process representation of the function becoming closer

to the true underlying function.

After the original space has been mapped to the active subspace, we have the lower dimensional

representation of the previously queried points according to Equation 3.21. From these data, we

construct a Gaussian process in the active subspace as

g(z) | ZN ,yN ∼ N
(
µl(z), σ2

l (z)
)
, (3.22)

where g is the posterior distribution of the objective function in the low-dimensional space, and

µl and σ2
l are the mean and variance of the objective function at the design point z in this space

respectively. The next step of the approach is then to use the knowledge gradient to find the next

best point to query in the active subspace. For this, we generate Latin Hypercube samples in the
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current active subspace, which we denote as the alternative set Zf . Among these alternatives, we

select the one that leads to the maximum knowledge gradient in the current active subspace, as

zN+1 = arg max
z∈Zf

νKG,Nz . (3.23)

Upon selection of the best point in the current active subspace, this sample, zN+1, needs to be

mapped back to the original input space. For this, we use the following transformation


z1N+1

...

znN+1


︸ ︷︷ ︸

zN+1

=


u11 u12 · · · u1n · · · u1m

...

un1 un2 · · · unn · · · unm


︸ ︷︷ ︸

UT
N



x1N+1

...

xnN+1

...

xmN+1


︸ ︷︷ ︸

xN+1

,

s.t. xN+1 ∈ χ,

(3.24)

where xN+1 is the solution to the above linear equations. It is easy to verify that the solution to the

inverse mapping in Equation 3.24 is not unique and the transformation will thus lead to an infinite

set of design points in the original space. To keep the computation tractable, we propose a strategy

to choose a single point xN+1 ∈ χ given each zN+1 ∈ Z .

Since the design point needs to be inverse mapped from n dimensions to m dimensions (n <

m), one needs to discretize m − n arbitrary dimensions of the original space and plug in these

discretized values in the equations and solve the n equations to find the remaining n values of

xN+1. For simplicity and without loss of generality, Nf samples from the last m − n dimensions

are generated using techniques such as Latin Hypercube sampling. Then, the other dimensions

of these N samples are obtained by solving Equation 3.24. We note here that constraints are

also checked at this point. Specifically, only those samples that satisfy µcj(x) − 3σcj(x) ≤ 0 for

j = 1, . . . , s are kept. This set is denoted by Xf , and called the inverse-mapped set. The constraint
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handling strategy follows that of Ref. [31], where it was found to have good performance. Since

Gaussian process variances are large in early iterations, it is easy to satisfy the probabilistic con-

straints, which enables good exploration potential. As the process moves forward, the variances

are reduced via learning, and the probabilistic constraints converge to the true constraints given by

Equation 3.1. In general, a practitioner can control the level of acceptability in terms of constraint

violation by modifying the coefficient of σcj(x) as deemed appropriate.

A depiction of the proposed inverse mapping process is shown in Fig. 3.1. In this figure, the

Inverse Map

-5 0 5
z

-100

-50

0

50

100

g(
z)

Gaussian Process in Active Subspace

Figure 3.1: A depiction of the inverse mapping process.

left plot shows the Gaussian process of an objective function in its active subspace and the right

plot shows the Gaussian process in the original space. In the left plot, the red circle shows the

selected point, i.e. zN+1, by the first-step knowledge gradient, and the red samples in the right

plot show the inverse-mapped set. Now, among all the samples in the inverse-mapped set, the best

design point to query needs to be selected (i.e., xN+1 ∈ Xf ). It is desired to select a sample that

yields the highest expected improvement in the original space. We propose to select this sample

by applying the knowledge gradient policy to the inverse-mapped set in the original space.

Applying the knowledge gradient in the whole original space leads to poor performance in

selection of the best design point to query. This is due to the fact that the alternative set should
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be enumerated in the high-dimensional original space. This number of alternatives in this set will

suffer from the curse of dimensionality. Further, if there is an active subspace, then exploring cer-

tain directions of the high-dimensional original space may be inefficient due to a lack of variability

along those directions. We overcome this issue in our approach by applying two knowledge gradi-

ent steps. The first on the active subspace and the second orthogonal to the active subspace in the

original space. Thus, the alternative set in the original, high-dimensional space can be enumerated

on a hyperplane of the original space, as shown by the red samples in the right plot of Fig. 3.1.

Now, performing the knowledge gradient leads to selection of a sample with the highest expected

improvement as

xN+1 = arg max
x∈Xf

νKG,Nx . (3.25)

where νKG,Nx is defined in Equation 3.17.

After observing yN+1 corresponding to the selected design point xN+1, the Gaussian pro-

cesses of the high-dimensional objective function and all the constraints are updated based on

XN+1, yN+1 and cN+1j . Afterwards, the active subspace method is applied to find the new low-

dimensional subspace according to the current updated knowledge about the objective function,

and the entire process is repeated. Thus, our approach is adaptive in finding the active subspace in

each iteration. The process continues by finding the next design point to query, and repeats until

a termination criterion, such as exhaustion of the querying budget, is met. The final solution to

Equation 3.1 is then found from the current Gaussian process in the original space. Our proposed

approach for adaptive dimensionality reduction for fast sequential optimization with Gaussian pro-

cesses is presented in Algorithm 1, and Fig. 3.2 presents a schematic diagram of our approach.

3.6 Benchmark Applications

In this section, we present the key features of our proposed sequential adaptive dimensionality

reduction approach for fast optimization of expensive black-box functions. We focus here on

benchmark problems designed to highlight the strengths and limitations of the approach. We begin

with an analytic two-dimensional constrained optimization problem, which we use to demonstrate
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Algorithm 1 Adaptive Dimensionality Reduction for Fast Sequential Optimization with Gaussian
Processes

1: Construct Gaussian processes for the objective function and constraints in the original space
χ.

repeat
• 2: Find the active subspace corresponding to the normalized eigenvalues of the covari-

ance matrix in Equation 3.4 larger than a user defined threshold.

• 3: Transform the data available in the original space to the active subspace.

• 4: Construct the Gaussian process of the objective function in the active subspace Z .

• 5: Generate Latin Hypercube samples in the active subspace Z .

• 6: Apply the first-step knowledge gradient to select a design point in the active subspace.

• 7: Inverse map the selected design point to the original space according to Equation 3.24.

• 8: Apply the second-step knowledge gradient to select the best design point in the original
space according to Equation 3.25.

• 9: Update the Gaussian processes of the constraints and the objective function in the
original space based on the observations obtained at the selected design sample.

until termination

10: Return the feasible design point with the largest estimated objective value according to the
Gaussian processes of the constraints and the objective function in the original space.

the effectiveness of our approach when an active subspace exists. We follow that demonstration

with the application of our methodology to standard benchmark problems from the literature to

reveal the behavior of our approach when an active subspace does not exist.
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Figure 3.2: A depiction of our proposed approach for fast sequential optimization. “GP" stands for
Gaussian process and “KG" stands for knowledge gradient.

3.6.1 Two-Dimensional Function

We first consider the constrained maximization of an analytic two-dimensional function. The

problem is given as

x∗ = argmax
x∈[−5, 5]2

x21 + x22 + 2x1x2

s.t. x1 + x2 < 6.

(3.26)

The feasible optimal solution for this problem is x∗ = (−5,−5) with the optimal objective value

f(x∗) = 100. A depiction of this example in the original two-dimensional space is shown in Fig-

ure 3.3, where the plane separating the feasible and infeasible regions is shown in red. Figure 3.4

represents the transformed objective function to its active subspace, which is a one-dimensional

space for this function. We note that these two figures are shown for the sake of visualization, and

these are assumed to be unknown prior to applying our approach.
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Infeasible Region

Figure 3.3: A depiction of the two-dimensional function in Equation 3.26

Figure 3.4: A depiction of the function of Equation 3.26 in its one-dimensional active
subspace

Figure 3.5 demonstrates the learned Gaussian processes for this problem both with and without

use of the active subspace. Each column of the figure represents an iteration (here the third, sixth,

and ninth iterations of the optimization process). The top row provides the Gaussian process

representation in the active subspace. The middle row shows the Gaussian process in the original

space when our approach (exploiting the active subspace) is utilized. The bottom row shows the
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Figure 3.5: Gaussian processes of the objective function in the original two-dimensional space
obtained by our active subspace exploiting approach and via direct knowledge gradient application
to the full model.

Gaussian process in the original space when the knowledge gradient is applied directly to the full

model. From the figure it is clear that the use of the active subspace significantly improves the

Gaussian process representation in the original space. This is the result of more efficient use of

queries to the full model that were made possible through identification of the active subspace for

this problem.
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3.6.2 Benchmarks with and without Active Subspaces

In this subsection, we focus on the situation where a function we seek to optimize does not

have an active subspace. In most situations, given the black-box nature of the functions we seek

to optimize, whether or not a given function has an active subspace will be unknown a priori.

Therefore, it is necessary to understand the behavior of our approach when an active subspace does

not exist for a given function. For this, we test our methodology on three unconstrained analytic

problems, two of which have a negligible active subspace. The first of the three functions studied
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Figure 3.6: The two-dimensional function examples and the mean and 95% confidence interval of
the maximum function values obtained by our approach with active subspace exploitation and with
direct knowledge gradient application in each iteration over 100 independent runs.

here is the objective function given in the previous subsection and will be denoted as example 1 in

what follows. The second (example 2) is the negated six-hump camel back function of Ref. [121].
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This function is given as

f(x) = −
(

(4− 2.1x21 +
x41
3

)x21 + x1x2 + (−4 + 4x22)x
2
2

)
, (3.27)

where x1 ∈ [−3, 3] and x2 ∈ [−2, 2], and the optimal solutions are x∗ = (0.0898 , −0.7126)

and (−0.0898 , 0.7126) with the objective value f(x∗) = 1.0316. The third benchmark problem

(example 3) is the negated Mishra’s Bird function, which can be found in Ref. [122]. This function

is given as

f(x) = −
(

sin(x2) exp[(1− cosx1)
2] + · · ·

cos(x1) exp[(1− sinx2)
2] + (x1 − x2)2

)
, (3.28)

where x1 ∈ [−10, 0] and x2 ∈ [−6.5, 0], and the optimal solution is x∗ = (−3.1302 , −1.5821)

with the objective value f(x∗) = 106.7645.

Figure 3.6 shows the objective functions of examples 1, 2 and 3, as well as the mean and 95%

confidence interval of the maximum objective function value obtained in each iteration of applying

our approach with active subspace exploitation and performing the knowledge gradient method in

the original space without the active subspace. The results are obtained over 100 independent runs.

As was seen in the previous subsection, the first example has a one-dimensional active subspace.

Our approach is able to exploit this and obtain a larger average maximum objective value in each

iteration as compared to direct application of the knowledge gradient policy to the original function.

In example 2, the function gently varies in all directions and there is no useful active subspace. As

shown in the center plots of Fig. 3.6, our approach thus performs similarly to the direct application

of the knowledge gradient. We note here, however, that in early iterations some efficiency gains

are still had through the use of our method. In the extreme case of example 3, the function varies

significantly in all directions. Therefore, there is no possible reduction to a meaningful active

subspace. Our approach, with the exception of the first iteration, performs exactly the same as
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when the knowledge gradient is applied to the function in the original space. The key takeaway

here is that the worst case scenario of applying our method, that is, the situation where there is

no active subspace to take advantage of, simply reverts our approach to that of direct knowledge

gradient application to the original function. However, as can be seen from the left plots of Fig. 3.6,

if there is an active subspace, our approach can exploit it for significant gains in efficiency.

3.6.3 Rosenbrock Function

Here, in order to assess the effectiveness of the proposed method in higher dimensions, we con-

sider the negated 10- and 20-dimensional Rosenbrock function, which can be found in Ref. [122]

and is given as

f(x) = −
N−1∑
i=1

[100(xi+1 − x2i )2 + (xi − 1)2], (3.29)

where xi ∈ [−2.048, 2.048], and the optimal solution is x∗ = (1 , . . . , 1) with the objective value

f(x∗) = 0. Figures 3.7 and 3.8 show the mean and 95% confidence interval of the maximum

objective function value obtained in each iteration of applying our approach with active subspace

exploitation and performing the knowledge gradient method in the original space without the active

subspace. The results are obtained over 100 independent runs. As can be seen, our approach, by

exploiting the active subspace, shows significant improvements in performance versus the case

without active subspace exploitation. Figures 3.9 and 3.10 show the average dimension of the

active subspace as a function of the iteration number. As can be seen, in the initial stages of the

approach, the dimension is decreased substantially and as the process goes on, the dimension of the

problem remains less than 5 and 9 dimensions on average for 10- and 20-dimensional Rosenbrock

function respectively.

3.7 Aerostructural Demonstration Problem

To demonstrate the effectiveness of our approach on a realistic problem, we consider the

aerostructural design of an aircraft wing for fuel burn minimization. The aerostructural model

of the wing used for this demonstration is based on the NASA Common Research Model (CRM)

[123], which is a commonly used representation of a long-range commercial airliner wing operat-
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Figure 3.7: The mean and 95% confidence interval of the maximum function values obtained by
our approach with active subspace exploitation and without active subspace exploitation in each
iteration obtained over 100 independent simulations of the 10-dimensional Rosenbrock function.

Figure 3.8: The mean and 95% confidence interval of the maximum function values obtained by
our approach with active subspace exploitation and without active subspace exploitation in each
iteration obtained over 100 independent simulations of the 20-dimensional Rosenbrock function.

ing in transonic flight [124]. The aerostructural model consists of a three-dimensional aerodynamic

and structural deformation coupled system. The aerodynamic lift is calculated using a vortex lat-

tice method and the structural deformation of the wing is calculated using a six degree of freedom
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Figure 3.9: Active subspace dimension in each iteration averaged over 100 independent simula-
tions of the 10-dimensional Rosenbrock function.
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Figure 3.10: Active subspace dimension in each iteration averaged over 100 independent simula-
tions of the 20-dimensional Rosenbrock function.

spatial beam finite element method. The coupled nature of the two subsystems is a consequence

of the aerodynamic lifting force deforming the wing geometry, which in turn has a feedback effect

on the aerodynamics. This is shown schematically in Fig. 3.11, which is adapted from Ref. [125]

and uses the XDSM methodology of Ref. [126]. In the figure, y represents the fuel burn and ci
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represents the constraints. A more detailed schematic of the aerostructural system is presented in

Ref. [124]. The model’s design variables are used to determine the undeformed wing geometry and

xi

Wing
Geometry

initial
mesh

MDA
wing
mesh

lift,
weight

lift,
weight

Aerodynamics loads

deformed
mesh

Structures

Functionals y

Constraints ci

Figure 3.11: A simplified depiction of the aerostructural system

internal spar properties. We start with the CRM wing shape and then vary its twist distribution,

taper ratio, and chord ratio, and vary the spar thickness distribution. The aircraft is assumed to be

in steady flight at cruising altitude and the spar elements are assumed to be made from aluminum.

The twist and thickness distribution design variables are control points used in a B-spline in-

terpolation to vary the design along the wing’s span. We used two control points each for the twist

and thickness distributions. The wing’s twist effectively changes the wing’s angle of attack along

its span. The spar thickness affects the wing’s weight as well as it’s strength. The taper and chord

ratios affect the chord length of the wing, which varies linearly along the span of the wing.

The coupled system analysis is conducted using a Gauss-Seidel iterator [127] until the aero-

dynamic loads and structural deformations converge to a fixed point. After the variables in the

coupled system converge, the fuel range is computed along with other performance-based values

and problem constraints. The model employs three constraints in the optimization: 1) it is ensured
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that stress on structural spars due to aerodynamic loads remain below the yield stress for the spar

material properties; 2) it is ensured that the spar thickness does not exceed the wing thickness; and

3) it is assumed that the aircraft is in steady flight by enforcing the total aerodynamic lifting force

be equal to the aircraft weight. In this problem, the goal is to minimize the fuel burn subject to

these three constraints as

x∗ = arg min
x∈χ

fuel burn(x)

s.t. lift-weight constraint (L = W )

structural failure constraint

structural intersection constraint

(3.30)

where

x =



x1

x2

x3

x4

x5

x6


=



Twist Distribution 1

Twist Distribution 2

Thickness Distribution 1

Thickness Distribution 2

Taper Ratio

Chord Ratio


. (3.31)

The boundaries of the design variables are listed in Table 3.1.

To identify the true optimum for this problem, we use a gradient-based nonlinear optimizer

using sequential least squares programming (SLSQP) [128]. The optimal solution obtained by

SLSQP is x∗ = [12.8037 , 14.7378 , 0.0377 , 0.0718 , 0.2 , 0.9] with minimum fuel burn equal

to 1.0190 × 105. Figure 3.12 shows the mean and 95% confidence interval of the minimum fuel

burn obtained by our approach with active subspace exploitation and without active subspace ex-

ploitation in each iteration obtained over 100 independent simulations. Our approach, on average,

obtains lower values of fuel burn in each iteration compared to the case that does not apply the
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Table 3.1: Design variable bounds for the aerostructural problem. LB is the lower bound, UB is
the upper bound, and # is the number of variables of a given type.

Design Variable # LB UB
Twist Distribution 2 -15 15

Thickness Distribution 2 0.001 0.25
Taper Ratio 1 0.2 1.5
Chord Ratio 1 0.9 1.1

Figure 3.12: The mean and 95% confidence interval of the minimum function values obtained by
our approach with active subspace exploitation and without active subspace exploitation in each
iteration obtained over 100 independent simulations of the aerostructural problem.

active subspace method. Figure 3.13 shows the mean and 95% confidence interval of the absolute

difference between the optimal design variables and the design variables obtained by our approach

with active subspace exploitation and without active subspace exploitation in each iteration. These

results are obtained over 100 independent runs. From the figure, it is clear that the design variables

obtained by our approach are closer to the optimal design variables than the case without applying

the active subspace method. Figure 3.14 shows the average dimension of the active subspace as a
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Figure 3.13: The mean and 95% confidence interval of the absolute difference between the op-
timal design variables and the design variables obtained by our approach with active subspace
exploitation and without active subspace exploitation in each iteration obtained over 100 indepen-
dent simulations of the aerostructural problem.

function of the iteration number. As can be seen, our approach reduces the dimension of the prob-

lem from 6 to less than 2 dimensions on average. This reduction enables far more efficient search

over alternatives when using a Bayesian global optimization search strategy, as we have done here.

It should be noted that the performance improvement by our approach with active subspace

exploitation is achieved by an additional cost for surrogate model fitting for the objective function

in the active subspace. In other words, the selection process by our proposed method has ap-

proximately two times more complexity than the original Knowledge Gradient method, due to the

double selections in the active subspace and the original space. However, the most important part

of the computational expense for real-world applications is often the number of black-box function
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Figure 3.14: Active subspace dimension in each iteration averaged over 100 independent simula-
tions of the aerostructural problem.

evaluations, which is far less in our approach with active subspace exploitation in comparison to

the case without active subspace exploitation.
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4. CONCLUSIONS AND FUTURE WORK

This dissertation has focused on development of methodologies for Bayesian optimization in

multi-information source and large-scale systems.

In section 2, an approach is presented to perform constrained optimization of expensive to eval-

uate functions when different information sources with varying fidelities and evaluation costs are

available for the objective function and constraints. This is achieved by estimating the correlation

between the information sources and fusing the information obtained from each information source

to construct the fused Gaussian processes. Then, the cost of querying and a two-step look-ahead

utility function obtained from the fusion process and the knowledge gradient policy, are incorpo-

rated to identify the next design and objective information source to query. The approach also

considers the trade off between cost and information gain as quantified by the Kullback-Leibler

divergence for identifying design points and information sources for constraint handling. The

proposed strategy samples the design space by balancing exploration and exploitation tasks both

between and within the available information sources to efficiently move sequentially toward the

true, real world optimum of a constrained objective function. We demonstrated our approach on

the constrained optimization of a one-dimensional example test problem, an aerodynamic design

problem, and the ground truth strength normalized strain hardening rate for a dual-phase material.

With these demonstrations, it has been shown that the proposed approach estimates well feasible

optimal values of the objective in an efficient decision-theoretic manner which reveals the promise

of this framework as a suitable methodology for accelerating the design problems.

In future, the information fusion framework developed here can be validated against larger

sets of ground truth data and be demonstrated in higher dimensions. The framework can also

be extended to handle information sources with misaligned input-output interfaces, which is a key

challenge facing many design problems. Moreover, the optimization framework can be extended to

handle multiple objectives and studied for scalability to high dimensional input spaces. Addition-

ally, the possibility of carrying out optimal sequential queries in which the sources of information
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are not input/output aligned can be explored. A specific scenario, for example, would be combining

sources that establish relationships between processing parameters/conditions and microstructure

with sources that connect microstructures to properties/performance. Much remains to be done,

but this work presents a plausible research program toward tool (information source) integration.

In section 3, a sequential decision-theoretic approach is presented for fast constrained opti-

mization of problems with several input variables. The general use case is for expensive to eval-

uate black-box functions. Using the fact that certain directions in the input design space have

less impact on the objective function than others, we have developed an adaptive methodology to

map the high-dimensional problem to a lower dimension using the active subspace method. The

Gaussian process model constructed for the objective function in the low-dimensional space is

used in combination with the knowledge gradient approach to select the best sample to query in

the reduced domain. Upon selection of the best design point in the low-dimensional space, an

inverse mapping process to the original design space is performed. Since the inverse mapping is

not one-to-one, the method selects the point which has the maximum knowledge gradient over the

inverse-mapped points in the original space. We demonstrated our approach on the optimization

of three two-dimensional example test problems, 10- and 20-dimensional Rosenbrock function,

and an aerostructural wing design problem. It has been shown that the proposed approach can

take advantage of existing active subspaces, leading to more efficient querying. It has also been

shown that when no active subspace exists, the approach proposed here performs as well as direct

application of Bayesian global optimization approaches to the full high-dimensional problem of

interest. It should be noted that this framework can be generalized to any Bayesian optimization

technique by only changing the acquisition function.

Estimating the active subspace requires access to gradients. If gradients are not available and

finite differences are not feasible, then one may seek to estimate active subspaces without gra-

dients. Some initial work has been done along these lines [129, 130]. How such gradient-free

approaches can be used in the framework can be explored in the future research. Furthermore,

some methods are of particular interest for using fewer evaluations of the gradient to compute the
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directions defining the active subspace. Some strategies can also be pursued that make better use

of the function evaluations acquired during the gradient evaluation, and compute the gradients of

the objective function more accurately by proper selection of the kernel function. The future ap-

plication of this framework can be in multi-disciplinary optimization problems, where surrogates

can enable distributed frameworks to more efficiently couple different design disciplines.
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