# EXHUMATION OF THE CASCADE RANGE, OREGON: INVESTIGATING CLIMATE PATTERN COINCIDENCE WITH EXHUMATION TIMING DURING OROGEN EVOLUTION 

A Thesis<br>by<br>MARIA ELIZABETH PESEK

# Submitted to the Office of Graduate and Professional Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE 

Chair of Committee, Nicholas D. Perez<br>Committee Members, Michael P. Bishop<br>Brent V. Miller<br>Head of Department, Michael C. Pope

May 2019

Major Subject: Geology


#### Abstract

Resolving the linkages among climate, erosion, and tectonics has implications for understanding geologic problems in deep time and in the future, yet studies yield conflicting results as to how surface and lithospheric processes drive mountain range development. The Cascade Range, NW USA is an ideal setting to assess how these drivers may guide rock uplift patterns, as structural and modern precipitation patterns have a unique along-strike spatial distribution. Orographic precipitation uniformly incises the western flank, broadly N-S compression in northern Oregon transitions to generally E-W extension in the south, and magmatism is segmented along the arc.

New single-sample multi-proxy geo- and thermochronologic methods were applied at six sample locations along the Western Cascades range. At each location, a unique geologic relationship between incised Cenozoic plutons capped by basalts provides the opportunity to reconstruct the pluton exhumation pathway from crystallization to near-surface exposure and constrain the amount of rock uplift in this region. New and existing U-Pb geochronologic data reveal pluton crystallization ages between $\sim 10-24 \mathrm{Ma}$. Apatite ( $\mathrm{U}-\mathrm{Th}$ )/He ages reveal anomalously young cooling ages ( $\sim 2-4 \mathrm{Ma}$ ) near Mount Hood, which may reflect resetting by younger volcanic flows. Some apatite and zircon (U-Th)/He ages from southern Oregon are older than the corresponding zircon $\mathrm{U}-\mathrm{Pb}$ crystallization age, which may be attributed to inclusions, zoning, or ${ }^{4} \mathrm{He}$ implantation. Remaining apatite and zircon ( $\mathrm{U}-\mathrm{Th}$ )/He ages range from $\sim 8-22 \mathrm{Ma}$ and suggest a generally southward increase in cooling ages. ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ geochronologic results define the eruption age of basalts that unconformably overlie the plutons, which range from $\sim 5-8 \mathrm{Ma}$.

Existing low-temperature apatite (U-Th)/He thermochronologic results from the Washington Cascades document uniform $\sim 6-12 \mathrm{Ma}$ exhumation ages that were initially attributed to focused orographic precipitation and erosion. The diversity of ages in Oregon suggest the timing of exhumation occurred from $\sim 7-22 \mathrm{Ma}$, which differs from the results in Washington, and generally increases from north to south. These results are more consistent with processes that demonstrate along-strike variability, such as tectonics or magmatic processes, and support the interactions of


climate, erosion, and tectonics in guiding orogen evolution.

## DEDICATION

To my parents, Larry and Charlene, whose sacrifices have allowed me to pursue higher education and whose unconditional love provided the support to succeed.

## ACKNOWLEDGMENTS

This journey has been by far the most challenging endeavor I have pursued, but also the most enriching and rewarding. I could not have accomplished this master's thesis without the help and support of many people along the way. First, I would like to thank my committee chair, Dr. Nicholas Perez, for his guidance on this project. I am a better geologist for having had the opportunity to learn from him both in the classroom and in the field. I would also like to thank my committee members, Dr. Michael Bishop and Dr. Brent Miller, for their guidance and support during the course of this research.

I could not have completed this thesis without the help and support of Dr. Perez's research team, including Colton Barr, Charlie Bruce, Daniela Chiriboga, Clyde Findlay, Daniel Hou, Vicky Gao, Sarah Giles, Seth Hardin, Keller Herrin, Kristina Levine, Telemachos Manos, Liam Norris, Bailey Ohlson, and Clay Rowden. In particular I would like to thank Sarah Giles for her assistance during field work, in the mineral separation process, and in HeFTy modeling. Thank you to Clay Rowden for his tremendous contribution to the mineral separation process and HeFTy modeling as well.

I would also like to thank our collaborators at Oregon State University. Thank you to Dr. Andrew Meigs for his guidance and support on this project, including assistance during field work. Thank you to Danielle Woodring for assistance during field work and for being a gracious host during my visits to Corvallis. Thank you also to Wolfgang Lopez for his guidance on the basalt sample preparation. Thank you to Elinor Utevsky and Dr. John Dilles at Oregon State University for access to their work and extra mineral separates.

I am incredibly grateful and appreciative for the help and guidance of the lab managers and coordinators that worked with us to obtain these data. Thank you in particular to Dr. Kip Hodges, Dr. Matthijs van Soest, and Michelle Aigner at the Arizona State University Group 18 Laboratory and to Dr. Dan Miggins at the Oregon State University Argon Geochronology Laboratory. Thank you also to Dr. Brent Miller at the Texas A\&M Radiogenic Isotope Geosciences Facility. Thank
you to Dr. Daniel Stockli and Dr. Rudra Chatterjee at the University of Texas UTChron Laboratory for their work on the preliminary data for this study.

This thesis would not have been possible without the generous funding support from the following sources: the Bush Foundation Graduate Student Travel Grant, the GSA Graduate Student Research Grant, and the GSA On To the Future travel award. The National Petrographic Service provided thin sections of the samples collected during this study.

Lastly, thank you to my parents for their unconditional love and for many early-morning trips to the airport heading to field work, lab work, and conferences. I would not be where I am today without their support. Thank you also to my brothers, sister, sisters-in-law, and brother-in-law for their support over these past few years and for listening to me talk about rocks. Thank you to my best friend and the love of my life, Ivan Vazquez, who has been with me during every step of this journey and inspires me to achieve my dreams.

## CONTRIBUTORS AND FUNDING SOURCES

## Contributors

Committee members that provided supervision on this thesis include Dr. Nicholas Perez and Dr. Brent Miller of the Department of Geology \& Geophysics and Dr. Michael Bishop of the Department of Geography.

Some of the data discussed in Section 4 were provided by work previously completed by Dr. Nicholas Perez of Texas A\&M and Dr. Andrew Meigs of Oregon State University in 2017. Mineral separates for these samples were provided by Elinor Utevsky and Dr. John Dilles of Oregon State University. Apatite and zircon (U-Th)/He analyses were conducted at the University of Texas UTChron Lab with the assistance of Dr. Daniel Stockli and Dr. Rudra Chatterjee.

Apatite and zircon ( $\mathrm{U}-\mathrm{Th}$ )/He and zircon $\mathrm{U}-\mathrm{Pb}$ analyses for this study were conducted at the Arizona State University Group 18 Laboratory with the assistance of Dr. Kip Hodges, Dr. Matthijs van Soest, and Michelle Aigner. Basalt groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analyses were conducted at the Oregon State University Argon Geochronology Laboratory with the assistance of Dr. Dan Miggins. Additional zircon $\mathrm{U}-\mathrm{Pb}$ and apatite $\mathrm{U}-\mathrm{Pb}$ analyses were conducted at the Texas $\mathrm{A} \& \mathrm{M}$ University Radiogenic Isotope Geosciences Facility with the assistance of Dr. Brent Miller.

Sarah Giles assisted with sample collection during field work, the mineral separation process, and HeFTy modeling. Clayton Rowden assisted with the mineral separation process and HeFTy modeling. Charles Bruce, Daniel Hou, Kristina Levine, and Liam Norris also assisted with the mineral separation process. Clyde Findlay and Telemachos Manos provided training on the mineral separation machines and techniques. Wolfgang Lopez provided guidance on the basalt sample preparation. Danielle Woodring and Dr. Andrew Meigs provided additional assistance with sample collection during field work.

All other work contributing to this thesis was conducted by the student independently.

## Funding Sources

Graduate study was supported by the Marathon Scholarship and the M.T. Halbouty '30/AAPG Foundation Endowed Fellowship granted through the Texas A\&M University Department of Geology \& Geophysics.

This work was also made possible through funding from the Bush Foundation Graduate Student Travel Grant, the GSA Graduate Student Research Grant, and the GSA On To the Future travel award. Additional funding support was provided by Dr. Nicholas Perez.

## TABLE OF CONTENTS

## Page

ABSTRACT ..... ii
DEDICATION ..... iv
ACKNOWLEDGMENTS ..... v
CONTRIBUTORS AND FUNDING SOURCES ..... vii
TABLE OF CONTENTS ..... ix
LIST OF FIGURES ..... xi
LIST OF TABLES ..... xv

1. INTRODUCTION ..... 1
2. GEOLOGIC BACKGROUND ..... 5
2.1 Geologic Setting ..... 5
2.2 Magmatic Trend ..... 6
2.3 Deformation Trend ..... 8
2.4 Precipitation Trend ..... 9
2.5 Exhumation and Erosion Rates ..... 9
2.6 Seismicity ..... 10
3. METHODS ..... 11
3.1 Sample Lithologies and Geologic Relationship ..... 11
3.2 Geochronology and Thermochronology ..... 14
3.2.1 Zircon U-Pb Geochronology and Ti-in-zircon thermometry ..... 14
3.2.2 Apatite and Zircon (U-Th)/He Thermochronology ..... 15
3.2.3 Apatite U-Pb Thermochronology ..... 16
3.2.4 Basalt Groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Geochronology ..... 17
3.3 Sample Preparation ..... 18
3.3.1 Pluton Samples ..... 18
3.3.1.1 Apatite (U-Th)/He Analyses ..... 20
3.3.1.2 Zircon (U-Th)/He and U-Pb Analyses ..... 20
3.3.1.3 Apatite U-Pb Analyses ..... 21
3.3.2 Basalt Samples. ..... 22
3.3.2.1 Basalt Groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Analyses ..... 22
3.4 HeFTy Inverse Thermal Modeling ..... 23
3.4.1 Model Parameters ..... 23
3.4.2 Model Approach ..... 24
3.4.3 Exhumation Rates ..... 24
4. RESULTS ..... 25
4.1 Site I ..... 26
4.2 Site II ..... 27
4.3 Site III ..... 27
4.4 Site IV ..... 28
4.5 Site V ..... 28
4.6 Site VI ..... 28
4.7 Effective Uranium Concentration ..... 29
4.8 Equivalent Sphere Radius ..... 31
5. DISCUSSION ..... 34
5.1 Recording Magmatic Cooling vs. Exhumation Signal ..... 34
5.1.1 Anomalously Old Apatite and Zircon (U-Th)/He Ages ..... 35
5.1.2 Incorporating Effects of Radiation Damage and He Implantation ..... 37
5.2 North-South Trends in Exhumation Timing ..... 39
5.3 Comparison with Previous Findings ..... 39
5.3.1 Analytical Methods ..... 39
5.3.2 Exhumation and Erosion Rates ..... 40
5.4 Role of Climate and Tectonics in Driving Rock Uplift ..... 40
6. CONCLUSIONS ..... 44
REFERENCES ..... 45
APPENDIX A. APATITE AND ZIRCON (U-Th)/He DATA ..... 56
APPENDIX B. ZIRCON U-Pb DATA ..... 59
APPENDIX C. APATITE U-Pb DATA ..... 69
APPENDIX D. [eU] AND ESR ..... 78
APPENDIX E. BASALT ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ DATA ..... 81
APPENDIX F. HeFTy MODELS ..... 87
APPENDIX G. EXHUMATION RATE CALCULATIONS ..... 90

## LIST OF FIGURES

## FIGURE

2.1 Field study area showing sample locations, structural and tectonic features of in
terest (A), and modern precipitation gradient (B). Note existing sample locations ..... 6
2.2 Location of magmatic arc in Oregon and Washington from 2-45 Ma, modified from du Bray and John (2011). ..... 7
3.1 Geologic map inset of Site III showing relationships between plutons (Thi), ridge- capping basalts (Trb), and fluvial incision. Basalts are located on ridges present- day, and plutons are exposed in river valleys. Map modified after Walker and MacLeod (1991) ..... 12
3.2 Schematic diagram illustrating geologic model and construction of time-temperature pathway diagrams, with the youngest time represented in A and oldest in C. Zir- con $\mathrm{U}-\mathrm{Pb}$ ages provide pluton crystallization constraint (A), zircon and apatite ( U - $\mathrm{Th}) / \mathrm{He}$ ages provide cooling constraints (B), and basalt groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages provide a minimum constraint on when the plutons were near the surface (C). The slope of the line between these points determines the pace of exhumation, where a steep slope indicates a rapid cooling pathway and a shallow slope indicates a slow cooling pathway ..... 13
$3.3 \mathrm{~A}){ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age spectrum for basalt sample 17OR-04 that is well-behaved and produces a mini-plateau age of $11.41 \pm 0.07 \mathrm{Ma}$. B) ${ }^{40} \mathrm{Ar} r^{39} \mathrm{Ar}$ age spectrum for basalt sample 17OR-19 that produces a non-linear pattern, characteristic of argon recoil, in which the total fusion age of $27.68 \pm 0.05 \mathrm{Ma}$ is the best estimate for the age of the sample ..... 18
3.4 Selected microphotographs of apatite crystals. Ideal grains (A-B) had two euhe- dral ends and few inclusions. Non-ideal grains did not have euhedral ends (C) or contained inclusions (D). ..... 19
4.1 Time-temperature plots for each sample site location. Age error bars are reported in $2 \sigma$, and temperature error bars encompass approximate closure temperature for each system. ..... 25
4.2 Map of study region with geochronology and thermochronology ages for each site. Apatite and zircon (U-Th)/He ages reported are corrected for alpha ejection. HeFTy plots are shown in the right panel for each site and display the range of weighted mean paths from various models. Site V did not produce any acceptable or good HeFTy model paths ..... 26
4.3 Envelopes of all HeFTy weighted mean paths for each site location. Gray box indicates $\sim 6-12 \mathrm{Ma}$ timing of exhumation reported by Reiners et al. $(2002,2003)$ in the Washington Cascades. The timing of exhumation generally increases from Site I in southern Washington to Site VI in southern Oregon, with Site II in northern Oregon displaying the youngest cooling ages ..... 29
$4.4 \quad[\mathrm{eU}]$ of samples from each site plotted against apatite (U-Th)/He age, where hollow markers indicate apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$. ..... 30
$4.5 \quad \mathrm{eU}]$ of samples from each site plotted against zircon (U-Th)/He age, where hollow markers indicate zircon (U-Th)/He ages that are older than the zircon U-Pb age. Error bars are reported in $2 \sigma$. ..... 31
4.6 ESR concentrations of all samples from each site plotted against apatite (U-Th)/He age, where hollow markers indicate apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$. ..... 32
4.7 ESR concentrations of all samples from each site plotted against zircon (U-Th)/He age, where hollow markers indicate zircon (U-Th)/He ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$. ..... 33
5.1 [eU] of samples from selected sites plotted against age that display a negative- slope-age-[eU] relationship. Hollow markers indicate apatite (U-Th)/He ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Gray boxes indicate the ( $\mathrm{U}-\mathrm{Th}$ )/He ages with higher [ eU ], which are closest to the true maximum cooling age and used in pre- ferred HeFTy models. Red boxes indicate the zircon U-Pb crystallization age given by Utevsky (2015) for samples WCOS-2 and WCOSNU-11 or obtained from this study for sample 17OR-02. Error bars are reported in $2 \sigma$. ..... 38
5.2 Preferred envelopes of HeFTy weighted mean paths using youngest apatite (U- $\mathrm{Th}) / \mathrm{He}$ ages at Sites III and VI. The timing of rapid cooling at each site does not change significantly from envelopes of HeFTy weighted mean paths using all apatite grains ..... 38
5.3 All geochronology and thermochronology for each site plotted against latitude. Green box is the geographical extent and oldest onset of Cascades rain shadow (Kohn et al., 2002), and gray boxes show geographical extent and timing of tectonic events (Blakely et al., 2011; Colgan et al., 2004; Dilles and Gans, 1995; Surpless et al., 2002; Trench et al., 2012). White markers indicate apatite and zircon (U- $\mathrm{Th}) / \mathrm{He}$ ages that are older than the zircon U-Pb age. Error bars are reported in $2 \sigma$ ..... 43
B. 1 Concordia diagram for re-dated Utevsky (2015) sample WCOS-2 (Site III) using IsoplotR by Vermeesch (2018) ..... 59
B. 2 Concordia diagram for re-dated Utevsky (2015) sample WCOS-12 using IsoplotR by Vermeesch (2018) ..... 60
B. 3 Concordia diagram for re-dated Utevsky (2015) sample WCOSNU-25 (Site V) using IsoplotR by Vermeesch (2018) ..... 60
B. 4 Concordia diagram for sample 17OR-02 (Site VI) using IsoplotR by Vermeesch (2018) ..... 61
C. 1 Concordia diagram for sample 17OR-18 (Site I) using IsoplotR by Vermeesch (2018). ..... 70
C. 2 Concordia diagram for sample 17OR-10 (Site II) using IsoplotR by Vermeesch (2018). ..... 71
C. 3 Concordia diagram for sample 17OR-09 (Site III) using IsoplotR by Vermeesch (2018) ..... 72
C. 4 Concordia diagram for sample 17OR-03 (Site V) using IsoplotR by Vermeesch (2018). ..... 73
D. 1 Effective uranium concentration [eU] values plotted against apatite and/or zircon (U-Th)/He ages at Sites I-III. Hollow markers indicate apatite or zircon (U-Th)/He ages that are older than zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$. ..... 78
D. 2 Effective uranium concentration [eU] values plotted against apatite and/or zircon (U-Th)/He ages at Sites IV-VI. Hollow markers indicate apatite or zircon (U- $\mathrm{Th}) / \mathrm{He}$ ages that are older than zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$. ..... 79
D. 3 Equivalent sphere radius (ESR) values plotted against apatite and/or zircon (U- $\mathrm{Th}) / \mathrm{He}$ ages at each site location. Hollow markers indicate apatite or zircon (U- $\mathrm{Th}) / \mathrm{He}$ ages that are older than zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$. ..... 80
E. 1 Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-19 (Site I). ..... 81
E. 2 Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-07 (Site IV). ..... 82
E. 3 Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-05 (Site V) ..... 83
E. 4 Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-04 (Site V). ..... 84
E. 5 Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-20 (Site VI) ..... 85
G. 1 Exhumation rate calculation for Site I. A) All HeFTy model results for Site I, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$. ..... 90
G. 2 Exhumation rate calculation for Site II. A) All HeFTy model results for Site II, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$.

G. 3 Exhumation rate calculation for Site III. A) All HeFTy model results for Site III,
where boxes indicate constraints on the thermochronometer systems. Range of
slopes for period of rapid cooling indicated by light red lines and arrows. B) Cal
culations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and
$40^{\circ} \mathrm{C} / \mathrm{km}$. ..... 92

G. 4 Exhumation rate calculation for Site IV. A) All HeFTy model results for Site IV,
where boxes indicate constraints on the thermochronometer systems. Range of
slopes for period of rapid cooling indicated by light red lines and arrows. B) Cal
culations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and
$40^{\circ} \mathrm{C} / \mathrm{km}$.


#### Abstract

G. 5 Exhumation rate calculation for Site VI. A) All HeFTy model results for Site VI, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$.94


## LIST OF TABLES

## TABLE

A. 1 Apatite (U-Th)/He data of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-09 (Site III), 17OR-03 (Site V), and 17OR-02 (Site VI). ..... 57
A. 2 Zircon (U-Th)/He data of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-11 (Site II), and 17OR-06 (Site IV). ..... 58
B. 1 Zircon U-Pb data of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-11 (Site II), and 17OR-06 (Site IV) collected concurrently with (U-Th)/He data. ..... 62
B. 2 Zircon U-Pb data for re-dated Utevsky (2015) sample WCOS-2 (Site III). ..... 63
B. 3 Zircon U-Pb data for re-dated Utevsky (2015) sample WCOS-2 (Site III) (continued). ..... 64
B. 4 Zircon U-Pb data for re-dated Utevsky (2015) sample WCOS-12 ..... 65
B. 5 Zircon U-Pb data for re-dated Utevsky (2015) sample WCOSNU-25 (Site V) and sample 17OR-02 (Site VI). ..... 66
B. 6 Metadata for zircon LA-ICP-MS U-Th-Pb analyses of re-dated Utevsky (2015) samples WCOS-2 (Site III), WCOS-12, and WCOSNU-25 (Site V). Modified from Horstwood et al. (2016). ..... 67
B. 7 Metadata for zircon LA-ICP-MS U-Th-Pb analyses of sample 17OR-02 (Site VI). Modified from Horstwood et al. (2016) ..... 68
C. 1 Apatite U-Pb data for samples 17OR-18 (site I) and 17OR-10 (Site II). ..... 74
C. 2 Apatite U-Pb data for sample 17OR-09 (Site III) ..... 75
C. 3 Apatite U-Pb data for sample 17OR-03 (Site V) ..... 76
C. 4 Metadata for apatite LA-ICP-MS U-Th-Pb analyses of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-09 (Site III), and 17OR-03 (Site V). Modified from Horstwood et al. (2016). ..... 77
E. 1 Basalt sample information and ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ groundmass ages. ..... 86
F. 1 HeFTy model groupings and results for Sites I-II data. ............................... 88
F. 2 HeFTy model groupings and results for Sites III-VI data. ............................... 89

## 1. INTRODUCTION

A fundamental problem in Earth science is understanding the interactions between surface and tectonic processes, and the relative contribution of each factor to the development of topography. Resolving how climate, erosion, and tectonics interact has potential implications for understanding how natural hazards, including landslides, develop and how sediment is eroded and transported into drainage networks. The NSF Tectonics community recently highlighted this problem as a major grand challenge for future research (Huntington et al., 2017). Some studies have framed this debate in the context of either climate or tectonic processes drive rock uplift (Burbank et al., 2003; Forte et al., 2016), but other efforts emphasize the interactions among these processes (Hodges et al., 2004; Willett, 1999).

The feedback relationships among climate, erosion, and tectonics remain debated. For example, the Southern Alps of New Zealand and the Olympic Mountains in Washington have similar subduction orientations and precipitation patterns, but numerical models predict different topographic and exhumation profiles between the two regions (Willett, 1999). These different profiles highlight the role of primary wind direction and focused precipitation as key controls on prowedgefocused erosion (in the case of the Olympic Mountains) or retrowedge-focused erosion (in the case of the Southern Alps), suggesting surface processes compete with subduction processes as dominant controls on orogen evolution.

Field studies yield more varied results with regard to the contribution of subduction polarity, deformation, and surface processes to rock uplift. Both climate and structural drivers have been interpreted as the dominant controls on rock uplift to explain exhumation records from the Marsyandi River catchment in Nepal. The correlation of Quaternary deformation patterns with precipitation patterns supports a component of climate-driven exhumation (Hodges et al., 2004), yet erosion and upward movement are spatially consistent, which supports structural drivers (Burbank et al., 2003). In the Caucasus mountain range, erosion rates constrained from topographic metrics and low-temperature bedrock thermochronologic results suggest that large-scale changes in the climate
gradient do not control the topography in Western Asia (Forte et al., 2016). This implies that in the Caucasus, on the time scale of millions of years, tectonic processes are the main drivers of rock uplift (Forte et al., 2016). The diversity of conclusions found in these studies emphasize that the nature and presence of interactions between surface and lithospheric processes remain uncertain. This is potentially due to some regions, such as the Himalayas and the Southern Alps, having deformation and precipitation patterns that covary spatially, which makes disentangling the relative contributions from each factor difficult.

Integrated geochronology and thermochronology analyses combined with geodynamic models are needed to produce detailed exhumation histories in order to address the debate regarding the driving forces of mountain range development (Huntington et al., 2017). This study reconstructs the cooling history of the Cascade Range in Oregon and southern Washington by integrating thermochronologic and geochronologic data from bedrock samples of plutons and basalts. The Cascade Range provides an excellent setting to independently assess contributions from climate and tectonic processes on orogen evolution, as the unique structural and precipitation trends along this portion of the range have not covaried over the past 15-30 million years. This study focuses on six sites along the Cascade Range that are situated across multiple structural and volcanic domains yet remain within the same modern and ancient orographic precipitation zone along the western Cascade flank. These distinct along-strike trends allow the investigation of whether spatial patterns of exhumation are aligned with deformation or climate processes because they do not co-vary spatially compared to regions in other studies.

Low-temperature bedrock thermochronological data from the Washington Cascades have been used to argue for climate-modulated rock uplift. Apatite fission track and (U-Th)/He thermochronologic results from plutonic rocks in Washington suggest initially slow cooling throughout the Oligocene followed by a pulse of rapid exhumational cooling during the middle Miocene on the western flank of the Cascades, where cooling ages range from $\sim 6-12 \mathrm{Ma}$ (Reiners et al., 2002). The timing of increased rock uplift rate is similar to the Coast Mountains in Alaska, where accelerated exhumation began at $\sim 10 \mathrm{Ma}$ (Hickes et al., 2000; Hickes, 2001). Farther north in the

St. Elias Mountains of Alaska, convergence in the Yakutat Terrane has been constant since $\sim 6 \mathrm{Ma}$ (Gulick et al., 2013, 2015; Pavlis et al., 2012; Worthington et al., 2012), which is consistent with these studies (Hickes et al., 2000; Hickes, 2001; Reiners et al., 2002). Reiners et al. (2002, 2003) reasoned that although Washington and Alaska exhibit different tectonic and deformation patterns, both are affected by similar orographic precipitation patterns. They interpreted synchronous timing of accelerated uplift in the Alaska Coast Mountains and the Washington Cascades, coupled with the spatial correlation between increased rock uplift rates and regions of increased precipitation and erosion rates in the Washington Cascades, as evidence that regional climate guided exhumation patterns (Reiners et al., 2002, 2003). In contrast, thermochronologic data from the eastern flank of the Washington Cascades suggests Miocene exhumation was driven by crustal shortening and that precipitation and erosion rates alone were not sufficient to erode volumes required to expose basement bedrock (Enkelmann et al., 2015). Additionally, eroded volume studies in the Santiam drainage of the Oregon Cascades show that fluvial incision and erosion alone were insufficient to account for the total rock uplift in this area (Lopez and Meigs, 2016). The eroded volume since 6.3 Ma was calculated using the relationship between paleo-valley markers and the presentday valley bottoms, and the resulting amount of rock uplift was determined assuming a perfectly isostatic model, a continuous plate flexural model, and a broken plate flexural model (Lopez and Meigs, 2016). The broken plate flexural model, which most accurately represents the setting of the Oregon Cascades, results in an average of $262.5 \pm 87.5 \mathrm{~m}$ of rock uplift in the core of the range using an estimated value of 10 km for the elastic thickness (Lopez and Meigs, 2016). Simple isostasy can account for $\sim 55 \%$ of the present-day elevation difference between the paleo-valley markers and the valley bottom, while the plate flexure models suggest only $\sim 36 \%$ of rock uplift can be attributed to erosion (Lopez and Meigs, 2016). The study presented here tests the existing hypotheses that exhumation is guided by regional precipitation and climate patterns (Reiners et al., 2003) by extending the thermochronology dataset to include the segment of the Cascades in southern Washington and Oregon and comparing the along-strike timing of exhumation.

The value of using multiple geo- and thermochronometers on the same sample is also explored
as a means of distinguishing between magmatic cooling processes and the true exhumation signal. Low-temperature thermochronometers often yield a wide range of cooling ages, which can be difficult to interpret (Fitzgerald et al., 2006). This study additionally explores how to model a dataset with dispersion of apatite and zircon (U-Th)/He ages and which models may be most representative of the true cooling history.

Here we present results from integrated geochronology and multiple low-temperature thermochronometers to investigate 1) the timing of exhumation in the Oregon Cascades, 2) whether the timing of exhumation in the Oregon Cascades is consistent with existing results from Washington, and 3) how the spatial pattern of exhumation compares with spatial trends in deformation and precipitation.

## 2. GEOLOGIC BACKGROUND

### 2.1 Geologic Setting

The Cascade Range is the volcanic arc associated with subduction of the Juan de Fuca plate underneath North America and spans British Columbia to northern California (Figure 2.1) (Wells and McCaffrey, 2013). Arc volcanism in Oregon and Washington began $\sim 40-45 \mathrm{Ma}$, approximately 10 Ma after the accretion of the Siletzia microplate associated with the final phases of the Laramide orogeny (Schmandt and Humphreys, 2011). Cenozoic volcanic rocks of the Cascade Range are composed of two provinces: the High Cascades and the Western Cascades (du Bray and John, 2011). The High Cascades province represents the modern active volcanic arc that erupted since $\sim 4 \mathrm{Ma}$. Underlying and to the west of the High Cascades are the Western Cascades, which represent magmatism associated with the ancestral arc from $\sim 4-45 \mathrm{Ma}$ (du Bray and John, 2011). The northern segment of the ancestral arc is not well-defined, but is believed to terminate north of Mount Rainier in central Washington (Christiansen and Yeats, 1992; Duncan and Kulm, 1989; Vance et al., 1987). The southern segment of the ancestral arc spans from Mount Rainier to Mount Shasta in northern California, west of the modern High Cascade range (du Bray and John, 2011). This segment of the ancestral arc was formed as the subduction angle steepened after the Eocene (du Bray and John, 2011).


Figure 2.1: Field study area showing sample locations, structural and tectonic features of interest (A), and modern precipitation gradient (B). Note existing sample locations.

### 2.2 Magmatic Trend

The timing and distribution of arc magmatism has varied (Figure 2.2). From 36 Ma to before 40 Ma, the arc was active in southern Washington and produced basalt, andesite, and basaltic andesite magmatic compositions (du Bray and John, 2011). From 18 to 35 Ma , the arc was active in both Washington and Oregon, and magmatic compositions also included rhyolite and dacite (du Bray and John, 2011; Priest, 1990). From 8 to 17 Ma , magmatism was focused along the northern two-thirds of Oregon and returned to more mafic compositions (du Bray and John, 2011; Priest, 1990). Magmatic compositions were primarily basalt and basaltic andesite from 4 to 8 Ma , and
magmatic activity remained focused in Oregon and northern California (du Bray and John, 2011; Priest, 1990). High Cascades volcanism began at $\sim 4 \mathrm{Ma}$ and included magmatic compositions of basalt, basaltic andesite, and silicic ash flows. (du Bray and John, 2011; Priest, 1990).


Figure 2.2: Location of magmatic arc in Oregon and Washington from 2-45 Ma, modified from du Bray and John (2011).

### 2.3 Deformation Trend

The deformation style varies along the Cascade Range (Reiners et al., 2002). Combined clockwise vertical axis rotation and northward motion of western Oregon result in north-south shortening in the Yakima Fold Belt of southern Washington, which was established at least by the mid-Miocene (Swanson and Wright, 1976; Wells and McCaffrey, 2013). Evidence for Miocene and Pliocene deformation associated with the Yakima Fold Belt is recorded in the Columbia River Basalt Group (6-17.5 Ma) (Blakely et al., 2011). South of the Yakima Fold Belt, deformation decreases, and northern Oregon exhibits a neutral setting. In southern Oregon, northwest-southeast extension is associated with the northernmost Basin and Range province (Figure 2.1) (Wells and McCaffrey, 2013). Normal faulting associated with Basin and Range extension began at $\sim 12 \mathrm{Ma}$ in southern Oregon (Dilles and Gans, 1995; Colgan et al., 2004; Surpless et al., 2002; Trench et al., 2012).

Paleomagnetic data support that western Oregon has rotated about a vertical axis at $1.19 \pm 0.1$ \%/m.y. throughout most of the Cenozoic (Wells and McCaffrey, 2013). GPS observations from the past 15 years reveal vertical axis rotation rates that are consistent with those determined from paleomagnetic data (McCaffrey et al., 2007). The consistency between the long-term paleomagnetic data and short-term, decadal geodetic data rotation rates suggests that the cause is permanent motion in the upper plate, as opposed to elastic strain or earthquake-induced effects that are timedependent (Wells and McCaffrey, 2013). Near Mount Baker in Washington, a series of stocks and calderas that are progressively older to the northeast reveal a magmatic migration rate of 6.0 $\mathrm{mm} / \mathrm{yr}$, of which $3.5 \mathrm{~mm} / \mathrm{yr}$ can be attributed to block motion (Wells and McCaffrey, 2013). In Oregon, Miocene plutons that are offset to the northwest, in the direction of the current plate motion, reveal magmatic migration rates of $3.1 \mathrm{~mm} / \mathrm{yr}$ to $3.5 \mathrm{~mm} / \mathrm{yr}$ in northern and southern Oregon, respectively (Wells and McCaffrey, 2013). GPS rates at these same locations are $4.1 \mathrm{~mm} / \mathrm{yr}$ and 7.7 $\mathrm{mm} / \mathrm{yr}$, respectively (Wells and McCaffrey, 2013). The difference between the magmatic migration rates and GPS rates is attributed to an additional component of westward arc migration driven by slab rollback, where rollback occurs in the opposite direction of block motion in Washington
and rollback and block motion are both to the west in Oregon (Wells and McCaffrey, 2013).

### 2.4 Precipitation Trend

A modern orographic precipitation gradient results in relatively uniform mean annual precipitation as high as $4.0 \mathrm{~m} / \mathrm{yr}$ (Figure 2.1) (Reiners et al., 2003; Wells and McCaffrey, 2013). The eastern flank of the Cascade Range is situated in a rain shadow and receives 0.2 m or less of precipitation per year (Reiners et al., 2003). The timing of the development of this orographic precipitation gradient remains debated. A decrease in $\delta^{18} \mathrm{O}$ compositions of fossil equid (horse) teeth support a monotonic increase in elevation of the Oregon Cascades and subsequent rain shadow developments in two periods: from ~27 Ma to 15.4 Ma and after 7.2 Ma (Kohn et al., 2002). Oxygen and carbon isotope dating of authigenic smectites and pedogenic carbonates along the eastern flank of the southern Washington Cascades suggest rain shadow development occurred between $\sim 5-15 \mathrm{Ma}$ (Takeuchi and Larson, 2005; Takeuchi et al., 2010). Paleoenvironmental interpretations based on volcanic glass support Cascade topography has existed since at least the mid-Miocene and potentially as early as the Oligocene (J. Bershaw, personal communication, 2018).

### 2.5 Exhumation and Erosion Rates

Apatite (U-Th)/He ages of samples from the western flank of the Washington Cascades range from $\sim 6-12 \mathrm{Ma}$, which support a period of rapid cooling occurring during the late Miocene (Reiners et al., 2002). Younger apatite (U-Th)/He ages ( $1-5 \mathrm{Ma}$ ) at other locations suggest localized younger cooling. Age-elevation transects reveal an apparent exhumation rate of $0.5-1.0 \mathrm{~km} / \mathrm{m} . \mathrm{y}$. during the late Miocene (Reiners et al., 2002). On the eastern flank, rapid cooling occurred in the early Tertiary followed by slow exhumation throughout the Oligocene ( $\sim 0.2 \mathrm{~km} / \mathrm{m} . \mathrm{y}$.) based on apatite (U-Th)/He ages and fission track ages (Reiners et al., 2002).

Reiners et al. (2003) calculated erosion rates in the Washington Cascades using numerical modeling that related apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages to closure temperature and depth based on parameters such as the geothermal gradient, He diffusion kinetics, and depth to constant temperature. Erosion rates on the eastern flank and near the topographic crest ranged from $0.02-0.04 \mathrm{~km} / \mathrm{m} . \mathrm{y}$. , and the
erosion rate two-thirds up the western flank was $0.33 \mathrm{~km} / \mathrm{m} . \mathrm{y}$. The average erosion rate across the Washington Cascades was $0.10 \mathrm{~km} / \mathrm{m} . \mathrm{y}$., and those authors assumed exhumation was driven by erosional unroofing due to the lack of obvious, active structures in the Washington Cascades that could have driven exhumation by other mechanisms.

### 2.6 Seismicity

The Cascade arc can be subdivided into three regions that relate to modern seismicity: the northern compressional arc (western Washington and Vancouver Island), the central extensional arc (southwestern Washington and western Oregon), and the southern transtensional arc (northern California) (Wells et al., 2002). The northern compressional arc and the southern transtensional arc are seismically active in the lower and upper plates today, while the central extensional arc exhibits anomalously low seismicity (Wells et al., 2002). The lack of in-slab earthquakes in southwestern Washington and western Oregon could be due to 1) a decrease in convergence rate between $47^{\circ} \mathrm{N}$ and $46^{\circ} \mathrm{N}$ or 2) a low stress environment in the subducting plate (Wells et al., 2002). Evidence of a low stress environment under Oregon can be found in the slab thickness under the continent. In Washington, the slab can be teleseismically imaged to depths of $\sim 500 \mathrm{~km}$ while in Oregon no deeper slab is seen below $\sim 150 \mathrm{~km}$ (Rasmussen and Humphreys, 1988). If there is no deeper slab under Oregon, then slab-pull forces would be less, leading to a lower stress environment (Wells et al., 2002).

## 3. METHODS

### 3.1 Sample Lithologies and Geologic Relationship

The unique geologic relationship of Cenozoic plutons exposed in incised fluvial valleys situated below ridge-capping basalts allows for the reconstruction of a multipart exhumation pathway from pluton crystallization to near-surface exposure (Figure 3.1-3.2). The hypidiomorphic-granular petrographic texture of the plutons suggests they were shallowly emplaced at depths of less than 5 km (Dilles, 1987; Utevsky, 2015). Further evidence for shallow emplacement of the Western Cascades plutons comes from below average $\delta^{18} \mathrm{O}$ values that suggest hydrothermal interaction with meteoric water (Taylor Jr., 1971). The basalts were interpreted as flowing down paleo-river valleys because they often cap fluvial gravel deposits (Conrey et al., 2002). Topographic inversion has resulted in the basalts now situated along modern ridges, and the plutons are exposed in modern river valleys (Conrey et al., 2002). The difference in elevation between the plutons and ridgecapping basalts range from $665-847 \mathrm{~m}$ across the sample locations in this study. This geologic relationship demonstrates that the plutons were exhumed to depths of $665-847 \mathrm{~m}$ beneath the earth's surface by the timing of basalt emplacement. Sites V and VI are the exceptions, where the pluton is located at a higher elevation compared to the ridge-capping basalt. Sample 17OR-12 at Site II was not a ridge-capping basalt, but rather a basaltic sill, plug, or dike that fed the ridgecapping basalt flows. Sample 17OR-04 collected at Site V is an upper - middle Miocene lava flow as opposed to the Pliocene - upper Miocene ridge-capping basalt unit.


Figure 3.1: Geologic map inset of Site III showing relationships between plutons (Thi), ridgecapping basalts (Trb), and fluvial incision. Basalts are located on ridges present-day, and plutons are exposed in river valleys. Map modified after Walker and MacLeod (1991).


Figure 3.2: Schematic diagram illustrating geologic model and construction of time-temperature pathway diagrams, with the youngest time represented in A and oldest in C. Zircon U-Pb ages provide pluton crystallization constraint (A), zircon and apatite (U-Th)/He ages provide cooling constraints (B), and basalt groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages provide a minimum constraint on when the plutons were near the surface (C). The slope of the line between these points determines the pace of exhumation, where a steep slope indicates a rapid cooling pathway and a shallow slope indicates a slow cooling pathway.

### 3.2 Geochronology and Thermochronology

The geochronology and thermochronology methods used include zircon $\mathrm{U}-\mathrm{Pb}$, apatite and zircon (U-Th)/He, and basalt groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$, which provide constraints on the crystallization age, the timing of exhumation, and when the pluton was within $\sim 600-900$ meters of the surface, respectively. This approach is unique in that the potential for combining multiple thermochronometers allows for the calculation of cooling rates for individual samples. However, the ages obtained from these systems only constrain the amount of rock uplift in this region since the early to midMiocene, and the contributions to surface uplift and erosion of pre-existing topography are not evaluated. The following sections describe each of these systems in more detail.

### 3.2.1 Zircon U-Pb Geochronology and Ti-in-zircon thermometry

Zircon U-Pb geochronology determines the age of pluton crystallization. U and Th decay to Pb with time, and the concentrations of the parent and daughter isotopes can be measured using laser ablation inductively coupled plasma mass spectrometers (LA-ICP-MS) (Gradstein et al., 2012). Four sources of error that must be accounted for in the final age uncertainty in addition to measurement error include the elemental fractionation correction, the common Pb correction, the uncertainty in the reference standard age, and the uncertainty of ${ }^{238} \mathrm{U},{ }^{235} \mathrm{U}$, and ${ }^{232} \mathrm{Th}$ decay constants (Thomson et al., 2012). To account for the differential fractionation of $\mathrm{U}, \mathrm{Th}$, and Pb during the laser ablation process, a suitable reference standard must be selected (Thomson et al., 2012). Ideally the reference standard should have a similar composition and ablation characteristics to the unknown sample, but the variability in initial Pb adds to the uncertainty of the final age (Thompson et al., 2016). Common lead refers to nonradiogenic lead laboratory contamination and/or nonradiogenic lead incorporated into the crystal during its formation, which is measured as the ${ }^{204} \mathrm{~Pb}$ concentration (Andersen, 2002). The ${ }^{206} \mathrm{~Pb},{ }^{207} \mathrm{~Pb}$, and ${ }^{208} \mathrm{~Pb}$ radiogenic isotope measurements are then corrected using their relative abundances in proportion to the common lead (Andersen, 2002).

Ti-in-zircon thermometry constrains the zircon pluton crystallization temperature, and existing results from Utevsky (2015) were used in this study during HeFTy modeling. The titanium content
in zircon crystals that coexists with rutile and other Ti-rich mineral phases is strongly dependent on temperature (Degeling, 2003; Troitzsch and Ellis, 2004, 2005; Watson et al., 2006; Zack et al., 2004). Ti concentration in zircon crystals can be measured during SHRIMP-RG and LA-ICP-MS analyses, and the methods used by Utevsky (2015) follow those of Ferry and Watson (2007).

### 3.2.2 Apatite and Zircon (U-Th)/He Thermochronology

Thermochronology is the study of a rock's thermal history as it is advected to the Earth's surface. Multiple thermochronometer systems exist, which can be used to determine the timing at which specific minerals pass through corresponding closure temperatures (Dodson, 1973). This study focuses on low-temperature apatite and zircon (U-Th)/He systems. As a simplified definition, the closure temperature represents the boundary below which diffusion of the daughter product from the system occurs and above which the daughter product is retained in the system, although the transition is gradual (Dodson, 1973). The partial retention zone refers to the range of temperatures in which He diffusivity is variable. At temperatures greater than $\sim 85^{\circ} \mathrm{C}$, apatite grains do not retain He , and at temperatures less than $\sim 40^{\circ} \mathrm{C}$, the apatite retains He fully (Wolf et al., 1998). For grains that have remained within the partial retention zone for an extended amount of time, the measured isotope concentrations may not reflect the true age of the sample. Therefore, one must have a constraint on the sample, such as an age-elevation transect, multiple thermochronometers, or an accurate diffusion model.

As U and Th isotopes decay to Pb in apatite or zircon grains, He is emitted as an alpha particle and retained within the crystal lattice at temperatures of $\sim 40-85$ or $\sim 180-200{ }^{\circ} \mathrm{C}$ in apatite and zircon, respectively. The concentrations of the radiogenic ${ }^{4} \mathrm{He}$ and $\mathrm{U}, \mathrm{Th}$, and Sm are obtained through heating and de-gassing intervals or by laser ablation methods (Boyce et al., 2006; Shuster and Farley, 2005). The resulting (U-Th)/He ages can be modeled to constrain the timing of exhumation. One complication of this method arises if an alpha particle less than $20 \mu \mathrm{~m}$ from the grain edge gains sufficient energy to eject from the grain, resulting in an age that appears younger than the true age of the sample (Farley et al., 1996; Shuster and Farley, 2005). The $\alpha$-ejection correction can be computed by dividing the age calculation by the $\alpha$-retention factor $\mathrm{F}_{t}$, which is
determined by a polynomial equation outlined in (Farley et al., 1996).
The closure temperature for apatite depends on the grain size and cooling rate, where a grain of a larger half prism width, such as $100 \mu \mathrm{~m}$, cooled under a fast rate, such as $15{ }^{\circ} \mathrm{C} / \mathrm{Myr}$, will have a higher closure temperature $\left(\sim 75^{\circ} \mathrm{C}\right)$ than a grain of a smaller half prism width, such as 50 $\mu \mathrm{m}$, cooled under a slower rate, such as $5{ }^{\circ} \mathrm{C} / \mathrm{Myr}$, which results in a closure temperature of $\sim 57$ ${ }^{\circ} \mathrm{C}$ (Farley, 2000). A limitation of this method concerns defects in the crystal structure as a result of naturally-occurring radioactivity (Ewing et al., 1995; Weber et al., 1998). Shuster et al. (2006) consider radiation damage to be the most important control on helium diffusivity, wherein helium diffusion is hindered by "traps" in the crystal structure and accumulates in excess concentrations. The radiogenic ${ }^{4} \mathrm{He}$ concentration was used as a proxy for radiation damage in this model, called HeTM, resulting in a variation of closure temperatures over time (Shuster et al., 2006). Higher effective uranium concentrations $[\mathrm{eU}]$ ( ppm ) correspond to the formation of more damage traps, and in turn higher closure temperatures, where $[\mathrm{eU}]=[\mathrm{U}]+0.234[\mathrm{Th}]+0.0047[\mathrm{Sm}]$ (Shuster et al., 2006). The radiation damage accumulation and annealing model (RDAAM) developed by Flowers et al. (2009) builds on the HeTM model but uses effective fission-track density rather than He concentration as a proxy for radiation damage. They propose this model produces more accurate (U-Th)/He ages, as He concentration and radiation damage do not correspond proportionally in all cases (Flowers et al., 2009).

### 3.2.3 Apatite U-Pb Thermochronology

Apatite is suitable for $\mathrm{U}-\mathrm{Pb}$ thermochronology as it contains sufficient amounts of lattice-bound uranium (Chew et al., 2011; Harrison et al., 2002; Willigers et al., 2002). This system has a closure temperature of $\sim 450-500{ }^{\circ} \mathrm{C}$ for both rapid and slow cooling rates (Chamberlain and Bowring, 2002; Willigers et al., 2002). This system follows the same methods and corrections as described in the zircon $\mathrm{U}-\mathrm{Pb}$ system (Section 3.2.1).

### 3.2.4 Basalt Groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Geochronology

${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ geochronology of basalt groundmass constrains the emplacement age of the basalts that unconformably overlie the plutons. ${ }^{40} \mathrm{~K}$ decays to ${ }^{40} \mathrm{Ar}$ over time, and the concentrations of the parent and daughter isotopes can be used to determine the age of the sample through the decay equation and constants outlined by Renne et al. (2010). The parent ${ }^{40} \mathrm{~K}$ undergoes neutron bombardment to convert to ${ }^{39} \mathrm{Ar}$ so the parent and daughter concentrations can be measured using the same instrumentation (Harrison and Zeitler, 2005). The parent and daughter concentrations are obtained through heating the grain in increments and measuring the contents of the gas released (Harrison and Zeitler, 2005). The diffusive loss of ${ }^{40} \mathrm{Ar}$, if present, can be determined by the pattern produced by comparing the percent of ${ }^{39} \mathrm{Ar}$ released at incremental heat steps and the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age. A sample that has been undisturbed since initial crystallization yields a horizontal linear age spectrum, whereas a sample that has experienced ${ }^{40} \mathrm{Ar}$ loss produces a "stair-step" pattern with a span of ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages (Harrison and Zeitler, 2005). A variable, non-linear age spectrum pattern can result through the process of argon recoil (Figure 3.3). During the irradiation process but before sample analysis, the kinetic energy released during neutron bombardment can cause the converted ${ }^{39} \mathrm{Ar}$ atom to be ejected to neighboring phases (McDougall and Harrison, 1999). This phenomenon occurs more often in fine-grained material and glass, and the resulting age spectrums are difficult to interpret for an accurate ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age.
A. 170R-04


B. $17 \mathrm{OR}-19$


Figure 3.3: A) ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age spectrum for basalt sample 17OR-04 that is well-behaved and produces a mini-plateau age of $11.41 \pm 0.07 \mathrm{Ma}$. B) ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ age spectrum for basalt sample 17OR19 that produces a non-linear pattern, characteristic of argon recoil, in which the total fusion age of $27.68 \pm 0.05 \mathrm{Ma}$ is the best estimate for the age of the sample.

### 3.3 Sample Preparation

Seven pluton samples and seven basalt samples were collected at six locations spanning from southern Oregon to southern Washington (Figure 2.1). Weathered surfaces were removed before the following mineral separation steps.

### 3.3.1 Pluton Samples

Pluton samples were crushed with a large jaw-crusher, disc milled, and sorted by gravity using a Wilfley table. Magnetic minerals from the heavy fractions were separated at intervals of $.2, .5$, $.8,1.0,1.2$, and up to 1.5 amps using a Frantz magnetic separator. The nonmagnetic fractions were sorted by density using bromoform and methylene iodide to separate apatite and zircon fractions. A pyrite dissolution procedure was performed on the MEI heavy fractions of samples 17OR-06 and $170 \mathrm{R}-09$, where the fractions were heated to $\sim 70^{\circ} \mathrm{C}$ with water before adding nitric acid.

Apatite and zircon grains were handpicked using a binocular microscope. Apatite grains were selected for dating based on size, geometry, and presence of inclusions (see Appendix Table A. 1 for individual grain dimensions). Ideal grains exhibited two euhedral ends, however in some cases only one euhedral end or no euhedral ends were present. Many of the apatite crystals contained inclusions, and in these cases the crystals with the smallest and least amount of inclusions were selected for dating. Zircon grains were primarily selected based on grain size. Figure 3.4 shows microphotographs of some selected crystals. Some plutons did not yield both apatite and zircon grains.


Figure 3.4: Selected microphotographs of apatite crystals. Ideal grains (A-B) had two euhedral ends and few inclusions. Non-ideal grains did not have euhedral ends (C) or contained inclusions (D).

### 3.3.1.1 Apatite (U-Th)/He Analyses

Four to five apatite grains from samples 17OR-02, 17OR-03, 17OR-09, 17OR-10, and 17OR18 were selected for dating by conventional (U-Th)/He analyses. The length and width dimensions of the individual grains were measured prior to analysis in order to make the $\alpha$-ejection correction. Each grain was packed in a niobium microcrucible, which was then crimped on both ends. Apatite (U-Th)/He analyses were conducted at the Group 18 Laboratory at Arizona State University using the ASI Alphachron. The (U-Th)/He methods used in this study follow that described in the supplementary material of van Soest et al. (2011). A 45 Watt, 980 nm infa-red diode laser was used to extract helium from the apatite grains, and exposure to a hot SAES NP-10 getter cleaned any reactive gases. To determine the unknown ${ }^{4} \mathrm{He}$ in each sample, a known ${ }^{4} \mathrm{He}$ aliquot was spiked with ${ }^{3} \mathrm{He}$ in between the analyses of each sample. Durango fluorapatite was used as the age standard.

After extracting the He , the grains were then dissolved in preparation for the $\mathrm{U}-\mathrm{Th}$ analysis. Each apatite grain in a Pt capsule was put into 2 ml polypropylene vials, and the grains were dissolved using $25 \mu \mathrm{l}$ of $50 \%$ nitric acid. The spike used during this process includes ${ }^{149} \mathrm{Sm}^{232} \mathrm{Th}$ ${ }^{233} \mathrm{U}-{ }^{236} \mathrm{U}$ as opposed to that mentioned in the van Soest et al. (2011) supplementary information. The ThermoElectron X-series ICP-MS at Arizona State University was used to measure the U and Th concentrations. The ${ }^{235} \mathrm{U}$ concentration were derived from the measured ${ }^{238} \mathrm{U}$ concentration using the known ratios of these isotopes that occur in nature. The raw apatite ages were corrected for alpha ejection after Farley et al. (1996).

### 3.3.1.2 Zircon $(U-T h) /$ He and $U-P b$ Analyses

Five to seven zircon grains from samples 17OR-06, 17OR-10, 17OR-11, and 17OR-18 were selected for dating by laser ablation $\mathrm{U}-\mathrm{Pb}$ and $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ methods. The advantage of the laser ablation method over the conventional method described in Section 3.3.1.1 is that the $\alpha$-ejection correction is not needed and broken or non-euhedral grains can be analyzed (Tripathy-Lang et al., 2013). The analytical procedures for zircon laser ablation (U-Th)/He and $\mathrm{U}-\mathrm{Pb}$ analyses used in this study follow those of Horne et al. (2016). The zircon grains were mounted in a puck using

Torr Seal and then polished to erode $20-30 \mu \mathrm{~m}$ of the crystals. Cathodoluminescence (CL) and backscatter electron (BSE) imaging were conducted on the puck before re-polishing to aid in selecting inclusion-free regions of the grain during analyses (Horne et al., 2016). Laser ablation analyses were conducted at the Group 18 Laboratory at Arizona State University using the Analyte G2 laser system. To measure the ${ }^{4} \mathrm{He}$ concentrations, a $25 \mu \mathrm{~m}$ spot size was selected for the zircons, and the grains were ablated for 15 seconds with a 10 Hz pulse frequency. ${ }^{4} \mathrm{He}$ concentrations were measured after ablation and gas purification using the ASI Alphachron analytical system and a Pfeiffer-Balzers Prisma quadrupole mass spectrometer. An ADE PhaseShift MicroZAM interferometric microscope was used to measure the volume of the ablated pit and the ${ }^{4} \mathrm{He}$ concentration with an in-house Matlab script (Horne et al., 2016).

The parent isotopes were measured by LA-ICPMS using the Analyte G2 laser system with a Photon Machines HelEx Active two-volume ablation cell and a Thermo Scientific iCAP Q quadrupole mass spectrometer (Horne et al., 2016). The same spots from the ${ }^{4} \mathrm{He}$ analyses were ablated for 40 seconds, increasing the spot sizes to $\sim 40-45 \mu \mathrm{~m}$ and the laser pulse frequency to 10 Hz . The volume of the ablated pit was determined using the same interferometric microscope and software as the ${ }^{4} \mathrm{He}$ analyses. Age standards used include Plesovice ( $337.13 \pm 0.37 \mathrm{Ma}$ ) (Sláma et al., 2008) and 94-35 (55.5 $\pm 1.5 \mathrm{Ma}$ ) (Klepeis et al., 1998).

Two zircon grains from sample 17OR-02 were dated by LA-ICP-MS at the Texas A\&M Radiogenic Isotope Geosciences Facility for U-Pb analyses. Grains were mounted in a 25 cm diameter puck using EpoThin Epoxy Resin, which was then polished to remove approximately half of the crystal. U-Pb analyses were conducted on the iCAP Inductively Coupled Plasma Mass Spectrometer. The zircon grains were ablated for 30 seconds using a spot size of $30 \mu \mathrm{~m}$. The primary standard used was 91500 and secondary standards were FC-1 and Plesovice. The final ages were calculated using Iolite (Igor Pro) data reduction software.

### 3.3.1.3 Apatite U-Pb Analyses

Apatite $\mathrm{U}-\mathrm{Pb}$ analyses were conducted at the Texas $\mathrm{A} \& \mathrm{M}$ Radiogenic Isotope Geosciences Facility for samples 17OR-03, 17OR-09, 17OR-10, and 17OR-18 following the LA-ICP-MS meth-
ods described for zircon $\mathrm{U}-\mathrm{Pb}$ analyses in Section 3.3.1.2. The primary standard was Madagascar apatite, and the secondary standard was FC-1.

### 3.3.2 Basalt Samples

Basalt samples 17OR-04, 17OR-05, 17OR-07, 17OR-12, 17OR-19, and 17OR-20 were crushed with a small jaw-crusher and sieved to obtain <150, 150-250, 250-355, and 355-600 $\mu \mathrm{m}$ fractions. Groundmass concentrates were picked from the $150-250$ and $250-355 \mu \mathrm{~m}$ fractions. To remove alteration effects, an acid leaching treatment was performed on the samples using a combination of HCl and $\mathrm{HNO}_{3}$ at varying acid strengths (Koppers et al., 2000). The groundmass concentrates were irradiated for 6 hours (Irradiation 18-OSU-04) in the OSU TRIGA Reactor (CLICIT-position) nuclear reactor at Oregon State University. Fish Canyon Tuff (FCT-2-NM) sanidine flux monitor was irradiated with the samples, with a calibrated age of $28.201 \pm 0.023 \mathrm{Ma} 1 \sigma$ after Kuiper et al. (2008).

### 3.3.2.1 Basalt Groundmass ${ }^{40}$ Ar ${ }^{\beta 9}$ Ar Analyses

The ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analyses were performed by incremental step-heating using the ARGUS-VI-E mass spectrometer at Oregon State University. The ARGUS-VI-E mass spectrometer has two Faraday collectors fitted with $10^{12} \mathrm{Ohm}$ resistors on argon masses 41 and 40 , three Faraday collectors fitted with $10^{13} \mathrm{Ohm}$ resistors on argon masses 39,38 , and 37, and one ion-counting CuBe electron multiplier. The electron multiplier is located next to the lowest mass Faraday collector and allows all argon isotopes to be measured at the same time. This set-up allows the full multi-collector to run while measuring the lowest peak of mass 36 on the highly sensitive electron multiplier. The irradiated samples were loaded into a Cu -planchette using an ultra-high vacuum sample chamber and were then heated with a defocused $25 \mathrm{~W} \mathrm{CO}_{2}$ laser beam in a pattern across the sample that released the gas evenly. After heating was complete, the reactive gases were cleaned using an SAES Zr-Al ST101 getter at $400^{\circ} \mathrm{C}$ for approximately 10 minutes along with two SAES Fe-V-Zr ST172 getters at $200^{\circ} \mathrm{C}$ and room temperature. J-values were calculated by using parabolic extrapolation of the measured flux gradient against the irradiation height. The Steiger and Jager (1977) decay
constant of $5.530 \pm 0.097 \times 10^{10} 1 / \mathrm{yr}(2 \sigma)$ reported by Min et al. (2000) was used to calculate the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages, and all other constants used in the age calculations can be found in Table 2 of Koppers et al. (2003). Plateau ages and isochron ages were calculated using the ArArCALC v2.6.2 software developed by Koppers et al. (2000) (available at http://earthref.org/ArArCALC/).

### 3.4 HeFTy Inverse Thermal Modeling

HeFTy is a thermal modeling software that can forward model the expected data distribution for a given thermal history or inverse model apatite and zircon (U-Th)/He ages to produce potential thermal pathways (Ketcham, 2005). HeFTy uses a 'Frequentist' statistical method that assesses the goodness-of-fit between the input cooling ages and the predicted thermal pathways (Ketcham, 2005). This results in a built-in quality control mechanism that will not produce any models for geologically impossible scenarios, which is a major advantage of this program over other thermal modeling software. The downside is that HeFTy cannot model large, precise data sets and will not produce any pathways if the groups of grains modeled do not overlap within $1 \sigma$ uncertainty.

User inputs include the range of the crystallization temperature and age, the present-day temperature, grain radius, $[\mathrm{U}]$ and $[\mathrm{Th}] \mathrm{ppm}$, grain age, and constraint boxes. One has the option of correcting for the alpha ejection in the input window, or directly inputting corrected He ages. The result is a time-temperature plot (Appendix Figures G.1-G.5). The "p-value", a statistical value that defines the probability that an observed value will be "at least as extreme" the least squares goodness of fit statistic under the Chi square distribution, defines whether a path is 'acceptable' (p-value cut-off of 0.05) or 'good' (p-value cut-off of 0.5) (Ketcham, 2005).

### 3.4.1 Model Parameters

Crystallization ages and temperature range were defined by zircon $\mathrm{U}-\mathrm{Pb}$ dating and Ti-in-zircon thermometry, respectively, from these new and existing data (Utevsky, 2015). See Appendix Tables F.1-F. 2 for specific model inputs. The present-day temperature was defined as $10 \pm 5^{\circ} \mathrm{C}$. The redistribution alpha ejection method was selected, and the Ketcham et al. (2011) method was selected for the stopping distance for un-corrected (U-Th)/He ages and age alpha correction method.

The calibration settings selected were Flowers et al. (2009) RDAAM for apatite and Guenther et al. (2013) for zircon. All models were run under 'Best' precision.

Constraint boxes, which define where the thermal history must pass in time-temperature space, were defined by the closure temperatures for apatite $\left(\sim 40-80{ }^{\circ} \mathrm{C}\right)$ and zircon $\left(\sim 160-200{ }^{\circ} \mathrm{C}\right)$. For models that included both apatite and zircon data, the constraint box encompassed the range from $40-200^{\circ} \mathrm{C}$. The stratigraphic range of the constraint box was defined by the maximum depositional age within $2 \sigma$ error and by the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ basalt age. The basalt constraint at Site I was modeled as 2.6 Ma , which was the minimum age of the ridge-capping basalt unit stratigraphic range. The basalt constraint at Site V was defined by sample 17OR-05.

### 3.4.2 Model Approach

Several considerations were taken into account when modeling the apatite and zircon (UTh)/He data. First, some zircon and apatite ages were close to or older than the U-Pb age. Thus, zircon and apatite ages that were not within $2 \sigma$ error uncertainty of the $\mathrm{U}-\mathrm{Pb}$ age were excluded from modeling. Second, poor reproducibility of the data resulted in a spread of cooling ages. The approach was then to group grains with similar ages together and multiple potential combinations (Appendix Tables F.1-F.2). Third, multiple U-Pb ages were given by Utevsky (2015) at Site III. Both the older and younger U-Pb ages were modeled using the manner described above in Section 3.4.1.

### 3.4.3 Exhumation Rates

Exhumation rates were calculated from the HeFTy model results by using the minimum and maximum range in slopes of the period of rapid cooling $\left({ }^{\circ} \mathrm{C} / \mathrm{Ma}\right)$ at each site and dividing that value by an assumed geothermal gradient between $20-40^{\circ} \mathrm{C} / \mathrm{km}$ (Appendix Figures G.1-G.5). These rates only constrain the amount of rock uplift.

## 4. RESULTS

The following results combine existing data from Perez et al. (2017), Reiners et al. (2002, 2003), Verplanck (1985), and Utevsky (2015) with new data. Perez et al. (2017) samples consist of apatite and zircon grains from Utevsky (2015) separates. Figure 4.1 shows time-temperature paths for each sample site from pluton crystallization to basalt emplacement, and Figure 4.2 shows a map view compilation of the raw data. All (U-Th)/He ages reported are corrected for alpha ejection and error uncertainties as $2 \sigma$ unless otherwise noted.


Figure 4.1: Time-temperature plots for each sample site location. Age error bars are reported in $2 \sigma$, and temperature error bars encompass approximate closure temperature for each system.


Figure 4.2: Map of study region with geochronology and thermochronology ages for each site. Apatite and zircon (U-Th)/He ages reported are corrected for alpha ejection. HeFTy plots are shown in the right panel for each site and display the range of weighted mean paths from various models. Site V did not produce any acceptable or good HeFTy model paths.

### 4.1 Site I

The zircon U-Pb age for sample 17OR-18 at Site I in southern Washington is $23.76 \pm 0.26$ Ma. The apatite $\mathrm{U}-\mathrm{Pb}$ age for sample $17 \mathrm{OR}-18$ is $22.10 \pm 2.50 \mathrm{Ma}$. Zircon (U-Th)/He ages range from $10.68 \pm 0.60$ to $18.76 \pm 0.84 \mathrm{Ma}$. Apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages are $5.40 \pm 0.19$ and 5.40 $\pm 0.54 \mathrm{Ma}$. The groundmass total fusion age of basalt sample $17 \mathrm{OR}-19$ is $27.68 \pm 0.05 \mathrm{Ma}$, which is significantly older than the apatite and zircon ( $\mathrm{U}-\mathrm{Th}$ )/He ages and the other ridge-capping
basalts. This age suggests the pluton likely intruded into this unit, and therefore the minimum age of the stratigraphic range of the ridge-capping basalt unit was used to constrain the HeFTy model (Appendix Table F.1). The range of the weighted mean HeFTy model paths of all potential groupings at each site were considered as viable cooling histories (Figure 4.3). The model results for Site I, which include apatite (U-Th)/He ages from Reiners et al. (2002), show rapid cooling occurring between $\sim 10-24 \mathrm{Ma}$. The calculated exhumation rate is between $3-16 \mathrm{~km} / \mathrm{Ma}$ and $2-8$ $\mathrm{km} / \mathrm{Ma}$ assuming geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$, respectively (Appendix Figure G.1).

### 4.2 Site II

The zircon U-Pb ages for samples 17OR-10 and 17OR-11 at Site II in northern Oregon are 9.72 $\pm 0.18$ and $9.56 \pm 0.08 \mathrm{Ma}$, respectively. Zircon (U-Th)/He ages for samples 17OR-10 and 17OR11 range from $7.52 \pm 0.34$ to $8.66 \pm 0.38 \mathrm{Ma}$ and $5.26 \pm 0.24$ to $11.91 \pm 0.52 \mathrm{Ma}$, respectively. Apatite (U-Th)/He ages for sample 17OR-10 range from $2.13 \pm 0.67$ to $4.00 \pm 1.63 \mathrm{Ma}$. The groundmass total fusion age of basalt sample $17 \mathrm{OR}-12$ is $5.15 \pm 0.01 \mathrm{Ma}$. The model results for Site II show rapid cooling occurring between $\sim 7-9 \mathrm{Ma}$ (Figure 4.3). The calculated exhumation rate is between $11-66 \mathrm{~km} / \mathrm{Ma}$ and 5-33 km/Ma assuming geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$, respectively (Appendix Figure G.2).

### 4.3 Site III

The zircon U-Pb age of sample WCOS-2 at Site III in northern-central Oregon is $18.6 \pm 0.75$ Ma, acquired by LA-ICP-MS methods (Utevsky, 2015). The same sample dated by SHRIMP-RG yields a zircon $\mathrm{U}-\mathrm{Pb}$ age of $16.4 \pm 0.2 \mathrm{Ma}$ (Utevsky, 2015). Zircon (U-Th)/He ages from sample WCOS-2 range from $14.4 \pm 1.2$ to $19.2 \pm 1.6 \mathrm{Ma}$ (Perez et al., 2017). Apatite (U-Th)/He ages from samples WCOS-2 and 17OR-09 range from $13.4 \pm 0.8$ to $31.1 \pm 3.6 \mathrm{Ma}$ (Perez et al., 2017) and $10.33 \pm 0.86$ to $17.64 \pm 3.93 \mathrm{Ma}$, respectively. An existing K-Ar age of a ridge-capping basalt at this location is $6.30 \pm 0.10 \mathrm{Ma}$ (Verplanck, 1985). The HeFTy model results show rapid cooling occurring between $\sim 13-19 \mathrm{Ma}$ (Figure 4.3). The calculated exhumation rate is between 6-66
$\mathrm{km} / \mathrm{Ma}$ and 3-33 km/Ma assuming geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$, respectively (Appendix Figure G.3).

### 4.4 Site IV

The zircon $\mathrm{U}-\mathrm{Pb}$ age of sample 17OR-06 in central Oregon is $19.63 \pm 0.31 \mathrm{Ma}$. Zircon (U$\mathrm{Th}) / \mathrm{He}$ ages range from $13.90 \pm 0.70$ to $21.52 \pm 0.92 \mathrm{Ma}$. Sample 17OR-06 did not yield any apatite grains. The groundmass total fusion age of basalt sample 17OR-07 is $7.70 \pm 0.02 \mathrm{Ma}$. The HeFTy model results show rapid cooling occurring between $\sim 15-20 \mathrm{Ma}$ (Figure 4.3). The calculated exhumation rate is between $11-14 \mathrm{~km} / \mathrm{Ma}$ and $6-7 \mathrm{~km} / \mathrm{Ma}$ assuming geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$, respectively (Appendix Figure G.4).

### 4.5 Site V

The zircon U-Pb age of sample WCOSNU-25 in central-southern Oregon is $23.52 \pm 0.72 \mathrm{Ma}$ (Utevsky, 2015). Zircon (U-Th)/He ages range from $25.7 \pm 2.0$ to $31.1 \pm 2.4 \mathrm{Ma}$ (Perez et al., 2017). The apatite (U-Th)/He age from sample 17OR-03 is $24.83 \pm 1.29 \mathrm{Ma}$. The groundmass mini-plateau ages of basalt samples 17OR-04 and 17OR-05 are $11.41 \pm 0.07$ and $4.46 \pm 0.02 \mathrm{Ma}$, respectively. These apatite and zircon $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages are all older than the $\mathrm{U}-\mathrm{Pb}$ age from Utevsky (2015). The (U-Th)/He ages that overlapped within $2 \sigma$ were modeled, but no acceptable or good paths were produced. Thus, the exhumation rate could not be calculated at this site.

### 4.6 Site VI

Samples WCOSNU-11 and 17OR-02 in southern Oregon are from two separate plutons of different lithologies located approximately 19 km apart. The zircon $\mathrm{U}-\mathrm{Pb}$ age of sample WCOSNU11 is $18.15 \pm 0.43 \mathrm{Ma}$ (Utevsky, 2015), and the zircon U-Pb age of sample 17OR-02 is 21.08 $\pm 0.93 \mathrm{Ma}$. Apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages from sample WCOSNU-11 range from $18.0 \pm 1.2$ to 27.3 $\pm 1.6 \mathrm{Ma}$ (Perez et al., 2017), and apatite (U-Th)/He ages from sample 17OR-02 range from 17.81 $\pm 2.57$ to $21.96 \pm 2.34 \mathrm{Ma}$. The groundmass total fusion age of basalt sample 17OR-20 is 5.77 $\pm 0.01 \mathrm{Ma}$. Both samples were modeled independently, and the HeFTy model results show rapid cooling occurring between $\sim 17-22 \mathrm{Ma}$ at this location (Figure 4.3). The calculated exhumation
rate is between $28-91 \mathrm{~km} / \mathrm{Ma}$ and $14-45 \mathrm{~km} / \mathrm{Ma}$ assuming geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$, respectively (Appendix Figure G.5).


Figure 4.3: Envelopes of all HeFTy weighted mean paths for each site location. Gray box indicates $\sim 6-12$ Ma timing of exhumation reported by Reiners et al. $(2002,2003)$ in the Washington Cascades. The timing of exhumation generally increases from Site I in southern Washington to Site VI in southern Oregon, with Site II in northern Oregon displaying the youngest cooling ages.

### 4.7 Effective Uranium Concentration

The [eU] of apatite grains from sample 17OR-18 at Site I in southern Washington range from $9.7-42.4 \mathrm{ppm}$. The $[\mathrm{eU}]$ of apatite grains from sample 17OR-10 at Site II in northern Oregon range from 1.3-9.2 ppm. The [eU] of apatite grains from samples 17OR-09 and WCOS-2 at Site III in northern-central Oregon range from $2.8-5.9 \mathrm{ppm}$ and $6.6-43.3 \mathrm{ppm}$, respectively. The $[\mathrm{eU}]$ of zircon grains from sample WCOS-2 range from $251.1-547.6 \mathrm{ppm}$. The [eU] of zircon grains from sample 17OR-06 at Site IV in central Oregon range from $65.9-279.7 \mathrm{ppm}$. The [eU] of the apatite grain from sample 17OR-03 at Site V in central-southern Oregon is 16.3 ppm . The [eU] of zircon grains from sample WCOSNU-25 at Site V range from $83.3-251.3 \mathrm{ppm}$. The [ eU$]$ of apatite grains from samples 17OR-02 and WCOSNU-11 at Site VI in southern Oregon range from 2.6-3.8 ppm
and 24.8-38.6 ppm, respectively. Figure 4.4 and Figure 4.5 show [eU] from all samples at each site plotted against the respective apatite or zircon (U-Th)/He age. There are no clear trends in the data that link anomalously old apatite and zircon (U-Th)/He ages with [eU].


Figure 4.4: [eU] of samples from each site plotted against apatite (U-Th)/He age, where hollow markers indicate apatite ( $\mathrm{U}-\mathrm{Th}$ )/He ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$.


Figure 4.5: [eU] of samples from each site plotted against zircon (U-Th)/He age, where hollow markers indicate zircon ( $\mathrm{U}-\mathrm{Th}$ )/He ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$.

### 4.8 Equivalent Sphere Radius

The equivalent sphere radius (ESR) values of apatite and zircon grains from sample 17OR18 at Site I in southern Washington range from 60.9-71.7 $\mu \mathrm{m}$ and $36.5-51.5 \mu \mathrm{~m}$, respectively. The ESR values of apatite and zircon grains from sample 17OR-10 at Site II in northern Oregon range from $55.2-80.9 \mu \mathrm{~m}$ and $50.2-68.8 \mu \mathrm{~m}$, respectively. The ESR values of zircon grains from sample 17OR-11 at Site II range from 45.5-75.2 $\mu \mathrm{m}$. The ESR values of apatite grains from samples 17OR-09 and WCOS-2 at Site III in northern-central Oregon range from 44.4-53.1 $\mu \mathrm{m}$ and 32.4-53.2 $\mu \mathrm{m}$, respectively. The ESR values of zircon grains from sample WCOS-2 range from 38.8-52.6 $\mu \mathrm{m}$. The ESR values of zircon grains from sample 17OR-06 at Site IV in central Oregon range from $46.5-51.7 \mu \mathrm{~m}$. The ESR value of the apatite grain from sample 17OR-03
at Site V in central-southern Oregon is $53.0 \mu \mathrm{~m}$. The ESR values of zircon grains from sample WCOSNU-25 at Site V range from 36.2-48.5 $\mu \mathrm{m}$. The ESR values of apatite grains from samples 17OR-02 and WCOSNU-11 at Site VI in southern Oregon range from 42.5-69.1 $\mu \mathrm{m}$ and 37.7-54.0 $\mu \mathrm{m}$, respectively. Figure 4.6 and Figure 4.7 show ESR values from all samples at each site plotted against the respective apatite or zircon (U-Th)/He age. Some of the anomalously old apatite and zircon (U-Th)/He ages correspond to smaller grain size, but this trend is not consistent across all sites.


Figure 4.6: ESR concentrations of all samples from each site plotted against apatite (U-Th)/He age, where hollow markers indicate apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$.


Figure 4.7: ESR concentrations of all samples from each site plotted against zircon (U-Th)/He age, where hollow markers indicate zircon $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$.

## 5. DISCUSSION

### 5.1 Recording Magmatic Cooling vs. Exhumation Signal

The majority of the cooling models generated from this study support early rapid cooling of the plutons immediately after crystallization followed by relatively slow and low-magnitude cooling. One potential interpretation of such results is that the thermochronologic data are recording cooling associated with pluton crystallization and not exhumation related to rock uplift. We contend, based on two arguments, that most of the apatite and zircon $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages in this study record the exhumation signal, with the exception of apatite (U-Th)/He ages at Site II and the results at Site V. First, the difference between the apatite and zircon $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages and the zircon $\mathrm{U}-\mathrm{Pb}$ is on the scale of millions of years. Models suggest magmatic cooling occurs on a timescale of thousands of years (Nabelek et al., 2012). If these data were recording magmatic cooling, then one would expect the apatite and zircon $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages to be nearly the same as the zircon $\mathrm{U}-\mathrm{Pb}$ age. These new data however show a range of cooling ages that are mostly millions of years younger than the crystallization age. At Site III for example, apatite (U-Th)/He ages are between one and eight million years younger than the older zircon U-Pb age reported by Utevsky (2015), excluding those that are anomalously older than the zircon $\mathrm{U}-\mathrm{Pb}$ age.

The data from Site II in northern Oregon are unusual in that the apatite (U-Th)/He ages are younger than the basalt emplacement age. These data were modeled using the same constraints described in Section 3.4, but more acceptable and good paths were produced when a reheating constraint was added during the timing of the basalt emplacement (Appendix Table F.1). The constraint box spanned from $40-100^{\circ} \mathrm{C}$ so the model had the option of reheating or not reheating. The zircon (U-Th)/He ages are older than the basalt emplacement age, which suggests these ages were not reset and represent the exhumation signal. At Site V in central-southern Oregon, the anomalously old apatite and zircon (U-Th)/He ages produced no acceptable or good cooling paths from the HeFTy models.

Second, the apatite and zircon (U-Th)/He cooling ages are out-of-phase with the zircon UPb crystallization ages. If the cooling ages were reflecting magmatic cooling, one would expect consistency between the offset of the apatite and zircon ( $\mathrm{U}-\mathrm{Th}$ )/He ages and the zircon $\mathrm{U}-\mathrm{Pb}$ age across the six sample sites. This trend is not seen in the data however. For example, at Site III the apatite ( $\mathrm{U}-\mathrm{Th}$ )/He ages differ from the zircon $\mathrm{U}-\mathrm{Pb}$ age by $\sim 1-8 \mathrm{Ma}$. At Site VI, this difference is about $\sim 3 \mathrm{Ma}$. Additionally, there does not appear to be systematic trend in the zircon (U-Th)/He ages relative to the $\mathrm{U}-\mathrm{Pb}$ ages or the apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages. These observations highlight the value of using multiple geo- and thermochronometers on the same sample at various sites as these relationships may not be apparent otherwise.

### 5.1.1 Anomalously Old Apatite and Zircon (U-Th)/He Ages

Anomalously old apatite and zircon (U-Th)/He cooling ages are observed in the data that are not believed to record the exhumation signal. This issue occurs particularly at Sites III, V, and VI in central to southern Oregon where some apatite and zircon (U-Th)/He ages are older than the zircon U-Pb crystallization, including some ages given by Utevsky (2015). Zircons from Utevsky (2015) sample separates were re-dated in this study, and our new $\mathrm{U}-\mathrm{Pb}$ ages confirm those reported by Utevsky (2015) (Appendix Figures B. 1 - B.4). Grain size and radiation damage are known to affect helium diffusivity (Flowers et al., 2009; Gautheron et al., 2009; Hansen and Reiners, 2006; Reiners and Farley, 2001; Shuster et al., 2006), but the expected positive slope relationship between age and $[\mathrm{eU}]$ characteristic of radiation damage accumulation and annealing effects is observed in only some of the data (Appendix Figures D.1-D.2). A weak negative correlation between ESR and grain size is observed (Figure 4.6-4.7), perhaps due to inaccuracies in the $\mathrm{F}_{t}$ correction as more area of the grain would be susceptible to the alpha ejection effect. Other potential explanations for the anomalously old (U-Th)/He ages include inclusions, zoning, or ${ }^{4} \mathrm{He}$ implantation from a "bad neighbor" scenario or U-Th-rich grain boundary phases.

U-Th-rich mineral inclusions, such as zircon, titanite, or monazite, could be a potential explanation for the unusually old ( $\mathrm{U}-\mathrm{Th}$ )/He ages. Mineral inclusions that are not dissolved during the dissolution process could result in "parentless" ${ }^{4} \mathrm{He}$, as the $\mathrm{Sm}-\mathrm{Th}-\mathrm{U}$ concentrations are measured
only from the grain. Many of the apatite crystals from the samples in this study contained small inclusions, so it could be possible that the results were affected by this issue (Figure 3.4). Zoning could be another reason for the old $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages, as the alpha ejection correction assumes an equal distribution of U and Th in the crystal. This effect could result in either younger or older ages and is more common in zircon grains as opposed to apatite (Ault and Flowers, 2012; Farley et al., 2011; Gautheron et al., 2012; Johnstone et al., 2013).

He implantation is another possible explanation for the old apatite (U-Th)/He ages. The alpha ejection effect could result in the implantation of excess ${ }^{4} \mathrm{He}$ ejected from U-Th rich minerals into neighboring grains with lower [U] and [Th] ( $<5 \mathrm{ppm}$ ) (Spiegel et al., 2009). This scenario would also result in "parentless" ${ }^{4} \mathrm{He}$. Some have attributed anomalously old apatite (U-Th)/He ages to implantation from U-Th-rich grain boundary phases (GBPs) that appear as a precipitate on the crystal surface (Murray et al., 2014). These authors found apatite grains from an igneous bedrock sample that were heavily coated with a thin $(1-10 \mu \mathrm{~m})$ red-orange precipitate and other grains from the same sample that had no apparent coating. These coatings were found to be enriched in Fe , and potentially $\mathrm{Al}, \mathrm{K}, \mathrm{Ca}, \mathrm{Mn}, \mathrm{Mg}, \mathrm{U}$, and Th , with an [eU] of 2-10 times more than the grain itself (Murray et al., 2014). A thick GBP coat ( $\sim 3 \mathrm{~mm}$ ) was found to have an [eU] of 90 ppm (Murray et al., 2014). Additionally, these authors note the GBP precipitates are likely to fall off during the mineral separation process, so one may not even be aware of their presence and effect until after lab analyses. The timing of GBP is particularly important in how the apatite (U-Th)/He age is affected. If GBPs form before or near to the time of cooling and are then lost prior to analyses, during the mineral separation process for example, the resulting age can be skewed older than it should be due to the implantation of excess ${ }^{4} \mathrm{He}$ (Murray et al., 2014). If GBPs form well after the grain has cooled, there may be no effect or the age may be too young if the GBP is analyzed along with the grain (Murray et al., 2014). The effect of GBPs on apatite helium ages is a complex problem, as the timing of GBP formation, the implantation effect, diffusion properties, coverage (distribution and thickness), and composition are variable (Murray et al., 2014). A possible solution is to use apatite fission track thermochronometry in conjunction with apatite ( $\mathrm{U}-\mathrm{Th}$ )/He dating as
this method allows regions of the crystal with unusually high track densities to be excluded from counting (Murray et al., 2014).

No coatings were observed on the apatite grains of samples from this study, although it is possible they were removed during the mineral separation process. These grains did however have low [U] and [Th], many of which were $<5 \mathrm{ppm}$ (Appendix Table A.1). If U-Th rich GBPs were present on the grains and removed during the mineral separation process, the effect may still be present in the resulting data. He implantation could have occurred in the zircon grains as well, but the effect may not be as significant considering the higher [eU], which are above 100 ppm in most of the grains (Appendix Table A.2).

### 5.1.2 Incorporating Effects of Radiation Damage and He Implantation

A negative slope on an age vs [eU] plot can be indicative of apatite grains affected by a "bad neighbor" scenario involving ${ }^{4} \mathrm{He}$ implantation from U-Th-rich GBPs (Murray et al., 2014). If this is the case, the grains with the highest [eU] (i.e. the youngest ages) are closest to the true age and represent the maximum cooling age of the sample (Murray et al., 2014). A negative-slope-age[eU] pattern is observed with the apatite (U-Th)/He data at Sites III and VI (Figure 5.1). Only the apatite grains with the highest [eU] were selected for HeFTy modeling to exclude those potentially affected by He implantation (Figure 5.2). A positive-slope-age-[eU] pattern can be indicative of radiation damage to the crystal, and He implantation and radiation damage effects can be present in the same sample (Murray et al., 2014). The RDAAM model developed by Flowers et al. (2009) can correct for radiation damage effects in HeFTy modeling.



Figure 5.1: [eU] of samples from selected sites plotted against age that display a negative-slope-age- $[\mathrm{eU}]$ relationship. Hollow markers indicate apatite (U-Th)/He ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Gray boxes indicate the $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages with higher [eU], which are closest to the true maximum cooling age and used in preferred HeFTy models. Red boxes indicate the zircon U-Pb crystallization age given by Utevsky (2015) for samples WCOS-2 and WCOSNU-11 or obtained from this study for sample 17OR-02. Error bars are reported in $2 \sigma$.


Figure 5.2: Preferred envelopes of HeFTy weighted mean paths using youngest apatite (U-Th)/He ages at Sites III and VI. The timing of rapid cooling at each site does not change significantly from envelopes of HeFTy weighted mean paths using all apatite grains.

### 5.2 North-South Trends in Exhumation Timing

The zircon $\mathrm{U}-\mathrm{Pb}$ ages demonstrate that the plutons crystallized during the early to mid-Miocene and lack a systematic progression of ages from north to south. The zircon (U-Th)/He trend is variable along-strike, but the ages generally increase from north to south with Site II in northern Oregon having the youngest ages. The apatite (U-Th)/He ages also generally increase from north to south, with Site II having the youngest ages, although this location was likely affected by partial resetting during basalt emplacement. These generalized trends tentatively suggest that exhumation timing is broadly older in the south and becomes younger northward. The basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ages suggest basalt emplacement occurred during the Late Miocene to early Pliocene, but no spatial pattern is discerned.

Reiners et al. $(2002,2003)$ found the timing of exhumation along the western flank of the Washington Cascades to be $\sim 6-12 \mathrm{Ma}$ based on apatite fission track and (U-Th)/He ages. The apatite (U-Th)/He ages in Washington from this study are consistent with these findings. With the exception of Site II in northern Oregon, the apatite (U-Th)/He ages from this study in Oregon are generally older than the $\sim 6-12$ Ma range in Washington (Reiners et al., 2002, 2003) and range from $\sim 10-25 \mathrm{Ma}$ (Figure 4.2). The apatite (U-Th)/He ages at Site II range from $\sim 2-4 \mathrm{Ma}$ and are younger than the $\sim 6-12$ Ma range given by Reiners et al. (2002, 2003). However, we attribute these $\sim 2-4$ Ma ages to resetting by basalt emplacement, which do not reflect exhumational cooling. HeFTy modeling that included apatite and/or zircon (U-Th)/He ages show the timing of exhumation ranging from $\sim 13-19 \mathrm{Ma}$ in central Oregon and $\sim 17-22 \mathrm{Ma}$ in southern Oregon. Thus, the results from this study support an early to mid-Miocene exhumation that occurred mostly before the timing of exhumation constrained in Washington.

### 5.3 Comparison with Previous Findings

### 5.3.1 Analytical Methods

At Site I in southern Washington, pluton sample 170R-18 was collected at the same site as samples 00193 and 00193b from Reiners et al. $(2002,2003)$ to compare the analytical results. The
apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ ages from sample $17 \mathrm{OR}-18$ are $5.40 \pm 0.19$ and $5.40 \pm 0.54 \mathrm{Ma}$. The apatite (U-Th)/He ages from sample 00193 and 00193b (Reiners et al., 2002, 2003) are $8.96 \pm 0.54$ and $8.42 \pm 0.51 \mathrm{Ma}$, respectively. The difference between the ages could be a result of the analytical method used. The single crystal (U-Th)/He method was used in this study, whereas the Reiners et al. $(2002,2003)$ samples used both single and multi-crystal aliquots. Samples 00193 and 00193b (Reiners et al., 2002, 2003) used multi-crystal analyses. Multi-crystal aggregates were used in early (U-Th)/He dating to ensure ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$ could be measured above the blank level (Farley et al., 2010). More recent findings have shown that even small differences in each crystal's diffusivity can result in inaccurate ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$ spectrum and incorrect assumptions of Arrhenius parameters when multi-crystal aggregates are analyzed together (Farley et al., 2010). This could explain the $\sim 3$ Ma discrepancy between the age results of this study and previous work by Reiners et al. (2002, 2003).

### 5.3.2 Exhumation and Erosion Rates

The apparent exhumation rate of samples from the western flank of the Washington Cascades was found to be $0.5-1.0 \mathrm{~km} / \mathrm{m} . \mathrm{y}$. from $\sim 6-12 \mathrm{Ma}$ based on an age-elevation transect (Reiners et al., 2002). An age-elevation transect was not performed in this study given that the sample locations in the Oregon Cascades lacked sufficient topographic relief. As an alternative, exhumation rates were calculated using the relationship among the multiple geo- and thermochronometers (see Section 3.4.3). The calculated exhumation rates from this study, which range from $3-16$ to $28-91 \mathrm{~km} / \mathrm{Ma}$ and 2-8 to $14-45$ assuming geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$ respectively, are higher than those found by Reiners et al. (2002), but the results show the rate of exhumation increases from north to south along the range. This study does not provide a direct comparison to the erosion rates calculated by Reiners et al. (2003).

### 5.4 Role of Climate and Tectonics in Driving Rock Uplift

The contribution of climate and tectonics in driving rock uplift can be evaluated by comparing the apatite and zircon (U-Th)/He cooling ages to spatial trends in precipitation and deformation
over time. Cooling ages from previous findings by Reiners et al. $(2002,2003)$ range from $\sim 6-$ 12 Ma in Washington and are younger than the $\sim 17 \mathrm{Ma}$ onset of Yakima Fold Belt compression (Figure 5.3) (Blakely et al., 2011). Those ages were attributed to exhumation guided by climatic patterns that focused increased precipitation and erosion along the western Cascade flank and supported by the lack of a relationship between the cooling ages and mapped structural features (Reiners et al., 2002, 2003). However, the possibility that these ages are driven by deeper structures with no surface expression still exists, as Yakima Fold Belt shortening has been active throughout the interval that Washington exhumation is observed (Kelsey et al., 2017; Staisch et al., 2017, 2018) and western Washington is seismically active (Wells et al., 2002).

The new cooling ages from this study in Oregon are older than the $\sim 12 \mathrm{Ma}$ onset of Basin and Range extension and were collected from regions that are situated north of the northernmost Basin and Range deformation (Figure 5.3) (Colgan et al., 2004; Dilles and Gans, 1995; Surpless et al., 2002; Trench et al., 2012). These ages could represent monotonic cooling that is indistinguishable from emplacement, or alternatively these results may reflect apatite and zircon grains that remained in the partial retention zone for an extended amount of time during lateral movement associated with the vertical axis rotation experienced by the Oregon block. In a compressional tectonic regime, such as the Yakima Fold Belt, the three-dimensional trajectory of the plutons during exhumation would contain a larger component of vertical motion as opposed to lateral motion. In contrast, the three-dimensional movement of plutons during exhumation in an extensional tectonic regime, such as the Basin and Range province, could contain a large component of lateral motion in addition to vertical motion. Apatite and zircon grains located within the partial retention zone for an extended amount of time would have altered diffusion kinetics, which may contribute to the dispersion observed among the (U-Th)/He ages.

All cooling ages, including from previous work (Reiners et al., 2002, 2003) and this study, are younger than the $\sim 27$ Ma development of the Cascades rain shadow (Figure 5.3) (Kohn et al., 2002). However, the onset of the Cascades rain shadow could have varied along-strike as paleoclimate studies are specific to the sample region. Previous work attributed exhumation in the Coast

Mountains of Alaska and the Washington Cascades as climate-driven due to the similarity in exhumation timing and the same precipitation trend (Reiners et al., 2002, 2003), but these new data show the timing of exhumation in the Oregon Cascades is not consistent with these previous findings. The difference in the timing of exhumation, in addition to previous work that suggests surface processes alone cannot account for the total amount of rock uplift in central Oregon (Lopez and Meigs, 2016), open the possibility for an additional component of tectonic- or magmatic-driven exhumation in the Oregon and Washington Cascades. Although the precise contribution from various surface and tectonic mechanisms remains poorly constrained, our data supports the concept that the interactions among these processes are active in driving exhumation in the Cascades.


Figure 5.3: All geochronology and thermochronology for each site plotted against latitude. Green box is the geographical extent and oldest onset of Cascades rain shadow (Kohn et al., 2002), and gray boxes show geographical extent and timing of tectonic events (Blakely et al., 2011; Colgan et al., 2004; Dilles and Gans, 1995; Surpless et al., 2002; Trench et al., 2012). White markers indicate apatite and zircon ( $\mathrm{U}-\mathrm{Th}$ )/He ages that are older than the zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$.

## 6. CONCLUSIONS

Determining the contributions of climate and tectonics to rock uplift is a challenging task, yet fundamental to understand Earth systems. The Oregon and Washington Cascades provide an ideal setting to evaluate the feedbacks among climate, erosion, and tectonics due to the unique along-strike trends in deformation, magmatic activity, and precipitation. This study used multiple geo- and thermochronometers, including zircon $\mathrm{U}-\mathrm{Pb}$, apatite and zircon ( $\mathrm{U}-\mathrm{Th}$ )/He, and basalt groundmass ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating, to define the timing and pace of exhumation in Oregon and southern Washington. The timing of exhumation ranged from $\sim 7-22 \mathrm{Ma}$ in Oregon, where most plutons cooled early and rapidly over the course of $\sim 3-6 \mathrm{Ma}$, followed by slower, gradual cooling over the next ~7-17 Ma.

These data support the timing of exhumation occurred earlier in Oregon than the $\sim 6-12 \mathrm{Ma}$ timing in Washington found by previous studies (Reiners et al., 2002). The timing of exhumation generally increases from north to south, although the location near Mount Hood in northern Oregon displays the youngest crystallization and (U-Th)/He ages. This general southward increase in exhumation timing is inconsistent with synchronous exhumation predicted by regionally consistent surface processes drivers. Instead, north to south variations in the timing, style, and magnitude of tectonics and magmatic activity likely have a significant impact on the diachronous exhumation timing in this region. These results support tectonic and/or magmatic processes as important drivers to exhumation in the Oregon and Washington Cascades, and highlight the role of interactions among climate, erosion, and tectonics processes on orogen development.

## REFERENCES

Andersen, T. (2002). Correction of common lead in $\mathrm{U}-\mathrm{Pb}$ analyses that do not report 204 Pb . Chemical Geology, 192(1-2):59-79.

Ault, A. and Flowers, R. (2012). Is apatite U-Th zonation information necessary for accurate interpretation of apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ thermochronometry data? Geochimica et Cosmochimica Acta, 79:60-78.

Blakely, R. J., Sherrod, B. L., Weaver, C. S., Wells, R. E., Rohay, A. C., Barnett, E. A., and Knepprath, N. E. (2011). Connecting the Yakima fold and thrust belt to active faults in the Puget Lowland, Washington. Journal of Geophysical Research: Solid Earth, 116(7):1-34.

Boyce, J. W., Hodges, K. V., Olszewski, W. J., Jercinovic, M. J., Carpenter, B. D., and Reiners, P. W. (2006). Laser microprobe (U-Th)/He geochronology. Geochimica et Cosmochimica Acta, 70(12):3031-3039.

Burbank, D. W., Blythe, A. E., Putkonen, J. L., Pratt-Situala, B. A., Gabet, E. J., Oskin, M. E., Barros, A. P., and Ohja, T. P. (2003). Decoupling of erosion and climate in the Himalaya. Nature, 426:652-655.

Chamberlain, K. and Bowring, S. (2002). Apatite-feldspar U-Pb thermochronometer: a reliable mid-range ( $\sim 450{ }^{\circ} \mathrm{C}$ ), diffusion controlled system. Chemical Geology, 172:173-200.

Chew, D., Sylvester, P., and Tubrett, M. (2011). U-Pb and Th-Pb dating of apatite by LA-ICPMS. Chemical Geology, 280:200-216.

Christiansen, R. and Yeats, R. (1992). Post-Laramide geology of the U.S. Cordilleran region. In Burchfiel, B., Lipman, P., and Zoback, M., editors, The Cordilleran orogen: Conterminous U.S., pages 261-406. Boulder, CO: Geological Society of America, Geology of North America, G-3 edition.

Colgan, J., Dumitru, T., and Miller, E. (2004). Diachroneity of Basin and Range extension and Yellowstone hotspot volcanism in northwestern Nevada. Geological Society of America Bulletin, 32:121-124.

Conrey, R. M., Taylor, E. M., Donnelly-Nolan, J. M., and Sherrod, D. R. (2002). North-Central Oregon Cascades: Exploring Petrologic and Tectonic Intimacy in a Propagating Intra-Arc Rift. Field Guide to Geologic Processes in Cascadia: Oregon Department of Geology and Mineral Industries, 36:47-90.

Degeling, H. (2003). Zr equilibria in metamorphic rocks. Unpublished PhD thesis, Australian National University.

Dilles, J. and Gans, P. (1995). The chronology of Cenozoic volcanism and deformation in the Yerington area, western Basin and Range and Walker Lane. Geological Society of America Bulletin, 197:474-486.

Dilles, J. H. (1987). Petrology of the Yerington Batholith, Nevada: Evidence for evolution of porphyry copper ore fluids. Economic Geology, 82(7):1750-1789.

Dodson, M. (1973). Closure temperature in cooling geochronological and petrological systems. Contributions to Mineralogy and Petrology, 40:259-274.
du Bray, E. and John, D. (2011). Petrologic, tectonic, and metallogenic evolution of the Ancestral Cascades magmatic arc, Washington, Oregon, and northern California. Geosphere, 7(5):11021133.

Duncan, R. and Kulm, L. (1989). Plate tectonic evolution of the Cascades arc-subduction complex. In Winterer, E., Hussong, D., and Decker, R., editors, The eastern Pacific Ocean and Hawaii, pages 413-438. Boulder, CO: Geological Society of America, Geology of North America.

Enkelmann, E., Ehlers, T. A., Merli, G., and Methner, K. (2015). Thermal and exhumation history of the Eocene Chumstick Basin, Washington State, USA. Tectonics, 34(5):951-969.

Ewing, R., Weber, W., and Clinard, J. (1995). Radiation effects in nuclear waste forms for highlevel radioactive waste. Progress in Nuclear Energy, 29(2):63-127.

Farley, K., Shuster, D., and Ketcham, R. (2011). U and Th zonation in apatite observed by laser ablation ICPMS, and implications for the (U-Th)/He system. Geochimica et Cosmochimica Acta, 75(16):4515-4530.

Farley, K. A. (2000). Helium diffusion from apatite: General behavior as illustrated by Durango
fluorapatite. Journal of Geophysical Research: Solid Earth, 105(B2):2903-2914.
Farley, K. A., Shuster, D. L., Watson, E. B., Wanser, K. H., and Balco, G. (2010). Numerical investigations of apatite ${ }^{4} \mathrm{He} /{ }^{3} \mathrm{He}$ thermochronometry. Geochemistry, Geophysics, Geosystems, 11(10):1-18.

Farley, K. A., Wolf, R. A., and Silver, L. T. (1996). The effects of long alpha-stopping distances on (U-Th)/He ages. Geochimica et Cosmochimica Acta, 60(21):4223-4229.

Ferry, J. and Watson, E. (2007). New thermodynamic models and revised calibrations for the Ti-inzircon and Zr-in-rutile thermometers. Contributions to Mineralogy \& Petrology, 154:429-437.

Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., and O’Sullivan, P. B. (2006). Interpretation of ( $\mathrm{U}-\mathrm{Th}$ )/ He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of southern Victoria Land. Chemical Geology, 225:91-120.

Flowers, R. M., Ketcham, R. A., Shuster, D. L., and Farley, K. A. (2009). Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta, 73:2347-2365.

Forte, A. M., Whipple, K. X., Bookhagen, B., and Rossi, M. W. (2016). Decoupling of modern shortening rates, climate, and topography in the Caucasus. Earth and Planetary Science Letters, 449:282-294.

Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M. (2009). Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chemical Geology, 266:157-170.

Gautheron, C., Tassan-Got, L., Ketcham, R., and Dobson, K. (2012). Accounting for long alphaparticle stopping distances in ( $\mathrm{U}-\mathrm{Th}-\mathrm{Sm}$ )/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochimica et Cosmochimica Acta, 96:44-56.

Gradstein, F., Ogg, J., and Ogg, G. (2012). The Geologic Time Scale 2012. Elsevier Science, ProQuest E edition.

Guenther, W., Reiners, P., Ketcham, R., Nasdala, L., and Giester, G. (2013). Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science, 313(3):145-198.

Gulick, S. P. S., Jaeger, J. M., Mix, A. C., Asahi, H., Bahlburg, H., Belanger, C. L., Berbel, G. B. B., Childress, L., Cowan, E., Drab, L., Forwick, M., Fukumura, A., Ge, S., Gupta, S., Kioka, A., Konno, S., LeVay, L. J., Marz, C., Matsuzaki, K. M., McClymont, E. L., Moy, C., Muller, J., Nakamura, A., Ojima, T., Ribeiro, F. R., Ridgway, K. D., Romero, O. E., Slagle, A. L., Stoner, J. S., St-Onge, G., Suto, I., Walczak, M. D., Worthington, L. L., Bailey, I., Enkelmann, E., Reece, R., and Swartz, J. M. (2015). Mid-Pleistocene climate transition drives net mass loss from rapidly uplifting St. Elias Mountains, Alaska. Proceedings of the National Academy of Sciences of the United States of America, 112:15042-15047.

Gulick, S. P. S., Reece, R. S., Christeson, G. L., Avendonk, H. V., Worthington, L. L., and Pavlis, T. L. (2013). Seismic images of the Transition fault and the unstable Yakutat-Pacific-North American triple junction. Geology, 41(5):571-575.

Hansen, K. and Reiners, P. (2006). Low temperature thermochronology of the southern East Greenland continental margin: evidence from apatite $(\mathrm{U}-\mathrm{Th}) / \mathrm{He}$ and fission track analysis and implications for intermethod calibration. Lithos, 92:117-136.

Harrison, T., Catlos, E., and Montel, J. (2002). U-Th-Pb dating of phosphate minerals. In Kohn, M., Rakovan, J., and Hughes, J., editors, Phosphates: Geochemical, Geobiological, and Materials Importance, pages 523-558. Washington, D.C.: Mineralogical Society of America.

Harrison, T. and Zeitler, P. (2005). Fundamentals of Noble Gas Thermochronometry. In Reiners, P., Ehlers, T., and Zeitler, P., editors, Low-temperature thermochronology: techniques, interpretations, and applications, pages 123-149. Volume 58: Mineralogical Society of America Geochemical Society.

Hickes, H. (2001). Apatite and zircon (U-Th)/He thermochronology of the northern Coast Mountains, southeast Alaska. M.S. thesis, Washington State University.

Hickes, H., Reiners, P., Donelick, R., and Stowell, H. (2000). Apatite and zircon (U-Th)/Hethermochronometry of the Northern Coast Mountains, Southeast Alaska. Eos (Transactions, American Geophysical Union), 81, Abstract T51C-10.

Hodges, K. V., Wobus, C., Ruhl, K., Schildgen, T., and Whipple, K. (2004). Quaternary defor-
mation, river steepening, and heavy precipitation at the front of the Higher Himalayan ranges. Earth and Planetary Science Letters, 220:379-389.

Horne, A. M., van Soest, M. C., Hodges, K. V., Tripathy-Lang, A., and Hourigan, J. K. (2016). Integrated single crystal laser ablation $\mathrm{U} / \mathrm{Pb}$ and ( $\mathrm{U}-\mathrm{Th}$ )/He dating of detrital accessory minerals - Proof-of-concept studies of titanites and zircons from the Fish Canyon tuff. Geochimica et Cosmochimica Acta, 178:106-123.

Horstwood, M., Kosler, J., Gehrels, G., Jackson, S., McLean, N., Paton, C., Pearson, N., Sircombe, K., Sylvester, P., Vermeesch, P., Bowring, J., Condon, D., and Schoene, B. (2016). CommunityDerived Standards for LA-ICP-MS U-(Th-)Pb Geochronology - Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research, 40(3):311-332.

Huntington, K. W., Klepeis, K. A., and 66 community contributors (2017). Challenges and opportunities for research in tectonics: Understanding deformation and the processes that link Earth systems, from geologic time to human time. A community vision document submitted to the U.S. National Science Foundation. Technical report.

Johnstone, S., Hourigan, J., and Gallagher, C. (2013). LA-ICP-MS depth profile analysis of apatite: protocol and implications for (U-Th)/He thermochronometry. Geochimica et Cosmochimica Acta, 109:143-161.

Kelsey, H., Ladinsky, T., Staisch, L., Sherrod, B., Blakely, R., Pratt, T., Stephenson, W., Odum, J., and Wan, E. (2017). The Story of a Yakima Fold and How It Informs Late Neogene and Quaternary Backarc Deformation in the Cascadia Subduction Zone, Manastash Anticline, Washington, USA. Tectonics, 36:2085-2107.

Ketcham, R., Gautheron, C., and Tassan-Got, L. (2011). Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: Refinement of the baseline case. Geochimica et Cosmochimica Acta, 75:7779-7791.

Ketcham, R. A. (2005). Forward and Inverse Modeling of Low-Temperature Thermochronometry Data. Reviews in Mineralogy and Geochemistry, 58(1):275-314.

Klepeis, K., Crawford, M., and Gehrels, G. (1998). Structural history of the crustal-scale Coast
shear zone north of Portland Canal, southeast Alaska and British Columbia. Journal of Structural Geology, 20:883-904.

Kohn, M. J., Miselis, J. L., and Fremd, T. J. (2002). Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. Earth and Planetary Science Letters, 204:151-165.

Koppers, A. A., Staudigel, H., and Wijbrans, J. R. (2000). Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the $40 \mathrm{Ar} / 39 \mathrm{Ar}$ incremental heating technique. Chemical Geology, 166(1-2):139-158.

Koppers, A. A. P., Staudigel, H., Pringle, M. S., and Wijbrans, J. R. (2003). Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochemistry, Geophysics, Geosystems, 4(10):1-49.

Kuiper, K. F., Deino, A., Hilgen, F. J., Krijgsman, W., Renne, P. R., and Wijbrans, J. R. (2008). Synchronizing Rock Clocks of Earth History. Science, 320(5875):500-504.

Lopez, W. and Meigs, A. (2016). Post 6.3 Ma Erosionally Driven Rock Uplift and Landscape Evolution of the Cascade Range in the Pacific Northwest. Undergraduate thesis, Oregon State University.

McCaffrey, R., Qamar, A. I., King, R. W., Wells, R., Khazaradze, G., Williams, C. A., Stevens, C. W., Vollick, J. J., and Zwick, P. C. (2007). Fault locking, block rotation and crustal deformation in the Pacific Northwest. Geophysical Journal International, 169:1315-1340.

McDougall, I. and Harrison, T. M. (1999). Geochronology and Thermochronology by the 40Ar/39Ar Method. Oxford University Press, 2nd edition.

Min, K., Mundil, R., Renne, P., and Ludwig, K. (2000). A test for systematic errors in Ar-40/Ar39 geochronology through comparison with $\mathrm{U} / \mathrm{Pb}$ analysis of a 1.1-Ga rhyolite. Geochimica et Cosmochimica Acta, 64(1):73-98.

Murray, K. E., Orme, D. A., and Reiners, P. W. (2014). Effects of U-Th-rich grain boundary phases on apatite helium ages. Chemical Geology, 390:135-151.

Nabelek, P. I., Hofmeister, A. M., and Whittington, A. G. (2012). The influence of temperaturedependent thermal diffusivity on the conductive cooling rates of plutons and temperature-time
paths in contact aureoles. Earth and Planetary Science Letters, 317-318:157-164.
Pavlis, T., Chapman, J., Bruhn, R., Ridgway, K., Worthington, L., Gulick, S., and Spotila, J. (2012). Structure of the actively deforming fold-thrust belt of the St . Elias orogen with implications for glacial exhumation and three-dimensional tectonic processes. Geosphere, 8(5):991-1019.

Perez, N. D., Meigs, A., Pesek, M., and Stockli, D. (2017). Does erosional exhumation explain Late Cenozoic rock uplift of the Western Cascades, OR? Preliminary Results, Poster session presented at the Feedbacks Among Climate, Erosion, and Tectonics II, Corvallis, OR.

Priest, G. R. (1990). Volcanic and Tectonic Evolution of the Cascade Volcanic Arc, Central Oregon. Journal of Geophysical Research, 95(B12):19583-19599.

Rasmussen, J. and Humphreys, E. (1988). Tomographic image of the Juan de Fuca Plate beneath Washington and western Oregon using teleseismic P-wave travel times. Geophysical Research Letters, 15(12):1417-1420.

Reiners, P. and Farley, K. (2001). Influence of crystal size on apatite (U-Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth and Planetary Science Letters, 188:413-420.

Reiners, P. W., Ehlers, T. A., Garver, J. I., Mitchell, S. G., Montgomery, D. R., Vance, J. A., and Nicolescu, S. (2002). Late Miocene exhumation and uplift of the Washington Cascade Range. Geology, 30(9):767-770.

Reiners, P. W., Ehlers, T. A., Mitchell, S. G., and Montgomery, D. R. (2003). Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature, 426:645-647.

Renne, P. R., Mundil, R., Balco, G., Min, K., and Ludwig, K. R. (2010). Joint determination of 40K decay constants and 40Ar*/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochimica et Cosmochimica Acta, 74(18):5349-5367.

Schmandt, B. and Humphreys, E. (2011). Seismically imaged relict slab from the 55 Ma Siletzia accretion to the northwest United States. Geology, 39(2):175-178.

Shuster, D. and Farley, K. (2005). 4He/3He Thermochronometry: Theory, Practice, and Potential

Implications. In Reiners, P., Ehlers, T., and Zeitler, P., editors, Low-temperature thermochronology: techniques, interpretations, and applications, pages 181-203. Volume 58: Mineralogical Society of America Geochemical Society.

Shuster, D. L., Flowers, R. M., and Farley, K. A. (2006). The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth and Planetary Science Letters, 249(3-4):148-161.

Sláma, J., Kosler, J., Condon, D., Crowley, J., Gerdes, A., Hanchar, J., M.S.A., H., Morris, G., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M., and Whitehouse, M. (2008). Plesovice zircon - a new natural reference material for $\mathrm{U}-\mathrm{Pb}$ and Hf isotopic microanalysis. Chemical Geology, 249:1-35.

Spiegel, C., Kohn, B., Belton, D., Berner, Z., and Gleadow, A. (2009). Apatite (U-Th-Sm)/He thermochronology of rapidly cooled samples: the effect of He implantation. Earth and Planetary Science Letters, 285:105-114.

Staisch, L., Blakely, R., Kelsey, H., Styron, R., and Sherrod, B. (2018). Crustal Structure and Quaternary Acceleration of Deformation Rates in Central Washington Revealed by Stream Profile Inversion, Potential Field Geophysics, and Structural Geology of the Yakima Folds. Tectonics, 37(6):1750-1770.

Staisch, L., Kelsey, H., Sherrod, B., Möller, A., Paces, J., Blakely, R., and Styron, R. (2017). Miocene - Pleistocene deformation of the Saddle Mountains: Implications for seismic hazard in central Washington , USA. Geological Society of America Bulletin, 130(3-4).

Steiger, R. and Jager, E. (1977). Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters, 36:359362.

Surpless, B. E., Stockli, D. F., Dumitru, T. A., and Miller, E. L. (2002). Two-phase westward encroachment of Basin and Range extension into the northern Sierra Nevada. Tectonics, 21(1):2-1-13.

Swanson, D. and Wright, T. (1976). Field Guide to field trip between Pasco and Pullman, Washington, emphasizing stratigraphy, vent areas, and intracanyon flows of the Yakima Basalt. In

Geological Society of America Cordilleran Section meeting, Pullman, Washington, Field Guide.
Takeuchi, A., Hren, M. T., Smith, S. V., Chamberlain, C. P., and Larson, P. B. (2010). Pedogenic carbonate carbon isotopic constraints on paleoprecipitation: Evolution of desert in the Pacific Northwest, USA, in response to topographic development of the Cascade Range. Chemical Geology, 277(3-4):323-335.

Takeuchi, A. and Larson, P. B. (2005). Oxygen isotope evidence for the late Cenozoic development of an orographic rain shadow in eastern Washington, USA. Geology, 33(4):313-316.

Taylor Jr., H. P. (1971). Oxygen Isotope Evidence for Large-Scale Interaction between Meteoric Ground Waters and Tertiary Granodiorite Intrusions, Western Cascade Range, Oregon. Journal of Geophysical Research, 76(32):7855-7874.

Thompson, J., Meffre, S., Maas, R., Kamenetsky, V., Kamenetsky, M., Goemann, K., Ehrig, K., and Danyushevsky, L. (2016). Matrix effects in $\mathrm{Pb} / \mathrm{U}$ measurements during LA-ICP-MS analysis of the mineral apatite. Journal of Analytical Atomic Spectrometry, 31:1206-1215.

Thomson, S., Gehrels, G., Ruiz, J., and Buchwaldt, R. (2012). Routine low-damage apatite UPb dating using laser ablation-multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2):1-23.

Trench, D., Meigs, A., and Grunder, A. (2012). Termination of the northwestern Basin and Range province into a clockwise rotating region of transtension and volcanism, southeast Oregon. Journal of Structural Geology, 39:52-65.

Tripathy-Lang, A., Hodges, K. V., Monteleone, B. D., and Van Soest, M. C. (2013). Laser (U$\mathrm{Th}) / \mathrm{He}$ thermochronology of detrital zircons as a tool for studying surface processes in modern catchments. Journal of Geophysical Research: Earth Surface, 118(3):1333-1341.

Troitzsch, U. and Ellis, D. (2004). High P-T study of solid solutions in the system $\mathrm{ZrO} 2-\mathrm{TiO} 2$ : the stability of srilankite. European Journal of Mineralogy, 16(4):577-584.

Troitzsch, U. and Ellis, D. (2005). The ZrO2-TiO2 phase diagram. Journal of Materials Science, 40(17):4571-4577.

Utevsky, E. (2015). Geochemistry of Plutonic Rocks of the Western Cascades, Washington \&

Oregon: Relationship to Crustal Segmentation and Ore Genesis. M.S. thesis, Oregon State University.
van Soest, M. C., Hodges, K. V., Wartho, J. A., Biren, M. B., Monteleone, B. D., Spray, J. G., and Thompson, L. M. (2011). ( $\mathrm{U}-\mathrm{Th}$ )/He dating of terrestrial impact structures: The Manicouagan example. Geochemistry, Geophysics, Geosystems, 12(5):1-8.

Vance, J., Clayton, G., Mattinson, J., and Naeser, C. (1987). Early and middle Cenozoic stratigraphy of the Mount Rainier-Tieton River area, southern Washington Cascades. Washington Division of Geology and Earth Resources Bulletin, 77:269-290.

Vermeesch, P. (2018). IsoplotR: a free and open toolbox for geochronology. Geoscience Frontiers, 9:1479-1493.

Verplanck, E. (1985). "Temporal variations in volume and geochemistry of volcanism in the Western Cascades, Oregon.".

Walker, G. and MacLeod, N. (1991). "Geologic map of Oregon".
Watson, E., Wark, D., and Thomas, J. (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151:413-433.

Weber, W., Ewing, R., Catlow, C., Diaz de la Rubia, T., Hobbs, L., Kinoshita, C., Motta, A., Nastasi, M., Salie, E., Vance, E., and Zinkle, S. (1998). Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. Journal of Materials Research, 13(6):1434-1484.

Wells, R. E., Blakely, R. J., and Weaver, C. S. (2002). Cascadia microplate models and withinslab earthquakes. In Kirby, S., Wang, K., and Dunlop, S., editors, Intraslab earthquakes in the Cascadia subduction system: Science and Hazards, pages 17-24. U.S. Geological Survey Open File Report 2002-328.

Wells, R. E. and McCaffrey, R. (2013). Steady rotation of the Cascade arc. Geology, 41(9):10271030.

Willett, S. D. (1999). Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research: Solid Earth, 104(B12):28957-28981.

Willigers, B., Baker, J., Krogstad, E., and Peate, D. (2002). Precise and accurate in situ $\mathrm{Pb}-\mathrm{Pb}$ dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS. Geochimica et Cosmochimica Acta, 66(6):1051-1066.

Wolf, R., Farley, K., and Kass, D. (1998). Modeling of the temperature sensitivity of the apatite (U-Th)/He thermochronometer. Chemical Geology, 148:105-114.

Worthington, L., van Avendonk, H., Gulick, S., Christeson, G., and Pavlis, T. (2012). Crustal structure of the Yakutat Terrane and the evolution of subduction and collision in southern Alaska. Journal of Geophysical Research, 117(B1):1-20.

Zack, T., Moraes, R., and Kronz, A. (2004). Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148(4):471488.

## APPENDIX A

APATITE AND ZIRCON (U-Th)/He DATA

| Sample | Latitude | Longitude | Elevation (m) | Method | Rsph-eq* | Length ( $\mu \mathrm{m}$ ) | Width ( $\mu \mathrm{m}$ ) | [238U] (ppm) | [232Th] Th (ppm) | eU | Mean $\mathbf{F}_{T}$ | Corrected Age (Ma) | Corrected 20 Error (Ma) | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17OR-18 a3 | 46.948 | -121.532 | 917 | conventional single crystal | 60.9 | 136.2 | 115.7 | 6.68 | 12.97 | 10 | 0.728 | 5.40 | 0.54 |  |
| 17OR-18 a 4 | 46.948 | -121.532 | 917 | conventional single crystal | - | 183.9 | 160.2 | - | - | - | - | - | - | No age can be calculated. |
| 170R-18 a5 | 46.948 | -121.532 | 917 | conventional single crystal | - | 382.3 | 156.6 | - | $\cdot$ | - | - | - | - | Grain had an obvious high re-extract during He analysis- indicative of an inclusion not processed further. |
| 170R-18 a6 | 46.948 | -121.532 | 917 | conventional single crystal | 71.7 | 257.3 | 117.5 | 31.75 | 45.4 | 43 | 0.765 | 5.40 | 0.19 | Piece of crystal end chipped off. |
| 17OR-10 al | 45.27 | -121.82 | 825 | conventional single crystal | 60.2 | 217.7 | 98.3 | 5.08 | 17.36 | 9.2 | 0.716 | 3.79 | 0.38 | Small inclusions. |
| 17OR-10 a2 | 45.27 | -121.82 | 825 | conventional single crystal | 55.2 | 227.5 | 87.8 | 1.37 | 1.67 | 1.8 | 0.701 | 4.00 | 1.63 | Grain not euhedral. Small inclusions. |
| 170R-10 a3 | 45.27 | -121.82 | 825 | conventional single crystal | 60.8 | 370.9 | 91.0 | 1.13 | 0.85 | 1.3 | 0.727 | 3.05 | 1.15 | Small crack in the crystal. Small inclusions. |
| 17OR-10 a5 | 45.27 | -121.82 | 825 | conventional single crystal | 80.9 | 284.2 | 133.0 | 1.22 | 0.98 | 1.5 | 0.792 | 3.01 | 0.64 |  |
| 17OR-10 a6 | 45.27 | -121.82 | 825 | conventional single crystal | 70.8 | 402.3 | 106.9 | 1.01 | 1.05 | 1.3 | 0.761 | 2.13 | 0.67 |  |
| 17OR-09 a001 | 44.57 | -122.40 | 452 | conventional single crystal | 44.4 | 121.1 | 78.4 | 1.58 | 5.26 | 2.8 | 0.630 | 17.64 | 3.93 | Small black inclusions. |
| 17OR-09 a002 | 44.57 | -122.40 | 452 | conventional single crystal | 53.1 | 183.3 | 87.8 | 3.23 | 11.23 | 5.9 | 0.683 | 10.33 | 0.86 | Small inclusions. |
| 17OR-09 a003 | 44.57 | -122.40 | 452 | conventional single crystal | - | 232.0 | 98.0 | - | - | - | - | - | - | Grain had an obvious high re-extract during He analysis- indicative of an inclusion not processed further. |
| 17OR-09 a004 | 44.57 | $-122.40$ | 452 | conventional single crystal | 46.4 | 166.7 | 75.9 | 2.24 | 7.32 | 4.0 | 0.642 | 13.72 | 1.74 |  |
| 17OR-09 a6 | 44.57 | $-122.40$ | 452 | conventional single crystal | 49.8 | 157.8 | 84.1 | 3.53 | 12.86 | 6.6 | 0.664 | 10.45 | 1.50 | Small crack in the crystal. Slightly high re-extract during He analysis. |
| 17OR-03 a001 | 43.72 | -122.40 | 866 | conventional single crystal | $\cdot$ | 301.7 | 102.3 | $\cdot$ | - | - |  | - | - | Grain had an obvious high re-extract during He analysis- indicative of an inclusion not processed further. |
| 17OR-03 a003 | 43.72 | -122.40 | 866 | conventional single crystal | 53.0 | 122.4 | 99.4 | 10.16 | 26.14 | 16.0 | 0.689 | 24.83 | 1.29 | Small crack in the crystal. Small inclusions. |
| 17OR-03 a004 | 43.72 | -122.40 | 866 | conventional single crystal | - | 127.6 | 115.2 | $\cdot$ | - | - | - | - | $\cdot$ | Grain had an obvious high re-extract during He analysis- indicative of an inclusion not processed further. |
| 17OR-03 a005 | 43.72 | -122.40 | 866 | conventional single crystal | $\cdot$ | 194.5 | 111.8 | $\cdot$ | $\cdot$ | - | - | - | $\cdot$ | Grain had an obvious high re-extract during He analysis- indicative of an inclusion not processed further. |
| 17OR-02 a001 | 42.81 | -122.56 | 1204 | conventional single crystal | 69.1 | 269.1 | 111.1 | 2.07 | 5.15 | 3.3 | 0.752 | 17.98 | 1.29 | No euhedral ends. |
| 17OR-02 a002 | 42.81 | -122.56 | 1204 | conventional single crystal | 50.2 | 176.2 | 82.5 | 2.16 | 5.73 | 3.5 | 0.668 | 19.86 | 1.98 | Black inclusions. |
| 17OR-02 a003 | 42.81 | -122.56 | 1204 | conventional single crystal | 42.5 | 119.2 | 74.4 | 2.42 | 6.10 | 3.9 | 0.619 | 17.81 | 2.57 |  |
| 17OR-02 a004 | 42.81 | -122.56 | 1204 | conventional single crystal | 52.3 | 146.4 | 91.6 | 1.94 | 4.97 | 3.1 | 0.683 | 21.04 | 2.32 | Inclusions. |
| 17OR-02 a005 | 42.81 | -122.56 | 1204 | conventional single crystal | 59.1 | 188.7 | 99.5 | 1.75 | 3.55 | 2.6 | 0.717 | 21.96 | 2.34 | Inclusions. |
| *Rsph-eq is the equivalent spherical radius. |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table A.1: Apatite (U-Th)/He data of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-09 (Site III), 17OR-03 (Site V), and 17OR-02

| Sample | Latitude | Longitude | Elevation (m) | Method | Rsph-eq* | Length ( $\mu \mathrm{m}$ ) | Width ( $\mu \mathrm{m}$ ) | [238U] (ppm) | [232Th] Th (ppm) | eU | Age (Ma) | $2 \sigma$ Error (Ma) | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170R-18 z01 | 46.948 | -121.532 | 917 | single crystal laser ablation | 36.5 | 103.2 | 63.6 | 143.6 | 105.7 | 168.4 | 10.72 | 0.61 |  |
| 170R-18 z02 | 46.948 | -121.532 | 917 | single crystal laser ablation | 40.5 | 142.2 | 66.6 | 184.0 | 114.1 | 210.7 | 10.68 | 0.59 |  |
| 170R-18 z03 | 46.948 | -121.532 | 917 | single crystal laser ablation | 45.8 | 122.7 | 81.2 | 142.9 | 88.6 | 163.6 | 12.14 | 0.55 |  |
| 170R-18 z04 | 46.948 | -121.532 | 917 | single crystal laser ablation | 51.5 | 180.3 | 84.9 | 111.8 | 68.3 | 127.8 | 18.76 | 0.84 |  |
| 170R-10 z02 | 45.27 | -121.82 | 825 | single crystal laser ablation | 68.8 | 234.6 | 114.0 | 233.6 | 167.2 | 272.7 | 7.52 | 0.34 |  |
| 17OR-10 z03 | 45.27 | -121.82 | 825 | single crystal laser ablation | 59.8 | 180.6 | 102.3 | 200.6 | 160.2 | 238.1 | 7.58 | 0.35 |  |
| 17OR-10 z04 | 45.27 | -121.82 | 825 | single crystal laser ablation | 50.2 | 175.4 | 82.8 | 190.4 | 149.5 | 225.4 | 8.36 | 0.38 |  |
| 17OR-10 z05 | 45.27 | -121.82 | 825 | single crystal laser ablation | 50.4 | 139.0 | 88.7 | 215.4 | 199.5 | 262.1 | 8.66 | 0.39 |  |
| 17OR-11 z02 | 45.30 | -121.82 | 858 | single crystal laser ablation | 56.2 | 215.9 | 90.7 | 292.1 | 352.6 | 374.6 | 11.91 | 0.53 | Older than crystallization age. |
| 17OR-11 z03 | 45.30 | -121.82 | 858 | single crystal laser ablation | 45.5 | 166.2 | 74.2 | 521.9 | 812.7 | 712.0 | 8.79 | 0.39 |  |
| 170R-11 z04 | 45.30 | -121.82 | 858 | single crystal laser ablation | 75.2 | 296.4 | 120.7 | 293.1 | 310.6 | 365.8 | 8.22 | 0.37 |  |
| 17OR-11 z05 | 45.30 | -121.82 | 858 | single crystal laser ablation | 51.2 | 146.0 | 89.0 | 940.2 | 1274.5 | 1238.4 | 5.26 | 0.23 |  |
| 17OR-11 z06 | 45.30 | -121.82 | 858 | single crystal laser ablation | 65.2 | 203.8 | 110.4 | 237.8 | 213.5 | 287.7 | 8.45 | 0.37 |  |
| 17OR-06 z01 | 44.57 | -122.40 | 452 | single crystal laser ablation | 47.0 | 135.1 | 81.6 | 175.0 | 103.4 | 199.2 | 14.97 | 0.66 |  |
| 17OR-06 z02 | 44.57 | -122.40 | 452 | single crystal laser ablation | 46.8 | 149.3 | 79.0 | 191.7 | 144.0 | 225.4 | 21.52 | 0.92 | Older than crystallization age. |
| 17OR-06 z03 | 44.57 | -122.40 | 452 | single crystal laser ablation | 47.5 | 137.8 | 82.2 | 245.5 | 146.5 | 279.7 | 15.49 | 0.67 |  |
| 170R-06 z05 | 44.57 | -122.40 | 452 | single crystal laser ablation | 51.7 | 229.0 | 81.1 | 161.4 | 124.3 | 190.5 | 15.53 | 0.68 |  |
| 170R-06 z06 | 44.57 | -122.40 | 452 | single crystal laser ablation | 46.5 | 131.4 | 81.1 | 58.5 | 31.7 | 65.9 | 13.90 | 0.70 |  |
| *Rsph-eq is an estimated equivalent spherical radius. Length and width measurements used were of the exposed spots of the mounted zircons on the surface of the puck. |  |  |  |  |  |  |  |  |  |  |  |  |  |

Table A.2: Zircon (U-Th)/He data of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-11 (Site II), and 17OR-06 (Site IV).

## APPENDIX B

## ZIRCON U-Pb DATA



Figure B.1: Concordia diagram for re-dated Utevsky (2015) sample WCOS-2 (Site III) using IsoplotR by Vermeesch (2018).


Figure B.2: Concordia diagram for re-dated Utevsky (2015) sample WCOS-12 using IsoplotR by Vermeesch (2018).


Figure B.3: Concordia diagram for re-dated Utevsky (2015) sample WCOSNU-25 (Site V) using IsoplotR by Vermeesch (2018).


Figure B.4: Concordia diagram for sample 17OR-02 (Site VI) using IsoplotR by Vermeesch (2018).

| Sample | Latitude | Longitude | Method | $\begin{gathered} \left.\begin{array}{c} 206 \mathrm{~Pb} \text { b/38 } \\ \text { Age } \end{array}\right] \end{gathered}$ | $2 \sigma$ Error (Ma) |  | 20 Error (Ma) | ${ }^{206} \mathbf{P b} /{ }^{238} \mathbf{U}$ | 20 Error | ${ }^{207} \mathbf{P b} /{ }^{235} \mathbf{U}$ | ${ }^{6}$ © Error | Weighted Mean Age (Ma) | ${ }^{2}$ O Error | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17OR-18 z01 | 46.948 | -121.532 | LA-ICP-MS | 23.94 | 0.51 | 26.2 | 2.2 | 0.0262 | 0.0022 | 0.003720 | 0.000079 |  |  |  |
| 17OR-18 z02 | 46.948 | -121.532 | LA-ICP-MS | 23.71 | 0.51 | 27.0 | 2.5 | 0.0270 | 0.0026 | 0.003685 | 0.000079 | 23.76 | 0.26 |  |
| 170R-18 z03 | 46.948 | -121.532 | LA-ICP-MS | 23.80 | 0.55 | 27.2 | 2.0 | 0.0272 | 0.0020 | 0.003698 | $0.000086$ |  |  |  |
| 17OR-18 z04 | 46.948 | -121.532 | LA-ICP-MS | 23.60 | 0.52 | 25.5 | 1.9 | 0.0255 | 0.0019 | 0.003668 | 0.000082 |  |  |  |
| 17OR-10 z02 | 45.27 | -121.82 | LA-ICP-MS | 9.66 | 0.22 | 12.2 | 1.2 | 0.001500 | 0.000035 | 0.0119 | 0.0011 |  |  |  |
| 17OR-10 z03 | 45.27 | -121.82 | LA-ICP-MS | 9.86 | 0.47 | 16.5 | 2.4 | 0.001531 | 0.000073 | 0.0163 | 0.0024 | 9.72 | 0.18 | 170R-10 z04 affected by common Pb. |
| 17OR-10 z04 | 45.27 | -121.82 | LA-ICP-MS | 16.51 | 0.49 | 120.5 | 6.2 | 0.002565 | 0.000076 | 0.1266 | 0.0069 |  |  |  |
| 170R-10 z05 | 45.27 | -121.82 | LA-ICP-MS | 9.84 | 0.41 | 15.3 | 2.3 | 0.001528 | 0.000064 | 0.0152 | 0.0023 |  |  |  |
| 17OR-11 z02 | 45.30 | -121.82 | LA-ICP-MS | 9.52 | 0.18 | 10.96 | 0.84 | 0.001478 | 0.000029 | 0.01086 | 0.00084 |  |  |  |
| 170R-11 z03 | 45.30 | -121.82 | LA-ICP-MS | 9.60 | 0.15 | 11.02 | 0.74 | 0.001490 | 0.000023 | 0.01092 | $0.00074$ | 9.55 | 0.08 |  |
| 17OR-11 z04 | 45.30 | -121.82 | LA-ICP-MS | 9.43 | 0.22 | 9.75 | 0.81 | 0.001463 | 0.000033 | 0.00966 | 0.00081 |  |  |  |
| 17OR-11 z05 | 45.30 | -121.82 | LA-ICP-MS | 9.55 | 0.14 | 9.85 | 0.43 | 0.001483 | 0.000021 | 0.00975 | 0.00043 |  |  |  |
| 170R-11 z06 | 45.30 | -121.82 | LA-ICP-MS | 9.75 | 0.32 | 17.4 | 1.9 | 0.001514 | 0.000049 | 0.0191 | 0.0039 |  |  |  |
| 17OR-06 z01 | 44.57 | -122.40 | LA-ICP-MS | 19.48 | 0.8 | 42.6 | 5.5 | 0.00303 | 0.00012 | 0.043 | 0.0058 |  |  |  |
| 17OR-06 z02 | 44.57 | -122.40 | LA-ICP-MS | 19.78 | 0.59 | 48 | 6.5 | 0.003073 | 0.000092 | 0.047 | $0.0061$ | 19.63 | 0.31 |  |
| 170R-06 z03 | 44.57 | -122.40 | LA-ICP-MS | 19.56 | 0.6 | 40.4 | 4.2 | 0.003038 | 0.000093 | 0.0406 | 0.0043 |  |  |  |
| 170R-06 z05 | 44.57 | -122.40 | LA-ICP-MS | 19.64 | 0.54 | 51.2 | 5.8 | 0.003052 | 0.000084 | 0.052 | 0.006 |  |  |  |
| 170R-06 z06 | 44.57 | -122.40 | LA-ICP-MS | 20.56 | 0.95 | 55.9 | 6.2 | 0.00319 | 0.00015 | 0.0569 | 0.0065 |  |  |  |

Table B.1: Zircon U-Pb data of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-11 (Site II), and 17OR-06 (Site IV) collected
concurrently with (U-Th)/He data.

| Sample | ${ }^{207} \mathbf{P b}{ }^{2 / 35} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b}{ }^{2 / 38} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{207} \mathbf{P b} /{ }^{206} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | ${ }^{208} \mathbf{P b} /{ }^{232} \mathbf{T h}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{208} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | $\begin{array}{\|c} 207 \mathrm{~Pb} /{ }^{235} \mathrm{U} \\ \mathrm{Age} \end{array}$ | $\pm 2 \mathrm{SE}$ | $\underset{\text { Age }}{\substack{206 \\ \text { Pb } \\ \hline \text { /38 }}}$ | $\pm 2 \mathrm{SE}$ | $\begin{gathered} { }^{208} \mathbf{P b} /{ }^{232} \mathbf{T h} \\ \text { Age } \end{gathered}$ | $\pm 2 \mathrm{SE}$ | $\begin{array}{\|c} { }^{207} \mathbf{P b} \mathbf{A} \mathbf{A g e ~}^{206} \mathbf{P b} \\ \hline \end{array}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{207} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{208} \mathbf{P b} /{ }^{204} \mathbf{P b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOS-2-001 | 0.321 | 0.038 | 0.00513 | 0.00026 | 0.458 | 0.045 | 0.012 | 0.0025 | 0.738 | 0.096 | 285 | 31 | 33 | 1.7 | 242 | 51 | 4075 | 160 | 3300 | 1470 | 4100 |
| WCOS-2-002 | 0.422 | 0.056 | 0.00628 | 0.00052 | 0.484 | 0.047 | 0.016 | 0.0035 | 0.676 | 0.088 | 351 | 39 | 40.4 | 3.3 | 321 | 69 | 4181 | 140 | 2000 | 890 | 2500 |
| WCOS-2-003 | 0.026 | 0.01 | 0.00262 | 0.00021 | 0.076 | 0.032 | 0.00101 | 0.00031 | 4.6 | 1.2 | 25 | 10 | 16.9 | 1.3 | 20.3 | 6.2 | 600 | 830 | 2800 | 250 | 520 |
| WCOS-2-004 | 0.0237 | 0.0038 | 0.002701 | $9.60 \mathrm{E}-05$ | 0.0655 | 0.01 | 0.00109 | 0.00023 | 4.03 | 0.58 | 23.7 | 3.8 | 17.39 | 0.62 | 22 | 4.6 | 540 | 310 | 1500 | 65 | 230 |
| WCOS-2-005 | 0.0344 | 0.0065 | 0.00291 | 0.00014 | 0.085 | 0.016 | 0.00137 | 0.0003 | 2.74 | 0.42 | 34.1 | 6.3 | 18.76 | 0.92 | 27.7 | 6 | 960 | 380 | 1100 | 69 | 350 |
| WCOS-2-006 | 0.037 | 0.0049 | 0.00277 | 0.00014 | 0.104 | 0.017 | 0.00158 | 0.00033 | 2.49 | 0.39 | 36.8 | 4.8 | 17.84 | 0.9 | 31.8 | 6.7 | 1540 | 300 | 1600 | 140 | 470 |
| WCOS-2-007 | 0.76 | 0.18 | 0.0091 | 0.0015 | 0.524 | 0.068 | 0.0243 | 0.0067 | 0.728 | 0.12 | 518 | 98 | 58 | 9.5 | 483 | 130 | 4170 | 230 | 1800 | 1110 | 3500 |
| WCOS-2-008 | 0.0211 | 0.0032 | 0.002591 | $8.60 \mathrm{E}-05$ | 0.0599 | 0.0095 | 0.000982 | 0.00021 | 4.85 | 0.9 | 21.1 | 3.2 | 16.68 | 0.55 | 19.8 | 4.2 | 390 | 300 | 600 | 65 | 250 |
| WCOS-2-009 | 0.0191 | 0.0038 | 0.0027 | 0.00013 | 0.054 | 0.011 | 0.00098 | 0.00021 | 3.82 | 0.64 | 19.1 | 3.7 | 17.37 | 0.81 | 19.8 | 4.2 | 180 | 380 | 1600 | 104 | 420 |
| WCOS-2-010 | 0.059 | 0.017 | 0.00303 | 0.00019 | 0.126 | 0.029 | 0.00231 | 0.00074 | 3.39 | 0.62 | 57 | 16 | 19.5 | 1.2 | 47 | 15 | 1520 | 370 | 2100 | 180 | 500 |
| WCOS-2-011 | 0.0177 | 0.0037 | 0.00252 | 0.00011 | 0.053 | 0.011 | 0.000767 | 0.00016 | 5.11 | 0.86 | 17.7 | 3.7 | 16.21 | 0.69 | 15.5 | 3.3 | -10 | 350 | 1400 | 49 | 310 |
| WCOS-2-012 | 0.101 | 0.031 | 0.00334 | 0.00028 | 0.19 | 0.044 | 0.0048 | 0.0015 | 3.67 | 0.99 | 98 | 28 | 21.5 | 1.8 | 96 | 30 | 1870 | 510 | 900 | 230 | 700 |
| WCOS-2-013 | 0.0193 | 0.0035 | 0.002632 | 9.60E-05 | 0.0545 | 0.0099 | 0.000856 | 0.00019 | 6.9 | 1.4 | 19.3 | 3.4 | 16.95 | 0.62 | 17.3 | 3.8 | 140 | 340 | 2300 | 141 | 630 |
| WCOS-2-014 | 0.0168 | 0.0039 | 0.00266 | 0.00011 | 0.048 | 0.012 | 0.00096 | 0.00022 | 5.77 | 1 | 16.9 | 3.9 | 17.1 | 0.73 | 19.3 | 4.5 | -40 | 410 | 2000 | 90 | 360 |
| WCOS-2-015 | 0.0194 | 0.0043 | 0.00246 | 0.00014 | 0.06 | 0.014 | 0.00082 | 0.00019 | 6.1 | 1.3 | 19.5 | 4.3 | 15.85 | 0.91 | 16.5 | 3.9 | 380 | 460 | 1000 | 20 | 60 |
| WCOS-2-016 | 0.0212 | 0.004 | 0.0027 | 0.00011 | 0.0563 | 0.011 | 0.000931 | 0.00018 | 2.49 | 0.35 | 21.3 | 4 | 17.41 | 0.73 | 18.8 | 3.7 | 320 | 390 | 3000 | 130 | 1100 |
| WCOS-2-017 | 0.0217 | 0.0044 | 0.00276 | 0.00012 | 0.059 | 0.013 | 0.000851 | 0.00019 | 5.15 | 1 | 21.8 | 4.3 | 17.74 | 0.78 | 17.2 | 3.7 | 300 | 420 | 1400 | 95 | 290 |
| WCOS-2-018 | 0.0229 | 0.0052 | 0.00278 | 0.00013 | 0.061 | 0.014 | 0.00091 | 0.00021 | 5.7 | 1.4 | 22.8 | 5.1 | 17.87 | 0.86 | 18.4 | 4.3 | 200 | 440 | 590 | 23 | 140 |
| WCOS-2-019 | 0.084 | 0.03 | 0.0034 | 0.00032 | 0.163 | 0.043 | 0.0039 | 0.0013 | 2.4 | 0.57 | 79 | 27 | 21.9 | 2.1 | 79 | 27 | 1980 | 460 | 1500 | 170 | 640 |
| WCOS-2-020 | 0.117 | 0.029 | 0.00367 | 0.00033 | 0.215 | 0.045 | 0.0059 | 0.002 | 2.31 | 0.63 | 109 | 26 | 23.6 | 2.1 | 118 | 39 | 2580 | 430 | 1600 | 130 | 500 |
| WCOS-2-021 | 1.76 | 0.94 | 0.018 | 0.0079 | 0.62 | 0.12 | 0.059 | 0.031 | 0.52 | 0.11 | 860 | 310 | 115 | 49 | 1130 | 570 | 4420 | 430 | 2500 | 1300 | 4600 |
| WCOS-2-023 | 0.053 | 0.02 | 0.00294 | 0.0002 | 0.109 | 0.034 | 0.00193 | 0.00071 | 4.11 | 0.74 | 50 | 18 | 18.9 | 1.3 | 39 | 14 | 860 | 470 | 6700 | 470 | 2000 |
| WCOS-2-024 | 0.052 | 0.016 | 0.00292 | 0.00013 | 0.116 | 0.032 | 0.00176 | 0.00054 | 2.98 | 0.56 | 49 | 15 | 18.81 | 0.85 | 35.5 | 11 | 980 | 440 | 1200 | 370 | 1300 |
| WCOS-2-025 | 0.037 | 0.013 | 0.003 | 0.00017 | 0.079 | 0.021 | 0.00159 | 0.00061 | 5.41 | 1 | 36 | 12 | 19.3 | 1.1 | 32 | 12 | 860 | 510 | -100 | 50 | 130 |
| WCOS-2-026 | 0.064 | 0.02 | 0.00306 | 0.00028 | 0.149 | 0.037 | 0.00265 | 0.00099 | 2.29 | 0.47 | 62 | 18 | 19.7 | 1.8 | 53 | 20 | 1930 | 520 | 1800 | 250 | 1040 |
| WCOS-2-027 | 0.0162 | 0.0018 | 0.002685 | 6.00E-05 | 0.0442 | 0.005 | 0.00086 | 0.00017 | 4.76 | 0.62 | 16.3 | 1.8 | 17.29 | 0.39 | 17.38 | 3.4 | -90 | 210 | 1000 | -40 | 150 |
| WCOS-2-028 | 0.0239 | 0.0049 | 0.00285 | 0.00012 | 0.067 | 0.014 | 0.00125 | 0.0003 | 6 | 1.2 | 23.9 | 4.8 | 18.33 | 0.76 | 25.2 | 6.1 | 400 | 380 | 1000 | 100 | 320 |
| WCOS-2-029 | 0.0218 | 0.0037 | 0.00269 | 0.00011 | 0.0608 | 0.011 | 0.000939 | 0.0002 | 6.8 | 1.7 | 21.8 | 3.6 | 17.29 | 0.68 | 19 | 4 | 340 | 350 | 2400 | 40 | 170 |
| WCOS-2-030 | 0.223 | 0.082 | 0.00429 | 0.00066 | 0.315 | 0.079 | 0.0051 | 0.0018 | 1.44 | 0.36 | 189 | 63 | 27.6 | 4.2 | 103 | 35 | 3100 | 450 | 5500 | 1700 | 7200 |
| WCOS-2-031 | 0.178 | 0.09 | 0.00409 | 0.00081 | 0.218 | 0.083 | 0.0043 | 0.002 | 2.72 | 0.73 | 148 | 70 | 26.3 | 5.2 | 87 | 40 | 1820 | 720 | 70000 | 600 | 2000 |
| WCOS-2-032 | 0.23 | 0.14 | 0.0045 | 0.0012 | 0.223 | 0.091 | 0.0056 | 0.0031 | 3.15 | 0.82 | 177 | 97 | 28.6 | 8 | 113 | 62 | 1860 | 710 | 0 | 900 | 1700 |
| WCOS-2-033 | 1.54 | 0.88 | 0.017 | 0.01 | 0.66 | 0.22 | 0.04 | 0.021 | 0.59 | 0.17 | 840 | 350 | 108 | 64 | 780 | 400 | 4580 | 550 | 3700 | 2450 | 6200 |
| WCOS-2-034 | 1.34 | 0.22 | 0.02 | 0.012 | 0.67 | 0.21 | 0.027 | 0.0067 | 0.79 | 0.53 | 857 | 91 | 128 | 75 | 538 | 130 | 4530 | 700 | 3700 | 3700 | 70000 |
| WCOS-2-035 | 0.55 | 0.17 | 0.0079 | 0.0015 | 0.423 | 0.066 | 0.0219 | 0.0074 | 0.82 | 0.15 | 399 | 100 | 50.8 | 9.7 | 430 | 150 | 3880 | 250 | 4000 | 2700 | 5700 |
| WCOS-2-036 | 0.99 | 0.58 | 0.0108 | 0.0049 | 0.42 | 0.15 | 0.04 | 0.024 | 1.63 | 0.72 | 530 | 270 | 69 | 31 | 780 | 460 | 3300 | 790 | 70000 | 3000 | 7100 |
| WCOS-2-037 | 0.04 | 0.02 | 0.00284 | 0.00017 | 0.118 | 0.048 | 0.00137 | 0.0005 | 3.12 | 0.63 | 39 | 18 | 18.3 | 1.1 | 27.6 | 10 | 1110 | 520 | 8100 | 1190 | 3200 |
| WCOS-2-038 | 0.0182 | 0.0028 | 0.002808 | 9.00E-05 | 0.0489 | 0.008 | 0.000993 | 0.0002 | 5.19 | 0.75 | 18.8 | 3.1 | 18.07 | 0.58 | 20.1 | 4.1 | 40 | 300 | 3200 | 390 | 570 |
| WCOS-2-039 | 0.038 | 0.032 | 0.00265 | 0.00023 | 0.063 | 0.013 | 0.0016 | 0.0012 | 3.23 | 0.53 | 35 | 25 | 17.1 | 1.5 | 31 | 24 | 420 | 330 | 1000 | 500 | 1200 |
| WCOS-2-040 | 0.512 | 0.1 | 0.00688 | 0.00087 | 0.51 | 0.067 | 0.0127 | 0.0031 | 0.71 | 0.14 | 403 | 70 | 44.2 | 5.6 | 255 | 62 | 4170 | 250 | 3800 | 4300 | 8500 |
| WCOS-2-041 | 0.162 | 0.044 | 0.00404 | 0.00037 | 0.244 | 0.05 | 0.0058 | 0.0015 | 1.74 | 0.41 | 143 | 35 | 26 | 2.3 | 117 | 31 | 2390 | 530 | -200 | -120 | -500 |
| WCOS-2-042 | 0.82 | 0.39 | 0.0094 | 0.0032 | 0.38 | 0.11 | 0.0248 | 0.011 | 2.64 | 0.99 | 490 | 190 | 60 | 20 | 490 | 210 | 2680 | 780 | 300 | 1200 | 2600 |


| Sample | ${ }^{207} \mathbf{P b}{ }^{2 / 35} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{207} \mathbf{P b} /^{206} \mathrm{~Pb}$ | $\pm 2 \mathrm{SE}$ | ${ }^{208} \mathrm{~Pb} /{ }^{232} \mathrm{Th}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206 P b} /{ }^{208} \mathrm{~Pb}$ | $\pm 2 \mathrm{SE}$ |  | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{204} \mathrm{~Pb}$ | ${ }^{207} \mathbf{P b} /{ }^{204} \mathrm{~Pb}$ | ${ }^{2088} \mathbf{P b} /{ }^{244} \mathrm{~Pb}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| wCOS-2-043 | 0.0201 | 0.0026 | 0.002795 | 8.40E-05 | 0.0517 | 0.007 | 0.000944 | 0.00018 | 2.5 | 0.34 | 20.2 | 2.6 | 17.99 | 0.54 | 19.07 | 3.7 | 190 | 260 | 40000 | -270 | 0 |
| wCOS-2-044 | 26.5 | 3.6 | 0.242 | 0.024 | 0.809 | 0.069 | 1.014 | 0.21 | 0.408 | 0.05 | 3350 | 140 | 1400 | 120 | 14120 | 2100 | 4983 | 160 | 4070 | 5460 | 10900 |
| WCOS-2-045 | 0.0204 | 0.0027 | 0.002606 | $6.30 \mathrm{E}-05$ | 0.0563 | 0.0072 | 0.000855 | 0.00017 | 3.44 | 0.47 | 20.5 | 2.7 | 16.78 | 0.4 | 17.3 | 3.5 | 330 | 250 | -4600 | -350 | -700 |
| WCOS-2-046 | 0.0209 | 0.0035 | 0.00277 | 0.00014 | 0.0563 | 0.01 | 0.001063 | 0.00022 | 3.85 | 0.68 | 20.9 | 3.5 | 17.85 | 0.9 | 21.5 | 4.4 | 270 | 350 | -3200 | -220 | -700 |
| WCOS-2-047 | 0.0251 | 0.0057 | 0.002673 | 8.00E-05 | 0.066 | 0.013 | 0.0011 | 0.00031 | 3.63 | 0.53 | 25 | 5.5 | 17.21 | 0.51 | 22.3 | 6.2 | 620 | 340 | -60000 | -600 | -3500 |
| wCOS-2-048 | 0.027 | 0.014 | 0.002652 | 9.90E-05 | 0.0572 | 0.01 | 0.00094 | 0.00021 | 5.18 | 1.1 | 26 | 12 | 17.07 | 0.64 | 19.1 | 4.2 | 270 | 350 | -1400 | -20 | -100 |
| WCOS-2-049 | 0.0239 | 0.0052 | 0.002607 | 9.20E-05 | 0.065 | 0.013 | 0.00093 | 0.00021 | 4.08 | 0.72 | 23.9 | 5.1 | 16.78 | 0.59 | 18.8 | 4.3 | 560 | 400 | -18000 | -900 | -50000 |
| WCOS-2-050 | 0.052 | 0.017 | 0.00296 | 0.00023 | 0.131 | 0.038 | 0.00226 | 0.00074 | 2.27 | 0.83 | 52 | 16 | 19.1 | 1.5 | 46 | 15 | 1990 | 670 | 24000 | 2500 | 17000 |
| WCOS-2-051 | 0.0174 | 0.0024 | 0.002542 | 6.70E-05 | 0.0496 | 0.0068 | 0.000848 | 0.00017 | 4.59 | 0.62 | 17.5 | 2.4 | 16.36 | 0.43 | 17.13 | 3.4 | 110 | 270 | 14000 | 340 | 2600 |
| WCOS-2-052 | 0.0203 | 0.003 | 0.00268 | 0.00011 | 0.055 | 0.0085 | 0.000889 | 0.00019 | 6.03 | 1 | 20.4 | 2.9 | 17.26 | 0.7 | 18 | 3.8 | 270 | 310 | 30000 | 0 | 300 |
| WCOS-2-053 | 0.0178 | 0.0028 | 0.002637 | 7.10E-05 | 0.0479 | 0.007 | 0.000848 | 0.00018 | 5.47 | 0.83 | 17.9 | 2.8 | 16.98 | 0.46 | 17.1 | 3.6 | 10 | 260 | 23000 | 370 | 4600 |
| wCOS-2-054 | 0.48 | 0.11 | 0.00634 | 0.00091 | 0.516 | 0.068 | 0.0139 | 0.0033 | 0.684 | 0.11 | 386 | 74 | 40.7 | 5.8 | 279 | 66 | 4240 | 200 | 48000 | 8300 | 94000 |
| wCOS-2-055 | 0.0194 | 0.0038 | 0.00266 | 0.00011 | 0.052 | 0.011 | 0.00086 | 0.0002 | 7.2 | 1.4 | 19.4 | 3.8 | 17.13 | 0.7 | 17.3 | 4.1 | 130 | 380 | 67000 | 660 | 17000 |
| wCOS-2-056 | 0.0253 | 0.0061 | 0.00284 | 0.00021 | 0.067 | 0.017 | 0.00121 | 0.00027 | 3.51 | 0.79 | 25.4 | 6 | 18.3 | 1.4 | 24.5 | 5.5 | 670 | 570 | 600000 | 450 | 900000 |
| wCOS-2-057 | 0.0214 | 0.0044 | 0.00264 | 0.00015 | 0.057 | 0.012 | 0.00083 | 0.00018 | 6.11 | 1.1 | 21.4 | 4.4 | 17.03 | 0.94 | 16.8 | 3.6 | 360 | 420 | -130000 | -310 | 40000 |
| WCOS-2-058 | 0.0192 | 0.0036 | 0.0025 | 0.00011 | 0.058 | 0.012 | 0.000925 | 0.0002 | 4.58 | 0.74 | 19.2 | 3.5 | 16.11 | 0.71 | 18.7 | 4 | 300 | 370 | -27000 | 1000 | -3400 |
| WCOS-2-059 | 0.0286 | 0.0088 | 0.002652 | 9.80E-05 | 0.072 | 0.018 | 0.0013 | 0.00037 | 4.33 | 0.72 | 28.3 | 8.4 | 17.07 | 0.63 | 26.3 | 7.6 | 580 | 370 | -29000 | 3200 | -6000 |
| WCOS-2-060 | 0.195 | 0.072 | 0.00416 | 0.00067 | 0.282 | 0.084 | 0.0086 | 0.0032 | 3.2 | 1.7 | 171 | 60 | 26.7 | 4.3 | 173 | 64 | 2510 | 850 | -26000 | 75000 | -33000 |
| WCOS-2-061 | 0.0241 | 0.0064 | 0.00267 | 0.00021 | 0.062 | 0.014 | 0.00092 | 0.00029 | 6.2 | 1.6 | 24.1 | 6.4 | 17.2 | 1.4 | 18.6 | 5.9 | 530 | 510 | -90000 | 14000 | -1200 |
| WCOS-2-062 | 0.0186 | 0.0027 | 0.00266 | 0.00012 | 0.0522 | 0.008 | 0.000793 | 0.00017 | 5.77 | 1.2 | 18.6 | 2.7 | 17.11 | 0.76 | 16 | 3.4 | 170 | 300 | -500 | -200 | 170 |
| WCOS-2-063 | 0.0208 | 0.0044 | 0.002666 | 0.0001 | 0.059 | 0.013 | 0.00102 | 0.00022 | 6.29 | 1.2 | 20.8 | 4.4 | 17.16 | 0.66 | 20.7 | 4.4 | 160 | 390 | -400 | -70 | -260 |
| wCOS-2-064 | 0.0272 | 0.0054 | 0.00408 | 0.00015 | 0.048 | 0.0097 | 0.001246 | 0.00025 | 3.04 | 0.45 | 27.2 | 5.4 | 26.24 | 0.97 | 25.2 | 5 | -10 | 370 | 46000 | -6100 | -14800 |
| WCOS-2-065 | 0.0379 | 0.0062 | 0.00354 | 0.00014 | 0.08 | 0.013 | 0.00154 | 0.00032 | 3.21 | 0.46 | 37.5 | 6 | 22.75 | 0.93 | 31.1 | 6.4 | 850 | 350 | -13100 | -2000 | -5400 |
| WCOS-2-066 | 0.025 | 0.0039 | 0.00375 | 0.00016 | 0.0504 | 0.0082 | 0.00139 | 0.00029 | 4.58 | 0.76 | 24.9 | 3.8 | 24.15 | 1 | 28 | 5.9 | 60 | 300 | -600 | 20 | 0 |
| WCOS-2-067 | 0.0168 | 0.0019 | 0.00246 | 7.10E-05 | 0.0503 | 0.0053 | 0.000812 | 0.00016 | 4.51 | 0.61 | 16.9 | 1.9 | 15.84 | 0.46 | 16.4 | 3.2 | 180 | 220 | -29000 | -2300 | -70000 |

Table B.3: Zircon U-Pb data for re-dated Utevsky (2015) sample WCOS-2 (Site III) (continued).

| Sample | ${ }^{207} \mathbf{P b} /{ }^{235} \mathrm{U}$ | $\pm$ 2SE | ${ }^{206 P b}{ }^{1 / 38} \mathbf{U}$ | $\pm$ 2SE | ${ }^{207} \mathbf{P b} /^{206} \mathbf{P b}$ | $\pm$ 2SE | ${ }^{208} \mathbf{P b} /{ }^{232} \mathrm{Th}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{208} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ |  | $\pm 2 \mathrm{SE}$ |  | $\pm 2 \mathrm{SE}$ |  | $\pm 2$ SE |  | $\pm 2$ SE | ${ }^{206} \mathbf{P b} /^{204} \mathbf{P b}$ | ${ }^{207} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{208} \mathbf{P b}{ }^{204} \mathrm{~Pb}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOS-12-001 | 0.421 | 0.04 | 0.00535 | 0.00021 | 0.566 | 0.051 | 0.01104 | 0.0021 | 0.561 | 0.07 | 355 | 28 | 34.4 | 1.4 | 222 | 43 | 4404 | 140 | 5700 | 1400 | 11100 |
| WCOS-12-002 | 1.37 | 0.28 | 0.0136 | 0.0022 | 0.667 | 0.068 | 0.0402 | 0.012 | 0.474 | 0.063 | 780 | 120 | 87 | 14 | 790 | 230 | 4650 | 160 | 6600 | 1300 | 10200 |
| WCOS-12-003 | 0.373 | 0.077 | 0.00512 | 0.00071 | 0.506 | 0.073 | 0.0093 | 0.0027 | 0.709 | 0.12 | 322 | 60 | 32.9 | 4.5 | 186 | 53 | 4090 | 240 | 3400 | 540 | 3900 |
| WCOS-12-004 | 0.0342 | 0.0072 | 0.00204 | 0.00013 | 0.12 | 0.022 | 0.00094 | 0.00022 | 1.75 | 0.29 | 34 | 7 | 13.12 | 0.86 | 19.1 | 4.5 | 1760 | 390 | 600 | -40 | -100 |
| WCOS-12-005 | 0.54 | 0.12 | 0.0064 | 0.00088 | 0.56 | 0.067 | 0.0126 | 0.0037 | 0.606 | 0.086 | 418 | 75 | 41.1 | 5.6 | 253 | 72 | 4310 | 210 | 800 | 240 | 1400 |
| WCOS-12-006 | 2.7 | 1.1 | 0.0251 | 0.0096 | 0.739 | 0.065 | 0.063 | 0.03 | 0.439 | 0.055 | 1170 | 210 | 157 | 58 | 1170 | 510 | 4823 | 150 | 3370 | 1500 | 7400 |
| WCOS-12-007 | 0.087 | 0.018 | 0.00265 | 0.0003 | 0.248 | 0.054 | 0.00244 | 0.00052 | 1.23 | 0.23 | 84 | 17 | 17 | 1.9 | 49.3 | 11 | 2840 | 430 | 50 | -20 | -50 |
| WCOS-12-008 | 0.044 | 0.011 | 0.00227 | 0.00018 | 0.125 | 0.03 | 0.00113 | 0.00029 | 2.51 | 0.64 | 44 | 11 | 14.6 | 1.2 | 22.8 | 5.8 | 1700 | 700 | 360 | 25 | 290 |
| WCOS-12-009 | 3.04 | 0.28 | 0.0289 | 0.0016 | 0.785 | 0.078 | 0.0909 | 0.017 | 0.408 | 0.052 | 1413 | 71 | 183.6 | 10 | 1758 | 320 | 4930 | 180 | 3600 | 1590 | 8200 |
| WCOS-12-010 | 0.0239 | 0.0062 | 0.00205 | 0.00013 | 0.087 | 0.022 | 0.00087 | 0.00024 | 2.17 | 0.4 | 23.8 | 6 | 13.18 | 0.85 | 17.6 | 4.8 | 1020 | 460 | 300 | 0 | 170 |
| WCOS-12-011 | 0.0133 | 0.005 | 0.00197 | 0.00019 | 0.055 | 0.022 | 0.000632 | 0.00014 | 2.77 | 0.57 | 13.3 | 5 | 12.7 | 1.2 | 12.8 | 2.8 | -20 | 660 | -900 | -24 | 440 |
| WCOS-12-012 | 2.19 | 0.41 | 0.0202 | 0.0031 | 0.783 | 0.078 | 0.056 | 0.015 | 0.415 | 0.052 | 1120 | 150 | 129 | 20 | 1100 | 280 | 4920 | 180 | 3400 | 1550 | 7500 |
| WCOS-12-013 | 0.075 | 0.029 | 0.00258 | 0.0003 | 0.186 | 0.058 | 0.0016 | 0.00049 | 1.86 | 0.59 | 70 | 25 | 16.6 | 1.9 | 32.2 | 9.9 | 1720 | 660 | 700 | 60 | 430 |
| WCOS-12-014 | 0.041 | 0.0099 | 0.00227 | 0.00016 | 0.137 | 0.031 | 0.00108 | 0.00028 | 1.45 | 0.21 | 40.4 | 9.5 | 14.6 |  | 21.9 | 5.7 | 1910 | 370 | -500 | -30 | 100 |
| WCOS-12-015 | 0.074 | 0.014 | 0.00246 | 0.00019 | 0.207 | 0.03 | 0.00159 | 0.00041 | 1.141 | 0.16 | 72 | 13 | 15.8 | 1.2 | 32 | 8.3 | 2770 | 270 | 200 | -10 | 200 |
| WCOS-12-016 | 0.063 | 0.016 | 0.00235 | 0.00016 | 0.175 | 0.034 | 0.00137 | 0.00035 | 1.31 | 0.21 | 61 | 14 | 15.1 | 1.1 | 27.7 | 7 | 2260 | 420 | 1000 | 130 | 1100 |
| WCOS-12-017 | 0.029 | 0.02 | 0.00271 | 0.00069 | 0.091 | 0.065 | 0.0008 | 0.00039 | -24 | 30 | 28 | 19 | 17.5 | 4.4 | 16.2 | 7.9 | 100 | 1300 | 30 | 0 | 60 |
| WCOS-12-018 | 0.95 | 0.24 | 0.0101 | 0.0023 | 0.671 | 0.076 | 0.0172 | 0.0052 | 0.485 | 0.066 | 640 | 120 | 64 | 14 | 344 | 100 | 4660 | 180 | 4600 | 2020 | 8700 |
| WCOS-12-019 | 2.4 | 1.8 | 0.022 | 0.016 | 0.683 | 0.08 | 0.075 | 0.057 | 0.472 | 0.067 | 910 | 320 | 138 | 93 | 1300 | 940 | 4680 | 190 | 2700 | 1230 | 5000 |
| WCOS-12-020 | 0.34 | 0.11 | 0.00437 | 0.00076 | 0.434 | 0.079 | 0.011 | 0.004 | 1.02 | 0.21 | 262 | 70 | 28.1 | 4.8 | 220 | 80 | 3760 | 300 | 20 | 80 | 260 |
| WCOS-12-021 | 0.57 | 0.27 | 0.0071 | 0.0023 | 0.43 | 0.12 | 0.0156 | 0.0077 | 0.98 | 0.29 | 390 | 150 | 46 | 14 | 310 | 150 | 3540 | 610 | -600 | -280 | -600 |
| WCOS-12-022 | 0.073 | 0.015 | 0.0027 | 0.00017 | 0.203 | 0.039 | 0.00203 | 0.00053 | 1.65 | 0.3 | 71 | 14 | 17.4 | 1.1 | 41 | 11 | 2620 | 360 | -90 | 0 | -120 |
| WCOS-12-023 | 0.059 | 0.017 | 0.0024 | 0.00021 | 0.176 | 0.042 | 0.00172 | 0.00052 | 1.35 | 0.25 | 58 | 16 | 15.4 | 1.4 | 34.8 | 10 | 2080 | 540 | -1000 | -60 | -340 |
| WCOS-12-024 | 0.226 | 0.065 | 0.00413 | 0.00084 | 0.386 | 0.071 | 0.0045 | 0.0021 | 0.749 | 0.13 | 201 | 51 | 26.6 | 5.4 | 91 | 42 | 3750 | 300 | -200 | -60 | 200 |
| WCOS-12-025 | 0.145 | 0.069 | 0.00323 | 0.00059 | 0.275 | 0.091 | 0.0038 | 0.0018 | 1.09 | 0.26 | 130 | 57 | 20.8 | 3.8 | 76 | 37 | 2950 | 520 | 100 | 90 | 400 |
| WCOS-12-026 | 0.283 | 0.046 | 0.00431 | 0.00035 | 0.473 | 0.063 | 0.00527 | 0.0011 | 0.676 | 0.1 | 249 | 36 | 27.7 | 2.2 | 106.2 | 22 | 4070 | 230 | 1400 | 610 | 1800 |
| WCOS-12-027 | 0.082 | 0.054 | 0.00266 | 0.0006 | 0.186 | 0.058 | 0.0022 | 0.0012 | 1.8 | 0.32 | 72 | 39 | 17.1 | 3.9 | 44 | 24 | 2050 | 590 | 160 | 120 | 200 |
| WCOS-12-028 | 0.046 | 0.02 | 0.00228 | 0.00027 | 0.135 | 0.047 | 0.00152 | 0.00052 | 1.94 | 0.39 | 44 | 18 | 14.7 | 1.7 | 30.7 | 11 | 1290 | 630 | 170 | -20 | -70 |
| WCOS-12-029 | 0.0154 | 0.0036 | 0.002013 | 9.50E-05 | 0.054 | 0.013 | 0.000587 | 0.00013 | 3.18 | 0.54 | 15.4 | 3.6 | 12.96 | 0.61 | 11.9 | 2.5 | 140 | 430 | 500 | 34 | 210 |
| WCOS-12-030 | 0.146 | 0.046 | 0.00341 | 0.0004 | 0.279 | 0.074 | 0.0043 | 0.0015 | 1.73 | 0.52 | 132 | 40 | 22 | 2.6 | 87 | 30 | 2460 | 690 | 100 | 90 | 290 |
| WCOS-12-034 | 0.078 | 0.026 | 0.00255 | 0.00029 | 0.207 | 0.049 | 0.0028 | 0.0013 | 1.87 | 0.43 | 73 | 22 | 16.4 | 1.9 | 57 | 26 | 2110 | 600 | 100 | 47 | 50 |

Table B.4: Zircon U-Pb data for re-dated Utevsky (2015) sample WCOS-12.

| Sample | ${ }^{207} \mathbf{P b}{ }^{2 / 35} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b}{ }^{2 / 38} \mathbf{U}$ | $\pm$ 2SE | ${ }^{207} \mathbf{P b} /{ }^{206} \mathbf{P b}$ | $\pm$ 2SE | ${ }^{208} \mathbf{P b} /{ }^{232} \mathbf{T h}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b}{ }^{208} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | $\underset{\substack{207 \mathrm{~Pb} /{ }^{2 / 35} \mathrm{U} \\ \text { Age }}}{ }$ | $\pm 2 \mathrm{SE}$ | $\underset{{ }^{206} \mathbf{P b} /{ }^{238} \mathrm{Ug}}{\mathrm{U}}$ | $\pm 2 \mathrm{SE}$ | $\underset{\text { Age }}{208 \mathrm{~Pb}}{ }^{2 / 32} \mathbf{T h}$ | $\pm 2 \mathrm{SE}$ | $\underset{\text { Age }}{207} \mathbf{P b} \mathbf{D b}^{206} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{207} \mathbf{P b}{ }^{204} \mathbf{P b}$ | ${ }^{208} \mathbf{P b} /{ }^{204} \mathbf{P b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WCOSNU-25-001 | 0.0254 | 0.0043 | 0.00336 | 0.00013 | 0.0545 | 0.0096 | 0.00125 | 0.00027 | 4.79 | 0.76 | 25.4 | 4.2 | 21.64 | 0.85 | 25.2 | 5.5 | 210 | 330 | 200 | 6 | -50 |
| WCOSNU-25-002 | 0.0243 | 0.0077 | 0.00354 | 0.00026 | 0.047 | 0.015 | 0.00135 | 0.0003 | 4.1 | 0.78 | 24.2 | 7.6 | 22.8 | 1.7 | 27.2 | 6.1 | -60 | 550 | 1800 | 42 | 540 |
| WCOSNU-25-003 | 0.025 | 0.011 | 0.00353 | 0.00038 | 0.056 | 0.025 | 0.0014 | 0.00044 | 5.6 | 1.6 | 24 | 11 | 22.7 | 2.5 | 28.2 | 8.8 | 0 | 810 | 600 | -11 | 20 |
| WCOSNU-25-004 | 0.0325 | 0.0044 | 0.00422 | 0.00019 | 0.0554 | 0.0072 | 0.00134 | 0.00028 | 5.22 | 0.96 | 32.5 | 4.3 | 27.1 | 1.2 | 27.1 | 5.6 | 410 | 310 | -2500 | -10 | -400 |
| WCOSNU-25-005 | 0.0243 | 0.0051 | 0.00353 | 0.00014 | 0.0505 | 0.011 | 0.00125 | 0.00027 | 5.76 | 1.1 | 24.2 | 5 | 22.7 | 0.88 | 25.3 | 5.5 | -60 | 370 | 1400 | 32 | 360 |
| WCOSNU-25-006 | 0.0302 | 0.0054 | 0.00361 | 0.00016 | 0.063 | 0.012 | 0.00156 | 0.00034 | 4.5 | 0.93 | 30 | 5.3 | 23.23 | 1 | 31.6 | 6.9 | 360 | 370 | 1700 | 62 | 590 |
| WCOSNU-25-007 | 0.078 | 0.02 | 0.00417 | 0.00046 | 0.136 | 0.03 | 0.00311 | 0.00086 | 2.92 | 0.91 | 75 | 18 | 26.8 | 3 | 63 | 17 | 1970 | 440 | 1400 | 62 | 590 |
| WCOSNU-25-008 | 0.028 | 0.007 | 0.00344 | 0.00027 | 0.06 | 0.016 | 0.00102 | 0.00027 | 5.5 | 1.3 | 28 | 6.9 | 22.1 | 1.8 | 20.6 | 5.4 | 410 | 530 | 1600 | 31 | 530 |
| WCOSNU-25-009 | 0.0323 | 0.0058 | 0.00354 | 0.00014 | 0.07 | 0.014 | 0.00156 | 0.00035 | 4.35 | 0.83 | 32.1 | 5.7 | 22.81 | 0.9 | 31.5 | 7 | 580 | 370 | 2300 | 107 | 780 |
| WCOSNU-25-010 | 0.0291 | 0.0091 | 0.00379 | 0.00046 | 0.057 | 0.021 | 0.0012 | 0.00043 | 9.2 | 9.7 | 29.1 | 8.9 | 24.4 | 3 | 24.2 | 8.6 | 290 | 720 | -2000 | -84 | -600 |
| WCOSNU-25-011 | 0.053 | 0.014 | 0.00391 | 0.0003 | 0.104 | 0.029 | 0.00189 | 0.00057 | 5.8 | 1.6 | 52 | 13 | 25.1 | 1.9 | 38.1 | 11 | 1080 | 550 | 900 | 130 | 140 |
| WCOSNU-25-012 | 0.0274 | 0.0044 | 0.00419 | 0.00015 | 0.049 | 0.0085 | 0.00144 | 0.00031 | 10.9 | 1.9 | 27.3 | 4.3 | 26.94 | 0.94 | 29.1 | 6.3 | 30 | 310 | -200 | -66 | -330 |
| WCOSNU-25-013 | 0.0231 | 0.0076 | 0.00362 | 0.00016 | 0.045 | 0.014 | 0.00128 | 0.00029 | 4.39 | 0.75 | 23 | 7.4 | 23.3 | 1 | 25.8 | 5.8 | -220 | 490 | 2600 | 90 | 2200 |
| WCOSNU-25-014 | 0.0321 | 0.0068 | 0.00386 | 0.0002 | 0.06 | 0.012 | 0.0014 | 0.00032 | 5.09 | 0.94 | 31.9 | 6.7 | 24.8 | 1.3 | 28.2 | 6.5 | 320 | 390 | -1600 | -90 | -1000 |
| WCOSNU-25-015 | 0.0413 | 0.006 | 0.0038 | 0.0002 | 0.0776 | 0.012 | 0.00161 | 0.00035 | 3.83 | 0.64 | 41 | 5.8 | 24.5 | 1.3 | 32.6 | 7 | 1000 | 350 | 0 | 90 | 200 |
| WCOSNU-25-016 | 0.311 | 0.054 | 0.00618 | 0.00043 | 0.344 | 0.052 | 0.0129 | 0.0031 | 1.23 | 0.28 | 264 | 42 | 39.7 | 2.8 | 259 | 62 | 3370 | 340 | 1100 | 530 | 80000 |
| WCOSNU-25-017 | 0.55 | 0.24 | 0.0089 | 0.0026 | 0.386 | 0.082 | 0.022 | 0.012 | 1.25 | 0.29 | 400 | 140 | 57 | 16 | 420 | 220 | 3350 | 450 | 1900 | 700 | 20000 |
| WCOSNU-25-018 | 0.0237 | 0.0051 | 0.00351 | 0.00025 | 0.051 | 0.011 | 0.00116 | 0.00029 | 4.97 | 1.1 | 23.7 | 5.1 | 22.6 | 1.6 | 23.5 | 5.8 | 190 | 430 | 800 | 10 | 10000 |
| WCOSNU-25-019 | 0.047 | 0.027 | 0.00386 | 0.00029 | 0.092 | 0.053 | 0.00154 | 0.00043 | 4.8 | 1.7 | 46 | 26 | 24.8 | 1.8 | 31.1 | 8.7 | 600 | 1300 | 5500 | 340 | -41000 |
| WCOSNU-25-025 | 0.0267 | 0.0089 | 0.00368 | 0.0003 | 0.054 | 0.018 | 0.00105 | 0.00024 | 5.5 | 1.3 | 26.4 | 8.6 | 23.7 | 1.9 | 21.2 | 4.9 | -40 | 530 | -700 | -18 | 10 |
| WCOSNU-25-027 | 0.0344 | 0.0075 | 0.00366 | 0.00021 | 0.068 | 0.015 | 0.00129 | 0.00029 | 5.1 | 1 | 34.1 | 7.3 | 23.6 | 1.4 | 26 | 5.8 | 560 | 440 | 5100 | 171 | 570 |
| WCOSNU-25-028 | 0.046 | 0.016 | 0.00399 | 0.00031 | 0.082 | 0.028 | 0.00194 | 0.00055 | 3.51 | 0.76 | 45 | 16 | 25.7 | 2 | 39.1 | 11 | 550 | 760 | -700 | 11 | -150 |
| WCOSNU-25-029 | 0.0251 | 0.0047 | 0.00349 | 0.00014 | 0.0523 | 0.01 | 0.00121 | 0.00026 | 4.41 | 0.7 | 25.1 | 4.6 | 22.44 | 0.91 | 24.4 | 5.3 | 140 | 370 | 700 | 7 | 260 |
| WCOSNU-25-031 | 0.0404 | 0.009 | 0.00377 | 0.00024 | 0.079 | 0.017 | 0.00222 | 0.00055 | 3 | 0.62 | 40 | 8.8 | 24.3 | 1.6 | 44.7 | 11 | 880 | 500 | -400 | -8 | -140 |
| WCOSNU-25-032 | 0.0362 | 0.0077 | 0.00357 | 0.00016 | 0.075 | 0.016 | 0.00135 | 0.00029 | 4.91 | 0.92 | 35.9 | 7.4 | 22.9 | 1 | 27.2 | 5.9 | 640 | 430 | 1300 | 6 | 190 |
| WCOSNU-25-033 | 0.0278 | 0.0053 | 0.00381 | 0.00018 | 0.0541 | 0.011 | 0.0012 | 0.00026 | 4.22 | 0.76 | 27.7 | 5.2 | 24.5 | 1.1 | 24.2 | 5.3 | 170 | 380 | 10200 | 120 | 1500 |
| WCOSNU-25-034 | 0.48 | 0.16 | 0.0072 | 0.0013 | 0.318 | 0.072 | 0.0139 | 0.0053 | 1.95 | 0.45 | 344 | 99 | 45.9 | 8.2 | 276 | 100 | 2620 | 510 | -2000 | -500 | -3200 |
| WCOSNU-25-035 | 0.055 | 0.037 | 0.00427 | 0.00095 | 0.08 | 0.032 | 0.0021 | 0.0011 | 3.32 | 0.73 | 50 | 30 | 27.5 | 6.1 | 42 | 22 | 670 | 630 | 9600 | 250 | 3600 |
| WCOSNU-25-036 | 0.55 | 0.13 | 0.0082 | 0.001 | 0.421 | 0.057 | 0.0187 | 0.0053 | 0.841 | 0.12 | 407 | 76 | 52.5 | 6.6 | 372 | 100 | 3850 | 200 | 50000 | -100 | -1800 |
| WCOSNU-25-037 | 0.0253 | 0.0054 | 0.00363 | 0.00016 | 0.052 | 0.012 | 0.00116 | 0.00025 | 5.39 | , | 25.2 | 5.3 | 23.37 | 1 | 23.5 | 5 | 0 | 390 | 41000 | 440 | 7400 |
| WCOSNU-25-038 | 0.0372 | 0.0076 | 0.00366 | 0.00019 | 0.074 | 0.015 | 0.00155 | 0.00034 | 4.42 | 0.9 | 36.9 | 7.5 | 23.6 | 1.2 | 31.3 | 6.9 | 670 | 460 | 670000 | 9100 | 57000 |
| WCOSNU-25-039 | 0.0303 | 0.0072 | 0.00351 | 0.0002 | 0.065 | 0.017 | 0.00134 | 0.0003 | 4.63 | 0.95 | 30.1 | 7.1 | 22.6 | 1.3 | 27 | 6.1 | 330 | 490 | 520000 | 4600 | 34000 |
| WCOSNU-25-040 | 0.0246 | 0.0073 | 0.00367 | 0.00023 | 0.05 | 0.016 | 0.00126 | 0.00032 | 7.1 | 2.1 | 24.5 | 7.3 | 23.6 | 1.4 | 25.5 | 6.4 | -110 | 550 | $-7.00 \mathrm{E}+07$ | -7300 | -99600 |
| WCOSNU-25-042 | 0.0577 | 0.0097 | 0.00419 | 0.00029 | 0.108 | 0.021 | 0.00207 | 0.00046 | 3.08 | 0.61 | 59.1 | 10 | 26.9 | 1.9 | 41.9 | 9.4 | 1480 | 360 | 170000 | 35000 | -510000 |
| WCOSNU-25-043 | 0.084 | 0.018 | 0.00372 | 0.00031 | 0.153 | 0.03 | 0.00369 | 0.00095 | 1.94 | 0.48 | 81 | 17 | 23.9 | 2 | 74 | 19 | 2180 | 430 | 88000 | 18000 | 280000 |
| WCOSNU-25-044 | 0.116 | 0.046 | 0.00422 | 0.00057 | 0.175 | 0.068 | 0.0045 | 0.0017 | 2.8 | 0.93 | 105 | 40 | 27.1 | 3.7 | 90 | 34 | 1510 | 800 | 37000 | 2000 | 30000 |
| WCOSNU-25-045 | 0.049 | 0.014 | 0.0041 | 0.00032 | 0.085 | 0.021 | 0.00238 | 0.00073 | 3.8 | 1.1 | 48 | 13 | 26.4 | 2.1 | 48 | 15 | 770 | 490 | 44000 | 990 | 20000 |
| WCOSNU-25-047 | 0.0357 | 0.0063 | 0.00361 | 0.00019 | 0.075 | 0.014 | 0.00119 | 0.00027 | 6.2 | 1.3 | 35.4 | 6.2 | 23.2 | 1.2 | 24.1 | 5.4 | 640 | 380 | 20000 | 870 | 5000 |
| WCOSNU-25-048 | 0.0392 | 0.0091 | 0.00376 | 0.00026 | 0.083 | 0.022 | 0.00194 | 0.00061 | 3.84 | 0.97 | 38.9 | 8.8 | 24.2 | 1.7 | 39.1 | 12 | 1020 | 490 | 25000 | 800 | 7800 |
| WCOSNU-25-049 | 0.031 | 0.011 | 0.00359 | 0.00023 | 0.064 | 0.023 | 0.00146 | 0.00041 | 4.35 | 1 | 31 | 11 | 23.1 | 1.5 | 29.5 | 8.3 | 430 | 680 | 5500 | 160 | 1400 |
| WCOSNU-25-050 | 0.0256 | 0.0065 | 0.00364 | 0.00019 | 0.052 | 0.013 | 0.00128 | 0.00029 | 3.51 | 0.61 | 25.5 | 6.4 | 23.4 | 1.2 | 25.9 | 5.9 | 30 | 470 | 3300 | 29 | 1600 |
| WCOSNU-25-051 | 0.0476 | 0.0098 | 0.00373 | 0.00022 | 0.1 | 0.022 | 0.00189 | 0.00043 | 3.69 | 0.67 | 49 | 10 | 24 | 1.4 | 38.1 | 8.6 | 1100 | 500 | 3200 | 160 | 610 |
| 17OR-02-Z1 | 0.045 | 0.016 | 0.00353 | 0.00025 | 0.082 | 0.03 | 0.00237 | 0.00058 | 2.84 | 3.4 | 44 | 15 | 22.7 | 1.6 | 47.9 | 12 | 600 | 530 | 120 | -9 | 24 |
| 17OR-02-Z2 | 0.15 | 0.066 | 0.00465 | 0.00067 | 0.236 | 0.038 | 0.00349 | 0.0018 | 1.156 | 0.094 | 142 | 52 | 29.9 | 4.3 | 70 | 37 | 3090 | 180 | 6600 | 3100 | 6100 |


| Sample Information |  |
| :---: | :---: |
| Sample Designation | WCOS-2, WCOS-12, WCOSNU-25 |
| Sample Type | pluton |
|  |  |
| Laboratory \& Sample Preparation |  |
| Laboratory name | Dept of Geology \& Geophysics, Texas A\&M University |
| Sample type/mineral | Bedrock zircons |
| Sample preparation | Conventional mineral separation, 1 inch resin mount, $1 \mu \mathrm{~m}$ polish to finish |
| Imaging | optical scan |
| Analysis Date(s) | 10/24/18 |
|  |  |
| Laser ablation system |  |
| Make, Model \& type | ESI/New Wave Research, 193nm excimer, ns |
| Ablation cell \& volume | NWR TV2 cell |
| Laser wavelength (nm) | 193 nm |
| Pulse width (ns) | 4 ns |
| Fluence ( $\mathrm{J.cm}^{-2}$ ) | 4.6 |
| Repetition rate (Hz) | 15 Hz |
| Spot size ( $\mu \mathrm{m}$ ) | $30 \mu \mathrm{~m}$ |
| Sampling mode / pattern | stationary circle |
| Carrier gas | He $0.61 / \mathrm{min}$, Ar make-up gas $0.81 / \mathrm{min}$ combined $1 / 4$ of way along sample line. |
| Ablation duration (secs) | 30 s |
| Cell carrier gas flow (1/min) | $0.61 / \mathrm{min}$ |
|  |  |
| ICP-MS Instrument |  |
| Make, Model \& type | ThermoScientific iCAP RQ |
| Sample introduction | Ablation aerosol directly to injector |
| RF power (W) | 1450W |
| Make-up gas flow (1/min) | 0.8 1/min Ar |
| Detection system | pulse / analog SEM (analog trigger $>2.5 \mathrm{M} \mathrm{cps}$ ) |
| Masses measured | $29 \mathrm{Si}, 31 \mathrm{P}, 45 \mathrm{Sc}, 49 \mathrm{Ti}, 88 \mathrm{Sr}, 89 \mathrm{Y}, 93 \mathrm{Nb}$, 139La, 140Ce, $141 \mathrm{Pr}, 142 \mathrm{Nd}$, 152 Sm , $153 \mathrm{Eu}, 157 \mathrm{Gd}, 159 \mathrm{~Tb}, 164 \mathrm{Dy}, 165 \mathrm{Ho}, 166 \mathrm{Er}, 169 \mathrm{Tm}, 174 \mathrm{Yb}, 175 \mathrm{Lu}, 178 \mathrm{Hf}$, $181 \mathrm{Ta}, 202 \mathrm{Hg}, 204 \mathrm{~Pb}, 206 \mathrm{~Pb}, 207 \mathrm{~Pb}, 208 \mathrm{~Pb}, 232 \mathrm{Th}, 235 \mathrm{U}, 238 \mathrm{U}, 232 \mathrm{Th} .16 \mathrm{O}$, 238U. 160 |
| Integration time per peak (ms) | varies, 0.01 to 0.05 sec |
| Total integration time per reading (secs) |  |
| Sensitivity / Efficiency (\%, element) | 7.5E3 to 10E3 CPS/ppm (NIST 612) |
| IC Dead time (ns) | 20 ns |
|  |  |
| Data Processing |  |
| Gas blank | 10 second on-peak zero subtracted |
| Calibration strategy | 91500 primary reference material (U-Th-Pb) and NIST 610, 612, 614 (concentrations) |
| Reference Material info | 91500 (Wiedenbeck et al 1995) |
|  |  |
|  |  |
| Data processing package used / Correction for LIEF | Qtegra (concentrations) and Iolite (U-Th- Pb ages) |
| Mass discrimination | ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ and ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ normalised to reference material using Iolite; DRS: UPb Geochron 4; Parameters: Exponential down-hole correction, Cutoff Threshold = $10000,235 \mathrm{U}$ calculated from 238 U |
| Common- Pb correction, composition and uncertainty | not corrected; 204 Pb not resolvable from zero after Hg correction |
| Uncertainty level \& propagation | Ages are quoted at $2 \sigma$ absolute, propagation is by quadratic addition. Excess uncertainty propagated. |
|  |  |
| Other information | Puck was heated in drying oven at $70^{\circ} \mathrm{C}$ for 24 hours prior to analysis to set the resin. |

Table B.6: Metadata for zircon LA-ICP-MS U-Th-Pb analyses of re-dated Utevsky (2015) samples WCOS-2 (Site III), WCOS-12, and WCOSNU-25 (Site V). Modified from Horstwood et al. (2016).

| Sample Information |  |
| :---: | :---: |
| Sample Designation | 17OR-02 |
| Sample Type | pluton |
|  |  |
| Laboratory \& Sample Preparation |  |
| Laboratory name | Dept of Geology \& Geophysics, Texas A\&M University |
| Sample type/mineral | Bedrock zircons |
| Sample preparation | Conventional mineral separation, 1 inch resin mount, $1 \mu \mathrm{~m}$ polish to finish |
| Imaging | optical scan |
| Analysis Date(s) | 10/12/18 |
|  |  |
| Laser ablation system |  |
| Make, Model \& type | ESI/New Wave Research, 193nm excimer, ns |
| Ablation cell \& volume | NWR TV2 cell |
| Laser wavelength (nm) | 193 nm |
| Pulse width (ns) | 4 ns |
| Fluence ( $\mathrm{J.cm}^{-2}$ ) | 4.6* |
| Repetition rate (Hz) | 15 Hz |
| Spot size ( $\mu \mathrm{m}$ ) | $30 \mu \mathrm{~m}$ |
| Sampling mode / pattern | stationary circle |
| Carrier gas | He $0.6 \mathrm{l} / \mathrm{min}$, Ar make-up gas $0.8 \mathrm{l} / \mathrm{min}$ combined $1 / 4$ of way along sample line. |
| Ablation duration (secs) | 30 s |
| Cell carrier gas flow (1/min) | $0.61 / \mathrm{min}$ |
|  |  |
| ICP-MS Instrument |  |
| Make, Model \& type | ThermoScientific iCAP RQ |
| Sample introduction | Ablation aerosol directly to injector |
| RF power (W) | 1450W |
| Make-up gas flow (1/min) | $0.8 \mathrm{l} / \mathrm{min} \mathrm{Ar}$ |
| Detection system | pulse / analog SEM (analog trigger $>2.5 \mathrm{M} \mathrm{cps}$ ) |
| Masses measured | $29 \mathrm{Si}, 31 \mathrm{P}, 45 \mathrm{Sc}, 49 \mathrm{Ti}, 88 \mathrm{Sr}, 89 \mathrm{Y}, 93 \mathrm{Nb}$, $139 \mathrm{La}, 140 \mathrm{Ce}, 141 \mathrm{Pr}, 142 \mathrm{Nd}$, 152 Sm , $153 \mathrm{Eu}, 157 \mathrm{Gd}, 159 \mathrm{~Tb}, 164 \mathrm{Dy}, 165 \mathrm{Ho}, 166 \mathrm{Er}, 169 \mathrm{Tm}, 174 \mathrm{Yb}, 175 \mathrm{Lu}, 178 \mathrm{Hf}$, $181 \mathrm{Ta}, 202 \mathrm{Hg}, 204 \mathrm{~Pb}, 206 \mathrm{~Pb}, 207 \mathrm{~Pb}, 208 \mathrm{~Pb}, 232 \mathrm{Th}, 235 \mathrm{U}, 238 \mathrm{U}, 232 \mathrm{Th} .16 \mathrm{O}$, 238U. 160 |
| Integration time per peak (ms) | varies, 0.01 to 0.05 sec |
| Total integration time per reading (secs) |  |
| Sensitivity / Efficiency (\%, element) | 7.5E3 to 10E3 CPS/ppm (NIST 612) |
| IC Dead time (ns) | 20 ns |
|  |  |
| Data Processing |  |
| Gas blank | 10 second on-peak zero subtracted |
| Calibration strategy | 91500 primary reference material (U-Th-Pb) and NIST 610, 612, 614 (concentrations) |
| Reference Material info | 91500 (Wiedenbeck et al 1995) |
|  |  |
|  |  |
| Data processing package used / Correction for LIEF | Qtegra (concentrations) and Iolite (U-Th-Pb ages) |
| Mass discrimination | ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ and ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ normalised to reference material using Iolite; DRS: UPb Geochron 4; Parameters: Exponential down-hole correction, Cutoff Threshold = $10000,235 \mathrm{U}$ calculated from 238 U |
| Common- Pb correction, composition and uncertainty | not corrected; 204 Pb not resolvable from zero after Hg correction |
| Uncertainty level \& propagation | Ages are quoted at $2 \sigma$ absolute, propagation is by quadratic addition. Excess uncertainty propagated. |
| *Approximate fluence value. |  |

Table B.7: Metadata for zircon LA-ICP-MS U-Th-Pb analyses of sample 17OR-02 (Site VI). Modified from Horstwood et al. (2016).

## APPENDIX C

## APATITE U-Pb DATA

Of the four samples dated for apatite U-Pb by LA-ICP-MS, only sample 17OR-18 in southern Washington produced a meaningful cooling age, $22.10 \pm 2.50 \mathrm{Ma}$, that was younger than the zircon $\mathrm{U}-\mathrm{Pb}$ crystallization age, $23.76 \pm 0.26 \mathrm{Ma}$. The apatite $\mathrm{U}-\mathrm{Pb}$ results from samples 17OR03, 17OR-09, and 17OR-10 were discarded from this study. In general, the apatite grains had very low U and Th concentrations, which could explain why some of the apatite $\mathrm{U}-\mathrm{Pb}$ analyses were not successful.


Figure C.1: Concordia diagram for sample 17OR-18 (Site I) using IsoplotR by Vermeesch (2018).


Figure C.2: Concordia diagram for sample 17OR-10 (Site II) using IsoplotR by Vermeesch (2018).


Figure C.3: Concordia diagram for sample 17OR-09 (Site III) using IsoplotR by Vermeesch (2018).


Figure C.4: Concordia diagram for sample 17OR-03 (Site V) using IsoplotR by Vermeesch (2018).

| Sample | ${ }^{207} \mathbf{P b} /{ }^{235} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{238} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{207} \mathbf{P b} /{ }^{206} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | ${ }^{208} \mathbf{P b} /{ }^{232} \mathbf{T h}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{208} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | $\underset{\text { Age }}{\substack{207 \\ \text { Pbp/35 } \\ \hline}}$ | $\pm 2 \mathrm{SE}$ |  | $\pm 2 \mathrm{SE}$ | $\begin{gathered} { }^{208} \mathbf{P b} b^{232} \mathbf{~ A g e ~} \\ \hline \end{gathered}$ | $\pm 2 \mathrm{SE}$ | $\begin{gathered} 207 \\ \mathbf{A b b} \\ \mathbf{A g e} \end{gathered}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{207} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{208} \mathbf{P b} /{ }^{204} \mathbf{P b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17OR18-002 | 3.26 | 0.4 | 0.0562 | 0.0056 | 0.418 | 0.04 | 0.0338 | 0.003 | 0.497 | 0.033 | 1463 | 110 | 351 | 34 | 671 | 59 | 3960 | 150 | 12 | 18 | 21 |
| 17OR18-003 | 2.61 | 0.37 | 0.051 | 0.0065 | 0.384 | 0.039 | 0.0316 | 0.0037 | 0.515 | 0.043 | 1276 | 100 | 319 | 40 | 627 | 72 | 3810 | 170 | 13 | 20 | 31 |
| 17OR18-004 | 2.86 | 0.4 | 0.0508 | 0.0063 | 0.425 | 0.042 | 0.0352 | 0.0043 | 0.487 | 0.033 | 1342 | 100 | 318 | 38 | 698 | 84 | 3960 | 150 | 22 | 31 | 60 |
| 170R18-005 | 3.87 | 0.61 | 0.0674 | 0.01 | 0.416 | 0.038 | 0.0445 | 0.007 | 0.491 | 0.031 | 1560 | 120 | 431 | 64 | 870 | 130 | 3970 | 160 | 10.2 | 15 | 33 |
| 17OR18-006 | 4.6 | 1.1 | 0.078 | 0.013 | 0.4 | 0.054 | 0.0445 | 0.0077 | 0.507 | 0.043 | 1660 | 180 | 484 | 78 | 880 | 150 | 3830 | 200 | 12 | 15 | 33 |
| 17OR18-007 | 3.69 | 0.4 | 0.065 | 0.005 | 0.427 | 0.04 | 0.0706 | 0.0068 | 0.481 | 0.032 | 1546 | 83 | 405 | 30 | 1370 | 130 | 3950 | 140 | 10.5 | 13.3 | 27 |
| 17OR18-008 | 4.24 | 0.42 | 0.0769 | 0.0045 | 0.408 | 0.035 | 0.0802 | 0.0075 | 0.492 | 0.022 | 1664 | 82 | 477 | 27 | 1550 | 140 | 3894 | 140 | 12.8 | 21 | 48 |
| 17OR18-009 | 1.82 | 0.18 | 0.0359 | 0.002 | 0.377 | 0.035 | 0.01643 | 0.00063 | 0.51 | 0.03 | 1043 | 64 | 228 | 12 | 329 | 13 | 3770 | 130 | 9 | 9 | 24 |
| 17OR18-010 | 2.08 | 0.24 | 0.0376 | 0.003 | 0.411 | 0.039 | 0.0187 | 0.0015 | 0.481 | 0.032 | 1120 | 76 | 238 | 18 | 375 | 29 | 3890 | 140 | 7.2 | 16 | 52 |
| 170R18-011 | 0.734 | 0.11 | 0.0152 | 0.0015 | 0.345 | 0.033 | 0.01014 | 0.00086 | 0.568 | 0.037 | 539 | 64 | 97.2 | 9.8 | 204 | 17 | 3650 | 140 | 5.7 | 5.3 | 10 |
| 17OR18-012 | 0.272 | 0.032 | 0.00755 | 0.00043 | 0.257 | 0.023 | 0.00621 | 0.0004 | 0.735 | 0.047 | 241 | 25 | 48.5 | 2.7 | 125.1 | 8 | 3190 | 150 | 22 | 11.4 | 40 |
| 17OR18-013 | 0.602 | 0.064 | 0.0137 | 0.00076 | 0.322 | 0.029 | 0.01209 | 0.00059 | 0.596 | 0.03 | 473 | 40 | 87.7 | 4.9 | 243 | 12 | 3530 | 140 | -98 | 13.5 | 104 |
| 17OR18-014 | 1.76 | 0.2 | 0.0357 | 0.0033 | 0.367 | 0.034 | 0.0247 | 0.0028 | 0.521 | 0.029 | 1009 | 73 | 226 | 20 | 491 | 56 | 3740 | 160 | -45 | 18 | 260 |
| 17OR18-015 | 2.96 | 0.51 | 0.0516 | 0.0081 | 0.439 | 0.045 | 0.0345 | 0.006 | 0.481 | 0.03 | 1310 | 130 | 322 | 49 | 680 | 120 | 3980 | 160 | -21 | 13 | 150 |
| 17OR18-016 | 2.99 | 0.36 | 0.0539 | 0.0042 | 0.404 | 0.04 | 0.0338 | 0.0025 | 0.521 | 0.035 | 1378 | 84 | 338 | 25 | 670 | 48 | 3890 | 160 | -48 | 28 | 330 |
| 17OR18-017 | 1.61 | 0.22 | 0.0324 | 0.0037 | 0.376 | 0.046 | 0.0215 | 0.0035 | 0.524 | 0.052 | 953 | 83 | 205 | 23 | 429 | 68 | 3730 | 180 | -37 | 16 | 210 |
| 17OR18-018 | 3.16 | 0.49 | 0.0571 | 0.0062 | 0.395 | 0.042 | 0.0334 | 0.0041 | 0.519 | 0.035 | 1400 | 120 | 357 | 37 | 662 | 79 | 3830 | 160 | -29 | 14 | 180 |
| 17OR18-019 | 1.83 | 0.28 | 0.0347 | 0.0037 | 0.396 | 0.059 | 0.0204 | 0.0024 | 0.493 | 0.043 | 1053 | 110 | 219 | 23 | 407 | 47 | 3840 | 230 | -16 | 5 | 67 |
| 17OR18-020 | 1.95 | 0.23 | 0.0353 | 0.0026 | 0.396 | 0.035 | 0.0176 | 0.0015 | 0.513 | 0.036 | 1076 | 76 | 223 | 16 | 352 | 29 | 3850 | 140 | -27 | 13 | 110 |
| 17OR18-021 | 1.79 | 0.31 | 0.0344 | 0.0048 | 0.38 | 0.04 | 0.0172 | 0.002 | 0.507 | 0.039 | 1003 | 93 | 217 | 29 | 345 | 40 | 3770 | 150 | -77 | 25 | 160 |
| 17OR18-022 | 1.68 | 0.19 | 0.0322 | 0.0026 | 0.387 | 0.044 | 0.0173 | 0.0015 | 0.49 | 0.032 | 989 | 70 | 204 | 16 | 347 | 29 | 3790 | 160 | -82 | 10 | 42 |
| 17OR18-023 | 4.43 | 0.53 | 0.0839 | 0.0076 | 0.387 | 0.046 | 0.0468 | 0.003 | 0.516 | 0.041 | 1705 | 95 | 519 | 45 | 924 | 59 | 3810 | 180 | 90 | 11 | 43 |
| 17OR18-024 | 4.34 | 0.47 | 0.0809 | 0.0046 | 0.384 | 0.037 | 0.0501 | 0.0034 | 0.511 | 0.035 | 1686 | 94 | 501 | 28 | 988 | 66 | 3820 | 140 | 46 | 20 | 56 |
| 17OR18-025 | 9.5 | 7.6 | 0.18 | 0.16 | 0.37 | 0.047 | 0.098 | 0.071 | 0.532 | 0.06 | 2080 | 550 | 930 | 630 | 1700 | 1100 | 3750 | 180 | 10 | 15 | 32 |
| 17OR18-026 | 2.07 | 0.27 | 0.0396 | 0.0056 | 0.392 | 0.059 | 0.0192 | 0.0015 | 0.551 | 0.083 | 1127 | 92 | 250 | 35 | 385 | 30 | 3800 | 250 | 10 | 15 | 25 |
| 17OR18-027 | 3.66 | 0.43 | 0.0633 | 0.0069 | 0.423 | 0.073 | 0.0362 | 0.0028 | 0.459 | 0.054 | 1553 | 92 | 395 | 42 | 719 | 55 | 3930 | 220 | 10 | 11 | 31 |
| 17OR18-028 | 2.79 | 0.4 | 0.0445 | 0.004 | 0.432 | 0.063 | 0.029 | 0.0026 | 0.458 | 0.061 | 1336 | 100 | 281 | 25 | 578 | 50 | 3960 | 230 | 6.7 | 12.2 | 20 |
| 17OR18-029 | 1.77 | 0.29 | 0.0337 | 0.0041 | 0.384 | 0.067 | 0.0222 | 0.0019 | 0.441 | 0.064 | 1017 | 110 | 213 | 25 | 443 | 37 | 3750 | 290 | 0.9 | 2 | 5 |
| 17OR18-030 | 11.2 | 3.3 | 0.198 | 0.052 | 0.39 | 0.035 | 0.12 | 0.034 | 0.48 | 0.046 | 2300 | 310 | 1130 | 280 | 2240 | 600 | 3880 | 150 | 22 | 37 | 63 |
| 17OR10-010 | 2.59 | 0.3 | 0.0452 | 0.0036 | 0.426 | 0.039 | 0.0542 | 0.0041 | 0.488 | 0.02 | 1273 | 85 | 284 | 22 | 1065 | 79 | 3960 | 140 | 4.9 | 9.7 | 11.3 |
| 17OR10-011 | 3.16 | 0.29 | 0.0555 | 0.0026 | 0.422 | 0.035 | 0.0704 | 0.0029 | 0.484 | 0.022 | 1439 | 73 | 348 | 16 | 1374 | 55 | 3963 | 120 | 7.6 | 14.4 | 17 |
| 17OR10-012 | 6 | 0.5 | 0.106 | 0.004 | 0.411 | 0.031 | 0.065 | 0.0023 | 0.484 | 0.018 | 1968 | 75 | 649 | 24 | 1272 | 43 | 3941 | 120 | 31 | 62 | 55 |
| 17OR10-013 | 19.64 | 1.6 | 0.3391 | 0.012 | 0.419 | 0.028 | 0.2393 | 0.0049 | 0.484 | 0.011 | 3067 | 79 | 1890 | 59 | 4336 | 81 | 3967 | 100 | 8.4 | 15.2 | 15.3 |
| 17OR10-014 | 5.12 | 0.44 | 0.0875 | 0.0033 | 0.424 | 0.031 | 0.0639 | 0.0024 | 0.476 | 0.018 | 1830 | 74 | 540 | 19 | 1251 | 46 | 3986 | 120 | 6 | 10.3 | 10 |


| Sample | ${ }^{277} \mathbf{P b} /{ }^{235} \mathrm{U}$ | $\pm 2$ SE | ${ }^{2 \times \mathrm{Pb}} \mathrm{Pb}^{238} \mathrm{U}$ | $\pm$ 2SE | ${ }^{207 \mathrm{~Pb} / 200{ }^{20} \mathrm{pb}}$ | $\pm 2$ SE | ${ }^{208 \mathrm{~Pb}} \mathrm{P}^{32} \mathrm{Th}$ | $\pm 2$ SE | $\mathrm{Pb}^{2088 \mathrm{~Pb}}$ | $\pm 2 \mathrm{SE}$ |  | $\pm$ 2SE | $\begin{gathered} { }^{206} \mathbf{P b} /{ }^{238} \mathbf{U} \\ \text { Age } \end{gathered}$ | $\pm$ 2SE |  | $\pm$ 2SE |  | $\pm 2$ SE | ${ }^{206 \mathrm{~Pb}} \mathrm{P}^{20 \mathrm{~Pa}} \mathrm{~Pb}$ | ${ }^{207 \mathrm{~Pb}}{ }^{204} \mathrm{~Pb}$ | ${ }^{208 \mathrm{~Pb}} \mathrm{P}^{204 \mathrm{~Pb}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170R09-001 | 16 | 1.6 | 0.28 | 0.016 | 0.406 | 0.041 | 0.1822 | 0.0099 | 0.481 | 0.029 | 2864 | 97 | ${ }^{1591}$ | 81 | 3380 | 170 | 3900 | 150 | .76 | -7100 | -570 |
| 170R09-002 | 17.5 | 1.6 | 0.296 | 0.016 | 0.419 | 0.029 | 0.1839 | 0.0087 | 0.472 | 0.019 | 2955 | 86 | 1670 | 82 | 3410 | 150 | 3971 | 100 | -80 | -770 | . 46 |
| 170R09-003 | 14.53 | 1.3 | 0.26 | 0.014 | 0.399 | 0.031 | 0.1615 | 0.0059 | 0.502 | 0.014 | 2779 | 87 | 1488 | 69 | 3025 | 100 | 3892 | 120 | 2780 | . 222 | .720 |
| 170R09-004 | 9.73 |  | 0.1666 | 0.01 | 0.413 | 0.041 | 0.1221 | 0.0065 | 0.494 | 0.043 | 2398 | 100 | 992 | 55 | 2330 | 120 | 3930 | 150 | 530 | -220 | -830 |
| 170R09-005 | 8.35 | 0.79 | 0.1453 | 0.0088 | 0.41 | 0.035 | 0.0998 | 0.0051 | 0.481 | 0.037 | 2262 | 88 | 873 | 50 | 1921 | 93 | 3926 | 130 | 490 | -200 | -880 |
| 170R09-006 | 13.23 | 1.2 | 0.231 | 0.012 | 0.408 | 0.028 | 0.1589 | 0.0077 | 0.484 | 0.012 | 2686 | 83 | 1349 | 57 | 2980 | ${ }^{130}$ | 3929 | 100 | 320 | -132 | -493 |
| 170R09-007 | 17.9 | 1.7 | 0.307 | 0.018 | 0.417 | 0.032 | 0.197 | 0.011 | 0.476 | 0.015 | 2973 | 93 | 1720 | 89 | 3630 | 180 | 3957 | 110 | 342 | -112 | -436 |
| 170R09-009 | 12.53 | 1.3 | 0.212 | 0.017 | 0.425 | 0.033 | 0.1775 | 0.0067 | 0.482 | 0.021 | 2629 | 95 | 1234 | 88 | 3300 | 120 | 3985 | 110 | 640 | -97 | -350 |
| 170 RO 9.010 | 7.21 | 0.87 | 0.1172 | 0.0086 | 0.436 | 0.053 | 0.0875 | 0.0079 | 0.455 | 0.041 | 2126 | 110 | 714 | 50 | 1690 | 150 | 4000 | 190 | 1350 | -93 | -268 |
| 170 RO 9.011 | 7.67 | 0.8 | 0.1251 | 0.0077 | 0.439 | 0.039 | 0.0938 | 0.0061 | 0.47 | 0.023 | 2178 | 94 | 759 | 44 | 1810 | 110 | 4021 | 140 | -1300 | -107 | -370 |
| 170R09-012 | 9.46 | 0.81 | 0.1669 | 0.0074 | 0.412 | 0.029 | 0.169 | 0.0053 | 0.478 | 0.013 | 2373 | 81 | 994 | 41 | 3153 | 92 | 3941 | 100 | -660 | -95 | -340 |
| 170R09-013 | 20.05 | 1.6 | 0.3457 | 0.011 | 0.423 | 0.028 | 0.2315 | 0.0061 | 0.488 | 0.013 | 3091 | 78 | 1913 | 54 | 4208 | 100 | 3987 | 100 | -319 | -75.8 | -246 |
| 170R09-014 | 9.4 | 1.2 | 0.167 | 0.017 | 0.405 | 0.033 | ${ }^{0.1262}$ | 0.0085 | 0.491 | 0.022 | 2340 | ${ }^{130}$ | 988 | 97 | 2400 | 150 | 3906 | 130 | -236 | -69 | -231 |
| 170 RO 9.015 | 10.21 | 1.1 | 0.182 | 0.011 | 0.4 | 0.034 | 0.1296 | 0.0047 | 0.497 | 0.021 | 2443 | 96 | 1079 | 58 | 2462 | 85 | 3892 | 130 | -178 | -84 | -282 |
| 170R09-016 | 5.76 | 0.54 | 0.1018 | 0.0046 | 0.411 | 0.037 | 0.0672 | 0.0022 | 0.488 | 0.026 | 1930 | 80 | ${ }^{624}$ | 27 | 1315 | 43 | 3913 | 130 | 10 | -2 | -60 |
| 170 RO 0.017 | 5.45 | 0.47 | 0.0997 | 0.0047 | 0.396 | 0.033 | 0.0661 | 0.0024 | 0.486 | 0.024 | 1887 | 75 | 612 | 27 | 1293 | 45 | 3869 | 130 | 40 | 29 | 80 |
| 170R090.018 | 16.7 | 1.9 | 0.281 | 0.027 | 0.422 | 0.041 | ${ }_{0}^{0.0733}$ | 0.006 | 0.478 | 0.029 | 2901 | 120 | 1590 | 140 | 1430 | 110 | 3970 | 140 | -108 | -59 | -188 |
| 170R09-019 | 10.64 | 1.1 | 0.19 | 0.015 | 0.415 | 0.04 | 0.0916 | 0.0051 | 0.466 | 0.026 | 2482 | 94 | 1120 | 81 | 1770 | 94 | 3940 | 150 | -91 | -46 | -142 |
| 170R090.020 | 8.43 | 0.82 | 0.155 | 0.011 | 0.4 | 0.031 | 0.135 | 0.011 | 0.496 | 0.021 | 2264 | 88 | 929 | 62 | 2550 | 200 | 3889 | 120 | -130 | -64 | -183 |
| 170R09-021 | 8.27 | 0.69 | 0.1599 | 0.0085 | 0.387 | 0.03 | 0.0941 | 0.0042 | 0.478 | 0.016 | 2263 | 82 | 955 | 47 | 1816 | 77 | 3860 | 110 | -104 | -49 | -150 |
| 170R09-022 | 8.54 | 0.71 | 0.1569 | 0.0059 | 0.397 | 0.029 | 0.1071 | 0.0034 | 0.478 | 0.013 | 2283 | 74 | 939 | 33 | 2055 | 62 | 3879 | 110 | .70 | . 35.7 | -101 |
| 170R09-023 | 33.3 | 3.3 | 0.568 | 0.037 | 0.423 | 0.028 | 0.36 | 0.02 | 0.468 | 0.012 | 3570 | 100 | 2890 | 160 | 6200 | 290 | 3985 | 98 | -57.9 | . 32.3 | -85 |
| 170R09-024 | 36.6 | 3.6 | 0.645 | 0.039 | 0.409 | 0.027 | 0.382 | 0.021 | 0.476 | 0.016 | 3664 | 100 | 3190 | 160 | 6520 | 310 | 3937 | 98 | -59,2 | -33.4 | -85.8 |
| 170R09-025 | 31.8 | 2.7 | 0.561 | 0.024 | 0.4066 | 0.026 | 0.337 | 0.011 | 0.474 | 0.013 | 3538 | 83 | 2865 | 100 | 5870 | 170 | 3931 | 96 | -53.1 | -31.6 | .78.1 |
| 170R09-026 | 6.26 | 0.54 | 0.1071 | 0.0067 | 0.417 | 0.042 | 0.117 | 0.016 | 0.479 | 0.021 | 2010 | 75 | 655 | , | 2240 | 290 | 3950 | 140 | 20 | 70 | 30 |


| Sample | ${ }^{207} \mathbf{P b}{ }^{2 / 35} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{238} \mathbf{U}$ | $\pm 2 \mathrm{SE}$ | ${ }^{207} \mathbf{P b} /{ }^{206} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | ${ }^{208} \mathbf{P b} /{ }^{232} \mathbf{T h}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{208} \mathbf{P b}$ | $\pm 2 \mathrm{SE}$ | $\underset{\text { Age }}{\substack{207 \\ \text { Pb/ } / 35 \mathrm{U}}}$ | $\pm 2 \mathrm{SE}$ | $\begin{gathered} { }^{206} \mathbf{P b}{ }^{238} \mathbf{~} \mathbf{A g e} \end{gathered}$ | $\pm 2 \mathrm{SE}$ | $\begin{gathered} { }^{208} \mathbf{P b} b^{232} \mathbf{T h} \\ \mathbf{A g e} \end{gathered}$ | $\pm 2 \mathrm{SE}$ | $\begin{gathered} \left.\begin{array}{c} 207 \\ \mathrm{Age} \\ \mathrm{~Pb} / 26 \mathrm{~Pb} \\ \hline \end{array}\right) \end{gathered}$ | $\pm 2 \mathrm{SE}$ | ${ }^{206} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{207} \mathbf{P b} /{ }^{204} \mathbf{P b}$ | ${ }^{208} \mathbf{P b} /{ }^{204} \mathbf{P b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170R03-001 | 46.7 | 6.2 | 0.789 | 0.085 | 0.415 | 0.057 | 0.621 | 0.064 | 0.458 | 0.023 | 3920 | 130 | 3740 | 310 | 9740 | 790 | 3950 | 200 | 15.7 | 26.1 | 45.8 |
| 170R03-002 | 63.6 | 10 | 1.04 | 0.11 | 0.427 | 0.036 | 0.73 | 0.12 | 0.463 | 0.063 | 4230 | 170 | 4580 | 350 | 11000 | 1400 | 4004 | 120 | 22 | 36 | 63 |
| 170R03-003 | 22.7 | 2.8 | 0.372 | 0.04 | 0.428 | 0.036 | 0.26 | 0.021 | 0.493 | 0.017 | 3200 | 130 | 2030 | 190 | 4660 | 340 | 4001 | 130 | 29.8 | 47 | 73 |
| 170R03-004 | 31.5 | 4.1 | 0.508 | 0.061 | 0.443 | 0.041 | 0.383 | 0.047 | 0.456 | 0.027 | 3510 | 130 | 2630 | 260 | 6510 | 700 | 4050 | 130 | 25.7 | 43 | 66 |
| 170R03-005 | 27.3 | 4.4 | 0.444 | 0.051 | 0.427 | 0.041 | 0.324 | 0.033 | 0.48 | 0.039 | 3380 | 150 | 2360 | 230 | 5670 | 510 | 4000 | 150 | 30 | 40 | 70 |
| 170R03-006 | 24.1 | 3.5 | 0.434 | 0.047 | 0.387 | 0.042 | 0.325 | 0.022 | 0.489 | 0.033 | 3260 | 140 | 2320 | 210 | 5680 | 340 | 3850 | 160 | 27.4 | 29.8 | 58.5 |
| 170R03-007 | 31 | 5.7 | 0.555 | 0.085 | 0.392 | 0.05 | 0.368 | 0.066 | 0.496 | 0.043 | 3490 | 180 | 2820 | 350 | 6280 | 960 | 3850 | 190 | 58 | 50 | 109 |
| 170R03-008 | 28 | 3 | 0.464 | 0.037 | 0.427 | 0.036 | 0.373 | 0.023 | 0.466 | 0.022 | 3406 | 110 | 2450 | 160 | 6400 | 330 | 3994 | 120 | 44.4 | 44 | 92 |
| 170R03-009 | 23.9 | 2.2 | 0.413 | 0.018 | 0.409 | 0.031 | 0.307 | 0.017 | 0.487 | 0.024 | 3259 | 86 | 2228 | 84 | 5410 | 260 | 3932 | 110 | 48.3 | 47.7 | 92 |
| 170R03-010 | 28.9 | 3.7 | 0.527 | 0.052 | 0.389 | 0.028 | 0.37 | 0.036 | 0.491 | 0.021 | 3450 | 150 | 2710 | 220 | 6330 | 540 | 3859 | 110 | 43.1 | 42.8 | 90 |
| 170R03-011 | 24.2 | 2.7 | 0.425 | 0.039 | 0.405 | 0.033 | 0.319 | 0.03 | 0.481 | 0.021 | 3263 | 110 | 2270 | 180 | 5580 | 460 | 3916 | 120 | 36.6 | 39.6 | 80 |
| 170R03-012 | 32.6 | 4.5 | 0.519 | 0.058 | 0.443 | 0.04 | 0.415 | 0.042 | 0.451 | 0.021 | 3540 | 140 | 2680 | 240 | 6980 | 610 | 4047 | 130 | 50 | 61 | 118 |
| 170R03-016 | 18 | 2.2 | 0.298 | 0.018 | 0.423 | 0.043 | 0.244 | 0.017 | 0.488 | 0.021 | 2980 | 120 | 1678 | 88 | 4410 | 270 | 3980 | 150 | 48 | 60 | 109 |
| 170R03-017 | 16.3 | 1.7 | 0.289 | 0.021 | 0.396 | 0.03 | 0.221 | 0.017 | 0.489 | 0.023 | 2880 | 110 | 1630 | 110 | 4030 | 280 | 3886 | 120 | 55 | 66 | 146 |
| 170R03-019 | 20.7 | 2.8 | 0.352 | 0.04 | 0.416 | 0.034 | 0.274 | 0.034 | 0.471 | 0.026 | 3090 | 130 | 1930 | 190 | 4860 | 530 | 3954 | 120 | 69 | 61 | 126 |
| 170R03-020 | 95 | 27 | 1.62 | 0.37 | 0.405 | 0.035 | 1.24 | 0.42 | 0.513 | 0.044 | 4570 | 300 | 6300 | 1100 | 16300 | 3600 | 3912 | 130 | 79.8 | 57.6 | 118 |
| 170R03-021 | 19.1 | 2.1 | 0.331 | 0.025 | 0.406 | 0.031 | 0.264 | 0.024 | 0.496 | 0.022 | 3033 | 110 | 1840 | 120 | 4710 | 380 | 3924 | 120 | 81 | 52.7 | 119 |
| 170R03-022 | 14.6 | 1.6 | 0.252 | 0.018 | 0.415 | 0.033 | 0.196 | 0.012 | 0.483 | 0.025 | 2771 | 100 | 1442 | 91 | 3610 | 200 | 3947 | 120 | 107 | 63 | 199 |
| 170R03-023 | 10.35 | 1.1 | 0.1814 | 0.01 | 0.405 | 0.03 | 0.1406 | 0.0067 | 0.488 | 0.017 | 2438 | 94 | 1083 | 60 | 2660 | 120 | 3915 | 120 | 150 | 88 | 200 |
| 170R03-024 | 13.79 | 1.2 | 0.234 | 0.011 | 0.42 | 0.03 | 0.1857 | 0.0071 | 0.487 | 0.021 | 2727 | 81 | 1352 | 58 | 3440 | 120 | 3985 | 120 | 192 | 94 | 238 |
| 170R03-025 | 14.8 | 1.3 | 0.259 | 0.015 | 0.407 | 0.031 | 0.204 | 0.011 | 0.487 | 0.02 | 2804 | 92 | 1481 | 75 | 3740 | 180 | 3935 | 120 | 179 | 77 | 207 |
| 170R03-026 | 13.62 | 1.3 | 0.241 | 0.013 | 0.413 | 0.029 | 0.1922 | 0.01 | 0.487 | 0.014 | 2706 | 93 | 1387 | 67 | 3550 | 170 | 3945 | 110 | 207 | 79 | 224 |
| 170R03-027 | 14.8 | 1.8 | 0.256 | 0.022 | 0.425 | 0.036 | 0.218 | 0.017 | 0.462 | 0.02 | 2771 | 110 | 1460 | 110 | 3980 | 280 | 3974 | 130 | 302 | 109 | 322 |
| 170R03-028 | 10.02 | 0.87 | 0.1693 | 0.0079 | 0.432 | 0.035 | 0.1371 | 0.0047 | 0.465 | 0.018 | 2428 | 81 | 1007 | 44 | 2596 | 83 | 4001 | 120 | 390 | 112 | 380 |
| 170R03-029 | 8.86 | 0.75 | 0.1684 | 0.0082 | 0.392 | 0.031 | 0.1311 | 0.0038 | 0.489 | 0.019 | 2319 | 78 | 1002 | 45 | 2490 | 68 | 3859 | 120 | 390 | 109 | 340 |
| 170R03-030 | 12.6 | 1.3 | 0.213 | 0.016 | 0.432 | 0.032 | 0.169 | 0.013 | 0.459 | 0.019 | 2632 | 91 | 1241 | 84 | 3150 | 220 | 4010 | 110 | 344 | 109 | 380 |
| 170R03-031 | 10.45 | 0.92 | 0.1872 | 0.0079 | 0.408 | 0.032 | 0.1394 | 0.0042 | 0.49 | 0.018 | 2464 | 83 | 1105 | 43 | 2637 | 75 | 3929 | 110 | 2140 | 163 | 380 |
| 170R03-032 | 14.15 | 1.3 | 0.245 | 0.013 | 0.419 | 0.03 | 0.197 | 0.009 | 0.468 | 0.015 | 2742 | 90 | 1409 | 69 | 3630 | 150 | 3962 | 110 | -350 | 161 | 418 |
| 170R03-033 | 17.09 | 1.5 | 0.302 | 0.014 | 0.412 | 0.029 | 0.235 | 0.011 | 0.482 | 0.015 | 2927 | 84 | 1697 | 71 | 4260 | 170 | 3941 | 100 | -208 | 186 | 530 |
| 170R03-034 | 8.83 | 0.79 | 0.1506 | 0.0053 | 0.421 | 0.032 | 0.1169 | 0.0036 | 0.483 | 0.018 | 2310 | 82 | 904 | 30 | 2234 | 64 | 3968 | 120 | -50 | 10 | 70 |
| 17OR03-035 | 8.06 | 0.66 | 0.1428 | 0.0054 | 0.413 | 0.03 | 0.1141 | 0.0036 | 0.475 | 0.016 | 2232 | 73 | 859 | 30 | 2183 | 65 | 3939 | 110 | -111 | 245 | 1300 |
| 170R03-036 | 18.5 | 1.8 | 0.325 | 0.021 | 0.414 | 0.032 | 0.255 | 0.017 | 0.477 | 0.028 | 3024 | 100 | 1808 | 100 | 4580 | 270 | 3947 | 120 | -108 | 332 | 4700 |
| 170R03-037 | 17.8 | 2 | 0.291 | 0.017 | 0.414 | 0.032 | 0.236 | 0.015 | 0.484 | 0.023 | 2957 | 99 | 1680 | 110 | 4340 | 280 | 3962 | 130 | -81.1 | 365 | -3180 |
| 170R03-038 | 20.5 | 2 | 0.34 | 0.027 | 0.426 | 0.032 | 0.291 | 0.015 | 0.452 | 0.031 | 3110 | 95 | 1880 | 130 | 5160 | 230 | 3996 | 110 | -67 | 500 | -1220 |
| 170R03-039 | 20.5 | 1.8 | 0.362 | 0.034 | 0.412 | 0.049 | 0.289 | 0.019 | 0.492 | 0.047 | 3111 | 90 | 1990 | 160 | 5130 | 290 | 3940 | 170 | -89 | 970 | -980 |

[^0]| Sample Information |  |
| :---: | :---: |
| Sample Designation | 17OR-03, 170R-09, 170R-10, 170R-18 |
| Sample Type | pluton |
|  |  |
| Laboratory \& Sample Preparation |  |
| Laboratory name | Dept of Geology \& Geophysics, Texas A\&M University |
| Sample type/mineral | Bedrock apatites |
| Sample preparation | Conventional mineral separation, 1 inch resin mount, $1 \mu \mathrm{~m}$ polish to finish |
| Imaging | optical scan |
| Analysis Date(s) | 5/2/18 |
|  |  |
| Laser ablation system |  |
| Make, Model \& type | ESI/New Wave Research, 193nm excimer, ns |
| Ablation cell \& volume | NWR TV2 cell |
| Laser wavelength (nm) | 193 nm |
| Pulse width (ns) | 4 ns |
| Fluence ( $\mathrm{J.cm}^{-2}$ ) | 3.5 |
| Repetition rate (Hz) | 15 Hz |
| Spot size ( $\mu \mathrm{m}$ ) | $60 \mu \mathrm{~m}$ |
| Sampling mode / pattern | stationary circle |
| Carrier gas | He $0.61 / \mathrm{min}$, Ar make-up gas $0.8 \mathrm{l} / \mathrm{min}$ combined $1 / 4$ of way along sample line. |
| Ablation duration (secs) | 30 s |
| Cell carrier gas flow (1/min) | $0.61 / \mathrm{min}$ |
|  |  |
| ICP-MS Instrument |  |
| Make, Model \& type | ThermoScientific iCAP RQ |
| Sample introduction | Ablation aerosol directly to injector |
| RF power (W) | 1450W |
| Make-up gas flow (1/min) | 0.8 1/min Ar |
| Detection system | pulse / analog SEM (analog trigger $>2.5 \mathrm{M} \mathrm{cps}$ ) |
| Masses measured | $29 \mathrm{Si}, 31 \mathrm{P}, 45 \mathrm{Sc}, 49 \mathrm{Ti}, 88 \mathrm{Sr}, 89 \mathrm{Y}, 93 \mathrm{Nb}$, $139 \mathrm{La}, 140 \mathrm{Ce}, 141 \mathrm{Pr}, 142 \mathrm{Nd}$, 152 Sm , $153 \mathrm{Eu}, 157 \mathrm{Gd}, 159 \mathrm{~Tb}, 164 \mathrm{Dy}, 165 \mathrm{Ho}, 166 \mathrm{Er}, 169 \mathrm{Tm}, 174 \mathrm{Yb}, 175 \mathrm{Lu}, 178 \mathrm{Hf}$, $181 \mathrm{Ta}, 202 \mathrm{Hg}, 204 \mathrm{~Pb}, 206 \mathrm{~Pb}, 207 \mathrm{~Pb}, 208 \mathrm{~Pb}, 232 \mathrm{Th}, 235 \mathrm{U}, 238 \mathrm{U}, 232 \mathrm{Th} .16 \mathrm{O}$, 238U.16O |
| Integration time per peak (ms) | varies, 0.01 to 0.05 sec |
| Total integration time per reading (secs) |  |
| Sensitivity / Efficiency (\%, element) | 7.5E3 to 10E3 CPS/ppm (NIST 612) |
| IC Dead time (ns) | 20 ns |
|  |  |
| Data Processing |  |
| Gas blank | 10 second on-peak zero subtracted |
| Calibration strategy | 91500 primary reference material (U-Th-Pb) and NIST 610, 612, 614 (concentrations) |
| Reference Material info | 91500 (Wiedenbeck et al 1995) |
|  |  |
|  |  |
| Data processing package used / Correction for LIEF | Qtegra (concentrations) and Iolite (U-Th-Pb ages) |
| Mass discrimination | ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ and ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ normalised to reference material using Iolite; DRS: $\mathrm{U}-$ Pb Geochron 4; Parameters: Exponential down-hole correction, Cutoff Threshold = $10000,235 \mathrm{U}$ calculated from 238 U |
| Common- Pb correction, composition and uncertainty | not corrected; 204 Pb not resolvable from zero after Hg correction |
| Uncertainty level \& propagation | Ages are quoted at $2 \sigma$ absolute, propagation is by quadratic addition. Excess uncertainty propagated. |
|  |  |
| Other information | Puck was heated in drying oven at $70^{\circ} \mathrm{C}$ for 24 hours prior to analysis to set the resin. |

Table C.4: Metadata for apatite LA-ICP-MS U-Th-Pb analyses of samples 17OR-18 (Site I), 17OR-10 (Site II), 17OR-09 (Site III), and 17OR-03 (Site V). Modified from Horstwood et al. (2016).

## APPENDIX D

## [eU] AND ESR



Figure D.1: Effective uranium concentration [eU] values plotted against apatite and/or zircon (UTh)/He ages at Sites I-III. Hollow markers indicate apatite or zircon (U-Th)/He ages that are older than zircon $\mathrm{U}-\mathrm{Pb}$ age. Error bars are reported in $2 \sigma$.


Figure D.2: Effective uranium concentration [eU] values plotted against apatite and/or zircon (UTh)/He ages at Sites IV-VI. Hollow markers indicate apatite or zircon (U-Th)/He ages that are older than zircon U-Pb age. Error bars are reported in $2 \sigma$.


Figure D.3: Equivalent sphere radius (ESR) values plotted against apatite and/or zircon (U-Th)/He ages at each site location. Hollow markers indicate apatite or zircon (U-Th)/He ages that are older than zircon U-Pb age. Error bars are reported in $2 \sigma$.

## APPENDIX E

## BASALT ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ DATA



Figure E.1: Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-19 (Site I).

> EXP\#18E21861 > 170R-07 > Groundmass $>$ PESEK (18-23) OREGON $>$ WESTERN CASCADES
> 18-0SU-04 (4C3-18) $>$ Incremental Heating $>$ Dan Miggins

Instrument $=$ ARGUS-VI-E
Preferred Age
Age Classification = Eruption Age
IGSN = Undefined
Rock Class = Undefined
Lithology $=$ Undefined
Lat-Lon = Undefined - Undefined
Age Equations $=$ Min et al. (2000)
Age Equations $=$ Min et al. $(2000)$
Negative Intensities $=$ Allowed
Collector Calibrations $=36 \mathrm{Ar}$
Decay $40 \mathrm{~K}=5.530 \pm 0.048 \mathrm{E}-101 / \mathrm{a}$
Decay $39 \mathrm{Ar}=2.940 \pm 0.016 \mathrm{E}-071 / \mathrm{h}$
Decay 37Ar $=8.230 \pm 0.012 \mathrm{E}-041 / \mathrm{h}$
Decay $36 \mathrm{Cl}=2.257 \pm 0.015 \mathrm{E}-061 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\mathrm{EC}, \beta^{+}\right)=0.580 \pm 0.009 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\beta^{-}\right)=4.950 \pm 0.043 \mathrm{E}-101 / \mathrm{a}$
Atmospheric $40 / 36($ a $)=295.50 \pm 0.70$
Atmospheric $38 / 36($ a $)=0.1869$
Production $39 / 37$ (ca) $=0.0006425 \pm 0.0000059$
Production $38 / 37$ (ca) $=0.0001800 \pm 0.000173$
Production $38 / 37$ (ca) $=0.0001800 \pm 0.0000173$
Production $36 / 37$ (ca) $=0.0002703+0.0000005$
Production $36 / 37$ (ca) $=0.0002703 \pm 0.0000005$
Production $38 / 39(\mathrm{k})=0.012077 \pm 0.000011$
Production $36 / 38(\mathrm{cl})=262.80 \pm 1.71$
Scaling Ratio $\mathrm{K} / \mathrm{Ca}=0.430$
Abundance Ratio $40 \mathrm{~K} / \mathrm{K}=1.1700 \pm 0.0100 \mathrm{E}-04$
Atomic Weight K $=39.0983 \pm 0.0001 \mathrm{~g}$



Figure E.2: Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-07 (Site IV).
EXP\#18E21803 $>$ 170R-05 $>$ Groundmass $>$ PESEK (18-23)
OREGON $>$ WESTERN CASCADES
18-OSU-04 (4C35-18) $>$ Incremental Heating $>$ Dan Miggins

Rock Class = Undefin
Lithology = Undefined
Lat-Lon = Undefined - Undefined
Age Equations $=$ Min et al. $(2000)$
Negative Intensities $=$ Allowed
Collector Calibrations $=36 \mathrm{Ar}$
Decay $40 \mathrm{~K}=5.530 \pm 0.048 \mathrm{E}-101 / \mathrm{a}$
Decay 39Ar $=2.940 \pm 0.016 \mathrm{E}-071 / \mathrm{h}$
Decay $37 \mathrm{Ar}=8.230 \pm 0.012 \mathrm{E}-041 / \mathrm{h}$
Decay $36 \mathrm{Cl}=2.257 \pm 0.015 \mathrm{E}-061 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\beta^{-}\right)=4.950 \pm 0.043 \mathrm{E}-101 / \mathrm{a}$
Atmospheric $40 / 36($ a $)=295.50$
Atmospheric $38 / 36($ a $)=0.1869$
Production $39 / 37$ (ca) $=0.0006425 \pm 0.0000059$
Production $38 / 37(\mathrm{ca})=0.0001800 \pm 0.0000173$
Production $36 / 37(\mathrm{ck})=0.0002703+0.000005$
Production $36 / 37(\mathrm{ca})=0.0002703 \pm 0.0000005$
Production $40 / 39(\mathrm{k})=0.000607 \pm 0.00059$
Production $38 / 39(\mathrm{k})=0.012077 \pm 0.000011$
Production $36 / 38(\mathrm{cl})=262.80 \pm 1.71$
Scaling Ratio $\mathrm{K} / \mathrm{Ca}=0.430$
Abundance Ratio $40 \mathrm{~K} / \mathrm{K}=1.1700 \pm 0.0100 \mathrm{E}-04$
Atomic Weight $\mathrm{K}=39.0983 \pm 0.0001 \mathrm{~g}$



Figure E.3: Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-05 (Site V).
EXP\#18E21745 $>$ > 170R-04 $>$ > Groundmass $>$ P PESEK (18-23)
OREGON $>$ WESTERN CASCADES
18-0SU-04 (4C5-18) $>$ Incremental Heating $>$ Dan Miggins

| Information on Analysis <br> and Constants Used in Calculations |
| :--- |

Project $=$ PESEK (18-23)
Sample $=170 \mathrm{R}-04$
Material $=$ Groundmass
Location $=$ Western Cascades
Region $=$ Oregon
Analyst = Dan Miggins
Irradiation $=18$-OSU-04 (4c5-18)
Position $=\mathrm{X}: 0|\mathrm{Y}: 0| \mathrm{Z} / \mathrm{H}: 7.63 \mathrm{~mm}$
FCT-NM Age $=28.201 \pm 0.023 \mathrm{Ma}$
FCT-NM Reference $=$ Kuiper et al (2008)
FCT-NM 40Ar/39Ar Ratio $=9.87343 \pm 0$ )
FCT-NM 40Ar/39Ar Ratio $=9.87343 \pm 0.00918$
Air Shot 40Ar/36Ar $=307.9930 \pm 0.2680$
Air Shot MDF $=0.98984624 \pm 0.00060634$ (LIN)
Experiment Type = Incremental Heating
Extraction Metho
Heating $=55 \mathrm{sec}$
Isolation $=6.00 \mathrm{~min}$
Instrument = ARGUS-VI-E
Preferred Age $=$ Plateau Age
Age Classification $=$ Eruption
IGSN = Undefined
Rock Class $=$ Undefined
Lithology = Undefined
Lat-Lon = Undefined - Undefined
Age Equations $=$ Min et al. (2000)
Negative Intensities $=$ Allowed
Collector Calibrations $=36 \mathrm{Ar}$
Decay $40 \mathrm{~K}=5.530 \pm 0.048 \mathrm{E}-101 / \mathrm{a}$
Decay $39 \mathrm{Ar}=2.940 \pm 0.016 \mathrm{E}-071 / \mathrm{h}$
Decay $37 \mathrm{Ar}=8.230 \pm 0.012 \mathrm{E}-041 / \mathrm{h}$
Decay $36 \mathrm{Cl}=2.257 \pm 0.015 \mathrm{E}-061 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\mathrm{EC}, \beta^{+}\right)=0.580 \pm 0.009 \mathrm{E}-101 / a$
Decay $40 \mathrm{~K}\left(\mathrm{EC},,^{+}\right)=0.580 \pm 0.009 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\beta^{-}\right)=4.950 \pm 0.043 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\beta^{-}\right)=4.950 \pm 0.043 \mathrm{E}-101 /$
Atmospheric $40 / 36($ a) $=295.50 \pm 0.70$
Atmospheric
Atmospheric $38 / 36(a)=0.1869$
Production $39 / 37$ (ca) $=0.0006425 \pm 0.0000059$
Production 38/37(ca) $=0.0001800 \pm 0.0000173$
Production $36 / 37$ (ca) $=0.0002703 \pm 0.0000005$
Production $40 / 39(\mathrm{k})=0.000607 \pm 0.000059$
Production $38 / 39(\mathrm{k})=0.012077 \pm 0.000011$
Production $36 / 38(\mathrm{cl})=262.80 \pm 1.71$
Scaling Ratio $\mathrm{K} / \mathrm{Ca}=0.430$
Abundance Ratio $40 \mathrm{~K} / \mathrm{K}=1.1700 \pm 0.0100 \mathrm{E}-04$
Atomic Weight $\mathrm{K}=39.0983 \pm 0.0001 \mathrm{~g}$

| Results | 40(a)/36(a) $\pm 2 \sigma$ | $40(\mathrm{r}) / 39(\mathrm{k}) \pm 2 \sigma$ | $\begin{aligned} & \text { Age } \pm 2 \sigma \\ & \text { (Ma) } \end{aligned}$ | $\sum_{n}^{0}$ | $\begin{aligned} & \text { 39Ar(k) } \\ & (\%, n) \end{aligned}$ | K/Ca $\pm 2 \sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age Plateau |  | $3.97466 \stackrel{ \pm}{ \pm 0.572248}$ | $11.41 \stackrel{\text { 1 }}{ \pm 0.07}$ | 7.07 | $48.96$ | $0.57 \pm 0.12$ |
| Error Mean |  |  | Full External Error $\pm 0.27$Analytical Error $\pm 0.06$ | 1.69 | $2 \sigma$ Confid | Limit |
|  |  | 2.6590 |  | Error Mag | cation |
| Total Fusion Age | $3.99562 \pm 0.00615$ |  | $11.47 \begin{aligned} & \pm 0.03 \\ & \pm 0.24 \%\end{aligned}$ |  | 32 | $1.24 \pm 0.00$ |
|  | Full External Error $\pm 0.26$ |  |  |  |  |  |
| Normal Isochron Error Chron | $\begin{array}{ll}  & \pm 299.61 \\ & \pm 0.65 \\ & \end{array}$ |  | $3.92708 \pm 0.02718$ | $11.27{ }^{ \pm 0.08}$ | 3.89 | 48.96 |  |
|  |  | $11.27 \pm 0.71 \%$ |  | 18 |  |  |
|  |  | Full External Error $\pm 0.27$ |  | $\begin{array}{r} 1.71 \\ 1.9728 \end{array}$ | $2 \sigma$ Confid Error Mag | Limit |
| Inverse Isochron Error Chron | $299.63 \pm 2.06$ | $3.92754 \pm 0.02718$ | $11.27 \pm 0.08$ | 3.94 | 48.96 |  |
|  |  |  |  | 0\% | 18 |  |
|  |  | Full External Error $\pm 0.27$ |  | 1.71 | 20 Confid | Limit |
|  |  |  |  | 1.9854 | Error Mag | cation |
|  |  |  |  | 53\% | Spreading |  |




Figure E.4: Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-04 (Site V).

# EXP\#18E21977 > 170R-20 > Groundmass > PESEK (18-23) OREGON > WESTERN CASCADES <br> 18-OSU-04 (4C6-18) > Incremental Heating > Dan Miggins 

| Results | 40(a)/36(a) $\pm 2 \sigma$ | 40(r)/39(k) $\pm 2 \sigma$ | $\begin{aligned} & \text { Age } \pm 2 \sigma \\ & \text { (Ma) } \end{aligned}$ | $\begin{aligned} & \sum_{5}^{0} \\ & \sum_{\Sigma} \end{aligned}$ | $\begin{gathered} 39 \mathrm{Ar}(\mathrm{k}) \\ (\%, \mathrm{n}) \end{gathered}$ | K/Ca $\pm 2 \sigma$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age Plateau |  |  |  |  |  |  |
| Cannot Calculate |  |  |  |  |  |  |
| Total Fusion Age |  | $\begin{array}{cc}  & \pm 0.00801 \\ \pm 0.00100 \\ & \pm 0.05 \% \end{array}$ | $\begin{aligned} & .77 \\ & \pm 0.01 \\ & \pm 0.19 \% \end{aligned}$ |  | 32 | $0.302 \pm 0.000$ |
|  |  | Full External Error $\pm 0.13$ Analytical Error $\pm 0.00$ |  |  |  |  |



and Constants Used in Calculations
and Constants Used in Calculations
Project $=$ PESEK (18-23)
Project $=$ PESEK (18-23)
Material $=$ Groundm
Material $=$ Groundm
Location $=$ Western Cascades
Location $=$ Western Cascades
Region = Oregon
Region = Oregon
Analyst $=$ Dan Miggins
Irradiation $=18$-Osu-04 (4C6-18) $\quad$ Total Fusion Age
Analyst $=$ Dan Miggins
Irradiation $=18$-Osu-04 (4C6-18) $\quad$ Total Fusion Age
Position $=\mathrm{X}: 0|\mathrm{Y}: 0| \mathrm{Z} / \mathrm{H}: 9.57 \mathrm{~mm}$
Position $=\mathrm{X}: 0|\mathrm{Y}: 0| \mathrm{Z} / \mathrm{H}: 9.57 \mathrm{~mm}$
FCT-NM Age $=28.201 \pm 0.023 \mathrm{Ma}$
FCT-NM Age $=28.201 \pm 0.023 \mathrm{Ma}$
FCT-NM Reference $=$ Kuiper et al (2008)
FCT-NM Reference $=$ Kuiper et al (2008)
FCT-NM 40Ar/39Ar Ratio $=9.87497 \pm 0.009$
FCT-NM 40Ar/39Ar Ratio $=9.87497 \pm 0.009$
FCT-NM $J$-value $=0.00159164 \pm 0.00000148$
FCT-NM $J$-value $=0.00159164 \pm 0.00000148$
Air Shot 40Ar $/ 36 \mathrm{Ar}=308.0230 \pm 0.2834$
Air Shot 40Ar $/ 36 \mathrm{Ar}=308.0230 \pm 0.2834$
Air Shot MDF $=0.98982285 \pm 0.00061052$ (LIN)
Experiment Type $=$ Incremental Heating
Air Shot MDF $=0.98982285 \pm 0.00061052$ (LIN)
Experiment Type $=$ Incremental Heating
Extraction Method $=$ Bulk Laser Heating
Extraction Method $=$ Bulk Laser Heating
Heating $=55 \mathrm{sec}$
Heating $=55 \mathrm{sec}$
Isolation $=5.10 \mathrm{~min}$
Isolation $=5.10 \mathrm{~min}$
Instrument = ARGUS-VI-E
Instrument = ARGUS-VI-E
Age Classification $=$ Eruption Age
Age Classification $=$ Eruption Age
IGSN = Undefined
IGSN = Undefined
Rock Class = Undefined
Rock Class = Undefined
Lithology = Undefined
Lithology = Undefined
Lat-Lon = Undefined - Undefined
Lat-Lon = Undefined - Undefined
Age Equations $=$ Min et al. (2000)
Negative Intensities $=$ Allo
Age Equations $=$ Min et al. (2000)
Negative Intensities $=$ Allo
Collector Calibrations $=36 \mathrm{Ar}$
Collector Calibrations $=36 \mathrm{Ar}$
Decay $40 \mathrm{~K}=5.530 \pm 0.048 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}=5.530 \pm 0.048 \mathrm{E}-101 / \mathrm{a}$
Decay 39Ar $=2.940 \pm 0.016 \mathrm{E}-071 / \mathrm{h}$
Decay 39Ar $=2.940 \pm 0.016 \mathrm{E}-071 / \mathrm{h}$
Decay $37 \mathrm{Ar}=8.230 \pm 0.012 \mathrm{E}-041 / \mathrm{h}$
Decay $37 \mathrm{Ar}=8.230 \pm 0.012 \mathrm{E}-041 / \mathrm{h}$
Decay $36 \mathrm{Cl}=2.257 \pm 0.015 \mathrm{E}-061 / \mathrm{a}$
Decay $36 \mathrm{Cl}=2.257 \pm 0.015 \mathrm{E}-061 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\mathrm{EC}, \mathrm{B}^{+}\right)=0.580 \pm 0.009 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\beta^{-}\right)=4.950 \pm 0.043 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\mathrm{EC}, \mathrm{B}^{+}\right)=0.580 \pm 0.009 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}\left(\beta^{-}\right)=4.950 \pm 0.043 \mathrm{E}-101 / \mathrm{a}$
Decay $40 \mathrm{~K}(\beta)=4.950 \pm 0.043 \mathrm{E}-101$
Decay $40 \mathrm{~K}(\beta)=4.950 \pm 0.043 \mathrm{E}-101$
$\begin{array}{ll}\text { Atmospheric } 38 / 36(a) & =0.1869\end{array}$
$\begin{array}{ll}\text { Atmospheric } 38 / 36(a) & =0.1869\end{array}$
Production $39 / 37$ (ca) $=0.0006425 \pm 0.0000059$
Production $39 / 37$ (ca) $=0.0006425 \pm 0.0000059$
Production 38/37(ca) $=0.0001800 \pm 0.0000173$
Production 38/37(ca) $=0.0001800 \pm 0.0000173$
Production $36 / 37$ (ca) $=0.0002703 \pm 0.0000005$
Production $36 / 37$ (ca) $=0.0002703 \pm 0.0000005$
Production $40 / 39(\mathrm{k})=0.000607 \pm 0.000059$
Production $40 / 39(\mathrm{k})=0.000607 \pm 0.000059$


Scaling Ratio $\mathrm{K} / \mathrm{Ca}=0.430$
Scaling Ratio $\mathrm{K} / \mathrm{Ca}=0.430$
Abundance Ratio $40 \mathrm{~K} / \mathrm{K}=1.1700 \pm 0.0100 \mathrm{E}-04$
Abundance Ratio $40 \mathrm{~K} / \mathrm{K}=1.1700 \pm 0.0100 \mathrm{E}-04$
Atomic Weight $\mathrm{K}=39.0983 \pm 0.0001 \mathrm{~g}$
Atomic Weight $\mathrm{K}=39.0983 \pm 0.0001 \mathrm{~g}$
Normal Isochron
Cannot Calculate
Normal Isochron
Cannot Calculate
Inverse Isochron
Inverse Isochron
Cannot Calculate
Cannot Calculate

Figure E.5: Basalt ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ results for sample 17OR-20 (Site VI).

| Sample | Latitude | Longitude | Elevation (m) | ${ }^{40} \mathbf{A r}{ }^{39} \mathrm{Ar}$ <br> Groundmass Age | 2 $\sigma$ Error (Ma) | Type |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17OR-19 | 46.97 | -121.24 | 1122 | 27.68 | 0.05 | total fusion age |
| 17OR-12 | 45.26 | -121.88 | 1490 | 5.15 | 0.01 | total fusion age |
| 17OR-07 | 44.13 | -122.19 | 1154 | 7.7 | 0.02 | total fusion age |
| 17OR-04 | 43.64 | -122.17 | 1004 | 11.41 | 0.07 | mini-plateau age |
| 17OR-05 | 43.72 | -122.40 | 853 | 4.46 | 0.02 | mini-plateau age |
| 17OR-20 | 42.67 | -122.64 | 627 | 5.77 | 0.01 | total fusion age |
| Table E.1: Basalt sample information and ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ groundmass ages. |  |  |  |  |  |  |

## APPENDIX F

## HeFTy MODELS

| Model Name | Site | Pluton Crystallization Range ( ${ }^{\circ} \mathrm{C}$ ) | Stratigraphic Range (Ma) | Zr. He Samples | Ap. He Samples | Basalt Constraint (Ma) | Number of Paths Run | Acceptable Paths Produced | Good Paths Produced |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 00193 | I | 675-950 | 20-24 | - | 00193 (Reiners et al., 2002) | 2.6 | 10000 | 552 | 299 |
| 00193b | I | 675-950 | 20-24 | - | 00193 b (Reiners et al., 2002) | 2.6 | 10000 | 425 | 240 |
| 00198 | I | 675-950 | 20-24 | - | 00198 (Reiners et al., 2002) | 2.6 | 10000 | 412 | 240 |
| 97216 | I | 675-950 | 20-24 | - | 97216 (Reiners et al., 2002) | 2.6 | 10000 | 385 | 203 |
| 97216b | I | 675-950 | 20-24 | - | 97216 b (Reiners et al., 2002) | 2.6 | 10000 | 349 | 175 |
| 97187 | I | 675-950 | 20-24 | - | 97187 (Reiners et al., 2002) | 2.6 | 10000 | 388 | 173 |
| 170R-18a | I | 675-950 | 23.50-24.02 | 17OR-18 z04 | 170R-18 a3 | 2.6 | 50000 | 10 | 0 |
|  |  |  |  |  | 17OR-18 a6 |  |  |  |  |
| 170R-18b | I | 675-950 | 23.50-24.02 | 17OR-18 z03 | 170R-18 a3 | 2.6 | 50000 | 75 | 9 |
|  |  |  |  |  | 17OR-18 a6 |  |  |  |  |
| 17OR-18c | I | 675-950 | 23.50-24.02 | 17OR-18 z01 | 170R-18 a 3 | 2.6 | 50000 | 57 | 11 |
|  |  |  |  | 170R-18 z02 | 17OR-18 a6 |  |  |  |  |
| 17OR-10a | II | 675-950 | 9.54-9.90 | 17OR-10 z05 | 17OR-10 a 2 | 5.15 | 10000 | 35 | 13 |
|  |  |  |  | 170R-10 z04 | 170R-10 al |  |  |  |  |
| 17OR-10ar | II | 675-950 | 9.54-9.90 | 170R-10 z05 | 17OR-10 a 2 | reheating at 5.1-5.2 | 10000 | 60 | 21 |
|  |  |  |  | 170R-10 z04 | 17OR-10 al |  |  |  |  |
| 170R-10b | II | 675-950 | 9.54-9.90 | 17OR-10 z05 | 17OR-10 a 3 | 5.15 | 10000 | 36 | 11 |
|  |  |  |  | 17OR-10 z04 | 17OR-10 a5 |  |  |  |  |
| 17OR-10br | II | 675-950 | 9.54-9.90 | 17OR-10 z05 | 17OR-10 a 3 | reheating at 5.1-5.2 | 10000 | 38 | 15 |
|  |  |  |  | 170R-10 z04 | 17OR-10 a5 |  |  |  |  |
| 17OR-10c | II | 675-950 | 9.54-9.90 | 17OR-10 z05 | 17OR-10 a6 | 5.15 | 10000 | 38 | 11 |
|  |  |  |  | 17OR-10 z04 |  |  |  |  |  |
| 170R-10cr | II | 675-950 | 9.54-9.90 | 170R-10 z05 | 17OR-10 a6 | reheating at 5.1-5.2 | 10000 | 21 | 9 |
|  |  |  |  | 170R-10 z04 |  |  |  |  |  |
| 170R-10d | II | 675-950 | 9.54-9.90 | 17OR-10 z03 | 170R-10 a 2 | 5.15 | 10000 | 62 | 32 |
|  |  |  |  | 170R-10 z02 | 170R-10 al |  |  |  |  |
| 17OR-10dr | II | 675-950 | 9.54-9.90 | 170R-10 z03 | 17OR-10 a 2 | reheating at 5.1-5.2 | 10000 | 104 | 39 |
|  |  |  |  | 170R-10 z02 | 170R-10 al |  |  |  |  |
| 170R-10e | II | 675-950 | 9.54-9.90 | 170R-10 z03 | 170R-10 a3 | 5.15 | 10000 | 61 | 17 |
|  |  |  |  | 17OR-10 z02 | 17OR-10 a5 |  |  |  |  |
| 17OR-10er | II | 675-950 | 9.54-9.90 | 170R-10 z03 | 170R-10 a3 | reheating at 5.1-5.2 | 10000 | 88 | 25 |
|  |  |  |  | 17OR-10 z02 | 17OR-10 a5 |  |  |  |  |
| 170R-10f | II | 675-950 | 9.54-9.90 | 170R-10 z03 | 170R-10 a6 | 5.15 | 10000 | 70 | 13 |
|  |  |  |  | 170R-10 z02 |  |  |  |  |  |
| 170R-10fr | II | 675-950 | 9.54-9.90 | 170R-10 z03 | 17OR-10 a6 | reheating at 5.1-5.2 | 10000 | 63 | 19 |
|  |  |  |  | 170R-10 z02 |  |  |  |  |  |
| 170R-11a | II | 675-950 | 9.48-9.64 | 170R-11 z03 | - | 5.15 | 10000 | 93 | 0 |
|  |  |  |  | 170R-11 z06 |  |  |  |  |  |
|  |  |  |  | 170R-11 z04 |  |  |  |  |  |
| 170R-11b | II | 675-800 | 9.48-9.64 | 170R-11 z05 | - | reheating at 5.1-5.2 | 10000 | 638 | 314 |

Table F.1: HeFTy model groupings and results for Sites I-II data.

| Model Name | Site | Pluton Crystallization Range ( ${ }^{\circ} \mathrm{C}$ ) | Stratigraphic Range (Ma) | Zr. He Samples | Ap. He Samples | Basalt Constraint (Ma) | Number of Paths Run | Acceptable Paths Produced | Good Paths Produced |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170R-09a | III | 675-800 | 17.85-19.35 | - | 170R-09 a001 | 6.3 | 10000 | 917 | 189 |
| 170R-09b* | III | 675-800 | 17.85-19.35 | - | 170R-09 a004 | 6.3 | 10000 | 1084 | 562 |
| 170R-09c* | III | 675-800 | 17.85-19.35 | - | 170R-09 a002 | 6.3 | 10000 | 831 | 563 |
|  |  |  |  |  | 170R-09 a6 |  |  |  |  |
| WCOS-2a | III | 675-800 | 17.85-19.35 | zWCOS-2-5 | WCOS-2-4 | 6.3 | 10000 | 71 | 10 |
|  |  |  |  | zWCOS-2-3 | WCOS-2-1 |  |  |  |  |
| WCOS-2b* | III | 675-800 | 17.85-19.35 | zWCOS-2-5 | WCOS-2-5 | 6.3 | 10000 | 71 | 5 |
|  |  |  |  | zWCOS-2-3 |  |  |  |  |  |
| WCOS-2c* | III | 675-800 | 17.85-19.35 | zWCOS-2-5 | WCOS-2-6 | 6.3 | 10000 | 51 | 4 |
|  |  |  |  | zWCOS-2-3 |  |  |  |  |  |
| WCOS-2d | III | 675-800 | 17.85-19.35 | zWCOS-2-6 | WCOS-2-4 | 6.3 | 10000 | 112 | 54 |
|  |  |  |  | zWCOS2-4 | WCOS-2-1 |  |  |  |  |
| WCOS-2e* | III | 675-800 | 17.85-19.35 | zWCOS-2-6 | WCOS-2-5 | 6.3 | 10000 | 160 | 51 |
|  |  |  |  | zWCOS2-4 |  |  |  |  |  |
| WCOS-2f* | III | 675-800 | 17.85-19.35 | zWCOS-2-6 | WCOS-2-6 | 6.3 | 10000 | 146 | 59 |
|  |  |  |  | zWCOS2-4 |  |  |  |  |  |
| WCOS-2g* | III | 675-800 | 17.85-19.35 | zWCOS-2-2 | WCOS-2-6 | 6.3 | 10000 | 128 | 43 |
| WCOS-2sa | III | 675-800 | 16.2-16.6 | zWCOS-2-6 | WCOS-2-4 | 6.3 | 10000 | 13 | 0 |
|  |  |  |  | zWCOS-2-4 | WCOS-2-1 |  |  |  |  |
| WCOS-2sb* | III | 675-800 | 16.2-16.6 | zWCOS-2-6 | WCOS-2-5 | 6.3 | 10000 | 68 | 0 |
|  |  |  |  | zWCOS-2-4 |  |  |  |  |  |
| WCOS-2sc* | III | 675-800 | 16.2-16.6 | zWCOS-2-6 | WCOS-2-6 | 6.3 | 10000 | 45 | 1 |
|  |  |  |  | zWCOS-2-4 |  |  |  |  |  |
| WCOS-2sd* | III | 675-800 | 16.2-16.6 | zWCOS-2-2 | WCOS-2-5 | 6.3 | 10000 | 51 | 0 |
| WCOS-2se* | III | 675-800 | 16.2-16.6 | zWCOS-2-2 | WCOS-2-6 | 6.3 | 10000 | 185 | 57 |
| 170R-06a | IV | 675-950 | 19.48-19.79 | 17OR-06 z05 | - | 7.70 | 10000 | 146 | 53 |
|  |  |  |  | 170R-06 z03 |  |  |  |  |  |
|  |  |  |  | 17OR-06 z01 |  |  |  |  |  |
| 170R-06b | IV | 675-950 | 19.48-19.79 | 170R-06 z06 | - | 7.70 | 10000 | 317 | 150 |
| WCOSNU-25 | v | 675-950 | 22.8-24.24 | zWCOSNU-25-6 | - | 4.46 | 10000 | 0 | 0 |
|  |  |  |  | zWCOSNU-25-4 |  |  |  |  |  |
| 17OR-03 | v | 675-950 | 22.8-24.24 | - | 170R-03 a003 | 4.46 | 10000 | 0 | 0 |
| 170R-02a | VI | 675-950 | 20.62-21.55 | - | 170R-02 a002 | 5.77 | 10000 | 37 | 1 |
|  |  |  |  |  | 170R-02 a005 |  |  |  |  |
|  |  |  |  |  | 170R-02 a004 |  |  |  |  |
| 170R-02b* | VI | 675-950 | 20.62-21.55 | - | 170R-02 a003 | 5.77 | 10000 | 411 | 195 |
|  |  |  |  |  | 170R-02 a001 |  |  |  |  |
| WCOSNU-11a | VI | 675-950 | 20.62-21.55 | - | WCOSNU-11-2 | 5.77 | 10000 | , | 0 |
| WCOSNU-11* | VI | 675-950 | 20.62-21.55 | - | WCOSNU-11-5 | 5.77 | 10000 | 25 | 0 |
|  |  |  |  |  | WCOSNU-11-1 |  |  |  |  |
|  |  |  |  |  | WCOSNU-11-4 |  |  |  |  |
| *Preferred HeFTy model using youngest apatite (U-Th)/He ages. |  |  |  |  |  |  |  |  |  |

Table F.2: HeFTy model groupings and results for Sites III-VI data.

## APPENDIX G

## EXHUMATION RATE CALCULATIONS


#### Abstract




B
$\underline{20^{\circ} \mathrm{C} / \mathrm{km} \text { Geothermal Gradient }}$
$\frac{58{ }^{\circ} \mathrm{C} / \mathrm{Ma}}{20^{\circ} \mathrm{C} / \mathrm{km}}=3 \mathrm{~km} / \mathrm{Ma}$
$\frac{313^{\circ} \mathrm{C} / \mathrm{Ma}}{20^{\circ} \mathrm{C} / \mathrm{km}}=16 \mathrm{~km} / \mathrm{Ma}$
$40^{\circ} \mathrm{C} / \mathrm{km}$ Geothermal Gradient
$\frac{58^{\circ} \mathrm{C} / \mathrm{Ma}}{40^{\circ} \mathrm{C} / \mathrm{km}}=2 \mathrm{~km} / \mathrm{Ma}$
$\frac{313^{\circ} \mathrm{C} / \mathrm{Ma}}{40^{\circ} \mathrm{C} / \mathrm{km}}=8 \mathrm{~km} / \mathrm{Ma}$

Figure G.1: Exhumation rate calculation for Site I. A) All HeFTy model results for Site I, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$.

A


Site II


B $\quad \underline{20} \mathrm{C} / \mathrm{km}$ Geothermal Gradient

$$
\begin{aligned}
& \frac{211^{\circ} \mathrm{C} / \mathrm{Ma}}{20^{\circ} \mathrm{C} / \mathrm{km}}=11 \mathrm{~km} / \mathrm{Ma} \\
& \frac{1318^{\circ} \mathrm{C} / \mathrm{Ma}}{20^{\circ} \mathrm{C} / \mathrm{km}}=66 \mathrm{~km} / \mathrm{Ma}
\end{aligned}
$$

$40^{\circ} \mathrm{C} / \mathrm{km}$ Geothermal Gradient
$\frac{211^{\circ} \mathrm{C} / \mathrm{Ma}}{40^{\circ} \mathrm{C} / \mathrm{km}}=5 \mathrm{~km} / \mathrm{Ma}$
$\frac{1318{ }^{\circ} \mathrm{C} / \mathrm{Ma}}{40^{\circ} \mathrm{C} / \mathrm{km}}=33 \mathrm{~km} / \mathrm{Ma}$

Figure G.2: Exhumation rate calculation for Site II. A) All HeFTy model results for Site II, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$.


Figure G.3: Exhumation rate calculation for Site III. A) All HeFTy model results for Site III, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$.


Figure G.4: Exhumation rate calculation for Site IV. A) All HeFTy model results for Site IV, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$.
A
Site VI

B
$\underline{20^{\circ} \mathrm{C} / \mathrm{km} \text { Geothermal Gradient }}$

$$
\begin{aligned}
& \frac{560^{\circ} \mathrm{C} / \mathrm{Ma}}{20^{\circ} \mathrm{C} / \mathrm{km}}=28 \mathrm{~km} / \mathrm{Ma} \\
& \frac{1813^{\circ} \mathrm{C} / \mathrm{Ma}}{20^{\circ} \mathrm{C} / \mathrm{km}}=91 \mathrm{~km} / \mathrm{Ma}
\end{aligned}
$$

$40^{\circ} \mathrm{C} / \mathrm{km}$ Geothermal Gradient
$\frac{560{ }^{\circ} \mathrm{C} / \mathrm{Ma}}{40{ }^{\circ} \mathrm{C} / \mathrm{km}}=14 \mathrm{~km} / \mathrm{Ma}$
$\frac{1813{ }^{\circ} \mathrm{C} / \mathrm{Ma}}{40{ }^{\circ} \mathrm{C} / \mathrm{km}}=45 \mathrm{~km} / \mathrm{Ma}$

Figure G.5: Exhumation rate calculation for Site VI. A) All HeFTy model results for Site VI, where boxes indicate constraints on the thermochronometer systems. Range of slopes for period of rapid cooling indicated by light red lines and arrows. B) Calculations for exhumation rate ranges using geothermal gradients of $20^{\circ} \mathrm{C} / \mathrm{km}$ and $40^{\circ} \mathrm{C} / \mathrm{km}$.


[^0]:    Table C.3: Apatite U-Pb data for sample 17OR-03 (Site V).

