
FLOW SIMULATION AND CHARACTERIZATION OF FRACTURE SYSTEMS 

USING FAST MARCHING METHOD AND NOVEL DIAGNOSTIC PLOTS 

A Dissertation 

by 

XU XUE 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Chair of Committee,  Akhil Datta-Gupta 

Committee Members, Michael J. King  

Nobuo Morita 

Debjyoti Banerjee 

Head of Department, Jeff Spath 

May 2019 

Major Subject: Petroleum Engineering 

Copyright 2019 Xu Xue 



ii 

ABSTRACT 

Recently, the industrial trend of hydraulic fracturing is reducing the cluster spacing 

while increasing the fluid and proppant usage, which often generates complex fracture 

networks. The challenge from this trend is to understand and characterize the complex 

fracture networks. Recently, a novel approach has been proposed based on the high-

frequency asymptotic solution of the diffusivity equation leading to the Eikonal equation. 

The Eikonal equation governs the pressure front propagation and can be solved by a front-

tracking algorithm called Fast Marching Method (FMM). In this dissertation, we extend 

this method to complex fracture networks characterization and simulation, using novel 

diagnostic plots and FMM-based simulation. 

First, we develop novel diagnostic plots for complex fracture networks 

characterization. We directly use the field data to calculate the well drainage volume, 

instantaneous recovery ratio (IRR) and w(τ) function. The w(τ) function serves as a 

diagnostic plot to detect fracture geometry and flow regimes and the IRR plot is used to 

detect fracture conductivity. 

Second, we extend the FMM-based simulation workflow to local grid refinements 

(LGRs). The detailed workflow is proposed to generate the computational grid for the 

diffusive time of flight (DTOF) calculation. We use various models to validate the 

accuracy and computational efficiency of this workflow. In addition, we investigate 

various discretization schemes for the transition between local and global domain. 
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Third, we extend the FMM-based simulation workflow to embedded discrete 

fracture model (EDFM). We utilize a novel gridding to link the embedded discrete 

fractures and the matrix based on Delaunay triangulation. Using the DTOF as a spatial 

coordinate, the FMM-based flow simulation reduces the 3D complex fracture networks 

simulation to an equivalent 1D simulation. Multiple examples are shown to validate the 

accuracy and computational efficiency of this workflow. 

Lastly, we investigate the impact of tighter cluster spacing of the hydraulic 

fractures using the Eagle Ford field data. The hydraulic fracture propagation simulator 

Mangrove® is used to generate the fracture patterns based on the completion data. A 

manual history matching is conducted to match the field injection treatment pressure. The 

impact of cluster spacing is examined through the calibrated fracture models. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW* 

 

1.1 Introduction 

Unconventional tight/shale reservoirs development has become a topic of interest 

in the oil and gas industry, and the production from this kind of reservoirs contributes 

significantly to the energy market in the US and the world (Holditch 2013). The common 

practice of the ultra-low permeability reservoir development is utilizing a long horizontal 

well with multistage hydraulic fractures. This technology directly introduced the shale 

revolution in the US. Recently, the industrial trend of hydraulic fracturing is reducing the 

cluster spacing while increasing the fluid and proppant usage. This strategy often 

generates complex fracture networks, which significantly enhances the well productivity 

(Huang et al. 2016; Zhou, J. et al. 2016; Evans et al. 2018; Tang et al. 2018c; Tang et al. 

2018d). However, due to the complexity of the hydraulic fracture networks as well as the 

fluid flow mechanisms between fractures and matrix such as spontaneous imbibition and 

water adsorption etc., characterization and simulation remain a challenging task (Deng 

and King 2016, 2018, 2019). Right now, the most popular techniques to understand the 

complex fracture networks include microseismic monitoring (Tafti and Aminzadeh 2012; 

                                                 

 

 

* Part of this section is reprinted with permission from “Reservoir and Fracture Flow Characterization Using 

a Novel w(τ) Formulation” by Xue et al. (2016), paper URTEC-2440083-MS presented at the 

Unconventional Resources Technology Conference, 1-3 Aug., San Antonio, Texas, USA. Copyright [2016] 

URTEC. 
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Grechka et al. 2018), distributed temperature and acoustic sensing (Zhang and Zhu 2017; 

Zhu et al. 2018; Zhang and Zhu 2019a, 2019b)  and well logging (Maity and Aminzadeh 

2012; An et al. 2017; Xian et al. 2018). 

From the reservoir engineering point of view, we either use the analytical method 

or numerical reservoir simulation method to characterize and optimize the complex 

fracture networks. The analytical methods, mainly the decline curve analysis and 

pressure/rate transient analysis, are still the most common techniques in the industry to 

quickly understand the reservoir and fractures. The original idea of the decline curve 

analysis dates back to 1945. Arps (1945) first designed this method for conventional 

reservoirs with vertical wells under boundary-dominated flow. After that, many 

researchers modified and extended this method to unconventional reservoirs to predict the 

well production rate, estimated ultimate recovery (EUR) and reserves (Duong 1989; Valko 

and Lee 2010). The decline curve analysis is easy to use on large number of wells and 

only requires minimal data to make the prediction. However, this method is lack of physics 

and is often associated with huge uncertainty when predicting the EUR. The pressure/rate 

transient analysis is an alternate way to understand the reservoir and fractures (Al-Kobaisi 

et al. 2006; Song and Ehlig-Economides 2011). Using this method, we first identify 

different flow regimes then estimate the reservoir and fracture properties as well as the 

reserve from the corresponding flow regimes. Although the equations of the pressure/rate 

transient analysis are derived directly from the physical models, we usually assume 

homogeneous reservoir with planar fractures. These assumptions and the poor quality of 

the field production data often make the interpretation unreliable. However, ease of use 
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property still makes the analytical methods the dominant tool for unconventional reservoir 

analysis. 

Numerical reservoir simulation is another way to understand and characterize the 

reservoir and fractures. This method also has a long history for fractured reservoir 

analysis. The simplest way to simulate the fractured reservoir is the dual continuum model, 

which dates back to 1963 by Warren and Root (1963). Currently, the most popular 

techniques for fractured reservoir modeling are local grid refinements (LGRs), discrete 

fracture model (DFM) and embedded discrete fracture model (EDFM) (Mohammed and 

Al-Ansari 1995; Karimi-Fard and Firoozabadi 2001; Karimi-Fard et al. 2004; Li and Lee 

2008; Moinfar et al. 2014). All of these methods require a detailed geological model as 

well as explicit fracture geometries. Compared with the analytical methods, the numerical 

reservoir simulation can handle reservoir heterogeneity, complex fracture geometries, and 

complex physics. However, the numerical reservoir simulation often requires long time of 

computation, especially at the field level. For the characterization and optimization 

purpose, we often require to run the simulation thousands of time. The computational 

efficiency is currently the bottleneck of the numerical reservoir simulation to the 

application of unconventional reservoirs characterization and optimization. 

Recently the Fast Marching Method (FMM) based flow simulation has shown 

great promise for rapid modeling of unconventional reservoirs (Xie et al. 2015a; Fujita et 

al. 2016; Zhang et al. 2016; Iino et al. 2017; Iino and Datta-Gupta 2018; lino et al. 2018). 

The FMM-based simulation is based on the high frequency limit of the asymptotic solution 

of the diffusivity equation. The corresponding Eikonal equation governs the pressure front 
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propagation (Vasco et al. 2000). By solving the Eikonal equation, we obtain the diffusive 

time of flight (DTOF), which is a generalization of the ‘radius of investigation’. Using the 

DTOF as a spatial coordinate, we transform the original 3D model to an equivalent 1D 

model and solve the fluid flow equations. The FMM-based simulation stands midway 

between the analytical methods and numerical reservoir simulation. This method can 

handle complex physics while increasing the computational speed orders of magnitude 

faster than the traditional numerical reservoir simulation. 

 

1.2 Literature Review 

In this section, we provide a brief literature review of the Fast Marching Method 

and the FMM-based simulation. 

 

1.2.1 Fast Marching Method and Diffusive Time of Flight 

The starting point is the diffusivity equation in slightly compressible system, which 

can be expressed as:  

( ) ( )
( , )

( ) ( , ) 0t

p x t
x c k x p x t

t
 


−  =



 

(1.1) 

The high frequency limit of the diffusivity equation, which represents the rapidly varying 

component in pressure, gives rise to the Eikonal equation for the DTOF τ(x) (Kulkarni et 

al. 2000; Vasco et al. 2000). The Eikonal equation is expressed as:  

( ) ( )( ) 1x x x     =

 

(1.2) 

The α denotes the diffusivity and can be calculated as: 
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t

t

k

c





=

 

(1.3) 

where λt is total mobility, k is permeability,   is porosity and ct is total compressibility. 

The Eikonal equation governs the pressure front propagation in the reservoir and the 

DTOF serves as the footprint of the pressure front (Datta-Gupta et al. 2011). This idea is 

a generalization of the ‘radius of investigation’ in homogeneous reservoir. Figure 1.1 

illustrates a comparison of the ‘radius of investigation’ in homogeneous reservoir and the 

DTOF in heterogeneous reservoir. The cylindrical contours in homogeneous reservoir 

become twisted irregular contours because of reservoir heterogeneity. However, the 

DTOF captures the pressure front propagation. 

 

 
Figure 1.1 Examples of the pressure front propagation (a) Radius of 

investigation in homogeneous reservoir (b) Log permeability field (c) DTOF in 

heterogeneous reservoir (reprinted from Datta-Gupta et al. 2011) 

 

The Eikonal equation can be efficiently solved by a front-tracking algorithm called 

the Fast Marching Method. The FMM was first proposed by  Sethian (1996) to efficiently 

solve the Eikonal equation. FMM is a single-pass method which utilizes the fact that the 

value of τ(x) for the first-order partial differential equation depends only on the value of τ 
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along the characteristic(s) passing through the point (Sethian 1996). Analogous to the 

Dijkstra’s algorithm to solve the shortest path problem (Dijkstra 1959), FMM directly 

tracks the pressure wave starting from the source or sink. Figure 1.2 provides the basic 

framework of the FMM calculation, which comprises of the following steps (Sethian 

1999): 

(1) Label all grid nodes as unknown; 

(2) Assign τ values (usually zero) to the nodes corresponding to the source or sink. 

Usually the source or sink are the wells or completions. Label them as accepted 

(Figure 1.2(a)); 

(3) For each node that is accepted, locate its immediate neighboring nodes that are 

unknown and label them as considered (Figure 1.2(b) points A, B, C, D); 

(4) For each node labeled as considered, update its τ value using the minimum 

local solutions (Update the τ values for points A, B, C, D in Figure 1.2(b)); 

(5) Once we update all the nodes labeled as considered, we pick up the node, which 

has the minimum τ value, and label it as accepted (Figure 1.2(b) points A); 

(6) Go to step (3) until all nodes are accepted. 
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Figure 1.2 Procedures of FMM on 2D Cartesian grid (reprinted from Xie et al. 

2015a)  

 

 We discretize the Eikonal Eq. (1.2) on the 2D Cartesian grid as (Xie et al. 2015a):  

( ) ( )
2 2 1

max , ,0 max , ,0x x y y

ij ij ij ijD D D D   


− + − +− + − =

 

(1.4) 

where D denotes the first-order upwind finite difference operator. In the x-direction, D 

operator can be expressed as , 1,( ) /x

ij i j i jD x  −

−= −   and 1, ,( ) /x

ij i j i jD x  +

+= −   while 

in the y direction , , 1( ) /y

ij i j i jD y  −

−= −   and , 1 ,( ) /y

ij i j i jD y  +

+= −  . The final form is 

a quadratic equation for unknown τ(x), which can be solved very efficiently. The 

computation complexity of the FMM is ( log )O N N , which is same as the Dijkstra’s 

algorithm.  
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1.2.2 FMM-based Reservoir Simulation 

The FMM has already been applied in many disciplines, such as computational 

geometry, fluid mechanics, computer vision, and materials science. Our main contribution 

is to apply the FMM to petroleum related problems. The Eikonal equation governs the 

pressure front propagation and the DTOF serves as the footprint of the pressure front. By 

summing up the reservoir pore volume within each DTOF contour, we can calculate the 

transient drainage volume as a function of DTOF. Using the FMM, we can easily visualize 

the drainage volume evolution without solving the 3D fluid flow equations. Furthermore, 

analogous to the radius of investigation in homogeneous reservoirs, the DTOF can be used 

as a spatial coordinate to transform the 3-D model into an equivalent 1-D model. The so-

called FMM-based reservoir simulation can achieve orders of magnitude faster 

computation than the traditional finite difference simulation and has been used in multiple 

field examples from history matching to EOR optimization (Zhang et al. 2016; Iino et al. 

2017; Iino and Datta-Gupta 2018).  

The first attempt of the FMM-based reservoir simulation was done by Xie et al. 

(2015a) and Xie et al. (2015b). In their work, they first calculated the drainage volume as 

a function of DTOF. Using the relationship between DTOF and the physical time, they 

generated the correlation between the drainage volume and the physical time. Finally, they 

used a pseudo-steady state solution to calculate the pressure within the drainage volume. 

This method is accurate in homogeneous reservoirs where the relationship between the 

DTOF and the physical time is well-known under different flow regimes. However, under 
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heterogeneous conditions, the relationship is not rigorously defined, which makes the 

geometric pressure solution deviate from the real solution.   

To generalize the geometric pressure solution, Zhang et al. (2016) first proposed 

to use the DTOF as a spatial coordinate to reduce the model and equations from 3D to 1D. 

Figure 1.3 illustrates the radius of investigation in homogeneous reservoir, the DTOF in 

heterogeneous reservoir, as well as the diffusivity equations. Again, we clearly see the 

analog between the radius of investigation in a homogeneous reservoir and the DTOF in 

a heterogeneous reservoir. By introducing the w(τ) function and assuming the pressure 

gradients are aligned with the τ(x) gradients, the 3D diffusivity equation can be simplified 

to 1D equation as (Zhang et al. 2016): 

( , ) 1 ( , )
( ) 0

( )

p t p t
w

t w

 


  

   
− = 

     

(1.5) 

where the w(τ) function is the first derivative of the drainage volume Vp with respect to 

the DTOF. 

( )
( )

pdV
w

d





=

 

(1.6) 

The original work by Zhang et al. (2016) also provided detailed steps on the fluid flow 

equation transformation from 3D to 1D. The final form of the single-phase flow in the 

DTOF coordinate can be expressed as: 

( )( )
( )

( )

tinit init
c p

w q
t w


  

   

   
= + 

     

(1.7) 
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where   is porosity, ρ is fluid density, μ is fluid viscosity, q is the sink/source term. By 

solving Eq. (1.7) in the DTOF coordinate, we can calculate the well and reservoir 

responses. 

 

 
Figure 1.3 Analogy between the w(τ) formulation in heterogeneous reservoirs 

and the circular drainage volume in a homogeneous reservoir (reprinted from 

Zhang et al. 2016)  

 

The FMM-based reservoir simulation workflow has already been extended to 

simulate complex physics in shale reservoirs. Fujita et al. (2016) first extended the FMM-

based reservoir simulation workflow to a triple-continuum system. In this study, the DTOF 

were only calculated at the fracture system. Then the entire system was transformed to 1D 

with the nanopore and organic matter acting as the sink/source term. They also took into 

account multiple mass transfer processes such as the gas diffusion between the organic 

matter and nanopore and the Knudsen diffusion between the nanopore and fractures. 

Iino et al. (2017) further extended the FMM-based reservoir simulation workflow 

to multiphase and multicomponent simulation. In this study, they validated the FMM-
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based workflow using multiple examples and performed a field-level history matching. 

This study demonstrated that the FMM-based reservoir simulation workflow can achieve 

the computation speed orders of magnitude faster while maintain the accuracy. In a later 

study, Iino and Datta-Gupta (2018) used the similar workflow for another application, the 

gas injection EOR optimization. 

Some other contributions to the FMM-based reservoir simulation including Zhang 

and Zhu (2017) applied it to the temperature modeling and field level history matching 

using distributed temperature data. Yang et al. (2017) extended the FMM-based reservoir 

simulation workflow to unstructured grid system to simulate arbitrary fracture geometry. 

King et al. (2016) developed multiple analytical solutions based on the asymptotic solution 

and DTOF and compared them with numerous classical analytical solutions. 

1.3 Dissertation Outline 

In this dissertation, our focus is to utilize and extend the asymptotic solution to the 

diffusivity equation and FMM-based simulation to understand and characterize the 

complex fracture networks. First, we develop novel diagnostic plots for complex fracture 

networks characterization based on the asymptotic solution of the diffusivity equation. 

Then, we extend the FMM-based simulation to LGRs and EDFM to increase the 

computation efficiency and simulate the complex fracture networks. Finally, we apply the 

commercial fracture propagation simulator Mangrove® to a real field injection treatment 

pressure history matching to understand the impact of tighter cluster spacing on the 

geometry of fractures. The primary goals for each chapters are as follows: 
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In Chapter I, we introduce the background information and review the literature 

on the Fast Marching Method and FMM-based reservoir simulation. 

In Chapter II, we develop the novel diagnostic plots for complex fracture networks 

characterization based on the asymptotic approach of the diffusivity equation. The w(τ) 

function serves as a diagnostic plot to detect the fracture geometry and flow regimes and 

the IRR plot is used to detect the fracture conductivity. We use multiple synthetic and field 

examples to validate the feasibility of the novel diagnostic plots. 

In Chapter III, we extend the FMM-based simulation to LGRs using a novel 

gridding. We validate the accuracy and efficiency of the FMM-based simulation with 

LGRs using multiple examples. We investigate various discretization schemes for the 

transition between local and global domain in the FMM-based flow simulation. 

In Chapter IV, we extend the FMM-based simulation to EDFM to simulate the 

complex fracture networks. We utilize a novel gridding to link the embedded discrete 

fractures and the matrix based on Delaunay triangulation. Multiple examples are shown 

to validate the accuracy and computational efficiency of this workflow. 

In Chapter V, we investigate the impact of tighter cluster spacing on the hydraulic 

fractures using the Eagle Ford field data. The hydraulic fracture propagation simulator 

Mangrove® is used to generate the fracture patterns based on the completion data and 

injection treatment pressure. The impact of cluster spacing is examined through the 

calibrated fracture geometry and properties. 

In Chapter VI, we make the conclusions of this dissertation and recommendations 

for future work.  
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CHAPTER II 

RESERVOIR AND FRACTURE FLOW CHARACTERIZATION USING 

NOVEL DIAGNOSTIC PLOTS* 

 

2.1 Chapter Summary  

Multistage hydraulically fractured horizontal wells provide an effective means to 

exploit unconventional reservoirs. The current industry practice in the interpretation of 

field response often utilizes empirical decline curve analysis or pressure/rate transient 

analysis (PTA/RTA) for characterization of these reservoirs and fractures. These 

analytical tools are based on simplifying assumptions and do not provide a detailed 

description of the evolving reservoir drainage volume accessed from a well. The 

understanding of the transient drainage volume is essential for unconventional reservoir 

and fracture assessment and optimization.  

In our previous study (Yang et al. 2015; Yang et al. 2016), we developed a “data-

driven” methodology for the production rate and pressure analysis of shale gas and shale 

oil reservoirs. There are no underlying assumptions of fracture geometry, reservoir 

                                                 

 

 

* Part of this chapter is reprinted with permission from “Reservoir and Fracture Flow Characterization Using 

Novel Diagnostic Plots” by Xue et al. (2018), paper published in SPE Journal Preprint. Copyright [2018] 

Society of Petroleum Engineers. 

 
 Part of this chapter is reprinted with permission from “Reservoir and Fracture Flow Characterization Using 

a Novel w(τ) Formulation” by Xue et al. (2016), paper URTEC-2440083-MS presented at the 

Unconventional Resources Technology Conference, 1-3 Aug., San Antonio, Texas, USA. Copyright [2016] 

URTEC. 



 

14 

 

 

homogeneity as well as flow regimes in the proposed method. This approach is based on 

the high frequency asymptotic solution of the diffusivity equation in heterogeneous 

reservoirs. It allows us to determine the well drainage volume, and the instantaneous 

recovery ratio (IRR), which is the ratio of the produced volume to the drainage volume, 

directly from the production data. In addition, a new w(τ) plot has been proposed to 

provide better insight into the depletion mechanisms and the fracture geometry. 

In this chapter, we build upon our previous approach to propose a novel diagnostic 

tool for the interpretation of the characteristics of (potentially) complex fracture systems 

and drainage volume. We have utilized the w(τ) and IRR plots for the identification of 

characteristic signatures that imply complex fracture geometry, formation linear flow, 

partial reservoir completions, fracture interference and compaction effects during 

production. The w(τ) analysis gives us the fracture surface area and formation diffusivity 

whereas the IRR analysis provides additional information on fracture conductivity. Also, 

quantitative analysis is conducted using the novel w(τ) plot to interpret fracture 

interference time, formation permeability, total fracture surface area and stimulated 

reservoir volume (SRV). 

The major advantages of this current approach are the model free analysis without 

assuming planar fractures, homogeneous formation properties, and specific flow regimes. 

In addition, the w(τ) plot captures high resolution flow patterns not observed in traditional 

PTA/RTA analysis. The analysis leads to a simple and intuitive understanding of the 

transient drainage volume and fracture conductivity. The results of the analysis are useful 

for hydraulic fracturing design optimization and matrix and fracture parameter estimation. 
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2.2 Background 

Unconventional reservoirs such as shale oil and shale gas play a significant role in 

the US and the world energy market (Holditch 2013). For these low permeability 

reservoirs, long horizontal wells with multistage hydraulic fracturing have been proven to 

be an effective way to stimulate the formation in most cases. However, due to large 

uncertainty in fracture complexity and reservoir heterogeneity, the characterization of the 

fracture systems and the prediction of well performance are always of paramount interest. 

Various analytical techniques are routinely applied to fracture characterization and 

well performance predictions. Most common amongst these are the decline curve analysis 

(Fetkovich 1980; Valko 2009; Lee and Sidle 2010) and PTA/RTA (Ilk et al. 2010; Song 

and Ehlig-Economides 2011). These analytical tools are based on simplified fracture and 

flow geometry and homogeneous reservoirs and thus, cannot properly characterize the 

evolution of the reservoir drainage volume from a well. Several recent studies focus on 

using numerical reservoir simulators to account for reservoir heterogeneity, complex 

fracture geometries, geomechanical effects and many other relevant physical processes 

(Cipolla et al. 2010a; Du et al. 2015; Sun and Schechter 2015; An et al. 2016). The 

disadvantage of this approach is the need for detailed well and reservoir models and the 

cost for the entire process, especially when high levels of grid refinement are used. 

This chapter is organized as follows. We begin with a discussion of the 

methodology, including the w(τ) formulation and how to calculate the transient drainage 

volume, IRR and w(τ) from the production data. Next, we will use a single fracture 

example to explain how the w(τ) plot works as a diagnostic tool. Then we will use a variety 
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of examples using horizontal well with multistage fractures to demonstrate the power and 

utility of the w(τ) plot compared to traditional RTA. Whereas w(τ) plot provides insights 

into the fracture complexity and fracture surface area, the IRR plot will be used as a 

supplementary plot for fracture conductivity comparison. Finally, we provide quantitative 

analysis using w(τ) plot to interpret fracture interference time, formation permeability, 

total fracture surface area and SRV. This will be followed by a field application, discussion 

and conclusions. 

 

2.3 Methodology 

Our previous studies have demonstrated the power and utility of the asymptotic 

analysis of the diffusivity equation for performance analysis of unconventional reservoirs. 

The asymptotic analysis leads to the Eikonal equation that describes the evolution of the 

drainage volume accounting for reservoir heterogeneity and complex fracture geometry. 

Using numerical solution of the Eikonal equation, we have also developed a 

comprehensive shale gas reservoir simulator for reservoir performance prediction (Fujita 

et al. 2016; Zhang et al. 2016). Instead, here we are focusing on calculating the well 

drainage volume, w(τ) and IRR directly from the well production data without resorting 

to geologic modeling and flow simulation. One common feature for both numerical and 

the current approach is the w(τ) function, which indicates how fast the drainage volume 

increases spatially. This w(τ) function can be used as a diagnostic plot and gives us more 

insight into reservoir and fracture flow geometry compared to the traditional PTA/RTA. 
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In this section, we will first review the w(τ) formulation and our methodology of 

calculating the drainage volume, w(τ) and IRR directly from the well production data. 

 

2.3.1 Diffusivity Equation and the w(τ) Formulation 

The detailed derivation of the asymptotic solution to the diffusivity equation in 

heterogeneous porous media is given by King et al. (2016) and Zhang et al. (2016). For a 

slightly compressible system, the diffusivity equation describing pressure transients in 

heterogeneous porous media can be expressed as: 

( ) ( )
( , )

( ) ( , ) 0t

p x t
x c k x p x t

t
 


−  =



 

(2.1) 

We may reduce the 3-D diffusivity equation, Eq. (2.1), to an equivalent 1-D 

diffusivity equation if we assume that the pressure gradients are aligned with the   

gradients, that is: ( , ) ( ( ), )p x t p x t and integrate the diffusivity equation along a 

streamtube from the well into the reservoir up to a τ contour, as shown in Figure 2.1. 

 

 
Figure 2.1 Streamtube originating from a producing well (reprinted from King 

et al. 2016) 
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The average pressure in the streamtube up to the τ contour is given by: 

( )
( )

( )tqq
t

tp
Vc wpt ,

,



 +−=





 

(2.2) 

If we consider a thin volume near the τ contour and integrate the diffusivity 

equation, Eq. (2.2) can be written as: 
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where 
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(2.4) 

The inwardly directed normal area is related to the gradient of the pore volume, as 

shown in Figure 2.1. The inwardly directed flux can then be written as: 

( )
( )

( )
1 1

,
p

t

dV p p
q t n u k c w

d t


   

   

    
=  =   =   

     

(2.5) 

From Figure 2.1 and Eq. (2.5) we can clearly see that the w(τ) function is 

proportional to the cross-sectional area of the streamtube and is directly related to pore 

volume within the streamtube. Now we can substitute the flux equation into Eq. (2.3) to 

complete the derivation of the equivalent 1-D diffusivity equation. 

( )
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(2.6) 

As can be seen from Eq. (2.6), the spatial heterogeneity of the porosity and 

permeability has vanished from the diffusivity equation after using the w(τ) function. 
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2.3.2 Asymptotic Solutions to the Diffusivity Equation 

We may obtain another form of the diffusivity equation in terms of the flux only 

(King et al. 2016). 

( )
( )

( )
( )

0
,1,

=















−












 tq

w
w

t

tq
(2.7) 

To solve the diffusivity equation above, we need one initial condition and two 

boundary conditions. For a fixed rate drawdown in an infinite domain, these conditions 

are summarized in Table 2.1. The flux boundary condition at the wellbore is specified at 

τ=0. This maybe a distance of r=rw for a finite wellbore radius and for the line source 

approximation as rw→0. 

Table 2.1 Initial and boundary conditions for the diffusivity equation for an infinite 

domain (reprinted with permission from Xue et al. 2016) 

( )x  ( )tp ,  ( )tq ,  

Initial: 0=t  - i
pp = 0=q  

Wellbore: 
w

rr = 0=  ( )
wt

q
p

wc =





 w

qq =

Far Field: →  - i
pp → 0→q  

For the case of simple geometries in the line source approximation, w(τ) scales as 

a power law in τ such as w(τ) ~ τ n and n≥0. This captures all of the classical flow regimes 

in textbooks as well as the more interesting case of the diffusion on fractal geometry for a 

fractured reservoir (Barker 1988; John et al. 2003). A dimensional analysis shows that the 

flux may depend only on the dimensionless Boltzmann ratio of τ and t. 
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4t


 = (2.8) 

Based on the Boltzmann variable, we may relate t and τ derivatives of the flux to 

simplify Eq. (2.7). 
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(2.9) 

After substituting Eq. (2.9) into Eq. (2.7), the equation can be written as: 
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This equation may be integrated explicitly: 
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(2.11) 

This leads to the following expression for the pressure transient: 
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(2.12) 

The flux solution can be obtained by an additional integration from a location in 

the reservoir to the far field boundary where q→0 as τ→∞. 
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The drainage volume ( )dV t  can be determined from the boundary condition at 

τ=0. 
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Eq. (2.14) is taken as the starting point of our drainage volume analysis for the 

general case of arbitrary w(τ). 

2.3.3 Drainage Volume, IRR and w(τ) Calculation 

Before calculating the drainage volume and Instantaneous Recovery Ratio (IRR) 

from the production data, let’s first examine the qualitative aspects of this solution for the 

fixed rate draw down, as summarized in Figure 2.2 and Table 2.2. The Boltzmann variable, 

2

4t


 = , controls the solution characteristics for both homogeneous and heterogeneous 

reservoirs and in arbitrary dimensions. Let’s describe the characteristics of the solution, 

starting from the left of Figure 2.2 and the top of Table 2.2. For sufficiently small values, 

2

0.01
4t


  then 

2

exp( ) 1
4t


−  , and 

p

t




 is independent of position. This is the pseudo 

steady state (PSS) solution. For values of 
2

0.1 4
4t


   then 

2

0.018 exp( ) 0.9
4t


 −  , and 

p

t




 depends upon both τ and t and we have a clear pressure transient solution. Once we 

have sufficiently large values, 
2

4
4t


 then 

2

exp( ) 0.018
4t


−  , which is essentially at 

initial conditions. Since we are in PSS near the well, we may define the drainage volume 

from production data, following the analysis of (Matthews et al. 1954). However, for the 

unconventional reservoirs we have examined, we have not seen the evidence of reaching 
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the PSS limit corresponding to boundary dominated flow but instead stay in the transient 

region. Therefore, the drainage volume Vd(t) provides a dynamic measure of how much 

of the reservoir pore volume has begun depletion. 

Figure 2.2 Spatial profile of the fixed rate draw-down solution to the asymptotic 

pressure approximation in terms of the time derivative of the pressure drop, 

normalized to its value at the well (τ=0) (reprinted from King et al. 2016) 

Table 2.2 Characteristics of the asymptotic pressure solution for the fixed rate 

draw-down (reprinted with permission from Xue et al. 2016) 

Solution Exponential Range Boltzmann Variable 

Pseudo Steady State 
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4
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For the cases of simple geometry, we can directly determine τ, Vp(τ) and w(τ) from 

an analytical solution. For pressure transient analysis, we may directly determine the 

welltest derivative, ∆p’wf, defined as the logarithmic time derivative of the pressure drop 

at the wellbore (Bourdet et al. 1983). We can simply relate the drainage volume to the 

welltest derivative using Eq. (2.12). 

2

4' ( )
ln ( ) ( )

w

wf w wt
wf

t d t d

d p q t q t
p t e

d t cV t cV t


−

 = = =

 

(2.15) 

This equation is extremely useful as we can directly calculate the welltest 

derivative in terms of the drainage volume and do not need to first solve for the pressure 

drop. If we do not have the reservoir and well model, we cannot determine τ, Vp(τ) and 

w(τ) directly. Instead, we can calculate the drainage volume using the pressure and rate 

data. 

2

4

( ) ( )

w

wf w wt

t d t d

d p q q
e

dt cV t cV t


−

= =

 

(2.16) 

For unconventional reservoirs, following Winestock and Colpitts (1965), and Song 

and Ehlig-Economides (2011), we can use the rate normalized pressure (RNP) to calculate 

the drainage volume. This RNP approximation represents the production behavior that 

would be observed if the well were produced at a constant reference rate. 

( )1
( )

( ) ( )
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t

d e e w e

p td
c

V t dt q t




 

(2.17) 

where te is the material balance time defined as: 
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To account for the reservoir depletion efficiency, we also defined the IRR function, 

which is the ratio of the cumulative production to the well drainage volume. 

( )
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e
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d e
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(2.19) 

The drainage volume Vd(t) and w(τ) can be related through Eq. (2.14). Considering 

2

exp ( )
4t


−  as the kernel function, the above integral is a Fredholm integral of the first kind, 

and w(τ) is the function we are trying to determine. We invert for the w(τ) function using 

a piecewise constant representation. In Appendix A, we provide a detailed methodology 

to invert the w(τ) function from the drainage volume Vd(t). Given pressure and rate data, 

the procedure involves: (a) converting given pressure to bottom hole pressure if the 

measured pressure is tubing head pressure or casing pressure (b) using Eq. (2.17) to 

calculate the drainage volume Vd(t) (c) using Eq. (2.19) to calculate the instantaneous 

recovery ratio (IRR) (d) using Eq. (2.14) to link the drainage volume Vd(t) with w(τ) 

function using the methodology provided in the next section. Like traditional PTA/RTA, 

this analysis is limited to a single well. Multi-well analysis is beyond the scope of the 

current study. 
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2.4 Applications: Results and Discussion 

2.4.1 w(τ) as a Diagnostic Plot: A Single Infinite Conductivity Fracture 

We start our analysis by using a simple example, a vertical well with single infinite 

conductivity fracture. This example will demonstrate the detailed steps of our workflow 

and also provide the analytical solution for τ, Vd(t) and w(τ), from which we will clearly 

see why w(τ) can be used as a flow diagnostic. We start with the analytical solution of τ, 

Vd(t) and w(τ). The graphical solution with an illustrative pressure contour is shown in 

Figure 2.3. τ(x) can be calculated directly by using the path of the fastest pressure 

propagation back to the well location, where τ=0. Along the fracture plane, the fastest 

route is perpendicular to the fracture surface and  r= . Outside the fracture plane, the 

fastest route is to the fracture tip and  r= . The fastest routes r are shown in Figure 

2.3. The resulting drainage volume is a combination of linear and radial flow. 

/r =

 

(2.20) 

2(4 )d fV x r r h = +  (2.21) 

( )
( ) (4 2 )
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dV
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d


   


= = +  (2.22) 

 

 
Figure 2.3 Graphical solution of τ, Vd(t) and w(τ) for a single infinite 

conductivity fracture (reprinted with permission from Xue et al. 2018) 
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Table 2.3 Parameters used in the single infinite conductivity fracture example 

(reprinted with permission from Xue et al. 2018) 

Parameter Value 

Reservoir size 2408×2400×100 ft3 

Initial pressure 5470 psi 

Matrix porosity 0.046 

Matrix permeability 0.0005 md 

Hydraulic fracture porosity 0.3 

Hydraulic fracture permeability 1000 md 

Hydraulic fracture half-length 400 ft 

Oil viscosity 0.2 cp 

Oil compressibility 2.0×10-5 psi-1  

Formation volume factor 1.37 bbl/STB 

Rock compressibility 1.0×10-5 psi-1 

 

To start with we demonstrate that RNP could give us a good approximation of 

drainage volume calculation for the fixed rate draw down solution discussed above. We 

construct a single infinite conductivity fracture numerical simulation model, which is 

shown in Figure 2.4. The fracture fully penetrates the reservoir height and a tartan grid is 

used in the direction perpendicular to the fracture surface. The parameters used in this 

example are given in Table 2.3. We simulate two cases: a constant bottomhole pressure 

constraint at 1000psi and a constant rate constraint at 2bbl/day respectively. A commercial 

reservoir simulator is used to simulate this synthetic case. Figure 2.5 shows the simulation 

results of the production rate under constant BHP constraint and BHP under constant rate 

constraint. 
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Figure 2.4 Single fracture on a tartan grid and its pressure distribution at 1000 

days (reprinted with permission from Xue et al. 2018) 

 

 
Figure 2.5 Production rate under BHP constraint and BHP under rate constraint 

for the single fracture model (reprinted with permission from Xue et al. 2018) 

 

Our next step is to demonstrate RNP approximation could calculate similar 

drainage volume as the fixed rate draw down solution. In Figure 2.7(a), the drainage 

volume results obtained from the two methods are consistent with each other. Therefore, 

RNP is a reasonable approximation. The pressure contours at different flow regimes are 

given in Figure 2.6, followed by the Vd(t), IRR and w(τ) results in Figure 2.7. In the 

following synthetic examples, constant BHP constraint with RNP approximation will be 

used. 
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The pressure contours in Figure 2.6 clearly illustrates linear flow at early time, 

followed by radial flow. At late time, it becomes boundary dominated PSS flow. From the 

analytical solution of w(τ) in Eq. (2.22), at the early time τ values are relatively small, 

( ) 4 fw x h A    = . Therefore in the w(τ) plot at early time, w(τ) is a constant, 

which indicates linear flow regimes. In addition, this early time w(τ) value is proportional 

to the fracture surface area. At intermediate time, the flow regime is dominated by radial 

flow, ( ) 2w h   . Therefore in the w(τ) plot at intermediate time, w(τ) increases 

linearly with τ having a unit slope. At late time the pressure front reaches the reservoir 

boundary and the drainage volume does not increase, which is boundary dominated PSS 

flow, and w(τ) approaches towards zero. The above analysis demonstrates w(τ) can be 

used as a diagnostic for flow regimes identification as well as for fracture surface area 

determination. 

The IRR plot is drawn on semi-log axes to emphasize the early time behavior. The 

early time IRR value reaches a maximum when radial flow begins. Recall that IRR is the 

ratio of produced volume to drainage volume. The drainage volume increases slower than 

does the produced volume in the linear flow regime. On the contrary, in the radial flow 

regime, the drainage volume increases faster than does the produced volume. This 

phenomenon will also be seen in our multiple fracture cases. For late time boundary 

dominated PSS flow, the drainage volume no longer increases and the IRR will then 

increase monotonically with production. 
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Figure 2.6 Pressure contours for single fracture model: (a) Early time linear flow 

(b) Intermediate time radial flow (c) Late time boundary dominated PSS flow 

(reprinted with permission from Xue et al. 2018) 

 

 

 
Figure 2.7 Analysis results for single fracture model: (a) Drainage volume (b) 

IRR plot (c) w(τ) plot (reprinted with permission from Xue et al. 2018) 
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2.4.2 w(τ) as a Diagnostic Plot: Multiple Stage Fractures 

We now focus on the application of our methodology to horizontal wells with 

multiple stages of fractures. For comparison purpose, the traditional rate-normalized 

pressure (RNP) diagnostic plot will also be shown here. Following Song and Ehlig-

Economides (2011), we define RNP and RNP’ as: 

( )

( )tq

tpp
RNP

wfi −
= (2.23) 

etd

dRNP
RNP

ln
'= (2.24) 

where te is the material balance time defined in Eq. (2.18). 

To construct the horizontal well with multiple stages of fractures, we first use a 

commercial fracture propagation simulator to generate the fractures. High resolution local 

PEBI grids are used to capture the complex fracture geometry and create the grid system. 

The reservoir with the complex fractures model is then simulated using a commercial 

finite volume reservoir simulator. The input parameters used for a typical shale reservoir 

are listed in Table 2.4 (Cipolla et al. 2010b). In Table 2.5, we show the fracture treatment 

data for the fracture propagation simulation. Unless otherwise noted, the parameters used 

in all the examples are identical. The fluid properties are the same as the single fracture 

case discussed above. 
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Table 2.4 Input parameters for typical shale reservoir (reprinted with permission 

from Xue et al. 2018) 

Parameter Value 

Rock Type Marcellus shale  

Young’s Modulus 3.88×106 psi 

Poisson’s Ratio 0.23 

Min Horizontal Stress 5950 psi 

Max Horizontal Stress 6250 psi 

Overburden Stress 7705 psi 

Matrix porosity 0.046 

Matrix permeability 0.00005 md 

Initial pressure 5000 psi 

Unpropped Fracture Conductivity 0.3 mD.ft 

Formation Grid Size 15×15×5 ft 

Fracture Grid Size 0.5 ft 

 

Table 2.5 Input parameters for fracturing treatment (reprinted with permission 

from Xue et al. 2018) 

Parameter Value 

Injection Rate 60 bbl/min 

Injection Fluid Linear Gel or Slickwater 

Fluid Volume 100000 gal 

Proppant Concentration 3 ppa 

Fluid Viscosity 
Linear Gel 32 cP 

Slickwater 1.5 cP 

Proppant Type Jordan Unimin 30/50 

Cluster Spacing 100 ft 

No. of clusters per stage 4 

No. of  stage 3 

 

 

We will begin our analysis with a simple example where the fractures fully 

penetrate the reservoir vertically. We will compare the traditional RNP diagnostic plot and 

w(τ) plot and again demonstrate that w(τ) plot can be used as a diagnostic. For this 

example, we know all the flow regimes and flow signatures, namely formation linear flow, 

fracture interference, radial flow and boundary dominated PSS flow. Since for the field 

applications we seldom see the radial flow and boundary dominated PSS flow, we will 

focus on the early time formation linear flow and fracture interference. Figure 2.8 gives 
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the pressure contours at different flow regimes and Figure 2.9 shows the results of Vd(t), 

IRR, w(τ), RNP and RNP’. 

 

 
Figure 2.8 Pressure contours for full completion model: (a) Formation linear 

flow (b) Fracture interference (reprinted with permission from Xue et al. 2018) 

 

The trend of the IRR plot is different from the single fracture case. At early time, 

IRR plot monotonically increases because we only have linear flow regime before fracture 

interference occurs. In the single fracture model, IRR decreases because the radial flow 

begins and the drainage volume increases more rapidly than does the produced volume. 

When fracture interference occurs, the drainage volume increases very slowly which 

causes the IRR plot to rapidly increase at late time. 

Here we also compare the traditional RNP diagnostic plot with the w(τ) plot. First, 

at early time, we can see the ½ slope trend in the RNP derivative and the constant w(τ) 

value in the w(τ) plot, and both indicate the formation linear flow. At late time, the slope 

of the RNP derivative becomes unit slope, which is the signal of PSS flow. While in the 
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w(τ) plot, the onset of fracture interference is indicated by w(τ) trends downward. 

Therefore, we can clearly identify each flow regimes in both RNP and w(τ) plot. 

Figure 2.9 Analysis results for fully completed fracture model: (a) Drainage 

volume (b) IRR plot (c) w(τ) plot (d) RNP and RNP’ plot (reprinted with 

permission from Xue et al. 2018) 

In the second example, we show a complex case where the fractures only penetrate 

50% of the reservoir in the vertical direction. During our fracture treatment process, 

fractures may initially penetrate the entire pay zone vertically. However, the proppant 

distribution is always non-uniform which may lead to the effective height of the fractures 

during production to be much smaller than fully completed. In order to reveal the flow 



 

34 

 

 

regimes of this kind of fracture system, we show the pressure contours from the side view 

of the fracture plane in Figure 2.10. The pressure contour map shows the pressure front 

propagation, from which we can see the flow regimes. In Figure 2.11, we show the results 

of Vd(t), IRR, w(τ), RNP and RNP’. 

 

 
Figure 2.10 Pressure contours from the side view of the fracture plane (a) At 5  

days: fracture flow (b) At 24 days: formation linear flow (c) At 253 days: partial 

completion (reprinted with permission from Xue et al. 2018) 

 

Here we first compare the traditional RNP diagnostic plot with the w(τ) plot. The 

RNP diagnostic plot is almost identical with the case of full penetration. We can see from 

the RNP derivative, the ½ slope trend indicating the formation linear flow at early time 

and the unit slope trend indicating fracture interference at late time. However, the w(τ) 

plot changes significantly compared to the full penetration case. At early time, before the 

constant w(τ) is reached, there is an upward trend. This is because at early time, besides 

the linear flow perpendicular to the fracture surfaces, there is also some radial flow effect 

at the top and bottom edges of the fracture. This phenomenon can be seen in Figure 2.10 

(a). We describe this behavior as fracture flow. After the fracture flow, the linear flow 

normal to the fracture surfaces becomes the dominant flow and w(τ) stays constant. This 

is the formation linear flow period. In the intermediate time w(τ) has an upward trend 
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again. This is because the radial flow at the top and bottom of the fractures becomes 

significant again compared to the formation linear flow (see Figure 2.10 (c)). This flow 

regime is a combination of formation linear flow perpendicular to the fracture surfaces 

and radial flow at the top and bottom edges of the fractures. We describe this flow regime 

as partial completion effect. Finally, at late time, we can see the onset of fracture 

interference. Therefore, for partially completed multistage fractured horizontal well, the 

four flow regimes are fracture flow, formation linear flow, partial completion and fracture 

interference. Clearly, for this situation the w(τ) plot gives us more information than the 

traditional RNP plot. The trend of the IRR plot is also different from the full completion 

case. At intermediate time, IRR plot goes downward before fracture interference. This is 

because of the radial flow at the top and bottom edges of the fractures and hence, the 

drainage volume increases more rapidly than the produced volume. 
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Figure 2.11 Analysis results for 50% partial completion model: (a) Drainage 

volume (b) IRR curve (c) w(τ) plot (d) RNP and RNP’ plot (reprinted with 

permission from Xue et al. 2018) 

 

We also conducted a sensitivity study to see the influence of different percentage 

of partial completion on Vd(t), IRR and w(τ) plot, which is given in Figure 2.12. From the 

drainage volume calculations, we can see that with increasing percentage of partial 

completion, the drainage volume increases as well. This is reasonable because more radial 

flow happens at the top and bottom of the fractures. For the same reason, we can see larger 

downward trend in the IRR plot at intermediate time. Similarly in the w(τ) plot, we get 

larger upward trend. Above analysis demonstrates that w(τ) plot can be used as a 
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diagnostic plot and can give us more detailed information about flow regimes than the 

traditional RNP plot. 

Figure 2.12 Sensitivity study of different percentage of partial completion (a) 

Drainage volume (b) IRR curve (c) w(τ) plot (reprinted with permission from 

Xue et al. 2018) 

2.4.3 Characterization of Influential Parameters for w(τ) and IRR 

We will now apply the w(τ) as a diagnostic plot to a series of examples. In these 

examples, we will see that w(τ) not only identifies the flow regimes but also gives us other 

information such as the fracture surface area in complex fracture system. In addition, IRR 
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gives us information related to fracture conductivity and fracture compaction. During the 

fracturing treatment, because of the non-uniform distribution of the proppant, partial 

completion effects may exist. In our simulation, we choose to use 75% partial completion 

as the base case in which we can see some influence of partial completion on w(τ) and 

IRR, while exploring other sensitivities. 

 

2.4.3.1 Impact of Fracture Surface Area 

In order to show that the w(τ) plot can be used as an indicator of fracture surface 

area, we carry out a sensitivity study by changing the fracture half length. We use the 

fracturing treatment input listed in Table 2.5 as the base case and half the amount of the 

fracturing fluid (50000 gal) and the same proppant concentration (3 ppa) to generate a 

model with shorter fracture half-length and similar fracture conductivity. Figure 2.13 

compares the pressure contours after 3 years of production and Figure 2.14 shows Vd(t), 

IRR and w(τ) plot. As can be seen from the w(τ) plot, both long and short fractures cases 

have similar trend but long fracture case has obviously higher w(τ) value before fracture 

inference because of larger fracture surface area. This indicates that w(τ) value at early 

and intermediate time can be used as a signal for fracture surface area. As shown in the 

IRR plot, although the two cases have different drainage volume, IRR plots are almost 

identical, which reflects the influential parameter for the IRR plot is not fracture surface 

area. In the following section, we will see that the fracture conductivity and fracture 

compaction are the main influential parameters for the IRR plot. 
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Figure 2.13 Pressure contours after 3 years production (a) Long fractures 

(average xf =734 ft) (b) Short fractures (average xf=515 ft) (reprinted with 

permission from Xue et al. 2018) 

 

 
Figure 2.14 Comparison of fracture surface area: (a) Drainage volume (b) IRR 

plot (c) w(τ) plot (reprinted with permission from Xue et al. 2018) 
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2.4.3.2 Impact of Fracture Cluster Spacing 

To investigate the sensitivity of cluster spacing, we change the cluster spacing 

from 100ft (base case) to both 70ft and 150ft. Figure 2.15 shows the pressure contours 

after 3 years of production and Figure 2.16  shows Vd(t), IRR and w(τ) plot. As can be 

seen from Figure 2.15, as the cluster spacing becomes smaller, the reservoir depletes 

faster. In addition, from the w(τ) plot in Figure 2.16, different cluster spacing have similar 

trend of w(τ) plot. However, with smaller cluster spacing, the onset of fracture interference 

becomes earlier. Therefore, like the traditional RNP plot, w(τ) plot can give us the precise 

signal of fracture interference. In addition, from the IRR plot, we can also see the onset of 

fracture interference as the IRR plot suddenly goes up. However, we recommend to use 

the w(τ) plot here as it is more sensitive than the IRR plot. 

Figure 2.15 Pressure contours after 3 years production (a) Cluster spacing=70ft 

(b) Cluster spacing=100ft (c) Cluster spacing=150ft (reprinted with permission 

from Xue et al. 2018) 
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Figure 2.16 Comparison of fracture cluster spacing: (a) Drainage volume (b) IRR 

plot (c) w(τ) plot (reprinted with permission from Xue et al. 2018) 

 

2.4.3.3 Impact of Fracture Conductivity 

In this section, we focus on the IRR plot. We will see that with similar drainage 

volume and w(τ) plot, IRR plot could give us the information of fracture conductivity and 

fracture compaction. To investigate the sensitivity of fracture conductivity, we change the 

proppant concentration from 1 ppa to 4 ppa with 3 ppa as the base case. When we change 

the proppant concentration from 1 ppa to 4 ppa, the average fracture half-length changes 

from 807ft to 723ft. This is because when we use large proppant concentration, the fracture 
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width will increase, which lead to shorter fracture half-length. We consider four scenarios 

that have similar fracture surface area. Figure 2.17 shows the results of Vd(t), IRR and 

w(τ) for this four scenarios. The results of drainage volume and w(τ) proves our 

assumption that the four scenarios have similar fracture surface area since they have 

similar drainage volume and similar w(τ) plot. The main difference is the IRR plot. With 

the increase of proppant concentration, the IRR plot at early time significantly increases. 

The reason is that with similar drainage volume, higher fracture conductivity tends to 

produce more which increases the IRR plot at early time. Therefore, with similar drainage 

volume, IRR plot at early time is a good indicator of fracture conductivity. 

Figure 2.17 Comparison of fracture conductivity: (a) Drainage volume (b) 
IRR plot (c) w(τ) plot (reprinted with permission from Xue et al. 2018) 
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Figure 2.17 continued

2.4.3.4 Impact of Fracture Complexity 

In order to further validate the applicability of the diagnostic plots in complex 

fracture conditions, we investigate the influence of stress anisotropy (the difference 

between maximum and minimum horizontal stress) on Vd(t), IRR and w(τ). Figure 2.18 

shows the pressure contours after 3 years of production and Figure 2.19 shows the 

corresponding Vd(t), IRR and w(τ) plot. As the stress anisotropy reduces from 200 to 0 

psi, the fracture shape becomes highly complex. As can be seen from Figure 2.18(b), some 

shorter middle fractures intersect with the outer longer fractures, significantly reducing 

the total fracture surface area. As a result, the drainage volume and w(τ) value dramatically 

decrease because of smaller fracture surface area. From the w(τ) plot in Figure 2.19, we 

can still see the four flow regimes, fracture flow, formation linear flow, partial completion 
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and fracture interference. The fracture interference happens more gradually than the large 

stress anisotropy case because of the fracture complexity. 

Figure 2.18 Pressure contours after 3 years production (a) Stress 

anisotropy=200spi (b) Stress anisotropy=0spi (reprinted with permission from 

Xue et al. 2018) 

Figure 2.19 Comparison of stress anisotropy: (a) Drainage volume (b) 
IRR plot (c) w(τ) plot (reprinted with permission from Xue et al. 2018) 
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Figure 2.19 continued

2.4.3.5 Impact of Fracture Compaction 

The effective fracture conductivity is related to the performance of proppant pack 

under certain reservoir conditions. Guidelines for proppant selection tend to choose 

proppant with high proppant strength to withstand closure stress and avoid crushing or 

embedment. In order to simulate the fracture compaction effect on the proppant pack, we 

use an experimental compaction data for the proppant Jordan Unimin 30/50, which relates 

the closure stress with the proppant permeability as given in Figure 2.20. During our 

simulation, Table 2.6 is used to convert the closure stress to a series of transmissibility 

multipliers to account for the proppant deterioration. The real transmissibility multipliers 

are directly from the experimental data while strong case considers more severe proppant 

deterioration. 
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In Figure 2.21 we show the results of Vd(t), IRR and w(τ) for three scenarios. As 

observed from the plots, the three scenarios have identical drainage volume and w(τ) plot 

since they have the same fracture geometry. The interesting part is the IRR plot. The real 

case only have slight deterioration when the pressure drop is small. Therefore, at early 

time the real case only have small difference compared with no fracture compaction case. 

As for the strong compaction case, we see significant difference at early time since we 

have strong deterioration from the beginning of the production. However, there is no big 

difference for the three scenarios at late time after the fracture interference begins. 

Accordingly, the IRR plot at early time before fracture interference could give us the 

information of fracture compaction due to proppant deterioration. 

 

Table 2.6 Transmissibility multipliers for proppant deterioration simulation 

(reprinted with permission from Xue et al. 2018) 

Reservoir Pressure 

(psi) 

Transmissibility 

multiplier (real) 

Transmissibility 

multiplier (strong) 

4368 1 0.6 

3824 0.99 0.59 

3279 0.96 0.56 

2735 0.92 0.52 

2191 0.89 0.49 

1647 0.83 0.83 

1103 0.76 0.36 

559 0.69 0.29 

14.7 0.62 0.22 
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Figure 2.20 Proppant deterioration with closure stress (reprinted with 

permission from Xue et al. 2018) 

 

 

 

Figure 2.21 Comparison of fracture compaction: (a) Drainage volume (b) IRR 

plot (c) w(τ) plot (reprinted with permission from Xue et al. 2018) 
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2.4.4 Quantitative Analysis using the w(τ) Plot 

In this section, we demonstrate the feasibility of using the w(τ) plot for quantitative 

analysis of formation permeability, total fracture surface area and stimulated reservoir 

volume (SRV). We first use a synthetic case to validate our calculations followed by a 

field application. For validation purpose, we build a simulation model with known fracture 

geometry and fluid properties shown in Table 2.7. 

 

Table 2.7 Reservoir and fluid parameters for quantitative analysis (reprinted with 

permission from Xue et al. 2018) 

Parameter Value 

Cluster Spacing 100 ft 

Fracture Number 12 

Fracture Half Length 300 ft 

Formation Thickness 100 ft 

Matrix Porosity 0.05 

Matrix Permeability 0.0001 md 

Initial Pressure 5000 psi 

Fluid Viscosity 1 cp 

Total Compressibility 4.0E-6 1/psi 

 

Step 1: Fracture Interference τ and Formation Permeability 

Our first step is to determine the fracture interference τ and formation permeability 

using the w(τ) plot. We have already demonstrated that w(τ) plot can identify fracture 

interference from Figure 2.16. Figure 2.22 shows the schematic diagram of fracture 

interference. The yellow pillbox mimics the drainage volume of a single fracture. The 

fracture interference begins when the two pillboxes meet each other. Therefore, we can 

relate the fracture interference τFI with fracture cluster spacing xs as: 
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FI

x



=

 

(2.25) 

where 

t

k

c



=

 

(2.26) 

The formation permeability can now be calculated knowing the fluid viscosity and 

total compressibility. 

2

24

s
t

FI

x
k c


=

 

(2.27) 

Figure 2.23 shows the pressure contour after 3 years of production and Figure 2.24 

gives the drainage volume, IRR and w(τ) plot. From the w(τ) plot, we can pick up the 

fracture interference at 137.7FI hr = . Substituting this value into Eq. (2.27), we can 

calculate the formation permeability k=0.0001md, which equals to the formation 

permeability in Table 2.7. 

 

 
Figure 2.22 Schematic diagram of fracture interference using the pillbox model 

(reprinted with permission from Xue et al. 2018) 
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Figure 2.23 Pressure contour after 3 years production (reprinted with permission 

from Xue et al. 2018) 

 

 

 

Figure 2.24 Quantitative analysis: (a) Drainage volume (b) IRR plot (c) w(τ) plot 

(reprinted with permission from Xue et al. 2018) 
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Step 2: Total Fracture Surface Area 

From Eq. (2.22), during the formation linear flow, the w(τ) is constant and 

represents a combination of total fracture surface area, diffusivity and porosity. 

( ) fw A =

 

(2.28) 

where 

1

4
n

f fi fi

i

A x h
=

=  
 

(2.29) 

( )
f

w
A




=

 

(2.30) 

From the w(τ) plot, we can pick up the w(τ) value at the formation linear flow regime 

w(τ)=26143 ft3/√hr. Substituting this value into Eq. (2.30), we can calculate the total 

fracture surface area Af=1440000 ft2, which equals to the total fracture surface area in 

Table 2.7. 

Step 3: Stimulated Reservoir Volume (SRV) 

We first use the fracture interference 137.7FI hr =  to get the drainage volume from 

the drainage volume plot in Figure 2.24(a). Since 137.7FI hr = , we can calculate the 

corresponding time t=197.5days using the relation 
2

4
t


=  (Xie et al. 2015a). From Figure 

2.24 (a), the drainage volume at 197.5days equals to 3.06×106. Following Song and Ehlig-

Economides (2011), the SRV volume is given by: 

(2 )
2

s
SRV f

x
V Lh x= +

 

(2.31) 
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where L is the horizontal well length, h is the formation thickness, xf is the fracture half-

length and xs is the cluster spacing. In our calculation, we use the drainage volume at the 

fracture interference plus the distance the pressure penetrates beyond the fracture tips, 

which is: 

2

s
SRV FI

x
V V Lh= +

 

(2.32) 

Using Eq. (2.32), our estimated SRV volume equals to 3.06×106+2.75×105=3.34×106 ft3. 

The result from Eq. (2.31) equals to 3.58×106 ft3. The proposed methodology gives us 

similar estimated SRV volume compared with traditional analysis but does not rely on 

specific fracture geometry. The estimated SRV volume is obtained directly from the 

drainage volume plot. 

 

2.4.4 Field Applications 

In this section, we apply our methodology to a series of Eagle Ford and Wolfcamp 

shale oil wells to calculate Vd(t), IRR and w(τ). For the Eagle Ford wells, the depth is 

about 11,000 ft, with initial reservoir pressure of 8100 psi and temperature of 270 oF. The 

average porosity is 8.2% and the permeability is in the range of 100-20000 nd. For the 

field applications, we follow the same procedure as the synthetic cases. We fit the pressure 

data with respect to cumulative production and the production rate with respect to time to 

get the overall trend of pressure and production rate. 

Figure 2.25 shows the results of Vd(t), IRR and w(τ) for five wells. Wells 7A and 

18A belong to Wolfcamp shale while wells 10H-12H belong to Eagle Ford shale. The 

drainage volume evolution shows a similar trend for the five wells. The drainage volume 
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rapidly increases at early time and then stabilizes at late time. Comparing the drainage 

volume of the two fields, the wells in Wolfcamp show significant larger drainage volume 

than Eagle Ford wells. The w(τ) plot also shows different trends for the two fields. For the 

Eagle Ford shale wells, at early time, the w(τ) value is constant or has a small upward 

trend, which indicates the formation linear flow or a combination of formation linear flow 

and partial completion effect. At late time, the w(τ) plot gradually decreases indicating the 

onset of fracture interference. For the Wolfcamp shale wells, the w(τ) value dramatically 

increases at early time followed by sharp decline at late time. The dramatic increase 

indicates a strong partial completion effect. Also, the larger w(τ) value indicates higher 

fracture surface area. Comparing the w(τ) plot of the wells in Eagle Ford, we can conclude 

that well 10H has the largest fracture surface area because of the largest w(τ) value at early 

time before fracture interference. The IRR plot of the five wells monotonically increases 

with time, which indicates continual increase in depletion efficiency. 
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Figure 2.25 Field applications of shale oil wells: (a) Drainage volume (b) IRR plot 

(c) w(τ) plot (reprinted with permission from Xue et al. 2018) 

 

Figure 2.26 compares two diagnostic plots for well 18A: our proposed method and 

the RNP analysis. From the w(τ) plot, we can clearly see a strong partial completion effect 

at early times. But from the RNP plot we can only see the ½ slope line, which is the 

formation linear flow. This demonstrates the higher resolution flow diagnostics from our 

w(τ) plot. Using a porosity of 10 %, viscosity of 0.78 cp, total compressibility of 3×10-5 

1/psi, cluster spacing of 40 ft, and the formation thickness of 350 ft, we can use Eq. (2.27) 

to estimate the formation permeability equal to 840 nd. Then using Eq. (2.30) and (2.32), 
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we can estimate the total fracture surface area Af=4490000 ft2 and the SRV volume 

VSRV=3.27×107 ft3. 

 

 
Figure 2.26 Comparison of the diagnostic plots for well 18A (a) w(τ) plot (b) RNP 

and RNP’ plot (reprinted with permission from Xue et al. 2018) 

 

2.4 Conclusions 

In this chapter, we propose a novel diagnostic approach to interpret the flow 

characteristics in complex fracture systems. Using fracture propagation modeling together 

with reservoir simulation, complex fracture systems under different completion and 

reservoir conditions are analyzed using production and pressure response. Applications to 

field cases of Eagle Ford and Wolfcamp shale oil wells demonstrate the practical 

feasibility of our approach. Some key conclusions for this paper are summarized as 

follows:  

• We demonstrate that the w(τ) plot provides more information of flow patterns 

compared to the traditional RNP diagnostic plot. The constant w(τ) indicates 

formation linear flow. When w(τ) increases linearly with τ with unit slope, it 
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indicates radial flow. When w(τ) increases linearly with τ with less than unit slope, 

it indicates fracture flow at early time or partial completion at intermediate time. 

Finally, when w(τ) trends downward, it indicates boundary dominated PSS flow 

or fracture interference. 

• w(τ) value at early and intermediate time gives information about fracture surface 

area. With similar diffusivity, larger w(τ) value at early and intermediate time 

indicates larger fracture surface area. 

• IRR plot at early and intermediate time gives the information about fracture 

conductivity and fracture compaction. With similar drainage volume and w(τ) plot, 

larger IRR value at early and intermediate time indicates larger fracture 

conductivity. 

• We demonstrate the feasibility of using w(τ) plot to do a quantitative analysis of 

formation permeability, total fracture surface area and stimulated reservoir volume 

(SRV). The synthetic model validates the quantitative analysis results. The 

advantage of this new methodology is the ease of analysis and its generality as we 

do not rely on simple fracture geometry. 
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CHAPTER III 

MODELING HYDRAULICALLY FRACTURED SHALE WELLS USING THE 

FAST MARCHING METHOD WITH LOCAL GRID REFINEMENTS (LGRS)  

 

3.1 Chapter Summary  

Recently the Fast Marching Method (FMM) based flow simulation has shown 

great promise for rapid modeling of unconventional oil and gas reservoirs. Currently, the 

application of FMM-based simulation has been limited to the use of tartan grid to model 

the hydraulic fractures (HFs). The use of tartan grids adversely impacts the computational 

efficiency, particularly for field-scale applications with hundreds of HFs. This chapter is 

aimed at extending the FMM-based simulation to incorporate local grid refinements 

(LGRs) to simulate HFs and validating the accuracy and efficiency of the methodology. 

The FMM-based simulation is extended to LGRs. This requires novel gridding 

through introduction of triangles (in 2D) and tetrahedrons (in 2.5D) to link the local and 

global domain and solution of the Eikonal equation in unstructured grids to compute the 

‘diffusive time of flight’. The FMM-based flow simulation reduces 3D simulation to an 

equivalent 1D simulation using the ‘diffusive time of flight (DTOF)’ as a spatial 

coordinate. The 1D simulation can be carried out using standard finite-difference method 

leading to orders of magnitude savings in computation time compared to full 3D 

simulation for high-resolution models. 

We first validate the accuracy and computational efficiency of the FMM-based 

simulation with LGRs by comparing with tartan grids. The results show good agreements 
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and the FMM-based simulation with LGRs shows significant improvement in 

computational efficiency. Then, we apply the FMM based simulation with LGRs to a 

multi-stage hydraulically fractured horizontal well with multiphase flow case to 

demonstrate the practical feasibility of our proposed approach. After that, we investigate 

various discretization schemes for the transition between local and global domain in the 

FMM-based flow simulation. The results are used to identify optimal gridding schemes to 

maintain accuracy while improving computational efficiency.  

This is the first study to apply the FMM-based flow simulation with LGRs. The 

three main contributions of the proposed methodology are: (i) unique mesh generation 

schemes to link fracture and matrix flow domains (ii) diffusive time of flight calculations 

in locally refined grids (iii) sensitivity studies to identify optimal discretization schemes 

for the FMM-based simulation. 

 

3.2 Background 

From the reservoir simulation point of view, the most popular techniques to 

simulate the hydraulic fracture networks are local grid refinements (LGRs), discrete 

fracture model (DFM) and embedded discrete fracture model (EDFM). The LGR method 

is the most common one because of its simplicity and efficiency. In this method, we use 

locally refined grids to explicitly represent the main hydraulic fractures. The stimulated 

reservoir volume (SRV) regions are used to represent the corresponding complex fracture 

networks surrounding the main hydraulic fractures (Mayerhofer et al. 2010). However, the 

limitation of the LGR method is that the main hydraulic fractures are aligned with the 
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underlying grid system, which cannot simulate arbitrary fracture geometry. DFM is 

another method to simulate the hydraulic fracture networks. This method directly 

generates the unstructured grid based on the fracture geometry, which can simulate 

arbitrary fracture geometry without simplification (Karimi-Fard and Firoozabadi 2001; 

Karimi-Fard et al. 2004; Mi et al. 2016). However, this method can be computationally 

burdensome and impractical for history matching and optimization at the field level.  

The FMM-based simulation has already shown its strong capability to handle field 

scale unconventional reservoir analysis (Iino et al. 2017; Iino and Datta-Gupta 2018). This 

method is based on the high frequency approximation of the asymptotic solution to the 

diffusivity equation, which results in the Eikonal Equation (Vasco et al. 2000). The 

Eikonal equation can be efficiently solved by a front tracking algorithm called Fast 

Marching Method (Sethian 1996, 1999). By solving the Eikonal equation, we can get the 

diffusive time of flight (DTOF), which is a generalization of the ‘radius of investigation’ 

(Datta-Gupta et al. 2011). Zhang et al. (2016) first proposed to use DTOF as a spatial 

coordinate to transform the 3D model to a corresponding 1D model and solve the 1D 

equation numerically. Following this idea, we incorporated complex physics such as 

compositional simulation into the FMM-based simulation (Iino and Datta-Gupta 2018). 

However, our previous work was based on tartan grid model, which limits the computation 

speed and cannot handle complex facture networks. Yang et al. (2017) extended the FMM-

based simulation to the unstructured grid systems. In this chapter, we will further extend 

the FMM-based simulation to LGRs. 
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This chapter is organized as follows. We begin with an overview of the FMM-

based simulation, including the equations and the workflow to transform the model from 

3D to 1D. Next, we will show the details of the FMM-based simulation with LGRs, 

including mesh generation and validation. In addition, we will review the local Eikonal 

equation solver based on Eulerian discretization from our previous study. Finally, we will 

discuss different gridding schemes and their accuracy and efficiency.  

 

3.3 Methodology 

3.3.1 Overall Workflow of FMM-based Simulation 

The overall workflow of the FMM-based simulation is shown in Figure 3.1. The 

FMM-based simulation consists of six steps. First, we calculate the multi-phase diffusivity 

on each grid block. Second, using the multi-phase diffusivity as an input parameter, we 

run the FMM to calculate the DTOF on each grid block. Third, we accumulate pore 

volume using DTOF as a spatial coordinate and then discretize the cumulative pore 

volume in terms of the DTOF. Fifth, we calculate the w(τ) function, which is the first 

derivative of the cumulative pore volume with respect to the DTOF. After getting the w(τ) 

function, we use it to calculate all the 1D parameters such as transmissibility, pore volume, 

and well index. Finally, we build the 1D model and run the simulation on the 1D model 

to get the well response. Following this workflow, we transform the original 3D model 

into an equivalent 1D model. Since we solve the 1D equation instead of 3D, the 

computation can speed up orders of magnitude faster compared with the original 3D 

model. 
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Figure 3.1 Overall workflow of FMM-based simulation  

 

3.3.2 Extension of the FMM-based Simulation to LGRs 

In this section, we discuss three important parts of our proposed methodology. 

First, we introduce the grid generation of the LGR. This requires novel gridding through 

introduction of triangles (in 2D) and tetrahedrons (in 2.5D) to link the local and global 

domain. Second, we review the local Eikonal equation solver based on the Eulerian 

discretization of triangle grid (in 2D) and tetrahedron grid (in 2.5D). Third, we validate 

our proposed methodology using FMM with tartan grid from previous study and finite 

difference simulation. 

 

3.3.2.1 LGRs Grid Generation 

The grid generation consists of three steps. First, based on the location of the 

hydraulic fractures, we generate the normal LGRs and the matrix grid. Second, we 

construct the 2D triangles at global and local domain. Here, we need special treatment to 
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handle the connections between global and local domain. Third, we build the 2.5D grid 

based on the 2D triangles by assembling multiple layers and allowing vertical thickness 

variation. 

In Figure 3.2, we give an example to describe step one of the LGRs grid generation. 

Figure 3.2(a) shows an entire reservoir view. Our example is a 1000ft×1000ft reservoir 

with one horizontal well and one hydraulic fracture. Figure 3.2(b) is a zoom in to Figure 

3.2(a) and we use a 5×3 LGR to represent the hydraulic fracture. Here 5×3 LGR means 5 

local cells in the x direction and 3 local cells in the y direction inside one global cell. The 

inner cells in the x direction are used to represent the hydraulic fracture. This step is the 

same as the normal LGR gridding in finite difference simulation. 

 

 

Figure 3.2 LGRs grid generation (a) Entire reservoir view (b) Zoom in at 

fracture location with 5×3 LGR to represent hydraulic fracture 
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Figure 3.3 shows step two of the LGRs grid generation. After generating the cells 

in global and local domain, we construct the triangular cells for the local Eikonal solver. 

We can either use same or different resolution in global and local domain. In this example, 

we use different resolution. In the global domain, we use a 5 points scheme and generate 

4 triangles within one original cell, for example cell ‘a’ in Figure 3.3. In the local domain, 

we use a 9 points scheme and generate 8 triangles within one original cell, as in cell ‘b’ in 

Figure 3.3. We need a special treatment for the global cells next to the LGR regions. Since 

the cells in global and local domain have different resolution, we need to add additional 

triangles to link between the high-resolution LGR regions and the center point of the low-

resolution matrix region, as in cell ‘c’ in Figure 3.3. In this way, we can accurately update 

the DTOF from the high-resolution LGR regions to the low-resolution matrix region. 

 

 

Figure 3.3 2D triangle grid generation at global and local domain 
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After generating the 2D triangular grid, we can easily extend the entire system to 

2.5D grid. Based on the input vertical thickness, every 2D triangle can be extended to 

several 2.5D triangular prisms allowing different layer thickness. In Figure 3.4(a), we 

show the 2.5D grid result following the previous step. In Figure 3.4(b), we illustrate a 

triangular prism generated using triangle ABC. The 2.5D triangular prisms are the basic 

computation unit of the DTOF calculation.  

 

 

Figure 3.4 2.5D grid generation (a) Entire reservoir view (b) Triangular prism 

 

3.3.2.2 Local Eikonal Solver based on Eulerian Discretization 

In our previous study, we described the local Eikonal solver in detail (Yang et al. 

2017). For completeness, we review the local Eikonal solver based on Eulerian 

discretization used in this study. The 2.5D triangular prisms are the basic unit to update 

the DTOF. Within each triangular prism, updating the DTOF at a particular node is based 

on calculating the DTOF at several “virtual tetrahedrons”. For example, to update the 
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DTOF at point A in Figure 3.4 (b) based on the known values of the surrounding nodes, 

we consider the “virtual tetrahedrons” ABCA0, ABCB0, ABCC0, and AA0B0C0 to compute 

four DTOFs and pick up the minimum DTOF value among them. In Figure 3.5, we 

illustrate the local Eikonal solver based on 3, 2 and 1 known data points denoted as  i

and id is the displacement vector from unknown to the known data points. Typically, we 

encounter fewer than 3 known data points situation at the initiation of the pressure front 

propagation. The filled circles are known 𝜏 values. The blue arrow denotes the gradient of 

𝜏 and the red arrow indicates the characteristic direction. We check the causality condition 

of the Eikonal solver by ensuring the characteristic direction is within the volume or face 

delineated by the data points. 

 

 

Figure 3.5 Local Eikonal solver based on Eulerian discretization (a) 3 data points 

(b) 2 data points (c) 1 data point 

 

Starting from the 3 known data points situation, we first project the gradient of 

onto the displacement vector directions and get the following equations: 
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0 1, 2, 3i id i  − =  =

 

(3.1) 

The gradient of 𝜏 can be further expressed in terms of unit vectors, 
i : 
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Substituting Eq. (3.2) into the Eikonal Equation, we can get the following equation: 
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(3.4) 

We can further rewrite it in the following final form, which is a quadratic equation with   

τ0 as the unknown parameter. 
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(3.5) 

By solving the quadratic Eq. (3.5), we obtain the unknown τ0. The DTOF only 

updates when Eq. (3.5) has a solution and satisfies the causality condition. For the 3 known 

data points situation, the characteristic direction should be confined within the “virtual 

tetrahedron”. To check the causality condition, we solve the parameters ai after obtaining 

the unknown τ0: 
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i i
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The causality condition is satisfied when all of the coefficients are nonnegative 

0ia  (Sethian and Vladimirsky 2000). When the causality condition is not satisfied, we 

formulate the local solver based upon the information from the three edges 1 2  , 2 3   and

1 3  , as in Figure 3.5(b). We solve the unknown 0  from the three edges and pick up the 

solution that does not violate the causality condition and gives the minimum 0 . This 

situation also arises when only 2 points are known data points, which often happens at the 

beginning of the pressure front calculation. In this situation, Eq. (3.5) cannot be directly 

solved. Instead, we add another equation based on the causality condition, which is the 

characteristic direction should be confined within the plane, as in Figure 3.5(b).  

( ) 0i jd d    =

 

(3.8) 

Again, the causality condition is checked using Eq. (3.7), but only for two points. If the 

causality condition is not satisfied for all the three edges, we come to the 1 known data 

point situation, as in Figure 3.5(c). We solve the unknown 0  directly from the three points

1 , 2 , 3   and pick up the minimum solution. In this situation, causality condition is 

automatically satisfied. This situation also happens when only 1 point is known data point. 
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3.3.2.3 Workflow Validation 

In this section, we validate the LGR workflow with a 3D homogeneous example. 

In this example, we use one hydraulic fracture with a vertical well. The fracture is fully 

penetrated the reservoir with the fracture conductivity of 500 md.ft. In Figure 3.6, we show 

the 3D view of this synthetic example and the Table 3.1 gives the input parameters to build 

this model. The reservoir is initially undersaturated with initial GOR of 1521 SCF/STB 

and the bubble point pressure at 4351 psi. The well is under BHP control of 1000 psi. 

 

 

Figure 3.6 3D view of the homogeneous model with one hydraulic fracture 
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Table 3.1 Reservoir input of the homogeneous model with one hydraulic fracture 

Parameter Value 

Reservoir size 1000×1000×100 ft3 

Initial pressure 6000 psi 

Matrix porosity 0.12 

Matrix permeability 0.001 md 

Rock compressibility(pinit) 1.0×10-6 psi-1 

HF porosity 0.25 

HF conductivity 500 md.ft 

HF height 100 ft 

HF half-length 100 ft 

 

Our validation starts from the DTOF contours comparison in Figure 3.7. In this 

example, we use the 5×1 LGR to represent the hydraulic fracture, which is shown in Figure 

3.7(a). Figure 3.7(b) gives the DTOF map using the LGR workflow. Figure 3.7(c) gives 

the result using tartan grids (Iino et al. 2017) and Figure 3.7(d) shows the tartan grid 

generated using the LGR workflow. From Figure 3.7, different methods give very similar 

DTOF contour. We further compare the ( )w  function calculated using different methods. 

As can be seen from the 1D fluid flow, the w(τ) function directly controls the fluid flow 

in the 1D coordinate. In other words, the accuracy of the w(τ) function to a large extent 

determines the simulation results. This is the reason we use the accuracy of the w(τ) 

function as a criteria to validate our proposed method. Figure 3.8 shows the w(τ) function 

calculated using different methods. From this plot, we can see a good agreement between 

the new LGR method and the tartan grid method, which validates the proposed method. 
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Figure 3.7 Calculated DTOF map (a) Zoom in of the LGR region (b) LGR 

method (c) Tartan grid method using previous study (d) Tartan grid generated 

by LGR method 

 

 

Figure 3.8 w(τ) function generated using different methods 
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In addition, the w(τ) function quantitatively represents the surface area of the 

pressure front and different flow regimes. From Figure 3.8, we can identify multiple flow 

regimes. In the early time, we can see the pressure propagation inside the fracture, 

followed by the formation linear flow. At the late time, we can see the finite boundary 

effect after the pressure front reaches the reservoir boundary. Figure 3.9 gives the 

cumulative production comparison between different methods. Here, we compare the 

FMM results with tartan grid method, LGR method with the finite difference simulation 

result. From Figure 3.9, the results of the tartan grid method coincide with the LGR 

method and only have less than 2% error compared with the finite difference simulation 

result. 

 

 

Figure 3.9 Production comparison using different methods (a) Gas cumulative 

production (b) Oil cumulative production 
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3.3.2.4 FMM Grid Discretization 

The 2.5D triangular prisms are the basic unit to update the DTOF. From Figure 

3.10, the 2D 5 points scheme can be generalized to 15 points scheme in 3D. The 2D 9 

points scheme can be generalized to 27 points scheme in 3D. The 3D 27 points scheme is 

the discretization scheme we used in our previous study (Iino et al. 2017; Iino and Datta-

Gupta 2018). In this study, we test different discretization schemes of the new LGR 

method under different circumstances. 

 

 

Figure 3.10 Schematic diagram of FMM grid discretization 

 

The first test model is a homogeneous reservoir with 10 hydraulic fractures. Figure 

3.11 shows the 3D view of the reservoir and Table 3.2 provides the input parameters of 

this model. The fluid model is same as the first example. We use the tartan grid 27 points 

scheme as our reference result. The test schemes are LGR 27 points scheme, LGR 27 
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points scheme at the hydraulic fracture regions & 15 points scheme at the matrix region, 

and LGR 15 points scheme. In this model, we use 5×1 LGR to represent the hydraulic 

fractures. 

 

 

Figure 3.11 3D view of the homogeneous model with 10 hydraulic fractures 

 

Table 3.2 Reservoir input of the homogeneous model with 10 hydraulic fractures 

Parameter Value 

Reservoir size 2000×2000×100 ft3 

Initial pressure 6000 psi 

Matrix porosity 0.1 

Matrix permeability 0.0001 md 

Rock compressibility(pinit) 1.0×10-6 psi-1 

HF porosity 0.25 

HF conductivity 500 md.ft 

HF height 100 ft 

HF half-length 200 ft 

HF spacing 100 ft 
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In Figure 3.13, we first compare the w(τ) function of each discretization scheme. 

As we mentioned before, the w(τ) function directly controls the 1D simulation result, 

which serves as one criteria for the comparison. From Figure 3.13(b), all discretization 

schemes give very similar w(τ) function and we can clearly see the different flow regimes. 

The first flow regime is the pressure front propagation inside the fractures, followed by 

the formation linear flow and fracture interference. At the late time, we can identify the 

pseudo-radial flow and the boundary dominant flow at the end. To further compare the 

accuracy of the w(τ) function, we calculate the w(τ) function relative error defined as: 

( )
( ) ( )

( )
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w w
lative Error

w
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(3.9) 

From Figure 3.13(c), we can clearly see the relative error of the w(τ) function increases 

with fewer points in the discretization scheme. However, even for the LGR 15 points 

scheme, the relative error is less than 0.5%. This is the reason when we compare the 

production profile of different discretization schemes in Figure 3.14 the results are almost 

identical.  
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Figure 3.12 DTOF contour using LGR 27 points scheme  

 

 

Figure 3.13 w(τ) function comparison of different discretization scheme (a) w(τ) 

function (b) w(τ) function relative error 
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Figure 3.14 Production comparison of different discretization schemes (a) Gas 

cumulative production (b) Oil cumulative production 

 

The next test models are heterogeneous reservoirs with 10 hydraulic fractures. 

Here we use the Dykstra-Parsons coefficient (VDP) to respresent the reservoir 

heterogeneity (Dykstra and Parsons 1950; Jensen et al. 2000). VDP is a dimensionless 

coefficient, which is defined as: 

50 84.1
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k k
V

k

−
=

 

(3.10) 

where k50 is the median permeability and k84.1 is the permeability at one standard deviation 

of the permeability distribution. The VDP ranges from 0 to 1. The VDP of a homogeneous 

reservoir is 0 and the VDP of a highly heterogeneous reservoir is 1. Most reservoirs have 

VDP  between 0.4 and 0.9. To further compare the accuracy of different discretization 

schemes, we construct 3 heterogeneous reservoirs with VDP equal to 0.4, 0.6, and 0.8. The 

permeability fields are given in Figure 3.15. Other input parameters are same as the 

homogeneous model in Table 3.2.  
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Figure 3.15 Permeability field of the heterogeneous models (a) VDP=0.4 (b) 

VDP=0.6 (c) VDP=0.8 

 

In Figure 3.16, we show the DTOF contours for the different VDP values. From the 

results, the reservoir heterogeneity has significant impact on the DTOF. With increasing 

VDP value, the DTOF contours become more twisted because of the reservoir 

heterogeneity.   
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Figure 3.16 DTOF contour using LGR 27 points scheme (a) VDP=0.4 (b) VDP=0.6 

(c) VDP=0.8 

 

Figure 3.17 provides the accuracy of different discretization schemes for different 

VDP values. We use relative error of w(τ) function and cumulative oil production as two 

criteria. As before, we use tartan grid 27 points scheme as the reference result. From Figure 

3.17, the LGR 27 points scheme gives very small relative error of w(τ) function and 

negligible cumulative production relative error even at the high VDP scenario. This result 

again demonstrates the accuracy of the LGR workflow. For LGR 15&27 points scheme 

and LGR 15 points scheme, only at very high VDP scenario we can see the discrepancy on 

the w(τ) function and cumulative production. At low VDP scenario, the lower resolution 

discretization schemes also give reasonable results. Therefore, we can clearly see the 

tradeoff between accuracy and efficiency here. When the VDP value is low, LGR 15&27 
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points scheme or LGR 15 points scheme can give us reasonable results. When the VDP 

value is high, it is better to turn to the high-resolution discretization scheme. 

 

 

Figure 3.17 Comparison of different discretization schemes under different VDP 

values (a) w(τ) function relative error (b) Oil cumulative production relative 

error at 10 years 
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3.3.2.5 Computational Efficiency 

Computational efficiency of the LGR method is also studied. Figure 3.18 shows 

the CPU time and speedup ratio of different discretization schemes vs. number of 

hydraulic fractures. With the increasing of number of hydraulic fractures, the CPU time 

of the LGR method slightly goes up while the CPU time for tartan grid method 

dramatically increases. This again demonstrates the advantage of the LGR method. This 

phenomenon can also be seen from the speedup ratio. In addition, as expected the speedup 

ratios of LGR 15 points scheme or LGR 15&27 points scheme are larger than LGR 27 

points. The reason can be found in Table 3.3. For 27 points scheme, there are 8 unknowns 

per cell while for 15 points scheme, the number is down to 4. 

 

 

Figure 3.18 Comparison of CPU time (a) and Speedup ratio (b) of different 

discretization schemes 
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Table 3.3 Unknowns per cell of different discretization schemes 

Scheme Unknowns per cell 

27 Points 

Cell center: 1 

Face center: 
1

6
2

  

Edge center: 
1

12
4

  

Vertex: 
1

8
8

  

Total: 8 

15 Points 

Cell center: 1 

Face center: 
1

2
2

  

Edge center: 
1

4
4

  

Vertex: 
1

8
8

  

Total: 4 

 

3.4 Conclusions 

In this chapter, we extend the FMM-based simulation to local grid refinements. 

We discuss the entire workflow in detail, including the grid generation, local Eikonal 

solver and 1D simulation. We use different models to validate the workflow. In addition, 

we test different discretization schemes and compare their efficiencies and accuracies. 

Some key conclusions from this paper are summarized as follows: 

• We demonstrate the feasibility of the FMM-based simulation with LGRs. This 

workflow gives the same resolution as the tartan grid method. However, it leads to 

significantly faster computation time, especially in the presence of large number 

of hydraulic fractures. 

• Different discretization schemes are tested for matrix and fracture domains. When 

the VDP value is low, hybrid LGR 15&27 points scheme or lower resolution LGR 
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15 points scheme can give us reasonable results. When the VDP value is high, it is 

recommended to use high-resolution 27 points discretization scheme.  
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CHAPTER IV 

MODELING HYDRAULICALLY FRACTURED SHALE WELLS USING THE 

FAST MARCHING METHOD WITH EMBEDDED DISCRETE FRACTURE 

MODEL (EDFM)  

 

4.1 Chapter Summary  

Nowadays, the industrial trend of hydraulic fracturing is to generate complex 

fracture networks. This can be achieved by reducing the cluster spacing while increasing 

the fluid and proppant usage. In addition, many unconventional reservoirs contain existing 

natural fractures. The interactions between the hydraulic fractures and the natural fractures 

could also induce the complex fracture networks. In this chapter, we focus on extending 

the FMM-based simulation to incorporate embedded discrete fracture model (EDFM) to 

simulate the complex fracture networks. 

Similar to the LGRs workflow in Chapter III, FMM with EDFM workflow also 

requires novel gridding to link the embedded discrete fractures and the matrix using 

Delaunay triangulation. The ‘diffusive time of flight’ is calculated based on Eulerian 

discretization in unstructured grids. Using the ‘diffusive time of flight (DTOF)’ as a spatial 

coordinate, the FMM-based flow simulation reduces 3D complex fracture networks 

simulation to an equivalent 1D simulation. 

We first validate the accuracy of the FMM-based simulation with EDFM by 

comparing with tartan grids and EDFM with finite difference simulation. The FMM-based 

simulation with EDFM shows good agreement with other methods. Then, we apply the 
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FMM-based simulation with EDFM to a multi-stage horizontal well and compare with 

FMM with unstructured grid. The hydraulic fractures are intersecting with several natural 

fractures. The FMM with EDFM can simulate arbitrary fracture patterns without 

simplification and shows good accuracy and efficiency compared with FMM with 

unstructured grid. 

This study demonstrates the feasibility of the FMM-based simulation with EDFM 

for simulating complex fracture networks. The contributions of this study are: (i) utilizing 

Delaunay triangulation to link the embedded discrete fractures and the matrix domain (ii) 

diffusive time of flight calculations in the two domains using the unstructured grid 

framework. 

 

4.2 Background  

EDFM approach has drawn significant attention in recent years because of its 

feasibility to handle complex hydraulic fracture networks with relatively good efficiency. 

This method was first proposed by Li and Lee (2008). Recently, many researchers have 

used this method to do further application at the field scale level (Moinfar et al. 2014; Du 

et al. 2017; Yu et al. 2018) and also proposed some modified equations to improve the 

original EDFM approach (Jiang and Younis 2016; Ren et al. 2017; Yang et al. 2018; Xue 

et al. 2019). The main idea of EDFM approach is to maintain the underlying matrix grid 

and use additional grid blocks to represent the fractures. The non-neighboring connections 

(NNC) are used to connect between the matrix grid and the corresponding fractures. 
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In Chapter III, we proposed the FMM-based simulation with LGRs. However, this 

method cannot simulate arbitrary fracture patterns. In this chapter, we extend the FMM-

based simulation with EDFM to simulate complex fracture networks. This chapter is 

organized as follows. We begin with the details of the FMM-based simulation with 

EDFM, including mesh generation and validation with tartan grid method. Further, we 

will discuss the comparison of FMM-based simulation with EDFM and unstructured grid. 

 

4.3 Methodology 

4.3.1 EDFM Grid Generation 

The EDFM grid generation consists of three steps. First, based on the location of 

the hydraulic fractures, we determine the intersection points between matrix-fracture as 

well as fracture-fracture. Second, within each matrix cell with fractures, we generate local 

triangles based on the intersection points using Delaunay triangulation. Special treatment 

is needed for the matrix cell next to the fracture tips. Third, we build the 2.5D grid based 

on the 2D triangles by assembling multiple layers and allowing for vertical thickness 

variation. 
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Figure 4.1 EDFM grid generation: Identify the intersection points between 

matrix-fracture and fracture-fracture 

 

The first step of the EDFM grid generation is to identify the intersection points 

between matrix-fracture and fracture-fracture. These intersection points serve as the basis 

to further generate the 2D triangles. In Figure 4.1, we show an example of a 1000ft×1000ft 

reservoir with 1 hydraulic fracture and 2 natural fractures. Since we need to update the 

DTOF at the corner points of the matrix cell as well as the intersection points between 

matrix-fracture and fracture-fracture, these points are identified as blue dots in Figure 4.1. 

Special treatment is needed for the matrix cell next to the fracture tips, such as cell ‘c’ in 

Figure 4.1. Although there are no fractures inside this cell, we have to account for the 

fracture tips by adding one blue dot at the edge of the cell. For the matrix cell without 

fractures, we use the 5 points discretization scheme. Hence, an additional blue dot is added 

at the center point of cell ‘c’. 
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Figure 4.2 EDFM grid generation: 2D triangles generated using Delaunay 

triangulation 

 

The second step is to generate the 2D triangles based on the intersection points 

from step one. Here, the Delaunay triangulation is adopted to generate the 2D triangles 

(Ruppert 1995; Shewchuk 1996). For the matrix cell without fractures, we use 5 points 

discretization scheme. 

The third step is same as the LGRs grid generation. We build the 2.5D grid based 

on the 2D triangles. Figure 4.3 shows the final 2.5D grid of this example. For the DTOF 

calculation, we still use the local Eikonal solver based on Eulerian discretization as 

discussed before. The difference is that the fracture cells are embedded in the matrix as 

high conductive paths for pressure propagation and we solve the DTOF inside the fractures 

using 1D approximation. The DTOF in the matrix follows the same procedure as the LGR 

method. 
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Figure 4.3 EDFM grid generation: 2.5D grid generation 

 

4.3.2 Workflow Validation 

We begin the validation using a simple example. This model has 1 hydraulic 

fracture and 2 natural fractures intersecting each other. The hydraulic fracture’s 

conductivity is 500 md.ft while the natural fracture’s conductivity is 2 md.ft. The producer 

is completed at the middle of the hydraulic fractures. Figure 4.4 gives the 3D view of this 

model and Table 4.1 shows the parameters to generate this model. Since the fractures are 

aligned with the grid system, we can use tartan grid method as our reference result. 
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Figure 4.4 3D view of the synthetic model with 1 hydraulic fracture and 2 natural 

fractures 

 

Table 4.1 Reservoir input of the model with 1 hydraulic fracture and 2 natural 

fractures 

Parameter Value 

Reservoir size 1500×1500×100 ft3 

Initial pressure 6000 psi 

Matrix porosity 0.12 

Matrix permeability 0.001 md 

Rock compressibility(pinit) 1.0×10-6 psi-1 

HF porosity 0.25 

HF conductivity 500 md.ft 

HF height 100 ft 

HF half-length 150 ft 

NF conductivity 2 md.ft 

 

The DTOF contours comparison is given in Figure 4.5 and the w(τ) functions are 

compared in Figure 4.6. From the w(τ) plot, the FMM with EDFM and FMM with tartan 

grid give similar w(τ) results, which demonstrate the accuracy of the FMM with EDFM 

workflow. From the w(τ) plot, we can readily identify different flow regimes. We can find 
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the early time fracture flow and formation linear flow as well as the late time radial flow 

and boundary dominant flow. Figure 4.7 provides the production comparison of different 

methods. Here, we compare the tartan grid and EDFM using finite difference simulation 

with tartan grid and EDFM using FMM. From the results, the FMM-based methods 

provide good match with the finite difference based methods. For the CPU time 

comparison, which is shown in Figure 4.8, we can see that the FMM with EDFM is faster 

compared to the tartan grid simulation.  

 

 

Figure 4.5 Validation of the FMM with EDFM: (a) DTOF contour from EDFM 

(b) DTOF contour from tartan grid 
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Figure 4.6 w(τ) function comparison 

 

 

Figure 4.7 Comparison of production profile of different methods (a) Gas 

production rate (b) Oil production rate 
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Figure 4.8 Comparison of CPU time of different methods 

 

 

Figure 4.9 3D view of the synthetic model with 10 hydraulic fracture and 

multiple natural fractures 

 

The second validation case contains 10 hydraulic fractures with multiple natural 

fractures intersecting each other. We still use 500 md.ft for the hydraulic fracture’s 

conductivity and 2 md.ft for the natural fracture’s conductivity. The fluid model is single-

phase gas. The horizontal producer is completed at all the hydraulic fractures. The 3D 
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view of this example is given in Figure 4.9 and the input parameters are shown in Table 

4.2. 

 

Table 4.2 Reservoir input of the model with 10 hydraulic fractures with multiple 

natural fractures 

Parameter Value 

Reservoir size 5000×2500×100 ft3 

Initial pressure 4000 psi 

Matrix porosity 0.046 

Matrix permeability 0.0001 md 

Rock compressibility(pinit) 1.0×10-6 psi-1 

HF porosity 0.25 

HF conductivity 500 md.ft 

HF height 250, 300 ft 

HF half-length 150 ft 

NF conductivity 2 md.ft 

 

Figure 4.10 compares the 2D triangles grid generated by the unstructured grid 

method with the EDFM method. Here, we can clearly see the advantage of the EDFM 

method. At the fracture locations, the unstructured grid method generates multiple tiny 

cells to capture the fracture geometry. For the EDFM method, we use the simple straight 

lines to represent the hydraulic fractures and the triangles to connect between fracture and 

matrix. 
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Figure 4.10 2D triangles grid generation (a) Unstructured grid method (b) EDFM 

method 
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In Figure 4.11, we further compare the two methods. Figure 4.11(a) shows the 

CPU time to generate the grid of this case. The EDFM method is an order of magnitude 

faster than the unstructured grid method. Since multiple tiny cells are generated by the 

unstructured grid method, the cell number of EDFM method is much smaller than the 

unstructured grid method, which is shown in Figure 4.11(b). For this reason, the EDFM 

method uses much shorter time than the unstructured grid method for the DTOF 

calculation, which is illustrated in Figure 4.11(c). 

 

 

 

Figure 4.11 Comparison of FMM with unstructured grid and FMM with EDFM 

(a) CPU time for grid generation (b) Cell number (c) CPU time for FMM 

calculation 
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Figure 4.12 DTOF comparison (a) FMM with EDFM (b) FMM with 

unstructured grid  

 

 

 

Figure 4.13 w(τ) function comparison 
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Figure 4.14 Comparison of gas production profile of different methods 

 

In Figure 4.12 and Figure 4.13, we compare the DTOF and w(τ) function 

calculated using the two methods. Figure 4.12(a) and (b) give the DTOF contours 

calculated by the EDFM and unstructured grid method. From the plots, we can see a good 

agreement of the two methods. Figure 4.13 further compares the w(τ) function. Again, the 

two methods obtain very similar w(τ) function and capture all the different flow regimes. 

Finally, Figure 4.14 shows the 1D-simulation results using the two methods. Because we 

have very similar w(τ) function, the gas production rates are also very close to each other. 

 

4.4 Conclusions 

In this chapter, we extend the FMM-based simulation to embedded discrete 

fracture model. We discuss the entire workflow in detail and use different models to 
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validate the workflow. This workflow can simulate arbitrary and complex fracture 

geometries. This workflow has similar resolution as the unstructured grid method but it is 

more efficient in terms of grid generation and DTOF calculations. 
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CHAPTER V 

UNDERSTAND THE IMPACT OF TIGHTER CLUSTER SPACING ON 

FRACTURE DESIGNS USING THE EAGLE FORD FIELD DATA 

 

5.1 Chapter Summary 

One of the challenges in completing unconventional wells is determining the 

optimal cluster spacing. The spacing between perforation clusters influences the geometry 

of hydraulic fractures, drainage volume, production rates, and ultimate recovery of a well. 

This chapter aims to explain why the wells with tighter cluster spacing outperform others 

in Eagle Ford by calibrating the fracture geometry and properties using field injection data.  

The Eagle Ford injection and production data are from two horizontal wells 

completed side by side. This chapter identifies the fracture geometry and properties by 

history matching the field injection treatment pressure using Mangrove®. The impact of 

cluster spacing is examined through the calibrated fracture geometry and properties. The 

calibrated models suggest that most of the fractures are planar in Eagle Ford. The well 

with wider cluster spacing tends to develop longer fractures. However, the well with 

tighter cluster spacing has more complex fracture networks resulting in better production 

performance.  

This study demonstrates the feasibility of the Mangrove® on the field scale 

application for injection treatment pressure history matching. The calibrated fracture 

geometries with Eagle Ford field data can help explain the performance variation using 

different cluster spacing within the same reservoir. As future work, we need to history 
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match the production data to further calibrate the fracture properties and compare the two 

wells.  

 

5.2 Background 

Recently, the trend of optimal hydraulic fracturing design in the industry has been 

reducing the cluster spacing while increasing the fluid and proppant usage. However, it is 

still a challenging task for characterizing the fracture networks after hydraulic fracturing 

to understand this phenomenon, especially at the field level.  

Much research has been conducted to characterize the fracture networks and 

optimize the cluster spacing. On the geomechanics side, many efforts have been made to 

simulate and control the stress shadow effect (Kresse et al. 2012; Zhou, Z. et al. 2016; Wu 

et al. 2017; Tang et al. 2018a). This effect is extremely important under the tighter cluster 

spacing condition and it is believed to be the cause of low fracture efficiency. The stress 

shadow effect is induced by the stress field change from the existing hydraulic fractures. 

The stress field change can lead to deviation or even abortion of the nearby hydraulic 

fractures (Roussel et al. 2012; Simpson et al. 2016). Therefore, it is important to minimize 

the cluster spacing while controlling the stress shadow effects. Another negative effect for 

the hydraulic fracturing is the bedding effect, which limited the fracture height growth 

(Tang and Wu 2018b; Tang et al. 2019). It is also important to minimize the cluster spacing 

while finding the optimum completion position to avoid the bedding layers. 

On the reservoir simulation side, some researchers focus on combining the 

geomechanics simulation with reservoir simulation to characterize the fracture networks 
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and optimize the cluster spacing (Suarez and Pichon 2016; Xiong et al. 2018). This 

workflow often involves several steps, including generating the fracture network using 

geomechanics simulation, history matching production data to calibrate the fracture 

properties and further optimizing the cumulative production or net present value (NPV). 

Although this comprehensive workflow can well calibrate the fracture properties and 

optimize the cluster spacing, it is very challenging to conduct the entire workflow where 

thousands of simulations are required for the calibration and optimization process. 

In this chapter, we conduct a manual history matching of the field injection 

treatment pressure to generate multiple realizations of fracture network using Mangrove® 

as the forward simulator. Then we compare the fracture geometries to explain the 

performance variation using different cluster spacing within the same reservoir. 

 

5.3 Field Application: Fracture Characterization and History Matching  

In this section, we begin the primary focus of this chapter, which is fracture 

characterization and history matching of two Eagle Ford wells to understand the impact 

of tighter cluster spacing on the fractures. We begin with the field data description, 

followed by the fracture geometry calibration using Mangrove® and manual history 

matching to generate three realizations of fracture geometry. Finally, we evaluate the 

fracture models to analyze the impact of tighter cluster spacing on the fractures. 
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5.3.1 Wells and Reservoir Description  

The geologic model used in this study contains 4 different formations: Austin 

Chalk, Upper Eagle Ford, Lower Eagle Ford and Buda. Two horizontal wells are 

completed side by side in the lower Eagle Ford formation. The well spacing is 1200 ft, 

which is large enough to prevent the fracture interactions between wells. In Figure 5.1, we 

show the schematic diagram of the two wells locations and the reservoir. We use the layer 

cake model for the permeability, where each formation has a constant value. Other 

properties such as Young’s modulus, porosity and Poisson’s ratio are heterogeneous 

across the reservoir. In Figure 5.2, we show the 3D view of each property and summarize 

the property ranges in Table 5.1.  

 

 

Figure 5.1 Schematic diagram of the wells location and reservoir 
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Figure 5.2 Reservoir properties of the model (a) Permeability (b) Young’s 

Modulus (c) Porosity (d) Poisson’s Ratio 

 

Table 5.1 Property ranges in different formations  

Property Austin Chalk Upper Eagle Ford Lower Eagle Ford Buda 

Permeability (nd) 0.5 230 30 0.001 

Porosity 0.01-0.05 0.01-0.09 0.01-0.11 0.01-0.16 

Young’s Modulus 

(Mpsi) 
6.58-7.03 5.99-6.87 6.09-6.91 5.75-7.13 

Poisson’s Ratio 0.27-0.34 0.21-0.34 0.21-0.31 0.12-0.38 

 

In Table 5.2, we summarize the two wells completion information. From Table 

5.2, we can clearly see that well 2 has a much tighter cluster spacing than well 1. The total 

numbers of perforations per cluster are the same for both wells. The two wells use the 
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same type of fracturing fluid and proppant but with different weight or volume. This is a 

unique field pilot test to investigate the influence of tighter cluster spacing on the fractures 

and well performance.  

 

Table 5.2 Two wells completion data  

Well Name Well 1 Well 2 

Cluster Spacing (ft) 50 20 

Cluster Count per Stage 5 10 

No. of Stages 26 31 

No. of Perfs per Cluster 6 3 

Mass of Proppant (lb) 10,000,000 13,000,000 

Type of Proppant 100 Mesh, 40/70 White 100 Mesh, 40/70 White 

Volume of Fluid (bbl) 150,000 350,000 

Type of Frac Fluid 
Slickwater, HCl 7.5, 8# vis-

link 

Slickwater, HCl 7.5, 8# 

vis-link 

 

5.3.2 Two-Well Production Data 

The three-phase production and the bottomhole pressure data are available for one 

year. In Figure 5.3, we provide the production data of the two wells. From the plot, we 

can clearly see that well 2 has better performance than well 1 in terms of oil and gas 

production. The two wells both have high water production at the early time from the flow 

back fluids. 
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Figure 5.3 Two wells production data (a) Bottomhole pressure (b) Oil production 

rate (c) Gas production rate (d) Water production rate   

 

5.3.3 Fracture Geometry Calibration using Injection Treatment Pressure 

In this section, we perform the manual history matching of the injection treatment 

pressure to calibrate the fracture geometry. We use the Mangrove® as the forward 

simulator. We first conduct a sensitivity study to identify the heavy hitters, which will be 

altered to match the observed injection treatment pressure. In Table 5.3, we show the base 

case input. All these properties are typical Eagle Ford values provided by the operator. We 

can see a relatively large stress anisotropy between SHmax and SHmin, which is the reason 

the fractures in the Eagle Ford formation are relatively straight and planar.  
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Table 5.3 Fracture propagation base case input  

Parameter Value 

Minimum Horizontal Stress 0.85 psi/ft 

Stress Anisotropy (S
Hmax

/S
Hmin

) 1.4 

Leak-off Coefficient 7.5e-4 ft/min^1/2 

Fracture Height Hf 450 ft 

Young’s Modulus Spatially Heterogeneous 

Poisson’s Ratio Spatially Heterogeneous 

 

The injection treatment pressure misfit is calculated using the following equation: 

2 2

, ,1 1
log( ( ) )

Ntime obs cal

i j i jj i
obj ITP ITP

= =
= − 

 

(5.1) 

Here, Ntime is the total number of pressure data observation times, ITP is the injection 

treatment pressure, the superscript obs indicates the observed data, and the superscript cal 

indicates the calculated value from the simulation.  

Figure 5.4 shows the calculated sensitivity of the injection treatment pressure 

misfit to different parameters. From the plot, the most sensitive parameters are the fracture 

height and the leak off coefficient multiplier, followed by the minimum horizontal stress 

gradient. For the manual history matching process, we only alter the fracture height and 

the leak off coefficient multiplier since they are the heavy hitters from the sensitivity 

studies and the minimum horizontal stress gradient has much smaller uncertainty than the 

fracture height and leak off coefficient multiplier. 
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Figure 5.4 Injection treatment pressure sensitivity 

 

 

Figure 5.5 Manual history matching matrix 

 

Figure 5.5 gives the manual history matching matrix of the injection treatment 

pressure misfit. Using this matrix plot, we can easily identify the parameter ranges of the 

fracture height and the leak off coefficient multiplier to achieve a relatively low misfit 

value. From this plot, we can see that the fracture height should be around 100ft and the 
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leak off coefficient multiplier should be between 2 and 3, which is the dark green region 

in this plot. Within the parameter ranges of the fracture height and the leak off coefficient 

multiplier, we conduct the fine-tuning of the two parameters to further decrease the misfit 

value. In Figure 5.6, we show the initial results of the injection treatment pressure for well 

1 and 2 where we can identify a huge discrepancy between observation and simulation 

results. In Figure 5.7, we illustrate the final matched results of the two wells. We finally 

generate 3 fracture models with fracture heights equal to 80, 100 and 120ft with different 

leak-off coefficient multipliers, which are shown in Figure 5.8. From the results, most of 

the fractures are planar in Eagle Ford due to large stress anisotropy. The well with wider 

cluster spacing develops longer fractures in all of the three scenarios. However, the well 

with tighter cluster spacing has more complex fracture networks. This result can also be 

seen in the w(τ) plot, which is shown in Figure 5.9. Since well 2 has more complex fracture 

networks, it has higher w(τ) value, which indicates larger fracture surface area. 

 

 

Figure 5.6 Initial results of the injection treatment pressure (a) Well 1 (b) Well 2 
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Figure 5.7 Matched results of the injection treatment pressure (a) Well 1 

Hf=120ft Leak-off Multiplier=2 (b) Well 2 Hf=120ft Leak-off Multiplier=2 (c) 

Well 1 Hf=100ft Leak-off Multiplier=2.6 (d) Well 2 Hf=100ft Leak-off 

Multiplier=2.6 (e) Well 1 Hf=80ft Leak-off Multiplier=3 (f) Well 2 Hf=80ft Leak-

off Multiplier=3 
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Figure 5.8 Fracture models after fracture geometry calibration (a) Hf=120ft  (b) 

Hf=100ft  (c) Hf=80ft   
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Figure 5.9 w(τ) plot of the two wells (a) Well 1 (b) Well 2 

 

5.4 Conclusions 

In this chapter, we utilize the Mangrove® as the forward simulator to conduct a 

field scale history matching. This field model is designed to understand the impact of 

tighter cluster spacing on the fracture geometry and well performance. We analyze and 
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discuss the history matching results to examine the impact of tighter cluster spacing on the 

fractures and well performance. Some key conclusions for this chapter are summarized as 

follows: 

• We developed a workflow for fracture propagation and geometry identification by 

history matching the treatment pressure using completion data. This workflow can 

generate multiple realizations of fracture network, which can serve as the starting 

point for the production history matching. 

• Most of the fractures are planar in Eagle Ford due to large stress anisotropy. The 

well with wider cluster spacing develops longer fractures in all of the scenarios. 

However, the well with tighter cluster spacing has more complex fracture 

networks. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary and Conclusions 

 In this dissertation, we developed novel diagnostic plots and FMM-based 

simulation for complex fracture networks simulation and characterization. The following 

summary and conclusions can be drawn from each chapter in the dissertation: 

In the second chapter, we proposed a novel diagnostic tool for the interpretation of 

the characteristics of the complex fracture systems and well drainage volume. We utilized 

the w(τ) and IRR plots for the identification of characteristic signatures that imply 

complex fracture geometry, formation linear flow, partial reservoir completions, fracture 

interference and compaction effects during production. The w(τ) analysis gives us the 

fracture surface area and formation diffusivity whereas the IRR analysis provides 

additional information on fracture conductivity. Also, quantitative analysis is conducted 

using the novel w(τ) plot to interpret fracture interference time, formation permeability, 

total fracture surface area and stimulated reservoir volume (SRV). We demonstrated the 

feasibility of this novel diagnostic tool using multiple synthetic and field examples. 

In the third chapter, we extended the FMM-based simulation to LGRs. This 

required novel gridding through introduction of triangles (in 2D) and tetrahedrons (in 

2.5D) to link the local and global domain and solution of the Eikonal equation in 

unstructured grids to compute the ‘diffusive time of flight.’ The FMM-based flow 

simulation reduces 3D simulation to an equivalent 1D simulation using the ‘diffusive time 
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of flight (DTOF)’ as the spatial coordinate. The 1D simulation can be carried out using a 

standard finite-difference method leading to orders of magnitude savings in computation 

time compared to full 3D simulation for high-resolution models. Multiple numerical 

examples are presented to illustrate the power and validity of this extended FMM-based 

simulation. 

In the fourth chapter, we extended the FMM-based simulation to EDFM. Similar 

to the LGRs workflow in Chapter III, FMM with EDFM workflow also requires novel 

gridding to link the embedded discrete fractures and the matrix using Delaunay 

triangulation. The ‘diffusive time of flight’ is calculated based on Eulerian discretization 

in unstructured grids. Using the ‘diffusive time of flight (DTOF)’ as a spatial coordinate, 

the FMM-based flow simulation reduces 3D complex fracture networks simulation to an 

equivalent 1D simulation. Multiple examples are shown to validate this workflow. This 

workflow can simulate arbitrary fracture patterns without simplification and shows good 

accuracy and efficiency compared to FMM with unstructured grid. 

In the fifth chapter, we utilized the Mangrove® to study the impact of tighter cluster 

spacing on fractures and well performance. The Eagle Ford injection and production data 

are from two horizontal wells completed side by side. We identified the fracture geometry 

and properties by history matching the field injection treatment pressure using Mangrove®. 

The impact of cluster spacing is examined through the calibrated fracture geometry and 

properties. The calibrated models suggest that most of the fractures are planar in Eagle 

Ford. The well with wider cluster spacing tends to develop longer fractures. However, the 
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well with tighter cluster spacing has more complex fracture networks resulting in better 

production performance. 

 

6.2 Recommendations 

 The following points are recommended as an extension/improvement to current 

dissertation: 

1. In the second chapter, for the field application, the drainage volume calculation is 

based on the global fit of both BHP and production rate. We can further investigate 

non-parametric regression techniques to calculate monotonic well drainage volume 

directly from the raw data. This novel diagnostic tool can be further used in more field 

cases. We can analyze the results based on different fields to reveal the similarity and 

difference of fracture networks at field level. 

2. In the third chapter, all the implementation is conducted using Matlab. To further 

increase the speed of FMM, C++ implementation is necessary. For the local Eikonal 

solver, the parallel computing can further speed up the FMM calculation. In addition, 

currently the input of LGRs are designed by ourselves. We can take advantage of 

commercial software like Eclipse or CMG to generate the LGRs. In this way, the input 

format will become standard and easy to use. 

3. In the fifth chapter, the FMM-based black oil simulation workflow and genetic 

algorithm can be used to history match the production data and further understand the 

difference between the two wells. In addition, we can optimize the cluster spacing, 

well spacing, and the usage of fracturing fluid and proppant. Under different 
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geomechanical and reservoir conditions, we can investigate what is the best cluster 

and well spacing. 
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NOMENCLATURE 

 

B   = Formation Volume Factor 

BHP   = Bottom Hole Pressure 

tc    = Total Compressibility 

DFM   = Discrete Fracture Model 

DTOF   = Diffusive Time of Flight 

EDFM   = Embedded Discrete Fracture Model  

EUR   = Estimated Ultimate Recovery 

FMM   = Fast Marching Method 

FDSim   = Finite Difference Simulation 

IRR   = Instantaneous Recovery Ratio 

k   = Permeability 

kr   = Relative Permeability 

p   = Pressure 

PSS   = Pseudo-Steady State 

q   = Flow Rate 

Q   = Cumulative Production 

RNP   = Rate Normalized Pressure 

S   = Saturation 

SRV   = Stimulated Reservoir Volume 

Vdp   = Dykstra-Parson’s Coefficient 
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( ), ( )p pV V t    = Drainage Pore Volume  

t   = Time 

te   = Material Balance Time 

w()   = Drainage Volume Derivative 

 

   = Diffusivity 

                                                          = Porosity 

                                                          = Viscosity 

                                                          = Mass or Mole Density 

                                                           = Diffusive Time of Flight 

 

Subscript 

g                                                           = Gas 

o                                                           = Oil 

p                                                           = Pore 

ref                                                         = Reference Condition 

w                                                           = Water 
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APPENDIX A 

INVERSION PROCEDURE FOR THE W(τ) FUNCTION 

The w(τ) function is inverted in a way which truncates the infinite integral to be 

finite and divides the domain into smaller intervals. Our goal is to invert for a piecewise 

constant w(τ) function. 
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Any type of w(τ) function can be assumed, here w(τ) is considered as piecewise 

constant. This is a fair assumption for two reasons: firstly, we are not trying to obtain a 

purely analytical solution of w(τ) and it is not possible to so without an analytical formula 

for Vd(t); and secondly, it is good approximation as long as a sufficient number of intervals 

are used. The integral in Eq. (A-1) can be explicitly expressed in terms of error function 

as follows: 
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We end up solving a linear matrix Ax=b, where each individual terms are 

expressed as Eq. (A-3). 
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The error function gets quite close to unity (0.9996), at arguments larger than 2.5, 

thus the coefficient is very small. The coefficient matrix quickly becomes singular and the 

entire system is not readily solvable. We can further reduce the upper limit of the integral 
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for particular time t, here we choose t5 . For the first step, i.e. smallest time t1, the w(τ1) 

is considered constant in the entire interval and can be solved directly. And at the nth 

interval, all previous w(τ) values have been solved and the corresponding interval for 

solved value w(τi) is ]2,2[
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Through this way, we can obtain fairly good w(τ) function, which shows distinct 

characteristics and helps explaining the differences of model responses. 




