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ABSTRACT 
 

 
Introduction. TMD is a complex multi-factorial chronic inflammatory condition 

involving a host of life altering symptoms. The etiology of TMD is not well understood. 

To treat these chronic inflammatory conditions, small molecule mediators, such as (R)-

PFI-2 have been selected to target robust protein kinase methyltransferases such as 

SETD7 in an effort to stop and even reverse the effects of chronic inflammation. Further 

study is needed to better understand its in vivo and in vitro potential. The aim of this 

investigation is to (1) establish a protocol for in-vitro and in-vivo (R)-PFI-2 

concentrations that demonstrate anti-inflammatory effects in the TMJs of rats and mice 

and (2) show a predictable anti-inflammatory effect of (R)-PFI-2 both in-vitro and in-

vivo in the TMJs of rats and mice.  

Material and Methods. A pilot study was completed to demonstrate predictable 

production of inflammation in the temporomandibular joints of rats and mice and 

establish an inflammatory/rescue protocol for future investigation. The in-vitro arm of 

this study used mice TMJs which were harvested, organ cultured and injected with IL-6 

to demonstrate inflammation for both test groups, with only one test group receiving the 

rescue PFI-2 for comparison. Tissues were subjected to H/E analysis.  

Results. Rats: X-ray analysis demonstrated that the radio-opaque intertrabecular 

matter [proteoglycans or mineral formation] returned to the condylar bone following PFI-

2 application. Micro-CT analysis demonstrated that inflammatory conditions resulted in 

an irregular rough, condylar surface. Following PFI-2 application, a partially rescued 

pathological TMJ phenotype could be observed. Histological staining demonstrated a 
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connective tissue lining of the articular fossa and the condylar fibrous perichondrium that 

was fibrotic in inflammatory TMJs [CFA mice] and consisted of loose connective tissue 

in the healthy TMJs [control mice]. PFI-2 application resulted in a partial rescue. 

Immunohistochemistry demonstrated inflammatory conditions that resulted in an 

increased level of IL-1B expression and PFI-2 application that reduced the number of IL-

1B positive cells. Mice: Histological slides demonstrated that PFI-2 restored bone and 

cartilage morphology and promoted muscle fiber growth. 

Conclusions. Our data suggest that PFI-2 may be useful as an anti-inflammatory 

mediator to reverse the effects of inflammatory TMD in rats and mice. 
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NOMENCLATURE 

 

PMN  Polymorphonuclear leukocyte 

IL-6  Interleukin 6 

TNF-α  Tumer necrosis factor-alpha 

DNMT  DNA methyltransferase 

SETD7 Set domain-containing lysine methyltransferase 7 

 (R)-PFI-2       R – partition fraction - 2 

TMJ  Temporomandibular Joint 

TMD   Temporomandibular Joint Disorder 
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1. INTRODUCTION 
 
 

1.1 Purpose 

 

To demonstrate the anti-inflammatory/rescue effects of small molecule mediator, 

PFI-2, on the inflamed TMJ tissues in rats and mice using common inflammatory 

mediators such as: CFA and IL-6.  

 

1.2 Temporomandibular Joint Disorders  

 

1 in 10 women will suffer from Temporomandibular Joint Disorder [TMD] in their 

lifetimes. 25% of these women will seek professional help and only 10% of those women 

will have a positive outcome/resolution of their TMD. Looking at the population as a 

whole, TMD affects approximately 25% of the population and may be severe in a small 

subgroup as described above. The etiology is unknown but some studies have looked at 

arthrtitis, disc displacement, infection, trauma, and bruxism as likely etiologic factors. [1] 

TMD is much more common in females. Mandibular dislocation is one of the described 

disorders associated with this group of TMD issues.  

Mandibular dislocation also known as subluxation of the temporomandibular joint 

will occur as the condyle translates in an anterior direction down the articular eminence. 

During dislocation, the patient’s mouth may appear at max opening, as the condyle is 

located completely anterior to the eminence. Clinically, this can be palpated as a space or 

depression at the posterior most part of the temporomandibular joint. These joint 
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dislocations can be spontaneous from a yawn or be the direct result of extended dental 

treatment. If the latter occurs, patients may have trouble communicating their problem 

with the clinician since their jaw is locked in a depressed and anterior position. 

Relocation techniques have been described in the literature, but vary clinically between 

patients. [2] In general, the technique includes depressing the condyle in a posterior 

direction around and up the articular eminence where it can rest in its natural position 

while the patient closes.  

Arthritis and ankylosis have also been described in the literature as part of this group 

of temporomandibular diseases. Arthritis is the most common cause of pathologic 

changes in the temporomandibular joint. For example, with our rheumatoid arthritis 

patients, these patients may have bilateral involvement of their temporomandibular joints 

before or after other joint problems have manifested. Radiological analysis of these 

patients temporomandibular joints will show decreased joint space without osseous 

changes initially, while in later stages of the disease, osseous changes are more easily 

identified including ankylosis of the temporomandibular joint itself. While the etiology 

still remains unclear, some possible etiological sources include bruxism, trauma, and 

even normal wear. Patients symptoms have a range from no pain to mild to highly severe 

pain that effects daily function and has been associated with suicidal thoughts/actions. [3] 

There are certain bones involved in the articulation of the cranium and the upper 

facial skeleton known as the temporal bone and mandible. Therefore, the joint that 

connects these two is called the temporomandibular joint. During development in other 

vertebrates, the mandible is several pieces compounded together including bones that 
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house teeth [dentary] and Meckel’s cartilage remnants [articular bone].  [4] Together 

these bones would articulate with the quadrate bone posteriorly on the skull and represent 

hinge only movement for these vertebrates. As evolution continued, mammals evolved 

from a compound jaw into a single jaw bone called the mandible which house teeth and 

have a part of the mandible [the condyle] that would articulate with the cranium making 

the TMJ a secondary joint leaving the primary joint still evolutionarily conserved as the 

malleus and incus of the middle ear.  

There are three main types of joints: fibrous joints, cartilaginous joints, and synovial 

joints. Fibrous joints typically connect two bones via three types of fibrous joints: 

sutures, gomphosis, or syndesmosis. [5,6] A suture permits very little movement and it 

functions to permit growth with several histological studies demonstrating a osteogenic 

layers over the suture. A good example of a fibrous joint connected with a suture would 

be the skull bones on a developing brain. A gomphosis is a socketed attachment of tooth 

to bone found in the fibrous periodontal ligament. Limited movement is allowed in this 

joint, more like a shock absorber for internal, functional movement during mastication. 

Finally, a syndesmosis represents joints between the fibula and tibia as well as the radius 

and ulna. Despite their limited distance apart, the two bones are joined by an interosseous 

ligament permitting very small movement. Cartilaginous joints can be divided into 

primary and secondary joints. Primary cartilaginous joints have bone and cartilage in 

direct apposition, like in a costochondral junction compared to a secondary cartilaginous 

joint where tissues of the articulation occur in the order of bone-cartilage-fibrous tissue-

cartilage-bone. A good example of a secondary cartilaginous joint is the pubic symphysis. 
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There is very limited movement allowed with cartilaginous joints. Finally, there are 

synovial joints, which will permit the most movement between two bones. Typically 

these two bones are covered in hyaline cartilage and surrounded by a capsule filled with 

synovial fluid. [7,8]  

A variety of ligaments are typically associated with these joints to limit excursive 

movements and stabilize the joint. Therefore, we can begin to describe the 

temporomandibular joint for mammals as a synovial joint, however since differences in 

masticatory requirements will differ among mammals a single description is challenging 

to ascertain. For example, movements are restricted to hinge motions only in carnivores. 

In humans, this is no the case, since there is a demand for movement not just restricted to 

hinge axis forces but also protrusive and lateral forces dictating both translational and 

rotational forces be applied to this synovial sliding-ginglymoid joint. The 

temporomandibular joint begins development at 3 months of gestation. [9] At this time, 

the secondary jaw joint of the temporomandibular joint begins formation. The primary 

evidence of the TMJ is the appearance of 2 specific areas of mesenchymal gatherings 

called the temporal and condylar blastema. The condylar blastema grows quickly dorso-

laterally to close the gap between the two areas. Ossification begins in the temporal 

blastema. The condylar blastema, still condensed mesenchyme, becomes the inferior joint 

space and then differentiates into condylar cartilage followed by a second cleft forming 

the superior joint cavity. Then the primitive articular disc forms.  

The temporomandibular joint [TMJ[ is the articulation between the squamous portion 

of the temporal bone and the condyle of the mandible. It has the following structural 



	 5	

components. The TMJ comprises 2 types of synovial joints – sliding and hinge – and 

consists of ligaments, which serve as boundaries, squamous portion of the temporal bone, 

condyle of the mandible, and articular disc which is contained within the TMJ. The TMJ 

articulation is located on the squamous portion of the temporal bone and has an avascular 

articular surface composed of fibrous connective tissue as opposed to hyaline cartilage. 

[10]. 

Areas which are primarily responsible for bearing the main load of the TMJ are on 

the lateral aspect of the squamous portion of the condyle and articular disc. There is 

dense, fibrous connective tissue in the thickest and most critical of these load bearing 

areas as evidence by the perichondrium. The perichondrium which will be described later 

in the embryology section, serves as a possible etiology and point of resolution in the 

pathogenesis of TMD. Anatomic relations concerning the squamous portion of the 

temporal bone include an anterior-articular eminence becoming the articular tubercle, a 

posterior tympanic plate tapering to the postglenoid tubercle and an intermediate glenoid 

fossa. [11] The articular eminence represents the strong bony protuberance on the base of 

the zygomatic process. The articular tubercle is located on the lateral part of the articular 

eminence and provides the capsular attachment and ligament for the lateral 

temporomandibular ligament. There is also a depression called the glenoid fossa where 

the condyle is primary located. Just superior to this glenoid fossa, is a thin plate of bone 

in the middle cranial fossa.  

There is a tympanic plate which is a vertical plate located anterior to the external 

auditory meatus. [12] The posterior glenoid tubercle which is an inferior extension of the 
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squamous portion of the temporal bone, comprises the posterior aspect of the glenoid 

fossa and provides connection for the retrodiscal pad and TMJ capsule. The mandibular 

condyles measure approximately 20mm in a mediolateral direction and 10mm anterio-

posteriorly. The articular surface of the condyles is avascular fibrous connective tissue 

instead of hyaline cartilage and mainly loads on its lateral aspect. Also composed of 

dense fibrous connective tissue is the articular disc. The disc is located between the 

squamous portion of the temporal bone and the condyle and is aneural and avascular 

towards the middle aspect but transitions to highly vascularized and innervated on its 

posterior aspect. This is mainly because the posterior aspect has minimal load bearing.  

An area of potential tearing for the articular disc would be its lateral areas, where 

most of the load occurs. This articular disc can be divided into three areas or bands: 

anterior, intermediate and posterior. [13, 14] The anterior area is a thick band that lies just 

in front of the condyle when the mouth is closed. The thinnest part, the intermediate 

band, is located along the eminence while the mouth remains closed. Finally, the 

posterior section, which is a thick band much like the anterior section, is located above 

the disc while the mouth remains closed. There are additional lateral ligaments which 

provide limited stability and function to the joint. Medially and laterally there are 

collateral ligaments that tend to anchor the condyle with the disc. Anteriorly, the disc is 

connected to the capsule and the superior head of muscle called the lateral pterygoid, 

however here the condyle is not attached. This allows the articular disc to have a 

rotational movement over the condyle when moving anteriorly or posteriorly. At its 
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posterior-most site, the disc is continuous with the bil-aminar zone that will blend with 

the joint capsule. [15]  

The bi-laminar zone also known as the posterior attachment complex is a two-layered 

structure that is located behind the articular disc it can be highly distorted especially 

when the mouth is opening. This structure is composed of a retrodiscal pad, superior 

lamina and inferior lamina. The retrodiscal pad is highly innervated and vascularized and 

made of elastic fibers, collagen, nerves, blood vessels and fatty tissue. For example, when 

the condyle shifts forward in function, a large venous plexus within the retrodiscal pad 

will fill with blood. The superior lamina which also contains elastic fibers, will anchor 

the upper most portion of the most posterior aspect of the disc to the bone and capsule at 

the tympanic plate and post glenoid tubercle. The inferior lamina, which alternatively 

contains collagen fibers, will anchor the lowest part of the most posterior portion of the 

articular disc to the condyle. [16]  

The TMJ has several compartments. The articular disc will divide these 

compartments into an upper [superior] and lower [inferior] area. The internal surface of 

both these compartments will house specialized endothelial cells, forming a synovial 

lining producing synovial fluid which is the reason the TMJ is considered a synovial 

joint. Synovial joints have synovial fluid which will work as a lubricant for the joint and 

also serve as an instrument for the metabolic requirements to the articular surface. The 

superior compartment contains a volume of approximately 1.2mL and provides 

movement in the translational direction for the TMJ. Alternatively, the inferior 

compartment contains a volume of approximately 0.9mL. [17,18] Residing between the 
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condyle and articular disc, this inferior space is responsible for movement of a rotational 

sense for the TMJ. 

The TMJ’s capsule will completely surround the articular surface of the temporal 

bone as well as the mandibular condyle. This capsule is composed of fibrous connective 

tissue and has been stabilized on its lateral and medial aspects by accessory ligaments. It 

is also lined by a highly vascularized synovial membrane. There are also a variety of 

sensory components such as nociceptors that are associated with this capsule. Forwarding 

our discussion to the capsular support via ligaments, there are four main groups of 

ligaments associated with the TMJ: collateral ligaments, the temporomandibular or lateral 

ligament, the stylomandibular ligament, and the sphenomandibular ligament. The 

collateral ligaments also known as the discal ligaments, are formed by 2 main ligaments: 

the lateral collateral ligament and the medial collateral ligament. [19] The lateral 

collateral ligament will connect the lateral part of the disc to the lateral aspect of the 

condyle, while the medial collateral ligament tends to connect the medial part of the disc 

to the medial wall of the condyle.  

These ligaments are composed of collagenous connective tissue, meaning that they 

will not stretch. The temporomandibular or lateral ligament is a single thickened ligament 

located on the lateral surface of the capsule and functions in the prevention of lateral and 

posterior displacement. There are 2 different and separated bands associated with the 

temporomandibular ligament. The outer oblique part which is the largest portion, is 

attached to the articular tubercle and travels posterior and inferior to connect immediately 

inferior to the condyle which will limit opening of the mouth. The second band is the 
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inner horizontal part which is a smaller band, attached to the articular tubercle and runs 

horizontal to connect with the lateral part of the condyle and the articular disc, thereby 

limiting posterior movement of the disc and condyle. The stylomandibular ligament helps 

limit the anterior protrusion of the lower mandible. This ligament is composed of a 

thickened deep cervical fascia extending from the styloid process to the posterior margin 

of the angle and ramus of the mandible. [20]  

Finally, the sphenomandibular ligament is actually a remnant of Meckel’s cartilage, 

extending from the spine of the sphenoid to the lingual of the mandible. Studies have 

shown that the sphenomandibular ligament takes a part in the pivoting action of the 

mandible while maintaining tension during opening and closing of the mouth. The TMJ 

has an abundant arterial supply comprising of the superficial temporal, deep auricular and 

anterior tympanic arteries. The superficial temporal artery comes from a terminal branch 

of the external carotid artery, it begins in the parotid gland and at its beginning, is located 

posterior to the mandible providing slight branches to the TMJ. [21] Arising from the 

maxillary artery, the TMJ has arterial supply from both the deep aruicular, which also lies 

in the parotid gland, giving posterior branches to the TMJ along with the anterior 

tympanic artery which passes superiorly and posteriorly to the TMJ, entering the 

tympanic cavity through the petrotympanic fissure, finally giving off branches to the 

TMJ. The venous draining from the TMJ is accomplished via the superficial temporal 

vein which ultimately joins the maxillary vein to for the retromandibular vein.  

The TMJ is innervated by the auriculotemporal n, the masseteric n., and the posterior 

deep temporal n. The auriculotemporal n. arises from the mandibular division [V3] of the 
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trigeminal n, splitting around the middle meningeal a and passing between the 

sphenomandibular ligament and condylar neck. This nerve supplies sensory branches all 

along the capsule. This nerve also will carry autonomic supply to the parotid gland. Both 

the masseteric and posterior deep temporal nerves arise from the anterior division of the 

mandibular trigeminal n. These nerves both lie anterior to the TMJ and provide branches 

to the joint. [22] Slightly before innervating the joint, the masseteric n. passes over the 

masseteric notch to innervate the masseter muscle while the posterior deep temporal 

nerve innervates the temporalis muscle and provides sensory branches that aid the 

auriculotemporal nerve in the supply of the anterior joint. This branch is mainly motor in 

function but also has some sensory functions as well. 

The temporomandibular joint has a complex and multifaceted embryology when 

looking at comparative anatomy among humans and reptiles. For example, the hinge only 

action from reptilian species denotes the simplistic physiology of the temporomandibular 

joint that has complicated with the development of an articular disc in humans, allowing 

greater range of movement [23] and at the same time greater complexity of etiology when 

discussing pathophysiology of the joint.  

Mandibular movement during normal function and during abnormal function also 

known as parafunction [Ie. Bruxism], likewise involves a complex neuromuscular pattern 

originating in a pattern generator in the brainstem with modified influences from higher 

centers of the cerebral cortex, basal ganglia, and peripheral influences from the 

Periodontium and muscles of mastication among other environmental factors. During 

opening, in health there is a complicated series of movements that occur. The initial most 
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movement is pure rotation, occurring in the inferior temporomandibular joint space. In 

this movement, the lateral pterygoid, specifically the inferior head, initiates opening. As 

the jaw begins to open and the mandible is depressed, the medial and collateral ligaments 

support the connection of the condyle to the disc allowing for this pure rotational 

movement. [24]  

At some point during mandibular depression, those ligaments reach their maximum 

capacity and become taut, stopping the rotation. In general, pure rotation occurs until 

approximately 20mm of space occurs between maxillary and mandibular teeth. After this 

pure rotation, translation must occur for further opening. This translational movement 

occurs in the superior joint space, allowing for maximum opening. For translation to 

occur, the disc and condyle together slide down the articular eminence, allowing for 

maximum opening of the mandible. This rotation and translational movement allow for 

complete opening and closing of the mandible and are responsible for the primary 

functions of mastication. 

 

1.3 Epigenetics: Phenotypic Expression of DNA 

 

Immune response to oral bacterial pathogens and following activation of the immune 

system via inflammatory signaling does not solely rely on genetic factors [25]. Highlights 

importance of epigenetics and its role specifically on chronic inflammatory mechanisms, 

specifically to TMD and periodontitis, among other chronic inflammatory systemic 

conditions. Epigenetics is described as “changes in gene expression that are not encoded 



	 12	

in the DNA sequence itself and include chemical alterations of DNA and its associated 

proteins..these changes lead to remodeling of chromatin and subsequent activation or 

inactivation of a gene” [26]. This unwinding of histones and exposure of chromatin, lead 

to subsequent activation [turning on], or inactivation [turning off] of genes. Epigenetics 

has been shown to contribute to a variety of diseases including inflammatory, 

autoimmune diseases, and even cancer [27, 28]. Epigenetic modifications include 

chemical alterations of DNA and associated proteins via small molecule mediators [29].  

The role of SET D7 as a target for small molecule mediators, like (R)-PFI-2 in a 

mouse TMD model demonstrates the role epigenetics can play in chronic inflammatory 

disease and has been studied in periodontal disease as well. This host inflammatory 

response, induced by oral bacteria are influenced in an epigenetic sense by both genetic 

and environmental factors [30, 31]. 

Gene expression is dependent on how tightly coiled/packed or loosely packed a 

histone may become during transcription. A nucleosome makes DNA accessible for 

transcription factors by unwinding of the histones, making transcription of DNA 

possible- hence, gene expression. Alternatively, when histones become tightly coiled, 

transcription can on longer occur, leading to silencing of a gene altogether despite the 

gene being a part of a patient’s DNA. [32] That gene will not be expressed which can be 

beneficial in some cases and detrimental in others. For example, in chronic inflammatory 

diseases, such as TMD or periodontitis, inflammation targets specific tissues leading to 

clinical observation of tissue breakdown and eventual organ dysfunction.  
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Some epigenetic modifications are actually able to be reversed, and can even be 

modified by a patient’s environment which leads into the link between the genetic make 

up of the patient and the patients environment [33, 34]. Generally speaking, the two 

major epigenetic modifications are DNA methylation and histone acetylation and 

methylation [35]. In order to understand epigenetics, we have to look at the building 

blocks of chromatin, which are nucleosomes. Just one nucleosome consists of 146 base 

pairs of DNA and a core histone complex [includes 2 copies each of histones: H2B, H4, 

H2A, and H3, along with a linker histone [H1], connecting the nucleosomes. This unit 

forms the ‘primary chromatin structure’, commonly known as ‘beads on a string’ [36]. 

Histones have these amino acid tails that can be methylated or acetylated as they protrude 

from the nucleosome.  

Acetylation is regulated by HATs [Histone acetyltransferases] and HDACs [histone 

deacetylases]. [37, 38] Classically, the addition of methyl groups to cytosine bases next to 

a guanine base happens to occur at critical sites in the DNA via DNMTs [DNA 

methyltransferases] which alters the configuration of the NDA and binding of 

transcription factors which lead to a change in gene expression. Different methylation 

patterns have been associated with different regulatory pathways such as 

lippolysaccharide [LPS] mediated signaling, apoptosis, oncogenesis, cell differentitation, 

and cell adhesion – all found within inflamed tissues. Active genes tend to be correlated 

with low levels of DNA methylation. Some studies have shown that epigenetic changes 

increase during ones lifetime, however age itself is a risk factor for epigenetic changes. 

These differences in epigenetic changes may explain why some patients respond 
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differently to treatment and why some patients are more susceptible to chronic 

inflammatory and autoimmune diseases and for that matter, cancer.  

The idea here is to focus on epigenetics as it relates to the targeting of SETD7 with 

small molecule mediator PFI-2 in the presence of pro-inflammatory molecules, CFA 

[complete freund’s adjunctive] and IL-6 [interleukin 6]. Secondarily, the aim is to 

correlate our findings with previous studies linking small molecule mediator, [39] PFI-2 

with epigenetic mechanisms related to periodontitis, drawing a link between two chronic 

inflammatory conditions.  

SETD7 is a histone lysine methyltranserfase with a variety of cellular functions 

specifically inflammation, oncogenesis and metabolism. SETD7 inhibition has been 

recently investigated resulting in the identification of (R)-PFI-2: a potent and selective 

inhibitor of SETD7. SET D7 is a histone H3K4 lysine methyltransferase [40] with a 

variety of cellular functions involved in human gene regulation including transcriptional 

regulation, differentiation, DNA repair, cell cycle control and DNMT1 [41]. As a 

methyltransferase for H3K4, SETD7 (also known as SET7, SET9, or SET7/9) belongs to 

the SET domain-containing proteins, [defining methylation] which can change the 

chromatin state by influencing the binding abilities of the cofactor to the histone via 

direct histone methylation, which is associated with demethylation of H3K4 (H3K4me2) 

and promotes downstream gene expression [epigenetics part] [42]. SET D7 is also known 

to have a multitude of substrates which contributes to its role in a variety of diseases.  

Over-expression of SETD7 has an important role in inflammation, metabolism-

associated diseases, viral infection, and oncogenesis. [42]. For example, when 
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considering its role in type 2 diabetes mellitus, SET D7 is upregulated in the presence of 

hyperglycemic conditions, leading to methylation of H3K4, ultimately contributing to 

vascular dysfunction via NF-kB promoter. [43, 44]. Therefore several attempts have been 

made to discover inhibitors of SETD7, however most inhibitors have been too weak to 

display any observable benefit on the inhibition of SETD7 with the exception of R-PFI-2. 

SET D7 is the most abundant and well-studied modification on histones. Its robust 

monomethyltransferase activity allows it to have several substrates and it can be localized 

in both the nucleus and cytoplasm of cells making its nuclear localization easily regulated 

and ideal for study.  

 

1.4 Small Molecule Mediator: (R)-PFI-2: Background and Significance of SAM 

 

R-PFI-2 is a potent and selective inhibitor of SETD7 [45] and is more potent than 

its enantiomer S-PFI-2. (R)-PFI-2 shows a much higher inhibiting activity (IC50 ≈ 2.0 ± 

0.2 nM) with respect to the (S)-PFI-2(IC50 ≈ 1.0 ± 0.1 µM). (R)-PFI-2 is the first SETD7 

inhibitor with nanomolar inhibitory potency and a known mechanism. Although there is 

no definitive criteria for what constitutes a cut-off point for a “good” vs “bad” inhibitor 

[IC50] due to several compounding factors [ie. Family of enzymes the inhibitor targets, 

concentrations of inhibitor, substrates, biochemical vs cellular assays, etc.], in general the 

significance of nanomolar inhibitory potency for (R)-PFI-2 is key to setting itself apart 

from weaker inhibitors with micromolar inhibitory potency.  
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Therefore, the purpose of this study is to expand upon the knowledge base of (R)-

PFI-2 and confirm its role as an anti-inflammatory agent in the mouse and rat models 

both in-vitro and in-vivo. SAM serves as a co-substrate during methylation of histones 

which is party how the body regulates gene expression. SAM is involved in anabolic 

reactions throughout the body and is the most prolific donor of one carbon groups in 

biosynthetic reactions. SAM is important because it donates methyl groups [-CH3s] to a 

large number of acceptors [for example: DNA, RNA Phospholipids, and proteins].  

SAM has been shown to lower LPS induced expression of pro-inflammatory 

cytokines such as TNF-alpha and increase expression of anti-inflammatory cytokines IL-

10 in macrophages. SAM is a naturally occurring substance and is necessary for binding 

of small molecule mediator PFI-2 in the binding groove of SET-D7 during DNA histone 

methylation.  

 

1.5 Mouse TMJ as a model for inflammation 

 

The TMJ is a synovial joint necessary for sliding and hinge movements of the jaw. 

TMD occurs when the muscles around the TMJ become disrupted in structure or 

physiology. This can be evidenced by pain, limited jaw opening and clicking/popping. 

The TMJ is one of the most frequently used joints in the human body and has unique 

features that separate it from other joints. For instance, the cartilage of the mandibular 

condyle is a secondary cartilage [independent from the chondroskeleton] and has a 
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different embryonic origin [derived from cranial NCC] compared to the articular cartilage 

of the knee. [46]  

Another unique feature is that the condyle of the mandible has a lower amount of 

collagen type I (COLIA1) compared to the other synovial joints [47]. Finally, the 

articular surfaces are not composed of hyaline but of fibrous tissue [48].  Development. 

Developmentally, animal models [including rats and mice] are useful because the process 

and molecular mechanisms are conserved. However, it is challenging to attempt in vivo 

studies in rodents, where TMD is the target objective of study, because of morphological 

differences in the TMJ among rats/mice and humans [49].  

In Figure 1 some of the differences in morphology of the TMJ between rodents and 

humans can be observed. For instance in rodents, the glenoid fossa is shallow and 

flattened, there is no articular eminence, and the lateral pterygoid muscle is less in the 

volume.  

 

1.6 Linking epigenetic mechanisms to periodontal inflammation via DMKTs 

 

According to Bartold 2013, periodontal diseases are no longer considered a simple 

bacterial infection. They are complex, multifactorial diseases involving an ‘interplay’ 

between the subgingival microbiota, the host immune and inflammatory responses and 

environmental modifying factors. [50] Therefore, anti-inflammatory agents could be 

beneficial towards the control and ultimately reversal of periodontal inflammation. 

Periodontitis is no longer considered a 'simple' infection leading to the destruction of the 
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periodontium. Instead, a new etiology has been proposed involving the interactions 

amongst the host response, sub gingival oral environment and external environmental 

factors. Typically, a periodontitis patient will present clinically with sub gingival calculus 

and plaque.  

These patients follow more of a 'normal' paradigm in the etiology of periodontitis 

because the increase of plaque and calculus is associated with an increase in the severity 

of the disease. However, there are also a great number of patients that present to clinic 

with very small amounts of deposits with a large amount of periodontal destruction. The 

latter patient population has provoked some to reconsider the etiology of periodontitis 

specifically the role of bacteria and oral hygiene. In some studies, scientists have called 

into question past concepts where the primary focus is only plaque levels and less-than-

perfect oral hygiene as the primary etiology of periodontitis. Also, in a study by Grossi 

et.al.(1994) it was well established that plaque only accounts for as little as 20% of the 

rest for developing periodontitis. This supports further the fact that oral hygiene, plaque 

formation and calculus do not constitute the total etiology of periodontal disease.  

Therefore, periodontitis is considered a multifactorial disease entity and has several 

contributing etiologic factors. Observations like these, among others, formed the basis of 

a model for the pathogenesis of periodontitis in which not only was the microbial 

challenge considered important, but those response factors, genetic risk factors and 

environmental and acquired risk factors are important as well. [51, 52] This is what 

changed the focus from solely plaque as the primary etiologic agent to a more 'holistic' 

approach. Several models have been proposed to capture this relationship; the newest 
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ones published today accentuate the use of host modulation to target pathways of 

inflammation in the development of periodontitis.  

One model also stressed the importance of incorporating genes, proteins, and 

metabolite data into dynamic biologic networks that include inflammation-mediated 

disease initiation and disease resolving mechanisms. In several papers, Van Dyke [53] 

stated that although periodontal inflammation is initiated by the sub gingival biofilm, it is 

the production and release of mediators generated by the host response that are primarily 

responsible for the periodontal breakdown. Thus shifting the paradigm from a 'bug of the 

month' to host response as the primary etiologic agent for periodontitis, because it isn't 

the pathologic bacteria directly responsible for the destruction of bone and soft tissue but 

more so an abnormal immune response to normal biofilm thus changing the sub gingival 

biome into a pathogenic environment which ultimately creates an enlarged immune 

response leading to periodontal destruction.   

It must be accepted that the host inflammatory response is what largely drives the 

pathological process along with new concepts in the treatment of periodontitis. In this 

particular model, it is also accepted that gingivitis is a mandatory initiating condition for 

the subsequent development of periodontitis. Gingivitis results from a non-specific 

inflammatory reaction in the gingival tissues to supragingival plaque accumulation. [54] 

The resultant inflammation changes the Subgingival due to an increase concentration of 

host inflammatory mediators and byproducts of connective tissue and collagen 

breakdown in the gingival crevicular fluid. These are the ideal conditions that provide an 

acceptable environment for the overgrowth of periodontal pathogens within the 
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subgingival biofilm. The host inflammatory response must be sufficient alongside a 

favorable genetic and environmental influence to proceed to periodontitis. If one of these 

factors is not compliant, then the gingivitis will resolve due to the host’s ability to 

‘contain’ the infection toward microbiota compatible with health and no periodontal 

destruction will occur. Adversely, if all of these factors are present, the likely result is 

periodontal breakdown.  

To link periodontitis with epigenetic mechanisms, we have shown that there is a 

chronic inflammatory component ongoing following exposure with bacteria to a 

susceptible host. However, we will now discuss where these epigenetic changes are 

thought to occur as a way to target periodontal disease by targeting the changes to the 

epigenetic mechanisms occurring within the inflamed tissues. One area of study: the 

biofilm-gingival interface around each tooth, roughly where we see the beginnings of 

gingivitis and eventual periodontitis when bone loss has occurred. Previous epigenetic 

studies including the oral cavity have shown that the epigenomes of patients with and 

without inflammation will show statistical differences, not only between patients but even 

between sites [inflamed vs uninflamed]. [55]. Several inflammatory cytokines and DNA 

methylation have been studied as well, including IL-8, IL-6, IFN-y, and TNF-alpha. 

 In general, studies show that IL-8 and IL-6 promoters tend to be hypomethylated in 

patients with chronic inflammatory diseases such as chronic periodontitis versus healthy 

controls [55]. This shows that methylation of certain cites of DNA may influence 

cytokine production and therefore turn on and off disease. There has also been proposed a 

link between DNA methylation, the chronic inflammatory process and cancer via 
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methylation alterations in histones due to the aberrant methylation in tissues. In general, 

when tissue becomes inflamed, eosinophils and neutrophils in the area produce substance 

s that DNMTs cannot distinguish from methylated DNA. This is a problem because it 

results in de novo methylation in cells of the inflamed tissues [56].  
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2. MATERIALS AND METHODS 

 

2.1 Rats [In-Vivo Arm]  

 

Our test groups were divided into Test group 1: CFA, Test Group 2: CFA + (R)-

PFI-2 [rescue], and then a control group. Rats served as our initial in-vivo animal model 

to our study. We used adult male Sprague-dawley rats and injected rats bilaterally with 

50ug of CFA [complete Freund’s adjunct] dissolved in 50uL of paraffin oil into the TMJ 

of anesthetized rates. Rats were either rescued with PFI-2 [10uM] via bilateral injections 

or injected with saline at the time of the rescue intervention. The control rats were given 

bilateral injections of saline at the time of inflammatory injections and rescue injections 

and served as uninjected controls. Based on in-vivo enzymatic assay, the IC50 110nM + 

(R)-PFI-2 does not affect the viability of cell lines when used at a concentration of 

<50uM.   

CFA was used and not some other noxious stimulant due to the well tested model 

of CFA to induce inflammation in the TMJs of rats. Several studies have supported the 

efficacy of the CFA model. Also reports in the literature investigating the pro-

inflammatory cytokine TNF-alpha, caspases or apoptosis may have a role in the 

inflammatory process. Rats were sacrificed using carbon dioxide inhalation and 

decapitation 2-6days after PFI-2 injected. The TMJ tissues [synovium, retrodiscal tissues, 

articular disc] extirpated bilaterally and either immediately frozen in liquid nitrogen or 

prepared for histology, immunohistochemistry, or radiographic analysis. TMJs from both 
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CFA-injected and un-injected controls were removed, rinsed in phosphate buffered saline 

[PBS].  

Our analysis included sample preparation for micro-computed tomography with a 

voxel size of 10um, voltage of 50-70kV, current of 115-150uA and 0.5 aluminum filter 

which is protocol standard for microCT data analysis based on our literature review. Part 

of our fixed samples were placed in paraffin wax and histology was completed according 

to standardized protocols for Hematoxylin and eosin staining, Mallory’s or Masson’s 

Trichrome. The remaining fixed samples were prepared for immunohistochemistry and 

used IL-1B as an antibody to IL-6.  For accurate images of trabecular microarchitecture, 

voxel size of <20um in rats or 10um in mice is recommended. Voltage optimal for 

establishing high contrast images of bone with minimal beam hardening compared to 

lower voltage may be appropriate for mouse neonates. Aluminum filter used for 

absorbing low energy x-ray before and after passing through the sample.  

 

2.2 Mice [In-Vitro Arm] 

 

Our test groups were broken up into Test group 1: IL-6, and test group 2: IL-6 + 

(R)-PFI-2 [rescue]. There was no control in the mice branch of our study due to sufficient 

control in our rat arm. A pilot study was carried out prior to beginning the formal 

research project on (R)-PFI-2 to demonstrate predictability in causing inflammation in a 

mouse model in vitro with TNF-alpha and IL-6. Various concentrations of inflammatory 

promoters and rescue [(R)-PFI-2] were used in culture to demonstrate an effect on the 
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TMJ’s of infant mice [2-3d old]. These inflammatory and rescue effects were observed 

under light microscopy after paraffin sections were stained in Trichrome and H/E.  

Analysis was carried out with observing coloring and cell counts under magnification 

[see Figure 7].  The experimental protocol for organ cultures was as follows:  

• Day 0: 1 day old pups à TMJ harvested by single trained researcher [TD] 

• Day 1: Organ culture TMJs in Regular Media for 24hrs  

• Day 2, 3, 4: Addition of IL-6 [5ng/ml] to Groups 1 & 2 for 72hrs w. media 

changed q24hrs 

• Day 5: Replace media with regular media and culture for 24hrs 

• Day 6, 7, 8: Addition of PFi2 [10um] to Group 1 cultures and culture for 72hrs 

• Day 9: Begin analyses of specimen 

This experimental protocol was carried out for each group. Data analysis followed. 

Histology was performed concomitantly with paraffin wax samples stained with 

TriChrome and H/E stains.  

Media preparation was completed using a Nutritive ‘Regular’ media: BGJb 

Medium (1x) Fitton-Jackson Modification [+] L – Glutamine. REF: 12591-038. LOT: 

1921430. EXP: 2018-10-30. 500mL. Gibco by Life technologies.  IL-6 was prepared with 

5ng/mL of regular media.  
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3. RESULTS 

 

3.1 Rats [In-Vivo Arm]  

 

As seen in Figure 2, the radiographic analysis demonstrated that the radio-opaque 

intertrabecular matter [possibly proteoglycans or mineral formation] returned to the 

condylar bone following PFI-2 application [seen in Figure 2B, 2C]. It is also apparent 

where demineralization has occurred following CFA application [Figure 2D] and where a 

healthy control condylar bone as a baseline was analyzed with optimal radio-opacity of 

condylar bone [Figure 2A].  

As seen in Figure 3, our MicroCT analysis showed that inflammatory conditions 

resulted in an irregular rough condylar surface shown in figure 3D. When PFI-2 was 

applied, a partial rescue can be observed in the pathological TMJ phenotype [Figures 3B 

and 3C]. Looking closely at figures 3B and 3C, the rescue has smoothed the irregularities 

from inflammation shown in 3D. compared to a healthy control in figure 3A where we 

see a smooth condylar surface, free from roughened and demineralized condylar bone.  

As seen in Figure 4, our H/E staining showed a connective tissue lining of the 

articular fossa and the condylar fibrous perichondrium, which was fibrotic in 

inflammatory TMJs [Figure 4D] and consisted of loose connective tissue in the healthy 

TMJs [Figure 4A]. PFI-2 application resulted in a partial rescue with a partial return of 

that loose connective tissue [Figure 4C] however this loose connective tissue was only 

partially returned, as evidenced in figure 3B where more of a fibrotic inflammatory tissue 
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remains with scant evidence of loose inflammatory tissue.  Here the perichondrium can 

be easily observed which is a layer of dense, irregular connective tissue that surrounds 

the cartilage and consists of an outer fibrous layer and an inner chondrogenic layer. The 

dense fibrotic tissue observed in figure 4D is synonymous with inflammation.  

As seen in Figure 5, our Masson’s stained slides, supported our findings from H/E 

histological sections. Again, we see the connective tissue lining of the articular fossa and 

the condylar fibrous perichondrium, which was fibrotic in inflammatory TMJs [Figure 

5D] and consisted of loose connective tissue in the healthy TMJ controls [Figure 5A]. 

When PFI-2 was applied to the specimens, partial rescue from inflammation resulted as 

evidenced by a change to loosened connective tissue and partial dense fibrotic 

inflammatory sequelae [Figure 5B and 5C].  

As seen in Figure 6, our immunohistochemistry was completed with IL-B 

antibody used to test for our CFA and IL-6 inflammatory mediators. Here, the 

inflammatory conditions, evidenced in figure 6D, resulted in an increased level of IL-1B 

expression and PFI-2 application reduced the number of IL-1B positive cells shown in 

figures 6B and 6C. Inflammatory staining of IL-1B was produced, even in the control 

sections [figure 6A] however this was hypothesized to be a normal reaction to the trauma 

from saline injection into the joint. The main idea was IL-1B cells stained approximated 

the articulation of the joint to demonstrate acute inflammation of the joint and replicate 

most closely TMD in rats. Therefore, figure 6D showed inflammatory IL-1B cells within 

the articulation point and at the point of injection compared to our control and rescue 
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slides [6A, 6B, and 6C] which showed minimal to very few IL-1B stained cells at the 

point of articulation.  

 

3.2 Mice [In-Vitro Arm] 

 

As seen in Figure 7, PFI-2 showed restored bone and cartilage morphology and 

promoted muscle fiber growth of the lateral pterygoid demonstrated in figure 7B. In 

Figure 7A, inflammatory tissue destruction can be observed despite the lack of 

inflammatory cells in the tissue section.  

In our Masson’s staining, we observed muscle regeneration of the lateral 

pterygoid despite the inflammatory destruction created with IL-6 [Figure 7C]. In figure 

7D we see new muscle fibers stained red/brown indication partial reversal of 

inflammation with our small molecule mediator PFI-2. 
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4. DISCUSSION AND CONCLUSIONS  

 

Using two different models to demonstrate efficacy of small molecule mediator PFI-

2. PFI-2 demonstrated partial efficacy in both the rat and mouse model to reverse the 

harmful tissue effects of induced inflammation in the TMJs with both CFA and IL-6 pro-

inflammatory agents. Rats were used as the initial animal model as a trial for efficacy in 

vivo. Once positive effects of PFI-2 were observed in vivo, the mouse model was an 

addition to the study to show specifically how the TMJ cells would respond in an isolated 

environment with an organ culture. Organ cultures with mice are more suitable due to the 

smaller organs [TMJs] of pups [mice] compared to larger joints of rats which are more 

suited for in-vivo study.  

Use of IL-6 compared to another inflammatory mediator. IL-6 has been identified in 

several studies as a pro-inflammatory mediator involved in the inflammatory mechanisms 

and epigenetic mechanisms of chronic inflammatory diseases including TMD and 

periodontitis. IL-6 for this reason seamed an ideal pro-inflammatory agent for use in our 

organ culture mouse model.  

Our inflammatory rat TMD model was associated with fibrotic connective tissues in 

the condylar fibrous perichondrium and the articular fossa. There was also evidence of 

bone resorption and a roughened articular condyle surface following exposure to CFA.  

(R)-PFI-2 application resulted in a partial reversal of the deleterious effects of 

inflammatory conditions of the TMJ. Specifically, smoothness of the condylar surface 

was restored and fibrotic tissue was replaced by loose connective tissue.  In the organ 
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cultures, PFI-2 application resulted in new bone and hyaline cartilage formation as well 

as new formation of muscle tissue. 
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APPENDIX 

FIGURES 

 

FIGURE 1: Human TMJ vs. Mouse TMJ – comparative anatomy 

 

 

 

 

 

 
 
 
 
Figure 1 Description: Comparison of the structure of the TMJ between humans and mice. 

1: the articular eminence of the temporal bone, 2: the glenoid fossa of the temporal bone, 

3: anterior band of the articular disk, 4: posterior band of the articular disk, 5: connective 

tissue, 6: the posterior joint capsule, 7: the upper articular cavity, 8: the lower articular 

cavity, 9: mandibular condyle, 10: a part of upper head of the lateral pterygoid muscle, 

associated with the articular disk, 11: upper head of the lateral pterygoid muscle, 

connected with the mandibular condyle, 12: lower head of the lateral pterygoid muscle, 

connected with the mandibular condyle . Reprinted from [Sukuki and Iwata, 2016]. 
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FIGURE 2: X-ray Analysis [RATS] 
 

 
 
 
 
 
 
 
 
 
 

Figure 2 Description: A. Control, B. Partial rescue with PFI-2, C. Partial rescue with PFI-2, D. CFA  
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FIGURE 3: Micro-CT Analysis [RATS] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Description: A. Control, B. Partial rescue w. PFI-2, C. Partial Rescue with PFI-
2, D. CFA 
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FIGURE 4: H/E Analysis [RATS] 
 
 
 
 
 
 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Description: A. Control, B. Partial rescue w. PFI-2, C. Partial Rescue with PFI-
2, D. CFA 
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FIGURE 5: Masson’s Trichrome Analysis [RATS] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Description: A. Control, B. Partial rescue w. PFI-2, C. Partial Rescue with PFI-
2, D. CFA 
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FIGURE 6: Immunohistochemistry Analysis with IL1-B [RATS] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Description: A. Control, B. Partial rescue w. PFI-2, C. Partial Rescue with PFI-
2, D. CFA 
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FIGURE 7: H/E [A+B] + Masson’s Trichrome [C+D] in [MICE] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7 Description: A. Inflammation, B. Partial rescue w. PFI-2, C. Inflammation, D. 
Partial rescue w. PFI-2 
 


