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ABSTRACT

This dissertation includes three essays. In the first essay I study the problem of density esti-

mation using normal mixture models. Instead of selecting the ‘right’ number of components in

a normal mixture model, I propose an Averaged Normal Mixture (ANM) model to estimate the

underlying densities based on model averaging methods, combining normal mixture models with

different number of components. I use two methods to estimate the mixing weights of the proposed

Averaged Normal Mixture model, one is based on likelihood cross validation and the other is based

on Bayesian information criterion (BIC) weights. I also establish the theoretical properties of the

proposed estimator and the simulation results demonstrate its good performance in estimating dif-

ferent types of underlying densities. The proposed method is also employed to a real world data

set, empirical evidence demonstrates the efficiency of this estimator.

The second essay studies short term electricity demand forecasting using Gaussian Processes

and different forecast strategies. I propose a hybrid forecasting strategy that combines the strength

of different forecasting schemes to predict 24 hourly electricity demand for the next day. This

method is shown to provide superior point and overall probabilistic forecasts. I demonstrate the

economic utility of the proposed method by illustrating how the Gaussian Process probabilistic

forecasts can be used to reduce the expected cost of electricity supply relative to conventional

regression methods, and in a decision-theoretic framework to derive an optimal bidding strategy

under a stylized asymmetric loss function for electricity suppliers.

The third essay studies a non-stationary modeling approach based on the method of Gaussian

process regression for crop yields modeling and crop insurance rate estimation. Our approach de-

parts from the conventional two-step estimation procedure and allows the yield distributions to vary

over time. I further develop a performance weighted model averaging method to construct densities

as mixture of Gaussian processes. This method not only facilitates information pooling but greatly

improves the flexibility of the resultant predictive density of crop yields. The simulation results on

corp insurance premium rates show that the proposed method compares favorably to conventional
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two stage estimators, especially when the underlying distributions are non-stationary. I illustrate

the efficacy of the proposed method with an application to crop insurance policy selection by in-

surance companies. I adopt a decision theoretic framework in this exploration and demonstrate

that insurance companies can use the proposed method to effectively identify profitable policies

under symmetric or asymmetric loss functions.
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1. INTRODUCTION

Finite mixture of distributions especially normal mixture models have always been a powerful

tool to statistical modeling of a wide variety of phenomena. It has been widely applied in eco-

nomics, biology, engineering and social sciences. Despite its wide adoption in density estimation

and clustering, there remain some issues to overcome. One important problem is that it is usually

difficult to determine the number of components in a mixture model since the discrete choice of

components number and non-nested structure in incremental model building. Due to this problem,

normal mixture models based density estimation may change significantly if different number of

components is used in the model, it could be unstable with respect to change of component num-

bers or to small perturbations of the data. It is important to estimate the appropriate number of

components of mixture model if researchers are interested in the underlying heterogeneity of the

distribution, but when approximation is the goal, we do not necessarily need to know the correct

number of components. In the first essay, I choose to use a model averaging approach to tackle

the density estimation problem based on normal mixture models. Since it is hard to choose the

appropriate number of components in a normal mixture model, I first estimate a series of normal

mixture models with different number of components, then I take these estimated normal mixture

models as given, and find different ways to mix all these models.I propose two methods to find

the mixing weights, one is based on likelihood cross validation and the other one is based on BIC

weights. Simulation and empirical results demonstrate the efficiency of our model.

Electricity demand forecasting plays a vital role in power system planning, operations, trans-

mission design, and financial risk management. Since electricity is difficult to store, supply and

demand have to be balanced at every point in time. Consequently, overestimation of electricity

demand may result in excessive purchase and an unnecessary waste of energy while underestima-

tion may cause disturbance in the power system. There is a vast literature on the forecasting of

electricity demand, ranging from long, medium to short term demand. However, most of the cur-

rent literature focuses on point forecasts of electricity demand, there only exists a small literature
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on probabilistic forecasting that predicts quantities such as the quantiles, intervals, or distribu-

tion/density functions. In the second essay, I develop a Gaussian Process regression model based

on a hybrid forecasting strategy to estimate short term electricity demand, which is shown to pro-

vide superior point and overall probabilistic forecasts. In addition to statistical investigation, I

further illustrate how the probabilistic forecasts obtained from the Gaussian Process models can be

used in a decision-theoretic framework to optimize economic decision making and risk manage-

ment in the electricity industry.

The federal crop insurance program has been an important part of U.S. agricultural policy to

stabilize farmers’ income and protect against unpredictable risks for several decades. It covers

more than 100 crops with a variety of yield-based, revenue-based and area-based policies. An

actuarially sound premium is critical to the effectiveness and robustness of crop yield insurances.

Since the calculation of this parameter requires the knowledge of the future distribution of yields,

one needs a reliable predictive yield distribution. In the third essay, I propose a new estimation

approach for crop yields based on the method of Gaussian process regression. This modeling

approach is probabilistic in nature and yields not only point estimates but entire predictive distri-

butions. This is particularly appealing to one of the primary focuses on the corp yield estimation,

which is to obtain reliable predictive yield distribution. I illustrate the efficacy of the proposed

method with an application to crop insurance policy selection by insurance companies. I adopt

a decision theoretic framework in this exploration and demonstrate that insurance companies can

use the proposed method to effectively identify profitable policies under symmetric or asymmetric

loss functions.

2



2. AVERAGED NORMAL MIXTURE MODEL FOR DENSITY ESTIMATION

2.1 Introduction

Finite mixture of distributions especially normal mixture models have always been a power-

ful tool to statistical modeling of a wide variety of phenomena (McLachlan and Basford [1988];

McLachlan and Peel [2004]). It has been widely applied in economics, biology, engineering and

social sciences. Also as it is well known that any continuous distribution can be approximated ar-

bitrarily well by a finite mixture of normal densities (McLachlan and Peel [2004]), normal mixture

models have provided a convenient semi-parametric framework to model unknown distributions.

In fact, normal mixture models based density estimation and clustering have shown great perfor-

mance in many applications (McLachlan and Peel [2004]; Fraley and Raftery [2002]).

In the density estimation problem, we are given an i.i.d sample S = (x1, · · · , xn) drawn from

an unknown density f of a p−dimensional random variable x, and the goal is to estimate this

density function f from the realizations xi of x. In fitting a finite normal mixtures of k components

to these data, it is assumed that the probability density function of sample S can be represented in

the form

f(x) =
k∑
i=1

λiφ(x;µi,Σi) (2.1)

where φ(x;µi,Σi) is the normal density function with mean vector µi and covariance matrix Σi

corresponding to the ith mixture component. λ = (λ1, λ2, · · · , λk) is the vector of mixing weights

which sums to 1. We usually use maximize likelihood methods to estimate these unknown param-

eters.

Despite normal mixture models based density estimation and clustering have been proved very

useful, there remain some issues to overcome. One important problem is that it is usually difficult

to determine the number of components in a mixture model since the discrete choice of compo-

nents number and non-nested structure in incremental model building. Due to this problem, the

density estimated by normal mixture models may change significantly if we choose different num-

3



ber of components, it could be unstable with respect to change of component numbers or to small

perturbations of the data.

In this paper, we start by an example to illustrate the instability of density estimation using a

normal mixture model. We use “cps71" data set in R “np" package, which consists a random sam-

ple taken from the 1971 Canadian Census Public Use Tapes for male individuals having common

education level (grade 13). There are 205 observations in total. We plot the kernel density and

histogram for logarithm of wage data in Figure 2.1 (a), in Figure 2.1 (b) we plot the corresponding

normal mixture models estimated densities using components number from k = 1 to k = 3.

(a) (b)

Figure 2.1: Density estimation of “cps71" data set
(a)kernel density estimator and histogram for logarithm of data. (b)normal mixture density estimators
using components number from k = 1 to k = 3, which corresponds to black, orange and blue curve.

As we can see from figure 2.1 (b), normal mixture density estimator will change a lot if we use

different number of components in the model. If we use only one component, the density estimator

will just be a Gaussian distribution as shown in black curve. When we use two components, the

normal mixture density estimator will be similar to the kernel density estimator in Figure 2.1 (a),

but it is relatively smooth and does not yield enough features. Then if we use three components

4



in normal mixture density estimator, the shape of this new estimator will change dramatically, and

have a clear tendency of overfitting the underlying density. Actually in practice, with too many

components, the normal mixture models tend to overfit the data and yield poor interpretations,

while with too few components, the normal mixture models may not be flexible enough to ap-

proximate the true underlying densities. So as we mentioned above, it is difficult to determine

the number of components in a normal mixture model, also due to the non-nested structure of the

model, change between normal mixture models with different components can be significant.

In this article we propose a new method of density estimation based on model averaging. It is

an important issue to estimate the appropriate number of components in a mixture model if we are

interested in the underlying heterogeneity of the distribution, but when approximation is the goal,

we do not necessarily need to know the correct number of components, that is why we choose to

use a model averaging approach to solve the problem. Since it is hard to choose the appropriate

number of components in a normal mixture model, we first estimate a series of normal mixture

models with different number of components, then we take these estimated normal mixture models

as given, and we find different ways to give appropriate weights to these models and combine all

these models. We proposed two methods to find the appropriate weights, one is based on likelihood

cross validation and the other one is based on BIC weights. The presentation of this article goes as

follows. Section 2.2 gives a brief overview of previous research. In Section 2.3, we propose our

averaged normal mixture (ANM) model, along with an investigation of the asymptotic properties

of the proposed methods. Section 2.4 reports results of Monte Carlo studies on normal mixture

densities and non-normal mixture densities. Section 2.5 discusses some real world applications of

proposed methods and our conclusions are presented in Section 2.6. Proofs of results are contained

in the Appendix.
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2.2 Literature reviews

2.2.1 Difficulties of normal mixture model specification

As we mentioned above, determining the number of components k in a mixture model could

be very difficult and it has not been completely solved. For decades, researchers have been strove

to develop an optimal way to find the appropriate number of components in a mixture model, in

the existing literature, there are several ways to estimate the number of components in a mixture

model.

One way is to use information based criteria such as the Akaike Information Criterion (AIC,

Akaike [1974]), the Bayesian Information Criterion (BIC, Schwarz et al. [1978]) and the consistent

AIC Information Criterion (CAIC, Bozdogan [1987]). Different information based criteria are

essentially likelihood functions with distinct penalties. Leroux et al. [1992] systematically studied

the use of AIC and BIC criteria to select the number of components in finite mixture models,

he argued that the estimated number of components selected by these criteria is at least as large

as the true parameter in large samples. Roeder and Wasserman [1997] showed the consistency

of selecting the number of components in a mixture model using BIC criterion. There are also

other similar criteria such as Integrated Classification Likelihood criterion (ICL, Biernacki et al.

[2000]), Normalized Entropy Criterion (NEC, Biernacki et al. [1999]) and Minimum Information

Ratio criterion (MIR, Windham and Cutler [1992]). Studies have also shown that BIC type criteria

tend to underestimate the number of components when sample sizes are small. On the contrary,

the AIC type criteria typically overestimate the number of components substantially.

Another way to select the number of components in a mixture model is to use the Bayesian

framework. For instance, variational inference can be used to determine the number of the com-

ponents in a fully Bayesian way (Corduneanu and Bishop [2001] or Bishop [2006] Chapter 10.2),

which is an approximation of Bayesian inference. Also by choosing appropriate priors, the maxi-

mum a posteriori (MAP) estimator can be used for model selection purpose (Ormoneit and Tresp

[1998] and Zivkovic and van der Heijden [2004]).
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Some researchers also use likelihood ratio test techniques to select the component of the mix-

ture model, such as McLachlan [1987], Dacunha-Castelle et al. [1999], Chen et al. [2004b], Kasa-

hara and Shimotsu [2015]. However, in most cases, these tests will suffer from the boundary

problems and difficult to determine the asymptotic distribution.

Moreover, there are many other ways to select the number of components in a mixture model,

like the well adapted gap statistics (Tibshirani et al. [2001]), and distance measure like penalized

minimum-distance method (Chen and Kalbfleisch [1996]), the Kullback-Leibler distance method

(James et al. [2001]) and the Hellinger distance method (Woo and Sriram [2007]), which evaluates

the distance between the fitted model and nonparametric estimation of underlying distribution

As we can see, determining the number of components in a mixture model has always been an

arguing topic. It is an important issue if researchers are interested in the underlying heterogeneity

of the distribution, but when approximation is the goal, we do not necessarily need to know the

correct number of components, that is the reason why we introduce our Averaged Normal Mixture

model.

2.2.2 Model averaging

Model selection has always been an integral part of statistical modeling. The goal of model se-

lection is to choose the best model among all candidate models considered in the framework. The

procedure of selecting the most “suitable” model and conducting analysis and inference on this

“suitable” model is well adapted, but also has been criticized since this procedure usually leads

to too optimistic tests and confidence intervals, and generally to biased inference statements. An

alternative to selecting one model and basing all further work on this chosen model is model av-

eraging. Model averaging exploits information from all candidate models and incorporates model

uncertainty into the estimation. Like statistical estimation, model selection is subject to stochastic

errors due to sample variation. In contrast, combining the strength of multiple models/estimators

can often lead to better performance in practice.

There are two major framework for model averaging: Bayesian model averaging and frequen-

tist model averaging (FMA). Bayesian model averaging provides a coherent mechanism for ac-
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counting for model uncertainties. Reviews of Bayesian literature can be found in the works of

Hoeting et al. [1999], Raftery et al. [1997]. For FMA strategies, the most widely used methods

are weighting strategies based on the AIC or BIC values proposed by Buckland et al. [1997].

Also there are other researchers proposed different mixing strategies based on different frame-

work. Yang [2000, 2001] proposed adaptive mixing strategies for density estimation and regres-

sion. Hjort and Claeskens [2003] studied some results on the large sample behavior of likelihood

based model average estimators under the assumption of local model misspecification. Leung and

Barron [2006] proposed a mixture least squares estimator with weights depending on the estima-

tor’s risk characteristics, they also derived a finite sample risk bound for this mixture estimator.

More recently, there has been increasing interests in asymptotically optimal model averaging in-

cluding Mallows model averaging (MMA, Hansen [2007]), optimal mean squared error averaging

(Liang et al. [2012]), jackknife model averaging (JMA, Hansen and Racine [2012]), heteroskedas-

ticity robust Cp (Liu and Okui [2013]), and so on.

2.3 Model setup and estimators

In this paper we assume that given number of components in a mixture model k, the normal

mixture model is identifiable and estimable. In this case identifiability means that suppose we have

two mixture models, given by

f(x) =
k∑
i=1

λiφ(x;µi,Σi) f ′(x) =
k′∑
i=1

λ′iφ(x;µ′i,Σ
′
i) (2.2)

and that f(x) ≡ f ′(x) if and only if k = k′ and we can order the summations such that λi = λ′i,

µi = µ′i and Σi = Σ′i for i = 1, · · · , k. Then we say f(x) is identifiable. If the model is identifiable,

We can use the widely known EM algorithm to estimate the parameters of mixture models. In this

paper, we always assume the normal mixture models are identifiable and estimable, once they have

been estimated, instead of selecting a best one among them, we take them as given and find a way

to mix them.

As we mentioned before, our goal is to find appropriate ways to mix normal mixture models
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with different number of components. Here we introduce our Averaged Normal Mixture (ANM)

model, the estimation procedures for our proposed ANM model are described as follows:

1. Given any i.i.d sample S = (x1, · · · , xn), we can fit these data to a series of normal mixture

models denoted as f̂1, · · · , f̂k, · · · , f̂K , which f̂k is

f̂k =
k∑
i=1

λ̂ikφ(x; µ̂ik, Σ̂ik), (2.3)

and the components number of f̂1, · · · , f̂K is k = 1, k = 2, · · · , k = K. The reason we

have subscript ·k in λ̂ik, µ̂ik and Σ̂ik is because for each normal mixture model, we can have

different parametrization for individual component.

2. We take f̂1, · · · , f̂K as given, and our proposed ANM model can be written as

f̂(x) =
K∑
i=1

ω̂if̂i(x), (2.4)

A crucial issue of this method is how to find the mixture weights (ω̂1, · · · , ω̂K) for the aver-

aged normal mixture model, here we propose two methods to find the appropriate weights.

The first strategy is based on the likelihood cross validation, which is similar to the JMA

estimator (Hansen and Racine [2012]), but instead of minimizing cross validation squared

errors, our weights are based on maximization of cross validation likelihood. The second

strategy we use the well-known Bayesian information criterion (BIC) weights.

2.3.1 Weights based on likelihood cross validation

In this section, we study the first strategy which is based on the likelihood cross validation. We

first introduce the notion of Kullback-Leibler (KL) distance to evaluate the estimation accuracy of

the density estimate. The KL distance is defined as the discrepancy between two distributions f

and g as

D(f ||g) =

∫
f(x) log

f(x)

g(x)
dx = E log

f(x)

g(x)
. (2.5)
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Note that the KL distance is not really a metric, it does not satisfy triangle inequality and it is not

symmetric.

Our first method is to use likelihood cross validation to find the weights. Since we have an i.i.d.

sample S = (x1, · · · , xn), we write f̂ (−j)(x) as the estimator of f(x) with the jth data removed

from the sample, j = 1, · · · , n. We then define the log likelihood of data point xj evaluated by

the model estimated using data {x1, · · · , xj−1, xj+1, · · · , xn} as log f̂ (−j)(xj), then our likelihood

cross validation criterion is formulated to be

CV (w) =
n∑
j=1

log f̂ (−j)(xj) (2.6)

where

f̂ (−j)(xj) =
K∑
i=1

ωif̂i
(−j)

(xj)

ωi is the weight for normal mixture model with component number i and f̂i
(−j)

(xj) is the estimator

of normal mixtures with component number i evaluated at point xj with the jth data removed from

the sample. K is the largest number of components we use in the normal mixtures. Then weight ω

is then selected via

ŵ = agrmaxw∈WCV (w). (2.7)

We try to maximize the likelihood of the sample using leave one out cross validation estimators,

which is equal to minimize the KL distance between the underlying true model and our proposed

ANM model.

Theorem 1. Under assumptions A.1− A.3 presented in Appendix A, we have

D(f ||
∑
j

ω̂j f̂j)

inf
ω
D(f ||

∑
j

ωjfj)
→ 1 (2.8)

in probability as n→∞.

NoteD(· ||· ) in Theorem 1 stands for KL distance between two distributions. Theorem 1 states
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that our ANM estimator is asymptotically optimal in the sense that the KL distance is asymptoti-

cally identical to that between true density and the infeasible best possible model average estimator.

The detailed proof for Theorem 1 is given in the Appendix.

2.3.2 Weights based on smooth Bayesian information criterion (BIC)

The Bayesian information criterion (BIC) of Schwarz et al. [1978] takes the form of a penalised

log-likelihood function. In detail,

BICk = −2log(Lk) + log(n)dim(k), (2.9)

for each candidate model k, Lk is the maximized value of the likelihood function for the estimated

model, dim(k) is the number of parameters estimated in the model, and n is the sample size of the

data. Best model is usually chosen by minimizing corresponding BIC value of the model. It has

been proved that when sample size is large enough, the BIC criterion will choose the true model

with probability tending to 1.

Our second method is to use the BIC weights (Buckland et al. [1997]) to combine different

mixture models. Suppose there are K underlying models, BIC weights are defined as

P (fk) =
exp{−1

2
∆BICk}∑K

j=1 exp{−1
2
∆BICj}

, (2.10)

where ∆BICk = BICk − BICmin, BICmin is the minimum BICk over the K models. We then

prove that the proposed weights are consistent in selecting the true model (if the true model is in

the candidates set) or the quasi-true model (if the true model is not in the candidates set).

Here we define the quasi-true model(Buckland et al. [1997]) as follows:

For a set of K models, the Kullback-Leibler distance of model gi from the true density f is

denoted by D(f ||gi). We assume the models are indexed from worst (g1) to best (gK), so that

D(f ||g1) ≥ D(f ||g2) ≥ · · · ≥ D(f ||gK). Let T be the tail subset of the models defined by

{gr, r ≥ t, 1 ≤ t ≤ K|D(f ||gt−1) > D(f ||gt) = · · · = D(f ||gK)}. When t = K, Set T only
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contains the best model which minimizes the KL distance from the true density f . For the case

when T contains more than one model (i.e., 1 ≤ t < K), we assume the models gt to gK are

ordered such that dim(t) < dim(t + 1) ≤ · · · ≤ dim(K). The set T contains models that are all

equally good approximations by KL distance to truth f . However, we can further distinguish them

by their parameter space dimension, and we prefer the smallest dimension model. If t < K, and

dim(t) < dim(t + 1) holds, then model gt is the unique quasi-true model of the K models. With

the definition of quasi-true model, we can prove the following theorem.

Theorem 2. If there exists a true model fi in the candidates set, then P (fi)→ 1 as n→∞; if there

does not exist a true model in the candidates set, then when n→∞, with probablity P (fi)→ 1

the corresponding BIC weights will select the quasi-true model fi.

The details of the proof of Theorem 2 will also be given in the Appendix.

2.4 Simulations

In this section, we present Monte Carlo simulations of the proposed Averaged Normal Mix-

ture(ANM) model. We use the ANM estimator to approximate various kinds of densities. We

start with densities actually generated by normal mixture models, then we estimate some smooth

densities. We set the sample size to be 50 and 100, all specifications repeat 1000 times. We re-

port mean integrated square error (MISE) and mean absolute error (MAE) of ANM model based

on two proposed estimation strategies, we also present the corresponding model selection results

as comparison, which is the best model selected by likelihood cross validation criterion and BIC

criterion.

Before we can really estimate the proposed ANM model, we need to choose the value of K

in ANM model, which is the largest number of components we use in the normal mixtures fk,

theoretically we can set K to be arbitrarily large, here we choose K = 5, it should be large

enough for a modest sample size. Also we can use a screening method, we know that one easy

way to select the number of components in normal mixture models is to use information theoretic

approaches based on penalized likelihood, such as AIC criterion. Studies have shown that the AIC
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type criterion typically overestimates the number of components substantially, so we can use the

number of components chosen by AIC criterion as our maximum number of components in the

ANM model. The simulation results of ANM estimator using screening method and fixed K are

very similar, here we just report the results of using fixed K = 5.

2.4.1 Simulation type I: densities generated by normal mixtures

As the family of normal mixture is extremely flexible, Marron and Wand [1992] used it to rep-

resent a wide range of densities in their study of the mean integrated squared error of the kernel

density estimators. We select 8 examples out of their univariate normal mixture densities, whose

coefficients are presented as follows,

Case 1:Gaussian N(0, 1)

Case 2:Skewed 1
5
N(0, 1) + 1

5
N(1

2
, (2

3
)2) + 3

5
N(13

15
, (5

9
)2)

Case 3:Strongly Skewed
∑7

i=0
1
8
N(3{(2

3
)i − 1}, (2

3
)2i)

Case 4:Kurtotic 2
3
N(0, 1) + 1

3
N(0, ( 1

10
)2)

Case 5:Bimodal 1
2
N(−1, (2

3
)2) + 1

2
N(1, (2

3
)2)

Case 6:Separated Bimodal 1
2
N(−1.5, (1

2
)2) + 1

2
N(1.5, (1

2
)2)

Case 7:Asymmetric Bimodal 3
4
N(0, 1) + 1

4
N(1.5, (1

3
)2)

Case 8:Trimodal 9
20
N(−5

6
, (3

5
)2) + 9

20
N(5

6
, (3

5
)2) + 1

10
N(0, (1

4
)2)

Table 2.1 and Table 2.2 displays how close the estimated density is to the true density in terms

of mean integrated squared estimation error (MISE) and mean absolute error (MAE) with sample

size 50 and 100 across the four methods we mentioned at the beginning of this section: ANM

model based on likelihood cross validation weights (mixcv) and BIC weights (mixbic), as well as

the best model selected by likelihood cross validation criterion (mscv) and BIC criterion (msbic).

Except for MISE and MAE, we also report the ratios between ANM estimator and model selection

estimator. Therefore, our proposed ANM estimator is superior to its corresponding model selection

estimator if the ratio is larger than 1.
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Table 2.1: Simulation results on Marron and Wand densities, sample size:50

mise_mixcv mise_mscv mise_mixbic mise_msbic R1 R2
Case 1 mean_mise 0.3576 0.3505 0.2460 0.2795 0.9802 1.1365

mean_mae 3.9530 3.6091 3.2975 3.3164 0.9130 1.0057
med_mise 0.1876 0.1092 0.1121 0.1034 0.5819 0.9224
med_mae 3.6058 2.9265 2.9520 2.8530 0.8116 0.9665
sd_mise 0.4937 0.9450 0.6444 0.8359
sd_mae 2.1880 2.7124 2.0145 2.2932

Case 2 mean_mise 1.2682 1.7862 1.3363 1.5772 1.4085 1.1803
mean_mae 7.2119 7.8373 6.8129 7.4378 1.0867 1.0917
med_mise 0.7216 0.6701 0.5337 0.6365 0.9286 1.1926
med_mae 6.8014 7.0230 6.2475 6.9090 1.0326 1.1059
sd_mise 4.1281 9.8779 8.9903 9.8628
sd_mae 3.0780 4.1293 3.3683 3.6851

Case 3 mean_mise 8.5930 11.0700 9.5299 11.2080 1.2883 1.1761
mean_mae 18.9294 21.2735 20.2297 22.0077 1.1238 1.0879
med_mise 7.2620 8.6946 7.7990 9.1814 1.1973 1.1773
med_mae 18.4970 20.7176 19.8498 21.3667 1.1201 1.0764
sd_mise 6.5200 9.8527 7.4492 9.5252
sd_mae 5.2362 5.6407 5.4450 5.2564

Case 4 mean_mise 9.4843 13.1749 10.6850 11.5854 1.3891 1.0843
mean_mae 17.5476 18.6224 19.1525 19.4749 1.0613 1.0168
med_mise 6.4263 5.7273 7.0773 6.4784 0.8912 0.9154
med_mae 16.7878 16.0692 17.4430 16.7802 0.9572 0.9620
sd_mise 18.9931 61.4051 10.8671 13.1412
sd_mae 7.2696 9.7777 8.9838 10.2575

Case 5 mean_mise 0.5489 0.7272 0.5815 0.7395 1.3249 1.2716
mean_mae 5.5127 6.5072 5.9253 6.7718 1.1804 1.1429
med_mise 0.4557 0.5828 0.4985 0.6126 1.2789 1.2289
med_mae 5.5579 6.4094 5.9069 6.5791 1.1532 1.1138
sd_mise 0.4263 0.6206 0.4456 0.5736
sd_mae 1.8550 1.9294 1.8192 1.5653

Case 6 mean_mise 0.6847 0.6974 0.7398 0.7639 1.0186 1.0325
mean_mae 6.0417 5.9374 5.9947 6.0106 0.9827 1.0026
med_mise 0.5102 0.4444 0.4576 0.4477 0.8710 0.9785
med_mae 5.7753 5.5062 5.6090 5.5360 0.9534 0.9870
sd_mise 0.8592 1.3666 2.2287 2.4472
sd_mae 2.2904 2.6797 2.5037 2.6405

Case 7 mean_mise 0.7623 1.0371 0.8819 1.0784 1.3606 1.2229
mean_mae 6.2717 7.2648 6.6857 7.5347 1.1584 1.1270
med_mise 0.6676 0.8027 0.7052 0.8473 1.2023 1.2016
med_mae 6.2244 7.0315 6.4740 7.2056 1.1297 1.1130
sd_mise 0.5600 1.0729 41.9631 0.9813
sd_mae 2.1038 2.2637 2.5103 1.9194

Case 8 mean_mise 0.5651 0.7913 0.6445 0.7855 1.4003 1.2188
mean_mae 5.7308 6.8385 6.3582 7.1397 1.1933 1.1229
med_mise 0.4790 0.6954 0.5768 0.7176 1.4520 1.2439
med_mae 5.5690 7.0234 6.4707 7.3539 1.2612 1.1365
sd_mise 0.3740 0.6354 0.4536 0.5565
sd_mae 1.7161 1.9109 1.8226 1.7356
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Table 2.2: Simulation results on Marron and Wand densities, sample size:100

mise_mixcv mise_mscv mise_mixbic mise_msbic R1 R2
Case 1 mean_mise 0.2041 0.2705 0.0784 0.0837 1.3255 1.0677

mean_mae 2.9372 2.8405 2.0777 2.0879 0.9671 1.0049
med_mise 0.1062 0.0544 0.0457 0.0438 0.5123 0.9585
med_mae 2.6509 2.0793 1.8670 1.8543 0.7844 0.9932
sd_mise 0.3032 0.7223 0.1377 0.1857
sd_mae 1.6593 2.3952 1.1841 1.2864

Case 2 mean_mise 0.6010 0.8483 0.4793 0.5761 1.4116 1.2019
mean_mae 5.4666 6.2010 5.2806 5.8340 1.1343 1.1048
med_mise 0.4179 0.4455 0.3503 0.4228 1.0661 1.2072
med_mae 5.2579 5.6688 5.0288 5.5893 1.0782 1.1115
sd_mise 0.6531 1.2759 0.6045 0.7113
sd_mae 2.2849 3.1998 2.2396 2.3331

Case 3 mean_mise 4.7650 5.9730 5.5357 6.2453 1.2535 1.1282
mean_mae 14.2884 15.8239 15.6298 16.6705 1.1075 1.0666
med_mise 4.0194 4.6977 4.7155 5.2184 1.1688 1.1066
med_mae 13.9162 15.3746 15.2745 16.2692 1.1048 1.0651
sd_mise 3.3254 4.6813 4.0518 4.5029
sd_mae 3.8427 4.2668 4.2128 4.3426

Case 4 mean_mise 4.2378 4.5464 4.0355 4.0841 1.0728 1.0120
mean_mae 11.9597 11.7755 11.4730 11.4491 0.9846 0.9979
med_mise 2.8228 2.4220 2.3090 2.2698 0.8580 0.9830
med_mae 11.0363 10.4572 10.1034 10.0493 0.9475 0.9946
sd_mise 4.1765 6.5871 4.8932 5.3708
sd_mae 5.3054 6.1341 6.1766 6.4383

Case 5 mean_mise 0.3072 0.4003 0.3294 0.3974 1.3030 1.2062
mean_mae 4.0769 4.4492 4.5072 4.9572 1.0913 1.0998
med_mise 0.2431 0.2606 0.2957 0.4180 1.0720 1.4137
med_mae 3.9548 4.1661 4.5541 5.2844 1.0534 1.1604
sd_mise 0.2512 0.4886 0.2215 0.2670
sd_mae 1.4661 1.9723 1.5639 1.7829

Case 6 mean_mise 0.3059 0.3324 0.2385 0.2404 1.0870 1.0080
mean_mae 4.0855 4.0775 3.7394 3.7380 0.9981 0.9996
med_mise 0.2300 0.2014 0.1789 0.1749 0.8756 0.9778
med_mae 3.9498 3.7221 3.4728 3.4527 0.9423 0.9942
sd_mise 0.2767 0.4596 0.2068 0.2205
sd_mae 1.6044 1.9261 1.5443 1.5709

Case 7 mean_mise 0.4179 0.5434 0.5105 0.6239 1.3003 1.2222
mean_mae 4.6125 5.0757 5.1633 5.7203 1.1004 1.1079
med_mise 0.3488 0.3812 0.4547 0.6473 1.0930 1.4237
med_mae 4.4694 4.8012 5.2101 6.0116 1.0742 1.1538
sd_mise 0.3181 0.5519 0.3887 0.4329
sd_mae 1.6237 2.1290 1.7743 1.8911

Case 8 mean_mise 0.3438 0.4773 0.3725 0.4223 1.3884 1.1337
mean_mae 4.3834 4.8194 4.8073 5.0760 1.0995 1.0559
med_mise 0.2794 0.3208 0.3134 0.3252 1.1480 1.0378
med_mae 4.2351 4.5054 4.6219 4.7176 1.0638 1.0207
sd_mise 0.3133 1.3227 0.2358 0.2881
sd_mae 1.3193 1.6877 1.5298 1.8316
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As the simulation results show, all of the estimators improve with the sample size increases,

which means with larger sample size, we have smaller MISE and MAE value for all estimators.

We also notice that the ratio R1 (mean of MISE (or MAE) for ANM model using likelihood cross

validation weights/mean of MISE (or MAE) for best selected model by likelihood cross validation

criterion) and R2 (mean of MISE (or MAE) for ANM model using BIC weights/mean of MISE

(or MAE) for best selected model by BIC criterion) are basically the same when the sample size

increases, so we focus on the case when sample size is 50.

For both of ANM estimators with likelihood cross validation weights and BIC weights, they ba-

sically behave better or similar compared to their corresponding best selected model. In Case 1 and

Case 6, the ANM estimators yield similar results with their corresponding best selected model, it is

reasonable since in Case 1, the underlying true distribution is a simple Gaussian distribution, even

though the ANM estimators put most of weights on the normal mixture model with one compo-

nent, we still have a lot of parameters to estimate and it will introduce a lot of noises in the model,

also in this case it is not hard for model selection algorithm to identify a Gaussian distribution.

Case 6 is Separated Bimodal, in this case it is relatively easy for the model selection algorithm to

select the appropriate number of components, since it is two separate Gaussian distributions with

same shape but different locations that relatively far from each other. In other cases like Case 2

and Case 4, which are Skewed and Kurtotic distributions, our proposed ANM estimators behave

slightly better than the best selected models, especially for the mean of the MISE, which means

our proposed estimator is more robust to outliers. In other cases like Case 3, Case 5, Case 7 and

Case 8, our proposed ANM estimators behave significantly better than the best selected models,

for the ANM estimator with likelihood cross validation weights, it improve the results by 12% to

45% according to different criterion, the ANM estimator with BIC weights also improve the results

by 7% to 27%. Since in all these cases, the underlying distributions are either highly asymmetric

or generated by normal mixtures hard to separate. Also we notice that almost all the standard de-

viation of the ANM estimators are smaller than its corresponding selection models, which means

our proposed estimators are more robust and stable.
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2.4.2 Simulation type II: smooth densities

In this part we run experiments on some densities not generated by normal mixture models. Bai

and Ng [2005] used six symmetric and eight skewed distributions in their paper, these densities in-

clude t distribution, log-normal distribution and chi-squared distribution, as well as some other

distributions generated from the generalized lambda family. This family encompasses a range of

symmetric and asymmetric distributions. The coefficients of these densities are listed as follows,

S1 t5

S2 e1I(z ≤ .5) + e2I(z > .5), where z ∼ U(0, 1), e1 ∼ N(−1, 1), and e2 ∼ N(1, 1)

S3 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = .19754, λ3 = .134915, λ4 = .134915

S4 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = −1, λ3 = −.08, λ4 = −.08

S5 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = −.397912, λ3 = −.16, λ4 = −.16

S6 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = −1, λ3 = −.24, λ4 = −.24

A1 lognormal : exp(e), e ∼ N(0, 1)

A2 X 2
2

A3 exponential : − log(e), e ∼ N(0, 1)

A4 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = 1, λ3 = 1.4, λ4 = .25

A5 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = −1, λ3 = −.0075, λ4 = −.03

A6 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = −1, λ3 = −.1, λ4 = −.18

A7 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = −1, λ3 = −.001, λ4 = −.13

A8 F−1(u) = λ1 + [uλ3 − (1− u)λ4 ]/λ2, λ1 = 0, λ2 = −1, λ3 = −.0001, λ4 = −.17

Table 2.3 and Table 2.4 display how close estimated density is to the true density in terms of

MISE and MAE with sample size 50 and 100 across the four methods we mentioned above.

We also report the boxplots for readers to visually compare the results. Since several distribu-

tions yield similar results, for the ease of presentation, we just report the simulation results of

S1, S3, S5, S6, A1, A2, A3 and A5.
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Table 2.3: Simulation results on Bai and Ng densities, sample size:50

mise_mixcv mise_mscv mise_mixbic mise_msbic R1 R2
S1 mean_mise 0.3494 0.4534 0.2997 0.3552 1.2976 1.1852

mean_mae 4.0383 4.2993 3.7131 3.9123 1.0646 1.0536
med_mise 0.2229 0.1824 0.1628 0.1652 0.8180 1.0143
med_mae 3.7962 3.6716 3.3733 3.4864 0.9672 1.0335
sd_mise 0.4448 0.8952 0.5635 0.7719
sd_mae 1.8362 2.6096 1.9965 2.2573

S3 mean_mise 0.4029 0.4061 0.3105 0.3444 1.0081 1.1091
mean_mae 4.1992 3.8375 3.4601 3.4725 0.9139 1.0036
med_mise 0.2034 0.1151 0.1179 0.1104 0.5661 0.9361
med_mae 3.6977 2.9952 3.0054 2.9534 0.8100 0.9827
sd_mise 0.6085 1.0755 1.1081 1.3344
sd_mae 2.3593 3.0405 2.2108 2.4221

S5 mean_mise 0.8692 1.2455 1.0259 1.1973 1.4329 1.1670
mean_mae 6.4247 7.3188 6.2894 6.7534 1.1392 1.0738
med_mise 0.5793 0.6427 0.4923 0.5495 1.1095 1.1163
med_mae 6.1265 6.7240 5.8000 6.2140 1.0975 1.0714
sd_mise 0.9719 2.0938 2.9420 3.2275
sd_mae 2.7254 3.8082 3.1559 3.4498

S6 mean_mise 2.3789 3.3349 2.7313 3.3942 1.4018 1.2427
mean_mae 10.5402 11.9698 10.5768 11.3904 1.1356 1.0769
med_mise 1.6269 1.7433 1.4115 1.6090 1.0715 1.1400
med_mae 10.3045 10.9532 9.7898 10.5761 1.0630 1.0803
sd_mise 3.3098 7.3877 5.8626 8.6260
sd_mae 4.4366 6.0786 5.1067 5.6657

A1 mean_mise 2.7447 3.9344 3.0229 3.4887 1.4335 1.1541
mean_mae 11.4409 13.6121 12.2048 13.2546 1.1898 1.0860
med_mise 2.3018 3.0158 2.3526 2.7975 1.3102 1.1891
med_mae 11.1123 13.2008 11.8453 12.9476 1.1879 1.0931
sd_mise 1.9047 3.3200 2.4722 2.6923
sd_mae 3.1294 3.6157 3.4841 3.3007

A2 mean_mise 1.7175 2.3164 1.9320 2.2476 1.3487 1.1633
mean_mae 8.8003 10.1606 9.3219 10.1663 1.1546 1.0906
med_mise 1.4603 1.8415 1.5572 1.7697 1.2610 1.1364
med_mae 8.6824 9.8705 9.1278 9.8558 1.1368 1.0798
sd_mise 1.0164 1.6730 1.5077 1.6423
sd_mae 2.0001 2.1972 2.2573 2.0897

A3 mean_mise 6.9267 9.2566 7.5839 8.9737 1.3364 1.1833
mean_mae 17.5792 20.3233 18.6510 20.2825 1.1561 1.0875
med_mise 5.8884 7.3694 6.3373 7.2086 1.2515 1.1375
med_mae 17.1729 19.6042 18.1731 19.5726 1.1416 1.0770
sd_mise 4.7894 8.8557 6.0535 9.0155
sd_mae 3.9132 4.4376 4.2852 4.1072

A5 mean_mise 915.1130 1254.9829 1020.2936 1261.4159 1.3714 1.2363
mean_mae 212.9856 252.9258 221.7764 243.6075 1.1875 1.0984
med_mise 661.5490 847.1154 635.6542 770.7268 1.2805 1.2125
med_mae 204.7086 241.2889 209.9631 232.5765 1.1787 1.1077
sd_mise 976.8954 1461.3492 2020.5386 3383.1201
sd_mae 81.6599 103.6218 89.7911 94.1933
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Table 2.4: Simulation results on Bai and Ng densities, sample size:100

mise_mixcv mise_mscv mise_mixbic mise_msbic R1 R2
S1 mean_mise 0.2128 0.3067 0.1591 0.1864 1.4415 1.1718

mean_mae 3.2324 3.6139 2.9548 3.1799 1.1180 1.0762
med_mise 0.1445 0.1374 0.1038 0.1173 0.9511 1.1295
med_mae 3.0668 3.1196 2.7478 2.9369 1.0172 1.0688
sd_mise 0.2461 0.5340 0.1859 0.2406
sd_mae 1.4775 2.0721 1.4047 1.5263

S3 mean_mise 0.2094 0.2769 0.0908 0.0977 1.3220 1.0766
mean_mae 2.9736 2.8482 2.1105 2.1077 0.9578 0.9987
med_mise 0.1085 0.0626 0.0489 0.0467 0.5774 0.9534
med_mae 2.7150 2.2116 1.9629 1.9311 0.8146 0.9838
sd_mise 0.3882 1.3561 0.2828 0.4568
sd_mae 1.5943 2.2889 1.1711 1.2484

S5 mean_mise 0.5201 0.7825 0.4850 0.6217 1.5044 1.2819
mean_mae 5.0311 5.6599 4.8519 5.2186 1.1250 1.0756
med_mise 0.3783 0.3815 0.2983 0.3460 1.0087 1.1600
med_mae 4.9241 5.1604 4.5781 4.9069 1.0480 1.0718
sd_mise 0.5856 1.4539 1.2330 2.7664
sd_mae 2.1157 2.9667 2.2329 2.4342

S6 mean_mise 1.3081 1.8922 1.1257 1.2847 1.4465 1.1412
mean_mae 7.9234 8.4994 7.5346 7.8935 1.0727 1.0476
med_mise 0.9486 0.7811 0.7427 0.7710 0.8234 1.0380
med_mae 7.6314 7.3535 7.0661 7.2283 0.9636 1.0230
sd_mise 1.3532 3.2685 1.6317 2.0373
sd_mae 3.2101 4.6671 3.3855 3.7799

A1 mean_mise 1.6519 2.1787 1.7642 2.0202 1.3189 1.1451
mean_mae 8.9507 10.2403 9.5257 10.2128 1.1441 1.0721
med_mise 1.4180 1.8197 1.5493 1.7598 1.2833 1.1359
med_mae 8.7870 9.9937 9.3931 10.1008 1.1373 1.0753
sd_mise 1.0012 1.4673 1.2688 1.5154
sd_mae 2.2853 2.6855 2.2910 2.3037

A2 mean_mise 1.1494 1.4301 1.2771 1.4430 1.2442 1.1300
mean_mae 7.1076 7.9586 7.6371 8.2284 1.1197 1.0774
med_mise 1.0283 1.2667 1.1644 1.3026 1.2319 1.1187
med_mae 7.0331 7.8419 7.5366 8.1326 1.1150 1.0791
sd_mise 0.5642 0.7291 0.6220 0.6720
sd_mae 1.4526 1.5441 1.5085 1.3609

A3 mean_mise 4.6559 5.8048 5.1064 5.7516 1.2468 1.1264
mean_mae 14.3232 15.9969 15.2523 16.4402 1.1169 1.0779
med_mise 4.2012 4.9889 4.5707 5.1596 1.1875 1.1288
med_mae 14.1406 15.7244 14.9917 16.2461 1.1120 1.0837
sd_mise 2.3365 3.5213 2.6160 2.6791
sd_mae 2.9759 3.2019 3.1208 2.8539

A5 mean_mise 507.5066 712.5088 502.1480 647.2115 1.4039 1.2889
mean_mae 161.5284 183.7813 161.2635 169.0281 1.1378 1.0481
med_mise 402.5623 431.1228 341.3955 361.8346 1.0709 1.0599
med_mae 158.7149 171.8432 152.8234 158.0199 1.0827 1.0340
sd_mise 458.3201 1009.8079 1714.6962 4761.0670
sd_mae 59.2563 79.9294 61.3866 67.1398
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The simulation results show that our proposed ANM estimators also yield good performance

on the densities not generated by normal mixture models. Similar to the simulation results of pre-

vious subsection, all of the estimators improve with the sample size increases, the ratio R1 and

R2 are basically stay unchanged when the sample size increases, so we focus on when sample

size is 50. For cases like S1, S3, S5 and S6, the ANM estimators yield similar results with their

corresponding best selected model, since in all these cases the underlying densities are symmetric

and similar to Gaussian distributions, they are relatively easy for the model selection algorithm to

identify, or even if the model selection algorithm could not correctly identify the underlying distri-

bution structure, the misspecification loss is relatively small. Also notice that in almost all of these

cases, mean of the MISE of the proposed ANM estimators are much smaller than their correspond-

ing best selected estimators, which means our proposed estimators are more robust to outliers. For

cases like A1, A2, A3 and A5, our proposed ANM estimators behave significantly better than the

best selected models, for the ANM estimator with likelihood cross validation weights, it improve

the results by 14% to 43% according to different criterion, the ANM estimator with BIC weights

also improve the results by 8% to 23%. From the simulations results we can tell that our proposed

ANM estimators behave better if the underlying densities are asymmetric. Also the standard devi-

ation of the ANM estimators are smaller than its corresponding selection models, so our proposed

estimators are more stable.

2.5 Empirical applications

In this section we apply the proposed ANM estimator to the real world example we showed

in the introduction. The dataset contains a random sample taken from the 1971 Canadian Census

Public Use Tapes for male individuals having common education level (grade 13) and there are

205 observations in total. For the ease of presentation, we just show the ANM estimator using

cross validation weights.

As we discussed in the introduction, normal mixture density estimator is unstable if we change

the number of components used in the model, it tends to underfit the underlying density if we

choose a small value for the number of components and overfit it if we choose a large value for
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the number of components. We show our proposed ANM density estimator in red line in Figure

2.2 (b), it contains more information compared to the normal mixtures density estimator with 2

components which is shown in the orange line, and its shape is more similar to the kernel density

estimator in Figure 2.2 (a). Also the ANM density estimator is more “smooth” compared to the

normal mixture density estimator with 3 components and shows no tendency of overfitting. For the

best selected model, the model selection algorithm based on likelihood cross validation chooses

normal mixtures with 3 components. Clearly it is the most wiggly one and overfit the underlying

distribution.

(a) (b)

Figure 2.2: Density estimation of “cps71" data set, empirical study
(a)kernel density estimator and histogram for logarithm of data. (b)normal mixture density estimators

using components number from k = 1 to k = 3, which corresponds to black, orange and blue curve, and
we denote our proposed ANM estimator as red line.

2.6 Conclusion

In this study, we propose an Averaged Normal Mixture model for density estimation based on

normal mixture models. Instead of selecting the appropriate number of components in a normal

mixture model, we first estimate a series of normal mixture models with different number of com-

21



ponents, then we take these estimated normal mixture models as given, and we find different ways

to give appropriate weights to these models and combine all these models. This new method is

more stable and generally more accurate than the best selected normal mixture models. We pro-

pose two methods to find the appropriate weights in the Averaged Normal Mixture model, one is

based on likelihood cross validation and the other one is based on BIC weights. We have estab-

lished the theoretical properties of the proposed estimator and the simulation results demonstrate

its good performance on different kind of densities. Finally, we illustrate that our proposed esti-

mator behaves well on a real world data set. For future studies, we can extend the univariate cases

to multivariate cases and explore the properties of the proposed estimator in high dimension.
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3. GAUSSIAN PROCESS MODELS OF ELECTRICITY DEMAND FORECASTING

3.1 Introduction

During the past few decades, electricity demand forecasting has played an increasingly im-

portant role in the electric power industry. It is vital to many aspects of the electricity industry

such as power system planning and operation, transmission design, and financial risk manage-

ment. Since electricity is difficult to store, supply and demand have to be balanced at every point

in time. Consequently, overestimation of electricity demand may result in excessive purchase and

an unnecessary waste of energy while underestimation may cause disturbance in the power system.

There is a vast literature on the forecasting of electricity demand, ranging from long, medium to

short term demand. See e.g. Hong and Fan [2016] for an overall review. In this paper we focus on

the short term demand forecasting. More specifically, given historical hourly electricity demand

data, we shall predict the 24 hourly electricity demand for the next day. This is of particular impor-

tance to many electricity suppliers as they customarily submit daily bid schedules 24 hours ahead

of time.

Many methods have been applied to forecast electricity demand, largely focusing on point fore-

casts. For an overview of common methods see Weron [2007] and Taylor and McSharry [2007].

Most widely used methods include linear regression models (Weron [2007]; Bianco et al. [2009]),

exponential smoothing (Taylor [2003]) and ARIMA models (Huang and Shih [2003]; Erdogdu

[2007]). More recently, machine learning techniques have been adopted for this purpose; see e.g.

support vector regression (Chen et al. [2004a]; Kavaklioglu [2011]) and artificial neural networks

(Hippert et al. [2001]; Taylor and Buizza [2002]). There also exists a small literature on proba-

bilistic forecasting that predicts quantities such as the quantiles, intervals, or distribution/density

functions (Fan and Hyndman [2012]; Hong and Fan [2016]). The probabilistic approach is advan-

tageous in that it provides not only point estimates but other inferential information pertinent to

forecasting uncertainty and therefore facilitates risk assessment and management.
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Following the probabilistic approach, in this study we adopt the method of Gaussian Process

modeling for electricity demand forecasting. Under the framework of Gaussian Process, each

marginal distribution retains Gaussianity. We thus naturally obtain probabilistic forecasts, based

on which point forecasts and other quantities of interest can be easily inferred. The Gaussian

Process is a powerful nonparametric machine learning method for regression analysis and it has

been widely used in time series forecasting. The key feature of Gaussian Process modeling is the

construction of covariance matrix, through which the covariates influence the outcome of interest.

Leith et al. [2004] first used Gaussian Process to forecast weekly Irish electricity demand, employ-

ing an exponential squared covariance function of smooth time trend and a seasonal component.

Mori and Ohmi [2005] and Lourenco and Santos [2012] used similar Gaussian Process models

with a variety of covariates. Blum and Riedmiller [2013] extended the model by Leith et al. [2004]

by incorporating weather information. Alamaniotis et al. [2014] compared different covariance

functions in forecasting electricity demand of the New England region.

In this study, we use the Gaussian Process models to predict short term electricity demand in

the state of Texas. We focus our investigation on probabilistic forecast, which is indispensable to

the electricity industry.

The main contribution of this study is a novel hybrid Gaussian Process forecasting strategy

that combines point forecasts from the DirRec strategy and variance forecasts from the direct

strategy (more on these strategies below). We show that the proposed hybrid forecasting approach

outperforms other forecasting methods considerably. We also show that the Gaussian Process

models provide superior forecasts relative to conventional regression models.

In addition to statistical investigation, we further illustrate how the probabilistic forecasts ob-

tained from the Gaussian Process models can be used in a decision-theoretic framework to optimize

economic decision making and risk management in the electricity industry. In particular, we apply

the proposed method to derive the optimal bidding strategy for electricity suppliers with a stylized

asymmetric loss function. Our examples suggest that the proposed hybrid Gaussian Process mod-

els provide reliable and valuable probabilistic forecasts that inform and help facilitate operation
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planning and risk management in the electricity industry.

The rest of this article is organized as follows. Section 3.2 gives a brief introduction of the

Gaussian Process regression model. In Section 3.3, we describe the electricity market in Texas and

the data used in this study. Section 3.4 presents the hybrid forecasting approach and section 3.5

reports the forecasting results. Section 3.6 provides some economic applications of our proposed

method. The last section concludes.

3.2 Preliminaries on Gaussian Process models

In this section, we provide a brief introduction to the Gaussian Process regression models.

Interested readers are referred to Rasmussen and Williams [2006] for an illuminating treatment

of this subject. Gaussian process (GP) is a powerful nonparametric machine learning approach

for regression and classification. It has also been widely used in time series analysis. The Gaus-

sian process extends multivariate Gaussian distributions to infinite dimensionality. Formally, a

Gaussian process generates data from a certain domain such that any finite subset within the

range follows a multivariate Gaussian distribution and each single element of the set follows a

Gaussian distribution. A GP regression model is formulated as follows. Consider a training set

D = {(Xi, Yi), i = 1, . . . , N} of N pairs of input xi and output yi from an underlying relationship

f . Here f is typically assumed to be a zero-mean Gaussian process with a covariance (kernel)

function k(·, ·), and the observations yi are given by

yi = f(xi) + εi, i = 1, . . . , N, (3.1)

where εi ∼ N (0, σ2) are white noises independent of f(xi).

Let x = [x1, x2, . . . , xN ]′ and y = [y1, y2, . . . , yN ]′. Denote the predictive distribution of

outcome at a test location x∗ by f∗ = f(x∗). The joint distribution of (f∗, y) is then given by

 f∗

y

 = N

0,

 k∗∗ k′x∗

kx∗ σ2I +Kxx


 , (3.2)
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where k∗∗ = k(x∗, x∗), kx∗ = (k(x1, x∗), . . . , k(xN , x∗))
′, Kxx is anN×N matrix with the (i, j)th

entity k(xi, xj) and I is a N -dimensional identity matrix. The predictive distribution of f∗ given y

is

f∗|y = N (k′x∗(σ
2I +Kxx)

−1y, k∗∗ − k′x∗(σ
2I +Kxx)

−1kx∗). (3.3)

The predictive mean k′x∗(σ
2I + Kxx)

−1y gives the point forecast of f(x) at location x∗, whose

uncertainty is measured by the predictive variance k∗∗− k′x∗(σ
2I +Kxx)

−1kx∗ . Note that the point

forecast at location x∗ depends on y and the various variance and covariance components, and is

usually non-zero. The covariates influence the predictive outcome through the covariance. In this

sense, the covariance is the determining factor of a GP predictor as it encodes our assumptions

about the underlying relationship we wish to learn.

The most popular choice of the covariance function in GP models is the Squared Exponential

(SE) covariance given by

kSE(xi, xj) = σ2
f exp [−(xi − xj)2

2l2
], (3.4)

where σ2
f reflects the maximum allowed covariance that usually increases with the variation of

y. The so-called length scale l determines the relevancy of input x to the outcome y. To see

this, note that the covariance between xi and xj vanishes under a sufficiently large length scale

l, effectively removing it from the inference. A covariance function with this feature is called

an Automatic Relevance Determination (ARD) covariance function. There exist a large selection

of kernel functions that are suitable to model various functional relationship; see Chapter 4 of

Rasmussen and Williams [2006] for details.

The performance of GP models hinges on the configuration of the covariance function and its

tuning parameters, which are referred to as the hyperparameters in the machine learning literature.

Given model (3.1) and the SE kernel (3.4), the covariance function for the training set takes the

form

k(xi, xj) = σ2
f exp [−(xi − xj)2

2l2
] + σ2δ(xi, xj), (3.5)

where δ(xi, xj) is the Kronecker delta function. The hyperparameter of this model then consists of
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θ = (σ2
f , σ

2, l). One possibility of hyperparameter selection is via Maximizing A Posteriori (MAP)

likelihood p(θ|x, y) of the GP model given the observed data. The log likelihood log p(y|x, θ) is

given by

log p(y|x, θ) = −1

2
y′K−1

xx y −
1

2
log |Kxx| −

N

2
log(2π), (3.6)

where Kxx is an N × N matrix with the (i, j)th entity k(xi, xj) given in (3.5). Owing to its close

connection to the Bayesian analysis, this likelihood function log p(y|x, θ) for a GP model is often

referred to as the marginal likelihood function. The first part of the likelihood function −1
2
y′K−1

xx y

reflects the goodness of fit. The second part −1
2

log |Kxx| can be viewed as a complexity penalty

that depends on the covariance function and the inputs. The third part is a normalization constant.

The presence of the complexity penalty, which is partially controled by the hyperparamters, in the

objective function can effectively prevent overfitting.

3.3 ERCOT electricity market and data description

In this section, we provide a brief introduction to the electricity market in the state of Texas

and discuss the data used in our analysis.

3.3.1 ERCOT electricity market

We focus on the electricity market of Texas in our study of electricity demand forecasting. The

Electric Reliability Council of Texas (ERCOT) manages the flow of electric power to 24 million

Texas customers, representing about 90 percent of the state’s electric load. As the independent

system operator for the region, ERCOT schedules power on an electric grid that connects more

than 46,500 miles of transmission lines and 570+ generation units. It also performs financial set-

tlement for the competitive wholesale bulk-power market and administers retail switching for 7

million premises in competitive choice areas. Participants in this electricity market mainly in-

clude generation companies, retail electric providers, consumers and transmission and distribution

utilities.

In the ERCOT electricity market, a retail electric provider buys electricity from electricity

generation companies and sells the electricity to consumers. Between generation companies and
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retail electric providers, most of the electricity is traded via bilateral agreements one day ahead

of the planned transactions. In addition to this bilateral market, ERCOT, as the system operator,

administers a market to balance the real time electricity supply and demand. There exists two

types of bilateral markets: the “day ahead market” and the “real time market.” In the ERCOT

electricity market, although most of the electricity is traded in the day ahead market, it is the short

term fluctuations of electricity usage in the real time market that expose the participants in the

electricity industry to substantial financial risk.

Typically in the day ahead market, firms submit to ERCOT an hourly schedule of electricity

supply to inject and withdraw at specific locations and times for the next day. The actual electric-

ity usage frequently deviates from the scheduled supply and demand due to a myriad of reasons.

Whenever this occurs, firms have to increase or decrease their scheduled electricity supply accord-

ingly. These real time adjustments are often costly. When the actual demand exceeds the scheduled

supply, a retail electricity provider has to pay a premium on top of the spot price to acquire extra

electricity from the producers. On the contrary, when the actual demand falls below the sched-

uled supply, the retail electricity provider can only unload the excessive supply at a price below

the spot price. Therefore one-day-ahead forecasting of hourly electricity demand is of tremendous

importance in this market. Reliable forecasts can effectively improve the overall efficiency of this

market, reduce energy waste and increase overall social welfare.

3.3.2 Data description

ERCOT has made publicly available the electricity load data for its eight weather zones. This

study focuses on electricity demand of the southern weather zone, one of the major weatherzones

of Texas. Specifically we shall conduct one day ahead forecasts of electricity demands, which

are most useful for the markets’ participants. Each day is divided into 24 hourly periods, which

correspond to ERCOT’s daily market settlement periods.

We use the hourly electricity data of year 2013 obtained from ERCOT website in our investi-

gation. As we can see from Table 3.1, the hourly electricity load, in the unit of million watts per

hour (MW/h), ranges from 1665.98 MW/h to 5206.73 MW/h, with an average demand of 3070.14
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MW/h for the south weatherzone of Texas. Hourly weather data are obtained from the Local Cli-

matological Database of National Oceanic and Atmospheric Administration (NOAA). Our hourly

weather data contain temperature (in whole degrees Fahrenheit (F)), relative humidity (given to

the nearest whole percentage) and wind speed (in miles per hour (mph)). We obtain these weather

data from 3 weather stations in the southern regions of Texas and use their averages in our analysis.

Since our investigation suggests little influence of humidity and wind speed on electricity usage,

we only include temperature in this study. After removing national holidays and days with missing

data, we end up with 354 days for year 2013, with a total of 8,496 hours. Summary statistics of the

data are reported in Table 3.1. The hourly demand data for year 2013 are illustrated in Figure 3.1

(a), which shows clear seasonal and weekly patterns in electricity usage.

Table 3.1: Data summary statistics

Load(MW) Temperature(F)
Mean 3070.14 72.14
Min 1665.98 33.00
Median 2911.04 74.50
Max 5206.73 108.00
StDev 750.96 14.67

Given the objective of forecasting electricity demand one day ahead, we opt to use the previous

15 days’ data in the prediction for any given day, which amounts to using the previous 360 hours’

data to predict the next 24 hours’ electricity demand. We have experimented with longer and

shorter length of historical data in this investigation. The results are not sensitive to the choice of

window length. To save space we only report forecasting results using 15 days’ historical data.

An illustration of the (360+24) hour window is given in Figure 3.1(b) for an arbitrarily selected

day (March 5, 2013) in our sample. In this plot, we use a vertical line to separate the data used

for estimation and those to be forecasted. There is an evident intra-day pattern that peaks in the

afternoon. Below we shall randomly choose 120 days from the year of 2013 for forecasting and
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Figure 3.1: Electricity usage of southern Texas

out-of-sample evaluation.

3.4 GP model of electricity demand

3.4.1 Design of covariance function

The key modeling component in the GP approach is the covariance matrix. There are a lot

of covariance functions we can choose from besides the Squared Exponential form, such as the

Matern, Periodic and linear kernels. Further flexibility is afforded as one can construct a com-

posite covariance matrix with sum or product of kernels. See Rasmussen and Williams [2006] for

a detailed discussion of covariance matrix for GP models. As noted above, the length scales of

the kernels have the appealing property of automatic relevance determination such that irrelevant

covariates are effectively removing from the modeling via data-driving selection of the hyperpa-

rameters. Our preferred model employs the following covariance function for electricity demand

forecasting:

Cforecast = kT + ktemperature + kday + khour + kload−1 (3.7)

where k takes the form of Squared Exponential covariance function. This covariance function is

constructed as a sum of univariate kernels of individual covariates. The input variables included

in the model are time (T ), temperature, day of the week (day), hour of the day (hour) and the
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electricity usage of the previous hour (load−1). In particular, we use the time variable to capture

the long term trend of the electricity usage, and day of the week and hour of the day to model the

intra-week and intra-day seasonality. We use temperature and the lagged electricity usage to help

explain short term variations. We have also experimented with additional weather conditions such

as relative humidity and wind speed. These variables turn out to have little effects on the estimation

and forecasting and therefore are not included in our model. We use the MAP approach, discussed

in the previous section, to select the hyperparameters.

3.4.2 Forecasting strategy

Our task of predicting 24 hourly electricity demands entails forecasts up to 24 steps ahead.

Various strategies have been proposed in the literature to tackle the multiple-step-ahead forecast

problem. Two commonly strategies are the Recursive strategy and the Direct strategy; see e.g.

Taieb et al. [2012] and Xiong et al. [2013]. In the Recursive strategy, a single model is trained

to perform a one-step ahead forecast; for multiple-step-ahead forecast, the previously forecasted

values are used as input in subsequent forecasts (using the same one-step ahead model). In the

Direct strategy, different models are constructed for each forecasting horizon separately; both one-

step and multi-step forecasts use only historical observations up to the time of forecast.

In this paper, we propose a hybrid Gaussian Process model. In particular we adopt the DirRec

strategy proposed by Sorjamaa and Lendasse [2006] for point forecasts. This approach is a com-

bination of the Direct strategy and the Recursive strategy and hence the name DirRec. At every

forecast time step, the DirRec strategy uses a different model (same as the Direct strategy) and in-

corporates the forecasted values from previous steps into the input set (same as Recursive strategy).

At the same time, we use the Direct strategy proposed by Cox [1961] for variance forecasts.

Point Forecasts Based on the DirRec Strategy

We first describe our DirRec strategy for Gaussian Process point forecasts. For a given time t,

we aim to forecast the electricity demand of the next 24 hours, namely t+1, t+2, · · · , t+24. Our
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forecast model can be written as:

yt = G(Tt, temperaturet, dayt, hourt, loadt−1) + εt (3.8)

where G is a Gaussian processes model with zero mean and covariance function Cforecast. This

model is trained using the previous 360 hours’ data. Following the common practice in GP mod-

eling, we standardize the independent variable in our estimation to improve its numerical stability.

We then use the following procedure to forecast one-day-ahead hourly electricity demand for

the next 24 hours.

• We first predict the next period demand yt+1, using information Tt−360, . . . ,

hourt−360, loadt−361, . . . , Tt, hourt, loadt−1 to train the Gaussian process model G. De-

note the estimated model by Ĝ1. We use Ĝ1 to predict the next period demand ŷt+1 =

Ĝ1(Tt+1, . . . , hourt+1, loadt).

• Similarly we use Tt−360, ..., hourt−360,loadt−361, . . . , Tt+1, hourt+1, loadt to obtain an up-

dated model Ĝ2. We then predict the electricity demand at time t+2 with ŷt+2 = Ĝ2(Tt+2, . . . ,

hourt+2, ŷt+1). Note that since loadt+1 is not known to the forecaster at the time of forecast-

ing, we replace it with the prediction ŷt+1 from the previous step.

• We next use Tt−360, ..., hourt−360,loadt−361, . . . , Tt+2, hourt+2, ŷt+1 to obtain an updated model

Ĝ3 and predict the next period demand with ŷt+3 = Ĝ3(Tt+3, . . . , hourt+3, ŷt+2). Similarly

to the previous step, we use ŷt+2 in the place of loadt+2 in the forecasting step. This proce-

dure is repeated to obtain the subsequent forecasts ŷt+4, · · · , ŷt+24.

In the above forecast strategy, for every step we train a Gaussian Process model that includes

previously forecasted results as part of its input. The advantage of this approach is that rather than

only using observations up to the point of forecasting, it also incorporates proxy of more recent

outputs, which may help improve multi-step-ahead predictions. However the forecasted outcomes

are bound to differ from actual outcomes and along the course of this incremental incorporation of
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previous forecasts, prediction errors tend to accumulate. Since the DirRec approach takes the pre-

viously forecasted outcomes as given and ignores forecasting uncertainty, its variance predictions

tend to underestimate the true variance of the forecast and the degree of under-estimation generally

increases with the forecasting horizon.

Variance Forecasts Based on the Direct Strategy

As noted above, the ‘naive’ variance forecasts from the DirRec approach tend to underestimate

the true forecasting variation. One possible alternative to construct variance forecasts is to use

Monte Carlo simulations. However in our case this method is going to be increasingly expensive

as we proceed along the forecasting time path. We therefore choose to use the Direct strategy to

construct the variance forecasts.

In particular, we use the following procedure to generate a second set of hourly electricity

demand probabilistic forecasts for the next 24 hours. Given an arbitrary period t, we aim to forecast

the electricity demand of periods t+ 1, t+ 2, · · · , t+ 24. For an h-step ahead forecast, we use

yt+h = G′(Tt+h, temperaturet+h, dayt+h, hourt+h, yt) + εt,h (3.9)

where h = 1, . . . , H , and

ŷt+h = Ĝ′(Tt+h, temperaturet+h, dayt+h, hourt+h, yt) (3.10)

In this procedure, for every forecast step we train a Gaussian Process model based only on past

information of electricity demand up to yt. Different from the DirRec approach, previously pre-

dicted outcomes are not incorporated as input in multi-step ahead forecasting. Although the point

forecasts under this approach is generally not as accurate as those from the DirRec approach, the

Direct approach tends to produce more reliable variance estimates for multi-step ahead forecasts.

This is confirmed by our numerical experiments below.

33



Probabilistic Forecasts Based on the Hybrid Strategy

To combine the strength of the DirRec and Direct strategies and eschew their respective weak-

ness, we propose to use the point estimates from the DirRec strategy and variance estimates from

the Direct strategy. We term the resultant distribution a hybrid Gaussian Process forecast to reflect

that it combines Gaussian Process point and variance forecasts from two complementary forecast-

ing strategies. Since a Gaussian distribution is uniquely determined by its mean and variance, the

resultant probabilistic prediction remains a well-defined Gaussian Process forecast. We note that

combining point and variation estimates from different procedures is not uncommon in practice.

For instance Mallow’s Cp is commonly used for the purpose of model comparison/selection. This

criterion, an estimate of the mean squared prediction error, is given by Cp = 1/n(RSS + 2dσ̂2),

where RSS and d are the residual sum of squares and number of covariates for a particular model

in the candidate set, while σ̂2 is an estimate of the residual variance, which is customarily estimated

based on the full model. Under this procedure, except for the full model, the point estimates (and

the subsequentRSS) and the variance estimate σ̂2 are obtained from two different models. Another

example of combining point and variance estimates from different models can be found in semi-

and non-parametric estimations, wherein the optimal tuning parameters (such as the bandwidth for

kernel-based estimation and the penalty parameter for penalized spline estimation) depend on the

subject of estimation and often differ between the point and variance estimates.

3.5 Forecasting results

3.5.1 Comparison of point forecasts

We estimate our GP model on 120 randomly selected days in year 2013. For comparison, we

also consider a benchmark linear regression model as considered in Hong [2010]. This model is
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given by

yt =β0 + β1 ∗ Tt + β2 ∗ T 2
t

+ β3 ∗ temperaturet + β4 ∗ temperature2
t

+ β5 ∗ loadt−1 + β6 ∗ hourt + β7 ∗ dayt

+ β8 ∗ Tt ∗ hourt + β9 ∗ Tt ∗ dayt + ut

(3.11)

where ut is an error term with mean zero and finite variance. Note here βi denotes a single co-

efficient when the corresponding covariate is quantitative and a vector of coefficients when the

covariate is categorical. To ensure direct compatibility, we use the same information input and

forecasting strategies, as are used in the GP models, to obtain 24 hours’ predictions.

We use the DirRec strategy, as described in the previous section, to obtain point forecasts for

both the GP and linear regression models. We use the mean absolute percentage error (MAPE),

mean absolute error (MAE) and root mean square error (RMSE) to evaluate the forecast perfor-

mance. The results are reported in Table 3.2. For each hour of the day, we report the average

performance across 120 randomly selected days used for forecasting. It is seen that the GP model

outperforms the linear regression model consistently, often by substantial margins. The average

results across all 24 hours are reported at the bottom of Table 3.2. On average, the GP models

reduce the MAE by 34% and the RMSE by 29% relative to the linear regression models. Figure

3.2 illustrates the 24-hour-ahead demand point and interval forecasts averaged across the 120 ran-

domly chosen days used in our forecasting. The forecasts closely track the actual electricity usage;

at the same time, the precision of forecasts generally deteriorates as the forecast horizon increases.

Also reported in Table 3.2 are results from the Direct forecasting strategy. Clearly in terms of point

forecasts, the DirRec strategy is preferred to the Direct strategy.

In practice if temperature information is incorporated in the forecasting process, the forecasters

have to resort to temperature forecasts as actual hourly temperature is not available at the time of

forecasting. Since data on historical hourly temperature forecasts are not available to this study,

we conduct our forecasting using the actual temperature. To check the sensitivity of our results
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Table 3.2: Average performance of out-of-sample forecasts for 120 randomly selected days

GP Model (DirRec) GP Model (Direct) Regression Model (DirRec) Regression Model (Direct)
Period MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE
1 0.0167 44.14 65.79 0.0167 44.14 65.79 0.0306 80.76 135.76 0.0306 80.76 135.76
2 0.0322 75.11 170.88 0.0356 83.13 176.64 0.0495 117.34 201.60 0.0714 169.41 308.44
3 0.0301 68.64 126.50 0.0429 95.68 181.26 0.0421 95.38 144.68 0.0974 220.06 415.78
4 0.0278 61.00 88.40 0.0490 107.39 174.10 0.0366 79.81 107.29 0.1187 259.18 505.97
5 0.0305 66.16 122.40 0.0553 120.23 175.56 0.0402 87.90 123.34 0.1347 288.28 582.32
6 0.0253 55.43 98.80 0.0614 134.00 202.50 0.0419 93.79 150.23 0.1461 313.09 660.97
7 0.0294 67.55 88.53 0.0668 153.43 208.98 0.0564 131.56 186.47 0.1481 336.10 739.83
8 0.0601 152.49 187.28 0.0824 204.99 275.74 0.0909 228.64 281.03 0.1464 368.44 843.25
9 0.0557 146.39 190.29 0.0844 217.81 280.71 0.0848 221.91 268.61 0.1533 398.94 954.94
10 0.0386 106.35 158.25 0.0758 202.87 267.82 0.0489 134.38 178.82 0.1547 411.47 1051.95
11 0.0338 97.20 155.92 0.0696 196.12 259.66 0.0342 99.02 142.62 0.1613 443.49 1133.40
12 0.0359 106.76 162.36 0.0706 209.62 280.04 0.0389 114.72 161.10 0.1657 468.16 1185.39
13 0.0358 108.04 143.58 0.0776 236.25 307.48 0.0474 141.17 184.22 0.1719 495.67 1215.37
14 0.0323 99.73 128.20 0.0808 252.81 324.16 0.0510 154.01 193.90 0.1774 519.50 1238.19
15 0.0307 97.21 127.35 0.0916 295.82 371.62 0.0487 151.02 184.15 0.1811 540.73 1273.00
16 0.0261 84.81 113.56 0.0975 318.87 394.56 0.0459 145.24 174.49 0.1843 558.08 1318.67
17 0.0261 85.00 113.14 0.0939 313.76 391.69 0.0407 131.48 162.58 0.1846 563.01 1355.12
18 0.0222 74.64 100.43 0.0943 318.40 399.82 0.0364 119.85 155.35 0.1843 566.06 1351.03
19 0.0229 77.37 104.56 0.0866 291.38 370.59 0.0387 127.55 168.36 0.1793 548.66 1295.94
20 0.0281 95.07 128.75 0.0775 261.04 335.27 0.0425 140.06 189.88 0.1636 510.13 1183.32
21 0.0260 84.47 116.40 0.0734 244.68 310.90 0.0456 146.94 198.70 0.1484 466.13 1037.43
22 0.0249 79.94 106.13 0.0681 224.98 288.23 0.0462 147.66 196.24 0.1368 429.07 913.13
23 0.0254 79.18 104.91 0.0711 226.36 284.42 0.0470 145.69 184.20 0.1354 412.99 859.21
24 0.0277 81.90 105.35 0.0594 177.17 236.53 0.0508 147.35 177.91 0.1404 401.09 862.50
Average 0.0310 87.27 129.16 0.0701 205.45 285.74 0.0473 132.63 181.18 0.1465 407.02 995.57

36



5 10 15 20
hour

2000

2250

2500

2750

3000

3250

3500

3750

de
m

an
d(

M
W

)

Forecast
Actual
95% CI hybrid GP
95% CI DirRec GP

Figure 3.2: Averaged actual load vs predicted load from GP models

to this choice, we construct our own hourly temperature forecasts via a simple average of those

of the previous three days. We then conduct the same forecasting exercise using instead these

predicted hourly temperatures. The results are virtually identical to those obtained under the true

temperature data, suggesting that our forecasting models are not favorably affected by the use

of true weather information. This result is hardly surprising given the high precision of modern

temperature forecasting.

3.5.2 Comparison of probabilistic forecasts

Comparison of distribution behavior

In addition to the point forecasts, probabilistic forecasts also play a vital role in decision mak-

ing under uncertainty. For Gaussian Process models, the probabilistic forecasts depend entirely on

the point and variance estimates. The results reported in Table 3.2 show that compared with the

Direct strategy, the DirRec strategy produces superior point estimates. At the same time, it tends

to underestimate the estimation variation as it does not take into account the prediction error of

previously forecasted results used as input in subsequent forecasting. Figure 3.2 shows the con-

fidence bands, centered at DirRec point estimates, from the DirRec (orange) and Direct strategy

(blue). Clearly the former underestimates the forecast variation. We therefore use the proposed

hybrid strategy to construct probabilistic forecast for our Gaussian Process models. For a given
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point of time, denote the predicted mean and variance from the DirRec strategy by µ̂t and σ̂2
t , and

those from the Direct strategy by µ̃t and σ̃2
t . Let f(·;µ, σ) be the Gaussian density function with

mean µ and variance σ2. The resultant predictive density from the hybrid strategy is then given by

f(·; µ̂t, σ̃2
t ).

One way to assess the quality of probabilistic forecasts is to use scoring rules that assign a

numerical score to the predictive distribution given the event or value that materializes; see e.g.

Gneiting and Raftery [2007] for an overview of scoring rules. One most commonly used scoring

rule is the logarithmic score proposed by Good [1952], which is defined as

Log(F, y) = − log(f(y)) (3.12)

for a probabilistic forecast F of a random variable y. The logarithmic score has many attractive

features and is particularly easy to implement. The lower the scores, the better the predicted

distributions. We calculate the average logarithmic score of predicted distributions for our various

models and report their results in Table 3.3. The hybrid forecasting strategy clearly outperforms

the other two strategies for both the GP and linear regression models.

Table 3.3: Logarithmic scores for probabilistic forecasts.

Method Log Scores
GP Model (DirRec) 7.16
GP Model (Direct) 7.47
GP Model (hybrid) 6.52
Regression Model (DirRec) 10.87
Regression Model (Direct) 17.15
Regression Model (hybrid) 7.25

The log scoring rule lends itself for model comparison. Note that we can re-write the log score
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from the hybrid forecast as follows:

−
120∑
t=1

log(yt|µ̂t, σ̃2
t )

=−
120∑
t=1

log(yt|µ̂t, σ̂2
t )−

120∑
t=1

log

(
yt|µ̂t, σ̃2

t

yt|µ̂t, σ̂2
t

)
= 7.16− 0.64 = 6.52,

wherein 7.16 and 6.52 are the scores of the DirRec and hybrid strategy respectively. This calcula-

tion suggests that starting with the DirRec forecast, if we replace the predicted variances with their

counterparts from the Direct strategy, the log score is improved by 0.64. Analogously, if we start

with the Direct forecast and replace the predicted means with their counterparts from the DirRec

strategy, the log score improves from 7.47 to 6.52 by 0.95.

We also note that the performance gap in terms of the log scores between the DirRec and Direct

strategies is not as large as those based on their point estimates. Apparently the log score reflects

the overall probabilistic forecasting performance of Gaussian Process models, which depend on

both the point and variance estimates. As discussed above, the Direct strategy provides more reli-

able variance estimates. When it comes to the overall performance, its better variance estimation

compensates its weakness in point estimates and reduces the performance gap.

Comparison of tail behavior

In addition to the overall forecasting performance, we shall pay particular attention to extreme

events as they tend to have substantial impacts on the electricity market. For instance, an abrupt

increase in electricity demand can be rather disruptive to the grid and may even bankrupt some

retail providers. We therefore take a close look at the performance of our models under extreme

situations.

It transpires that the log scoring rule can be tailored to evaluate predictions of tail events as

well. To assess the tail behavior of forecast distributions, choosing extreme observations and then

proceeding with the usual evaluation methods seems to be a reasonable choice. However, evalua-

tion based on a small number of extreme observations may discredit even the most skillful forecast
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available: if we evaluate forecast conditional on observed extreme outcomes, then always predict-

ing the extremes becomes a winning strategy. To overcome this difficulty, Diks et al. [2011] and

Lerch et al. [2017] proposed modified scoring rules that place particular emphasis on specific re-

gions of the underlying distributions. We adopt the conditional likelihood (CL) score and censored

likelihood (CSL) score proposed in these studies for our tail performance evaluation. In particular,

the conditional likelihood and censored likelihood are defined as follows:

CL(F, y) = −w(y) log

(
f(y)∫

w(z)f(z)dz

)
(3.13)

CSL(F, y) = −w(y) log f(y)− (1− w(y)) log

(
1−

∫
w(z)f(z)dz

)
(3.14)

where F is a predictive distribution and f its density for a random variable y and w is a non-

negative weight function that specifies the region of interest. The main difference between these

two scoring rules is that the CL scoring rule does not take into account the accuracy of the density

forecast for the total probability of the region of interest but the CSL score does. These two

scoring rules are both proper and can be tailored to specific regions. Similar to their unconditional

counterpart, the lower the scores, the better the results.

In this investigation we focus on the upper tail of the distribution as unusually high electricity

demand can be rather disruptive to the grid. We consider w(z) = 1(z > rα), where rα is the

α-th percentile of F . We can vary α to focus on different regions of the underlying distribution.

To examine the performance of our models under unexpected demand surge, we calculate the

conditional and censored scores of the probabilistic forecasts at two high percentile levels with α

being 80% and 90%. The results are reported in Table 3.4. The overall pattern is similar to that of

log scores reported in Table 3.3. Under both percentile levels and according to both scoring rules,

the GP model outperforms the regression model, and the hybrid strategy outperforms the other two

forecasting strategies. These results suggest that the GP model and the hybrid strategy are well

suited for predicting outrages of the electricity market.
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Table 3.4: Conditional likelihood and censored likelihood scores for probabilistic forecasts

Method Percentile (α) CL CSL
GP Model (DirRec) 80% 1.39 1.45
GP Model (Direct) 80% 1.56 1.75
GP Model (hybrid) 80% 1.26 1.32
Regression Model (DirRec) 80% 2.00 2.13
Regression Model (Direct) 80% 2.92 3.59
Regression Model (hybrid) 80% 1.35 1.43
GP Model (DirRec) 90% 0.82 0.89
GP Model (Direct) 90% 0.95 1.12
GP Model (hybrid) 90% 0.76 0.81
Regression Model (DirRec) 90% 1.29 1.39
Regression Model (Direct) 90% 1.68 2.22
Regression Model (hybrid) 90% 0.83 0.89

3.6 Economic applications

So far we have focused on the statistical performance of the proposed GP models for electricity

demand forecasting. Ultimately our goal is to use these models to aid economic decision making

and risk management. In this section, we illustrate the utility of the proposed models with some

real world economic applications. We shall henceforth focus on the hybrid forecasting strategy,

which is shown to outperform other strategies in the previous section.

3.6.1 Cost comparison under point forecasts

As we described above, a retail electric provider buys electricity from the generation companies

and sells it to the consumers. In the ERCOT electricity market, the cost of a retail electric provider

consists of two parts: day ahead cost and real time cost, which correspond to the day ahead market

and real time market respectively. The day ahead cost is fixed once a company submits its hourly

schedule in the day ahead market, while in the real time market, the retail provider needs to make

instantaneous adjustments according to the actual demand. We focus on the more volatile real time

cost in this investigation. Suppose first that firms use the point estimates from the GP forecasting

models as their predicted demands. Denote by Yforecast the predicted demand from a statistical

model and Yactual the actual demand. Let Preal be the real time market price. For a given period i,
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the real time cost for a firm can be represented as follows:

Ci =


(1 + s1)× (Yactual,i − Yforecast,i)× Preal,i if Yforecast,i ≤ Yactual,i

(1− s2)× (Yforecast,i − Yactual,i)× Preal,i if Yforecast,i < Yactual,i

(3.15)

Note here the cost function is asymmetric with positive ‘friction’ parameters s1 and s2 that reflect

the stylized fact of extra cost associated with real time adjustments in the electricity market. When

the actual demand exceeds the forecasted level, firms have to pay a premium beyond the going rate

to procure extra electricity at a short notice. On the other hand when facing a lower than expected

demand, firms can only unload the surplus electricity at a price lower than the going rate.

We now compare the economic performance of firms that use point forecasts from the GP and

the conventional regression models. We use the average hourly real time cost as the evaluation

criterion. For simplicity, we set s1 = s2 = s in this application and calculate the real time cost

for the 120 days used in our forecasting. The average results under different level of s are reported

in the first and third columns of Table 3.5. It is seen that across multiple levels of s, the average

real market cost based on the GP forecasts is 30% lower than that based on the regression method,

implying the economic benefit of the proposed approach.

3.6.2 Cost optimization using probabilistic forecasts

Although point forecasts have been customarily used in decision making under uncertainty, we

recognize that decision makers may further improve profitability by utilizing information contained

in the probabilistic forecasts. In our second application, rather than setting the hourly supply

schedule according to the point forecasts, we adopt a bidding strategy that aims to minimize the

expected real time cost under the forecasted demand distributions.

Denote by xi the quantity a firm submits as its bid for the i-th period and yi the actual demand.
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Its real time cost is given by

Ĉ(yi;xi, P̂real,i) =


(1 + s1)× (yi − xi)× P̂real,i if xi ≤ yi

(1− s2)× (xi − yi)× P̂real,i if xi < yi

(3.16)

where P̂real,i is the expected real time price. Denote by Fi the forecasted demand distribution for

the i-th period. The optimal bid that minimizes the expected cost is then given by

x̂i = arg min
xi

∫
Ĉ(yi;xi, P̂real,i)dFi(yi) (3.17)

The first order condition of this cost minimization is as follows

∫ x̂i

−∞
((1− s2)P̂real,i)dFi(yi) +

∫ ∞
x̂i

(−(1 + s1)P̂real,i)dFi(yi) = 0

yielding

Fi(x̂i) =
1 + s1

2 + s1 − s2

.

Thus this optimization problem has a simple analytical solution: the (1 + s1)/(2 + s1 − s2) per-

centile of the forecasted distribution Fi. For simplicity, consider the case s1 = s2 = s < 1 such

that the optimal bid is the (1 + s)/2 percentile. Apparently in the presence of an asymmetric loss

function wherein a heavier loss occurs with underbidding (when the actual demand exceeds the

bid), it is optimal for firms to bid above the expected median outcome. The extent of overbidding

should increase with s, which reflects the degree of asymmetry in the loss function. The optimal

bid coincides with the point forecast only when s = 0, i.e. when the cost function is symmetric.

We undertake the optimization strategy based on the GP and the linear regression forecasts.

For the latter, we assume that the error terms also follow a Gaussian distribution with mean zero

and variance given by the estimated variance of the residuals. Although the expected real time

cost depends on the expected real time price, the optimal solution given above does not depend

on the real time price. For simplicity we use the observed real time prices in this experiment.
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The resultant average costs from the optimal bidding strategy, under the same levels of s as in the

previous example, are shown in the second and fourth columns of Table 3.5. Again, the GP model

outperforms the linear regression model. As expected, the costs under the optimal bidding strategy

are lower than when point forecasts are used as the bids, and the expected cost saving increases

with the degree of asymmetry of the cost function.

Table 3.5: Expected real time market costs (unit: $/h)

s GP GP-Opt Regression Regression-Opt
0.1 3009.05 2969.66 4535.89 4494.91
0.2 3027.85 2949.91 4523.46 4376.01
0.3 3046.65 2894.60 4511.03 4192.70

3.7 Conclusions

We have proposed a novel hybrid Gaussian Process forecasting model that combines the strength

of two different forecast strategies. The proposed GP model is shown to provide superior multi-

step ahead point and probabilistic forecasts of hourly electricity demand. We expect the proposed

hybrid forecasting strategy to find useful applications under a variety of different situations.

The proposed method has been applied to forecast the day ahead electricity demand in the

southern region of Texas. We show that it can be used to reduce the expected cost of electric-

ity supply relative to the conventional linear regression approach, and further economic benefit is

obtained when the probabilistic forecasts are used to derive an optimal bidding strategy for the

electricity suppliers. We conclude by noting that the above example is a mere illustration of how

probabilistic forecasts can be fruitfully employed in a decision theoretic framework to optimize

decision making. Generally speaking, the decision theory concerns decision making under uncer-

tainty. Central to this framework is a loss function which specifies the loss of an action under a

certain state of the world. Given uncertainty about the state, the decision maker chooses to min-

imize the expected loss, or risk. Interested readers are referred to Berger [1985] for a treatment
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of decision theory. More complicated cost functions than the one considered in this study can be

similarly entertained with little extra cost, albeit perhaps without simple analytical solutions. At

the same time, we stress that reliable probabilistic forecasts that adequately reflect the underlying

uncertainty is indispensable to the success of a decision theoretic procedure. Our investigation

suggests that the proposed hybrid Gaussian Process forecasting approach can be a valuable tool

for this purpose.
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4. NON-STATIONARY MODELING OF CROP YIELD DISTRIBUTIONS WITH

APPLICATIONS TO CROP INSURANCE

4.1 Introduction

The federal crop insurance program has been an important part of U.S. agricultural policy to

stabilize farmers’ income and protect against unpredictable risks for several decades. Since the

1990 Farm Bill, the crop insurance program has grown substantially. It covers more than 100

crops with a variety of yield-based, revenue-based and area-based policies.

An actuarially sound premium is critical to the effectiveness and robustness of crop yield in-

surances. Since the calculation of this parameter requires the knowledge of the future distribution

of yields, one needs a reliable predictive yield distribution. A two stage approach has been cus-

tomarily adopted for this purpose: in the first stage, a regression model is used to estimate the

conditional mean of yield distribution in order to remove the influence of technological advance-

ments and other factors; and in the second stage, de-meaned yields are used to estimate the yield

distributions using some parametric or nonparametric methods. Despite its popularity, this two

stage approach suffers from two potential limitations. First, if the conditional mean is not ade-

quately modeled, the subsequent yield distribution estimation is compromised as it is based on the

residuals from the first stage regression. Second, with a few exceptions a stationary yield distribu-

tion is often assumed in the second stage distribution estimation. Apparently if yield distributions

evolve over time, this rigidity is overly restrictive.

In this study, we propose a new estimation approach for crop yields based on the method of

Gaussian process (GP) regression. The GP regression is a powerful yet disciplined nonparametric

method that has seen wide applications in statistical analysis and machine learning. This modeling

approach is probabilistic in nature and yields not only point estimates but entire predictive distri-

butions. This is particularly appealing to one of the primary focuses on the corp yield estimation,

which is to obtain reliable predictive yield distribution. In particular, it offers two advantages. First
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unlike the two stage estimation, it models the conditional mean and the entire yield distribution si-

multaneously. Second, the resultant yield distribution is free to vary over time and thus immune

from the restriction of stationary distributions.1

In practice, crop yield estimations are often plagued by small sizes as typical studies on annual

productions rely on yield histories no longer than 40-50 years. Furthermore, this problem is often

exacerbated by the volatile yearly yield fluctuations. Fortunately when the estimations involve a

large number of locations, one can resort to information pooling to alleviate this difficulty since

yield distributions among geographically proximate locations tend to be similar. We therefore

further construct for individual locations a predictive distribution that is based on mixture of all

distributions in the analysis, wherein the weights of mixture is determined by some measure of

similarity between distributions. These weighted estimates tend to be more reliable than individ-

ual estimates. In addition, the resultant predictive distributions constitute of mixture of Gaussian

distributions are more flexible than the Gaussian predictions based on individual locations.

We evaluate the the proposed methods using simulations on the estimation of crop yield insur-

ance polices based on historical corn yield data from Iowa. We consider a number of stationary and

non-stationary data generating processes and different sample sizes. Our results suggest that the

GP-based estimates compare favorably with conventional two stage estimations under all circum-

stances and excel when the underlying distributions are nonstationary. Furthermore, the weighted

GP estimates considerably improve on those individual estimates.

Lastly we apply our estimators to an out-of-sample experiment of insurance policy selection,

assuming the role of private insurance companies. In this experiment, insurance companies will

choose policies they deem profitable and cede those deemed unprofitable. We are cognizant about

the difficulty of decision making under uncertainty and that insurance companies might weigh

the loss from taking an unprofitable policy differently than the forfeited benefit from ceding a

profitable policy. Therefore we adopt a flexible decision-theoretic framework, wherein the opti-

1Even within the statistics and econometrics literature, the concept of ‘stationarity’ has multiple definitions. In this
study, we use stationary distributions to refer to distributions that vary over time and non-stationary distributions for
those vary over time.
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mal action depends crucially on the decision makers’ objective function. Previous studies tend to

base their policy selection on the comparison between posted premiums by the government and

insurance companies’ own premium predictions. In contrast under the decision-theoretic frame-

work, the recommendation is derived by minimizing the expected loss (or risk) with respect to a

predictive distribution. Our results suggest that the proposed methods can be used to effectively

identify profitable policies under both symmetric and asymmetric loss functions of the insurance

companies.

The rest of this article is organized as follows. Section 4.2 gives a brief review of crop yield

literatures. Section 4.3 introduces the Gaussian process models for crop yields and Section 4.4

presents a model averaging procedure. Simulations and an empirical illustration are presented in

Sections 4.5 and 4.6. The last section concludes.

4.2 Literature

A two-stage estimation strategy is commonly used in studies of crop yield distributions. The

first stage models the trend of yield distributions due to technological advancements and other

reasons. A variety methods have been employed for this purpose, including a polynomial trend

(Ramírez [1997] and Just and Weninger [1999]), the ARIMA process (Goodwin and Ker [1998])

,the spline estimator (Harri et al. [2011] and Annan et al. [2013]), and the normal mixtures (Tolhurst

and Ker [2014]). Some studies also examine possible heteroskedascitiy in the errors. For example,

Just and Weninger [1999] and Harri et al. [2011] explored several forms of heteroskedasticity

adjustment and its effects on crop insurance rate calculation.

In the second stage, the detrended residuals are used to model the yield distributions. Both para-

metric and nonparametric (including semiparametric) methods have been considered. Parametric

methods assume a certain functional form of crop yield distributions. Commonly used specifi-

cations include the Normal (Botts and Boles [1958]), log-normal (Jung and Ramezani [1999]),

Gamma (Gallagher [1987]) and their generalizations. The choice of parametric distributions is

often based on the simplicity of estimation and inference or other practical considerations. In con-

trast, nonparametric methods provide a more flexible and data-driven way to model crop yield
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distributions. Common nonparametric methods include inverse sin transformation (Moss and

Shonkwiler [1993]), kernel density estimation (Goodwin and Ker [1998] and Ker and Goodwin

[2000])) and normal mixtures ( Goodwin et al. [2000]; Woodard and Sherrick [2011]; Tolhurst and

Ker [2014] and Ker et al. [2015]). See also Ker and Coble [2003]; Stohs and LaFrance [2004]; Wu

and Zhang [2012] and Tack et al. [2014] for application of alternative nonparametric methods to

crop yield distributions.

One challenge in the modeling of crop yield distributions is that most of research are based

on short time series data. For instance, systematic yield records at the county level in the U.S.

started in the 1950s. Thus estimation of county level yield distributions typically rely on no more

than 60 years of data. One possible way to mitigate this restriction is information pooling. Crop

yields are heavily influenced by climate, weather and geographic factors and agricultural practice,

all of which tend to be spatially correlated. As a result, the yield distribution of a certain region

usually bears a high similarity to those of proximate regions. Researchers have devised information

pooling estimation methods that take advantage of the similarity in crop yield distributions among

geographically close regions. For example, Moss and Shonkwiler [1993] pooled information from

neighboring counties to improve estimation efficacy. Ozaki and Silva [2009] incorporated temporal

and spatial autocorrelation in hierarchical Bayesian models. Annan et al. [2013] employed formal

distributional tests to determine whether or not to pool information from multiple counties. Ker

et al. [2015] proposed a Bayesian model averaging approach to pool yield distributions from many

regions. Zhang [2017] developed a density ratio estimator which features a common based line

density for all regions and models individual distributions for each region as a deviation from the

base line.

Despite its popularity, the two-stage estimation approach suffers a number of drawbacks. Firstly,

the validity of this approach hinges critically on the premise that the underlying yield distribu-

tions are from the location-scale family. If this condition does not hold, the entire estimation is

mis-specified. Secondly, within the location-scale family, even under the ideal condition that the

conditional mean function is correctly specified and heteroskedasticity is properly accounted for,
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the estimated residuals are subject to estimation variation due to the first stage estimation. In the

presence of mis-specified conditional mean and/or variance function, the residuals do not consis-

tently estimate the error term. The subsequent estimation of yield distributions, based on the first

stage regression residuals, suffers from this inconsistency.

Lastly, an implicit assumption of many crop yield studies is that the residuals εt’s are inde-

pendently and identically distributed. Only a handful of studies have considered non-stationary

yield distributions. In addition to the evolvement of the conditional mean and/or variance of the

yield distribution, non-stationary models of yield distributions permit the evolvement of the entire

distributions overtime. For instance, Zhu et al. [2011] proposed a time-varying yield distribution

method to capture non-stationary nature of the yield distributions. They employed the Beta distri-

bution to model observed crop yields and parametrized the coefficients of the Beta distribution as

polynomials of time to accommodate time-varying yield distributions. Alternatively, Tolhurst and

Ker [2014] employed mixture of normal distributions to model yield distributions, embedding time

trend into the location parameters of the normal mixture components. These studies showed that

their time-varying distributional model outperformed conventional stationary distributional models

in many aspects.

4.3 Gaussian Process estimation

4.3.1 Preliminaries

We consider a new estimation approach that eschews the two stage estimation process and

the i.i.d. assumption on the de-trended data in many conventional studies. Instead this approach

directly estimates a time-evolving yield distribution using the approach of Gaussian process re-

gression. Gaussian process is a powerful nonparametric machine learning tool for regression and

classification. A Gaussian process is an infinite dimensional stochastic process that follows the

Gaussian distribution. An important property that makes Gaussian process particularly useful in

statistical analysis and machine learning is the so-called marginalization property: any subset of

an (infinite-dimensional) Gaussian process retains its Gaussianity: it reduces to the familiar multi-
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variate Gaussian distribution.

Gaussian processes provide a principled, practical, probabilistic approach for statistical learn-

ing; see the book by Rasmussen and Williams [2006] for an illuminating overview of this approach.

The probabilistic nature of this approach distinguishes it from other machine learning techniques

such as neural network. This approach produces not only point estimates but predictive densi-

ties that are essential towards the fulfillment of several goals of this study, including likelihood

based model averaging, probabilistic yield forecasting, calculation of crop insurance premium,

and decision-theoretic procedures for optimal decision making.

A GP regression model is formulated as follows. Consider a training set D = {(Xi, Yi), i =

1, . . . , N} of N pairs of input xi and output yi from an underlying relationship f . Here f is

typically assumed to be a zero-mean Gaussian process with a covariance (kernel) function k(·, ·),

and the observations yi are given by

yi = f(xi) + εi, i = 1, . . . , N, (4.1)

where εi ∼ N (0, σ2) are white noises independent of f(xi).

Let x = [x1, x2, . . . , xN ]′ and y = [y1, y2, . . . , yN ]′. Denote the predictive distribution of

outcome at a test location x∗ by f∗ = f(x∗). The joint distribution of (f∗, y) is then given by

 f∗

y

 ∼ N
0,

 k∗∗ k′x∗

kx∗ σ2I +Kxx


 , (4.2)

where k∗∗ = k(x∗, x∗), kx∗ = (k(x1, x∗), . . . , k(xN , x∗))
′, Kxx is anN×N matrix with the (i, j)th

entity k(xi, xj) and I is a N -dimensional identity matrix. The predictive distribution of f∗ given y

is

f∗|y ∼ N (k′x∗(σ
2I +Kxx)

−1y, k∗∗ − k′x∗(σ
2I +Kxx)

−1kx∗). (4.3)

The predictive mean k′x∗(σ
2I + Kxx)

−1y gives the point forecast of f(x) at location x∗, whose

uncertainty is measured by the predictive variance k∗∗− k′x∗(σ
2I +Kxx)

−1kx∗ . Note that the point
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forecast at location x∗ depends on y and the various variance and covariance components, and is

usually non-zero. The covariates influence the predictive outcome through the covariance. In this

sense, the covariance is the determining factor of a GP predictor as it encodes our assumptions

about the underlying relationship we wish to learn.

Given the observed output y, the dominant ingredient of a Gaussian process model is the co-

variance matrix, as it encodes our assumptions about the function which we wish to learn from the

data. For instance, a popular choice of the covariance function is the Squared Exponential kernel:

kSE(xi, xj) = σ2
f exp [−(xi − xj)2

2l2
], (4.4)

where σ2
f reflects the maximum allowed covariance that usually increases with the variation of

y. The so-called length scale l determines the relevancy of input x to the outcome y. To see

this, note that the covariance between xi and xj vanishes under a sufficiently large length scale

l, effectively removing it from the inference. A covariance function with this feature is called

an Automatic Relevance Determination (ARD) covariance function. There exist a large selection

of kernel functions that are suitable to model various functional relationship; see Chapter 4 of

Rasmussen and Williams [2006] for details.

Roughly speaking the covariance function k(xi, xj) captures the similarity between two inputs

xi and xj and the GP regression can be viewed as a nonparametric smoother with an infinite number

of basis functions, whose coefficients are modeled in a Bayesian fashion. The performance of GP

models hinges on the configuration of the covariance function and its tuning parameters, which are

referred to as the hyperparameters in the machine learning literature. Given model (4.1) and the

SE kernel (4.4), the covariance function for the training set takes the form

k(xi, xj) = σ2
f exp [−(xi − xj)2

2l2
] + σ2δ(xi, xj), (4.5)

where δ(xi, xj) is the Kronecker delta function. The hyperparameter of this model then consists of

θ = (σ2
f , σ

2, l). One possibility of hyperparameter selection is via maximizing the marginal likeli-
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hood p(θ|x, y) of the GP model given the observed data; this is also known as the type II Maximum

Likelihood (ML-II) estimation, an empirical Bayesian approach that employs data-dependent pri-

ors. The log marginal likelihood is given by

log p(y|x, θ) = −1

2
y′K−1

xx y −
1

2
log |Kxx| −

N

2
log(2π), (4.6)

where Kxx is an N × N matrix with the (i, j)th entity k(xi, xj) given in (4.5). The first part of

the likelihood function −1
2
y′K−1

xx y reflects the goodness of fit. The second part −1
2

log |Kxx| can

be viewed as a complexity penalty that depends on the covariance function and the inputs. The

third part is a normalization constant. What distinguishes the ML-II from the classical MLE is

the presence of the complexity penalty, which effectively prevents overfitting. This estimator is

similar in spirit to the penalized likelihood estimator whose objective function has an explicit (and

sometimes ad hoc) complexity penalty. The trade-off between the log likelihood and the penalty is

governed by a tuning parameter that determines the strength of the penalty. On the other hand, the

ML-II is advantageous as its complexity penalty occurs inherently as part of the marginal likelihood

and entails no additional tuning parameters.

4.3.2 GP model for crop yields

In this study we focus on the corn production in the state of Iowa, which is the largest corn

producing state in United States. Our data consists of annual county corn yields per acre of 99

Iowa counties from year 1960 through 2010, obtained from the National Agricultural Statistics

Service. Figure 4.1 shows the average annual yield for 99 counties of Iowa from 1960 to 2010,

showing a clear increasing trend during the sample period.

We shall compare and contrast this method with conventional two-stage estimator throughout

the rest of the text. To ease reference, we first present the two stage estimator used in this study.

The two-stage approach first removes the time trend of crop yields and then model the distribution

of the de-trended data under the assumption of a stationary distribution.

Following the benchmark model by the Risk Management Agency (RMA) of the USDA, we
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use a two knots linear spline model2. Denote the yield in county i at time t as yit. The first stage

model is given by, for i = 1, . . . , N and t = 1, . . . , T

yit = αi + βit+ γ1i(t− k1)+ + γ2i(t− k2)+ + εit, (4.7)

where k1 and k2 are the spline knots, (x)+ = max(0, x), (αi, βi, γ1i, γ2i) are unknown parameters

to be estimated, and εit is random error with mean zero and finite variance. Denote the estimated

residuals by ε̂it, which can be viewed as de-trended crop yields. In the second stage, we estimate

the yield distributions based on these de-trended data (with proper adjustment for heteroskedastic-

ity if needed) using some parametric or nonparametric method.

We next present a Gaussian Process model for crop yield. Owing to the flexibility of the GP

models, a mean function, unless particularly desired, is usually not required. This convention is

employed in this study. Instead our understandings and assumptions about the underlying relation-

ship are encoded into the modeling process via careful configuration of the covariance. To capture

the smooth rising trend we use a squared exponential (SE) covariance function given by

kSE(ti, tj) = a2
1 exp(−(ti − tj)2

2a2
2

). (4.8)

The SE kernel is particularly suitable for smooth relationship. There are alternative kernels that

can be used to model more rough relationships; for instance, the Matérn family of kernels. In our

estimation, we use the commonly used Matérn 3/2 kernel for this purpose. This kernel is given by

k3/2(ti, tj) = a2
3(1 +

√
3|ti − tj|
a4

) exp(−
√

3|ti − tj|
a4

). (4.9)

Lastly we capture the influence of idiosyncratic errors with the white noise kernel

knoise = a2
5δ(ti, tj), (4.10)

2We configure the knots such that they divide the sample period equally into three sub-periods.
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where δ is the Kronecker delta function.

The composite covariance function for our crop yield model is given by

kGP = kSE + k3/2 + knoise. (4.11)

We use squared exponential covariance function to capture the long run rising trend and Matérn 3/2

covariance function to capture the the more volatile shorter run fluctuations. For each county-year,

our Gaussian Process estimator can be written as

yit = f iGP (t) (4.12)

for t = 1, 2, · · · , T and i = 1, 2, · · · , N . In particular, for each county, we fit the above GP model

using its historical corn yields. Denote the hyperparameters by θ = (a1, . . . , a5). These parameters

are selected using the ML-II procedure in the previous section.

We now present an illustration of the proposed GP model for crop yields. The left panel of

Figure 4.1 shows the historical average corn yields for Iowa from year 1960 to 2010. The data

show an apparent increasing trend and also substantial year to year fluctuations. We plot in the

same graph the predicted yields for the sample periods and forecasts for years 2011-2030. The

fitted curve suggests a smoothly increasing trend of yields. The shaded area indicates plus and

minus twice of the estimated standard deviation. As expected for the forecast period, the variation

of the predictions increases steadily with the length of forecast horizon. The right panel shows

the contribution of the two kernels used to model the time trend. The solid line is the prediction

based on the squared exponential kernel, which captures the long term trend. The dash line is the

contribution based on the Matérn kernel that reflects the shorter term fluctuations. The scale of the

second component (the right hand side scale) is substantially smaller than that from the long run

term. Also note that unlike the long run trend, the shorter term trend gradually dies off towards

zero as the forecast horizon increases. This is because that in this example, the covariance based

on the Matérn kernel decays rapidly with the distance in time.
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Figure 4.1: GP model for crop yields
Left: Historical yields (1960-2010, asterisks) and predicted yields (1960-2030, solid line); the shaded area
indicates plus and minus twice of the standard deviation. Right: Long term trend predicted by the squared

exponential kernel (solid, left hand scale) and shorter term trend predicted by the Matérn kernel (dash, right
hand scale). In both plots, the vertical line indicates the end of the observation period and start of

forecasting.

4.4 Performance weighted model averaging

Expansive U.S. crop production and yield data have been collected and made available by

various sources. The most commonly used type of data are county level average yields. These

are also the most relevant to the Group Area Insurance program, whose indemnity is determined

by county level output. A critical restriction posed by most crop yield data is the relative short

observation period. Typically they are available for at best 50-60 years. Agricultural economists

have to rely on these rather short time series data to estimate crop yield distributions; the possibility

that these distributions themselves are evolving over time makes this task even more difficult.

To improve the reliability of county level yield distribution estimation, we further develop a

model averaging method to combine estimated Gaussian process estimators from individual coun-

ties. Model averaging exploits information from all candidate models and incorporates model

uncertainty into the estimation. Like statistical estimation, model selection is subject to stochastic

56



errors due to sample variation. In contrast, combining the strength of multiple models/estimators

can often lead to better performance in practice. A second motivation of the model averaging

approach for the current study is that it improves the flexibility of the predictive distributions con-

siderably. The GP regression is a versatile and yet principled nonparametric smoother that allows

time varying distributions. However for each given point of time, the predicted distribution is

Gaussian. A mixture of Gaussian distributions effectively solves this problem.

There are two major model averaging mechanisms: Bayesian model averaging (BMA) and

frequentist model averaging (FMA). Bayesian model averaging provides a coherent mechanism

for accounting for model uncertainties. Reviews of Bayesian literature can be found in the works

of Hoeting et al. [1999] and Raftery et al. [1997]. For frequentist model averaging strategies, the

most widely used methods are weighting strategies based on the AIC values proposed by Akaike

[1974] or weighting framework proposed by Hjort and Claeskens [2003].

In this study, we will use the relative performance weights to construct mixture of Gaussian

process models. A similar strategy is pursued by Ker et al. [2015] in their study of nonparametric

crop yield estimation. The relative performance is evaluated by the marginal likelihood of indi-

vidual Gaussian Processes estimators, with larger marginal likelihood value indicating a better fit.

The general idea is rather straightforward. If an estimated model for county j provides a good

fit for crop yields from county i, that indicates a high degree of similarity in yield distributions

of these two counties. Accordingly in the construction of a mixture model for county i, a rela-

tively heavy weight is assigned to county j. Alternatively, we can assign weights based on the

geographical distances between the counties (for instance, the nearest neighbor smoothing or spa-

tial autocorrelation). In contrast, the performance based approach adopted in this study is adaptive

and avoids explicit assumptions on spatial relationships (for instance, exponential decays of spatial

auto-correlations).

As is mentioned about, the marginal likelihood function has a built-in complexity penalty (sim-

ilar to the explicit penalty on the number of coefficients in the AIC or BIC). For the proposed study,

denote the estimated model by f̂i for county i, and its corresponding marginal likelihood by Li. To
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assess how similar the yield distribution of county i is to that of county j, we evaluate the marginal

likelihood of f̂j using observed yields from county i. Denote this ‘out-of-sample’ marginal likeli-

hood by Lij . Let the difference in likelihood scores ∆Lij = Li − Lij . We then construct the model

mixing weights according to

ωij =
exp{1

2
∆Lij}∑N

j=1 exp{1
2
∆Lij}

(4.13)

The mixed Gaussian process model for county i is then given by

f̃i =
N∑
j=1

ωij f̂j (4.14)

Since ∆Lij is a relative likelihood score based on out-of-sample evaluation, overfitting is prevented.

The weight assigned to county j in the estimation of county i’s distribution depends on the predic-

tive power of county j’s distribution on county i’s observed yields.

A key benefit of this model averaging approach in the proposed study is the enhanced distribu-

tional flexibility afforded by the mixing of Gaussian process models. It is well known that mixture

of Gaussian densities can approximate a distribution arbitrarily well. This desirable property ex-

tends naturally to the mixture of Gaussian process models. The ultimate purpose of the entire

enterprise of yield distribution estimation is to inform and aid decision making in agricultural pro-

duction and insurance programs. The mixture of Gaussian process models provides a flexible yet

disciplined statistical tool to model time-varying distributions that are essential to these tasks.

4.5 Simulations

We use Monte Carlo simulations to evaluate the effectiveness of proposed non-stationary Gaus-

sian Process based estimators for crop yields. Rather than generating arbitrary random samples, we

based our data generating processes on distributions estimated from historical data. In particular,

we use annual corn yields data of 99 Iowa counties from year 1960 through 2010. The entire yield

distribution is rarely of direct interest but used instead to calculate quantities of economic interest.

Thus we focus our assessment on a parameter of utmost importance: the premium rate of crop
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insurance programs. The premium rate, associated with a certain yield guarantee yG, is defined as

the expected loss divided by the total liability:

r =
1

yG

∫ yG

0

(yG − y)fY (y|I)dy, (4.15)

where I signifies the information set used in the prediction and fY (y|I) is the predictive yield

distribution based on I .

We consider different sample sizes of estimation data with T = 20, 30 and 40 and use the

average of last five years’ observations (2006-2010) for evaluation. We use an incremental fore-

casting scheme. For example with T = 20, we use observations from 1985 to 2005 to estimate

the predictive distribution for 2006, and observations from 1985 to 2006 to estimate the predictive

distribution for 2007, and so forth. As for the underlying distributions, we consider three possibil-

ities: (i) stationary yield distributions; (ii) a non-stationary yield distributions; (iii) a combination

of (i) and (ii), which is also non-stationary but to a lesser degree.

4.5.1 One-step ahead forecast

In our first scenario, we assume the underlying crop yield distribution is stationary. We first use

the two knots spline model given in (4.7) to detrend the yield data for each county. We then estimate

the distributions of the residuals {ε̂it, t = 1, · · · , T} using a three components normal mixture

model3. Taking the estimated normal mixture densities as true yield densities, we repeatedly draw

random samples of size T from these distributions to use in our simulations. Denote {ε̇it, t =

1, · · · , T} an iid sample for the estimated distribution for county i, the simulated data are given by

ẏit = ŷit + ε̇it, t = 1, . . . , T, (4.16)

where ŷit is the estimated mean. By construction, the simulated samples, if properly de-trended,

are distributed according to a stationary distribution that does not vary over time.
3A three components normal mixture model is sufficiently flexible for most smooth distributions. The fixed number

of components also ensures that the DGP is not Gaussian so that the GP model does not enjoy an unfair advantage in
this simulation.
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For each simulated yield series, we estimate the GP model as given in Section 4.2. For com-

parison, we also estimate the conventional two-stage model. In particular, we use model (4.7) to

de-trend the data and then estimate the distribution of the residuals using the flexible kernel density

estimator (KDE). For both the GP and KDE estimates, we then construct the performance weighted

estimates using the approach given in Section 4.4. We denote the resultant mixture densities by W-

GP and W-KDE respectively. We then proceed to estimate the premium based on these estimated

densities. Without loss of generality, we set the location of all predicted distributions to the actual

and focus on the influence of the overall shape of the distribution on premium estimation. We set

the guarantee yield to 90% of the location parameter. Note that the RMA uses the empirical dis-

tribution of the de-trended data in the calculation of premiums. For completeness, we also include

thus-obtained estimates, denoted by EMP, in our comparisons.

We calculate the ‘true’ premium based on the distributions that are used to generate the random

samples and use the mean squared errors (MSE) of the estimated premium rates to assess the

performance of various estimators. We report in the top panel of Table 4.1 the average MSE across

all counties and years (2006-2010) for simulations with T = 20, 30 and 40. As expected, the results

generally improve with sample size. We also note the following: (i) both the EMP- and KDE-based

estimates are consistent and the performance gaps between them decrease as sample size increases;

(ii) the GP-based estimates mostly outperform the other estimates; (iii) model averaging via the

mixture of individual densities substantially improves the estimates for both the KDE and GP

models.

Overall, the W-GP model provides the best overall performance. The better performance of

the GP models relative to the EMP and KDE models is remarkable as the latter use the true func-

tional form of the conditional mean, correctly assume the stationarity of the error distribution, and

estimate this distribution consistently. In contrast, the GP models do not assume any particular

form for the conditional mean and allow the underlying distribution to vary overtime. Nonethe-

less, they are shown to be sufficiently flexible and adaptive to approximate the underlying DGP

and yet disciplined enough to provide well-behaved estimates especially under small sample size.
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We next consider the case where the underlying crop yield distribution is non-stationary. First

we assume the underlying true distribution follows a Gaussian Process. In particular, we fit the

same data used in the first experiment using the GP model proposed in section 4.2 and use the

fitted models as the DGP’s for our simulations.4 As a result, the underlying distributions vary over

time and thus are non-stationary.

We estimate the premium rates using the same models as considered in the first experiment.

The average MSE’s are reported in the middle panel of Table 4.1. The overall results are similar

to those under the stationary distributions. We note that without exception, the GP and W-GP

estimates outperform their counterparts based on the EMP and KDE estimates. In addition, the

relative performance of the GP estimates to the KDE estimates improves under non-stationary

distributions. The average MSE ratio of GP to KDE estimates is 88% under stationary distributions,

and it improves to 85% under non-stationary distributions. A larger improvement, from 92% to

65%, is observed when we compare the W-GP to the W-KDE estimates.

The GP models are advantageous in the second experiment as they conform to the underlying

DGP’s. To explore the sensitivity of our results to this unrealistic situation, we consider a third

experiment wherein we construct the underlying distribution as a combination of stationary and

non-stationary distributions. In particular, we take the estimated three-component normal mixture

distributions from the first experiment and the estimated GP distributions from the second experi-

ment and use a 50-50% mixture of these two distributions as the DGP. The random samples draw

from these distributions are then added to the estimated time trend from the first experiment. Under

this DGP, both the two step estimator and the GP estimator have their respective advantages and

disadvantages. The EMP- and KDE-based two stage estimators use the true functional form for

the conditional mean, but incorrectly assume a stationary distribution. On the other hand, the GP

models assume a non-stationary Gaussian distribution, while the true distribution is a combination

of a stationary Gaussian mixture and a non-stationary Gaussian process.

The same estimation procedures as in the first two experiments are used in the third experiment.

4We still use the Gaussian Processes with zero mean and kGP kernel function to model the crop yield series,
hyperparameters are determined by maximizing the marginal likelihood.
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Table 4.1: MSE (multiplied by 104) of estimated premium rates for one-step ahead forecast

DGP EMP KDE W-KDE GP W-GP
Stationary T = 20 0.9793 0.8899 0.5377 0.7762 0.4869

T = 30 0.7937 0.7183 0.5758 0.6291 0.4443
T = 40 0.4992 0.4813 0.2820 0.4275 0.3040

Non-Stationary T = 20 1.1097 0.7397 0.5853 0.6158 0.3786
T = 30 0.7863 0.5255 0.5377 0.4469 0.3823
T = 40 0.4770 0.3164 0.2723 0.2738 0.1639

Mixed T = 20 1.0190 0.8126 0.5459 0.7170 0.3969
T = 30 0.7757 0.6089 0.5528 0.5250 0.3305
T = 40 0.4600 0.3835 0.2642 0.3411 0.2143

The estimated average MSE’s are reported in the bottom panel of Table 4.1. The same overall

pattern is observed and the GP-based estimates again provide the best overall performance. Not

surprisingly, the relative performance of the GP-based estimates to the KDE-based estimates are

better than that from the first experiment (wherein the KDE models are favored) and worse than

that from the second experiment (wherein the GP models are favored). For instance, the average

MSE ratio of the W-GP estimates relative to the W-KDE estimates is 88%, falling between 92%

from the first experiment and 65% from the second experiment.

4.5.2 Multi-step ahead forecast

Forward looking planning that spans multiple years is common in agricultural production and

risk management. To explore how the proposed methods fare under longer forecast horizon, we

consider multi-step forecast as well. In particular, we conduct simulations on 3- and 5-year ahead

forecast. The same incremental forecasting scheme is used. For example in the case of 3-year

ahead forecast, we use observations from years 1985-2003 to forecast the premium for year 2006,

and years 1985-2004 to forecast the premium for year 2007, and so forth.

The same estimation procedures as those in the one-step ahead estimations are again used

here. To save space, we only present the experiments with T = 30 and under the stationary and

non-stationary distributions (as in the first and second experiments in the one-step ahead forecast

simulations). Results for other cases are qualitatively similar and available from the authors upon
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request.

The estimation results, reported in Table 4.2, exhibit a similar overall pattern as those in the

one-step ahead estimations. Again, the W-GP estimates dominate other estimates across all sce-

narios. Unlike those in the one-step ahead simulations, the W-KDE estimates are worse than the

KDE estimates under non-stationary distributions. Note that the KDE can not consistently esti-

mate a time-varying distribution. We conjecture that the adverse consequence of this inconsistency

worsens as the forecast horizon increases, and is further aggravated when multiple densities are

combined (as is under the W-KDE estimation).

Table 4.2: MSE (multiplied by 104) of estimated premium rates for multi-step ahead forecast

DGP EMP KDE W-KDE GP W-GP
3-step forecast stationary 0.8367 0.7394 0.6299 0.7706 0.5693

non-stationary 1.1030 0.6342 0.7501 0.5155 0.4130
5-step forecast stationary 0.9195 0.7923 0.7248 1.1226 0.8864

non-stationary 1.4403 0.8246 0.9514 0.5810 0.4301

In sum, our simulations on crop insurance premium rates under various DGP’s for one-step and

multi-step simulations show that the proposed GP estimator compares favorably with the KDE-

based two-stage estimator when the underlying distributions are stationary and excels when the

underlying distributions are non-stationary. In addition, the performance weighted GP estimator

considerably improves the GP estimator based in individual counties and provides the best overall

performance.

4.6 Application to insurance policy rating

To illustrate the economic utility of the proposed estimator, we apply it to the rating of crop

insurance policies. The U.S. federal crop insurance program is managed by the Risk Management

Agency (RMA) of the USDA. RMA sets the premium rates of various crop insurance policies.

An important feature of federal crop insurance program is these policies are sold through private
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insurance companies to farmers. The insurance companies are allowed to select the policies they

deem profitable and cede those they deem unprofitable. To improve their profitability, the insur-

ance companies often develop their own premium estimates and based on which they assess the

profitability of insurance policies. If the RMA premium for a given policy is higher than their own

estimates, there is a good chance that this policy is overpriced. Accordingly, this policy is likely to

be selected by insurance companies. In contrast, if the RMA rate is lower than their estimates, this

policy is considered under-priced and shunned by insurance companies.

Unlike previous work, we adopt a flexible decision-theoretic approach for policy selection. In

practice, people often need to decide how to act. Decision theory provides a framework to optimize

decision making; see for example Berger [1985]. Central to this paradigm is a loss function that

specifies the loss incurred by a certain action. For decision making under uncertainty, it is logical

that one seeks to minimize the expected loss, or risk. Naturally the optimal decision is the one

that minimizes the expected loss. For instance, the expected value is the optimal solution under

a quadratic loss function, while the median is the optimal solution under an absolute value loss

function.

In this investigation, we consider a general asymmetric loss function of policy selection. We

assume that the loss due to selecting an unprofitable policy is heavier than the foregone benefit due

to ceding a profitable policy. For simplicity, we consider the following loss function

L =



a, if retaining the policy and π > πp

b, if ceding the policy and π < πp

0, if retaining the policy and π < πp

0, if cedeing the policy and π > πp

(4.17)

where 0 < b < a and πp denotes the premium set by the RMA. Accordingly the risk (expected
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loss) of policy selection is given by

R =


a ∗ Pr(π > πp), if retaining the policy

b ∗ Pr(π < πp), if ceding the policy
(4.18)

It follows that the optimal solution under this loss function is to retain the policy if

a ∗ Pr(π > πp) < b ∗ Pr(π < πp),

or equivalently if

Pr(π < πp) >
a

a+ b
. (4.19)

Note that if a = b (i.e., under a symmetric loss function), this rule suggests retaining the policy

if the probability of overpricing is higher than 50%. However when a > b, this policy is retained

only if the probability of overprice is higher than a/(a+b). Clearly under the assumed asymmetric

loss function wherein a heavier loss occurs when one retains an unprofitable policy, it is sensible to

be more conservative in retained policies and the optimal degree of ‘conservativeness’ is governed

by the relative severity of the losses.

Following Ker et al. [2015] and Zhang [2017], in this exploration we assume the role of a

private insurance company and use the proposed estimator to select profitable policies. To avoid

overfitting, we use out-of-sample performance for evaluation. In particular, we estimate the 2006

premium rates using the GP model based on yields from 1986-2005,5 and then calculate the under-

writing gains and losses using the actual 2006 yields. We repeat this process for years 2007, . . .,

2010, each based on 20 years of historical yields. For each county-year, we consider a policy with

a coverage level at 90% of predicted yield value given by model (4.7). The RMA rate is calculated

based on the empirical distribution of the de-trended data with proper heteroskedascitity adjust-

ment (see Harri et al. [2011] for details). Denote the estimated premium based on the GP model

5Ker et al. [2015] suggested using no more than 20 years of historical yield losses due to the evolution of yield
distributions over time.
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by π̂it. Let σ̂2 be the sample variance of {π̂it} , i = 1, . . . , 99, t = 2006, . . . , 2010. The predict

distribution for the premium for county i and year t is then given by f̂it(π) ∼ N(π̂it, σ̂
2).

For simplicity, we set a = 1 + s and b = 1− s and experiment with s = 0 (symmetric loss) and

s = 0.1 (asymmetric loss). We use policy loss ratio to assess the effectiveness of policy selection.

Denote a set of insurance policies by Ω, its loss ratio is calculated as

LRΩ =

∑
i∈Ω max(0, yG − yi)∑

i∈Ω π̂i,p
, (4.20)

where for each policy i, yG is the yield guarantee, yi is the actual yield and π̂i,p is the RMA rate.

For each experiment, we calculate the policy retained rates and the loss ratio of the corresponding

retained and ceded policies. We use the bootstrap method as outlined in Ker et al. [2015] to test

the hypothesis that the loss ratio of the retained policies is lower than that of the ceded policies.

Table 4.3: Out-of-sample rating game results

s Retain Rate (%) LR(retained) LR(ceded) p-value
GP 0 12.12 0.8322 1.8006 0.0567
W-GP 0 23.23 0.8577 1.9982 0.0155
GP 0.1 6.26 0.3708 1.7678 0.0282
W-GP 0.1 12.92 0.2393 1.9538 0.0002

The out-of-sample evaluation results based on GP and W-GP estimates are reported in Table

4.3. The top panel shows the results under a symmetric loss function. Based the GP estimates,

about 12% of policies with a loss ratio of 0.83; based on the W-GP estimates, about 24% of policies

are retained with a loss ratio of 0.85 and 1.99. Policy selection based on the W-GP estimates is

shown to effectively double the number of retained policies while maintains essentially the same

loss ratio as that under the GP estimates. The loss ratios for the ceded policies are 1.80 and 1.99

based on the GP and W-GP estimates, and statistically different from those of the retained policies

(with a p-value of 0.0577 and 0.0155 respectively).
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The bottom panel of Table 4.3 shows the results under an asymmetric loss function with

s = 0.1. Apparently an insurance company with such a loss function is loss averse and there-

fore more conservative in policy selection. This conjecture is confirmed in our experiments. Based

the GP and W-GP estimates, the proportions of retained policies are reduced to about 6% and 13%

respectively. Thanks to the more cautious policy selection, their loss ratios of the retained polices

improve to 0.37 and 0.24. Compared with the case under the symmetric loss function, the propor-

tion of retained policies is reduced by roughly 50% under either strategy while their loss ratio is

reduced by 55% and 72% respectively. Not surprisingly, the difference in the loss ratios between

the retained and ceded polices are more pronounced under this more selective policy election.

Our experiments suggest that the proposed methods are policy selection based on the proposed

GP models are effective in selecting profitable policies under both a symmetric and an asymmetric

loss function. In addition, the W-GP approach, which is heavily favored according to our simula-

tions, is shown to be able to select a larger proportion of policies without compromising the loss

ratio. This is certainly desirable for the insurance companies as it implies a higher total profit.

4.7 Concluding remarks

In this study, we propose a non-stationary modeling approach based on the method of Gaus-

sian process regression for crop yields. This approach departs from the conventional two-step

estimation procedure and allows the yield distributions to vary over time. We further develop

a performance weighted model averaging method to construct densities as mixture of Gaussian

processes. This method not only facilitates information pooling but greatly improves the flexi-

bility of the resultant predictive density of crop yields. Our simulation results on crop insurance

premium estimation show that the proposed method is comparable and often preferred to the con-

ventional two-step estimation procedures regardless of whether the underlying distributions are

stationary. When the underlying distributions are non-stationary, our method consistently outper-

forms its competitors.

We demonstrate the utility of the proposed method with an application to crop insurance poli-

cies selection from the insurance companies’ point of view. We are cognizant about the difficulty
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of decision making under uncertainty and its contingency upon decision maker’s objective. There-

fore we adopt the decision theoretic framework that tailors the decision process according to the

loss function of the decision maker and derives a feasible solution by minimizing the expected loss

(or risk) with respect to a distribution regarding the source of uncertainty. Our results suggest that

the proposed method provides an effective tool in identifying profitable insurance policies. We

illustrate the usefulness of this framework using a simple stylized asymmetric loss function for the

insurance companies. Note that more complex loss functions can be similarly accommodated with

little extra cost, and it can be used by all stakeholders (e.g. the insurance companies, the RMA and

the farmers) alike. We conclude by stressing that a key ingredient to the successful implementation

of this approach is reliable predictive distributions of crop yields. In addition to being a flexible yet

principled estimator, the proposed Gaussian process approach, thanks to its probabilistic nature,

lends itself to this task.
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5. CONCLUSION

In the first essay, I propose an Averaged Normal Mixture model for density estimation based

on normal mixture models. Instead of selecting the appropriate number of components in a nor-

mal mixture model, I first estimate a series of normal mixture models with different number of

components, then I take these estimated normal mixture models as given and mix all these mod-

els. This new method is more stable and generally more accurate than the best selected normal

mixture models. I propose two methods to find the appropriate weights in the Averaged Normal

Mixture model, one is based on likelihood cross validation and the other one is based on BIC

weights. I have established the theoretical properties of the proposed estimator and the simulation

results demonstrate its good performance on different kind of densities. Finally, I illustrate that our

proposed estimator behaves well on a real world data set.

The second essay focuses on forecasts of the day ahead electricity demand in the southern

region of Texas. I have proposed a novel hybrid Gaussian Process forecasting model that combines

the strength of two different forecast strategies. The proposed GP model is shown to provide

superior multi-step ahead point and probabilistic forecasts of hourly electricity demand. Except

for the statistical side, I show that the proposed method can be used to reduce the expected cost

of electricity supply relative to the conventional linear regression approach, and further economic

benefit is obtained when the probabilistic forecasts are used to derive an optimal bidding strategy

for the electricity suppliers.

In the third essay, I propose a non-stationary modeling approach based on the method of Gaus-

sian process regression for crop yields. This approach departs from the conventional two-step

estimation procedure and allows the yield distributions to vary over time. I further develop a perfor-

mance weighted model averaging method to construct densities as mixture of Gaussian processes.

This method not only facilitates information pooling but greatly improves the flexibility of the re-

sultant predictive density of crop yields. The simulation results on crop insurance premium estima-

tion show that the proposed method is comparable and often preferred to the conventional two-step
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estimation procedures regardless of whether the underlying distributions are stationary. When the

underlying distributions are non-stationary, our method consistently outperforms its competitors.

At last, I demonstrate the utility of the proposed method with an application to crop insurance

policies selection from the insurance companies’ point of view. I adopt the decision theoretic

framework that tailors the decision process according to the loss function of the decision maker

and derives a feasible solution by minimizing the expected loss (or risk) with respect to a distri-

bution regarding the source of uncertainty. Results suggest that the proposed method provides an

effective tool in identifying profitable insurance policies.
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APPENDIX A

NOTATION AND ASSUMPTIONS FOR THEOREM 1 IN SECTION 2

Let (X ,F) be a measurable space and let λ be a σ-finite measure on F . Whenever we mention

below that a probability measure on F has a density we means it has a Radon-Nikodym derivative

with respect to λ.

Consider a family of normal mixture normal distributions H = {φθi(x) : θ ∈ Θ ⊂ Rd}1 over

X . The class of k component mixtures fk is defined as

Ck = convk(H) = {f : f(x) =
k∑
i=1

λiφθi(x),
k∑
i=1

λi = 1, λi ≥ 0, θi ∈ Θ}.

In a similar way we define the class of continuous convex combinations

C = conv(H) = {f : f(x) =

∫
Θ

φθi(x)P (dθ), P is a probability measure on Θ}.

Assumptions for Theorem 1

Assumption A.1. Assume basis 0 < a ≤ φθ(x) ≤ b.∀x ∈ X , φθ(x) ∈ H.

Assumption A.2. Assume underlying function 0 < a ≤ f(x) ≤ b,∀x ∈ X .

Assumption A.3. Given the data, we have the likelihood function L(Θ) =
n∑
i=1

log p(xi|Θ), we

assume the matrix of second derivatives of L(Θ) is defined and negative definite for all Θ,. Then

there is a unique maximum-likelihood, and the estimators generated by EM algorithm will con-

verge to this value (Redner and Walker, 1984).

1For ease of notation, we use φθi(x) to denote φ(x;µi,Σi).
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APPENDIX B

PROOF OF THEOREM 1 IN SECTION 2

Before we prove for Theorem 1, we need to introduce several Lemmas, we will denote fi =

f(xi). Let ε1, · · · , εn be i.i.d. Rademacher random variables, i.e. P (i = −1) = P (i = +1) = 1/2.

Lemma1 (Comparison Inequality for Rademacher Processes)

If φi : R→ R(i = 1, · · · , n) are contractions (φi(0) = 0 and |φi(s)− φi(t)| ≤ |s− t|), then

Eε sup
f∈F
|

n∑
i=1

εiφi(fi)| ≤ 2Eε sup
f∈F
|

n∑
i=1

εifi|

Lemma2 (Symmetrization)

Consider the following processes:

Z(x) = sup
f∈F
|Ef − 1

n

n∑
i=1

fi|, R(x) = sup
f∈F
| 1
n

n∑
i=1

εifi|

Then

EZ(x) ≤ 2ER(x)

Lemma3 (McDiarmid’s Inequality)

Let x1, · · · , xn, x′1, · · · , x′n ∈ Ω be i.i.d. random variables and let Z: Ωn → R such that

∀x1, · · · , xn, x′1, · · · , x′n, |Z(x1, · · · , xn)− Z(x1, · · · , xi−1, x
′
i, xi+1, xn)| ≤ ci,

then

P (Z − EZ > ε) ≤ exp(− 2ε2

n∑
i=1

c2
i

)

We choose {f1, f2, · · · , fK} as the underlying mixture basis. f is arbitrary fixed density, h ∈ C

and x ∈ X . Our proof is based on the proof of Theorem 4.1 (Rakhlin, Panchenko and Mukherjee,
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2005).

Proof

First, we apply Lemma 3 to the random variableZ(x1, · · · , xn) = sup
h∈C
| 1
n

n∑
i=1

log h(xi)
f(xi)
−E log h

f
|.

Let ti = log h(xi)
f(xi)

and t′i = log
h(x′i)

f(x′i)
. The bound on the martingale difference follows:

|Z(x1, · · · , x′i, · · · , xn)− Z(x1, · · · , xi, · · · , xn)|

= | sup
h∈C
|E log

h

f
− 1

n
(t1 + · · ·+ ti + · · ·+ tn)|

− sup
h∈C
|E log

h

f
− 1

n
(t1 + · · ·+ t′i + · · ·+ tn)||

≤ sup
h∈C

1

n
| log

h(x′i)

f(x′i)
− log

h(xi)

f(xi)
|

≤ 1

n
(log

b

a
− log

a

b
)

=
1

n
2 log

a

b
= ci

Applying McDiarmid’s inequality(Lemma 3),

∀µ > 0, P (Z − EZ > µ) ≤ exp(− 2µ2∑
c2
i

) = exp(− nµ2

(2
√

2 log b
a
)2

)

Therefore,

sup
h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
| ≤ E sup

h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
|+ 2
√

2 log
b

a

√
t

n

with probability at least 1− e−t, in which t = nµ2

(2
√

2 log b
a

)2

Here we assume that µ → 0, nµ2 → ∞. The reason we make this assumption is that when

n→∞, we will have µ→ 0 and t→∞.
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By Lemma 2 we have

E sup
h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
| ≤ 2E sup

h∈C
| 1
n

n∑
i=1

εi log
h(xi)

f(xi)
|

Combining these two inequalities,

sup
h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
| ≤ 2E sup

h∈C
| 1
n

n∑
i=1

εi log
h(xi)

f(xi)
|+ 2
√

2 log
b

a

√
t

n

with probability at least 1− e−t.

Now we need to bound the above expectation of the Rademacher average.

Let pi = h(xi)
f(xi)
− 1 and note that a

b
− 1 ≤ pi ≤ b

a
− 1. Consider φ(p) = log(1 + p). The largest

derivative of log(1 + p) on the interval p ∈ [a
b
− 1, b

a
− 1] is at p = a

b
− 1 and is equal to b

a
. So,

a
b

log(p+ 1) is 1-Lipschitz. Also, φ(0) = 0. By Lemma 1,

2E sup
h∈C
| 1
n

n∑
i=1

εi log
h(xi)

f(xi)
| = 2E sup

h∈C
| 1
n

n∑
i=1

εiφ(pi)|

≤ 4
b

a
E sup

h∈C
| 1
n

n∑
i=1

εi
h(xi)

f(xi)
− 1

n

n∑
i=1

εi|

≤ 4
b

a
E sup

h∈C
| 1
n

n∑
i=1

εi
h(xi)

f(xi)
|+ 4

b

a
E| 1
n

n∑
i=1

εi|

≤ 4
b

a
E sup

h∈C
| 1
n

n∑
i=1

εi
h(xi)

f(xi)
|+ 4

b

a

1√
n
.

Let hi = h(xi), fi = f(xi). Assume φi(hi) = ahi
fi

. Note that |φi(hi)− φi(gi)| = a
|fi| |hi− gi| ≤

|hi − gi|. Therefore,

4
b

a
E sup

h∈C
| 1
n

n∑
i=1

εi
h(xi)

f(xi)
| ≤ 8

b

a2
E sup

h∈C
| 1
n

n∑
i=1

εih(xi)|
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Combining these inequalities, with probability at least 1− e−t

E sup
h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
| ≤ 8

b

a2
E sup

h∈C
| 1
n

n∑
i=1

εih(xi)|+ 2
√

2 log
b

a

√
t

n
+ 4

b

a

1√
n

Here we use the fact that the Rademacher averages of a class are equal to those of the con-

vex hull. Consider suph∈C | 1n
n∑
i=1

εih(xi)| with h(x) =
∫
φθ(x)P (dθ), the above supremum is

equal to supθ | 1n
n∑
i=1

εiφθ(xi)|, the corresponding supremum on the basis functions φ. Therefore,

E suph∈C | 1n
n∑
i=1

εih(xi)| = E supθ | 1n
n∑
i=1

εiφθ(xi)|.

Then we use the classical result from van der Vaart and Wellner (1996),

E sup
φ∈H
| 1
n

n∑
i=1

εiφθ(xi)| ≤
c√
n

∫ b

0

log
1
2 D(H, ε, dn)dε

where D(H, ε, dn) is the covering number of the famliy H, dn is the empirical distance with re-

spect to the set S.

Combining all the results together, the following inequality holds with probability at least 1−

e−t,

sup
h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
| ≤ c√

n

∫ b

0

log
1
2 D(H, ε, dn)dε] + 2

√
2 log

b

a

√
t

n
+ 4

b

a

1√
n

Note that we also assume when n→∞, µ→ 0 and nµ2 →∞. So when n→∞, the last two

terms 2
√

2 log b
a

√
t
n

and 4 b
a

1√
n

will converge to 0 and 1− e−t will converge to 1.

So we can get the conclusion that when n→∞,

sup
h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
| ≤ c√

n

∫ b

0

log
1
2 D(H, ε, dn)dε

with probability 1.
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Then we take ω∗ = argminD(f ||
∑
j

ωjfj)

D(f ||
∑
j

ω̂j f̂j)−D(f ||
∑
j

ω∗j fj) = E log
f∑

j

ω̂j f̂j
− E log

f∑
j

ω∗j fj

= (E log
f∑

j

ω̂j f̂j
− 1

n

n∑
i=1

log
f(xi)∑

j

ω̂j f̂j(xi)
)

+ (
1

n

n∑
i=1

log
f(xi)∑

j

ω∗j fj(xi)
− E log

f∑
j

ω∗j fj
)

+ (
1

n

n∑
i=1

log
f(xi)∑

j

ω̂j f̂j(xi)
− 1

n

n∑
i=1

log
f(xi)∑

j

ω∗j fj(xi)
)

≤ 2 sup
h∈C
| 1
n

n∑
i=1

log
h(xi)

f(xi)
− E log

h

f
|+ 1

n

n∑
i=1

log

∑
j

ω∗j fj(xi)∑
j

ω̂j f̂j(xi)

For the first term suph∈C | 1n
n∑
i=1

log h(xi)
f(xi)
− E log h

f
|, the bound is given above, we then need to

bound the second term 1
n

∑n
i=1 log

∑
j
ω∗j fj(xi)∑

j
ω̂j f̂j(xi)

.

1

n

n∑
i=1

log

∑
j

ω∗j fj(xi)∑
j

ω̂j f̂j(xi)
=

1

n

n∑
i=1

log

∑
j

ω∗j fj(xi)∑
j

ω∗j f̂j(xi)

∑
j

ω∗j f̂j(xi)∑
j

ω̂j f̂j(xi)

=
1

n

n∑
i=1

log

∑
j

ω∗j fj(xi)∑
j

ω∗j f̂j(xi)
+

1

n

n∑
i=1

log

∑
j

ω∗j f̂j(xi)∑
j

ω̂j f̂j(xi)

Note that we choose empirical ω̂ by cross validation.

ω̂ = argmax[
n∑
i=1

log
∑
j

ωj f̂j
(−i)

(xi)]

so
∑n

i=1 log
∑
j

ω̂j f̂j
(−i)

(xi) has the largest likelihood, when n is large, we can regard
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∑n
i=1 log

∑
j

ω̂j f̂j(xi) has the largest likelihood, so the second term 1
n

∑n
i=1 log

∑
j
ω∗j f̂j(xi)∑

j
ω̂j f̂j(xi)

≤ 0.

For the first term, we have

1

n

n∑
i=1

log

∑
j

ω∗j fj(xi)∑
j

ω∗j f̂j(xi)
=

1

n

n∑
i=1

log

∑
j

ω∗j fj(xi)−
∑
j

ω∗j f̂j(xi) +
∑
j

ω∗j f̂j(xi)∑
j

ω∗j f̂j(xi)

=
1

n

n∑
i=1

log(1 +

∑
j

ω∗j fj(xi)−
∑
j

ω∗j f̂j(xi)∑
j

ω∗j f̂j(xi)
)

≈ 1

n

n∑
i=1

∑
j

ω∗j fj(xi)−
∑
j

ω∗j f̂j(xi)∑
j

ω∗j f̂j(xi)
→ 0

the last two steps hold since when n is large, fj(xi) → f̂j(xi), Therefore, when n → ∞, with

probability 1,

D(f ||
∑
j

ω̂j f̂j)−D(f ||
∑
j

ω∗j fj) ≤
c1√
n

∫ b

0

log
1
2 D(H, ε, dn)dε→ 0

which means
D(f ||

∑
j

ω̂j f̂j)

inf
ω
D(f ||

∑
j

ωjfj)

p→ 1
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APPENDIX C

PROOF OF THEOREM 2 IN SECTION 2

In this section we prove that BIC weights are consistent in selecting the true model (if the true

model is in the candidates set) or the quasi-true model (if the true model is not in the candidates

set). This proof is mainly based on section 6.3 and 6.4 of Burnham and Anderson [2002].

Case 1

Assume that we have a sequence of models g1, · · · , gt, · · · , gK and that the true model, gt, is

in this sequence.Then by using BIC criterion, we can select the true model gt with probability 1 as

n gets large. Also we know the BIC weights are

P (gi) =
exp{−1

2
∆BICi}∑M

j=1 exp{−1
2
∆BICj}

,

since there is a true model, gt, in the set then P (gt) goes to 1 as n goes to infinity; and of course

P (gi) goes to 0 for all other models, we will consistently select the true model when using the BIC

weights.

Case 2

Assume that we have a sequence of models g1, · · · , gK and that the true model is not in this

sequence. As sample size n→∞, the model selected by BIC is consistent for the quasi-true model

in the model set. Now we prove the BIC weights are consistent in selecting the quasi-true model.

For a random sample we can write D(f ||gi) = nD1(f ||gi), where D1(f ||gi) being for n = 1 is a
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constant as regards sample size. Hence, D(f ||gi)−D(f ||gj) = n(D1(f ||gi)−D1(f ||gj)).

BICi −BICj ≈ 2n(D1(f ||gi)−D1(f ||gj)) + (dim(i)− dim(j)) log(n).

In the case t = K,

2n(D1(f ||gi)−D1(f ||gK)) > 0, i < K

Hence, as n→∞ all these differences diverge to∞, BIC criterion will select the quasi-true model

gK with certainty as n→∞. Also the BIC weights P (gK) goes to 1 as n goes to infinity.

In the case t < K, which model gt nested in models gi, i > t. The relevant differences are

BICi −BICt ≈ 2n[D1(f ||gi)−D1(f ||gt)] + (dim(i)− dim(t)) log(n), i < t,

BICi −BICt ≈ −χ2
i + (dim(i)− dim(t)) log(n), i > t.

Here, χ2
i is a central chi-square random variable on dim(i) − dim(t) degrees of freedom. For all

i < t the differenes BICi − BICt become infinite as n → ∞, with probability 1, hence model

gt is always selected over models g1 to gt−1 and the BIC weights P (gt) goes to 1. For all i > t

the differences BICi − BICt become infinite as n → ∞, with probability 1, because as long

as dim(i) > dim(t) term log(n) will diverge to infinity, so model gt is always selected and BIC

weights P (gt) goes to 1.
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