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Abstract

Lipid accumulation in adipocytes reflects a balance between enzymatic pathways leading to the formation and breakdown
of esterified lipids, primarily triglycerides. This balance is extremely important, as both high and low lipid levels in
adipocytes can have deleterious consequences. The enzymes responsible for lipid synthesis and breakdown (lipogenesis
and lipolysis, respectively) are regulated through the coordinated actions of several transcription factors (TFs). In this study,
we examined the dynamics of several key transcription factors (TFs) - PPARc, C/EBPb, CREB, NFAT, FoxO1, and SREBP-1c -
during adipogenic differentiation (week 1) and ensuing lipid accumulation. The activation profiles of these TFs at different
times following induction of adipogenic differentiation were quantified using 3T3-L1 reporter cell lines constructed to
secrete the Gaussia luciferase enzyme upon binding of a TF to its DNA binding element. The dynamics of the TFs was also
modeled using a combination of logical gates and ordinary differential equations, where the logical gates were used to
explore different combinations of activating inputs for PPARc, C/EBPb, and SREBP-1c. Comparisons of the experimental
profiles and model simulations suggest that SREBP-1c could be independently activated by either insulin or PPARc, whereas
PPARc activation required both C/EBPb as well as a putative ligand. Parameter estimation and sensitivity analysis indicate
that feedback activation of SREBP-1c by PPARc is negligible in comparison to activation of SREBP-1c by insulin. On the other
hand, the production of an activating ligand could quantitatively contribute to a sustained elevation in PPARc activity.
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Introduction

With rising prevalence of obesity and related diseases, numerous

studies have investigated the mechanisms underlying the expan-

sion in body fat, i.e. white adipose tissue (WAT). The bulk of WAT

cellular mass comprises metabolically active lipid-laden white

adipocytes. In vivo, almost the entire adipocyte volume is filled by

a single large lipid droplet, which expands or shrinks depending on

the body’s energy balance. Chronic overfeeding can lead to

significant expansion of adipocyte volume, termed hypertrophy, to

accommodate the storage of excess nutrients as lipids. In adult

humans, the total number of mature adipocytes is thought to

remain constant, as does the rate of turnover [1,2]. Formation of

new adipocytes through the differentiation of locally resident pool

of precursor cells in the stromal fraction is essential for WAT

remodeling [3]. However, net expansion of adipose tissue cellular

mass is quantitatively driven by an increase in the size of mature

adipocytes, as hyperplastic growth via recruitment of precursor

cells increases the number of small, newly differentiated adipocytes

that have a much smaller volume of fat stored [4].

At the cellular level, the fat content in adipocytes reflects a

balance between enzymatic pathways leading to the formation and

breakdown of esterified lipids, primarily triglycerides. This balance

is extremely important, as both high and low lipid levels in

adipocytes have deleterious consequences. Excessive accumulation

of lipids, leading to cellular hypertrophy correlates strongly with

accumulation of pro-inflammatory immune cells in WAT, which

in turn underpins tissue insulin resistance and other metabolic

alterations associated with obesity-related metabolic diseases [5–

7]. Conversely, failure to sequester fatty acids in adipocytes due to

inadequate lipid storage capacity is also not desirable, as this can

lead to an elevation in circulating levels of free fatty acids and

ectopic storage in other organs such as the liver [8].

The enzymes responsible for lipid synthesis and breakdown

(lipogenesis and lipolysis, respectively) are regulated through the

coordinated actions of several transcription factors (TFs) [9,10]. In
vitro, stimulation of growth-arrested preadipocytes with adipo-

genic hormones leads to an increase in the gene expression of

CCAAT/enhancer binding proteins b (C/EBPb) and d (C/EBPd)

[11]. This is followed by an increase in the expression of two other

TFs, peroxisome proliferator activated receptor-c (PPARc) and

C/EBPa [12], which is thought to induce the enzymes that confer

the recognizable metabolic phenotypes of the differentiated

adipocyte [10,13]. Along with sterol regulatory element binding

protein-1c (SREBP-1c), PPARc directly regulates the expression of

several genes in lipogenesis [14,15] as well as a key lipase that is

transcriptionally regulated and specifically enriched in adipocytes
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(adipose triacylglycerol lipase, ATGL). Transcriptional regulation

of lipogenesis also involves the two C/EBP isoforms b and a,

which are sequentially activated during differentiation. A major

target of these two isoforms is the gene encoding diacylglycerol

acyltransferase 2 (DGAT2), which catalyzes the final esterification

step in triglyceride synthesis.

The aforementioned TFs play a central role in regulating the

adipocyte differentiation program, underscoring the complex

interrelationship between molecular processes governing the

formation and size expansion of adipocytes. In addition to C/

EBP and PPARc, several other TFs have been shown to impact

adipogenesis. In vitro studies indicate that cyclic AMP response

element binding protein (CREB) is another early transcriptional

regulator of the adipogenic differentiation program that likely acts

upstream of C/EBP. Increasing CREB activity through the

addition of dibutyryl cAMP can induce differentiation in the

absence of other conventional inducing agents, although this

requires a very high (mM) concentration [9]. It has been shown

SREBP-1c can enhance adipogenesis by increasing PPARc
expression [16]. Unlike CREB, however, SREBP-1c cannot

directly initiate adipogenesis [14], and appears to depend on

PPARc for its own activation. Two other TFs, nuclear factor of

activated T cells (NFAT) and forkhead transcription factor

(FoxO1), appear to also modulate the activity of C/EBP and/or

PPARc. NFAT was demonstrated to form a composite enhancer

complex with C/EBP and potentiate PPARc expression [17],

whereas FoxO1 has been shown to counter PPARc activation in

3T3-L1 adipocytes [18].

These and other studies have led to significant progress in

identifying the roles played by different TFs in regulating

adipogenesis, and in some cases establishing activation/inhibition

relationships between TFs. However, only limited data is available

on the dynamics of the TFs in intact cells, particularly as the

dynamics relate to the interaction between these regulatory

molecules. In the context of obesity, achieving a desirable

adipocyte phenotype, for example curbing lipid accumulation

while maintaining differentiated adipocyte function, will likely

require careful modulation of a regulatory network comprising

several TFs whose dynamic activity profiles are interdependent.

For example, the inhibition of PPARc in vivo reduced adipogen-

esis, which is an expected outcome based on the known role of this

TF in differentiation. However, this intervention also increased

insulin resistance, one of the chief complications of type-2 diabetes

mellitus [19].

Recently, Simicevic and coworkers reported on dynamic

changes in absolute copy numbers of PPARc and its co-receptor

RXRa during differentiation of 3T3-L1 preadipocytes [20]. The

authors formulated a quantitative model of PPARc-DNA binding

based on the copy number, local chromatin state and binding

energetics. However, this study did not consider contributions

from other TFs to the differentiation process. Another recent study

investigated genome-wide changes of chromatin structure that

accompany binding of TFs during differentiation of 3T3-L1

preadipocytes [21]. Using DNase I hypersensitive site analysis, this

study found that multiple TFs (C/EBPb, C/EBPd, Stat5a, RXR,

glucocorticoid receptor) cooperatively bind to the same site early

in adipogenesis. The study also found that a subset of early

remodeled C/EBPb and C/EBPd binding sites are occupied by

PPARc in the later stage of adipogenesis, suggesting a regulatory

role of C/EBPb and C/EBPd for PPARc binding. Taken

together, these findings clearly indicate that temporal regulation

of TF expression plays a critical role in adipocyte differentiation.

The goal of this study was to characterize the dynamics and

interactions of the aforementioned TFs in adipocytes. To this end,

we generated a separate (3T3-L1) cell line for each TF capable of

reporting on the activation of the TF using secreted luciferase. We

used these reporter cells to examine the TF dynamics both during

adipogenic differentiation (week 1) and ensuing growth in

adipocyte size due to lipid accumulation [22]. Our data show

that TF activity generally peaks within one to two days following

the induction of differentiation, and declines thereafter. The

exception is the activity profile for PPARc, which is characterized

by an elevated plateau that is sustained well into the second week

following adipogenic induction. To quantitatively analyze the

observed profiles, we constructed a small interaction network

involving a subset of the aforementioned TFs, namely CREB, C/

EBPb, PPARc, and SREBP-1c, based on activation relationships

reported in the published literature. The dynamics of this network

was modeled using a combination of logical gates and ordinary

differential equations. The model was trained and then evaluated

against TF activity time profile data collected using the reporter

cells. Model simulations and parameter sensitivity analysis suggest

that the sustained elevation in PPARc activity could reflect a

positive feedback loop, where the PPARc induces the production

of an activating ligand (or ligands) via the induction of another TF,

SREBP-1c.

Results

Generation of Gaussia luciferase reporter cell lines
tracking transcription factor activity

A panel of six transcription factors (TFs) (PPARc, SREBP-1c,

NFAT, CREB, C/EBPb and FoxO1) was chosen to develop a

regulatory network underlying adipocyte differentiation and lipid

loading. Reporter plasmids were developed as described in

Materials and Methods and validated by determining if activation

of a TF led to expression of the Gaussia luciferase gene from the

reporter plasmid. For the TFs CREB, SREBP-1c, NFAT, and

FoxO1, plasmids containing the full-length gene for each TF were

over-expressed in 293T/17 cells by transfection along with the

corresponding reporter plasmid. Figure 1A shows 5–30 fold

increase in luciferase activity when the TFs were overexpressed

for 48 h. The 3T3-L1 PPARc reporter cell line was validated by

transfecting the cells with a plasmid containing the PPARc full

length gene and activating the TF with 25 mM of a chemical

agonist, rosiglitazone (RGZ). Figure 1B shows that overexpression

of PPARc increases PPARc-driven luciferase activity by 1.3-fold,

and stimulation with RGZ resulted in a 1.5-fold increase in

luciferase activity. The C/EBPb reporter was validated by

stimulating 3T3-L1 preadipocyte C/EBPb reporter cells with the

cytokine oncostatin M (OSM), which resulted in a 1.7 fold increase

in C/EBPb-driven luciferase activity (Figure 1C). Together, these

results confirmed the ability of the developed reporter cell lines to

report activation of the different TFs.

Lentivirus-mediated integration of the reporter plasmids into

3T3-L1 preadipocytes did not affect the ability of the different

reporter cells to differentiate into adipocytes. Figures 2A & B show

representative transmitted light and red fluorescence images of the

PPARc reporter cell line after 19 days in culture, and clearly

demonstrate that adipocyte differentiation was not affected (i.e.,

reporter cells show comparable accumulation of lipid droplets and

cell morphology to 3T3-L1 adipocytes without the reporter

plasmid). Moreover, no differences in differentiation and lipid

loading were observed between the different reporter cell lines

(Figure S1). In addition, more than 90% of reporter cells

demonstrated RFP expression, and suggest proper integration of

the reporter DNA.

Adipocyte Transcription Factor Network
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Profiles of transcription factor activity during adipocyte
differentiation and enlargement

3T3-L1 preadipocyte reporter cells were differentiated into

adipocytes and the activity of each TF was monitored throughout

the differentiation and maturation process. The different TFs

demonstrated markedly different activation dynamics. As shown in

Figure 3 and Dataset S1, CREB reporter cells demonstrated a

pronounced 13-fold increase in normalized luciferase activity

(RLU/h/RFU) on day1 after addition of differentiation media.

However, this increase was transient as the normalized luciferase

activity rapidly decreased and returned to day 0 levels by day 7.

On the other hand, PPARc reporter cells demonstrated a 3-fold

increase in luciferase activity in the first 24 h after induction of

differentiation. However, unlike CREB, this increase was

sustained, as nearly 2-fold higher activation of PPARc was

observed until day 17 post-differentiation compared to that in

preadipocytes. This trend was especially noticeable beyond day 7

post-differentiation. C/EBPb, SREBP-1c, NFAT and FoxO1 all

demonstrated similar activation dynamics with maximum activa-

tion observed at day 1 until day 3, and gradually decreasing to

near-baseline values after day 5.

Figure 1. Validation of TF reporter constructs. (A) Foxo1, CREB,
SREBP-1c, and NFAT3 reporter plasmids were validated by co-
transfecting plasmids for constitutive expression of each TFs (pCMV5-
FLAG-FoxO1, pCMV-Sport6-CREB, pSV Sport SREBP-1c, pEGFP-C1
NFAT3) and corresponding reporter plasmids into 293T/17 cells, and
monitoring the TF-mediated Gaussia luciferase (Gluc) activity. A yellow
fluorescence protein expressing plasmid (pEYFP-N1) plasmid was co-
transfected with each reporter plasmid as a control. (B) The PPARc
reporter construct was verified by transfecting a plasmid containing the
PPARc gene was into 3T3-L1 PPARc reporter cells, and activating PPARc
with 25 mM of rosiglitazone (RGZ). (C) The C/EBPb reporter construct
was validated by activating C/EBPb in 3T3-L1 preadipocyte C/EBPb
reporter cells with the cytokine oncostatin M (OSM). Data represent
mean 6 SD. *: p,0.05.
doi:10.1371/journal.pone.0100177.g001

Figure 2. Representative images of PPARc reporter cells 19
days post-induction. Micrographs show (A) transmitted light and (B)
red fluorescence microscopy images. Scale bar = 50 mm. Images for
other TF (FoxO1, CREB, NFAT, SREBP-1c, C/EBPb) reporter cell lines at
the mature adipocyte state are available in Figure S1.
doi:10.1371/journal.pone.0100177.g002

Figure 3. TF activity profiles. Gluc activity, which is a measure of TF
binding activity, was measured every 24 h post-medium change
starting from day 0 when differentiation was induced to day 17. The
rate of Gluc activity (RLU/h) was normalized with relative fluorescence
units (RFU) measured at that time point. The fold change in the increase
rate of Gluc activity was determined by normalizing the RLU/h/RFU
value at each time point to the corresponding value at the start of
differentiation (i.e., day 0). Data are from two independent experiments
and represent mean 6 SD.
doi:10.1371/journal.pone.0100177.g003

Adipocyte Transcription Factor Network
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Dynamic model of transcription factor interactions
Based on literature reports, a network model was assembled

describing the interactions between TFs as well as their stimulation

by adipogenic hormones (Figure 4). Only a subset of the measured

TFs (CREB, C/EBPb, PPARc, and SREBP-1c) was considered,

as the interactions involving NFAT and FoxO1 were less clearly

documented in the published literature. Activation and decay of

TFs were modeled using ordinary differential equations (ODEs)

based on mass action kinetics (Table S1) or Hill equations (Table

S2). Different possibilities regarding co-activation of TFs by

upstream factors were modeled using logical AND/OR gates

(Table S3), resulting in 64 model variants (32 mass action and 32

Hill equation models) (Table S4). The models’ parameters (i.e.

kinetic constants) were fitted to the normalized activity profiles

(Figure 3) by minimizing the sum of squared residuals (SSR)

between the measured and model-calculated TF activity profiles.

The Hill equation models generally resulted in smaller SSR

compared to the mass action models. The SSR for the mass action

models ranged from 4.15 to 13.13 with a median of 7.47, whereas

the SSR for the Hill equation models ranged from 3.05 to 5.47

with a median of 3.72 (Figure S2). Visual inspection of the

simulated profiles corroborated the trends indicated by the SSR

values. The TF activity profiles generated by the best fitting Hill

equation models (Figure 5) showed smoother curves and more

closely approximated the experimental data compared to the mass

action models (Figure 6). Regardless of rank (based on SSR), The

Hill equation models calculated essentially identical profiles for the

TFs. In comparison, there were more noticeable differences

between profiles calculated by the mass action models.

While the SSR values and calculated profiles appeared to

suggest that the Hill equations provided the better model structure,

the adjusted R2 values of these models were noticeably smaller (by

16.9%) than the corresponding R2 values (Table 1). The relatively

large discrepancy in the two statistics indicated that the Hill

equation models over-fit the available data. In comparison, the

adjusted R2 values for the best fitting (top 8) mass action models

were only slightly less (by 2.7%) than the corresponding R2 values.

Eight of the 32 mass action models had adjusted R2 values greater

than 0.90. Therefore, further analysis to discriminate between

different model variants (AND/OR gate combinations) focused on

these top 8 mass action models.

Every top mass action model (Table 1) included an OR gate at

the SREBP-1c node (Table S3), indicating that insulin or PPARc
could independently activate this TF. The trend was less clear for

the PPARc node. At this node, half of the top 8 models combined

the inputs C/EBPb and ligand using an AND gate, whereas the

other half used an OR gate. At the C/EBPb node, 6 out of the top

8 models used an OR gate for the DEX input, including the best

fitting model (MA31). The gate combination of the remaining two

models, (CREB AND DEX) OR PPARc, also suggested that DEX

may not be a required factor for C/EBPb activation, provided

PPARc is active. Indeed, PPARc alone was sufficient to activate

C/EBPb in 4 out of the 8 models, with the other 4 models

requiring both CREB and PPARc in the absence of DEX. While

PPARc appeared to play an essential role in C/EBPb activation,

Figure 4. Schematic of TF network model. Arrows indicate direction of interaction. Model parameters labeling the dotted arrows (k2, k5, k8, and
k10) represent first-order decay rate constants for the TFs. The rate constants shown in the schematic refer to the mass action models. See text for
abbreviations.
doi:10.1371/journal.pone.0100177.g004
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the role of CREB was more ambiguous. This ambiguity may

reflect the limited specificity of the reporter construct used in this

study, which could not differentiate between different C/EBP

isoforms. As the reporter could respond to activation of C/EBPa,

-b, or -d, it is possible (even likely) that the TF data used to train

the models represent the aggregate responses of all three isoforms,

whereas only the -b isoform depends on CREB [23].

Evaluation of model fit
Qualitatively, the TF time profiles generated using the best

fitting mass action model (MA31) were largely consistent with the

measured data. The calculated profiles correctly ordered the peak

activities for the TFs, and showed a sustained elevation in PPARc
activity extending to day 11 post-induction. On the other hand,

there were differences in the shapes of the calculated profiles

compared to the trends implied by the measured data. To

characterize the differences, we utilized a bootstrapping method to

estimate the confidence intervals (CIs) for the parameters and

variables of the model.

From the parameter distributions (Figure 7) and CI shape

values (L) (Table S1), it can be seen that the model was nonlinear

with respect to the parameters, especially k5, k10, k12, and k13,

which had shape values 8.62, 3.72, 5.78, and 3.31, respectively.

The CI lengths suggested that most of the parameters were well

constrained. For 9 out of the 13 kinetic parameters, the CI lengths

were of the same order magnitude or smaller than the median

estimated parameter value (Table S1), ranging from 1022 to 100.

The most tightly constrained parameters (L,1022) related to C/

EBPb: k3 (activation of C/EBPb by CREB), k7 (activation of C/

EBPb by PPARc) and k5 (degradation constant for C/EBPb).

Larger CI lengths (on the order of 101), and thus greater

uncertainty, were calculated for the parameters characterizing

the activation of PPARc by C/EBPb (k6), induction of ligand

production by SREBP (k11), and degradation of PPARc (k8).

To investigate the consequences of parameter uncertainty on

the simulated profiles, 95% CIs were computed for the TFs and

ligand from their distributions obtained using the bootstrap

parameters. Approximately 25% of the measured data points

were outside the calculated CIs. Specific discrepancies between

simulated and experimental profiles could be noted by locating the

data points lying outside the confidence intervals (Figure 8). For

example, the simulated profile for C/EBPb (Figure 8B) showed an

Figure 5. Simulated activity profiles for (A) CREB, (B) C/EBP, (C) PPARc, and (D) SREBP-1c generated using the top five Hill equation
models. The model numbers are shown in the figure legend, listed in order of increasing sum of squared residuals (SSR). The measured data
(normalized mean Gluc activities, RFL/h/RLU) are shown as red dots. The specific combination of logic gates for these models can be determined from
Tables S3 and S4.
doi:10.1371/journal.pone.0100177.g005
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initially sharp rise until day 2, followed by a rapid decline, whereas

the measured profile showed a broader peak extending from day 1

to day 5. For SREBP-1c (Figure 8D), the simulated profile showed

a delay in the peak activity relative to the measured data. Overall,

the shape differences in the TF profiles reflected a sharper rise or

fall of the simulations relative to the measured data, presumably

due to the simplifying assumptions regarding the concentrations of

the hormones (DEX, IBMX, and insulin), which were modeled as

step inputs.

Parameter sensitivity
To assess the sensitivity of the model simulations to the

estimated parameter values, a series of numerical perturbation

experiments were performed. Each perturbation experiment

decreased/increased the value of a single parameter by a fixed

fraction (e.g. 15%) while keeping all other parameters constant,

and calculated the change in TF and ligand time profiles. Similar

to the CI calculations, the perturbation experiments used a

sampling based approach, resulting in a distribution of changes for

each model species. Statistically, one-sample t-tests performed on

the changes showed that every parameter had a significant (non-

zero) impact (p,0.05) on at least one model species when the

parameter was decreased (or increased) by 15%, with most

parameters significantly affecting multiple model species (Dataset

S2). To obtain a more detailed analysis, we calculated an average

perturbed time profile for each TF or ligand, and compared this

perturbed profile against the 95% CIs of the corresponding

unperturbed profile. Table 2 summarizes the results of this

analysis for the case when each parameter was decreased or

increased by 15% from its baseline (unperturbed) value. Based on

the fraction of perturbed data points that lie outside the CIs, the

ligand profile was the least sensitive across all parameters,

presumably due to the large uncertainly of this profile, which

was not experimentally measured in this study. The CREB profile

was also largely insensitive to small perturbations, with the

exception of values assigned to k1 and k2, which characterize

CREB activation by IBMX and turnover of the TF, respectively.

The other three model species all exhibited large sensitivities,

especially with respect to the degradation constant of PPARc (k8),

degradation constant of SREBP-1c (k10) and rate constant for

ligand synthesis (k11). Similar trends were obtained for larger

perturbations (Dataset S3).

Figure 6. Simulated activity profiles for (A) CREB, (B) C/EBP, (C) PPARc, and (D) SREBP-1c generated using the top five mass action
models. The model numbers are shown in the figure legend, listed in order of increasing sum of squared residuals (SSR). The measured data
(normalized mean Gluc activities, RFL/h/RLU) are shown as red dots. The specific combination of logic gates for these models can be determined from
Tables S3 and S4.
doi:10.1371/journal.pone.0100177.g006
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Perturbation of the transcription factor network by
forskolin treatment

In order to evaluate the model with a new dataset, we

experimentally perturbed the TF network using forskolin, and

investigated its effects on the dynamics of C/EBPb and PPARc.

Similar to IBMX, forskolin raises the intracellular concentration of

cAMP, which in turn activates CREB. Therefore, the addition of

forskolin was modeled as an increase in the concentration of

IBMX relative to the unperturbed condition. As shown in

Figure 9A and Dataset S4, forskolin treatment on day 0 resulted

in 1.7-fold increase in the maximum activation of CREB as

compared to the control, while retaining the same activation

dynamics. Interestingly, the activation of C/EBPb (Figure 9B and

Dataset S4) and PPARc (Figure 9C and Dataset S4) were more

muted, increasing only 1.3-fold and 1.5-fold, respectively, com-

pared to the control condition receiving only the adipogenic

induction cocktail. These results are qualitatively consistent with

the model simulations, which also predicted an attenuation of

forskolin’s effect downstream of CREB (Figure 10). In the

simulations shown in Figure 10, the IBMX level was set to 1.4-

fold above the control condition, which resulted in the optimal fit

between the simulated profiles and experimental data. Adjusting

the IBMX level primarily affected the peak activity of CREB, and

had little effect on the C/EBPb and PPARc profiles (Figure S3).

This observation is consistent with the results of the parameter

sensitivity analysis, which showed that the rate constant for

activation of C/EBPb by CREB (k3) had little effect on any of the

model species.

Discussion

In this study, we assembled an interaction network model of

several key TFs whose concerted actions are suspected to regulate

adipocyte differentiation and lipid storage. We trained this model

using activation time profiles of the TFs measured over a nearly

three-week long period after inducing the differentiation of 3T3-

L1 preadipocytes. The activity profiles were obtained using

reporter cells generated from 3T3-L1 cells. In these reporter cell

lines, binding of a TF to its recognition sequence leads to

expression of a Gaussia luciferase reporter gene. Since the

luciferase gene has a secretion leader sequence, non-invasive

dynamic profiling of TF activity is possible by monitoring the

culture supernatant for luciferase activity. This approach enabled

us to directly monitor TF function (i.e., binding to its recognition

sequence) as opposed to inferring activity from mRNA or protein

data. The non-invasive measurement technique also allows for

frequent sampling, which, in turn, facilitates collection of data for

model construction and testing. Lastly, this approach also allows

for TF activation profiles to be measured from the same batch of

cells in a single experiment from differentiation to maturation.

The differentiation of preadipocytes into adipocytes is charac-

terized by the appearance of microscopically visible intracellular

lipid droplets and rounding of the cell shape, and is mediated by

multiple enzymes and regulatory TFs. While previous data on the

activation of different TFs underlying adipocyte differentiation

and enlargement are available in the literature, differences in the

experimental conditions and readout methods limit their utility for

developing an integrated network model. In this study, we address

this by developing a TF model using time-course data from the

same cell population.

Our results show that different TFs demonstrate distinct

activation profiles during adipocyte differentiation and enlarge-

ment, which are consistent with published reports. The temporal

correlation between CREB and C/EBPb is one such example
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(Figure 3) where activation of C/EBPb follows the activation of

CREB until day 5. Zhang and coworkers [23] showed that CREB

induces expression of C/EBPb at 8 h after induction of the

adipogenic program. Similarly, SREBP-1c has been shown to

promote adipogenesis by inducing the enzymatic production of a

PPARc ligand [14]. It has also been suggested that SREBP-1c

could transcriptionally activate PPARc by directly binding to a

PPARc promoter [16]. Another TF implicated in the regulation of

PPARc is NFAT, based on the evidence that NFAT associates

physically with PPARc [24]. Our data show that both SREBP-1c

and NFAT demonstrate activation profiles comparable to C/

EBPb, which is known to precede and activate expression of

PPARc [25], during the initial differentiation phase (days 1-3).

Thus, our data provide corroborating evidence for SREBP-1c and

NFAT in regulating PPARc activity.

Activation of PPARc is critical for terminal differentiation and

maintenance of differentiated phenotype. Our data also show that

PPARc activity increased gradually from the induction of

differentiation and stayed elevated between days 7 and 11. While

the activation levels decreased after day 11, they were still

significantly higher than pre-induction levels for the duration of

the experiment. Interestingly, only PPARc demonstrated sustained

activation as the activity of other TFs decreased to pre-induction

levels after adipocyte maturation (days 7–10). This result is

consistent with the primary role for PPARc in adipocyte

differentiation and enlargement. Interestingly, FoxO1 did not

show significant activation over the time course of the experiment.

A recent study has shown that a direct protein-protein interaction

leads to repression of PPARc activity by FoxO1 [26]. However,

since FoxO1 interferes with PPARc by recruitment to the PPARc
response element, measurement of FoxO1 binding to its own

response element may not show any correlation to alterations in

PPARc activity.

To more quantitatively characterize the dynamics of the TFs,

we assembled a mathematical model based on interactions

documented in the published literature. For four of the TFs

monitored in this study, namely CREB, C/EBPb, PPARc, and

SREBP-1c, we found a general consensus regarding the activation

cascade, with CREB and SREBP-1c upstream of C/EBPb and

PPARc, respectively, and positive feedback between C/EBPb and

PPARc. For the sake of parsimony, we modeled these interactions

as a sequence of direct activation events between TFs. The

exception was the activation of PPARc by SREBP-1c, as there was

strong evidence that SREBP-1c activation induces the production

of one or more endogenous metabolite ligands for PPARc [27].

We also explored different possibilities with regards to co-

Figure 7. Parameter distributions for the best fitting mass action model (MA31). Note that the x-axis scales have been adjusted to show
the shapes of the distributions. The distributions were obtained using a bootstrapping method by twice repeating the parameter optimization 2,000
times on noise-added data (see Materials and Methods, Parameter estimation).
doi:10.1371/journal.pone.0100177.g007
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activation requirements of a downstream TF for cases where the

TF could be activated by more than one TF and/or hormonal

input. We modeled these possibilities using a logic-based modeling

approach, which has been utilized in various forms to describe the

input-output dynamics of cellular signaling networks [28–30]. As

the TF activities varied continuously, rather than discretely, we

decided to utilize ODEs in conjunction with logical gates, similar

to the recent work by Kraeutler et al. [31]. While other

approaches such as fuzzy logic modeling could also be used to

approximate continuous variations in the model species [30], this

would require additional adjustable parameters [32] and/or

manual refinement [33], thus undermining a major benefit of

logic-based modeling, namely simplicity. Along this vein, we

compared the fits achieved using Hill equations against simpler

mass action kinetics. We found that the improvement in the SSR

achieved using Hill equations essentially reflected a larger degree

of freedom, as indicated by the adjusted R2 statistic (Table 1),

which penalizes over-fitting. Consequently, the Hill equation

models could not adequately discriminate between different logic

gate combinations based on goodness of fit. Moreover, there was

no mechanistic basis, e.g. known cooperative interactions between

the TFs modeled in this study, to support the selection of a more

complex functional form to describe the activation kinetics. For

these reasons, we focused on the first-order mass action models in

evaluating potential co-activation at various network nodes using

different logical gate combinations.

We found that an all OR-gate model best explained the data

collected in this study, although an alternative model with an AND

gate at the PPARc node fit the data nearly as well. This suggests

that PPARc activation by C/EBPb may require a ligand co-

activator, which in turn is produced by an enzyme induced by

SREBP-1c. Due to its prominent role in regulating adipogenesis

and differentiated adipocyte functions, ligand activation of PPARc
has been extensively studied using high-affinity synthetic agonists,

notably TZDs, and more recently, certain environmental chem-

icals. As a nuclear receptor, PPARc is capable of recognizing a

variety of oxidized fatty acids and related lipid metabolites,

including prostaglandins [34–36]. Tzameli and coworkers con-

structed a beta-galactosidase-based PPARc ligand-sensing vector

system to show that one or more endogenous ligands are produced

following the induction of adipogenesis in response to an elevation

in cAMP [37], but establishing the chemical identity of these

Figure 8. Simulated activity profiles for (A) CREB, (B) C/EBP, (C) PPARc, and (D) SREBP-1c generated using the best fitting mass
action model (MA31). Dashed lines show 95% confidence intervals. The confidence intervals at each time point were calculated based on the
percentiles obtained from repeated simulations using the bootstrap method (see Materials and Methods, Sensitivity analysis for details). The
measured data (normalized mean Gluc activities, RFL/h/RLU) are shown as red dots.
doi:10.1371/journal.pone.0100177.g008
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ligands has been challenging. Metabolic products of the arachid-

onate cyclooxygenase (COX) pathway, particularly 15-deoxy-

12,14 prostaglandin J2 (15-dPGJ2), have been shown to be potent

activators capable of inducing adipogenesis [38]. However, it

remains an open question as to whether differentiating adipocytes

synthesize 15-dPGJ2 or other suspected natural lipid ligands at

sufficiently high concentrations in vivo to activate 15-dPGJ2 [39].

In the present study, we did not assume a specific identity for the

natural ligand, and thus could not experimentally monitor its

concentration, which clearly contributed to the uncertainty

regarding co-activation of PPARc. In this regard, establishing

the identity of the natural ligand and tracking its concentration will

be crucial in further resolving the dynamics of the adipocyte TF

network.

As published data on adipocyte TF network activation rates

were not available, the rate parameters were estimated from the

measured profiles collected in this study. Confidence interval

calculations and parameter sensitivity analysis suggested that most

of the parameters were well constrained, and that the model

species were sensitive to the parameters, allowing the model fitting

procedure to estimate the parameters to within one order of

magnitude. Outside of the general assumption that the rate

constants have to be nonnegative, the only other constraint

applied to the parameters was to set a lower bound for the

turnover rates of the TFs. Based on the estimated parameter

distributions, the decay rate constants ranged from ,0.5 day21 for

C/EBPb (k5) to ,7.2 day21 for PPARc (k8) (Table S1 and

Figure 7). These decay rate constants correspond to half-life

ranges of ,33 to ,2.3 h, which are comparable to published

turnover rates of TFs [40–45].

Compared to the other rate constants, the decay rate constant

for PPARc had a relatively large degree of uncertainty, as did two

other rate parameters for the activation or degradation of this TF.

The simplest explanation is the lack of direct and specific

experimental observations on the dynamics of the putative ligand.

The PPARc activity profile intimately depends on the ligand

profile through k11 (ligand synthesis rate constant), another

parameter with a relatively large CI length, as shown by the

sensitivity analysis (Table 2). It is likely that multiple PPARc
ligands are produced in differentiating adipocytes [46], although a

dominant endogenous ligand has not yet been conclusively

identified. Another, related limitation regarding the interpretation

of the simulated ligand time profile is that it is not possible to

determine an absolute concentration range for the ligand, because

normalized TF time profiles were used in fitting the model.

Despite these limitations, the mathematical model revealed

several noteworthy features of the adipocyte TF network. First,

model simulations of forskolin stimulation showed that an increase

in CREB activity does not propagate to C/EBP and PPARc,

indicating that the latter two TFs receive additional inputs (from

DEX and ligand) having a quantitatively larger impact than the

input from CREB. This simulation was in good agreement with

measured data, which also showed little increase in TF activity

downstream from CREB in response to forskolin treatment.

Second, the estimated values for rate parameters suggest that

feedback activation of SREBP-1c by PPARc is negligible in

comparison to activation of SREBP-1c by insulin, corroborating

the downstream placement of SREBP-1c relative to PPARc in

recently published studies [47,48]. Third, the estimated parame-

ters suggest that the strength of the positive activation loop

between C/EBP and PPARc is comparable to the strengths of the

activation cascades connecting the TFs to hormonal inputs. This

finding is consistent with previous experiments showing that direct

(e.g. genetic) manipulation of either C/EBP or PPARc could drive

the adipogensis program to similar extents as hormonal stimula-

tion [49,50].

Prospectively, the TF reporters and model described in this

study could provide a set of useful tools for investigating methods

to modulate adipocyte differentiation and metabolism by inter-

vening at the level of the regulatory network. For example, we

could simulate overall change of activity profiles for key TFs

triggered by a specific perturbation (i.e. exposure to an agonist or

antagonist) and its influence on expression levels of target genes

such as adipocyte metabolic enzymes that are regulated by the

TFs. We expect the systematic understanding of the TF network

also to lead to the development of new treatment approaches

against obesity, and for studying other phenotypes regulated by the

coordinated activity of TFs.

Figure 9. Perturbation of CREB activity profiles. (A) Perturbation
of CREB activity profiles upon addition of 10 mM of forskolin or 0.1%
DMSO at day 0 for 48 h. (B) and (C) show activation of C/EBPb and
PPARc, respectively, with forskolin treatment as compared to DMSO
control. The RLU/h/RFU for each time point was normalized to the value
at the start of differentiation (day 0). Data are from two independent
experiments and represent mean 6 SD. *: p,0.05.
doi:10.1371/journal.pone.0100177.g009
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Materials and Methods

Materials
3T3-L1 cells were kindly provided by Prof. Barbara Corkey

(Boston University School of Medicine, MA). Tissue culture

reagents including Dulbecco’s Modified Eagle’s Medium

(DMEM), calf serum (CS), fetal bovine serum (FBS), human

insulin, and penicillin/streptomycin were purchased from Invitro-

gen (Carlsbad, CA). Unless otherwise noted, all other chemicals

were purchased from Sigma (St. Louis, MO).

Cell culture and differentiation
3T3-L1 cells were seeded in 6-well tissue culture plates in

preadipocyte growth medium consisting of DMEM supplemented

with CS (10% v/v), penicillin (200 U/ml) and streptomycin

(200 mg/ml). Medium was replenished every other day. Two days

post-confluence, differentiation was induced using a standard

adipogenic cocktail (1 mg/ml insulin, 0.5 mM isobutylmethyl-

xanthine, and 1 mM dexamethasone) added to a basal medium

(DMEM with 10% FBS and penicillin/streptomycin). After 48 h,

the first differentiation medium was replaced with a second

differentiation medium consisting of the basal adipocyte medium

supplemented with only (1 mg/ml) insulin. After another 48 h, the

second medium was replaced with the adipocyte basal medium

and replenished every other day.

Construction of Gaussia luciferase (Gluc) reporter
plasmids

Lentiviral reporter plasmids for monitoring activation of six

transcription factors (TFs) - PPARc, SREBP-1c, NFAT, CREB,

C/EBPb and FoxO1 - during adipocyte differentiation and lipid

loading were constructed as described below. For each TF,

consensus binding sites (response elements; RE) in target gene

promoter regions were identified using TRANSFAC database 7.0

Public (AGGACAAAGGTCA for PPARc, CATGTG for

SREBP-1c, GGAAAATTTGAGTCA for NFAT, TGACGTCA

for CREB, ATTGCGCAAT for C/EBPb and AGTTGGACGC-

GAC for FoxO1). Response element (RE) oligonucleotides

containing the binding sequence for each TF were chemically

synthesized. Each RE oligonucleotide consists of three consensus

binding sequences separated by 4–6 bases (spacer sequence) and a

unique restriction enzyme (EcoRI and AfeI) cleavage sites at the

Figure 10. Simulated activity profiles for (A) CREB, (B) C/EBP, and (C) PPARc generated using the best fitting mass action model
with added forskolin input. Forskolin treatment was modeled as a step increase in IBMX during the first induction period (days 0 to 2). All other
model parameters (k1–k13) were kept at the same values that were estimated from the training data without forskolin. Dashed lines show 95%
confidence intervals. The measured data (normalized mean Gluc activities, RFL/h/RLU) are shown as red dots.
doi:10.1371/journal.pone.0100177.g010
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ends. The RE oligonucleotides were cloned into Gluc-DRE2-viral

vector (pCS-sMAR8-pA1-DRE2-hPGK-cHS4-tACTB-SPA-

Gluc-CMVmin) [51] in which expression of the Gaussia luciferase

(Gluc) is under the control of a minimal promoter. Expression of

Gluc is induced only when a TF binds to its consensus binding site.

In addition, a plasmid containing a non-specific binding sequence

(AGTTGGACGCGAC) was constructed to generate a control cell

line that expresses a basal level of Gluc in a TF independent

manner. Clones containing the correct RE were identified by

multiple restriction enzyme digests and sequenced to verify fidelity.

Generation of stable reporter cell lines
Stable reporter cell lines for each TF were generated by

lentiviral transduction. To produce lentiviral particles, each TF

reporter plasmid and two helper plasmids (psPAX; Addgene

plasmid 12260 and pMD2.G; Addgene plasmid 12259, Dr.

Trono, Lausanne, Switzerland) were co-transfected into 293T/

17 cells using the calcium phosphate transfection method [52].

After 24 h following the transfection, the medium was replenished

and 5 mM of sodium butyrate was added, and incubated for an

additional 24 h. Supernatants containing viral particles were

collected, pooled, filtered with 0.45 mm filters, and centrifuged for

2 h at 4uC at 48000 6g. The viral titer was measured using a

Lenti-X qRT-PCR titration kit (Clontech, Palo Alto, CA). To

transduce 3T3-L1 preadipocytes, concentrated virus particles

(,26108 IFU) were added to the cells in presence of Polybrene

(hexadimethrine bromide). The cells were incubated with the virus

particles for 15 h, and the medium was replenished the next day.

The efficiency of transduction was assessed by microscopic

analysis.

Validation of reporter plasmid function
Plasmids for constitutive expression of the TFs were purchased

from Addgene (pCMV5-FLAG-FoxO1, pSV Sport SREBP-1c,

pEGFP-C1 NFAT3, pcDNA flag PPAR gamma) or Invitrogen

(pCMV-Sport6-CREB). 293T/17 cells were seeded in 6-well tissue

culture plates, and ,1 mg of each expression plasmid was

cotransfected along with the corresponding reporter plasmid

(,1 mg) using the calcium phosphate transfection. For control

experiments, the same amount of pEYFP-N1 plasmid (constitutive

expression of yellow fluorescent protein) was transfected. At 48 h

post-transfection, supernatants were collected and luciferase

activity measured using the BioLux Gaussia Luciferase Flex assay

kit (New England Biolabs, Ipswich, MA). Additionally, the PPARc
reporter plasmid was validated using thiazolidinedione (TZD) as

the agonist. PPARc was overexpressed from plasmid (pcDNA flag

PPAR gamma) in 3T3-L1 PPARc reporter cells and 25 mM TZD

was used to activate PPARc for 24 h. The C/EBPb reporter cell

line was validated by up-regulating C/EBPb with 100 ng/mL

oncostatin M (OSM) for 12 h [53]. Luciferase activity in the

supernatant was determined as described above.

Measurement of transcription factor activity profiles
For profiling TF activation in each reporter cell line, 3T3-L1

preadipocyte reporter cells for each TF were seeded in 6-well

tissue culture plates and differentiated into adipocytes as described

above. At different stages post-differentiation, 30 mL supernatant

samples were collected at 24 h post-medium change from day 0

(induction of differentiation) until day 17. Samples were stored at

220uC prior to assessing luciferase activity. The luciferase activity

(Relative Light Units; RLU) measured was used to calculate the

rate of Gluc production (RLU divided by the time over which

Gluc was secreted). As the red fluorescence intensity (Relative

Fluorescence Units; RFU) measured at 550 nm (excitation) and

600 nm (emission) scales linearly with cell density (Figure S4A) and

the Gluc activity (RLU) also correlates with RFU (Figure S4B), the

rate of Gluc production was also normalized with the RFU to

account for differences in cell density between different experi-

ments. The fold-increase in TF activity was determined by

normalizing the (RLU/h)/RFU at each time point to the

corresponding value at the start of differentiation (i.e., day 0).

Perturbation of the transcription factor network by
forskolin

CREB, C/EBPb and PPARc reporter cell lines were seeded in

6-well tissue culture plates and differentiated into adipocytes as

described above. Cells were treated with 10 mM of forskolin or

0.1% DMSO starting at day 0 for 48 h. TF-driven luciferase

activity in the supernatants was determined and the TF activation

profiles were determined as described above.

Transcription factor network
An interaction network model of the TFs analyzed in this study

was assembled based on activation relationships between the TFs

documented in the published literature [11,16,18,23,24,50,54–

56]. A schematic of the model is shown in Figure 4. The model

included only four out of the six measured TFs, i.e. CREB, C/

EBPb, PPARc, and SREBP-1c, as interactions involving NFAT

and FoxO1 were not consistently documented in the literature.

The guiding principle in assembling the model was simplicity.

While it is likely that some of the TFs interact with each other

through intermediaries and co-activators, these molecules were not

experimentally monitored in this study, and thus it was not

attempted to model these details. Including additional details

could potentially improve the fit of the model to the data, but also

carried the risk of over-fitting the measured data. For this reason,

the activation of a TF by another factor was assumed to occur

directly. The exception was the activation of PPARc by SREBP-

1c, which was assumed to involve the induction of a metabolic

enzyme leading to the production of an activating ligand for

PPARc. A number of candidate ligands have been proposed such

as 13-hydroxyoctadecadienoic acid, 15-hydroxyeicosatetraenoic

acid and 1-O-hexadecyl-2-Azelaoyl-sn-glycero-3-phosphocholine

[57,58]. While the identity of this ligand remains to be definitively

established, there is reasonable consensus that SREBP-1c activa-

tion of PPARc involves the endogenous production of a metabolite

ligand.

Including the putative PPARc ligand, the TF network model

comprises 5 species whose levels varied continuously with time. In

addition, the model included three input species representing the

differentiation inducing hormones insulin, dexamethasone (DEX),

and isobutylmethylxanthine (IBMX). The levels of these input

species were set to one (arbitrary units) or zero to reflect the

addition and withdrawal of the hormones at different stages of a

differentiation experiment. For the initial induction period from

time zero to 48 h, the levels of all three input species were set to

one. For the second induction period from 48 h to 96 h, DEX and

IBMX were set to zero, while insulin was kept at one. For the

maintenance period from 96 h to end of the experiment, all input

species were set to zero.

The rates of change of the 5 time variant species were described

using ordinary differential equations (ODEs). Partial differentia-

tion equations or stochastic equations were not considered,

because the data collected reflected the pooled averages of many

(.106) cells in a well-mixed environment. Two types of ODE

models were created: first-order mass action kinetic models and

Hill equation models. Mass action models offer the benefit of

parsimony, while Hill equation models could be appropriate for
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networks exhibiting sigmoidal output responses to inputs [31]. By

default, the ODE models implicitly assume that inputs to a node in

the network are independent and additive. However, it is possible

that for some TFs, multiple inputs are simultaneously required to

result in activation. To explore this possibility, we utilized logical

AND/OR gates to model the activation of TFs that received

multiple inputs. We used an AND gate to represent the scenario

where activation of a TF cannot occur unless all inputs are non-

zero. Mathematically, the AND gate was represented by the

minimum of all possible inputs to express the dependence of TF

activation on the limiting species. We used an OR gate to model

the alternative scenario where each input independently contrib-

utes to TF activation. This was mathematically represented by the

sum of all inputs. The general structure of the ODEs for the mass

action kinetic models was as follows.

Mass Action (OR Gate):
dyi

dt
~
X

j

kjwiyj{kdyi ð1Þ

Mass Action (AND Gate):
dyi

dt
~min(kjwiyj){kdyi ð2Þ

In equations (1) and (2), yi is the amount of active TF i, yj is the

amount of a TF j that activates i, and kj.i is the rate constant for

first-order activation of i by j. Every TF was assumed to decay at a

rate proportional to its amount with a first-order degradation rate

constant kd. The rate of production and degradation of the

metabolite ligand was modeled similarly using first-order rate

expressions.

The general structure of the ODEs describing the TF dynamics

for the Hill equation models was as follows:

Hill Equation (OR Gate):
dyi

dt
~
X

j

bjwiy
njwi

j

K
njwi

jwi zy
njwi

j

{kdyi ð3Þ

Hill Equation (AND Gate):
dyi

dt
~min

bjwiy
njwi

j

K
njwi

jwi zy
njwi

j

 !
{kdyi ð4Þ

In equations (3) and (4), yi, yj, and kd have the same meaning as

described above for the mass action kinetic models. The parameter

nj.i is the Hill coefficient for the activation of i by j, which is a

measure of cooperativity between substrate binding events leading

to activation. The parameter Kj.i is the Hill constant for the

activation of i by j, and corresponds to the substrate concentration

that results in half-maximal response, and bj.i is a rate constant

analogous to the mass action rate constant kj.i.

Three of the TF species in the model received more than one

input. These were C/EBPb, PPARc, and SREBP-1c. Since

molecular level details needed to determine the input requirements

were not available, all possible combinations of logic gates were

tested. Each mass action or Hill equation model had the same

respective governing equations for the CREB and ligand nodes

(since these received only one input each), but included a different

combination of logic gates at the C/EBPb, PPARc, and SREBP-

1c nodes. The possible logic gates at the C/EBPb, PPARc, and

SREBP-1c nodes are shown in Table S3. The combinations of

logic gates resulting in different model structures are shown in

Table S4. The 32 gate combinations shown in Table S4 were each

modeled with both mass action kinetics and Hill equations,

resulting in a total of 64 distinct model variants. The full set of

ODEs describing mass action Model 31 and Hill equation Model

31 (all OR combinations) are shown in Tables S1 and S2,

respectively.

Parameter estimation
The model parameters (Tables S1 and S2) were estimated from

the experimentally obtained TF time course data (control

condition without forskolin treatment) using a nonlinear con-

strained optimization procedure. The objective function was to

minimize the sum of squared residuals (SSR) measuring the

discrepancy between the measured and calculated transcription

factor levels for all time points.

min
X

t

X
i

y
exp
i,y {ymodel

i,t

� �2

ð5Þ

In the above expression, yi,t refers to the ith TF activity level (in

RLU/h/RFU) at time point t, with the superscript denoting

experimentally measured or model calculated value. The optimi-

zation variables were the model parameters. The total number of

parameters in each mass action or Hill equation model was 13 or

31, respectively. The experimental data were averages of two

independent experiments, where each experiment included two

biological replicates for each TF. Parameter optimization was

iterated 50 times. Each time, randomly generated noise drawn

from a normal distribution was added to the experimental data. A

noise level of 5% standard deviation was used based on average

variances in the measured TF activities across replicate experi-

ments. For each of the 50 iterations, the optimization was repeated

5 times using a randomly generated set of initial parameter values.

For the mass action models, the upper bounds on the

parameters were set to 100 (day21) to ensure that the first-order

rate parameters are of similar magnitude as the observed rates,

which were on the order of ,100 day21 (due to normalization of

the experimental data). The lower bounds on the TF degradation

rate constants (k2, k5, k8 and k10) were set to 0.5, to ensure that

there is a finite degradation rate for each of the factors. We chose a

minimal rate constant value that is equivalent to a half-life of ca.

36 h, which is 5- to 10-fold longer than the reported half-lives of

TF modeled in this study. The lower bounds on all other

parameters were set to zero. The initial values of the TFs were set

to one (‘1’) to reflect the normalization of the experimental data.

The initial value of the metabolite ligand was set to zero, as it was

assumed that the ligand is not present in preadipocytes prior to

induction.

The bounds for the Hill equation model parameters were set

identically, with the exception of the Hill coefficients (Table S2,

parameters 14 through 22). These coefficients were constrained by

an upper bound of 40 based on the rationale that Hill coefficient

values should in principle reflect the number of total ligand

binding sites on a macromolecule. The values reported in the

literature are generally on the order of 100 [31,32,59]. The

parameter optimization was performed using the LSQNONLIN

function (trust-region-reflective method) of the Optimization

Toolbox in MATLAB (Natick, MA).

Simulation of the transcription factor network
The TF network model described above was evaluated by

comparing the simulated TF time profiles against experimental

data. Model simulations were performed using all 50 sets of

parameters, leading to 50 different sets of TF time profiles for each

of the 64 model variants. Addition of forskolin, which rapidly

increases intracellular cAMP [60], was modeled as step increase in
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IBMX during the first induction period (time 0 to 48 h) from a

value of 1 to 1.3. This step increase in IBMX was set based on the

measured profile of CREB, which is the direct target of IBMX in

the model. All other model parameters and initial values were the

same as the parameter estimation problem.

Sensitivity analysis and confidence interval calculation
The sensitivity of the model simulations to the estimated

parameter values was analyzed using a bootstrapping method [61].

The sensitivity analysis was performed only for the best fitting mass

action model (MA31). To generate the bootstrap data, the

experimental data was resampled by adding random noise drawn

from a normal distribution, similar to the procedure used for

parameter estimation. First, parameter optimization was per-

formed as described above on 2,000 bootstrap datasets to generate

2,000 corresponding parameter sets, which were then used to

determine the confidence intervals (CIs). The 95% CI for each

parameter was found by the percentile method:

�pplo,�ppup

� �
~ p̂pa=2,p̂p1{a=2
� �

ð6Þ

In equation (6), �pplo and �ppup are the lower and upper confidence

limits, respectively, and p̂pa=2 and p̂p1{a=2 refer to the 2.5th and

97.5th percentiles of the dataset. Next, 2,000 new bootstrap data

sets were generated using the resampling method. The new

resampled data were then used to re-estimate the model

parameters. For this re-estimation, the lower and upper bounds

for the parameters were set based on the 95% CI values

determined previously. The new set of parameters was then

filtered for outliers as follows. For each parameter, the spread (sp)

was defined as the interquartile range (Q3–Q1). Outliers were

defined as parameter values that were less than Q121.5sp or

greater than Q3+1.5sp. After removing the outliers, new CIs for

the parameters were calculated from their distributions (number

density functions). The length (L) and shape (sh) of the CIs were

calculated as follows:

L~�pplo{�ppup ð7Þ

sh~
�ppup{�pp

�pp{�pplo

ð8Þ

In equations (7) and (8), �pplo and �ppup are the lower and upper

parameter confidence limits, respectively, and �pp is the mean value

of the parameter p. Larger lengths indicate less sensitivity to a

given parameter, and shape values greater than 1.0 indicate

nonlinearity of the model with respect to the parameters. The 95%

CIs of the state variables were estimated from the TF and ligand

time profiles simulated using the bootstrap parameters.

Using the bootstrap datasets that do not contain outliers as the

baseline, numerical perturbation experiments were performed to

quantify the change in model species (TFs and ligand) resulting

from a finite change in a single parameter. Each experiment

increased or decreased the value of a single parameter by a fixed

fraction (e.g. 15%), while keeping all other parameters constant.

The corresponding changes in the TF and ligand time profiles

were calculated as follows:

DYi,j~
X

t

Yi,j,t{Y �i,t

� �
ð9Þ

In equation (9), Y*
i,t is the activity of species i at time calculated

using an unperturbed set of parameters, and Yi,j,t is the

corresponding activity after parameter j has been perturbed. A

one-sample t-test (p,0.05) was performed on the resulting sum of

changes DY to determine whether the perturbation had a

significant, non-zero effect. As every parameter significantly

affected at least one model species, we also determined how far

the perturbed profiles deviated from the unperturbed profiles by

averaging the distribution of activity profiles for each combination

of model species and parameter perturbation. The differences

between the perturbed and unperturbed profiles were quantified

by computing the fraction of points in the perturbed profiles that

lie outside the 95% confidence intervals of the corresponding

unperturbed profile.

Supporting Information

Figure S1 3T3-L1 transcription factor reporter cells after 19

days of induction for differentiation. Transmitted light images of

(A) FoxO1, (C) CREB, (E) NFAT, (G) SREBP-1c and (I) C/EBPb
and red fluorescence images of (B) FoxO1, (D) CREB, (F) NFAT,

(H) SREBP-1c and (J) C/EBPb. Scale bar = 50 mm. Figure S1.
3T3-L1 transcription factor reporter cells after 19 days of

induction for differentiation. Transmitted light images of (A)

FoxO1, (C) CREB, (E) NFAT, (G) SREBP-1c and (I) C/EBPb and

red fluorescence images of (B) FoxO1, (D) CREB, (F) NFAT, (H)

SREBP-1c and (J) C/EBPb. Scale bar = 50 mm.

(TIF)

Figure S2 Comparison of residuals calculated for Hill equation

and mass action models. The model numbers refer to different

combination of logic gates at C/EBP, PPARc, and SREBP-1c.

The specific combination of gates for each model number can be

determined from Tables S3 and S4. Data shown are the best

(lowest) SSR for each model variant calculated from 50 repeated

optimization runs (see Materials and Methods, Parameter

optimization for additional details).

(TIFF)

Figure S3 Effect of IBMX input concentration on model

simulation. Data shown are plots of (A) CREB, (B) C/EBP, and

(C) PPARc activity time profiles generated using the best fitting

mass action model (MA31) with different IBMX concentrations for

the initial induction period. The optimal IBMX input resulting in

the best fit of the model to the forskolin data was determined to be

1.4 (i.e. a 40% increase over the induction experiment without

forskolin). This was determined by optimizing on the IBMX input

level using the TF data from the forskolin experiment, with all

other parameters set to the best fit values from the training data

without forskolin. Varying the IBMX concentration from 1.0 (i.e.

without forskolin added) to 1.7 had no significant impact on the

profiles for C/EBP and PPARc. The input IBMX levels used for

the different activity profiles are specified in the figure legend.

(TIFF)

Figure S4 Relationship between cell number, red fluorescence

intensity, and luciferase activity. (A) Different numbers of 3T3-L1

FoxO1 reporter cells were seeded in a 24-well plate and red

fluorescence intensity (RFU) was measured at 550 nm (excitation)

and 600 nm (emission) after 6 h. (B) A 3T3-L1 cell line with a non-

specific transcription factor binding site (AGTTGGACGCGAC)
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was generated as described in Materials and Methods. Cells were

seeded at different numbers in a 24-well plate and the luciferase

activity in the supernatant determined after 24 h along with

measurement of RFU in the cells.

(TIF)

Table S1 Mass action model equations and parameters. The

parameter values correspond to the best fitting mass action model

(MA31), which has OR gates at every node in the TF network.

(DOCX)

Table S2 Hill equation model equations and parameters. The

parameter values correspond to the best fitting Hill equation

model (HE31), which has OR gates at every node in the TF

network.

(DOCX)

Table S3 Possible logic gate combinations at C/EBP, PPARc,

and SREBP-1c.

(DOCX)

Table S4 Model variants representing different logic gate

combinations. Each model row corresponds to a specific model

variant. Each model variant, two types of ODE models were

implemented, mass action and Hill equation, resulting in a total of

64 model variant-ODE combinations.

(DOCX)

Dataset S1 Fold change (RLU/h/RFU) in the activation of

different TF during adipocyte differentiation and maintenance.

RLU/h/RFU values were determined by normalizing the RLU/

h/RFU at each time point to the corresponding value at the start

of differentiation (i.e., day 0). Data are from two independent

experiments and represent mean 6 SD. *: p,0.05.

(XLSX)

Dataset S2 Effect of parameter perturbations on calculated

model species. The perturbed parameters refer to the besting

fitting mass action model (MA31), with the parameters indicated

by their numbers (in rows). Each block of columns describes the

effect of a 15% increase or decrease on the change on a particular

model species, as calculated by equation (9). The mean change in

model species, standard deviation, and the CIs are shown in the

corresponding columns. The t-test column shows the results of a

one-sample t-test performed on the sum of changes in the model

species. A value of 1 in the t-test column indicates that the sum of

changes in the model species resulting from the parameter

perturbation was significantly different from zero (p,0.05). See

Methods for additional details.

(XLSX)

Dataset S3 Fraction of calculated model species values that lie

outside of the 95% CI bounds of the unperturbed baseline case

after the indicated parameter has been perturbed. The perturbed

parameters refer to the besting fitting mass action model (MA31),

with the parameters indicated by their numbers (in rows). Each

block of columns describes the results of a different level of

perturbation (ranging from +/225 to +/275%). Each column in

the block describes the results for a different model species, as

identified by the heading. For a given time point in the

numerically integrated time profile, whether a perturbed species

value lies outside of the CI bounds was determined based on the

mean of the bootstrap values. Each calculated model species

profile comprised 88 discrete, equally spaced integration time

steps.

(XLSX)

Dataset S4 Fold change (RLU/h/RFU) in the activation

CREB, C/EBP and PPARc upon addition of 10 mM of forskolin

or 0.1% DMSO at day 0 for 48 h. RLU/h/RFU values were

determined by normalizing the RLU/h/RFU at each time point

to the corresponding value at the start of differentiation (i.e., day

0). Data are from two independent experiments and represent

mean 6 SD. *: p,0.05.

(XLSX)
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