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In the low-velocity limit, multi-soliton solutions trace out geodesics in the static so-

lution manifold with distance defined by a metric on moduli space. For the recently

constructed multimonopole solutions of heterotic string theory, we obtain a flat metric

to leading order in the impact parameter. This result agrees with the trivial scattering

predicted by a test monopole calculation.
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1. Introduction

In recent work[1] an exact multimonopole solution of heterotic string theory was pre-

sented. This solution was obtained via a modification of the ’t Hooft ansatz[2–6] for

the Yang-Mills instanton. An analogous solution in Yang-Mills field theory saturates a

Bogomoln’yi[7] bound and possesses the topology and far field limit of a multimonopole

configuration, but has divergent action near each source. In the string solution, however,

the divergences from the Yang-Mills sector are precisely cancelled by those from the grav-

ity sector, so that the action is finite and easily computed[1]. In this letter, we study the

dynamics of the string monopoles and find that, unlike BPS[8,7] monopoles, the string

monopoles scatter trivially to leading order in the impact parameter.

We study the scattering of two string monopoles by two methods. The first approach

computes the Manton metric on moduli space, which defines distance on the static solution

manifold. We first invert the O(β) time-dependent constraint equations and replace the

solution into the action. The resultant kinetic action defines the metric on moduli space.

A flat metric is obtained to leading order in the impact parameter, a result which implies

trivial scattering between string monopoles.

An independent calculation of the dynamic force on a test string monopole moving

in the background of a source string monopole yields a zero dynamic force to lowest order

in the velocity, again implying trivial scattering. This computation thus confirms the flat

metric result.

2. Manton Metric for String Monopoles

The bosonic fields for the exact self-dual multimonopole solution of heterotic string

theory with zero background fermi fields are given by[1]

gµν = e2φδµν , gab = ηab,

Hµνλ = ±ǫµνλσ∂
σφ,

e2φ = e2φ0f,

Aµ = iΣµν∂ν ln f,

(2.1)

where µ, ν, λ, σ = 1, 2, 3, 4, a, b = 0, 5, 6, 7, 8, 9, Σµν = ηiµν(σi/2) for i = 1, 2, 3 (σi, i =

1, 2, 3 are the 2× 2 Pauli matrices) where

ηiµν = −ηiνµ = ǫiµν , µ, ν = 1, 2, 3,

= −δiµ, ν = 4
(2.2)
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and where

f = 1 +

N
∑

n=1

mn

|~x− ~an|
, (2.3)

where mn is the charge and ~an the location in the three-space (123) of the nth monopole.

The anti-self-dual solution is similar, with the δ-term in (2.2) changing sign. This solu-

tion was shown to have multimonopole structure[1] in the three-space, each source having

topological charge Q = 1 and magnetic charge m = 1/g, where g is the YM coupling

constant.

If we make the identification Φ ≡ A4, then the gauge and Higgs fields may be simply

written in terms of the dilaton as

Φa = −2

g
δia∂iφ,

Aa
k = −2

g
ǫakj∂jφ

(2.4)

for the self-dual solution. For the anti-self-dual solution, the Higgs field simply changes

sign. A toroidal compactification along the lines of [9] can be adopted, so that we consider

the dynamics of our solution in the four-dimensional spacetime (0123). As usual, the

existence of a static multi-soliton solution depends on the “zero force” condition.

Owing to the exactness condition Aµ = Ω±µ[10,11,12] (where Ω±µ is the generalized

connection defined in [1]), the higher order in α′ terms drop out from the action, and the

static multimonopole mass can be computed from the tree-level action[13,1]

S = − 1

2κ2

[
∫

dt

(
∫

d3x
√
ge−2φ

(

R + 4(∇φ)2 − H2

12

)

+ 2

∫

∂M

(

e−2φK −K0

)

)]

, (2.5)

where we have added a Gibbons-Hawking surface term (GHST) to cancel the double deriva-

tive terms in the action[14,15,16,17,13]. ∂M is the surface boundary and K and K0 are

the traces of the fundamental form of the boundary surface embedded in the metric g and

the Minkowskian metric η respectively. The addition of a surface term does not, of course,

affect the equations of motion. The multimonopole mass is given by[1]

MT =
8π

κ2

N
∑

n=1

mn, (2.6)

where mn = 1/g for n = 1, 2...N .

We wish to study dynamics of the string monopoles. Manton’s prescription[18] for the

study of soliton scattering may be summarized as follows. We first invert the constraint
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equations of the system. The resultant time dependent field configuration does not in

general satisfy the full time dependent field equations, but provides an initial data point

for the fields and their time derivatives. Another way of saying this is that the initial

motion is tangent to the set of exact static solutions. The kinetic action obtained by

replacing the solution to the constraints into the action defines a metric on the parameter

space of static solutions. This metric defines geodesic motion on the moduli space[18].

A calculation of the metric on moduli space for the scattering of BPS monopoles and a

description of its geodesics was worked out by Atiyah and Hitchin[19]. Several interesting

properties of monopole scattering were found, such as the conversion of monopoles into

dyons and the right angle scattering of two monopoles on a direct collision course[19,20].

The configuration space is found to be a four-dimensional manifold M2 with a self-dual

Einstein metric.

In this section, we adapt Manton’s prescription to study the dynamics of heterotic

string monopoles. A similar procedure was followed in [13] for the Manton scattering of

heterotic instantons. Indeed, many of the formal computations carry over from the instan-

ton computation. For the monopoles, however, the divergences plagueing the instanton

calculation are absent, thus rendering our task far simpler. In both cases, we follow essen-

tially the same steps that Manton outlined for monopole scattering, but take into account

the peculiar nature of the string effective action. Since we work in the low-velocity limit,

our kinematic analysis is nonrelativistic.

We first solve the constraint equations for the soliton solutions. These equations are

simply the (0j) components of the equations of motion (see [21,13])

R0j −
1

4
H2

0j + 2∇0∇jφ = 0,

−1

2
∇kH

k
0j +H0j

k∂kφ = 0.

(2.7)

Note that we use the tree-level equations of motion, as the higher order corrections in

α′ automatically vanish. We wish to find an O(β) solution to the above equations which

represents a quasi-static version of (2.1) (i.e. a solution of the form (2.1) but with time

dependent ~ai). In other words, we would like to give each source an arbitrary transverse

velocity ~βn in the (123) subspace of the four-dimensional transverse space and see what

corrections to the fields are required by the constraints. The vector ~an representing the

position of source n in the three-space (123) is given by

~an(t) = ~An + ~βnt, (2.8)
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where ~An is the initial position of the nth source. Note that at t = 0 we have an exact

static multi-soliton solution. Our solution to the constraints will adjust our quasi-static

approximation so that the initial motion in the parameter space is tangent to the initial

exact solution at t = 0.

The O(β) solution to the constraints is given by

e2φ(~x,t) = 1 +

N
∑

n=1

mn

|~x− ~an(t)|
,

g00 = −1, g00 = −1, gij = e2φδij , gij = e−2φδij ,

g0i = −
N
∑

n=1

mn
~βn · x̂i

|~x− ~an(t)|
, g0i = e−2φg0i,

Hijk = ǫijkm∂me2φ,

H0ij = ǫijkm∂mg0k = ǫijkm∂k

N
∑

n=1

mn
~βn · x̂m

|~x− ~an(t)|
,

(2.9)

where i, j, k,m = 1, 2, 3, 4, the ~an(t) are given by (2.8) and we use a flat space ǫ-tensor.

Note that g00, gij and Hijk are unaffected to order β. Also note that we can interpret the

solitons as either line sources in the four-dimensional space (1234) or point sources in the

three-dimensional subspace (123).

The kinetic Lagrangian is obtained by replacing the expressions for the fields in (2.9)

into (2.5). Since (2.9) is a solution to order β, the leading order terms in the action (after

the quasi-static part) are of order β2. In the volume term of the action, O(β) terms in

the solution give O(β2) terms in the kinetic action. As explained in [13], the contribution

of the GHST to the kinetic action can be written in the form msβ
2/2 for each source,

and the contributions of the sources can be simply added. The GHST does not therefore

play an important role in the dynamics of the string monopoles, but merely serves to

give the correct total mass. Collecting all O(β2) terms in SV we get the following kinetic

Lagrangian density for the volume term:

Lkin = − 1

2κ2

(

4φ̇ ~M · ~∇φ− e−2φ∂iMj∂iMj − e−2φMk∂jφ (∂jMk − ∂kMj)

+ 4M2e−2φ(~∇φ)2 + 2∂2
t e

2φ − 4∂t( ~M · ~∇φ)− 4~∇ · (φ̇ ~M)

)

,

(2.10)

where ~M ≡ −
∑N

n=1
mn

~βn

|~x−~an(t)|
. Henceforth let ~Xn ≡ ~x − ~an(t). The last three terms in

(2.10) are time-surface or space-surface terms which vanish when integrated. Note that
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the kinetic Lagrangian has the same form as in [13]. The contributions of the GHST are

again simply flat kinetic terms.

In contrast to the instanton case, the kinetic Lagrangian Lkin =
∫

d3xLkin for

monopole scattering converges everywhere. This can be seen simply by studying the limit-

ing behaviour of Lkin near each source. For a single source at r = 0 with magnetic charge

m and velocity β, we collect the logarithmically divergent pieces and find that they cancel:

mβ2

2

∫

r2drdθ sin θdφ

(

− 1

r3
+

3 cos2 θ

r3

)

= 0. (2.11)

So unlike the instanton case, in which we were compelled to extract information from the

convergent interaction terms, in this case we can use the self-terms directly.

We now specialize to the case of two heterotic monopoles of magnetic charge m1 =

m2 = m = 1/g and velocities ~β1 and ~β2. Let the monopoles be located at ~a1 and ~a2.

Our moduli space consists of the configuration space of the relative separation vector

~a ≡ ~a2 − ~a1. The most general kinetic Lagrangian can be written as

Lkin =h(a)(~β1 · ~β1 + ~β2 · ~β2) + p(a)
(

(~β1 · â)2 + (~β2 · â)2
)

+ 2f(a)~β1 · ~β2 + 2g(a)(~β1 · â)(~β2 · â).
(2.12)

Now suppose ~β1 = ~β2 = ~β, so that (2.12) reduces to

Lkin = (2h+ 2f)β2 + (2p+ 2g)(~β · â)2. (2.13)

This configuration, however, represents the boosted solution of the two-static soliton solu-

tion. The kinetic energy should therefore be simply

Lkin =
MT

2
β2, (2.14)

where MT = M1 +M2 = 2M = 16πm/κ2 is the total mass of the two soliton solution. It

then follows that the anisotropic part of (2.13) vanishes and we have

g + p = 0,

2(h+ f) =
MT

2
.

(2.15)

It is therefore sufficient to compute h and p. This can be done by setting ~β1 = ~β and

~β2 = 0. The kinetic Lagrangian then reduces to

Lkin = h(a)β2 + p(a)(~β · â)2. (2.16)
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Suppose for simplicity also that ~a1 = 0 and ~a2 = ~a at t = 0. The Lagrangian density of

the volume term in this case is given by

Lkin =
−1

2κ2

(

3m3e−4φ

2r4
(~β · ~x)

[

~β · ~x
r3

+
~β · (~x− ~a)

|~x− ~a|3

]

− e−2φm2β2

r4

− e−4φm3β2

2r4

(

1

r
+

~x · (~x− ~a)

|~x− ~a|3
)

+
e−6φm4β2

r2

(

1

r4
+

1

|~x− ~a|4 +
2~x · (~x− ~a)

r3|~x− ~a|3
)

)

.

(2.17)

The GHST contribution to the kinetic Lagrangian can be simply added after integration

and will not affect the analysis below.

The integration of the kinetic Lagrangian density in (2.17) over three-space yields the

kinetic Lagrangian from which the metric on moduli space can be read off. For large a,

the nontrivial leading order behaviour of the components of the metric, and hence for the

functions h(a) and p(a), is generically of order 1/a. In fact, for Manton scattering of YM

monopoles, the leading order scattering angle is 2/b[22], where b is the impact parameter.

In this paper, we restrict our computation to the leading order metric in moduli space. A

tedious but straightforward collection of 1/a terms in the Lagrangian yields

−1

2κ2

1

a

∫

d3x

[

−3m4e−6φ1

r7
(~β · ~x)2 + m3e−4φ1

r4
β2 +

m4e−6φ1

r5
β2 − 3m5e−8φ1

r6
β2

]

, (2.18)

where e2φ1 ≡ 1 + m/r. The first and third terms clearly cancel after integration over

three-space. The second and fourth terms are spherically symmetric. A simple integration

yields

∫ ∞

0

r2dr

(

e−4φ1

r4
− 3m2e−8φ1

r6

)

=

∫ ∞

0

dr

(r +m)2
− 3m2

∫ ∞

0

dr

(r +m)4
= 0. (2.19)

The 1/a terms therefore cancel, and the leading order metric on moduli space is flat. This

implies that the leading order scattering is trivial. In other words, there is no deviation

from the initial trajectories to leading order in the impact parameter.

The above result is rather surprising and suggests that, in addition to the static force,

the leading order dynamic force also vanishes. For pure YMmonopoles, this is certainly not

the case. For the string monopoles, however, the dynamic YM force is precisely cancelled

by the dynamic gravity sector force. In the next section, we adopt a different approach to

the computation of the dynamic force in order to confirm the flat metric result.
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3. Test Monopole Calculation

We now employ the test-soliton approach of [23,24] to compute the dynamic force

exerted on a test string monopole moving in the background of a source string monopole.

Again only the massless fields in the gravitational sector come in to play at tree-level.

Since the monopoles have fivebrane structure, we adopt the fivebrane action of Duff and

Lu[25,26]

Sσ5
=− T6

∫

d6ξ

(

1

2

√
−γγmn∂mXM∂nX

NgMNe−φ/6 − 2
√
−γ

+
1

6!
ǫmnpqrs∂mXM∂nX

N∂pX
P∂qX

Q∂rX
R∂sX

SAMNPQRS

)

,

(3.1)

where m,n, p, q, r, s = 0, 5, 6, 7, 8, 9 are fivebrane indices and M,N, P,Q,R, S = 0, 1, ...9

are spacetime indices (transverse indices are denoted by i, j = 1, 2, 3, 4). γmn is a 5 + 1-

dimensional worldsheet metric, gMN is the canonical spacetime metric and AMNPQRS is

the antisymmetric six-form potential whose curl K = dA is dual to the antisymmetric field

strength Hαβγ.

The multimonopole solution written in this frame is given by

ds2 = e2Aηmndx
mdxn + e2Bδijdx

idxj ,

A056789 = −eC ,
(3.2)

where all other components of AMNPQRS are set to zero and the dilaton φ and the scalar

functions A, B and C are given by

A = −(φ− φ0)

4
,

B =
3(φ− φ0)

4
,

C = −2φ+
3φ0

2
,

(3.3)

where φ0 is the value of the dilaton field at infinity and

e2φ = e2φ0

(

1 +
N
∑

n=1

mn

|~x− ~an|

)

, (3.4)

where ~x and ~an are again vectors in the three-dimensional subspace (123) of the transverse

space (1234).
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The Lagrangian for a test monopole moving in a background of identical static source

monopoles is given by substituting (3.2) in (3.1) and then eliminating the worldbrane

metric. The result is

L6 = −T6

[

√

− det(e−2φ/3+φ0/2ηmn + e4φ/3−3φ0/2∂mXM∂nXM )− e−2φ+3φ0/2

]

. (3.5)

Since the test-monopole moves only in the (123) subspace of the transverse space

(there is no motion along or field dependence on the direction x4), (3.5) reduces in the

low-velocity limit to

L6 ≃ −T6

[

e−2φ+3φ0/2
(

1− 1
2e

2(φ−φ0)(Ẋ i)2
)

− e−2φ+3φ0/2
]

=
T6

2
e−φ0/2(Ẋ i)2 ,

(3.6)

where i = 1, 2, 3. Again both the static force and the nontrivial O(v2) velocity-dependent

force vanish. Hence this result also predicts trivial scattering, in direct agreement with the

flat Manton metric calculation.

4. Conclusion

In [1], an exact multimonopole solution of heterotic string theory was presented. An

analogous solution in YM field theory was found to have divergent action near each source.

In the string theory solution, however, the divergences from the Yang-Mills sector are

exactly cancelled by divergences in the gravity sector. The cancellation between the gauge

and gravitational sectors also influences the dynamics of the string monopoles. In this

paper, we found from both a Manton metric on moduli space calculation and a test string

monopole calculation that the leading order dynamic force between two string monopoles

vanishes. This result implies trivial scattering between string monopoles to leading order

in the impact parameter in the low-velocity limit.
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