
ar
X

iv
:1

60
1.

00
02

6v
1 

 [
nu

cl
-t

h]
  3

1 
D

ec
 2

01
5

Spinodal Instabilities of Baryon-Rich Quark-gluon Plasma in the PNJL Model
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Using the Polyakov-Nambu-Jona-Lasinia (PNJL) model, we study the spinodal instability of a
baryon-rich quark-gluon plasma in the linear response theory. We find that the spinodal unstable
region in the temperature and density plane shrinks with increasing wave number of the unstable
mode and is also reduced if the effect of Polyakov loop is not included. In the small wave number
or long wavelength limit, the spinodal boundaries in both cases of with and without the Polyakov
loop coincide with those determined from the isothermal spinodal instability in the thermodynamic
approach. Also, the vector interactions among quarks is found to suppress unstable modes of all wave
numbers. Moreover, the growth rate of unstable modes initially increases with the wave number
but is reduced when the wave number becomes large. Including the collisional effect from quark
scattering via the linearized Boltzmann equation, we further find that it decreases the growth rate
of unstable modes of all wave numbers. Relevance of these results to relativistic heavy ion collisions
is discussed.

PACS numbers: 11.10.Wx, 11.30.Rd, 12.38.Mh, 25.75.Nq, 64.45.Gh

I. INTRODUCTION

Understanding the phase transition from the quark-
gluon plasma (QGP) to the hadronic matter is currently
of great interest. According to lattice QCD calculations,
the phase transition is a smooth crossover if the QGP
has zero baryon chemical potential [1]. However, due to
difficulties in treating the fermion sign problem [2], lat-
tice QCD has not provided definitive information on the
order of the phase transition in QGP of finite chemical
baryon potential. On the other hand, studies based on
various theoretical models have indicated that the quark-
gluon plasma to hadronic matter transition changes to
a first-order one when its baryon chemical potential is
larger than a critical value. A possible signal for such
a critical end point, at which the crossover transition
changes to a first-order one, is the large higher moments
in the net baryon or proton number event-by-event dis-
tributions in heavy ion collisions as suggested in Refs. [3–
5]. To determine if the critical point exists and where it
is located in the QCD phase diagram, the STAR Col-
laboration has carried out the beam energy scan (BES)
program at RHIC to look for this signal in collisions
at energies

√
sNN ranging from 7.7 to 39 GeV [6–8],

which is expected to produce a baryon-rich QGP with
baryon chemical potential in the range where a first-
order QGP to hadronic matter transition is likely to ap-
pear. Although no definitive conclusion has been ob-
tained from these experiments on the existence or the
location of the critical point, the STAR Collaboration
has observed many interesting phenomena that are dif-
ferent from those at higher collision energies. Among
them is the increasing splitting of the elliptic flows of
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particles and their antiparticles with decreasing collision
energy [9]. Based on an extension of a multiphase trans-
port (AMPT) model [10] by including mean-field poten-
tials from the Nambu-Jona-Lasinia (NJL) model [11, 12]
for the partonic phase [13] and from empirical extracted
values for the hadonic phase [14], the authors and their
collaborators have obtained a plausible explanation for
this experimental observation [15]. Since a unique fea-
ture of a first-order phase transition is the large density
fluctuations due to the spinodal instability that leads to
the phase separation, we here extend the above study by
using the PNJL model to investigate the spinodal insta-
bility of a baryon-rich QGP in the linear response theory
as well as its semiclassical approximation, i.e., the lin-
earized Boltzmann equation. We note that there already
exist several studies in the literatures on this interesting
phenomenon and its possible signals based on the hydro-
dynamic approach [16–18].
The paper is organized as follow. In the next section,

we give a brief review on the PNJL model and discuss the
thermodynamic properties of a QGP in this model, with
particular emphasis on the confinement and mean-field
effects. We then employ in Section III the linear response
theory to study the spinodal instability of a baryon-rich
quark matter and the growth rate of its unstable modes.
The effect of quark scatterings on the growth rate of un-
stable modes is further studied in Section IV by using
the linearized Boltzmann equation. Finally, we summa-
rize our study in Section V.

II. THE PNJL MODEL

The PNJL model [19, 20] is an extension of the NJL
model, which describes the chiral phase transition in a
quark matter with the quark condensate 〈q̄q〉 as the or-
der parameter, to include the confinement-deconfinement
transition through the Polyakov loop for gluons. In this
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model, the finite temperature T = 1/β action of a QGP
in the Euclidian time is given by

SPNJL[q, q̄, φ]

= −
∫ β

0

d4x

{
q̄(−γ0(∂τ + iφ) + iγ · ∇ −m)q

+
GS

2

8∑

a=0

[
(q̄λaq)2 + (q̄iγ5λ

aq)2
]
−GV (q̄γµq)

2

−K

[
detf

(
q̄(1 + γ5)q

)
+ detf

(
q̄(1− γ5)q

)]}

+βV U(Φ, Φ̄, T ). (1)

In Eq.(1), the first term with φ = 0 is the action
from the NJL model based on the Lagrangian for quarks
of three flavors [21]. Specifically, q = (u, d, s)T is the
quark fields, m = diag(mu,md,ms) are the quark mass
matrix, and λa is the Gell-Mann matrices with λ0 be-
ing the identity matrix multiplied by

√
2/3. As in

the QCD Lagrangian, the NJL Lagrangian preserves
the U(1) × SU(Nf)L × SU(Nf )R symmetry but breaks
axial symmetry. The latter, which is due to the ax-
ial anomaly in QCD, is achieved in the NJL model by
the Kobayashi-Masakawa-t’Hooft (KMT) interaction [22]
in the last term of its action, where detf (q̄Γq) =∑

i,j,k εijk(ūΓqi)(d̄Γqj)(s̄Γqk) denotes the determinant in

flavor space [23]. Because the NJL model is not renor-
malizable, a momentum cutoff Λ is introduced in all
momentum integrations. Taking Λ = 0.6023 GeV, val-
ues of the scalar coupling GS and the KMT interaction
K can be determined from fitting the pion mass, the
kaon mass, and the pion decay constant, and their val-
ues are GSΛ

2 = 3.67, and KΛ5 = 12.36 if the current
quark masses are taken to be mu = md = 3.6 MeV, and
ms = 87 MeV [24]. For the vector coupling GV , its value
affects the order of the quark matter phase transition. If
GV is large, the first-order phase transition induced by
the attractive scalar interaction could disappear. In the
present study, we treat it as a parameter to study how
it affects the spinodal instability of a baryon-rich quark
matter.
The second term in Eq.(1) is the action from the

Polyakov loop [25],

Φ(x) ≡ 1

Nc
Tr

[
P exp

(
i

∫ β

0

dτφ(x, τ)

)]
, (2)

through the effective potential U(Φ, Φ̄, T ),

U(Φ, Φ̄, T )
T 4

= −1

2
a(T )Φ̄Φ + b(T ) ln[1− 6Φ̄Φ

+4(Φ̄3 +Φ3)− 3(Φ̄Φ)2], (3)

with

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

, b(T ) = b3

(
T0

T

)3

.

(4)

In the above, Nc = 3 is the number of colors and φ
is a background color field. In the Polyakov gauge of
constant φ in space and time, the Polyakov loop is simply
Φ = 1

3Tre
iφ/T with φ = diag(φ1, φ2,−φ1 − φ2).

In the mean-field approximation, the constituent quark
masses in the PNJL model are determined by the gap
equation,

Mi = mi − 2GSσi + 2Kσjσk, i = u, d, s (5)

in terms of the quark condensate

σi ≡ 〈q̄iqi〉

= 6

∫ Λ

0

d3p

(2π)3
Mi

Epi

(
f0(ξi; Φ, Φ̄) + f0(ξ

′
i; Φ̄,Φ)− 1

)
.

(6)

In the above,

f0(ξi; Φ, Φ̄) =
Φ̄ξ2i + 2Φξi + 1

ξ3i + 3Φ̄ξ2i + 3Φξi + 1
(7)

is the color averaged distribution of quarks in ther-
mal and chemical equilibrium with ξi = exp((Ei − µ +
2GV n)/T ) and ξ′i = exp((Ei + µ − 2GV n)/T ), where

Ei =
√
M2

i + p2 and n is the net quark density. It re-
duces to the normal Fermi-Dirac distribution in the de-
confined phase in which Φ = Φ̄ = 1. In the confined
phase with Φ = Φ̄ = 0, the color averaged distribution
also has a normal Fermi-Dirac distribution but with an
effective temperature reduced by a factor of 3 because
f0(ξ, 0, 0) = f0(ξ

3, 1, 1) due to the freeze of color degrees
of freedom. As shown later, this would lead to a higher
critical temperature in the PNJL model than in the NJL
model.
The thermal properties of a QGP of temperture T and

volume V can then studied in the PNJL model from the
following thermal potential per unit volumn:

Ω(T, µ) = U(Φ, Φ̄, T ) +
∑

i

GSσ
2
i − 4K

∏

i

σi −GV j
2

− T

V
lnDet[βS̃−1

p<Λ]−
T

V
lnDet[βS̃−1

p>Λ], (8)

with jµ = 〈∑i q̄iγ
µqi〉. The S̃−1

p<Λ and S̃−1
p>Λ are the

Matsubara propagators for quarks with momentum be-
low and above the momentum cutoff Λ, and they are
given by

ln det[βS̃−1
p<Λ] = 2V

∑

i

∫ Λ

0

d3p

(2π)3

{
3βEi

+ ln(1 + 3Φ̄ξ−1
i + 3Φξ−2

i + ξ−3
i )

+ ln(1 + 3Φξ′−1
i + 3Φ̄ξ′−2

i + ξ′−3
i )

}
,

ln det[βS̃−1
p>Λ] = 2V

∑

i

∫ ∞

Λ

d3p

(2π)3

{
3βE0

i

+ ln(1 + 3Φ̄ξ−1
0i + 3Φξ−2

0i + ξ−3
0i )

+ ln(1 + 3Φξ′−1
0i + 3Φ̄ξ′−2

0i + ξ′−3
0i )

}
,(9)
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where E0
i =

√
m2

i + p2, ξ0i = exp((E0
i −µ)/T ) and ξ′0i =

exp((E0
i + µ)/T ).

Values of ai in Eq.(4) are chosen to reproduce the lat-
tice QCD results for the thermal properties of the pure
gauge theory for temperatures up to twice the critical
temperature T0 for the confinemnt-deconfinement tran-
sition, and this leads to a0 = 3.51, a1 = −2.47, a2 = 15.2,
and b3 = −1.75 [26]. Depending on the value of T0, the
deconfinement transition temperature may or may not
coincide with the chiral transition temperature in the
PNJL model. For T0 = 270 MeV, the deconfinement
transition temperature at µ = 0 agrees with the chiral
transition temperature, and both are higher than that
from the lattice QCD calculation. On the other hand,
taking T0 = 210 MeV leads to very different tempera-
tures for the deconfinement and chiral transitions, but
their average value TX = 187 MeV is within the range
expected from lattice calculations [27].

FIG. 1: Isothermal ((∂np)T = 0) and isentropic ((∂np)S = 0)
spinodal boundaries from the PNJL model with GV = 0.

The spinodal instability in a quark matter occurs when
its pressure decreases with increasing density either at
constant temperature or constant entropy, i.e., (∂np)T <
0 or (∂np)S < 0, where the pressure p is related to the
thermal potential by −Ω(T, µ). Its boundary, given by
(∂np)T = 0 (solid line) or (∂np)S = 0 (dahed line) in
the temperature and density plane, is shown in Fig. 1
for the PNJL model with GV = 0. It is seen that the
isentropic spinodal region is smaller than the isothermal
region. Corresponding results without the Polyakov loop,
i.e., the NJL model, are shown in Fig. 2, and they are sim-
ilar to those for the PNJL model. However, the critical
temperature Tc, corresponding to the highest tempera-
ture on the isothermal spinodal boundary, in the PNJL
model is higher than that in the NJL model, as eluded
above on the effect of the Polyakov loop in the confined
phase. For a quark matter with temperature and density

FIG. 2: Isothermal ((∂np)T = 0) and isentropic ((∂np)S = 0)
spinodal boundaries from the NJL model with GV = 0.

inside the spinodal region, small density fluctuations will
develop into large fluctuations as a result of instability.
In the present study, we study the spinodal instability of
quark matter by decomposing it into its Fourier compo-
nents or unstable modes.

III. THE LINEAR RESPONSE THEORY

The linear response theory describes the response of
an equilibrium system to perturbations. It has been ex-
tensively used in calculating the transport coefficients of
many-body systems such as the electric conductivity by
subject them to an external electric field or the viscosity
by applying an external flow field of nonzero gradient.
For studying spinodal instabilities in the linear response
theroy, the perturbation is, however, generated internally
from the fluctuations that drive the system away from
equilibrium.

A. Theoretical framework

When a many-body system is slightly perturbed, the
deviation of a physical observable from its equilibrium
value is proportional to the perturbation. Such a system
can be described by the Hamiltonian: H = H0 + H ′,
where H0 is its Hamiltonian at equilibrium, and H ′ is
the perturbation that drives the system away from equi-
librium. In the Schroedinger picture, the density matrix
of the system evolves according to

ρ(t) = U(t, t0)ρ(t0)U†(t, t0), (10)
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where

U(t, t0) ≡ Te
−i
∫

t

t0

dt̄H(t̄)
(11)

is the time evolution operator from the initial time t0
to time t. Expanding U(t, t0) to the first order in the
perturbation H ′, we have

U(t, t0) ≈ U0(t, t0)− i

∫ t

t0

dt′U0(t, t
′)H ′(t′)U0(t

′, t0),

(12)

where

U0(t, t0) ≡ Te
−i
∫

t

t0

dt̄H0(t̄)
(13)

is the time evolution operator in the absence of pertur-
bations, the density matrix of the system at time t can
then be written as

ρ(t) ≈ ρ0(t)− i

∫ t

t0

dt′U0(t, t0)[H
′
I(t

′), ρ(t0)]U†
0 (t, t0),

(14)

where

ρ0(t) = U0(t, t0)ρ(t0)U†
0 (t, t0) (15)

is the density matrix of the system at time t in the ab-
sence of perturbations, and

H ′
I(t

′) = U †
0 (t

′, t0)H
′(t′)U0(t

′, t0) (16)

is the perturbation expressed in the interaction picture.
For a physical observable A, its time dependence to

the first order in H ′ is then given by

〈A(t)〉 = tr[ρ(t)AS ] ≈ 〈A0(t)〉

+ i

∫ t

t0

dt′tr [ρ(t0)[H
′
I(t

′), AI(t)]] , (17)

where the subscription S denotes the Schroedinger pic-
ture. The second line in Eq. (17) is obtained by em-
ploying the cyclic property of the trace operator. For a
system that is initially in equilibrium, namely, ρ(t0) = ρ0,
the deviation of 〈A(t)〉 from 〈A0(t)〉 is then

δ〈A(t)〉 ≈ i

∫
dt̄θ(t− t̄)〈[H ′

I(t̄), AI(t)]〉0, (18)

where the right hand side is the retarded correlator eval-
uated with the system in an equilibrium state. Although
the correlator generally depends on both t and t̄, it can
be simplified to a function of t − t̄ for an equilibrium
system.

Since the spinodal instabilities are self-induced, the
perturbation H ′

I in the PNJL model is just the fluctu-
ations of mean fields, that is

H ′
I =

∫
d3x

[
ūuδMu + d̄dδMd + s̄sδMs

+2GV δjµ(ūγ
µu+ d̄γµd+ s̄γµs)

]
, (19)

where the mass fluctuations are given by

δMu = −2GSδσu − 2KSσsδσd − 2KSσdδσs,

δMd = −2GSδσd − 2KSσsδσu − 2KSσuδσs,

δMs = −2GSδσs − 2KSσuδσd − 2KSσdδσu (20)

in terms of the fluctuations δσu, δσd, and δσs of con-
densates σu = 〈ūu〉, σd = 〈d̄d〉, and σs = 〈s̄s〉 as
well as the fluctuation δjµ of the current density jµ =
〈ūγµu+ d̄γµd+ s̄γµs〉. Since we have taken the masses of
u and d quarks to be the same and also assumed that the
quark matter is isospin symmetric, we have σu = σd ≡ σq

and obtain from Eq. (18) the following expressions:

δσq(x) = −i

∫
d4x̄

{
χσσ(x− x̄;Mq)[(−2GS − 2KSσs(x̄))δσq(x̄)− 2KSσq(x̄)δσs(x̄)] + 2GV χ

µ
σj(x− x̄;Mq)δjµ(x̄)

}
,

δσs(x) = −i

∫
d4x̄

{
χσσ(x− x̄;Ms) [−4KSσq(x̄)δσq(x̄)− 2GSδσs(x̄)] + 2GV χ

µ
σj(x− x̄;Ms)δjµ(x̄)

}
,

δjµ(x) = −i

∫
d4x̄

{
[2χµ

σj(x − x̄;Mq)(−2GS − 2KSσs(x̄))− 4KSχ
µ
σj(x− x̄;Ms)σq(x̄)]δσq(x̄)−

[
2GSχ

µ
σj(x− x̄;Ms)

−4KSχ
µ
σj(x − x̄;Mq)σq(x̄)

]
δσs(x̄) + 2GV (2χ

µν
jj (x− x̄;Mq) + χµν

jj (x − x̄;Ms))δjν(x̄)

}
, (21)

where

χσσ(x) ≡ θ(t)〈[q̄(x)q(x), q̄(0)q(0)]〉0,

χµ
σj(x) ≡ θ(t)〈[q̄(x)γµq(x), q̄(0)q(0)]〉0,

χµν
jj (x) ≡ θ(t)〈[q̄(x)γµq(x), q̄(0)γνq(0)]〉0, (22)
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are quark correlators.
Taking the Fourier transformation of the equations in

Eq. (21), we have

0 = (1− iχ̃σσ(k;Mq)(2GS + 2KSσs)) δσ̃q(k)− 2KSiχ̃σσ(k;Mq)σqδσ̃s(k) + 2GV iχ̃
µ
σj(k;Mq)δj̃µ(k),

0 = −4KSiχ̃σσ(k;Ms)σqδσ̃q(k) + (1− 2GSiχ̃σσ(k;Ms)) δσ̃s(k) + 2GV iχ̃
µ
σj(k;Ms)δj̃µ(k),

0 = −i
(
2χ̃µ

σj(k;Mq)(2GS + 2KSσs) + 4KSχ̃
µ
σj(k;Ms)σq

)
δσ̃q(k)− i

(
4KSχ̃

µ
σj(k;Mq)σq + 2GSχ̃

µ
σj(k;Ms)

)
δσ̃s(k)

+
(
gµν + i2GV (2χ̃

µν
jj (k;Mq) + χ̃µν

jj (k;Ms))
)
δj̃ν(k), (23)

with

χ̃(k) =

∫
d4xχ(x)eikx. (24)

The equations in Eq.(23) have non-zero solutions if and
only if

det

∣∣∣∣∣∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣∣∣∣∣∣
= 0, (25)

where

A11 = 1− iχ̃σσ(k
0,k;Mq)(2GS + 2KSσs),

A12 = −2iKSχ̃σσ(k
0,k;Mq)σq,

A13 = 2iGV χ̃
µ
σj(k

0,k;Mq),

A21 = −4iKSχ̃σσ(k
0,k;Ms)σq,

A22 = 1− 2iGSχ̃σσ(k
0,k;Ms),

A23 = 2iGV χ̃
µ
σj(k

0,k;Ms),

A31 = −2iχ̃µ
σj(k

0,k;Mq)(2GS + 2KSσs)

+4iKSχ̃
µ
σj(k

0,k;Ms)σq,

A32 = −4iKSχ̃
µ
σj(k

0,k;Mq)σq + 2iGSχ̃
µ
σj(k

0,k;Ms),

A33 = gµν + i2GV (2χ̃
µν
jj (k

0,k;Mq) + χ̃µν
jj (k

0,k;Ms)).

(26)

B. Quark correlators

In this subsection, we calculate the quark correlators
defined in Eq. (22) in the imaginary time formalism. The
retarded correlators χ̃σσ , χ̃jj , and χ̃σj are related to the
Matsubara correlator Π by the Kubo-Martin-Schwinger
(KMS) condition [28] χ̃(k) = −iΠ(k0 + i0+,k), where

Πσσ(iνn,k) = −T

3∑

a=1

∑

ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[S̃a(iωn,p)S̃a(iωn + iνn,k+ p)],

Πµν
jj (iνn,k) = −T

3∑

a=1

∑

ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[γµS̃a(iωn,p)γ

ν S̃a(iωn + iνn,k+ p)],

Πµ
σj(iνn,k) = −T

3∑

a=1

∑

ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[S̃a(iωn,p)γ

µS̃a(iωn + iνn,k+ p)], (27)

with the Matsubara frequency ωn = (2n + 1)πT , νn =

2nπT , and S̃a is the quark propagator in the imaginary
time formalism. The subscript a is the color index, and
each color needs to be treated separately as the back-
ground color field in the PNJL model contributes dif-
ferently to the chemical potentials of quarks of different
colors. Eq. (27) can be written in a more compact form

as

Π(iνn,k) = T

3∑

a=1

∑

ωn

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3
Tr[O1S̃a(iωn,p)

O2S̃a(iωn + iνn,k+ p)], (28)

where O1,2 denote the unit and the gamma matrices.
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According to the KMS condition, the quark propagator

S̃a(iωn,p) can be written in terms of the quark spectral

function Ãa(p) as

S̃a(iωn,p) = −
∫

dp0

2π

Ãa(p)

iωn − p0
, (29)

with

Ãa(p) ≡
∫

d4xAa(x)e
ipx/h̄ ≡

∫
d4x{qa(x), q̄a(0)}eipx/h̄.

(30)
Under the quasi-particle approximation, the quark spec-
tral function can be written as

Ãa(p) = π[∆+(p)δ(p
0+µ̃a−Ep)−∆−(p)δ(p

0+µ̃a+Ep)],
(31)

where

∆±(p) = ±γ0 − p

Ep

· γ +
M

Ep

, (32)

and µ̃a = µ − 2GV j
0 + iφaa with a = 1, 2, 3 are the

effective chemical potentials. We therefore have

Π(iνn,k) =
3∑

a=1

∫ |k+p|<Λ

|p|<Λ

d3p

(2π)3

∫
dp0

2π

dp0′

2π

×T
∑

ωn

−Tr[O1Ãa(p
0,p)O2Ãa(p

0′,k+ p)]

(iωn − p0)(iωn + iνn − p0′)
.(33)

Evaluating the summation over the Matsubara frequency
ωn gives

T
∑

ωn

−1

(iωn − p0)(iωn + iνn − p0′)
=

−1

p0′ − p0 − iνn

(
T
∑

ωn

1

iωn + iνn − p0′
− T

∑

ωn

1

iωn − p0

)

=
−1

p0′ − p0 − iνn

1

2πi

∫ i∞+0+

−i∞+0+
dz

(
1

z + iνn − p0′
+

1

−z + iνn − p0′
− 1

z − p0
− 1

−z − p0

)
×
(
1

2
− f0(z)

)

=
f0(p

0)− f0(p
0′)

p0′ − p0 − iνn
, (34)

where f0(x) = (exp(x/T ) + 1)−1 is the Fermi-Dirac dis-
tribution function. Notice that the function 1/2− f0(z)
has simple poles at z = (2n+1)πiT with same residue T .
The second equality in Eq. (34) is obtained after count-

ing these residues, while the third equality follows after
using the relation f0(x+ iνn) = f0(x).
We have so far taken the Planck constant h̄ = 1. In-

cluding explicitly h̄ in Eq. (33) gives

iχ̃(ω,k) = Π(h̄ω + i0+,k)

=
1

4

3∑

a=1

∫ |h̄k+p|<Λ

|p|<Λ

d3p

(2π)3

{
Tr[O1∆+(p)O2∆+(h̄k+ p)]

f0(Ep − µ̃a)− f0(Ep+h̄k − µ̃a)

Ep+h̄k − Ep − h̄ω − i0+

+Tr[O1∆−(p)O2∆−(h̄k+ p)]
f0(Ep+h̄k + µ̃a)− f0(Ep + µ̃a)

Ep − Ep+h̄k − h̄ω − i0+

−Tr[O1∆+(p)O2∆−(h̄k+ p)]
f0(Ep+h̄k + µ̃a) + f0(Ep − µ̃a)− 1

−Ep − Ep+h̄k − h̄ω − i0+

− Tr[O1∆−(p)O2∆+(h̄k+ p)]
1− f0(Ep+h̄k − µ̃a)− f0(Ep + µ̃a)

Ep + Ep+h̄k − h̄ω − i0+

}
. (35)

After making the variable change p′ = −p− h̄k in terms
containing f0(Ep+h̄k ± µ̃a), which also satisfies |p′| < Λ

and |p′ + h̄k| < Λ, and writing p′ again as p, the above
equation can be rewritten as
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iχ̃(ω,k) =
1

4

3∑

a=1

∫ |h̄k+p|<Λ

|p|<Λ

d3p

(2π)3

{(
Tr[O1∆+(p)O2∆+(h̄k+ p)]

Ep+h̄k − Ep − h̄ω − i0+
+

Tr[O1∆+(−p− h̄k)O2∆+(−p)]

Ep+h̄k − Ep + h̄ω + i0+

+
Tr[O1∆+(p)O2∆−(h̄k+ p)]

Ep + Ep+h̄k + h̄ω + i0+
+

Tr[O1∆−(−p− h̄k)O2∆+(−p)]

Ep + Ep+h̄k − h̄ω − i0+

)
f0(Ep − µ̃a)

+

(
Tr[O1∆−(−p− h̄k)O2∆−(−p)]

Ep+h̄k − Ep − h̄ω − i0+
+

Tr[O1∆−(p)O2∆−(h̄k+ p)]

Ep+h̄k − Ep + h̄ω + i0+

+
Tr[O1∆−(p)O2∆+(h̄k+ p)]

Ep + Ep+h̄k − h̄ω + i0+
+

Tr[O1∆+(−p− h̄k)O2∆−(−p)]

Ep + Ep+h̄k + h̄ω + i0+

)
f0(Ep + µ̃a)

−Tr[O1∆−(p)O2∆+(h̄k+ p)]

Ep + Ep+h̄k − h̄ω + i0+
− Tr[O1∆+(−p− h̄k)O2∆−(−p)]

Ep + Ep+h̄k + h̄ω + i0+

}
. (36)

We note that if O1,2 are such that
Tr[O1∆±(p)O2∆±(h̄k + p)] = Tr[O1∆±(−p −
h̄k)O2∆±(−p)] and Tr[O1∆±(p)O2∆∓(h̄k + p)] =
Tr[O1∆∓(−p − h̄k)O2∆±(−p)], then χ̃(ω,k) =
χ̃(−ω,k). On the other hand, if Tr[O1∆±(p)O2∆±(h̄k+
p)] = −Tr[O1∆±(−p − h̄k)O2∆±(−p)] and
Tr[O1∆±(p)O2∆∓(h̄k + p)] = −Tr[O1∆∓(−p −
h̄k)O2∆±(−p)], then χ̃(ω,k) = −χ̃(−ω,k). Further-
more, taking the fluctuation in the current density as

a longitudinal wave, i.e., δj = δjzk̂, then terms such as
χ̃0x
jj vanish. Among the remaining quark correlators,

χ̃σσ(ω,k), χ̃0
σj(ω,k), χ̃00

jj (ω,k), and χ̃zz
jj (ω,k) are even

in ω, while χ̃z
σj(ω,k) and χ̃0z

jj (ω,k) are odd in ω. The
determinant in Eq. (25) is thus even in ω, i.e., both
ω = ωk and ω = −ωk are solutions. For unstable
modes, corresponding to imaginary ω, i.e., ωk = iΓk,
the imaginary frequency ω = iΓk and ω = −iΓk then
correspond to unstable modes that grow and decay
exponentially in time with a growth or decay rate Γk.

C. Results

In this subsection, we show results obtained from Eq.
(25) for the spinodal boundaries of unstable modes of dif-
ferent wave numbers. Since the determinant in Eq. (25)
is even in k0, it has a minimum at k0 = 0. Therefore, for
a given wave vector k, temperature T , and net baryon
density nq, Eq. (25) can be solved if and only if the de-
terminant is negative or zero when k0 = 0. We can thus
obtain the boundaries of the spinodal instability region
for different k by solving Eq. (25) with k0 = 0, and they
are shown in Figs. 3 and 4 with GV = 0 but with (PNJL)
and without (NJL) the Polyakov loop, respectively. It is
seen that for unstable modes of same wave number, the
spinodal instability region is larger in the PNJL than in
the NJL model due to the effect of the Polyakov loop.
The highest temperature Tc of the spinodal instability
region is about 68 MeV in the NJL model and 120 MeV
in the PNJL model. Comparing these results with those
shown in Figs. 1 and 2 based on the thermodynamic ap-

FIG. 3: Spinodal boundaries of unstable modes of different
wave numbers in the temperature and net quark density plane
from the PNJL model with GV = 0.

proach, we find that the spinodal boundaries of unstable
modes of k = 0 coincide with the boundaries determined
from (∂np)T ≤ 0 but are different from those determined
from (∂np)S ≤ 0. Therefore, unstable modes in the long
wavelength limit correspond to the isothermal spinodal
instability, and this is because the time evolution oper-
ator U(t, t0) becomes non-unitary after linearization and
the entropy S = tr(ρ ln ρ) of the system thus no longer
remains constant.

Figs. 3 and 4 also show that the spinodal instabil-
ity region shrinks as the wave number of unstable modes
increases or its wavelength becomes shorter. This is be-
cause clumps of quark matter or the high density re-
gions are more likely to merge into lager clumps, which
correspond to modes of smaller wave number or longer
wavelength, and this effect is larger at higher tempera-
ture. We note that this effect becomes less important in
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FIG. 4: Spinodal boundaries of unstable modes of different
wave numbers in the temperature and net quark density plane
from the NJL model with GV = 0.

the semiclassical case, where the chance for a particle to
move from a small cluster to a larger cluster is the same
as that of the reverse process, due to the zero range na-
ture of the interactions in the PNJL and NJL models as
shown in the next section for the case of the NJL model.

FIG. 5: Spinodal boundaries of different wave numbers in
the temperature and net quark density plane from the PNJL
model with GV = 0.2 GS.

We have also studied the effect of the vector interaction
on the spinodal boundaries of unstable modes of different
wave numbers by using GV = 0.2 GS in the PNJL and
NJL models, and the results are shown in Figs. 5 and 6,
respectively. It is seen that the vector interaction shrinks

FIG. 6: Spinodal boundaries of unstable modes of different
wave numbers in the temperature and net quark density plane
from the NJL model with GV = 0.2 GS .

the unstable region, particularly for unstable modes of
large wave number or shorter wavelength. For example,
Fig. 6 shows that unstable modes with k ≥ 0.2 fm−1

disappear for GV = 0.2 GS . This agrees with the expec-
tation that the repulsive interaction drives particles away
from clumps and thus destroys unstable modes.

0.0 0.1 0.2 0.3
0.000

0.003

0.006

0.009

 

 

k (f
m

-1
)

k (fm-1)

 GV = 0.2 GS

 GV = 0

FIG. 7: (Color online) Dispersion relation of unstable modes
in a quark matter of net quark density nq = 0.7 fm−3 and
temperature T = 70 MeV for both GV = 0 and GV = 0.2 GS

based on the PNJL model.
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We further show in Fig. 7 the dispersion relation of un-
ustable modes, i.e., its growth rate Γk as a function of the
wave number k, in a quark matter of net quark density
nq = 0.7 fm−3 and at temperature T = 70 MeV, for the
case ofGV = 0 (dashed line) and the case ofGV = 0.2GS

(solid line). The vector interaction is seen to dramat-
ically reduce the growth rate of unstable modes. For
GV = 0, the growth rate peaks at k = 0.15 fm−1, im-
plying that the size of the most likely quark clumps due
to density fluctuations is about 2π/kmax ∼ 40 fm. The
typical growth rate is 0.01fm−1, indicating that it takes
about 100 fm for the fluctuations to grow. This time du-
ration is an order of magnitude longer than the typical
lifetime of a heavy-ion collision, which is about 10 fm,
making the effect of instabilities hardly visible. The in-
stabilities can be enhanced by increasing the attraction
interaction between quarks, namely increasing the values
of GS and KS . The latter then requires a larger cut-
off parameter Λ in order to reproduce the correct meson
masses in vacuum. Also, nonlinear effects, which are ne-
glected in the linear response theory, may enhance the
growth rate of unstable modes and result in appreciable
density fluctuations in a much shorter time.
The above growth rate of unstable modes is smaller

than that obtained in Ref. [29] based on the quark-meson
coupling model. This is due to a smaller pressure differ-
ence in our model. To see this, we note that the growth
rate is proportional to the speed of sound of a medium,
given by v2S = ∂p

∂n
n

p+ǫ . In the PNJL model, the pressure

at T = 0 decreases by 20 MeV/fm−3 when the density
increases by 0.8 fm −3. In Ref. [29], the pressure de-
creases by about 200 MeV/fm3 as the density increases
by about 0.3 fm−3, thus resulting in a factor of 4 reduc-
tion of the growth rate in our model. Also, quantum
effects, which suppress unstable modes of shorter wave-
lengths and thus reduce the growth rate, are not taken
into account in Ref. [29] and are also responsible for the
smaller growth rate obtained in our study.

IV. THE LINEARIZED BOLTZMANN

EQUATION: COLLISIONAL EFFECTS

Higher-order corrections to the correlators in Eq.(27)
obtained in the linear response theory can in principle be
included but is much more involved. For simplicity, we
study their effects on the growth rate of unstable modes
by using the linearized transport (or Boltzmann) equa-
tion, which agrees with the linear response approach in
the semiclassical limit. Another advantage of this ap-
proach is that the transport equation can be solved by the
test particle method and thus easily used to study unsta-
ble modes of large amplitude, which we leave as a future
study. In the present study, we consider the case of NJL
model with vanishing vector interaction, as we already
know from the previous section that the vector interac-
tion suppresses spinodal instabilities. The reason for not
studying the collisional effect based on the PNJL model
is because a consistent treatment of collisional terms in
the transport equation is currently not known.

A. The theoretic framework

The Boltzmann equation can be written in a concise
form [13],

D[fa] = C[fz], (37)

in terms of the drift term

D[fa] ≡ ∂tfa + v · ∇rfa +
Ma

Ea
∇rV

S∇pfa, (38)

where v = p/Ep is the velocity, and the collision term

C[fa] ≡
∑

bcd

1

1 + δab

∫
d3pb

(2π)32Eb

d3pc

(2π)32Ec

d3pd

(2π)32Ed

(2π)4

2Ea
δ4(pa + pb − pc − pd)

×|Mab|2 [fcfd(1− fa)(1 − fb)− fafb(1 − fc)(1 − fd)] (39)

that describes scatterings among quarks. In the above,
the subscriptions a, b, c, and d denote the spin, flavor,
color, and baryon charge (quark or anti-quark) of a par-
ton.
Expanding the distribution function f around its equi-

librium value f0, which satisfies the condition D[f0
a ] =

C[f0
a ] = 0, by writing f = f0+δf and keeping only terms

linear in δf , we obtain

D[fa] ≈ ∂tδfa + v · ∇rδfa +
Ma

Ea
∇rδV

S∇pf
0
a , (40)

where we have introduced V S = V S
0 + δV S and used

the fact that ∇rV
S
0 = 0 at equilibrium. Similarly, the

collision term becomes
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C[fa] ≈
∑

bcd

∫
d3pbd

3pcd
3pd

(2π)−5δ4(pa + pb − pc − pd)

(1 + δab)2Ea2Eb2Ec2Ed
|Mab|2f0

af
0
b (1− f0

c )

(1 − f0
d )

[
− δfa
f0
a (1− f0

a )
− δfb

f0
b (1 − f0

b )
+

δfc
f0
c (1− f0

c )
+

δfd
f0
d (1− f0

d )

]
. (41)

Neglecting the contributions from δfb, δfc, and δfd re-
sults in the so-called relaxation approximation to the col-
lisional term:

C[fa] ≈ − 1

τa
δfa, (42)

where the relaxation time τa characterizes the time for
the system to evolve from a non-equilibrium state to an
equilibrium one and is given by

1

τa
=
∑

bcd

∫
d3pbd

3pcd
3pd

(2π)−5δ4(pa + pb − pc − pd)

(1 + δab)2Ea2Eb2Ec2Ed
|Mab|2

f0
b (1 − f0

c )(1− f0
d )

1− f0
a

.

(43)

To evaluate the integrals in the above equation, we in-
troduce the following change of variables: P = pa + pb,
P′ = pc + pd, and p = pc − pd. Using the relation

d3pbd
3pcd

3pd = 2−3d3Pd3P′d3p and P = P′, Eq.(43)
becomes

1

τa
=
∑

bcd

∫
d3Pd3p

(2π)−5δ(Ea + Eb − Ec − Ed)

(1 + δab)232Ea2Eb2Ec2Ed
|Mab|2

f0
b (1− f0

c )(1 − f0
d )

1− f0
a

. (44)

Writing

δ(Ea+Eb−Ec−Ed) =

∫
dEδ(Ea+Eb−E)δ(Ec+Ed−E),

(45)
it is then easy to show that for the first δ function, we
have

δ(E − Ea − Eb) =
Eb

Ppa
δ

(
x− p2a − p2b + P 2

2Ppa

)
, (46)

where x denotes cos 6 (P,pa). The second δ function is
tedious to evaluate unless the colliding particles all have
same mass. Since we are interested in quark matter that

has temperatures below the critical temperature Tc and
net baryon chemical potentials smaller than 1 GeV, very
few strange (anti-)quarks are present and the scatterings
are mostly among light u and d quarks of similar masses.
Taking the equal mass limit, the second δ function can
be expressed as

δ(Ec+Ed−E) = δ

(
p− E

√
s− 2m2

E2 − P 2x′2

)
4EEcEd

p(E2 − P 2x′2)
,

(47)
with x = cos 6 (P,p) and s = (pa + pb)

2. Assuming that
the scattering cross sections are isotropic, then |Mab|2 =
16πsσab

CM, and this leads to

1

τa
=
∑

bcd

1

(1 + δab)2(2π)2paEa(1 − f0
a)

∫
dEdPdx′sσab

CM

PE2

E2 − P 2x′2

√
s− 2m2

E2 − P 2x′2
f0
b (1 − f0

c )(1− f0
d ). (48)

For collisions of u and d quarks only, the summa-
tion in the above equation becomes a constant factor:

∑
bcd(1 + δab)

−1 = 2 (spins) × 3 (colors) × 2 (flavors)−
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1/2 (identical particle) = 11.5 [30].
In the relaxation approximation to the collision term,

the linearized transport equation can now be expressed
as

∂tδfa+v·∇rδfa++
Ma

Ea
∇rδV

S
a ∇pf

0
a+τ−1

a δfa = 0. (49)

In terms of the Fourier transform of δf and δV S ,

δf̃(k,p, ω) =

∫
dtd3xδf(x,p, t) exp(iωt− ik · x),

δṼ S(k, ω) =

∫
dtd3xδV S(x, t) exp(iωt− ik · x).

(50)

Eq. (49) can be rewritten as

(ω + iτ−1
a − k · va)δf̃a +

Ma

Ea
δṼ S

a k · ∇pf
0
a = 0. (51)

Since V S
i = 2GS〈q̄q〉i +2K〈q̄q〉j〈q̄q〉k with i, j, k indicat-

ing the flavors and i 6= j 6= k as shown in the previous
section, their variations are thus given by

δV S
q = (2GS + 2K〈s̄s〉)δ〈q̄q〉+ 2K〈q̄q〉δ〈s̄s〉,

δV S
s = 4K〈q̄q〉δ〈q̄q〉+ 2GSδ〈s̄s〉, (52)

with q denoting u or d quark. For an isospin symmet-
ric quark matter considered in the present study, u and
d quarks have same mass and condensate, and we then
obtain from Eq. (51) the following:

δfq,q̄ =
2k · ∇pf

0
q,q̄Mq/Eq[(GS +K〈s̄s〉)δ〈q̄q〉+K〈q̄q〉δ〈s̄s〉]

ω + iτ−1
q − k · v

,

δfs,s̄ =
2k · ∇pf

0
q,q̄Mq/Eq[2K〈q̄q〉δ〈q̄q〉+GSδ〈s̄s〉]

ω − k · v . (53)

Expressing both δ〈q̄q〉 and δ〈s̄s〉 in terms of δfq,q̄ and
δfs,s̄ according to

δ〈q̄q〉 = 2Nc

∫
d3p

(2π)3

(
Mq

Eq
(δfq + δfq̄) +

p2

E3
q

(f0
q + f0

q̄ − 1)δMq

)
,

δ〈s̄s〉 = 2Nc

∫
d3p

(2π)3

(
Ms

Es
(δfs + δfs̄) +

p2

E3
s

(f0
s + f0

s̄ − 1)δMs

)
, (54)

and substituting δf̃q,q̄, δf̃s,s̄, δMq, and δMs in Eq. (54),
we obtain after some simplifications the following results:

(
1− 2(GS +K〈s̄s〉)(χq − ξq) −2K〈q̄q〉(χq − ξq)

−4K〈q̄q〉(χs − ξs) 1− 2GS(χs − ξs)

)(
δ〈q̄q〉
δ〈s̄s〉

)
= 0, (55)

where
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χ = 2Nc

∫
d3p

(2π)3

(
M

E

)2
k · ∇p(f

0 + f̄0)

ω + iτ−1 − k · v

=
NcM

2

π2T

∫
dEv

[
f0(f0 − 1) + f̄0(f̄0 − 1)

](τ−1 − iω

kv
arctan

kv

τ−1 − iω
− 1

)
,

(56)

and

ξ =
Nc

π2

∫
dE

p3

E2
(f0 + f̄0 − 1). (57)

We note that Eq.(35) reduces to Eq.(56) in the limit h̄ =
0. Since δ〈q̄q〉 and δ〈s̄s〉 can be of any value, Eq. (55) is
satisfied if and only if:
∣∣∣∣
1− 2(GS +K〈s̄s〉)(χq − ξq) −2K〈q̄q〉(χq − ξq)

−4K〈q̄q〉(χs − ξs) 1− 2GS(χs − ξs)

∣∣∣∣ = 0.

(58)
By solving eq. (58), we can obtain the relation between
the frequency and wave number of collective modes in
quark matter, i.e., its dispersion relation ω(k). These
collective modes become unstable and grow with time
if their frequencies are imaginary, i.e., ω = iΓk, which
can occur in quark matter for some temperatures and
densities as discussed in the previous chapter. Since
χ(ω, k) = χ(ω/k) when τ−1 = 0, the growth rate Γk is
thus proportional to k in the absence of collisions. This is
in contrast to the results obtained in the quantum linear
response theory of Section III where the growth rate of
unstable modes of larger wave number is suppressed.

B. Results

In Fig. 8, we show by dashed and solid lines the dis-
persion relation or growth rate of the unstable mode in
a quark matter of net quark density 0.7 fm−3 and tem-
perature 45 MeV with and without the collisional effect
using an isotropic light quark scattering cross section of 3
mb. The collisional effect is seen to reduce Γk by almost
a constant value for all wave number k. Although the re-
duction is small, its effect is important for soft unstable
modes. In this particular example, unstable modes with
k < 0.005 fm−1 disappears after the inclusion of colli-
sional effects. As a result, the spinodal instability regions
for unstable modes of longer wavelength become smaller
than those of shorter wavelength as shown in Fig. 9 by
dotted, dashed, and dash-dotted lines for the spinodal
boundaries of unstable modes of different wave numbers
of 0.001, 0.01, and 0.1 fm−1, respectively. Compared to
the entire spinodal instability region shown by the solid
curve, the area of the spinodal region in the tempera-
ture and density plane shrinks as the wave number of
the unstable mode k decreases. This behavior is oppo-
site to that shown in the previous Section, where the

FIG. 8: Growth rates of unstable modes in quark matter of
net quark density 0.7 fm−3 and temperature 45 MeV without
and with the collisional term using a light quark scattering
cross section that has a value of 3 mb and is isotropic.

high k modes disappear due to quantum effects, and the
spinodal region shrinks as k increases. We note that in
the absence of collisions, the spinodal boundary is inde-
pendent of the wave number of unstable modes in the
linearized Boltzmann approach.

V. SUMMARY

Using the linear response theory based on the PNJL
model as well as its semiclassical approximation, the lin-
earized Boltzmann equation based on the NJL model, we
have studied the mean-field and confinement as well as
collisional effects on the spinodal instabilities in a baryon-
rich quark matter. In particular, we have studied the
spinodal boundaries of unstable modes of different wave-
lengths in the temperature and density plane as well as
their dispersion relations or growth rates. We have found
that in the long wavelength limit, the spinodal bound-
aries obtained in our study coincides with those deter-
mined from the isothermal spinodal instability in the
thermodynamical approach. Also, the vector interaction
is found to suppress the spinodal instabilities of unstable
modes of all wavelengths as a result of its repulsive effect
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FIG. 9: The spinodal region calculated with the inclusion of
the collisional term using an isotropic quark scattering cross
section of 3 mb for different values of the wave number of
unstable mode.

in baryon-rich quark matter. Due to the confinement ef-
fect, the Polyakov loop in the PNJL model is found to

enhance the spinodal instablities of a quark matter com-
pared to those from the NJL model. We have further
found that while the collisional effect reduces the growth
rate of all unstable modes, the quantum effect further
suppresses unstable modes of shorter wavelength. For
the PNJL model, we have found that the typical growth
rate of unstable modes is only about 0.01 fm−1, corre-
sponding to a time duration of about 100 fm/c for the
instability or density fluctuation to grow. Since this time
is much longer than the lifetime of QGP produced in a
heavy ion collisions, it is thus of great interest to study
how unstable modes would grow if one goes beyond the
linear response or small amplitude limit as studied here.
In this respect, the transport equation discussed in Sec-
tion IV provides a convenient framework to address this
question either by studying the time evolution of density
fluctuations in a confined or an expanding quark matter.
Such a study is underway and will be reported in a future
publication.
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