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We show that the momentum of light can be reversed via the atomic coherence created by another
light with one or two orders of magnitude lower frequency. Both the backward retrieval of single
photons from a timed Dicke state and the reflection of continuous waves by high-order photonic
band gaps are analysed. The required control field strength scales linearly with the nonlinearity
order, which is explained by the dynamics of superradiance lattices. Experiments are proposed with
85Rb atoms and Be2+ ions. This holds promise for light-controllable X-ray reflectors.

PACS numbers: 42.70.Qs, 42.50.-p, 41.20.Jb

Introduction—Photonic crystals (PCs) [1, 2] can con-
trol the flow of light with the well-known phenomenon of
photonic band gaps (PBGs). The fabrication of PCs re-
quires high accuracy on the wavelength scale, which ren-
ders the formation of band gaps at higher photon frequen-
cies and shorter wavelengths difficult. Techniques like
focused-ion-beam etching and other micro-fabrication
techniques already make ultraviolet PCs accessible [3–
5]. But advancing to the extreme ultraviolet (XUV) or
X-ray regime remains challenging. Nevertheless, novel
methods to control the flow of high-frequency light are
still desirable, to complement recent progress in X-ray
optics such as the development of X-ray mirrors based
on diamonds [6].

Besides physical PCs, electromagnetically induced
transparency (EIT) [7] has been used to form optically
controllable PBGs [8, 9]. But in the commonly used Λ-
type rubidium and cesium three-level systems, the driv-
ing and the probe light fields have near-degenerate wave-
lengths and therefore only the first order band gap exists.
Since strong control fields are lacking at X-ray photon en-
ergies, it is experimentally favorable to control the weak
probe light of short wavelength with a strong control field
of long wavelength. Although the control of the trans-
mission of XUV [10] or even X-ray [11] light based on
intense optical control laser fields has been realized, their
reflection which involves high-order photonic band gaps
(HOPBG) [5, 12–15] remains unsolved.

In this Letter, we show the reflection of high frequency
photons by the high order nonlinearity of a low-frequency
standing wave coupled EIT scheme. The key feature of
the high-order nonlinearity involved is that the required
field strength scales linearly with the nonlinearity order,
in contrast to the power law dependence in common non-
resonant nonlinear media. We consider the Λ-type EIT
scheme, as shown in Fig. 1 (a). A probe field couples the
ground state |c〉 to the excited state |b〉. A standing wave
control field couples |b〉 to a meta-stable state |a〉. The

Rabi frequency of the forward (backward) component of
the standing wave is Ω1 (Ω2). If the wavelength of the
coupling field is n times the one of the probe field, and
the decoherence time of a probe photon excitation is τbc,
the requirement of effective reflection of the probe field
is

τbcΩ1,2 > n. (1)

This relation can be understood from the momentum
conservation. To reverse the momentum of the probe
photon, the ensemble should emit n coupling photon in
the forward mode and absorb n coupling photon from
the backward mode. The time cost in one cycle of emis-
sion and absorption is 1/Ω1,2. The total process should
be completed within the decoherence time, n/Ω1,2 < τbc,
which leads to Eq. (1). This linear dependence between
the order of the nonlinearity and the field strength will
be confirmed in the following for both single photons and
continuous wave probe fields. The hidden physics of this
nonlinearity is envisioned and explained with a momen-
tum space Fano lattice [16], the superradiance lattice [17].
Single photons—We first apply the idea to the back-

ward retrieval of a single photon from a medium prepared
at time t = 0 in the timed Dicke state of an ensemble of
N atoms by absorption of a single probe photon,

∣

∣bkp

〉

=
1√
N

N
∑

j=1

exp (ikpxj) |c1, c2, ..., bj , ...cN 〉 , (2)

where kp is along the +x̂ direction. For an ensemble
large compared to the probe wavelength λp, this state
will decay with the collective decoherence time τbc and
emit a photon in +x̂ direction [18]. In order to retrieve
a photon in −x̂ direction, we apply a coherent stand-
ing wave to drive the transition between |b〉 and |a〉 in
the time scale τ < τbc directly after the excitation. The
wave vector of the forward (backward) component of the
standing wave is k1 = k1x̂ (k2 = −k1). With the inter-

action Hamiltonian H = −∑N
j=1 ~Ωdcos(k1xj)σ

x
j where
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FIG. 1: (Color online) (a) Coherent modulation of the timed
Dicke state. Left: The atomic ensemble is collectively excited
to the timed Dicke state

∣

∣bkp

〉

at t = 0 by a pulse with short
wavelength λp = λbc and wave vector kp. Middle: A standing
wave with long wavelength λ1 = λba = nλbc induces Rabi cy-
cles between |b〉 and |a〉. The wave pattern shows the spatial
population modulation of |b〉, which exhibits much finer struc-
tures than the standing wave. Right: After time τ ,

∣

∣bkp

〉

is

transferred to the reverse timed Dicke state
∣

∣b−kp

〉

with prob-

ability p2−2n and collectively emits a photon in the backward
direction −kp. (b) Upper: The spatial population modulation
(black solid) of |b〉 by the standing wave pattern (red dash).
Lower: The probability amplitude p−2n. Ωdτ = 100. (c) The
probability amplitude p−200 as a function of Ωdτ .

Ωd = 2Ω1 = 2Ω2 and σx
j = |bj〉 〈aj | + h.c., the evo-

lution operator U (t) = exp (−iHt/~) is then U (t) =
∑N

j=1 cos [Ωdtcos(k1xj)] I + i sin [Ωdtcos(k1xj)]σ
x
j where

I is the 2×2 unit matrix. After time τ , the wave function
is

|Ψ(τ)〉 = U (τ)
∣

∣bkp

〉

. (3)

The projection of |Ψ(τ)〉 on the target state associ-
ated to the nth-order nonlinear process

∣

∣bkp+2nk1

〉

=
1

√

N

∑

j exp [i(kp + 2nk1)xj ] |c1, c2, ..., bj , ...cN 〉 is

p2n =
〈

bkp+2nk1
|Ψ(τ)

〉

= (−1)nJ2n(Ωdτ), (4)

where Jn(x) is the Bessel function. Eq. (4) is a remi-
niscence of one-dimensional tight-binding lattices, which
will be discussed latter.
In the upper part of Fig. 1 (b), we plot the popula-

tion modulation in Eq. (3), which has much finer spa-
tial structure than the standing wave. This fine struc-
ture has been used in sub-wavelength lithography [19]
and lies at the heart of our analysis. After time τ , the
atomic ensemble has a probability p2

−2n to be in state
∣

∣bkp−2nk1

〉

. If kp = nk1, the reversely timed Dicke

state
∣

∣b−kp

〉

is obtained, and the single photon is su-
perradiantly emitted in the backward direction. The
lower part of Fig. 1 (b) shows the related cut off order
nc ≈ 1

2Ωdτ = Ω1τ < Ω1τbc, which proves the criteria in

Eq. (1). As an example for kp = 100k1, the probability
amplitude p−200 of

∣

∣b−kp

〉

is shown in Fig. 1 (c) as a func-
tion of Ωdτ . The maximum probability of the backward
retrieval of the photon reaches to 1% around Ωdτ = 205.
The requirement in Eq. (1) sets a stringent restric-

tion if τbc is small especially for XUV and X-ray. For-
tunately, the above mechanism can be extended to a
decoherence-free configuration with Raman transitions
[20]. Furthermore, continuous driving fields can be re-
placed by π-pulses, which allow us disentangling various
quantum paths to transport the initial state to the target
state.
Continuous wave—In the following, we will investigate

the backward reflection for continuous probe waves. The
dynamics can be explicitly calculated from the EIT sus-
ceptibility [9]

χ (x) = −3πN Γbc

γbc

γbc

−∆p + iγbc − |Ω1eik1x+Ω2e−ik1x|2
∆2ph+iγac

=
∑

m

χ(2m+1)e−2mik1x,

(5)

where N is the number of atoms in the volume (λbc/2π)
3

and Γbc is the radiative decay rate from |b〉 to |c〉. γij and
ωij are the dephasing rate and the transition frequency
between |i〉 and |j〉. The two driving light fields have the
same frequency ν1 but opposite wave vectors k1 = −k2 =
x̂ν1/c. ∆1 = ωba− ν1 is the detuning of the driving field.
∆p = ωbc − νp and ∆2ph = ∆1 −∆p = ωca + νp − ν1 are
the one- and two-photon detunings of the probe field.
χ(2m+1) is the Fourier component of χ (x) with phase
e−2mik1x.
In Fig. 2 (a), we plot the real and the imaginary parts

of χ (x). The susceptibility is periodically modulated.
One interesting feature is that the modulation is sharply
concentrated at the nodes of the standing wave as Ω1,2 is
much larger than γbc ≡ 1/τbc , i.e., Ω1,2τbc ≫ 1. This is
related to the requirement in Eq. (1). The reason is that
under the condition Ω1,2τbc ≫ 1, the periodic δ-function
like susceptibility has slowly decaying high-order com-
ponents χ(2m+1) which contribute to high-order Bragg
reflection.
The Fourier components are calculated explicitly,

χ(2m+1) = Azm, (6)

where z =
[

−B + sign (m)
√
B2 − 4

]

/2, A =

3πNΓbc (∆2ph + iγac)/(Ω1Ω2

√
B2 − 4) and B =

[

Ω2
1 +Ω2

2 − (−∆p + iγbc) (∆2ph + iγac)
]

/(Ω1Ω2). If
Ω1 = Ω2 exceeds all detunings and decoherence rates,
B ≈ 2 and z ≈ 1. In this case, the absolute values
of successive orders of the susceptibility, |z| ≈ 1, are
approximately the same, and high-order components
significantly contribute to the susceptibility. In Fig. 2
(b), we plot the magnitude of the Fourier components
as a function of the order n for different driving field
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FIG. 2: (Color online) (a) The imaginary (solid line) and the
real (dash line) parts of the spatially periodic susceptibility
are plotted in units of 3πNΓbc/γbc. ∆p = γbc. γac = 0,
Ω1 = Ω2 = γbc (black), 5γbc (red) and 25γbc (blue). (b)
The magnitude of the nth-order Fourier components of the
susceptibility χ(2n+1) in units of 3πNΓbc/γbc. γac = 0, ∆1 =
0, ∆p = 0.1γbc. Ω1 = Ω2 = 20γbc (solid), 40γbc (dash), 60γbc
(dot), 80γbc (dash dot) and 100γbc (dash dot dot).

strengths. For example, we find |χ(201)/χ(1)| = 0.35
for Ω1 = 20γbc. In contrast, |χ(201)/χ(1)| = 0.81 for
Ω1 = 100γbc.
Near the phase matching condition kp − 2nk1 = −kp,

a two-mode approximation is justified, and we consider
the probe mode kp and the nth order Bragg mode −kp

generated by the (2n+1)th order coherence χ(2n+1) only.
Their slowly varying amplitudes Ep and Ee are governed
by the following equations

∂

∂x
Ep = −βEp + iκ(2n+1)Eee−i∆knx,

∂

∂x
Ee = βEe − iκ(2n+1)Epei∆knx.

(7)

Here, kp = νp
√

1 + χ(1)/c is the magnitude of kp, θ is
the angle between kp and k1, ∆kn = 2kp cos θ−2nk1 the
wave vector mismatch, β = ν2p Imχ(1)/2kpc

2 cos θ the de-

pletion rate, and κ(2n+1) = ν2pχ
(2n+1)/2kpc

2 cos θ is the
coupling coefficient. The reflectance R can be calculated
analytically from these two equations [21]. For an in-
finitely long sample, we find [22]

R =

∣

∣

∣

∣

∣

√
1− u2 − 1

u

∣

∣

∣

∣

∣

2

(8)

where u = κ(2n+1)/(∆kn/2+ iβ). R increases the fastest
with |u| along u’s real axis and approaches 1 when |u| ≥ 1
where band gaps appear. In other radial directions, R
also increases with |u|, and the slowest gradient is along
the imaginary axis. Near the phase matching condi-
tion ∆kn ≈ 0, u ≈ χ(2n+1)/χ(1) = zn. For strong
driving fields and near the EIT point, Ω1 = Ω2 ≫
γbc ≫ ∆p, we have z ≈ −1 + 2

√

iγbc∆p/Ω2
1. Then

u ≈ (−1)n
(

1− 2n
√

iγbc∆p/Ω2
1

)

and the large reflectiv-

ity requires

Ω2
1

γbc∆p
≫ n2. (9)
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FIG. 3: The reflectivity due to nth order Bragg reflection.
Ω1 = Ω2 = 200γbc, γac = 0, ∆1 = 0. (a)-(d), ∆k0

n =
10−5νp/c ; (e)-(h), ∆k0

n = 5× 10−5νp/c . The sample length
is 105λbc. The density is N = 0.01. Γbc = γbc. The sample
length is 105λbc.

This confirms the intuitive requirement Eq. (1) for high-
order coherence. Operation close to the EIT point ∆p ≪
Ω1/n is required to reduce the absorption induced by all
other orders of the coherence.

In Fig. 3, we plot the reflectivity R for parameters ap-
proximately satisfying the nth-order Bragg condition for
different n. The wavevector mismatches in free vacuum
∆k0n = 2(νp cos θ − nν1)/c can be tuned by the incidence
angle θ. The dispersion contribution to the wave vector
mismatch ∆kn − ∆k0n determines on which side of the
transparency point the band gap appears. Here the band
gap is characterized by a high reflection plateau or peak
[8]. With increasing n, the band gaps shrink slowly and
approaches the transparency point, which confirms the
requirement Eq. (9). By changing θ and thus ∆k0n, the
position and the width of the band gap can be tuned via
the compensation of the dispersion induced phase mis-
match, as can be seen by comparing the two rows in
Fig. 3.

Experimental Realization—To evaluate the feasibil-
ity of an implementation, the robustness of the band
gap against decoherence and inhomogeneous broaden-
ing (e.g., Doppler effect) must be considered. As ex-
ample, we consider three levels in 85Rb: 52S1/2 as |c〉,
82S1/2 as |a〉, and 82P3/2 as |b〉. The transition wave-
lengths λbc = 2πc/ωbc = 335nm and λba = 2πc/ωba =
12.40µm and thus λba/λbc = 37.01. Thanks to the very
large dipole transition matrix element between 82S1/2

and 82P3/2, µab = 36.123ea0 ≈ 3.06 × 10−28C·m [23]
where a0 is the Bohr radius, a laser with intensity I =
39µW/mm2 can induce a Rabi frequency as large as
Ω1 = 4× 107

√

I (µW/mm2) = 2.5× 108s−1 = 200γbc.

In Fig. 4, we plot the reflectance in a thermal 85Rb
vapor cell at 485K. Although the dephasing rate is γac =
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FIG. 4: The reflectivity from the 37th order photonic band
gap in thermal 85Rb vapor at 485K. γbc = 1.25 × 106s−1,
γac = 3.25 × 106s−1 [25], ∆1 = 0. λba = 37.01λbc=12.4µm,
θ = 0.0232 radian so that ∆k0

n = 0. The sample length is
105λbc=3.36cm. (a) Ω1 = Ω2 = 200γbc; (b) Ω1 = Ω2 =
500γbc.

2.6γbc = 3.25 × 106s−1 and the Doppler broadening is
696MHz, the reflectivity from the 37th order band gap
or 76-wave-mixing can still exceed 50% for Ω1 = 500γbc
(which only requires a moderate driving laser intensity

244µW/mm2). In calculating the susceptibilities includ-
ing the movement of the atoms, we use the technique
of continued fractions and average over the Maxwellian
velocity distribution [24]. The main effect of γac is the in-
coherent absorption of the probe light during which the
energy is dissipated by transitions into other levels. A
ladder system with |a〉 higher than |b〉 works equally well
or even better if the life time of |a〉 is longer (which is
true for Rydberg states). By increasing Ω1 from 200γbc
to 500γbc, the atom remains shorter in |a〉 before the
coherent backward photon is emitted and dissipation is
suppressed, increasing the reflectivity from 0.2 to 0.5.

The physics of the reflection can be understood from
the picture of the superradiance lattice [17], as shown in
Fig. 5. The probe field creates excitation |bkp

〉 from the
ground state |G〉 ≡ |c1, c2, ..., cN〉 in a one-dimensional
momentum space tight-binding lattice where the lattice
sites are timed Dicke states connected by the two cou-
pling fields Ω1 and Ω2 [17]. The excitation propagates
along the lattice to |b−kp

〉 which is strongly coupled to the

ground state |G〉 due to the superradiance
√
N enhance-

ment, and consequently generates the reflected field. The
other states between or outside of |bkp

〉 and |b−kp
〉 are

only weakly coupled to the ground state |G〉 via the two
endfire modes ±kp due to the subradiant effect. This is
therefore a Fano lattice [16] in momentum space, which
explains the Bessel function in Eq. (4) and the Fano
feature in Fig. 3. The superradiance lattice gives the
continuum and the leakage from |b−kp

〉 to |G〉 gives the
discrete channel for Fano resonances [26]. The nonlin-
earity is governed by lattice dynamics and results in the
linear scaling in Eq. (1) rather than the power law de-
pendence in conventional nonlinear optics.

X-ray EIT has been proposed with inner shell tran-
sitions in gases [27], and some optical control of X-ray
transmission was realized [11]. Recently, X-ray frequency
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FIG. 5: (Color online) Mechanism of the reflection in the pic-
ture of the superradiance lattice. Solid (dash) lines denote the
coupling field Ω1 (Ω2). Dotted line denotes the superradiance
coupling between |b±kp 〉 and the ground state |G〉 (gray cir-
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show the direction of the dynamic evolution of the excitation
which results in the reflection.

combs are proposed based on a three-level configura-
tion of Be2+ ions [28]. Our scheme can be directly ap-
plied to the same energy levels, namely, c = 1s21S0,
b = 1s2p1P1 and a = 1s2s1S0. The decoherence rates are
γbc = Γbc/2 = 6 × 1010s−1 and γac = 9 × 103s−1 which
is negligible. The transition energies are ~ωbc = 123.7eV
(10nm) and ~ωba = 2.02eV (614nm). We can use the
61st order photonic band gap with an incidence angle
near θ = 0.088. The Rabi frequency is Ω1,2 > nγbc =
3.6× 1012s−1. The intensity required is only in the order
of 109W/cm2 and safe for ionization. Present challenges
for the experimental implementation are the relatively
high temperature and low density of the ions, which how-
ever, can be overcome by the cooling techniques recently
developed [29].

For hard X-ray, EIT has been experimentally demon-
strated with the 14.4 keV nuclear Mößbauer transition
in 57Fe [30]. Multi-level schemes can also be engineered
which could be driven by multiple incident fields, and
which are essentially decoherence free [31]. This together
with the rapid development [32–34] in this field and the
upcoming availability of temporally coherent X-ray free
electron lasers in the hard X-ray regime renders nuclear
quantum optics a promising platform to realize HOPBGs
via EIT.

In conclusion, the reflection of high frequency light
from the spatial coherence generated by low frequency
light is studied. The possibility of the light-controllable
photonic band gaps was mentioned in a paper on reflec-
tion combs [35]. Here we analysed the scaling of the band
gaps on high order n. The required driving field strength
scales linearly with n in contrast with the power law scal-
ing in conventional nonlinear optics. The physics is en-
visioned by superradiance lattices. Experiments can be
done in Rb atoms (infrared reflects ultraviolet) or Be2+

ions (visible light reflects soft X-ray).
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