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Abstract

We construct new examples of torsional heterotic backgrounds us-

ing duality with orientifold flux compactifications. We explain how

duality provides a perturbative solution to the type I/heterotic string

Bianchi identity. The choice of connection used in the Bianchi iden-

tity plays an important role in the construction. We propose the

existence of a much larger landscape of compact torsional geometries

using string duality. Finally, we present some quantum exact met-

rics that correspond to NS5-branes placed on an elliptic space. These

metrics describe how torus isometries are broken by NS flux.
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1 Introduction

Generic string compactifications involve both non-trivial metrics and non-

trivial background fluxes. Most of the work devoted to flux compactifications

has been in the context of type II string theory. The analysis of such back-

grounds is typically restricted to the supergravity approximation because of

the difficulties with quantizing strings in RR backgrounds. Yet from the

original construction of type IIB flux backgrounds, it has been clear that

all the interesting physics that arises from type II fluxes must also be found

in generic heterotic string compactifications. Such compactifications only

involve NS fields: namely, the metric and the three-form flux H3. Compact-

ifications with non-trivial H3 are known as torsional compactifications [1,2].

For example, the large degeneracy of type IIB solutions parametrized

by the choice of RR and NS three-form fluxes can, in specific examples, be

mapped directly to a large choice of metrics and H3 fluxes in the heterotic

string. The resulting metrics differ by what has become known as the choice

of “geometric flux.” This is a special feature of the examples constructed

in [3] which involve torus factors; for a review, see [4].

Torsional heterotic backgrounds stand a much better chance of admitting

tractable world-sheet descriptions than their type II counterparts. Indeed,

there is unlikely to be any perturbative string description of a generic type II

flux compactification because the string coupling is typically not a free pa-

rameter. Rather the control parameter is the volume of the compactification

which is why supergravity can be employed. On the other hand in heterotic

flux compactifications, the string coupling is a modulus so conformal field

theory can be used to access small volume physics.

The heterotic string is also a natural setting for building realistic models

of particle physics. The typical approach taken in the past has been to specify

a compact Kähler six-dimensional space with metric satisfying

Rµν = 0 (1.1)
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together with a holomorphic gauge bundle. This data can be used as the

starting point for defining a (0, 2) worldsheet superconformal field theory. For

appropriate choices of gauge bundle, it is easy to generate space-time GUT

groups like E6, SO(10) and SU(5). In recent years, there has been striking

progress in the construction of physically interesting Calabi-Yau compacti-

fications with bundles that give rise to a particle content very close to the

Standard Model; for some recent references, see [5–9].

Nevertheless, these compactifications all suffer from moduli problems.

Ideally, we would like to be able to generalize these phenomenologically in-

teresting constructions to torsional backgrounds where most of the moduli

can be fixed. The one problematic modulus is the string coupling itself whose

stabilization requires non-perturbative physics.

For these collective reasons, we would like to understand the physics of

the heterotic string with NS flux better. One of the impediments to progress

in this area has been the lack of four-dimensional compact examples. We do

not yet have torsional analogues of the algebro-geometric constructions avail-

able for Calabi-Yau spaces. The primary examples of torsional backgrounds

are DRS geometries which involve torus fibrations over K3 surfaces and a

varying dilaton [3]. If the K3 surface is related to a quotient of a torus, these

geometries are related to quotients of nilmanifolds. These geometries were

shown to admit no Kähler metrics in [10]. There have been interesting recent

constructions of torsional heterotic backgrounds using nilmanifolds but with

a constant dilaton appearing in [11].

The first goal of this analysis is to construct new classes of torsional

heterotic compactifications. We will do this by generalizing the original DRS

construction which started from K3 × T 2 to more general orientifold three-

folds. This will give us a family of new torsional solutions. Along the way,

we will explain how the duality map provides a perturbative solution to the

heterotic Bianchi identity

dH3 =
α′

4
[tr(R ∧R)− tr(F ∧ F )] (1.2)
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where H3 satisfies
1

2πα′

∫
H3 ∈ 2πZ. (1.3)

This point was not made explicit in the original construction but has be-

come interesting in light of the work of [12]. We will see that the choice of

connection used to compute curvatures is central, and a particular connec-

tion is preferred in order to retain both simple equations of motion and a

simple form for the spinor supersymmetry variations including assorted α′

corrections.

That choice corresponds to the curvature two-form R computed with a

particular H-connection denoted Ω+.
3 For other choices of connection like

the Hermitian connection [1], the Bianchi identity gives a complex equation

of Monge-Ampère type while for the preferred choice, the Bianchi identity

is related by duality to an equation of Laplace type where the existence of

solutions is immediate.

We will then propose a generalization of this construction whose form is

suggested heterotic/F-theory duality. This provides, in part, an explanation

for the role played by G-flux in modifying heterotic/F-theory duality though

there is clearly much more to be understood. For recent progress on under-

standing the heterotic dual of G-flux localized on the discriminant locus of

F-theory compactifications (which becomes part of the data specifying the

heterotic bundle), see [14, 15] which extends earlier work [16].

Our proposed form for the metrics and torsion given in section 3.1 uses

a semi-flat approximation to a smooth elliptic metric. This leads to a well

defined problem of proving the existence of smooth metrics which agree with

this structure except near singularities of the elliptic fiber. These metrics

should solve the heterotic equations of motion up to O(α′2). At O(α′3),

there are new corrections to the equations of motion from R4 type couplings.

3The choice of Ω+ versus Ω
−
in the Bianchi identity is only meaningful relative to the

sign of H appearing in the gravitino variation given in equation (2.9). We can always send
B2 → −B2 to flip the conventions.
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They should also satisfy the supergravity spinor variations which first receive

corrections at O(α′2) in the preferred basis of fields where the Bianchi identity

involves the Ω+ connection. Perhaps an existence theorem can be proven by

extending the analysis of [12, 13].

In section 3.5, we examine the whether our proposed metrics and fluxes

satisfy the local supersymmetry conditions. We then generalize the metric

ansatz to include a torus fiber with varying volume. These metrics depend

on two holomorphic parameters rather than just the complex structure of the

torus, and describe non-geometric heterotic compactifications. We describe

a class of such solutions.

In the final section, we turn to the question of quantum corrections in

the presence of NS H3-flux. While little can be said about exact metrics in

complex dimension three, there is an exact metric describing NS5-branes on

an elliptic space that captures all the quantum corrections which break both

isometries of the elliptic fiber. This is roughly a torsional version of the metric

found in [17]. It should play an interesting role in repairing singularities of

these torsional backgrounds.

Note added: During the completion of this project, we received a paper

with additional compact torsional heterotic solutions constructed as orb-

ifolds [18], and some papers with related observations [19, 20].

2 Setting the Stage

2.1 Some background

We would like to find data to define heterotic (0, 2) world-sheet sigma models.

This data involves a metric and a bundle together with a choice of H3-flux.

As a matter of notation, we will use H or H3 to denote the heterotic NS flux

and H or H3 to denote the type II NS flux. The associated gauge potentials

are denoted B2 and B2, respectively. The standard notation Fn will be used
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for the RR fluxes of type II string theory defined in (B.146) with associated

potentials Cn−1. For type I string theory, we use the notation F ′
n for the RR

fluxes.

Compactifications with H3 are typically stringy because they involve cy-

cles with size of order α′. However, there is a reasonable but unproven

belief that background data satisfying the heterotic supergravity equations

of motion supplemented with the Bianchi identity (1.2) will suffice to define

perturbatively conformal sigma models; see, in particular [2, 21].

These conditions are definitely not sufficient to guarantee non-perturbative

conformal invariance even for Kähler compactifications with large volume

limits [22]. However, there are special cases like models built from linear

sigma models which can be shown to be non-perturbatively conformal [23,24].

It would be ideal to find analogous constructions for torsional compactifica-

tions where the problem is more acute because of the lack of a large volume

limit; for some steps in this direction, see [25, 26]. In this work, however,

our goal will be to find more solutions of the type I/heterotic supergravity

equations which can be used as starting points for a world-sheet analysis.

Now the Spin(32)/Z2 heterotic string is equivalent to the type I string

via a strong-weak coupling duality. What duality naturally provides for us

are new type I torsional solutions. The relation between the type I and

heterotic solutions is unambiguous at the level of supergravity but might

differ at higher orders in the α′ expansion by field redefinitions.

To understand the conditions of space-time supersymmetry and which

choices of connection are permissible, it is simplest to start with the heterotic

space-time effective action

S =
1

2κ2

∫
d10x

√−g e−2ϕhet

[
R + 4(∂ϕhet)

2 − 1

2
| H |2

− α′

4

(
tr | F |2 −tr | R+ |2

)
+O(α′2)

]
,

(2.4)

where

tr | R+ |2= 1

2
RMNAB(Ω+)R

MNAB(Ω+) (2.5)
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and F is the Yang-Mills field strength. The Einstein-Hilbert term is con-

structed using the standard metric connection denoted Ω, while the Riemann

tensor appearing in the O(α′) correction is constructed using the connection

Ω+ where

ΩAB
± M

= ΩAB
M ± 1

2
HAB

M +O(α′), (2.6)

and ΩAB is the spin connection. The definition of H already includes O(α′)

corrections,

H = dB2 +
α′

4
[CS(Ω+)− CS(A)] , (2.7)

where A is the connection on the gauge-bundle. For a summary of notation,

see Appendix A.

The supersymmetrization of the four derivative interactions including R2

and the Lorentz Chern-Simons couplings have been worked out with various

choices of fields in [27–30]. The equations of motion arising from this action

are

R− 4(∇ϕhet)
2 + 4∇2ϕhet −

1

2
| H |2 −α

′

4

(
tr | F |2 −tr | R+ |2

)
= O(α′2),

RMN + 2∇M∇Nϕhet −
1

4
HMABHN

AB − α′

4

[
trFMPFN

P (2.8)

−RMPAB(Ω+)R
PAB

N (Ω+)
]

= O(α′2),

d
(
e−2ϕhet ⋆H

)
= O(α′2),

e2ϕhetd(e−2ϕhet ⋆ F) +A ∧ ⋆F − ⋆F ∧ A+ F ∧ ⋆H = O(α′2).

The dilaton equation of motion has been used to simplify the Einstein equa-

tion appearing above. In order to obtain these equations, it is easiest to

compute the variation of the action with respect to the fields ϕhet, gMN ,

BMN , AM appearing explicitly and then the variation with respect the the

connection Ω+ which implicitly also depends on these variables. According

to a lemma proven in [28], the variation of the α′ correction to the action

with respect to Ω+ is proportional to the leading order equations of motion,

and therefore does not modify the equations of motion to this order.
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What is important for us is that the results are unique at this order mod-

ulo field redefinitions. As long as the action agrees with results from string

scattering computations (as checked most recently in [27]), it is determined

by supersymmetry. This is known to be true also including terms of O(α′2).

It should be possible to go beyond this order and determine the exact

string effective action including terms of O(α′3) using the techniques of [31,

32]. That would include various R4 type couplings. Indeed there should be

special couplings determined to all orders in the momentum expansion by

space-time recursion relations.

For us, the tree-level result is sufficient. The conditions for unbroken

supersymmetry follow from the supersymmetry variations of the fermions of

the ten-dimensional effective action. To lowest order in α′, these are the

supersymmetry variations of N = 1 supergravity. The space-time fermions

consist of a gravitino, ΨM , which is a Majorana–Weyl spinor. There is also a

dilatino, λ, and a gaugino χ. Both are Majorana-Weyl spinors. The bosonic

terms in the supersymmetry variations of these fermions give the Killing

spinor equations that need to be satisfied:

δΨM =
(
∂M +

1

4
ΩAB

− M
ΓAB

)
ǫ = 0,

δλ = − 1

2
√
2

(
/∂ϕhet −

1

2
/H
)
ǫ = 0,

δχ = −1

2
6Fǫ = 0,

(2.9)

where we have defined the following contractions of H:

/HM =
1

2
HMNPΓ

NP and /H =
1

3!
HMNPΓ

MNP . (2.10)

With the convenient choice of fields considered in [28], we note that all the

modifications at O(α′) to the supersymmetry variations of the space-time

fermions are contained in the natural modification of H given in (2.7).

The Bianchi identity associated with the modified H of (2.7) is

dH =
α′

4
{tr[R(Ω+) ∧ R(Ω+)]− tr[F ∧ F ]} . (2.11)
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If we wish to use the simple form of the variations (2.9) then there is a

preferred connection, Ω+, appearing in (2.11). This is going to play an

important role for us in understanding how duality generates solutions of the

Bianchi identity.

The supersymmetry conditions from the spinor variations (2.9) can be

recast as conditions on the metric and fluxes of a torsional heterotic solution

summarized in [1]. The torsional compactification requires a complex mani-

fold with a Hermitian (1, 1) class J which plays a role analogous to the usual

Kähler form

gab̄ = −iJab̄. (2.12)

The torsion can be extracted directly from J

H = i
(
∂ − ∂̄

)
J (2.13)

with the Kähler case corresponding to dJ = 0. The dilaton satisfies the

conformally balanced condition

d
(
e−2ϕhetJ ∧ J

)
= 0. (2.14)

The Bianchi identity (1.2) can be expressed in terms of J

dH = 2i∂∂̄J =
α′

4
{tr[R(ω) ∧R(ω)]− tr(F ∧ F )} (2.15)

which forces dH to be a (2, 2) form. This is the only real constraint from

world-sheet supersymmetry on the choice of connection ω used in computing

the Pontryagin class tr(R ∧ R) [21, 33].
The difference between any two choices of connection will yield an exact

form given in terms of the Chern-Simons invariant (CS)

tr[R(ω1) ∧R(ω1)]− tr[R(ω2) ∧ R(ω2)] = dCS(ω1, ω2), (2.16)

where

CS(ω1, ω2) = 2α ∧ R(ω1)− α ∧ dα− 2α ∧ ω1 ∧ α +
2

3
α ∧ α ∧ α, (2.17)
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and α = ω1 − ω2. This term is of order O(α′) in (2.15) and so it might be

possible to absorb the difference in a redefinition of H. Such a redefinition

would in turn correct J and the resulting metric may or may not satisfy the

conditions for world-sheet conformal invariance.

From the space-time perspective, we have already seen that the choice

ω = Ω+ is special since it is compatible with space-time supersymmetry

giving a simple form for the spinor variations. Essentially supersymmetry

determines a preferred connection.

The way we will think about the torsional solutions – certainly those of

DRS type and the generalizations we find here – is in terms of the original

pre-duality type IIB supergravity metric and fluxes. These quantities are

unambiguous in the type IIB frame where there is always a large volume

limit. After duality, this data determines the topology of the non-Kähler

space. There is additional subleading information suppressed by powers of

α′ which is needed for the complete solution but which is, however, subject

to the ambiguity of field redefinitions.

To complete our discussion of the background material, let us list the

dictionary relating type I and heterotic supergravity solutions. Again there

can be field redefinition ambiguities at higher orders in α′ beyond the super-

gravity data. The fluxes map in a simple fashion

H3 ↔ F ′
3. (2.18)

The coupling constants and ten-dimensional metrics have the following rela-

tions:

eϕI = e−ϕhet and ds2I = eϕIds2het (2.19)

where ϕI is the type I dilaton and ϕhet is the heterotic dilaton.

2.2 The M-theory starting point

The approach that we will use is to start with a consistent M-theory com-

pactification with G4-flux. The data involved in this compactification is a
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Calabi-Yau (CY) 4-fold W and a choice of (2, 2) primitive G4-flux. The

membrane tadpole condition can be satisfied by a combination of flux and

M2-branes [34, 35].

Generic W do not give rise to four-dimensional compactifications so we

will insist that W is elliptically-fibered with section. So there is a projection

π1 : W → B6 (2.20)

with torus fibers. For compatible choices of G4-flux described in [3], we can

take the F-theory limit where the volume of the elliptic fiber goes to zero. We

are left with type IIB on B6 with a coupling constant τB determined by the

complex structure of the elliptic fiber. The G4-flux will lift to a combination

of type IIB fluxes

G3 = F3 + ie−ϕBH3 (2.21)

together with gauge-bundles on the assorted (p, q) 7-branes present in this

background. For a supersymmetric background, we impose the following

condition [3]

⋆ G3 = iG3 (2.22)

along with primitivity with respect to the Kähler form J

J ∧G3 = 0. (2.23)

These constraints relate the NS and RR fluxes

F3 = ⋆
(
e−ϕBH3

)
. (2.24)

If we also consider spaces W that admit at least one K3 fibration then

there should be a three-dimensional heterotic dual. This is not the most

general condition for a heterotic dual but it will suffice for our discussion

here. The most general condition has yet to be formulated precisely but it

is definitely more general than a K3 fibration for three-dimensional com-

pactifications; see, for example, [36]. Nevertheless, we will assume a second

projection

π2 : W → B4 (2.25)
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with K3 fibers. If we want a four rather than three-dimensional heterotic

dual then we would like our K3 and elliptic fibrations to be compatible so

we can again take the F-theory limit.

Now the usual technique for constructing the heterotic dual is to replace

the K3 fibers with elliptic fibers. In doing so, we replace W with an elliptic

Calabi-Yau 3-fold MH with base B4. The data encoded in the K3 fibration

of W determines both how the elliptic fibers of MH vary over B4 and the

structure of the heterotic gauge bundle.

This simple replacement makes sense when the F-theory compactification

only involves D3-branes and no flux. In this case, the heterotic dual has

been described in some detail [37]. For compactifications with flux, the dual

heterotic geometry and bundle depend both on G4 as well as on W. Even

for a fixed W, different choices of G4 can give rise to both torsional and non-

torsional heterotic duals. Indeed the most general heterotic dual is not a

classical geometry but will be a background that requires quantum patching

conditions involving T-duality. For those backgrounds, there are no sharp

distinctions between bundle and H-flux.

The original DRS torsional solutions were obtained using a direct duality

chain from F-theory on K3×K3. In this work, we will extend this construc-

tion to more general W. Unfortunately, we need to work with actual met-

rics rather than just complex geometry. Since little is known about explicit

metrics for compact Calabi-Yau spaces, we will use a semi-flat approximate

metric to be described in section 2.4.

Before examining the implications of duality in a more detailed fashion,

we can make some general comments about the structure of the resulting

heterotic solutions on general grounds. In the starting M-theory compactifi-

cations, the heterotic string is realized by wrapping an M5-brane on the K3

fiber. The M5-brane supports a chiral 2-form tensor b2. Since the signature

of the lattice H2(K3,Z) is (3, 19), the Kaluza-Klein reduction of the M5-

brane on the K3 fiber gives rise to 3 compact scalars parametrizing T 3 [38].
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In the F-theory limit where the elliptic fiber of the K3 is taken to zero size,

2 of the 3 scalars remain normalizable leaving a T 2.

What the choice of G4-flux determines is the way in which this T 2 fibers

vary over B4 and this determines the dual heterotic geometry. If the G4-flux

lifts strictly to gauge-bundle on 7-branes in the F-theory limit (i.e. the flux

is localized on the discriminant locus of the elliptic fibration for W) then the

heterotic dual is a Calabi-Yau space. More generally the dual is non-Kähler

with torsion. It is important to note that there are many dual geometries

for a given W that depend on the particular choice of G4-flux. This is how

a landscape-like degeneracy emerges for heterotic compactifications.

As pointed out in [39], the wrapped M5-brane unifies the various possible

dual heterotic geometries and bundles in one frame-work that depends on a

choice of K3 fibration for W and a choice of G4-flux. So the general form

of the metric for the dual heterotic geometry in all these cases will have the

schematic form

ds2het = ds2base + |dw + A|2 (2.26)

where the connection A determines the structure of the torus fibration and w

is a coordinate for the torus fiber. That the M5-brane captures both torsional

and non-torsional geometries in the same framework is almost an existence

proof for heterotic geometries of the form (2.26) at least perturbatively.

2.3 The type IIB orientifold locus

There is a class of elliptic CY 4-folds W that admit a non-singular orientifold

locus where the elliptic fibration is locally constant. To make the problem

of constructing heterotic metrics more tractable, we will consider this class.

At such a locus, we can restrict our attention to type IIB on an elliptically-

fibered Calabi-YauM. As a complex space, we can express M in Weierstrass

form

z̃ỹ2 = x̃3 + f z̃2x̃+ z̃3g (2.27)

where (x̃, ỹ, z̃) are homogeneous coordinates for CP2.

12



The choice of (f, g) parametrizes the choice of elliptic fibration. The

symmetry

I : ỹ → −ỹ (2.28)

acts as inversion on the elliptic fiber. With such a symmetry, we can define

a quotient of type IIB on M by the symmetry (−1)FL ·Ω · I. Note that the
quotient M/I is B6 of (2.20).

We will need the string-frame metric of the type IIB compactification.

This is a ten-dimensional warped metric of the form

ds2 = ∆(y)−1 ηµνdx
µdxν +∆(y) ds2M(y) (2.29)

where ∆(y) is the warp factor and we have chosen coordinates y for the

internal space M. It is important to note that there will be α′ corrections to

this metric. We only expect this form to be valid at large volume. We will

return to this point in section 3.3.

Along with this warped metric will be H3, F3 fluxes along M and an

F5 flux with space-filling components. We will also take a general constant

complex type IIB coupling τB.

Both the F3 and H3 fluxes are odd under (−1)FL Ω so they must be

inverted by the Z2 action I. This is rather critical because we will later want
to T-dualize both directions of the torus fiber. We should note that there

is a very large degeneracy of such type IIB solutions from both the choice

of M and the choice of fluxes. To proceed we need an explicit form for the

metric M suitable for T-duality.

2.4 The metric for an elliptic CY space

Although we do not know the exact metric of an elliptic Calabi-Yau space

π : X → B (2.30)

with section, we can still express the metric in a semi-flat approximate form

that makes the torus isometries of the elliptic fiber manifest. For this discus-

sion, the dimension of the space X can be general. The exact smooth metric
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has no such exact isometries and the breaking of the isometries occurs at the

location of divisors in B where the elliptic fiber degenerates. These divisors

can be viewed as supporting (p, q) 7-branes. For this reason, the semi-flat

metric is related to the stringy cosmic string metric of [40]. The approximate

metric is a very good approximation to the actual metric with deviations that

decay exponentially fast away from these divisors [41].

We want to express the metric in a form that will allow us to later apply

T-duality to both cycles of the elliptic fiber if we desire so the semi-flat form

is ideal. In the absence of flux, this T-duality transformation should roughly

send

τ → −1

τ
(2.31)

where τ is the complex structure of the elliptic fiber. The metric is then

invariant.

There is a physical approach to the question of determining the semi-flat

metric that goes as follows: consider type IIB on a d-dimensional complex

base space with coordinates y and string-frame metric

ds2IIB = W (y)gijdy
idyj +W (y)

9−d∑

µ=0

dxµdxµ. (2.32)

We have allowed a warp factor W (y) in front of the space-time metric which

we will determine momentarily. The warp factor in front of gij is for later

convenience. This is a good solution of type IIB string theory of F-theory

type if the string coupling is determined by the complex structure of the

elliptic fiber

τ(y) = τ1 + iτ2 = C + ie−Φ. (2.33)

By definition, we assume this background satisfies the type IIB supergravity

equations of motion with allowed sources given by (p, q) 7-branes.

To get the metric of X , we compactify a spatial direction with coordinate

w2 and periodicity w2 ∼ w2 + 2π. Let us T-dualize along this direction to
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get the IIA metric

ds2IIA = W (y)gijdy
idyj +

1

W (y)
(dw2)

2 +W (y)
8−d∑

µ=0

dxµdxµ. (2.34)

There is no induced B-field but the dilaton becomes

e2ΦIIA =
1

W (y)
e2Φ. (2.35)

The only other change is to the Ramond potential

C1 = (C0)w2
. (2.36)

This is very clean. Next we lift the solution to M-theory which gives a metric

for X . Let w1 denote the eleventh direction with periodicity 2π then

ds2M = W 4/3e−
2

3
Φ

(
gijdy

idyj +
1

W
(dw2)

2

)
+W−2/3e

4

3
Φ (dw1 − (C0)w2

dw2)
2

+W 4/3e−
2

3
Φ

8−d∑

µ=0

dxµdxµ. (2.37)

Now we demand that this be a simple product M-theory solution so we

impose the condition

W 4/3e−
2

3
Φ = 1 ⇒ W = eΦ/2. (2.38)

The result is an approximate metric for an elliptic Calabi-Yau that exhibits

isometries in (w1, w2) along which we can later T-dualize. There are quantum

corrections to this metric which break the torus isometries at the locations

of the 7-branes to which we will return later.

Let us express the semi-flat metric forX in terms of the original geometric

data,

ds2X = gijdy
idyj +

1

τ2
|dw1 − τ dw2|2. (2.39)

Note that we have not exhibited a complex structure for X although we

could certainly take complex coordinates for the base space. In terms of

those complex coordinates, τ is holomorphic away from the discriminant

locus where the elliptic fiber degenerates.
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3 Torsional Solutions via Duality

Now we want to go from our starting point of type IIB on M to a heterotic

geometry. How shall we proceed? There are five cases where we can do this

rigorously of which only the original construction of [3] using M = K3× T 2

has been studied to date. The remaining four cases correspond to special

three-foldsM which themselves admit a non-singular orientifold limit. Those

special spaces, denoted Mn, are elliptic fibrations over Hirzebruch surfaces

Fn for the choices n = 0, 1, 2 and 4 [42, 43].4

So our approach will be to dualize each of the cases that admit orien-

tifold limits. By doing so, we will find generalizations of the original DRS

geometries which we can check satisfy the constraints for a torsional het-

erotic compactification. However, heterotic/F-theory duality discussed in

section 2.2 strongly suggests that there should exist torsional heterotic com-

pactifications associated to any elliptic 3-fold M. So we will actually discuss

more general elliptic three-folds M keeping in mind that the duality is rigor-

ous for the special spaces mentioned above. Despite the absence of a rigorous

duality in the general case, we should stress that the duality procedure gives

good solutions in the absence of flux and we expect it to give good solutions

in the presence of flux.

3.1 The Method of Construction

Now we want to take the metric (2.39) as the starting point for a type IIB

compactification on M. The type IIB coupling, τB = C0+ ie
−ϕB , is indepen-

dent of the coordinates for M. Initially there is no B-field. First note that if

we were to T-dualize the metric (2.39) along the (w1, w2) directions, we would

4When used to construct six-dimensional F-theory compactifications, the cases n = 0
and n = 2 are equivalent since we are allowed to consider generic moduli [44]. It is
unlikely that this is true in the current context where we are constructing four-dimensional
compactifications that depend critically on the choice of flux. In particular, the flux lifts
moduli so we are no longer free to deform to generic metrics.
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not generate any H-field. This is natural. We expect a purely geometric NS

string background to map to a purely geometric NS background.

To find new torsional solutions, we must also include H3, F3 and F5 in our

initial background. As a first step, we want to determine the torsional metric

so we need only consider the NS sector H3-flux. Our starting ten-dimensional

IIB metric is given by the semi-flat approximation to the Calabi-Yau metric

for M,

e−
ϕB
2 ds2IIB = ∆−1ηµνdx

µdxν+∆

(
gij(y)dy

idyj +
1

τ2
|dw1 − τ dw2|2

)
, (3.40)

with an additional warp factor ∆. The warp factor is related to space filling

C4 potential [3]

(C4)µνρλ =
1

∆2
ǫµνρλ. (3.41)

The base obtained by projecting

π : M → B4 (3.42)

has metric ∆gij and the elliptic fiber degenerates over divisors of B4. Over

these loci, we expect the smooth metric for M to differ from the semi-flat

approximation.

We need to express theG3-flux in a form suitable for duality. Note that we

can decompose differential forms on M under the action of the Z2 involution

I given in (2.28). Our interest resides in 3-forms

Ω3(M) = Ω3
+ ⊕ Ω3

− (3.43)

to which we can assign a definite charge under I. Now let us consider either

the Ramond or NS type IIB 3-form field strength which is a form

f3 ∈ H3(M,Z)− (3.44)

invariant under the orientifold action as described in section 2.3.

Because of the Z2 action on forms, we can nicely decompose f3 along

the fiber and base as follows: to the integral form f3, we associate integral
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2-forms, (f2)i, living on the base B4 of the elliptic fibration with values in

the cohomology of the fibers of degree 1. Each form f2 is well-defined on

the base up to the action of the SL(2,Z) monodromy group that acts on the

1-forms of the fiber when we consider loops enclosing 7-branes; equivalently,

loops enclosing the divisors where the elliptic fibers degenerate.

If we choose (ω1, ω2) as a basis for the integral harmonic 1-forms of the

fiber then

f3 = (f2)i ∧ ωi. (3.45)

Under the SL(2,Z) action sending

τ → aτ + b

cτ + d
, (3.46)

the combination

f̃2 = (f2)2 + τ(f2)1 (3.47)

transforms as a modular form of weight (−1, 0):

f̃2 → (cτ + d)−1f̃2. (3.48)

Let us consider a patch in which the action of the monodromy group is trivial.

In such a patch, we can trivialize each (f2)i to obtain two 1-form connections

again with values in the cohomology of the fibers of degree 1

(f2)i = d(A1)i. (3.49)

So, for example, we can take f3 = H3. In this case, the two connection

1-forms correspond to trivializing B2 in terms of two local potentials which

we denote

Bw1
= Byiw1

dyi, Bw2
= Byiw2

dyi (3.50)

using the fiber/base coordinates for the metric (3.40). In terms of these

potentials, we define

AH(τ) = Bw2
+ τBw1

(3.51)
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which is a 1-form connection constructed from the NS field strength using

this procedure.

We now have enough information to apply T-duality to both directions

(w1, w2) of the elliptic fiber. After applying T-duality in these directions, we

arrive at a new space M′ with the metric (3.40) becoming

e−
ϕB
2 ds2tor = ∆−1ηµνdx

µdxν +

(
∆ gijdy

idyj +

e−ϕB

∆τ2
|dw2 + τ dw1 + AH |2

)
. (3.52)

There is no B-field generated in the final solution as we desire. After this

duality, we have arrived at the NS geometry of type I compactified on non-

Kähler torsional metrics that generalize the earlier known solutions.

There are a few points to mention. Whether the metric exists depends on

whether there is an obstruction to finding a suitable warp factor ∆. We will

argue in section 3.4 that this obstruction is the tadpole cancelation condi-

tion in type IIB which becomes the 5-brane tadpole cancelation in type I or

heterotic string theory. This can be satisfied in type IIB for suitable fluxes

which gives the warp factor ∆.

The second key issue is whether the singularities of the elliptic fiber of

this semi-flat metric can be smoothed to give a good torsional solution. We

expect this to be the case since the metric can be smoothed in the type IIB

frame. The semi-flat approximation is an extremely good approximation to

the actual smooth metric with only exponentially small corrections near the

degeneration divisors.

Including these small corrections will break both isometries of the elliptic

fibration in a way familiar from other examples of T-dualizing approximate

isometries; for example, the duality between NS5-branes on a circle and

Taub-NUT spaces. We will discuss aspects of these quantum corrections and

the desingularization procedure in section 4. In complex dimension three of

relevance to (3.52), little can be said explicitly about the smoothing and a
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rigorous existence theorem is needed except for the orientifold cases described

at the beginning of this section.

It is going to be convenient for us to express the torsional internal met-

ric (3.52) in terms of a flat frame,

ds2tor =
4∑

a=1

e
ϕB
2 EaEa + e−

ϕB
2 EwEw̄. (3.53)

We have defined the orthogonal frame as follows:

Ea =
√
∆ea, Ew =

1√
∆τ2

(dw2 + τdw1 + AH), Ew̄ = (Ew)⋆. (3.54)

The ea are vielbeine for the unwarped base metric gij.

Finally, we also need to specify the type I dilaton which follows from the

standard rules of T-duality

eϕI =
e

ϕB
2

∆(y)
. (3.55)

To avoid cluttering our subsequent formulae, we will now set the constant

eϕB = 1.

3.2 The RR fluxes

To complete the description of the type I background, we need to specify the

RR fluxes. The initial RR type IIB potentials take the form

C0, C2, C4, (3.56)

where τB = C0 + ie−ϕB . The field strength

F3 = dC2 +H3 ∧ C0 (3.57)

is again odd under I so we obtain a second potential AF (τ) on B4 with

good transformation properties under the SL(2,Z) acting on the fibers. Now

the potential AF is not really independent of AH . The two potentials are

connected via the imaginary self-duality condition (2.22).
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Type I string theory has one RR potential C ′
2. We want to express the

potential that results from duality in a form that makes its connection with

the geometry (3.52) clear. The easiest terms to consider in C ′
2 are those

proportional to C0 which can be expressed in terms of the 1-forms (3.54) as

follows,

C ′
2 = − i

2
C0∆E

wEw̄ + . . . . (3.58)

There are two additional contributions from (C2, C4) which need to be treated

together. In a form convenient for T-duality, the type IIB 5-form field

strength is given in terms of a potential C4 by

F5 = dC4 +H3 ∧ C2. (3.59)

The implied Bianchi identity includes the H3-induced source term for D3-

brane charge,

dF5 = F3 ∧H3. (3.60)

With the definition (3.59), F5 is self-dual and so the Bianchi identity is also

the equation of motion for C4. We will need to add brane/orientifold sources

to (3.60). These sources come about as follows: in M-theory, there is a higher

derivative coupling

−
∫
C3 ∧X8(R) (3.61)

where X8(R) is constructed from curvature tensors and given by the following

combination of Pontryagin classes

X8 =
1

48

(
p2 −

1

4
p21

)
. (3.62)

This gives rise to an M2-brane tadpole given by
∫
W X8 when evaluated on

a 4-fold internal space W. If the 4-fold is Calabi-Yau then the tadpole is

χ(W)/24.

On taking the F-theory limit, this coupling is reproduced by gravitational

couplings on (p, q) 7-branes. The branes wrap divisors of the IIB compacti-

fication space B. The gravitational couplings for a brane wrapping a divisor
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D is of schematic type

−
∫
C4 ∧X4 (3.63)

where X4(D) is again constructed from curvature tensors. From the bulk

perspective, we can view this as a 6-form class added to the Bianchi iden-

tity (3.60)

X6(D) = X4 ∧ δ2D (3.64)

where the delta-function restricts to the divisor D. The tadpole can be

expressed purely in terms of classes on B [35]

χ

24
=

∫

B

(
15c31 +

1

2
c1c2

)
. (3.65)

In the orientifold limit where the IIB compactification space B is itself a

quotient of a Calabi-Yau M, there are only D7-branes and orientifold planes.

Each D7-brane wrapping a divisor D supports a coupling,

−
∫
C4 ∧

1

24
c2, (3.66)

while the orientifold planes support couplings [45],

−
∫
C4 ∧

1

6
c2. (3.67)

For a recent discussion of the orientifold limit tadpoles, see [46]. For our

purposes, we can lump all these contributions together into a class denoted,

X̃6, which includes all the brane and orientifold modifications to the Bianchi

identity

dF5 = F3 ∧H3 + X̃6. (3.68)

We will analyze how each contribution to (3.68) maps under duality in sec-

tion 3.4.

After dualizing (C2, C4) in addition to (3.58), we can finally express the

resulting type I F ′
3 in a form which will be convenient for later discussions

F ′
3 =

√
∆

τ2
Im [(Fw2

+ τFw1
)Ew̄)] + ⋆bd∆

2. (3.69)
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The Hodge star action, ⋆b, is with respect to the unwarped base metric gij .

As we will later see when discussing the spinor equations for supersymmetry,

the first contribution to (3.69) combines with some components of the spin

connection to give rise to an self-dual 3-form. This self-duality is a direct

consequence of the imaginary self-duality of the type IIB G3-flux.

3.3 Tracking the volume moduli

Now the original IIB flux compactification always has a physical modulus

that corresponds to rescaling the internal six-dimensional IIB metric,

ds2IIB → (L)2ds2IIB. (3.70)

This is the only real tunable parameter in the IIB theory since the string

coupling is typically frozen by the flux at some value. When L is large,

supergravity becomes a more reliable approximation as α′ corrections are

suppressed. There are actually at least two distinguished moduli for a metric

of the form (3.40) corresponding to independent scalings of the fiber and base.

We can keep track of the second modulus by also permitting separate

scalings of the base metric,

gijdy
idyj → (L̃)2gijdy

idyj. (3.71)

For the moment, we need only keep track of the basic symmetry (3.70).

Physical moduli cannot disappear under a duality transformation. In type I,

the rescalings above act on the metric in the following way

∆ gijdy
idyj → ∆′ (L)2gijdy

idyj (3.72)

1

∆τ2
|dw2 + τ dw1 + AH |2 → 1

(L)2∆′τ2
|dw2 + τ dw1 + AH |2 (3.73)

together with an action on the type I dilaton

ϕI → ϕI − 2 log(L). (3.74)
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The scaling of the warp factor is determined from (3.68) together with the

self-duality condition F5 = ∗F5. Factoring out the powers of L, the warp

factor obeys an equation of the form

d ∗ d
(

1

∆′2
ǫµνρλdx

µ · · · dxλ
)

= O(
1

L4
) (3.75)

where the Hodge star is with respect to the L = 1 metric; so the warp factor

becomes more constant as L→ ∞.

The choice of L parametrizes a family of solutions in type I (and conse-

quently the heterotic string). However, the simplifying limit L → ∞ corre-

sponds in type I to the area of the torus fiber becoming small and the string

coupling becoming small.

3.4 The type IIB and type I tadpole conditions

3.4.1 The supergravity contribution

Now we would like to understand how a solution of the type IIB D3-brane

tadpole condition maps to a solution of the type I D5-brane tadpole, and

consequently the heterotic Bianchi identity. There are two distinct contribu-

tions to (3.68) that we will treat in turn. We begin with the supergravity

source term

dF5 = F3 ∧H3. (3.76)

This must map consistently under T-duality simply in type IIB string theory

whether or not we choose to orientifold or insert branes. In fact, if we started

with a non-compact space M in type IIB, we do not even have to add extra

ingredients to cancel the induced D3-brane charge

Q =

∫
F3 ∧H3. (3.77)

Let us apply T-duality in the fiber directions to obtain the type I 3-form

F ′
3 = (F5)w1w2

+ (F3)w1
(dw2 +Bw2

)− (F3)w2
(dw1 +Bw1

). (3.78)

24



The notation (F5)w1w2
refers to the 3-form obtained by taking the component

of F5 proportional to the volume form of the fiber, and removing that volume

form to obtain a 3-form. There is a similar definition for (F3)wi
given in

Appendix A.

At the level of supergravity the type I Bianchi identity then becomes

dF ′
3 = 0. (3.79)

Note that F ′
3 is globally defined and as a result dF ′

3 is exact. However, even

though dF ′
3 is exact there is still associated D5-brane charge. The charge

cannot simply vanish. The reason there is charge is that T-duality changes

the topology of the space and in the type I geometry the base of the fibration

now has a boundary. As a result, it is not a cycle. When integrated over the

base dF ′
3 becomes Q, or in other words the D3-brane charge which is induced

by flux on the type IIB side is generated by geometry in type I.

This is natural since, by construction, we chose T-dualities to precisely

map H3 into metric both in our examples and the earlier ones of [3]. Let us

illustrate this idea in a simple example. Consider a 3-torus represented by

the product of three circles

ds2 = dx21 + dx22 + dx33, xi ∼ xi + 1, (3.80)

in the presence of N units of NS 3-form flux HNS which locally we can

trivialize by a 2-form BNS,

HNS = dBNS = Ndx1 ∧ dx2 ∧ dx3 with BNS = Nx1dx2 ∧ dx3. (3.81)

Now apply T-duality in the x3-direction which corresponds to one of our

fiber directions (recall that the H3-flux is odd on the fiber as described in

section 2.3). The metric becomes a circle fibred over a 2-torus

ds2 = dx21 + dx22 + (dx3 −Nx1dx2)
2. (3.82)
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In order for the metric to be globally defined the boundary conditions on the

coordinates have to be changed

xi ∼ xi + 1, i = 2, 3 and x1 ∼ x1 + 1, x3 ∼ x3 +Nx2. (3.83)

This change in boundary conditions implies that the topology of the space

has changed.

Indeed, while the 3-torus has betti numbers b0 = b3 = 1 and b1 = b2 = 3,

the T-dual space has betti numbers b0 = b3 = 1 but b1 = b2 = 2. The reason

for the change is that in the T-dual space, the form

ω = dx3 −Nx1dx2

is globally defined. As a result its exterior derivative is exact and dx1 ∧ dx2
becomes trivial in cohomology. Moreover, b1 is also changed since ω is no

longer closed. By Poincaré duality this implies that the base has a boundary.

We may integrate an exact form over the base of the fibration and obtain a

non-vanishing result. In particular
∫

base

dω = N. (3.84)

This is precisely what happens in our examples and the earlier examples

of [3]; namely, that the D3-brane charge Q induced by the fluxes in type IIB

appears as five-brane charge in the T-dual geometry where
∫

base

dF ′
3 = Q. (3.85)

3.4.2 The gravitational contribution

The supergravity contribution to the charge maps nicely as explained above.

We would now like to turn to the tadpole contribution that comes about from

the gravitational couplings on the branes and orientifold planes denoted X̃6

in (3.68). This is a more mysterious because it involves higher momentum

couplings so there is room for possible quantum corrections.
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Let us overview how this should work before jumping into a computation.

In the heterotic frame we expect X̃6 to map to the contribution,

α′tr[R(Ω+) ∧R(Ω+)], (3.86)

in the heterotic Bianchi identity (2.11) up to an overall numerical factor.

The curvature is evaluated with respect to the Ω+ connection which depends

on H3. If we apply S-duality to convert heterotic to type I, we replace H3

by F ′
3. So in type I, we expect X̃6 to map to a 4-form proportional to

tr[R(Ω′
+) ∧ R(Ω′

+)] where

Ω±
′ = Ω± 1

2
F ′
3 (1 +O(α′)) . (3.87)

The omitted terms can be very complicated since they need not be linear in

the fluxes.

The gravitational couplings on branes and orientifolds, X̃6, are believed to

be T-duality invariant using general arguments from K-theory in the presence

of H3 which is a pure torsion class [47]. A precise general statement is that

the α′-corrected equations of motion including these couplings should be

invariant under T-duality.

This does not determine which connection is to be used in computing

these couplings. The choice of connection depends on which interactions are

shuffled into bulk equations of motion and which into these gravitational

couplings. This is ambiguous. Perturbative string computations suggest

that the H3-connection is preferred over the metric connection; steps toward

showing this appear in [48].

What we require is actually something additional: namely, dependence on

the RR field strengths as well as NS field strengths. The appearance of both

RR and NS fluxes in anomaly cancellation is already visible in M-theory [49].

This kind of dependence is also needed, in part, to ensure the equivalence of

the type I and heterotic string under S-duality even in ten dimensions.

Again we stress that the appearance of the H3-connection in heterotic or

the F3-connection in type I is based on a nice form for the equations of motion
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and the supersymmetry transformations. In this nice choice of fields, the first

corrections to the spinor variations (2.9) are at O(α′2) with no corrections at

O(α′). So it makes little sense to try to solve the heterotic or type I Bianchi

identity beyond this order in the α′ expansion since the metric and fluxes

will be corrected. However, we do expect to find a solution from duality to

this order.

Now we have framed this discussion from the heterotic/type I perspective.

We should ask a similar question about the order of quantum corrections in

type IIB. Without orientifolding or branes, the leading corrections would be

more suppressed generated by terms in the ten-dimensional effective action

like R4 which is down by O(α′3) from the supergravity terms. However, the

orientifolded theory with branes has quantum corrections to the metric and

fluxes at precisely the same order as type I/heterotic.

What is true on the type IIB side is that the warp factor equation (3.75)

is of Laplace type together with higher derivative corrections. The only ob-

struction to the existence of a perturbative solution comes from the zero mode

for the sources, which is the usual tadpole condition. Once that condition is

satisfied a solution exists.

We therefore want to show that the candidate warp factor ∆ and asso-

ciated type I flux F ′
3 of (3.69) obtained from the type IIB side by T-duality

satisfy the type I Bianchi identity to leading orders in the type IIB large

volume expansion when we evaluate curvatures using (3.87).

So our task is to evaluate p1 for the torsional compactification met-

ric (3.52). We will be interested in the leading order result in the L expansion

described in section 3.3. This is an expansion around the limit of large base

and small fiber for the torsional metric. Constructing an obstruction theory

to a perturbative solution is natural in this expansion which is T-dual to the

large volume expansion of type IIB.

The first step is to evaluate the spin connection for the vielbeine given

in (3.54). We will need the spin connection, ω, for the underlying Calabi-Yau
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metric gij . Let us define ∆b via

d log∆ = ∆bE
b. (3.88)

The spin connection for the torsional metric is given by

Ωa
b = ωa

b −
1

2
(∆aEbj −∆bE

a
j )dy

j − 1

2
√
τ2∆

EaiEj
b Re

[
(Hw2

+ τ̄Hw1
)ij E

w
]

Ωw
a =

i

2τ2
Ei

a∂iτE
w̄ +

1

2
√
τ2∆

(Hw2
+ τHw1

)ijE
i
ady

j − 1

2
∆aE

w

Ωw
w =

i

2τ2
dτ1. (3.89)

Using the scalings described in section 3.3 shows that the Ω+ connection

coefficients satisfy

Ωa
+b

= ωa
b +O(L−2),

Ωw
+a

= O(L−1),

Ωw
+w

=
i

2τ2
dτ1. (3.90)

Using this expansion to evaluate the curvature correction gives,

tr [R(Ω+) ∧ R(Ω+)] = tr [r ∧ r] +O(L−1), (3.91)

where r denotes the curvature 2-form of the base. Note that even though

there is one spin connection depending on τ which is O(1) for large L, namely

Ωw
+w, it does not contribute to the right hand side of (3.91) to leading order

in L.

In the large L limit, the Bianchi identity then reduces to

d ⋆b d∆
2 + (Fw1 ∧Hw2 − Fw2 ∧Hw1) =

α′

4
tr [r ∧ r] +O(L−1). (3.92)

At O(L2), this equation states the the warp factor has a constant piece. At

O(1), we obtain a differential equation for the warp factor of Laplace type

with a source. This equation will always have a solution as long as the source

has no zero mode. This is the statement that the NS5-brane charge vanish.
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This is what we wanted to see. We can recognize this as the warp fac-

tor equation on the type IIB side, where the tr[r ∧ r] piece arises from an

anomalous coupling on the D7 brane world-volume wrapping the base of the

elliptic fibration as described in section 3.2. The integrability condition is

the tadpole cancelation condition. It is possible to analyze the Bianchi iden-

tity beyond the first two orders of the L expansion considered here. On the

type IIB side, this corresponds to corrections to the warp factor equation. A

detailed analysis of the Bianchi identity beyond the first two leading orders

for the case where the base is K3 will appear in [50].

This is not a complete analysis of the Bianchi identity for the varying τ

case. In that case, there can be extra contributions from 4-cycles associated

to degenerations of the elliptic fiber which require additional analysis. At this

point, however, we can be more confident that a warp factor which works in

type IIB will define a good heterotic or type I background in the perturbative

expansion that we have described.

3.5 Checking the supersymmetry conditions

3.5.1 Semi-flat metric with one holomorphic parameter

We now turn to the supersymmetry properties of our backgrounds. Let us

begin by showing that one ten-dimensional Majorana-Weyl spinor compact-

ified on a space with semi-flat metric (2.39) gives N=1 supersymmetry in

four dimensions. Our analysis is local since the supersymmetry conditions

must be satisfied point-wise. This will allow us to work in patches avoiding

singularities and monodromies of the complex structure of the elliptic fiber.

Take a ten-dimensional Majorana-Weyl spinor, ǫ, which we choose to have

positive chirality

Γ0 · · ·Γ9ǫ = ǫ. (3.93)

On compactifiation to four dimensions, the Majorana-Weyl spinor ǫ decom-

poses into a four-dimensional complex Weyl spinor, ζ , and a six-dimensional
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complex Weyl spinor ξ:

ǫ = ζ ⊗ ξ + ζ⋆ ⊗ ξ⋆. (3.94)

Decomposing the ten-dimensional Dirac matrices into four- and six-dimensional

pieces,

ΓM = γ5 ⊗ γM and Γµ = γµ ⊗ 1, (3.95)

gives rise to spinor equations in six dimensions

δΨM = ∇Mξ = ∂Mξ +
1

4
ΩAB

MγABξ = 0. (3.96)

The non-vanishing connections are

Ωa
b = ωa

b,

Ωw
a = − 1

2iτ2
eia∂iτE

w̄,

Ωw
w =

i

2τ2
dτ1,

(3.97)

together with their complex conjugates. The spin connection is an SO(6)

gauge field and therefore each 4 of SO(6) can give rise to one singlet under

the holonomy group, resulting in at most minimal supersymmetry in four

dimensions.

To preserve supersymmetry, the spinor equations δΨM = 0 must be sat-

isfied. This requires the space to be Kähler since the 2-form

JMN = −iξ†γMNξ, (3.98)

is covariantly constant and satisfies J2 = −1. Let us introduce complex

coordinates for the six-dimensional space and choose ξ to satisfy

γM̄ξ = γMξ = 0. (3.99)

To solve (3.96), τ(y) has to be an holomorphic function of the base coordi-

nates. This follows from,

δψw1
= ∂w1

ξ +
i

8
τ
−3/2
2 ∂̄īτγw

īξ = 0, (3.100)
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which requires ξ to both be independent of the w1 coordinate and satisfy

∂̄τ(y) = 0. (3.101)

Now this analysis is only true away from singularities of the elliptic fiber.

As we mentioned earlier, we are restricting our analysis to the locus omit-

ting those singularities which means that we cut out a divisor from the six-

dimensional space.

The spinor equation in the w2 direction is solved by requiring additionally

that ξ be independent of w2. Vanishing of the gravitino variation along the

base, on the other hand, requires

δψi = ∂iǫ+
1

4
ωab

iγabǫ−
i

4

∂iτ1
τ2

ǫ = 0. (3.102)

The integrability condition to find a solution of (3.102) is that the Ricci-form

of the base is related to τ according to

R = i∂∂̄ log τ2, (3.103)

or since the base is Kähler

∂∂̄
(
det log gij̄ − log τ2

)
= 0. (3.104)

Thus compactification of a ten-dimensional Majorana-Weyl spinor on a

space with metric (2.39) gives rise to one four-dimensional supersymmetry if

τ(y) is a holomorphic function of the base coordinates and if the integrability

condition (3.103) is satisfied.

3.5.2 Torsional heterotic background with one holomorphic pa-

rameter

The gravitino variation appearing in (2.9) has a nice interpretation as im-

plying the existence of a covariantly constant spinor when H is included. So

let us examine how the spin connection has changed in going from our initial

conformally Calabi-Yau metric to the torsional solution.
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The torsional geometry in the heterotic frame is characterized by the

metric

ds2tor = ∆2 gijdy
idyj +

1

τ2
|dw2 + τ dw1 + AH |2. (3.105)

The base is Kähler with metric gij and the flux is

H =
1√
τ2

Im [(Fw2
+ τFw1

)Ew̄] + ⋆bd∆
2. (3.106)

In order to analyze the supersymmetry constraints, we begin by com-

puting the Ω− connection which appears in the gravitino supersymmetry

variation. We can take as a basis of 1-forms

Ea = ∆ea, Ew =
1√
τ2

(dw2 + τdw1 + AH) , (Ew)⋆, (3.107)

where ea is the orthonormal basis of the base. In terms of this basis, the

torsional metric is flat

ds2 =
4∑

a=1

EaEa + EwEw̄, (3.108)

up to an overall constant factor that we will set to one for simplicity. The

spin connection coefficients are

Ωa
b = ωa

b + (Ei
bE

a
j − EaiEbj) (∂i log∆) dyj − 1

2
τ
−1/2
2 EaiEj

b×
Re

[
(Hw2

+ τ̄Hw1
)ij E

w
]

Ωw
a =

i

2τ2
Ei

a∂iτE
w̄ +

1

2
τ
−1/2
2 (Hw2

+ τHw1
)ijE

i
ady

j

Ωw
w =

i

2τ2
dτ1. (3.109)

To check the supersymmetry constraints, we need the Ω− connection. Us-

ing (3.106) for H gives

Ωa
−b = ωa

b + (Ei
bE

a
j − EaiEbj) (∂i log∆) dyj +

1

2
(⋆bd∆

2)ijkE
aiEj

bdy
k

−1

2
τ
−1/2
2 Im ([(Fw2

+ τFw1
) + i(Hw2

+ τHw1
)]Ew̄)ij E

aiEj
b
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Ωw
−a =

i

2τ2
Ei

a∂iτE
w̄ +

i

2
τ
−1/2
2 [(Fw2

+ τFw1
)− i(Hw2

+ τHw1
)]ij E

i
ady

j

Ωw
−w =

i

2τ2
dτ1. (3.110)

The aim is to solve the heterotic spinor equations. To do so we will

impose constraints on the fluxes Fwi
and Hwi

in such a way that the spinor

variations reduce to the “flux-free” situation. Note that all dependence on

Fwi
and Hwi

will cancel out if

Gw̄ =
1√
τ2

1

2i
[Fw2

+ τFw1
+ i(Hw2

+ τHw1
)] , (3.111)

and

(Gw)
⋆ =

1√
τ2

1

2i
[Fw2

+ τFw1
− i(Hw2

+ τHw1
)] , (3.112)

are primitive (1, 1) and (2, 0) forms on the base, respectively. We recognize

Gw and Gw̄ as the components of the complex type IIB 3-form G3 expanded

in an orthonormal frame for the type IIB Calabi-Yau metric.

The conditions imposed on Gw and Gw̄ have a natural interpretation as

the conditions of imaginary self-duality and primitivity of the complex 3-form

flux on the Calabi-Yau space. Indeed, the requirement (2.22) that the type

IIB flux G3 is imaginary self-dual implies

Fw2
+ τFw1

+ i ⋆b (Hw2
+ τHw1

) = 0. (3.113)

Inserting this expression into the definition of Gw and Gw̄ shows that

Gw̄ =
1√
τ2

1

2
[(Hw2

− ⋆bHw2
) + τ(Hw1

− ⋆bHw1
))] , (3.114)

is an anti-self-dual form on the base while

(Gw)
⋆ = − 1√

τ2

1

2
[(Hw2

+ ⋆bHw2
) + τ(Hw1

+ ⋆bHw1
))] , (3.115)

is self-dual. Anti-self-dual 2-forms on the base are primitive (1, 1) forms while

self-dual forms can be of type (2, 0), (0, 2) and non-primitive (1, 1). Requiring
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G to be of Hodge type (1, 2)5 implies that Gw can only have a (0, 2) piece.

These are precisely the two conditions imposed on (3.111) and (3.112) to

solve the spinor variations on the heterotic side. The warp factor dependent

term appearing in the connection vanishes because the spinor has a definite

chirality on the base. Finally, the dilatino equation is solved by setting

eϕhet = ∆. (3.116)

These are all the conditions needed to solve the N = 1 space-time super-

symmetry conditions. Note that ∆ is a scalar function of the base coordinates

in the semi-flat approximation. Based on the supersymmetry constraints

alone, ∆ is arbitrary. As we have seen in section 3.4, the Bianchi identity

gives a differential equation for ∆ and its solution determines the background

completely.

3.5.3 Semi-flat metric with two holomorphic parameters

In this section, we will explore more general backgrounds of the heterotic

string. Heterotic string theory on T 2 has 18 complex moduli. One of these

moduli is τ of the elliptic fiber while 16 correspond to the choice of Wil-

son lines for the ten-dimensional gauge bundle. The remaining modulus,

ρ, is the (complexified) volume of the torus. If we fiber this modulus over

the base, we typically describe a non-geometric heterotic compactification

with torsion. A study of such solutions in relation to F-theory will appear

in [51]. These spaces are intrinsically quantum since the patching conditions

involve T-duality rather than just diffeomorphisms. Nevertheless, we can

study whether such spaces are locally supersymmetric as in the preceding

sections.

There has been a reasonable study of non-geometric solutions. We will

begin by reviewing the metric of [52] adapted to our notation. This is a

5The reason we have a (1, 2) flux rather than a (2, 1) flux as appears in [3] is the plus
sign convention we have chosen for G3 given in eq. (2.21) which is convenient for T-duality.
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generalization of the semi-flat metric which depends on two holomorphic

parameters. In the subsequent section, we will take this solution as a starting

point for constructing a large new class of torsional backgrounds.

The metric simply has a varying volume for the torus fiber in addition to

the τ fibration

ds2 = gijdy
idyj +

ρ2
τ2

| dw2 + τdw1 |2, (3.117)

depending on two complex parameters τ = τ1 + iτ2 and ρ = ρ1 + iρ2, which

are functions of the base coordinates y only. Moreover, there is H-flux with

two components in the fiber directions

H = dρ1 ∧ dw2 ∧ dw1, (3.118)

and the dilaton is related to ρ according to

ϕhet =
1

2
log ρ2. (3.119)

We did not encounter torsion of this type in our preceding discussion.

As we will see below, supersymmetry requires the base to be Kähler.

Moreover, τ and ρ have to be holomorphic functions of the base coordinates.

Let us solve the spinor equations. The spin connections of the metric (3.117)

are

Ωa
b = ωa

b,

Ωw
a =

1

2
∂i log ρ2e

i
aE

w +
i

2

∂iτ

τ2
Ei

aE
w̄,

Ωw
w =

i

2

dτ1
τ2
.

(3.120)

Using the expression forH, the connection coefficients arising in the gravitino

supersymmetry variations are

Ωa
−b

= ωa
b

Ωw
−a

=
i

2
Ei

a

(
∂iρ

ρ2
Ew +

∂iτ

τ2
Ew̄

)
,

Ωw
−w

=
i

2

(
dτ1
τ2

+
dρ1
ρ2

)
.

(3.121)
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The gravitino variation in the fiber directions takes the form

δψw1
= ∂w1

ξ +
i

4

√
ρ2
τ2

(
τ
∂īρ

ρ2
+ τ̄

∂īτ

τ2

)
Γw

īξ = 0,

δψw2
= ∂w2

ξ +
i

4

√
ρ2
τ2

(
∂īρ

ρ2
+
∂īτ

τ2

)
Γw

īξ = 0.

(3.122)

We will solve these conditions by requiring the spinor ξ to be a function of

the base coordinates only, i.e.

ξ = ξ(y), (3.123)

and by imposing holomorphicity of ρ and τ

∂̄ρ = 0 and ∂̄τ = 0. (3.124)

The spinor equations along the base are

δψi = ∇iξ −
i

4

(
∂iτ1
τ2

+
∂iρ1
ρ2

)
ξ = 0,

δψī = ∇īξ −
i

4

(
∂īτ1
τ2

+
∂īρ1
ρ2

)
ξ = 0.

(3.125)

This implies that the norm of ξ is constant

∇i(ξ
†ξ) = ∇ī(ξ

†ξ) = 0, (3.126)

and therefore we can normalize ξ†ξ = 1. Moreover, the base is Kähler since

Jmn = −iξ†Γm
nξ is covariantly constant and satisfies J2 = −1 (here m,n

are real coordinates on the base). Using the holomorphicity of τ and ρ, the

integrability condition for a solution of (3.125) is that the Ricci-form of the

base is related to τ and ρ according to

R = i∂∂̄ (log τ2 + log ρ2) , (3.127)

or since the base is Kähler

∂∂̄
(
det log gij̄ − log τ2 − log ρ2

)
= 0. (3.128)

The relation between the dilaton and ρ can be derived taking the dilatino

variation into account.
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3.5.4 Torsional background with two holomorphic parameters

We conclude our study of the local supersymmetry properties by general-

izing the solution depending on τ and ρ. Here we present the form of the

background but we will not repeat the supersymmetry analysis which closely

follows the previous three cases. However, we would like to emphasize that

this example illustrates that the heterotic background can be generalized in

the sense of “adding flux” to the previously known solution.

In this case, the flux is added to the solution with two holomorphic param-

eters. The H-flux which is added combines with the modified spin connection

arising from the twist of the elliptic fiber in such a way that supersymmetry

is still preserved.

The metric is

ds2 = ∆2gijdy
idyj +

ρ2
τ2

| dw2 + τdw1 + AH |2, (3.129)

where

AH = Bw2
+ τBw1

. (3.130)

The H-flux is

H = dρ1 ∧ dw2 ∧ dw1 +
1√
τ2ρ2

Im [(Fw2
+ τFw1

)Ew̄] + ⋆bd∆
2 (3.131)

and the dilaton is

ϕhet =
1

2
log

(
ρ2∆

2
)
. (3.132)

This background is supersymmetric as long as (3.127) and (3.128) are satis-

fied, and (Hwk
, Fwk

) are subject to the conditions described in section 3.5.2.

4 Quantum Exact Metrics

In this final section, we turn to the issue of quantum corrected metrics and

desingularization. The two issues are closely connected. The semi-flat met-

rics we used to construct the torsional solutions possess exact U(1) × U(1)
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isometries. For a compact Calabi-Yau metric, we know that there are no such

exact symmetries. The breaking of these isometries can be viewed as result-

ing from quantum corrections to the semi-flat metric, or equivalently, from

gluing in smooth metrics to repair the singularities of the elliptic fibration.

The type IIB starting metric M is conformally Calabi-Yau. The con-

formal factor depends on the flux which sets a physical length scale. If we

examine the metric near near any degeneration of the elliptic fiber, there is

a length scale below which the flux is irrelevant. The singularities of the

elliptic fibration of M can therefore always be repaired by gluing in the

metrics employed in the case without flux with only minor modifications.

There are no obstructions to smoothing the metric of the initial type IIB

flux compactification.

Nevertheless, little is actually known about the gluing metrics for elliptic

spaces of complex dimension three. For complex dimension two, there is an

explicit metric found by Ooguri and Vafa [17]. The metric captures quantum

corrections that smooth a τ degeneration over C with coordinate z where

τ(z) =
1

2πi
log(z). (4.133)

In the context studied, the quantum corrections can be viewed as arising

from D-instantons.

The metric can also be obtained directly and simply from gauge the-

ory [53]. The resulting quantum corrected metric still possesses a single

U(1) isometry. For an elliptic K3 metric, gluing in this metric near each

τ degeneration will locally preserve one particular U(1) action but globally

no U(1) survives as we expect. This case has been examined in some detail

in [41].

It is natural to ask how quantum corrections modify elliptic metrics in

the presence of torsion. We should stress that these quantum corrections

cannot be obtained by duality and are quite different on either side of the

duality map.
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In complex dimension two, there is an analogue of the Ooguri-Vafa metric

which we will now describe. The metric answers a roughly T-dual version of

the question of resolving a τ singularity of the type given in (4.133). The

dual question is to consider an elliptic metric for a space N of dimension two

through which we thread Nf units of H3-flux so that

∫

N

dH3 = Nf . (4.134)

This is the T-dual of the metric charge measurable at infinity. The metric

singularity (4.133) defines a type IIB D7-brane. The four-dimensional metric

is the M-theory realization of the type IIB D7-brane. Similarly, our metric

describes Nf NS5-branes localized at points on T 2 × R2. Initially we will

consider the case where the branes are all coincident at the origin. Later we

will add the moduli for separating the branes.

Metrics of this kind appear explicitly in our constructions and the earlier

ones of [3] where, for example, there is some H3-flux through a K3 surface.

At the level of supergravity, there is a net flux while the higher derivative

correction to (1.2) eventually ensures that the total charge is zero. The local

model for such a metric where we keep the elliptic fiber fixed but decompact-

ify the base receives quantum corrections which we will now derive.

The quantum corrections are most naturally derived using gauge theory

and we will generalize a discussion of two-dimensional Coulomb branches

given in [54]. We consider a U(1) N = 2 gauge theory in four dimensions.

On compactification on T 2, we obtain a (4, 4) gauge theory with moduli space

T 2 × R
2. (4.135)

The torus factor comes from the choice of Wilson line on T 2. We can view this

(4, 4) theory as a special case of a (2, 2) theory. The (4, 4) vector multiplet

decomposes into a (2, 2) vector superfield whose field strength is a twisted

chiral multiplet Σ, together with a chiral multiplet Φ. These complex fields

are coordinates for T 2 × R2 with the compact directions captured by Σ.
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Non-linear sigma models with (2, 2) supersymmetry are characterized by

a generalized Kähler potential K(Σ,Φ); see, for example, [55]. The potential

satisfies

KΦΦ̄ +KΣΣ̄ = 0 (4.136)

with metric

ds2 = KΦΦ̄|dΦ|2 −KΣΣ̄|dΣ|2 (4.137)

and torsion

B =
1

4

(
KΦΣ̄dΦdΣ̄ +KΣΦ̄dΦ̄dΣ

)
. (4.138)

The constraint (4.136) is the analogue of the usual Monge-Ampère condition

for Calabi-Yau spaces. The classical flat generalized Kähler potential is just

K0 =
1

g2
(
ΦΦ̄− ΣΣ̄

)
(4.139)

where g is the two-dimensional gauge coupling. So far we have just repro-

duced well known facts nicely summarized in [54]. It is quite beautiful,

though, that gauge theory in two dimensions naturally gives torsional met-

rics.

Now we would like to examine quantum corrections. Let us couple Nf

charged hypermultiplets to the abelian gauge theory. This will lead to torsion

on the Coulomb branch which is measured by (4.134).

Viewed as a (2, 2) multiplet, each hypermultiplet contains two chiral su-

perfields (q1, q2). The metric on the Coulomb branch is 1-loop exact so all

quantum corrections are captured by integrating out the hypermultiplets.

Since we are considering compactified gauge theory, we must perform a sum

over the Kaluza-Klein modes of the hypermultiplet on the T 2.

For simplicity, let us take the world-volume for the gauge theory to be

T 2 = S1
R1

×S1
R2

rectangular. The 1-loop correction to the gauge kinetic term

is given by

Nf

+∞∑

n1,n2=−∞

∫
d2k

(2π)2R1R2

1
(
k2 + |Φ|2 + ( n1

R1
+ σ1)2 + ( n2

R2
+ σ2)2

)2 (4.140)
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where Σ = σ1 + iσ2. The periodicities of the compact coordinates are given

as follows: σ1 ∼ σ1 +
1
R1

and σ2 ∼ σ2 +
1
R2

.

Applying Poisson resummation to (4.140) gives the 1-loop corrected gauge

coupling:

KΣΣ̄ =
1

g2
+R1R2

Nf

2
×

[
log

(
Λ

|Φ|

)
+

∑

m1,m2 6=0

K0(2πω|Φ|)× e2πi(m1σ1R1+m2σ2R2)

]
(4.141)

where ω =
√

(m1R1)2 + (m2R2)2 and Λ is some constant scale. The gauge

coupling is given by KΣΣ̄ and so (4.141) determines the quantum corrected

metric and K.

The modified Bessel function K0(z) ∼
√

π
2z
e−z for large z so the quantum

corrections look precisely like instanton corrections to the metric. Unlike the

case of the τ degeneration, the presence of torsion breaks both isometries of

the fiber.

It is interesting that we also findK0(z) capturing the quantum corrections

like the case studied in [17]. However, the reason is very different. In that

case, from the gauge theory perspective one performs an integral over three-

dimensional loop momenta and then a one-dimensional Poisson resummation.

In our case, we perform an integral over two-dimensional loop momenta and

then a two-dimensional Poisson resummation.

Finally we can introduce complex masses Φi for the Nf hypermultiplets

and Wilson line moduli (σi
1, σ

i
2). These moduli correspond to splitting the

locations of the Nf branes. The resulting metric is the sum of 1-loop correc-

tions localized around each brane

KΣΣ̄ =
1

g2
+
R1R2

2
×

Nf∑

i=1

[
log

(
Λ

|Φ− Φi|

)
+

∑

m1,m2 6=0

K0(2πω|Φ− Φi|)× e2πi(m1(σ1−σi
1)R1+m2(σ2−σi

2)R2)
]
. (4.142)
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The key difference between the torsional and non-torsional cases is the break-

ing of both U(1)×U(1) isometries for NS-branes versus the breaking of just

one isometry for the smoothed D7-brane metric of [17]. A similar breaking

of a U(1) isometry appears in the relation between localized NS5-branes on

a circle and KK monopoles [56, 57].

Now the analysis for complex dimension three metrics is much more chal-

lenging. In that case of prime interest, a theorem is needed to prove the

existence of smooth metrics of the kind described in (3.52). That would be

evidence that the non-linear sigma model on such a space flows to a super-

conformal field theory. It is also essential to find a tractable world-sheet

description of those models which would permit the computation of correla-

tors. Perhaps along the lines examined in [25, 26, 58].
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A Notation

• We use

M,N, . . . µ, ν, . . . , i, j, . . . , w1, w2, (A,B, . . . α, β, . . . , a, b, . . . , w, w̄)

to denote the coordinate bases of any six-dimensional space, of four-

dimensional Minkowski space-time, and separately of the base and fiber

of an elliptic six-dimensional space, respectively.

For coordinates on the four-dimensional base of a six-dimensional el-

liptic space, we use yi while we denote the fiber coordinates by wi,

i = 1, 2.

The indices included in parentheses are with respect to an orthonormal

rather than coordinate basis.

• We will use H or H3 to denote the heterotic NS flux and H or H3 to

denote the type II NS flux. The associated gauge potentials are denoted

B2 and B2, respectively. The standard notation Fn will be used for the

RR fluxes of type II string theory defined in (B.146) with associated

potentials Cn−1. For type I string theory, we use the notation F ′
n for

the RR fluxes.

• In the supersymmetry transformations we use the notation

/HM =
1

2
HMNPΓ

NP , /H =
1

3!
HMNPΓ

MNP .

• To describe the various fluxes we use the index notation

Fwk
=

1

2!
Fyiyjwk

dyi ∧ dyj, k = 1, 2

Hwk
=

1

2!
Hyiyjwk

dyi ∧ dyj, k = 1, 2

Cwk
= Cyiwk

dyi, k = 1, 2

Bwk
= Byiwk

dyi, k = 1, 2.
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B T-duality Rules

The Buscher rules for T-dualizing in the x direction are given by:

e2Φ
′

=
e2Φ

Gxx

,

G′
xx =

1

Gxx

,

G′
Mx =

BMx

Gxx

, (B.143)

G′
MN = GMN − GMxGNx −BMxBNx

Gxx

,

B′
Mx =

GMx

Gxx

,

B′
MN = BMN − BMxGNx −GMxBNx

Gxx

.

The transformation of the R-R potentials is given by:

C
(n)
M ···NPx

′
= C

(n−1)
M ···NP − (n− 1)

C
(n−1)
[M ···N |xG|P ]x

Gxx
, (B.144)

C
(n)
M ···NPQ

′
= C

(n+1)
M ···NPQx + nC

(n)
[M ···NP |x|

′
BQ]x.

(B.145)

For convenience we present the Buscher rules for the field strengths F (n)

which, in supergravity, are related to the potentials as follows

F (n) = dC(n−1) +H ∧ C(n−3), (B.146)

where H = dB is the NS-NS field strength. Using the results for the T-dual

potentials we find

F
(n)
M...NPx

′
= F

(n−1)
M...NP − (n− 1)

F
(n−1)
[M ···N |xG|P ]x

Gxx
,

F
(n)
M...NPQ

′
= F

(n+1)
M...NPQx + nF

(n)
[M ···NP |x|

′
BQ]x. (B.147)
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