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Abstract

In a recent paper, we have pointed out a relation between the Killing spinor and Einstein
equations. Using this relation, new brane solutions of D = 11 and D = 10 type IIB super-
gravity theories are constructed. It is shown that in a brane solution, the flat world-volume
directions, the smeared transverse directions and the sphere located at a fixed radial distance
can be replaced with any Lorentzian Ricci flat, Euclidean Ricci flat and Einstein manifolds,
respectively. The solution obtained in this fashion is supersymmetric when the Ricci flat
and Einstein manifolds have Killing spinors. We generalize intersecting brane solutions, in
which M5, M2 and D3-branes also wrap over the cycles determined by the Kähler forms of
Ricci flat Kähler manifolds. New, singular, Ricci flat manifolds as (generalized) cones over
the U(1) bundles over Ricci flat Kähler spaces are constructed. These manifolds have covari-
antly constant spinors and give rise to new, supersymmetric, Ricci flat compactifications of
non-gauged supergravity theories. We find M2 and D3-brane solutions, which asymptotically
approach these singular vacua.
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1 Introduction

Studying brane solutions of low energy supergravity equations is proved to be an important

way of searching non-perturbative properties of string/M theories. These solutions play a crucial

role both in the conjectured duality symmetries between seemingly different string/M theories

and in the AdS/CFT correspondence. Generically, a brane solution has the interpretation of a

p-dimensional extended black hole, which can be characterized by few constants like the mass

and the charges of the antisymmetric tensor fields. The metric along the world-volume directions

have Poincare, and along the transverse directions have rotational invariances. The geometry

is asymptotically flat and the number of transverse directions dictates the radial coordinate

dependence of the metric functions. By smearing out some transverse directions, solutions with

slower fall-off properties can also be constructed (for a review see, for instance, [1] [2])

Generalizations of the usual brane solutions have been studied from different points of view. In

[3], it has been shown that the transverse 7-sphere of the membrane solution can be replaced with

any Einstein manifold. The brane solutions having transverse hyper-Kähler spaces have been

studied in [4]. In [5], a fivebrane solution wrapping on the manifold K3 has been constructed.

Brane solutions with Ricci flat world-volumes have been obtained in [6] [7]. In [8] [9], more

general brane solutions with curved world-volume directions have been studied. An intrinsic

metric, representing non-trivially embedded D3-branes, has been given in [10]. Brane solutions

which are product of an AdS space with an Einstein space have been constructed in [11] [12] [13].

In this paper, we will systematically extend these observations by using a theorem proved

in [5] which states that, under certain conditions, the existence of a Killing spinor implies the

Einstein equations. This enables one to concentrate on the first order Killing spinor equations

without worrying about more complicated, second order Einstein equations. The spaces having

Killing spinors will play a crucial role in the constructions.

The organization of the paper is as follows. In section 2, we review the theorem of [5]. In

sections 3 and 4, we specifically consider M2, M5 and D3-branes. In section 3, we generalize the

well known solutions and obtain branes having Ricci flat world-volumes and smeared transverse

directions, and non-spherical cross sections. In section 4, using Kähler forms of Ricci flat Kähler

spaces, we construct intersecting brane solutions which can also be interpreted as wrapping

branes over the cycles determined by Kähler forms. In section 5, we show that a generic brane

background still obeys the field equations when certain directions in the metric are replaced with

more general spaces. In section 6, we first construct new, singular, Ricci flat manifolds, which

have covariantly constant spinors, as (generalized) cones over U(1) bundles over Ricci flat Kähler

manifolds. These manifolds give rise to new supersymmetric compactifications of non-gauged

supergravities. In the same section, we find M2 and D3-brane solutions which asymptotically

approach these vacua. We conclude with some brief remarks in section 7.
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2 BPS solutions from Killing spinor equations: a theorem

It is well known that existence of a covariantly constant spinor on a Euclidean manifold implies

Ricci flatness. It turns out, this observation has a very useful generalization in the supergravity

theory context [5].

Let us consider a bosonic background (gMN ,FMNPQ) of D = 11 supergravity theory [19]

which obeys:

RMN =
1

3
(FM

PQRFNPQR −
1

12
gMNF

PQRSFPQRS), (2.1)

∇QF
QMNP =

1

(24)2
ǫMNPA1...A8FA1..A4FA5..A8 . (2.2)

The linearized Rarita-Schwinger equations on this background may be written as:

ΓMNPDNψP = 0, (2.3)

where the supercovariant derivative DM is given by

DM = ∇M +
1

144
(ΓPQRS

M −
1

8
δPMΓQRS)FPQRS , (2.4)

and ∇M is the usual covariant derivative acting on spinors. Let us further consider a linearized

spin 3/2 field ψM , which is obtained by the action of supercovariant derivative on an arbitrary

spinor ǫ:

ψM = DM ǫ. (2.5)

Due to the invariance of D=11 supergravity at the linearized fermionic level, this spin 3/2 field

solves (2.3). To verify this claim, we insert (2.5) into (2.3) and, using only the 4-form field

equations, obtain

ΓM
NPDNDP ǫ =

1

2
(GMN − TMN )ΓN ǫ = 0, (2.6)

where GMN = RMN − 1
2gMNR is the Einstein tensor and

TMN =
1

3
(FM

PQRFNPQR −
1

8
gMNF

PQRSFPQRS) (2.7)

is the energy momentum tensor. In setting (2.6) to zero, we have used the fact that the back-

ground is chosen to obey Einstein equations (2.1).

Now consider a background which satisfies the 4-form field equations (2.2) but not necessarily

obeys the Einstein equations. Let us further assume the existence of at least one Killing spinor

obeying

DM ǫ0 = 0. (2.8)

Following (2.6), it is easy to see that

(GMN − TMN )ΓNǫ0 = 0. (2.9)

Note that in deriving (2.6), we have only used the 4-form field equations which are also assumed

to be satisfied by the new background. (2.6) has been set to zero since that background was
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chosen to obey Einstein equations. On the other hand, (2.9) is satisfied since ǫ0 is the Killing

spinor. Therefore, (2.9) is still valid, even if the background is not chosen to obey Einstein

equations.

Although (2.9) is very close to the Einstein equations, one needs to impose further conditions

to proceed due to the Lorentzian signature of the metric. Since (GMN − TMN ) is symmetric,

one can point-wise diagonalize it by elements of the group O(11)2 . However, this does not

give any new information, since O(11) transformation of O(1,10) gamma matrices are not nice

objects. Therefore, one should be able to split space and time directions in (2.9). It turns out

it is sufficient to assume existence of an orthonormal basis such that (G0i − T0i) = 0, where 0

is the time and i is the spatial direction. When the indices of (2.9) refer to this orthonormal

basis, M = 0 component implies G00 − T00 = 0. Along spatial directions, when M = i, one can

point-wise diagonalize the symmetric matrix (Gij −Tij) by O(10) transformations, under which

the spatial gamma matrices still satisfy the same Clifford algebra and thus invertible. Therefore,

the diagonal entries of (Gij − Tij) should also be zero, which then implies Einstein equations

GMN − TMN = 0. Summarizing above considerations, we obtain the following result:

(i) if a background is known to solve the 4-form field equations (2.2),

(ii) if there exist an orthonormal basis such that G0i − T0i = 0; 3

(iii) if it is known that there exist a Killing spinor on this background,

then this background, being preserve some fraction of supersymmetries, also solves the Ein-

stein equations of D=11 supergravity.

The main advantage of the theorem for applications is that, to find a solution of the second

order Einstein equations, one can instead concentrate on the first order Killing spinor equations

which are of course easier to solve. One can also convince himself that it is not hard to satisfy

conditions (i) and (ii). Indeed, in constructing p-brane solutions, one starts with ansatzs having

the property (i) and (ii) (see, for instance, [14] [15] [16] [17] [18]). As we will see for a mo-

ment, condition (ii) can easily be satisfied by choosing the background to be static. We finally

note that a solution obtained in this fashion already preserves some fraction of supersymmetries.

Although explicitly proven for D = 11 supergravity, it is possible to argue that such a theo-

rem can be established for all supergravities. The linearized supersymmetry invariance of any

supergravity theory requires

ΓMNPDNDP ǫ = 0, (2.10)

where DM = ∇M+ .... is the supercovariant derivative, ǫ is an arbitrary spinor and bosonic fields

refer to a background which obeys equations of motion. In (2.10), the derivatives of the metric

2In claiming this, we assume that there is no topological obstruction to have a continuous map from space-time
to the group manifold O(11).

3Here, we relax the corresponding condition imposed in [5]. I would like to thank C.N. Pope for the discussions
about this point.
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are expected to appear in the combination of the Einstein tensor4. Therefore, after imposing all

but Einstein equations, (2.10) should become

ΓM
NPDNDP ǫ =

1

2
(GMN − TMN )ΓN ǫ = 0, (2.11)

where TMN is the appropriate energy momentum tensor of the theory and in the last step we

have used the fact that the background obeys Einstein equations.

With this information, it is very easy to prove the theorem; dropping the condition that the

background satisfies Einstein equations and further assuming the existence of a Killing spinor,

one obtains (2.11) evaluated for the Killing spinor. With condition (iii), this implies the Einstein

equations. Therefore, if we replace (i) with

(i
′

) if the background satisfies all but Einstein equations,

then together with conditions (ii) and (iii) above , the result of the theorem should apply to

all supergravities.

To conclude this section, we finally comment on a simple way to satisfy condition (ii). For

a static background there exist an orthonormal basis such that G0i = 0. To see this, using the

fact that the background is static, we write the line element as

ds2 = A2(−dt2) + ds2M , (2.12)

where A is a time independent function and ds2M is a line element on the Euclidean manifold

M . One can easily show that, when expressed in the basis e0 = Adt and ei (an orthonormal

basis on M), the Ricci tensor of ds2 obeys R0i = 0. This gives G0i = 0 since in any orthonormal

basis g0i = 0. On the other hand, if the matter fields are chosen to be static, then T0i = 05.

Therefore, one immediate way to satisfy condition (ii) is to take background fields to be static.

However, one should not rule out existence of interesting non-static cases for which only the

combination (G0i − T0i) = 0.

3 Generalized brane solutions

As mentioned in the introduction, a generic p-brane solution has Poincare invariance on the

world-volume and spherical symmetry along transverse directions. In this section, we will focus

on the M2, M5 and D3-branes and try to obtain generalizations of the well known solutions, by

using the theorem of section 2.

Definitions

Let Ld, Mm and Xn be Lorentzian Ricci flat, Euclidean Ricci flat and Einstein manifolds of

dimensions d, m and n, respectively. We will denote the basis one-forms on these spaces as eµ,

ea and eα, where the indices µ, ν... refer to Ld; a, b.. refer to Mm and α, β.. refer to Xn. We will

4This is due to the identity ΓM
NP

∇N∇P ǫ = 1/2GMNΓN ǫ.
5This can be regarded as the definition for matter fields to be static.
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assume that Ld and Mm have covariantly constant Killing spinors,

∇µǫ = 0, (3.1)

∇aǫ = 0, (3.2)

and Xn has Killing spinors obeying

∇αǫ = −
1

2
ΓαΓrǫ, (3.3)

where we set the “inverse radius” of Xn to 1. In these equations, we will not restrict representa-

tions of Γ-matrices to be irreducible. Indeed, we will view the Clifford algebras on Ld, Mm and

Xn as sub-algebras of a bigger Clifford algebra. For instance, in (3.3), Γr can be any element

of this bigger algebra which anti-commutes with Γα and squares to identity. We will write the

line elements on Ld, Mm and Xn as ds2Ld
, ds2Mm

and ds2Xn
, respectively. The volume forms will

be denoted by VL, VM and VX .

We will use ′ to denote differentiation with respect to the argument of the function, and ∼ to

mean equality up to a constant. The indices in tensor equations will refer to the tangent space.

Specifically, 0 and i will be used for time-like and spatial directions, respectively.

M2-brane

Let us start from the eleven dimensional membrane. Our aim is to write an ansatz, which

satisfies the conditions (i) and (ii) of the theorem of section 2, and then work out the Killing

spinor equations. For the metric and 4-form field we assume

ds2 = A2ds2L3
+B2dr2 + C2ds2Mm

+D2ds2Xn
, (3.4)

∗ F ∼ VM ∧ VX , (3.5)

where m + n = 7, ∗ is the Hodge dual corresponding to ds2 and the metric functions A,B,C

and D are chosen to depend only on the coordinate r. We first note that the 4-form field

equations are identically satisfied without imposing any condition on the metric functions. It is

also easy to see that G0i = T0i = 0 in the orthonormal basis Eµ = Aeµ, Er = Bdr, Ea = Cea

and Eα = Deα. Therefore, the ansatz obeys the conditions (i) and (ii) of section 2. To find

a supersymmetric solution of D = 11 supergravity, one needs to impose conditions on metric

functions which will ensure existence of at least one Killing spinor obeying

Dµǫ = ∇µǫ+
A

′

2AB
Γµ

rǫ+
qe

18CmDn
ǫνρσΓ

νρσrΓµǫ = 0, (3.6)

Drǫ = ∂rǫ+
qe

18CmDn
ǫνρσΓ

νρσǫ = 0, (3.7)

Daǫ = ∇aǫ+
C

′

2CB
Γa

rǫ+
qe

36CmDn
ǫνρσΓ

νρσrΓaǫ = 0, (3.8)

Dαǫ = ∇αǫ+
D

′

2DB
Γα

rǫ+
qe

36CmDn
ǫνρσΓ

νρσrΓαǫ = 0, (3.9)
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where the indices and spinors refer to the basis one-forms defined above and the electrical charge

qe is defined to be the proportionality constant in (3.5) so that

Fµνρr =
qe

CmDn
ǫµνρ. (3.10)

The presence of the functions C and D in (3.10) is due to the fact that ∗ in (3.5) refers to the

line element (3.4). An easy way to solve these equations is to impose (3.1)-(3.3) and

ǫµνρΓ
µνρǫ = −6ǫ, (3.11)

which are of course consistent with each other. Then, the Killing spinor equations (3.6)-(3.9)

imply
A

′

AB
=

2qe
3CmDn

,
C

′

CB
=

−qe
3CmDn

,
D

′

DB
=

−qe
3CmDn

+
1

D
. (3.12)

Therefore, when (3.12) is satisfied, the background has at least one Killing spinor obeying

(3.1),(3.3) and (3.11). Now, by the theorem of section 2, Einstein equations should be satisfied

identically. At this point it is instructive to verify this claim by a direct calculation. The Einstein

equations can be written as

2

(

A
′

AB

)2

+

(

A
′

B

)′

1

AB
+m

A
′

C
′

AC

1

B2
+ n

A
′

D
′

AD

1

B2
=

4q2e
3C2mD2n

, (3.13)

3

(

A
′

B

)′

1

AB
+m

(

C
′

B

)′

1

CB
+ n

(

D
′

B

)′

1

DB
=

4q2e
3C2mD2n

, (3.14)

(m− 1)

(

C
′

CB

)2

+

(

C
′

B

)′

1

CB
+ 3

A
′

C
′

AC

1

B2
+ n

C
′

D
′

CD

1

B2
=

−2q2e
3C2mD2n

, (3.15)

−
1

D2
+ (n− 1)

(

D
′

DB

)2

+

(

D
′

B

)′

1

DB
+ 3

A
′

D
′

AD

1

B2
+m

C
′

D
′

CD

1

B2
=

−2q2e
3C2mD2n

. (3.16)

where we have used the fact that L3 and Mm are Ricci flat and Xn is Einstein. It is now

straightforward to check that, when the unknown functions A,B,C and D obey (3.12) they also

solve the Einstein equations, as required by the theorem.

There are four independent functions and three differential equations, which may be thought

to imply that functions are not constrained enough. However, this is simply a manifestation of

reparametrization invariance in coordinate r. We want to fix this reparametrization freedom in

a way, which will help us in solving the differential equations. A convenient choice is

CmDn−1 = rn−1 +M, (3.17)

whereM = 2qe/(n−1). Then, the unknown functions obeying the first order coupled equations

(3.12) can be solved to give following solution

ds2 = H−2/3ds2L3
+H1/3(dr2 + ds2Mm

+ r2ds2Xn
), (3.18)

Fµνρr = −
1

2
H−7/6(∂rH)ǫµνρ, (3.19)

where H = (1 +M/rn−1).

6



M5-brane

For the generalized M5-brane we write the following ansatz,

ds2 = A2ds2L6
+B2dr2 + C2ds2Mm

+D2ds2Xn
, (3.20)

F ∼ VM ∧ VX , (3.21)

where m + n = 4 and the metric functions A,B,C and D are chosen to depend only on the

coordinate r. As for the M2-brane, the 4-from field equations are satisfied identically, and

G0i = T0i = 0 in the orthonormal basis Eµ = Aeµ, Er = Bdr, Ea = Cea and Eα = Deα.

Therefore, the background satisfies conditions (i) and (ii) of section 2. To solve the Killing

spinor equations, one can choose ǫ to obey (3.1)-(3.3) and

ǫa..bǫα..βΓ
a..bα..βrǫ = −m!n!ǫ. (3.22)

which are consistent with each other. One can then check that the Killing spinor equations

imply
A

′

AB
=

qm
3CmDn

,
C

′

CB
=

−2qm
3CmDn

,
D

′

DB
=

−2qe
3CmDn

+
1

D
, (3.23)

where the magnetic charge qm is defined to be the proportionality constant in (3.21). Like

in the membrane case, a convenient way to fix the r-reparametrization invariance is to define

CmDn−1 = rn−1+M , where M = 2qm/(n−1). Then, (3.23) can be solved to give the following

solution

ds2 = H−1/3ds2L6
+H2/3(dr2 + ds2Mm

+ r2ds2Xn
), (3.24)

Fa..bα..β = −
1

2
H−4/3(∂rH)ǫa..bǫα..β, (3.25)

where H = (1 +M/rn−1).

D3-brane

The D3-brane solution of IIB supergravity in 10-dimensions has only non-vanishing (anti)-self

dual 5-form and the metric. The equations governing dynamics of these fields can be written as

[20]

RMN =
1

96
FPQRS

MFPQRSN (3.26)

dF = 0, ∗F = −F. (3.27)

The Killing spinors on such a background obey

DM ǫ = ∇Mǫ+
i

4× 480
ΓNP..QΓMFNP..Qǫ = 0, (3.28)

where ǫ is a Weyl spinor Γ(11)ǫ = ǫ; Γ(11) = Γ0...Γ9, Γ†
(11) = Γ(11) and Γ2

(11) = I. For the

generalized D3-brane we assume the form

ds2 = A2ds2L4
+B2dr2 + C2ds2Mm

+D2ds2Xn
, (3.29)

F ∼ (VM ∧ VX)− ∗(VM ∧ VX), (3.30)
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where m + n = 5, and the metric functions depend only on the coordinate r. The 5-form

field equations are identically satisfied and G0i = T0i = 0 in the basis Eµ = Aeµ, Er = Bdr,

Ea = Cea and Eα = Deα. Therefore, the ansatz obeys the conditions (i
′

) and (ii) of section 2.

On the other hand, if one choose ǫ to obey (3.1)-(3.3) and impose further

ǫµνρσΓ
µνρσǫ = 24iǫ, (3.31)

the Killing spinor equations imply

A
′

AB
=

q

4CmDn
,

C
′

CB
=

−q

4CmDn
,

D
′

DB
=

−q

4CmDn
+

1

D
, (3.32)

where the dyonic charge q is defined to be the proportionality constant in (3.30). Therefore,

when A,B,C and D obey (3.32), all conditions of the theorem are satisfied and the background

should obey Einstein equations. Fixing r-reparametrization invariance by CmDn−1 = rn−1+M ,

we obtain the following solution,

ds2 = H−1/2ds2L4
+H1/2(dr2 + ds2Mm

+ r2ds2Xn
), (3.33)

Fµνρσr = −
1

2
H−5/4(∂rH)ǫµνρσ , (3.34)

where M = q/(n − 1) and H = (1 +M/rn−1).

Interpretation and special cases

It is clear from the structure of the antisymmetric tensor fields and Killing spinor projections

that, in all solutions, Ld represents the curved world-volumes of the branes. The dependence

of the metric functions on the radial coordinate r implies that Mm and Xn correspond to the

smeared and actual transverse directions, respectively.

The solutions obtained so far have a very similar structure with the well known brane solu-

tions. Indeed, when Xn is chosen to be the n-sphere, (r,Xn) space becomes flat. In this case, H

can be generalized to be any harmonic function on this flat space. Choosing, furthermore, Ld

and Mm to be flat gives the well known M2, M5 and D3-brane solutions which have m smeared

transverse directions. Therefore, one can think of the new solutions as the branes having curved

world-volumes and smeared transverse directions, and non-spherical cross sections.

For m = 0, i.e. when Mm is empty, one obtains the solutions of [11] [12] [13], which can

thus be viewed to be the members of a more general family found in this paper. For n = 1,

reparametrization fixing conditions should clearly be modified. A convinient choice is to impose

D = rC, which then gives the same solutions above with H = q log r + const.

The number of Killing spinors on Ld, Mm and Xn determines the number of unbroken super-

symmetries. Finally, it is also worth to mention that, field equations are still satisfied even when

Ld, Mm and Xn have no Killing spinors. As we will show in section 5, this is not a coincidence,

and indeed there is another simple way of generating new solutions.
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4 Generalized intersections

To generalize intersecting M2, M5 and D3-brane solutions, we will make use of Ricci flat

Kähler spaces. In this section, we will still use the definitions of section 3, but furthermore

assume that Mm has a covariantly constant complex structure obeying

Ja
bJb

c = −δa
c, (4.1)

∇cJab = 0. (4.2)

This implies that Mm is a Ricci flat Kähler space, m is an even integer and J is the Kähler

two-form. Our basic strategy will still be the same; we will write an ansatz obeying conditions

(i) and (ii) of section 2, and then work out the Killing spinor equations.

M2-brane intersections

We start with the following ansatz

ds2 = A2(−dt2) +B2dr2 + C2ds2Mm
+D2ds2Xn

, (4.3)

∗ F ∼ (∗MJ) ∧ VX , (4.4)

where n+m = 9 with n = 1, 3, 5, 7, ∗M is the Hodge dual on the manifold Mm and the metric

functions are assumed to depend only on r. For n = 7, the ansatz becomes a special case of

the generalized M2-brane ansatz of section 3, and thus we will mainly consider n = 1, 3, 5 cases.

The 4-form field equations are identically satisfied since J is both closed and co-closed on Mm.

Furthermore, G0i = T0i = 0 in the basis E0 = Adt, Er = Bdr, Ea = Cea and Eα = Deα.

Therefore, the conditions (i) and (ii) of section 2 are satisfied. To solve the Killing spinor

equations, ǫ can consistently be chosen to obey (3.1), (3.2) and

∂tǫ = 0, Γ0ǫ = iǫ, JabΓ
bǫ = iΓaǫ, (4.5)

which implies

A
′

AB
=

(9− n)qe
3C7−nDn

,
C

′

CB
=

(n− 3)qe
6C7−nDn

,
D

′

DB
=

−(9− n)qe
6C7−nDn

+
1

D
, (4.6)

where qe is the proportionality constant in (4.4). When n 6= 1, one can fix r-reparametrization

invariance by imposing Cm−2Dn−1 = rn−1 +M and this gives the following solution

ds2 = H
(n−9)

3 (−dt2) +H
(3−n)

6 ds2Mm
+H

(9−n)
6 (dr2 + r2ds2Xn

), (4.7)

F0rab = −
1

2
H

(n−21)
12 (∂rH)Jab, (4.8)

whereM = 2qe/(n−1) and H = (1+M/rn−1). For n = 1, one should modify reparametrization

fixing condition. A convinient choice is to demand D = rC4, which then gives the above solution

with H = 2qe log r + const. As it will be made more clear when we discuss the special cases,

for n = 5, 3, 1, the solutions describe two, three and four M2-brane intersections over a line,

respectively. The structure of the background 4-form field implies that membranes also wrap

over the 2-cycle dual to Kähler form of the space Mm.
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M5-brane intersections

The discussion for intersecting M5-branes is not very different from M2-brane intersections.

Considering the fact that the 4-form field should give rise to magnetic type of charges, we start

with the following ansatz

ds2 = A2ds2Ld
+B2dr2 + C2ds2Mm

+D2ds2X2
, (4.9)

F ∼ J ∧ VX , (4.10)

where m + d = 8 with m = 2, 4, 6 and the metric functions are assumed to depend only on

r. For m = 2, this reduces to a special case of the generalized M5-brane ansatz of section 3.

The 4-form field equations are identically satisfied since J is both closed and co-closed on Mm.

On the other hand G0i = T0i = 0 in the basis E0 = Adt, Er = Bdr, Ea = Cea, Eα = Deα

and therefore, the conditions (i) and (ii) of section 2 are satisfied. To solve the Killing spinor

equations ǫ can consistently be chosen to obey (3.1)-(3.3) and

ǫαβΓ
αβrǫ = 2iǫ, JabΓ

bǫ = iΓaǫ, (4.11)

which implies

A
′

AB
=

mqm
6C2D2

,
C

′

CB
=

(m− 6)qm
6C2D2

,
D

′

DB
=

−mqm
3C2D2

+
1

D
, (4.12)

where qm is the proportionality constant in (4.4). To fix the r-reparametrization invariance we

impose C2D = r +M , where M = 2qm. Then, (4.12) can be solved to give

ds2 = H−m/6ds2L8−m
+H

(6−m)
6 ds2Mm

+Hm/3(dr2 + r2ds2X2
), (4.13)

Fabαβ = −
1

2
H−

(m+6)
6 (∂rH)Jabǫαβ, (4.14)

where H = (1+M/r). As indicated above, for m = 2 the solution becomes one of the M5-brane

solution of section 3. On the other hand, for m = 4 and m = 6, the solutions describe two and

three M5-branes intersecting over a three-brane and a string, respectively. The structure of the

background 4-form field implies that M5-branes also wrap over the (m− 2)-cycle dual to ∗MJ .

D3-brane intersections

Let us start by discussing possible ansatzs for the (anti)-self dual 5-form involving the Kähler

two-form of Mm. The first obvious choice is to assume F ∼ J ∧ VX3 . Among the possible cases,

m = 2 corresponds to the smeared D3-brane of section 3 and m = 6 is not allowed since this

does not leave any room for a time-like direction. One may also try to write an ansatz involving

∗MJ such as F ∼ ∗MJ ∧VXn
. For m = 4, this becomes equal to the choice F ∼ J ∧VX3 and for

m = 6, Xn space becomes one-dimensional. On the other hand, m = 2 case turns out to be the

same with the D3-brane ansatz of section 3. Summarizing, as a non-trivial ansatz representing

intersecting D3-branes, one can write

ds2 = A2ds2L2
+B2dr2 + C2ds2M4

+D2ds2X3
, (4.15)

F ∼ (J ∧ VX)− ∗(J ∧ VX), (4.16)
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where the metric functions are assumed to depend only on r. The 5-form field equations are

identically satisfied and one can check that the background obeys condition (ii) of the section 2.

To determine unknown functions, we solve the Killing spinor equations by imposing (3.1)-(3.3)

and

ǫµνΓ
µνǫ = 2ǫ, JabΓ

bǫ = iΓaǫ, (4.17)

which implies
A

′

AB
=

q

2C2D3
,

C
′

CB
= 0,

D
′

DB
=

−q

2C2D3
+

1

D
, (4.18)

where q is the proportionality constant in (4.16). Reparametrization invariance can be fixed by

demanding C2D2 = r2 +M , where M = q/2. Then, (4.18) can be solved to obtain the solution

ds2 = H−1ds2L2
+ ds2M4

+H(dr2 + r2ds2X3
), (4.19)

Fµνabr = −
1

2
H−3/2(∂rH)Jabǫµν , (4.20)

where H = (1 +M/r2), which describes two D3-branes intersecting over a string and wrapping

over the cycle dual to J .

Interpretation and special cases

To be able to interpret these solutions properly, let us choose Xn to be the n-sphere. In this

case, one can introduce Cartesian coordinates to span (r,Xn) space and H can be generalized to

be any harmonic function of these coordinates. When Ld and Mm are also chosen to be flat, the

solutions become the well known intersecting brane solutions in which all harmonic functions

are equal6.

Comparing with this special case, it is easy to argue that Ld, Mm and Xn correspond to

common tangent, relative transverse and overall transverse directions. As mentioned earlier, the

branes also wrap over the cycles dual to the Kähler two-form J or its Hodge dual ∗MJ . For

a given solution, this cycle can be written as a union of m/2 different submanifolds. To see

this we note that, in an orthonormal basis, J can be written as J = e1 ∧ e2 + .. + em−1 ∧ em.

Therefore, the cycle dual to J or ∗MJ becomes the sum of m/2 submanifolds dual to two-forms

e1 ∧ e2,..,em−1 ∧ em or (m− 2)-forms ∗M (e1 ∧ e2), ..,∗M (em−1 ∧ em), respectively. On the other

hand, the Killing spinor projections imply that there are m/2 intersecting branes each wrapping

over one of these submanifolds. We note that this interpretation is consistent with the special

case where Mm is flat.

When Xn is different from the n-sphere, one obtains new solutions which have not been en-

countered before. These solutions can be viewed to be the intersecting brane counterparts of

the brane solutions constructed in [11][12][13], which have non-spherical transverse spaces.

In all cases the number of unbroken supersymmetries depend on the number of Killing spinors

on Ld, Mm and Xn. Like for the generalized brane solutions of the previous section, one can

6In the next section, we will illustrate with an example how to generalize intersecting brane solutions when
harmonic functions are not equal.
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check that the field equations are still satisfied, even when the spaces Ld, Mm and Xn have no

Killing spinors.

5 A general argument

In the last two sections, we have obtained supersymmetric, generalized brane solutions by

writing suitable ansatzs and working out Killing spinor equations. As pointed earlier, the field

equations are still satisfied, even when the manifolds Ld, Mm and Xn have no Killing spinors.

This suggests existence of a general relation which may hold at the level of field equations.

Let us consider a brane solution which has a metric of the form,

ds2 = A2ds2M + ds2N , (5.1)

where ds2M and ds2N are line elements of m,n dimensional manifolds M and N , respectively, and

A is a function on N . We assume that the anti-symmetric tensor fields of the solution are of the

form F ∼ VM ∧ ... or F ∼ ..., where VM is the volume form of M and the dotted terms depend

only on N . Furthermore, we consider the cases in which scalar fields are independent of M and

the anti-symmetric tensor field equations reduce to dF = 0 and d ∗ F = 0 7.

Our claim is that, for such a brane solution, the field equations are still satisfied when M

is replaced with a different manifold M̃ , provided the Ricci tensors of both manifolds have the

same form. For instance, if M is flat, M̃ can be any manifold which is Ricci flat. Or, if M is a

sphere, M̃ can be any Einstein manifold.

To prove this, let Aea and eα be a basis for the tangent space, where ea and eα are the

basis-one forms of M and N . We calculate the Ricci tensor of (5.1) as

Ra
b =

1

A2
R(M)a

b − (m− 1)
AαA

α

A2
δa

b −
Fα

α

A
δa

b, (5.2)

Rα
β = R(N)α

β − n
Fα

β

A
, (5.3)

where the indices refer to the tangent space and R(M)ab, R(N)αβ are the Ricci tensors of M and

N , respectively. The tensor quantities Aα and Fαβ are defined by the relations

dA = Aαe
α, (5.4)

dAα = Fαβe
β . (5.5)

We note that the Ricci tensor of (5.1) depends only on the dimension m and Ricci tensor R(M)ab

of the manifold M .

Let us now analyze how the field equations may change when one replaces M with M̃ . We

first note that F is closed or co-closed irrespective of the choice of M , thus the form equations

are still satisfied. The possible terms in scalar and Einstein equations have at most second order

7It seems one can relax the last assumption, but here, for simplicity, we do not consider more general cases.
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covariant derivatives of scalars. One can check that when M is replaced with M̃ , only ωa
bc

components of the spin connection may change. This ensures that the second order covariant

derivatives of scalars remain the same, since they are assumed to be independent of M . Re-

ferring to the tangent space, it is easy to show that any tensor field which is constructed from

F , the terms containing up to second order covariant derivatives of scalars and the metric have

the same form. By (5.2) and (5.3), the last statement ensures that both scalar and Einstein

equations are still satisfied.

In some cases, M can be a Kähler space and the anti-symmetric tensor fields may be of the

form F ∼ J ∧ .., where J is the Kähler two-form. In such cases, M̃ should also be chosen to be

Kähler and J should be replaced with the Kähler two-form of M̃ . One can easily argue that the

field equations are not affected from these replacements.

Let us now present some examples which enables one to recover some solutions obtained in

the literature and in the previous sections. Consider, for instance, the well known smeared

M2-brane solution,

ds2 = H−2/3(−dt2 + dx21 + dx22) +H1/3(dy21 + ..+ dy2m + dy2m+1 + ..+ dy210), (5.6)

Fµνρα = −
1

2
H−7/6(∂αH)ǫµνρ, (5.7)

where H is harmonic on (ym+1, .., y10). Referring to the above discussion, it is easy to see that

the world-volume directions (t, x1, x2) and the smeared transverse directions (y1, .., ym) can be

replaced with more general Ricci flat manifolds. In this way, one can obtain

ds2 = H−2/3ds2L3
+H1/3(ds2Mm

+ dy2m+1 + ..+ dy210), (5.8)

Fµνρα = −
1

2
H−7/6(∂αH)ǫµνρ, (5.9)

which becomes one of the generalized M2-brane solutions constructed in section 3.

In IIB theory, one can start from the single centered D3-brane solution

ds2 = H−1/2(−dt2 + dx21 + ..+ dx23) +H1/2(dr2 + r2dΩ2
5), (5.10)

Fµνρσr = −
1

2
H−5/4(∂rH)ǫµνρσ , (5.11)

where dΩ2
5 is the line element on the 5-sphere and H = (1+M/r4). The metric and the 5-form

field are of the form discussed above with the flat world-volume (t, x1, .., x3) and the transverse

5-sphere play the role of manifold M in (5.1). By the claim we have just proved, one can

generalize the well known solution as

ds2 = H−1/2ds2L4
+H1/2(dr2 + r2ds2X5

), (5.12)

Fµνρσr = −
1

2
H−5/4(∂rH)ǫµνρσ, (5.13)

which corresponds to the solution obtained in [11] when L4 is flat.
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Let us finally consider an example to illustrate how the intersecting solutions can be general-

ized when the harmonic functions are not chosen to be equal. The background representing two

M5-branes intersecting over a three-brane is given by [17]

ds2 = (H1H2)
−1/2(−dt2 + dx21 + dx22 + dx23) +H

−1/3
1 H

2/3
2 (dx24 + dx25)

+ H
2/3
1 H

−1/3
2 (dx26 + dx27) + (H1H2)

2/3(dx28 + ..+ dx210), (5.14)

F ∼ dx4 ∧ dx5 ∧ ∗dH2 + dx6 ∧ dx7 ∧ ∗dH1, (5.15)

where, H1 and H2 are harmonic and ∗ is the Hodge dual on (x8, .., x10) space. Here, it is easy to

see that, (t, x1, x2, x3), (x4, x5) and (x6, x7) spaces play the role of manifold M in (5.1). Since

all these spaces are flat, one can replace them with arbitrary Ricci flat manifolds L4, M2 and

M̃2 to obtain 8

ds2 = (H1H2)
−1/3ds2L4

+H
−1/3
1 H

2/3
2 ds2M2

+H
2/3
1 H

−1/3
2 ds2

M̃2

+ (H1H2)
2/3(dx25 + ..+ dx210), (5.16)

F ∼ VM2 ∧ ∗dH2 + VM̃2
∧ ∗dH1. (5.17)

When H1=H2 = H, the 4-form field (5.15) can be written as

F ∼ J ∧ ∗dH, (5.18)

where J is the complex structure of the flat space (x4, x5, x6, x7). In this case, these four flat

directions can be replaced with any 4-dimensional Ricci flat Kähler space, which corresponds to

one class of intersections found in section 4.

As can be inferred from these examples, in a brane solution the flat world-volume and smeared

transverse directions, and the transverse sphere at a fixed radial distance can be replaced with

more general Ricci flat and Einstein manifolds. In intersecting brane solutions the common

tangent and relative transverse directions have this property. We note that, these replacements

can be done at the level of field equations and supersymmetry of the new solution obtained in

this way is not manifest.

6 Solutions from U(1) bundles over Ricci flat Kähler spaces

In the brane solutions obtained in section 3 the warping factors are the same for the trans-

verse and world-volume directions. In this section, by using the theorem of section 2, we will

take a step in obtaining solutions which fail to have this property, at least along the transverse

directions.

We first construct singular, Ricci flat manifolds having a cone-like structure over U(1) bun-

dles over Ricci flat Kähler spaces, which give rise to new supersymmetric vacua for non-gauged

supergravities. Since the conformal factors multiplying U(1) fibers and the base spaces turn out

to be neither equal to each other nor equal to the square of the coordinate parametrizing the
8In two-dimensions, Ricci flatness implies flatness. Here, we would like to emphasize that for field equations

to be satisfied Ricci flatness of these manifolds is sufficient.
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cone, we name these spaces as (generalized) cones.

As we will see in a moment, there are two singularities associated with the cone, since at the

origin the base space and at infinity the U(1) fibers shrink to zero size. Also, in viewing the

solutions as Ricci flat compactifications, unlike the conventional Kaluza-Klein picture, there is

no natural way of assuming the internal spaces to be small compared to the space-time.

At the end of this section, we will construct brane solutions which asymptotically approach

these singular compactifications and preserve half of the available supersymmtries. This is in fact

not surprising, if one assumes stability of the vacua, since the fundamental branes underlying

the supergravity theories reveals themselves as supersymmetric soliton solutions.

A singular Ricci flat space

It is well known that the cone over a manifold X

ds2 = dr2 + r2ds2X (6.1)

is Ricci flat if and only if X is Einstein. In this section, we would like to construct Ricci flat

manifolds having a cone-like structure over Ricci flat Kähler spaces. It is clear that one should

modify (6.1) in a non-trivial way. Let us consider a metric of the form

ds2 = B2dr2 + C2ds2Mm
+D2(dτ −A)2, (6.2)

whereMm is anm-dimensional Ricci flat Kähler space, A is the one-form potential for the Kähler

two-form so that dA = J , τ is a periodic coordinate and the metric functions are assumed to

depend only on r. It is clear that we have a fiber bundle structure and τ is the coordinate on

U(1) fibers. We would like to determine B,C and D which give rise to a Ricci flat space. Instead

of calculating Ricci tensor and solving second order, coupled differential equations we demand

existence of a covariantly constant spinor which, by considerations of section 2, will imply Ricci

flatness. In the tangent space basis Er = Bdr, Ea = Cea and ED = D(dτ −A), a covariantly

constant spinor obeys

Dǫ = dǫ+
1

4
(ωab +

D

2C2
JabE

D)Γabǫ−
1

4

D

C2
JabE

bΓDaǫ

+
1

2

C
′

CB
EaΓ

arǫ+
1

2

D
′

DB
EDΓ

Drǫ = 0, (6.3)

where ωab is the spin connection on Mm, and we have used the differential form notation.

Conistently imposing

∂rǫ = ∂τ ǫ = 0, dǫ+
1

4
ωabΓ

abǫ = 0, (6.4)

JabΓ
bǫ = iΓaǫ, ΓDrǫ = iǫ, (6.5)

one obtains
C

′

CB
=

D

2C2
,

D
′

DB
= −

mD

4C2
. (6.6)
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Therefore, when the metric functions B, C and D obey (6.6), the Ricci tensor of (6.2) vanishes.

Fixing r-reparametrization invariance by B = 4/(m+4), (6.6) can be solved to give the following

Ricci flat metric

ds2 =
16

(m+ 4)2
dr2 + r4/(m+4)ds2Mm

+ r−2m/(4+m)(dτ −A)2, (6.7)

which we name as the space MC . Topologically, MC is a product of a line parametrized by r

and a U(1) bundle over a Ricci flat Kähler space. The metric is singular, since at the origin,

when r = 0, the base space and at infinity, as r → ∞, the U(1) fibers shrink to zero size. On

the other hand, MC have covariantly constant spinors, and thus gives rise to supersymmetric

compactifications of non-gauged supergravities. In these compactifications, one can view the

coordinate r as a radial coordinate in the uncompactified space-time. Therefore, the U(1)

bundle over Mm plays the role of internal space. As can be inferred from the structure of the

metric, there is no natural way of assuming the internal directions to be “small”. Thus these

compactifications are very different from the conventional Kaluza-Klein ones. Although the

metric is singular, the existence of unbroken supersymmetries is a sign for stability. We now

construct M2 and D3-brane solutions which belong to these singular vacua.

M2 and D3-branes on MC compactifications

In searching brane solutions which asymptotically belong to above Ricci flat compactifica-

tions, we consider the cases in which MC plays the role of the total transverse space. Since

MC is an even dimensional manifold, this leaves the possibility of an even dimensional brane in

D = 11, and an odd dimensional brane in D = 10. We think of the coordinate r as the radial

coordinate in the transverse space.

M2-brane is the only even dimensional brane in D = 11, and this suggests the following ansatz

ds2 = A2ds2L3
+B2dr2 + C2ds2M6

+D2(dτ −A)2, (6.8)

∗ F ∼ VM ∧ (dτ −A), (6.9)

where all metric functions are assumed to depend on r. We remind the reader that we are still

using the definitions of section 3. One can check that, the 4-form field equations are identically

satisfied, and G0i = T0i = 0 in the basis Eµ = Aeµ, Er = Bdr, Ea = Cea and ED = D(dτ −A).

Therefore, the conditions (i) and (ii) of section 2 are satisfied. By imposing 9

∂τ ǫ = 0, ∇µǫ = 0, ∇aǫ = 0, (6.10)

and

ǫµνρΓ
µνρǫ = 6ǫ, JabΓ

bǫ = iΓaǫ, ΓDrǫ = iǫ, (6.11)

the Killing spinor equations imply

A
′

AB
=

2qe
3C6D

,
C

′

CB
=

D

2C2
−

qe
3C6D

,
D

′

DB
= −

3D

2C2
−

qe
3C6D

, (6.12)

9The covariant derivatives in (6.10) refer to the spaces L3 and M6.

16



where qe is the proportionality constant in (6.9). Since the conditions imposed on the Killing

spinor are consistent with each other, when (6.12) is satisfied, the background should obey the

Einstein equations by the theorem of section 2. We fix the r-reparametrization invariance by

imposing C4D2 = r. Using this condition, (6.12) can be solved to give the following solution

ds2 =

(

1−
M

r

)2/3

ds2L3
+

1

r7

(

1−
M

r

)−22/3

dr2 +
1

r

(

1−
M

r

)−4/3

ds2M6

+ r3
(

1−
M

r

)8/3

(dτ −A)2, (6.13)

Fµνρr =
M

2
r3/2

(

1−
M

r

)8/3

ǫµνρ, (6.14)

where M = 2qe.

It is clear that, in the solution, L3 represents the world-volume of the M2-brane and r is

a radial coordinate along transverse directions. Unlike all solutions obtained before, there are

three different 10 warping factors multiplying the transverse directions, which have also a non-

trivial topological structure due to the presence of U(1) bundle. There is a horizon located at

r = M and asymptotically, as r → ∞, the solution becomes L3 ×MC , which can be seen by a

coordinate change dr̃ ∼ r−7/2dr, near infinity. The solution is a half supersymmetry preserving

state of the vacuum L3×MC since the presence of the M2-brane brakes only half of the available

supersymmetries.

As an example in D = 10, we consider the D3-brane of IIB theory and start with the following

ansatz

ds2 = A2ds2L4
+B2dr2 + C2ds2M4

+D2(dτ −A)2, (6.15)

F ∼ VM ∧ (dτ −A)− ∗[VM ∧ (dτ −A)], (6.16)

where, as usual, we assume that A, B, C and D depend only on r. One can check that the

ansatz obeys the condition (i
′

) and (ii) of section 2, and therefore to obtain a supersymmetric

solution one needs to work out Killing spinor equations. Imposing 11

∂τ ǫ = 0, ∇µǫ = 0, ∇aǫ = 0, (6.17)

and

ǫµνρσΓ
µνρσǫ = −24iǫ, JabΓ

bǫ = iΓaǫ, ΓDrǫ = iǫ, (6.18)

the Killing spinor equations imply

A
′

AB
=

q

4C4D
,

C
′

CB
=

D

2C2
−

q

4C4D
,

D
′

DB
= −

D

C2
−

q

4C4D
, (6.19)

10Indeed, by a coordinate change, the warping factor along the coordinate r can be made equal, for instnce, to
the warping factor along U(1) fiber.

11The covariant derivatives in (6.17) refer to the spaces L4 and M4.
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where the dyonic charge q is defined to be the proportionality constant in (6.16). Fixing r-

reparametrization invariance by C2D2 = r, one can solve the differential equations to obtain

the following D3-brane solution

ds2 =

(

1−
q

r

)1/2

ds2L4
+

1

r6

(

1−
q

r

)−13/2

dr2 +
1

r

(

1−
q

r

)−3/2

ds2M4

+ r2
(

1−
q

r

)3/2

(dτ −A)2, (6.20)

Fµνρσr = qr

(

1−
q

r

)9/4

ǫµνρσ. (6.21)

It is clear that, L4 corresponds to the world-volume of the D3-brane. Asymptotically, as r → ∞,

the solution becomes L4 ×MC which can be seen by a coordinate change dr̃ ∼ r−3dr, near in-

finity. The solution is half supersymmetry preserving state of the vacuum L4 ×MC , since the

presence of D3-brane brakes half of the available supersymmetries. There is also a horizon lo-

cated at r = q. We finally note the non-orthogonal decomposition of the transverse directions

due to the U(1) bundle structure.

In this paper we do not attempt to determine singularity structures of these solutions. Due

to the presence of unbroken supersymmetries we believe that the solutions are stable. Another

important open problem is to find realizations of unbroken supersymmetries on the solutions,

which enable one to determine how Bogomolny bounds are saturated.

7 Conclusions

The brane solutions of supergravity theories have played a crucial role in recent developments

in the non-perturbative string/M theories. With this experience, it is reasonable to claim that

finding new solutions will also be important for future developments. In this paper, we have

constructed new classes of solutions in D = 11 and D = 10 dimensions. The solutions obtained

in sections 3 and 4 have a very similar structure with the well known solutions and can be

viewed as the generalizations of them. Solutions obtained in section 6 belong to a different class

in which the transverse directions do not have a single warping factor. In section 5, we have

presented a general argument which allows one to construct new solutions from the old ones by

replacing certain directions with more general manifolds.

In constructing new solutions, we have mainly used the theorem proved in [5]. The results of

the present paper show that the theorem reviewed in section 2 is an important way of obtaining

new supersymmetric solutions. Here, we would like to mention two open problems which can

possibly be attacked by using the theorem; the first one is to find non-static cases which may lead

to time dependent or stationary supersymmetric solutions, and the second one is to construct

explicit examples of non-trivially embedded brane solutions, as formally discussed in [10].

By the well known solution generating techniques, like applying S or T-dualities, or by dimen-

sional reduction, one can obtain more new solutions in D = 10 or in lower dimensions. As an

interesting application of this, we note that it is possible to untwist a U(1) bundle by a T-duality
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transformation along the coordinate parametrizing U(1) fiber.

As for the usual brane solutions, one may try to identify low energy theories defined on the

world-volumes. The number and the supermultiplet structure of collective coordinates depend on

the realizations of unbroken supersymmetries, the singularities of the solutions and the isometries

of the internal manifolds. A classification of spaces having Killing spinors in diverse dimensions

is the key ingredient for such an analysis. After identifying the low energy field theories, the

next important question is to learn how to take decoupling or near horizon limits. We note that,

brane solutions having transverse Einstein spaces give rise to generalizations of the original

AdS/CFT dualities which correspond to compactifications on arbitrary Einstein manifolds. By

defining sensible decoupling limits for other type of solutions found in this paper, one may

discover interesting realizations of holographic principle.
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