1 Effects of Bacterial Microflora of the Lower Digestive Tract of Free-Range Waterfowl on 2 **Influenza Virus Activation**

- 3 4
 - Marcus D. King¹, M. Neal Guentzel², Bernard P. Arulanandam², Adria A. Bodour³, Vinayak Brahmakshatriya⁴, Blanca Lupiani^{4,5}, James P. Chambers^{2§} 5
 - 6 7
 - ¹Department of Civil and Environmental Engineering, College of Engineering, The University of 8
 - 9 Texas at San Antonio, TX 78249; ²Department of Biology, College of Sciences, The University
- of Texas at San Antonio, TX 78249; ³Air Force Center for Engineering and the Environment, 10
- Technical Division Restoration Branch (TDV), Lackland AFB, TX 78236; ⁴Department of 11
- Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, and 12
- ⁵Department of Poultry Science, College of Agriculture and Life Sciences, Texas A&M 13
- University, College Station, TX, USA, 77843 14
- 15 16 Corresponding Author:
- 17 James P. Chambers
- Department of Biology 18
- One UTSA Circle, BSE 3.220 19
- 20 San Antonio, TX 78249
- 21 Phone: (210) 458-5663
- FAX: (210) 458-5658 22
- 23 Email: james.chambers@utsa.edu
- 24
- 25
- 26
- 27
- 28 29
 - [§]Corresponding Author: james.chambers@utsa.edu

ABSTRACT

Proteolytic cleavage activation of influenza hemagglutinin (HA0) is required for cell entry 31 via receptor mediated endocytosis. Despite numerous studies describing bacterial protease 32 33 mediated influenza A viral activation in mammals, very little is known about the role of intestinal bacterial flora of birds in hemagglutinin cleavage/activation. Therefore, the 34 35 cloaca of wild waterfowl was examined for 1) representative bacterial types and 2) their ability to cleave in 'trypsin-like' manner the precursor viral hemagglutinin molecule 36 (HA0). Using radiolabeled HA0, bacterial secretion mediated 'trypsin-like' conversion of 37 HA0 to HA1 and HA2 peptide products was observed to varying degrees in 42 of 44 38 39 bacterial isolates suggestive of influenza virus activation in the cloaca of wild waterfowl. However, treatment of uncleaved virus with all bacterial isolates gave rise to substantially 40 41 reduced emergent virus progeny than that expected. Examination of 2 isolates exhibiting pronounced 'trypsin-like' conversion of HA0 to HA1 and HA2 peptide products and low 42 43 infectivity revealed lipase activity to be present. Because influenza virus possesses a complex-lipid envelope, the presence of lipid hydrolase activity could in part account for 44 the observed less than expected level of viable progeny. A thorough characterization of 45 respective isolate protease HA0 hydrolysis products as well as other resident activities, i.e., 46 47 lipase is ongoing such that the role of these respective contributors in virus 48 activation/inactivation can be firmly established.

INTRODUCTION

50	Avian influenza viruses preferentially replicate in cells lining the intestinal tract giving rise
51	to little or no sign of disease and high concentration of virus in the feces (9, 10, 14, 26-28,
52	33). 'Trypsin-like' proteolytic cleavage of hemagglutinin (HA0), a viral glycoprotein
53	located on the surface of the surrounding viral membrane to HA1 and HA2 peptides is
54	required for entry of the virus into the cell via receptor-mediated endocytosis (29).
55	Although viral infection in host cells of the small intestine, colon, and cecum has been
56	demonstrated (13, 14, 27, 33), the proteases responsible for viral activation remain
57	unknown (11). Thus, the fundamental question arises – Could microbes present in the
58	lower digestive tract provide proteases capable of cleaving hemagglutinin much like those
59	found in the avian, swine, and human respiratory tracts (3, 4, 16, 17, 19, 23, 25, 30, 31)?
60	Several studies have been carried out describing indigenous avian intestinal microflora;
61	however, these studies focused primarily on diseases affecting commercial poultry and the
62	potential of free-ranging birds to transport and disseminate pathogenic microorganisms to
63	humans (5, 12, 32). Therefore, the primary focus of work described in this report assesses
64	proteolytic cleavage of HA0 by secreted bacteria proteases in the lower digestive tract of
65	wild ducks. Secondarily, we observed lipase activity in 2 representative bacterial secretions
66	that could account for the inability of activated, i.e., proteolytically cleaved virus to give
67	rise to progeny virus.

MATERIALS AND METHODS

69	Isolation of protease-secreting bacteria from cloacal samples. Cloacal samples were
70	collected from 112 hunter-harvested ducks: Mallard (Anas platyrhynchos, $n = 64$); Blue Winged
71	Teal (Anas discors, $n = 32$); Northern Pintail (Anas acuta, $n = 9$); and Green Winged Teal (Anas
72	<i>carolinensis</i> , $n = 7$). Samples were collected using sterile cotton fiber swabs, suspended in 1 ml
73	GN Broth, and transported to the laboratory. Using a 10 μ l calibrated loop, samples were four-
74	quadrant streaked onto a set of agar media selected to allow growth of a range of bacteria.
75	MacConkey Agar (Fisher Scientific, Pittsburgh, PA) and Columbia CNA Agar (Fisher
76	Scientific, Pittsburgh, PA) supplemented with 5 % (vol/vol) sheep blood were used to
77	differentiate Gram-negative and Gram-positive bacteria, respectively. Detection of Gram-
78	negative proteolytic bacteria was determined using Standard Methods Caseinate Agar (SMCA,
79	Fisher Scientific, Pittsburgh, PA) (18) with modification of the published recipe by addition of
80	1.5 g bile salt #3 and 1.0 mg crystal violet. Gram-positive proteolytic organisms were identified
81	using Phenylethyl Alcohol (PEA Fisher Scientific, Pittsburgh, PA) Agar supplemented with
	using i neuficing i neonor (i 2, i, i bier betenene, i ressongh, i ii) i gui suppremented with
82	10 g sodium caseinate. Culture plates were incubated aerobically for 24-72 hrs at 37 °C and
82 83	10 g sodium caseinate. Culture plates were incubated aerobically for 24-72 hrs at 37 °C and observed every 24 hrs. Colonies exhibiting differing morphologies were placed on Standard
82 83 84	10 g sodium caseinate. Culture plates were incubated aerobically for 24-72 hrs at 37 °C and observed every 24 hrs. Colonies exhibiting differing morphologies were placed on Standard Methods Caseinate Agar and evaluated for proteolytic activity (18). Proteolytic isolates were
82 83 84 85	10 g sodium caseinate. Culture plates were incubated aerobically for 24-72 hrs at 37 °C and observed every 24 hrs. Colonies exhibiting differing morphologies were placed on Standard Methods Caseinate Agar and evaluated for proteolytic activity (18). Proteolytic isolates were streaked for purity on Tryptic Soy Agar (Fisher Scientific, Pittsburgh, PA) supplemented with
82 83 84 85 86	10 g sodium caseinate. Culture plates were incubated aerobically for 24-72 hrs at 37 °C and observed every 24 hrs. Colonies exhibiting differing morphologies were placed on Standard Methods Caseinate Agar and evaluated for proteolytic activity (18). Proteolytic isolates were streaked for purity on Tryptic Soy Agar (Fisher Scientific, Pittsburgh, PA) supplemented with 5 % (vol/vol) sheep blood.
82 83 84 85 86 87	 10 g sodium caseinate. Culture plates were incubated aerobically for 24-72 hrs at 37 °C and observed every 24 hrs. Colonies exhibiting differing morphologies were placed on Standard Methods Caseinate Agar and evaluated for proteolytic activity (18). Proteolytic isolates were streaked for purity on Tryptic Soy Agar (Fisher Scientific, Pittsburgh, PA) supplemented with 5 % (vol/vol) sheep blood. Identification of protease-secreting bacteria from cloacal samples. Following Gram staining,

Downloaded from http://aem.asm.org/ on September 11, 2018 by guest

89 Inc., Durham, NC). For bacterial isolates identified with confidence levels < 85 % or isolates

90 not identified using the Vitek 2 Compact system, sequence analysis of 16S ribosomal RNA (16S

91	rRNA) was utilized for identification (2). Bacterial nucleic acids were isolated using a High
92	Pure PCR template preparation kit (Roche Applied Science, Indianapolis, IN). A 1500 bp region
93	coding for 16S rRNA was PCR amplified using conserved primers (Integrated DNA
94	Technologies, Skokie, IL): 8F (5'-AGAGTTTGATCCTGGCTCAG) and 1492R (5'-
95	ACGGTTACCTTGTTACGACTT). Each amplification mixture contained 24.3 μ l ddH ₂ O, 5.0
96	μl 10X PCR buffer, 5.0 μl primer mix (5 $\mu M),~4\mu l$ MgCl_2 (25 mM), 4 μl premixed
97	deoxynucleoside triphosphates (25 mM each), 2.5 µl DMSO (100 %, vol/vol), 0.2 µl Taq
98	Polymerase (5.0 U/ μ l, Fisher Scientific, Pittsburgh, PA), and 5 μ l DNA template for a total
99	reaction volume of 50 $\mu l.$ PCR cycling conditions consisted of initial denaturation at 95 °C for 5
100	mins followed by 30 cycles of 94 °C for 1 min, 63 °C for 1 min, and 72 °C for 1.15 mins with
101	final extension at 72 °C for 10 mins. Amplified products were purified using a High Pure PCR
102	product purification kit (Roche Applied Science, Indianapolis, IN) according to the
103	manufacturer's instructions and sequenced using an Applied Biosystems 3730XL DNA Analyzer
104	(University of Arizona). rRNA (16S) sequences were investigated using ChromasLite, and
105	contigs constructed using ChromasPro (Technelysium Pty Ltd, www.technelysium.com.au).
106	Sequences were compared with available GenBank sequences using the gapped BLASTN 2.2.21
107	program through the National Center for Biotechnology Information Server. Representative 16S
108	rRNA sequences were submitted to GenBank under accession numbers GQ478402 to
109	GQ478426. Identified isolates were placed in Cryocare Bacterial Preservers (Key Scientific
110	Products, Stamford, TX) according to manufacturer's instructions and stored at -80 °C.
111	Preparation of bacterial supernatants containing secreted proteases. Bacterial isolates were
112	incubated in 15 ml Brain-Heart Infusion Broth (Fisher Scientific, Pittsburgh, PA) for 36-72 hrs
113	at 37 °C with shaking (250 rpm). Samples were clarified by centrifugation (9,000 x g for 10

114	mins) and supernatant material filtered through sterile 0.2 μ m cellulose acetate membrane
115	syringe filters. Samples were concentrated to approximately 1 ml by ultrafiltration using
116	Centriprep 10 kDa molecular weight cut-off concentrators (Millipore, Tullagreen, Ireland).
117	Concentrated culture supernatant material was aliquoted (100 μ l) and stored at -80 °C.
118	Detection of protease activity in bacterial supernatants. Concentrated bacterial culture
119	supernatants were evaluated for proteolytic activity using agar gel diffusion. Agar gels contained
120	25 mM Tris (pH 7.2), 150 mM NaCl, 0.6 % (wt/vol) casein sodium salt, and 1 % (wt/vol) Bacto
121	agar poured to a depth of 4 mm (approximately 23 ml) in 100 x 15 mm Petri dishes. Aliquots
122	$(10 \mu l)$ of concentrated bacterial culture supernatant material were placed in 3 mm diameter
123	wells and incubated for 18 hrs at 37 °C. Plates were overlaid with 3 % (vol/vol) acetic acid
124	and proteolytic activity noted as a clear zone or a zone of precipitated casein products
125	(para- κ , α_{s1} -, and β -caseins) around the sample well. Proteolytic activity was determined by
126	measuring the diameter of the proteolytic zone around the respective sample wells.
127	Tolylsulfonyl phenylalanyl chloromethyl ketone (TPCK, Sigma-Aldrich, St. Louis, MO)
128	trypsin (10 µg/ml) served as positive control.
129	Virus. A low pathogenic laboratory-derived reassortant virus construct (combination of
130	A/Indonesia/5/2005 H5N1 and A/PR8/34 H1N1 viruses) was kindly provided by Dr. Ruben
131	Donis from the Centers for Disease Control and was used for in vitro HA0 cleavage assays and
132	in vivo influenza virus activation experiments. This virus contains the low pathogenic HA0
133	cleavage site (single basic amino acid) of of A/Indonesia/5/2005 and grows well in MDCK cell
134	lines.
135	Uncleaved virus stock preparation. MDCK cells were infected with allantoic fluid-activated
136	virus at a multiplicity of infection of 1 in Virus Production-Serum Free Media (VP-SFM0

137	(Gibco, New York). After 1 hr incubation inoculum was removed and the cells were washed 5
138	times with warm phosphate buffered saline (pH 7.4). Fresh VP-SFM0 was added before
139	incubating the cells for 24 to 48 hrs. Cell supernatants containing uncleaved virions were
140	initially clarified by centrifugation at 8,000 rpm (Beckman Alerga 25R, A-10.250 rotor) for 20
141	mins at 5 $^{\circ}$ C to remove cell debris. The resulting supernatant was concentrated by centrifugation
142	at 48,000 x g for 4 hrs at 5 $^{\circ}$ C on a sucrose cushion using a pre-cooled Beckman Type 19 rotor
143	and centrifuge. Concentrated virus was collected and stored at -80 °C until needed.
144	Preparation of radiolabeled HA0. Confluent MDCK cells (American Type Culture
145	Collection, Manassas, VA) were infected with allantoic fluid-activated virus at a multiplicity of
146	infection of 1. After allowing viral attachment and penetration for 1 hr inoculum was removed
147	and the cells were washed once with warmed PBS. The monolayers were incubated in a mixture
148	of [³⁵ S]-methionine and cysteine (0.1 mCi/ml specific activity, Amersham Pharmacia Biotech,
149	Pittsburgh, PA) at 37 °C with 5 % (vol/vol) CO ₂ overnight. Resulting cells and supernatant
150	were pelleted by centrifugation at 850 x g for 2 mins and HA0 was extracted using a membrane
151	protein extraction kit (Pierce Protein Research Products, Rockford, IL) supplemented with 100
152	μ l of 10X protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO) and 1 mM PMSF
153	(Sigma-Aldrich, St. Louis, MO) to prevent inadvertent cleavage of HA0 by liberated cytosolic
154	proteases. Radiolabeled HA0 was immunoprecipitated with anti-H5 monoclonal antibodies
155	(Rockland Immunochemicals, Inc, Gilbertsville, PA) linked to Dynabeads Protein A (Invitrogen,
156	Oslo, Norway) per manufacturer's instructions ensuring all washes were free of protease
157	inhibitors.
158	HA0 cleavage assay. [35 S]-HA0 (4.8 nCi, ~10,600 dpm) was treated with 10 µl concentrated
159	bacterial supernatant and incubated for 60 mins at 37 °C. Trypsin served as positive control (10

161 containing 5 % (vol/vol) 2-β-mercaptoethanol, boiled for 5 mins, separated by SDS-PAGE, and
162 autoradiographed using a Typhoon 9400 Variable Mode Imager (GE Healthcare) and phosphor
163 storage screens per manufacturer's instructions.
164 *In vivo* influenza virus activation. A/Indonesia/5/2005 H5N1 reassortant virus was treated with

165 bacterial supernatants to determine the effect on influenza virus infectivity. Uncleaved virus was diluted in PBS to a titer of 3.0×10^4 pfu/ml and 5 µl aliquots were incubated with 10 µl 166 respective concentrated bacterial supernatants at 37 °C for 60 mins followed by layering on 167 168 MDCK cells grown in 6-well plates for double-layer overlay analysis (34). Trypsin (2.5 µg) was used as positive control. After incubation at 37 °C for 60 mins allowing viral attachment, 169 170 the inoculum was removed and the cells were rinsed with PBS. A 1.5 ml trypsin free VP-SMF0 171 1 % (wt/vol) agarose overlay was added to the monolayer. After 24 hrs incubation, a second 1.5 ml agarose overlay (1 %, wt/vol) containing trypsin (5 µg) was added to the wells. After 172 173 incubation for 48 to 72 hrs at 37 °C in a 5 % (vol/vol) CO₂ atmosphere, cells were fixed with 10 % (vol/vol) buffered formalin, the agarose layer removed, and the fixed cells stained with 2 %174 175 (wt/vol) crystal violet in 70 % (vol/vol) ethanol prior to counting. Plaque forming unit values 176 were determined in triplicate by the method of Gray (8). 177 Assay for lipase activity. Lipase activity was determined using API ZYM substrate assay strips 178 (bioMerieux Inc., Durham, NC). Briefly, 65 µl of the respective supernatant preparations were added to substrate wells and enzymatic activity was determined per manufacturer's 179 180 instructions. Phospholipase C (100 µg/ml) from Bacillus cereus (Sigma-Aldrich, St. Louis, MO) was used as positive control. 181

AEM Accepts published online ahead of print

RESULTS

183	Identification of protease secreting bacteria from cloacal samples: Summarized in Table 1
184	is proteolytic activity of the 44 bacterial isolates found in the cloaca of 67 ducks out of a
185	total of 112 birds examined. Concentrated bacterial supernatants from Pseudomonas
186	aeruginosa, Pseudomonas fluorescens, and Bacillus subtilis exhibited the most intense
187	caseinolytic activity with clearing zones of 29 and 25 mm, respectively (Table 1) while
188	Staphylococcus aureus exhibited the least intense caseinolytic activity with a clearing zone of 7
189	mm. Citrobacter freundii was the only bacterial isolate that exhibited a localized clouding of the
190	gel (no clear zone of proteolysis). Of the 67 ducks possessing protease secreting bacteria, 40
191	exhibited 2 or more protease secreting bacteria. Forty-five ducks were observed to exhibit no
192	protease secreting bacteria (data not shown). Of the 44 bacteria identified, 11 were Gram-
193	positive bacilli, 16 were Gram-positive cocci, and 17 were Gram-negative bacilli (Table 2).
194	Twenty-two of the 44 isolates were identified by 16S rRNA sequencing (Table 2). Aeromonas
195	sobria was the most frequently observed protease-secreting Gram-negative bacterium isolated
196	from 24 of 67 samples (36 %) while Bacillus pumilus was the most frequently encountered
197	Gram-positive protease-secreting bacterium (13 samples constituting 19 %, Table 2).
198	HA0 cleavage by protease-secreting bacteria isolated from ducks: 'Trypsin-like' cleavage
199	of HA0, i.e., the disappearance of HA0 with the appearance of labeled HA1 and HA2
200	peptides is characteristic of viral activation. Shown in Figure 1 is representative
201	proteolytic conversion of HA0 to HA1 and HA2 peptides (approximately 58 and 26 kDa,
202	respectively, cf. reference 24) observed for 42 of 44 isolates. 'Trypsin-like' conversion of
203	HA0 to HA1 and HA2 peptides varied in band intensity suggesting differing degrees of
204	hydrolysis by the respective isolates. Two of the 44 isolates appear to promote extensive

205	proteolysis as evidenced by complete disappearance of radiolabeled HA0 with little to no
206	appearance of labeled HA1 and HA2 peptide bands (Fig 1, lanes 8 and 10, respectively).
207	Although not the focus of this work, labeled hydrolysate bands migrating primarily
208	between HA1 and HA2 peptides also differing in band intensity were also observed.
209	In vivo assay: In order to assess effects of HA0 cleavage by concentrated bacterial supernatants
210	on infectivity of influenza virus, uncleaved virus was treated with all 44 bacterial supernatants
211	and MDCK cell monolayers were subsequently inoculated and double-layer plaque assay
212	analysis carried out as described by Zhirnov et al. (34). All isolates were evaluated for toxic
213	effects on MDCK cells. Only one isolate (Pseudomonas aeruginosa) was observed to exhibit
214	deleterious effects on the monolayer (data not shown). Shown in Fig. 2 are double-layer in
215	vivo plaque assay analyses corresponding to the 10 HA0 in vitro degradation gel profiles shown
216	in Fig. 1. In vivo data are listed from highest plaque forming unit value (left, isolate # 2) to
217	lowest plaque forming unit value (right, isolate # 11). The PBS control (indicated by the
218	dotted line) corresponded to 3.4×10^3 pfu/ml indicating the presence of previously activated
219	virions. Comparing the PBS and trypsin controls, the uncleaved viral stock contained
220	approximately 12 % active, i.e., proteolytically cleaved HA0. The trypsin control (lane 1, 28,000
221	pfu) was in excellent agreement with the viral titer of beginning stock (30,000 pfu/ml).
222	Surprisingly, the 10 respective bacterial supernatants shown in Fig. 2 as well as the 33 profiles
223	not shown all gave rise to progeny pfu values less than the PBS control (Pseudomonas
224	aeruginosa treated MDCK cells exhibited cytopathic effects and was not included). In light
225	of less than expected background progeny pfu values for endogenous activated virus following
226	exposure to supernatants from bacterial isolates, the involvement of some additional component
227	was suggested.

228	Lipase assessment. Due to the membrane enveloped nature of the influenza virus, we were
229	desirous of examining representative isolates which exhibited low plaque forming unit
230	values but pronounced 'trypsin-like' cleavage of HA0 for the presence of lipase activity.
231	Aeromonas sobria and Aeromonas hydrophilia isolates were assayed for lipase activity and
232	observed to exhibit high levels (4+) of esterase (C8) and lipase (C14) activity (data not
233	shown). Shown in Fig. 3 (lanes 2 and 4) is the effect of these two bacterial isolate supernatants
234	on trypsin-activated virus. Post-supernatant incubation plaque counts indicated substantially
235	reduced infectivity when compared to the 'trypsin only' control (lane 1). Likewise, treatment of
236	trypsin-activated virus with Phospholipase C (lane 3) indicated decreased infectivity (~ 80 %).
237	As shown in Fig. 4, trypsin treated, radiolabeled HA0 treated with Phospholipase C and
238	bacterial supernatants yielded a similar cleavage pattern to that shown in Fig. 1 (lanes 11
239	and 12) suggesting not only competent HA0 cleavage, but no additional digestion of HA1
240	and HA2 peptide fragments. Although endogenous lipase activity could account in part for
241	lower than expected emergent virus following proteolytic activation, Phospholipase C
242	treatment and subsequent reduction of infectivity is only suggestive and not proof of lipase
243	involvement.

AEM Accepts published online ahead of print

DISCUSSION

245	We report here that bacterial enzyme secretion mediates 'typsin-like' conversion of
246	HA0 to HA1 and HA2 products suggestive of influenza virus activation in the cloaca of wild
247	waterfowl. In general, bacterial supernatants produced zones of hydrolysis comparable to that
248	of trypsin (19 mm, Table 1). Additionally, all bacterial supernatants were evaluated using
249	PepTag (Promega Corp, Madison, WI) artificial peptide substrates to rule out false positives due
250	to clouding of the agar medium arising from changes in pH (data not shown). The most
251	frequently observed protease-secreting bacterium was Aeromonas sobria (Table 2). In addition
252	to A. sobria, three other aeromonad species identified in this study (A. caviae, A. hydrophilia,
253	and A. veronii) have previously been isolated from wild waterfowl (1). Several species
254	belonging to the genus Bacillus were isolated with B. pumilus observed in all ducks except
255	Green-winged Teal (Table 2). Numerous proteolytic isolates of <i>Enterobacter cloacae</i> were
256	encountered as were isolates of Kocuria kristinae, formerly Micrococcus kristinae, and
257	Cellulosimicrobium, formerly assigned to the genera Oerskovia and Nocardia.
258	Radiolabeled HA0 was cleaved in 'trypsin-like' manner to varying degrees by
259	supernatants from 42 of 44 duck cloacal isolates. Although, 'trypsin-like' cleavage was
260	observed, additional analysis of HA1 and HA2 peptides is required in order to rule out the
261	possibility that small alterations arising from incorrect cleavage initially and/or subsequent
262	removal of residues has not occurred resulting in loss of function and thus lower than
263	expected in vivo infectivity data. Bacillus pumilus and Cellulosimicrobium spp. secreted
264	proteases that extensively degraded the HA0 glycoprotein and HA1 and HA2 peptide hydrolysis
265	products.

266	Utilization of MDCK cell monolayers and the double-overlay plaque assay as described
267	by Zhirnov and co-workers (34) simulated conditions similar to that of the lower gastrointestinal
268	tract of birds eliminating 1) trypsin activation of viral particles as is the case for standard plaque
269	assays and 2) proteases found in the allantoic fluid of embryonated chicken eggs (7); enzymes
270	not found in distal portions of the avian intestinal tract (21). Thus, activation of virus arose
271	solely from proteolytic cleavage by the bacterial supernatant. Interestingly, virus stock used for
272	in vivo experiments contained cleaved HA0 (~12 %) which proved advantageous in that the
273	negative effect of bacterial supernatants on these cleaved, i.e., activated virions was observed
274	and assessed (Fig. 2). Despite producing a 'trypsin-like' cleavage pattern, plaque counts less
275	than that of the control which contained cleaved, i.e., activated virions was observed for all
276	isolates tested.
277	Because influenza virus is surrounded by a membrane envelope, we examined the
278	possible presence of lipolytic activity in two isolates that exhibited a pronounced 'trypsin-like'
279	hydrolysis pattern but reduced infectivity of endogenous activated virus. Esterase (C8) and
280	lipase (C14) activities were observed in both isolates. As shown in Fig. 3, trypsin-activated
281	virions incubated with supernatants from these two bacterial isolates (lanes 2 and 4) or
282	Phospholipase C (lane 3) gave rise to significantly reduced plaque formation compared to the
283	trypsin control (lane 1) albeit higher than that observed following treatment of influenza virus

with supernatants from these two isolates as shown in Fig. 2, lanes 8 and 11. Trypsin treated 284

radiolabeled HA0 incubated with these bacterial isolate supernatants or Phospholipase C (Fig. 4, 285

286 lanes 3, 4 and 5) exhibited 'trypsin-like' cleavage patterns similar to those previously observed

- 287 (Fig. 1, lanes 11 and 12) suggesting that activation, i.e., cleavage of HA0 to HA1 and HA2
- 288 peptides occurred. However, due to the complex nature of these bacterial supernatants, the

289	lack of predicted infectivity could arise from contributors other than proteases either
290	individually or in combination. For example, removal of membrane components as well as
291	specific sugars from the glycoprotein HA0 by glycosidases present in the bacterial
292	supernatants could also occur resulting in decreased infectivity. β -galactosidase, α -
293	mannosidase, and N-acetyl-β-glucosaminidase activities were observed in these isolates (data not
294	shown). Thus, disruption of the viral membrane, incorrect proteolytic cleavage, as well as
295	possible removal of sugars required for viral binding to the cell surface receptor could account
296	for observed disparate surveillance numbers between virus isolation and real-time PCR (6, 20,
297	22). Higher rates of detection are associated with molecular screening methods than that of
298	cultured samples because PCR detects viral RNA from both viable as well as nonviable viruses
299	(15).
300	Previous studies of influenza and co-infecting proteolytic bacteria in the respiratory tract
301	demonstrated Aerococcus viridans, Staphylococcus aureus, and Stenotrophomonas maltophilia
302	to activate influenza virus in vivo (16, 23, 30, 31). We also observed these three organisms in the
303	avian lower digestive tract. As indicated in Figs. 1 and 2 (lane 4), Aerococcus viridans exhibited
304	expected HA1 and HA2 hydrolysis products but with infectivity (pfu/ml) values less than that of
305	the PBS control like that of Staphylococcus aureus and Stenotrophomonas maltophilia (data
306	not shown).
307	In the present study, we describe identification of protease-secreting bacteria from
308	waterfowl gastrointestinal tract and their capability to cleave HA0 both in vitro and in vivo.
309	Despite producing 'trypsin-like' cleavage patterns consistent with that of viral activation, none of

these isolates gave rise to expected progeny virus. Thus, the contribution of microbial proteases

- 311 to influenza activation and other bacterial derived activities, e.g., lipase to virus inactivation
- 312 warrants further research.

ACKNOWLEDGMENTS

Downloaded from http://aem.asm.org/ on September 11, 2018 by guest

314	Lieutenant Colonel King was the recipient of a pre-doctoral fellowship from the United
315	States Air Force Institute of Technology. We thank Mr. John Gaines of the Air Force Institute
316	for Occupational Health, Brooks City-Base, TX for the use of the Vitek automated identification
317	system. Special thanks to Mr. Cory Mason and Mr. Matthew Symmank, Texas Parks and
318	Wildlife Department, for their assistance with migratory bird collections.

319		REFERENCES
320		
321	1.	Aguirre, A. A., T. J. Quan, R. S. Cook, and R. G. McLean. 1992. Cloacal flora
322		isolated from wild black-bellied whistling ducks (Dendrocygna autumnalis) in Laguna La
323		Nacha, Mexico. Avian Dis. 36: 459-462.
324	2.	Bodour, A. A., K. P. Drees, and R. M. Maier. 2003. Distribution of biosurfactant-
325		producing bacteria in undisturbed and contaminated arid Southwestern soils. Appl.
326		Environ. Microbiol. 69:3280-7.
327	3.	Byrum, B. R., and R. D. Slemons. 1995. Detection of proteolytic bacteria in the upper
328		respiratory tract flora of poultry. Avian Dis. 39:622-6.
329	4.	Callan, R. J., F. A. Hartmann, S. E. West, and V. S. Hinshaw. 1997. Cleavage of
330		influenza A virus H1 hemagglutinin by swine respiratory bacterial proteases. J. Virol.
331		71: 7579-85.
332	5.	Fallacara, D. M., C. M. Monahan, T. Y. Morishita, and R. F. Wack. 2001. Fecal
333		shedding and antimicrobial susceptibility of selected bacterial pathogens and a survey of
334		intestinal parasites in free-living waterfowl. Avian Dis. 45:128-35.
335	6.	Ferro, P. J., J. El-Attrache, X. Fang, S. N. Rollo, A. Jester, T. Merendino, M. J.
336		Peterson, and B. Lupiani. 2008. Avian influenza surveillance in hunter-harvested

337	waterfowl from the Gulf Coast of Texas (November 2005-January 2006). J. Wildl. Dis
338	44: 434-9.

- Gotoh, B., T. Ogasawara, T. Toyoda, N. M. Inocencio, M. Hamaguchi, and Y. Nagai.
 1990. An endoprotease homologous to the blood clotting factor X as a determinant of
 viral tropism in chick embryo. EMBO J. 9:4189-95.
- Gray, J. 1999. Assays for Virus Infection, p. 81-109. *In* A. J. Cann (ed.), Virus Culture:
 A Practical Approach. Oxford University Press, Oxford.
- Hinshaw, V. S., R. G. Webster, and B. Turner. 1980. The perpetuation of
 orthomyxoviruses and paramyxoviruses in Canadian waterfowl. Can. J. Microbiol.
 26:622-629.
- 347 10. Hinshaw, V. S., R. G. Webster, and B. Turner. 1979. Water-bone transmission of
 348 influenza A viruses? Intervirology 11:66-8.
- Horimoto, T., and Y. Kawaoka. 2001. Pandemic threat posed by avian influenza A
 viruses. Clin. Microbiol. Rev. 14:129-49.
- Hubalek, Z. 2004. An annotated checklist of pathogenic microorganisms associated with
 migratory birds. J. Wildl. Dis. 40:639-59.

353	13.	Keawcharoen, J., D. van Riel, G. van Amerongen, T. Bestebroer, W. E. Beyer, R.
354		van Lavieren, A. D. Osterhaus, R. A. Fouchier, and T. Kuiken. 2008. Wild ducks as
355		long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg. Infect.
356		Dis. 14: 600-7.
357	14.	Kida, H., R. Yanagawa, and Y. Matsuoka. 1980. Duck influenza lacking evidence of
358		disease signs and immune response. Infect. Immun. 30:547-53.
359	15.	Krafft, A. E., K. L. Russell, A. W. Hawksworth, S. McCall, M. Irvine, L. T. Daum,
360		J. L. Connoly, A. H. Reid, J. C. Gaydos, and J. K. Taubenberger. 2005. Evaluation of
361		PCR testing of ethanol-fixed nasal swab specimens as an augmented surveillance strategy
362		for influenza virus and adenovirus identification. J. Clin. Microbiol. 43:1768-75.
363	16.	Mancini, D. A., R. C. Alves, R. M. Mendonca, N. J. Bellei, E. Carraro, A. M.
364		Machado, J. R. Pinto, and J. Mancini-Filho. 2008. Influenza virus and proteolytic
365		bacteria co-infection in respiratory tract from individuals presenting respiratory
366		manifestations. Rev. Inst. Med. Trop. Sao Paulo 50:41-6.
367	17.	Mancini, D. A., R. M. Mendonca, A. L. Dias, R. Z. Mendonca, and J. R. Pinto. 2005.
368		Co-infection between influenza virus and flagellated bacteria. Rev. Inst. Med. Trop. Sao
369		Paulo 47: 275-80.

370	18.	Martley, F. G., S. R. Jayashankar, and R. C. Lawrence. 1970. An improved agar
371		medium for the detection of proteolytic organisms in total bacterial counts. J. Appl.
372		Bacteriol. 33: 363-70.
373	19.	McCullers, J. A. 2006. Insights into the interaction between influenza virus and
374		pneumococcus. Clin. Microbiol. Rev. 19:571-82.
375	20.	Munster, V. J., C. Baas, P. Lexmond, T. M. Bestebroer, J. Guldemeester, W. E.
376		Beyer, E. de Wit, M. Schutten, G. F. Rimmelzwaan, A. D. Osterhaus, and R. A.
377		Fouchier. 2009. Practical considerations for high-throughput influenza A virus
378		surveillance studies of wild birds by use of molecular diagnostic tests. J. Clin. Microbiol.
379		47: 666-73.
380	21.	Philips, S. M., and R. Fuller. 1983. The activities of amylase and a trypsin-like protease
381		in the gut contents of germ-free and conventional chickens. Br. Poult. Sci. 24:115-21.
382	22.	Runstadler, J. A., G. M. Happ, R. D. Slemons, Z. M. Sheng, N. Gundlach, M.
383		Petrula, D. Senne, J. Nolting, D. L. Evers, A. Modrell, H. Huson, S. Hills, T. Rothe,
384		T. Marr, and J. K. Taubenberger. 2007. Using RRT-PCR analysis and virus isolation
385		to determine the prevalence of avian influenza virus infections in ducks at Minto Flats
386		State Game Refuge, Alaska, during August 2005. Arch. Virol. 152:1901-10.

- 387 23. Scheiblauer, H., M. Reinacher, M. Tashiro, and R. Rott. 1992. Interactions between
 388 bacteria and influenza A virus in the development of influenza pneumonia. J. Infect. Dis.
 389 166:783-91.
- 390 24. Skehel, J. J., and M. D. Waterfield. 1975. Studies on the Primary Structure of the
 391 Influenza Virus Hemagglutinin. Proc Natl Acad Sci U S A 72:93-97.
- 392 25. Slemons, R., B. Byrum, and D. Swayne. 2003. Bacterial Proteases and Co-Infections as
 393 Enhancers of Virulence. Avian Dis. 47:203-208.
- Slemons, R. D., and B. C. Easterday. 1977. Type-A influenza viruses in the feces of
 migratory waterfowl. J. Am. Vet. Med. Assoc. 171:947-8.
- Slemons, R. D., and B. C. Easterday. 1978. Virus replication in the digestive tract of
 ducks exposed by aerosol to type-A influenza. Avian Dis. 22:367-77.
- Slemons, R. D., D. C. Johnson, J. S. Osborn, and F. Hayes. 1974. Type-A influenza
 viruses isolated from wild free-flying ducks in California. Avian Dis. 18:119-24.
- Steinhauer, D. A. 1999. Role of hemagglutinin cleavage for the pathogenicity of
 influenza virus. Virology 258:1-20.
- 30. Tashiro, M., P. Ciborowski, H. D. Klenk, G. Pulverer, and R. Rott. 1987. Role of
 Staphylococcus protease in the development of influenza pneumonia. Nature 325:536-7.

404	31.	Tashiro, M., P. Ciborowski, M. Reinacher, G. Pulverer, H. D. Klenk, and R. Rott.
405		1987. Synergistic role of staphylococcal proteases in the induction of influenza virus
406		pathogenicity. Virology 157:421-30.
407	32.	Tsiodras, S., T. Kelesidis, I. Kelesidis, U. Bauchinger, and M. E. Falagas. 2008.
408		Human infections associated with wild birds. J. Infect. 56:83-98.
409	33.	Webster, R. G., M. Yakhno, V. S. Hinshaw, W. J. Bean, and K. G. Murti. 1978.
410		Intestinal influenza: replication and characterization of influenza viruses in ducks.
411		Virology 84: 268-78.
412	34.	Zhirnov, O. P., A. V. Ovcharenko, and A. G. Bukrinskaya. 1982. A modified plaque
413		assay method for accurate analysis of infectivity of influenza viruses with uncleaved
414		hemagglutinin. Arch. Virol. 71:177-83.
415		
416		

419 Figure **1**.

422 Figure **2**.

428 Figure **4**.

429 Table 1. Proteolytic activity of bacterial supernatants.

Destantial analysis	\mathbf{D}'
Bacterial species	Diameter (mm) of
	clearing zone
Acinetobacter haemolyticus	20
Aerococcus viridians	14
Aeromonas caviae	10
Aeromonas nyarophilia	13
Aeromonas sobria	10
Aeromonas veronii Bacillus ann	13
Bacillus spp.	14
Bacillus arreus	13
Duculus cereus Pacillus conculans	14
Bacillus liebeniformis	13
Bacillus menatarium	14
Bacillus numilus	18
Bacillus subtilis	18
Cellulomonas spp	25
Cellulosimicrobium spp.	14
Citrobactar fraundii	10^{16^2}
Enterobacter cloacae	20
Enterococcus faecalis	20
Camella morbillorum	16
Hafnia alvei	16
Klebsiella preumonia preumonia	17
Kocuria kristinae	19
Kocuria rosea	15
Lactococcus lactis lactis	23
Luciococcus inclis inclis I vsinihacillus sphaericus	11
Microbaterium orvdans	20
Microbacterium spp	17
Pantoea asolomerans	22
Pseudomonas aeruginosa	29
Pseudomonas alcaligenes	22
Pseudomonas fluorescens	23
Raoutella ornithinolytica	20
Rhizobium radiobacter	19
Staphylococcus aureus	7
Staphylococcus cohnii cohnii	14
Staphylococcus sciuri	14
Staphylococcus warneri	14
Stenotrophomonas maltophilia	16
Streptococcus gallolyticus gallolyticus	14
Streptococcus gallolyticus pasteurianus	15
Streptococcus hvointestinalis	16
Streptococcus pneumonia	18
Vibrio vulnificus	19

432 Table 2. Summary of protease-secreting bacteria identified from wild ducks.

	Duck Source $(n=112)^1$				
	Ducks	Mallard	BWT	Pintail	GWT
Bacterial Species	Total	(<i>n</i> =64)	(<i>n</i> =32)	(<i>n</i> =9)	(<i>n</i> =7)
Gram-negative					
Acinetobacter haemolyticus	2	0	1	0	1
Aeromonas caviae	5	0	4	0	1
Aeromonas hydrophilia	13	0	13	0	0
Aeromonas sobria	24	1	18	3	2
Aeromonas veronii	8	0	7	1	0
Citrobacter freundii	2	0	2	0	0
Enterobacter cloacae	15	9	4	2	0
Hafnia alvei	6	1	5	0	0
Klebsiella pneumonia pneumonia	1	1	0	0	0
Pantoea agglomerans	4	1	1	0	2
Pseudomonas aeruginosa	4	1	0	1	2
Pseudomonas alcaligenes	2	0	1	0	1
Pseudomonas fluorescens	4	1	0	1	2
Raoultella ornithinolytica	1	0	1	0	0
Rhizohium radiobacter	2	1	0	ĩ	Ő
Stenotrophomonas maltophilia	1	1	Ő	0	Ő
Vibrio vulnificus	2	0	2	Ő	0
Gram-positive					
Aerococcus viridians	1	0	1	0	0
Bacillus spp.	4	$2^{(2)}$	1 ⁽¹⁾	0	1 ⁽¹⁾
Bacillus amyloliquefaciens	3	0	3	õ	0
Bacillus cereus	3	3	0	Õ	Õ
Bacillus coagulans	2	0	0	Õ	2
Bacillus licheniformis	2	õ	$2^{(2)}$	Õ	0
Bacillus megaterium	9	1	7	Õ	1
Bacillus numilus	13	3	9	ĩ	0
Bacillus subtilis	1	1	Ó	0	Ő
Cellulomonas ssp	1	0	1 ⁽¹⁾	õ	Ő
Cellulosimicrobium spp	10	$2^{(2)}$	7 ⁽⁷⁾	Ő	1 ⁽¹⁾
Enterococcus faecalis	1	1	Ó	õ	0
Gemella morbillorum	6	5	1	õ	Ő
Kocuria kristinae	11	6	2	Ő	3
Kocuria rosea	3	1	õ	ĩ	1
Lactococcus lactis lactis	1	0	1	0	0
Luciococcus inclis inclis Lysinihacillus sphaericus	1	0	1 ⁽¹⁾	Ő	0
Microbacterium oxydans	1	Ő	1	Ő	0
Microbacterium spp	1 4	0	1 ⁽¹⁾	1 ⁽¹⁾	$2^{(2)}$
Stanbylococcus aureus	1	Ő	0	1	0
Staphylococcus cohnii cohnii	1	ñ	1	0	Õ
Staphylococcus sciuri	1	0	1	0	0
Staphylococcus warneri	1	0	1	0	0
Suprylococcus warnen Streptococcus gallobticus gallobticus	1	3	1	0	0
Streptococcus gallobitious pasteurianus	5	5	0	0	0
Streptococcus ganoryncus pasieurianus Streptococcus hyointestinglis	1	1	0	0	0
Streptococcus nyouniesunaus	2	∠ 1	0	0	0
sirepiococcus pneumonia	2	1	0	U	U

433 Figure and Table Legends

434

435	Figure 1: SDS-PAGE analysis of polypeptide fragment patterns obtained following incubation
436	of HA0 with supernatant material from protease-secreting bacterial isolates. [35S]-HA0 was
437	incubated with bacterial supernatant material for 60 mins, subjected to SDS-PAGE analysis, and
438	autoradiographed as described under 'Materials and Methods'. Lane 1, PBS negative control;
439	lane 2, trypsin, 10 µg/ml; lane 3, Streptococcus hyointestinalis (isolate 95-11); lane 4,
440	Aerococcus viridans (isolate 135-8); lane 5, Lysinibacillus sphaericus (isolate 135-12); lane 6,
441	Bacillus amyloliquefaciens (isolate 135-4); lane 7, Kocuria kristinae (isolate 107-14); lane 8,
442	Bacillus pumilus (isolate 136-9); lane 9, Enterobacter cloacae (isolate 99-3); lane 10,
443	Cellulosimicrobium sp. (isolate 111-15); lane 11, Aeromonas sobria (isolate 124-1); lane 12,
444	Aeromonas hydrophilia (isolate 119-3). The numbered arrows indicate the established molecular
445	weights for HA0 and trypsin hydrolysis products HA1 and HA2 (80, 58, and 26 kDa,
446	respectively)(24).
447	
448	Figure 2: Infectivity of Influenza A/Indonesia/5/2005(H5N1) virus following incubation with
449	concentrated supernatants from duck cloacal bacterial isolates. Uncleaved Influenza
450	A/Indonesia/5/2005 (H5N1) virus was incubated with respective bacterial supernatants for 60
451	mins followed by layering onto MDCK monolayers for double-layer plaque assay analysis as
452	described under 'Materials and Methods'. 1, trypsin, 10 µg/ml; 2, Lysinibacillus sphaericus
453	(isolate 135-12); 3, Streptococcus hyointestinalis (isolate 95-11); 4, Aerococcus viridans
454	(isolate 135-8); 5, Bacillus amyloliquefaciens (isolate 135-4); 6, Kocuria kristinae (isolate 107-

455 14); 7, Enterobacter cloacae (isolate 99-3); 8, Aeromonas hydrophilia (isolate 119-3); 9,

458	
459	Figure 3: Infectivity of trypsin-activated Influenza A/Indonesia/5/2005(H5N1) virus following
460	incubation with supernatant material from two lipase-secreting cloacal bacteria isolates. Trypsin
461	treated Influenza A/Indonesia/5/2005 (H5N1) virus was incubated with bacterial supernatants for
462	60 mins followed by layering onto MDCK monolayers for double-layer plaque assay analysis as
463	described under 'Materials and Methods'. 1, trypsin only control (10 µg/ml); 2, supernatant
464	material from Aeromonas hydrophilia (isolate 119-3); 3, Phospholipase C only control (100
465	µg/ml); 4, supernatant material from Aeromonas sobria (isolate 124-1).
466	
467	Figure 4: SDS-PAGE analysis of polypeptide fragment patterns obtained following incubation
468	of trypsin-activated [³⁵ S]-HA0 with supernatant material from two lipase-secreting cloacal
469	bacteria isolates. Preparation of radiolabeled HA0, HA0 cleavage with trypsin, SDS-PAGE
470	analysis, and autoradiography were carried out as previously described under 'Materials and
471	Methods'. Lane 1, $[^{35}S]$ -HA0 untreated; lane 2, trypsin only control (10 µg/ml); lane 3,
472	Phospholipase C only control (100 µg/ml); lane 4, supernatant material from Aeromonas sobria
473	(isolate 124-1); lane 5, supernatant material from Aeromonas hydrophilia (isolate 119-3). The
474	superscripted numbered arrows indicate the established molecular weights for HA0 and trypsin
475	hydrolysis products HA1 and HA2 (80, 58, and 26 kDa, respectively)(24).
476	
477	Table 1: Detection of protease activity in bacterial supernatants was determined as described

Bacillus pumilus (isolate 136-9); 10, Cellulosimicrobium sp. (isolate 111-15); 11, Aeromonas

sobria (isolate 124-1); dotted line represents PBS control (3.4 x 10³ pfu/ml).

478 under 'Materials and Methods'. ¹Values represent the diameter of the clearing zone on casein

456

agar produced by 10 µl concentrated bacterial supernatant material. The trypsin (10 µg/ml)
control gave rise to a clearing zone of 19 mm. ²*Citrobacter freundii* produced a cloudy zone 16
mm in diameter.

- 483 Table 2: Identification of protease secreting bacteria from free-range ducks was achieved as
- 484 described under 'Materials and Methods'. ¹BWT, Blue-winged Teal; GWT, Green-winged Teal.
- 485 Numbers in superscripted parentheses indicate isolates identified by 16S RNA sequence analysis.

