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Robustness of a network in the presence of node or link failures plays an important role in the design of the network. A key
factor that quantifies this robustness is the algebraic connectivity of the network. In this paper, the authors address the problem
of finding a network that maximizes the algebraic connectivity of the network while ensuring that the length of the shortest path
joining any two nodes in the network is within a given bound. This paper presents 𝑘-opt and tabu search heuristics for finding
feasible solutions for this network synthesis problem. Computational results are also presented to corroborate the performance of
the proposed algorithms.

1. Introduction

This paper addresses the problem of finding a network that
maximizes the algebraic connectivity of the network while
ensuring that the length of the shortest path joining any two
nodes in the network is within a given bound.This problem is
a simpler version of a system realization problem that arises
in several applications including biomedicine, mechanical
systems, and the design of Very Large Scale Integrated (VLSI)
circuits [1]. We are mainly interested in addressing this
problem as it arises in the coordination of Unmanned Aerial
Vehicles (UAVs) and in the design of transportation systems.

Several UAV applications require a mobile ad hoc net-
work (MANET) to be deployed to facilitate the exchange of
information between the vehicles in the network. Each vehi-
cle represents a node in theMANET and the communication
links between the vehicles represent the edges in theMANET.
The basic problem here is to synthesize a collection of
communication links in the MANET so that all the vehicles
can communicate with each other, the number of links
on a communication path between any two vehicles is at
most equal to a given number, and the MANET is well
connected. Algebraic connectivity serves as a measure of well

connectedness of a network and can be used to identify good
network topologies.

The algebraic connectivity of a network is defined as the
second, smallest eigenvalue of the Laplacian matrix associ-
ated with the network. In applications where a node or a link
(an edge) can randomly fail, algebraic connectivity is specif-
ically considered to be a superior measure of connectivity
compared to some of the other well-known measures such
as the node or edge connectivity. Node (edge) connectivity
specifies the minimum number of nodes (edges) that must
be removed for the network to be disconnected.Thenode and
the edge connectivity of any spanning tree connecting all the
nodes is equal to 1. Therefore, measures such as the node
or edge connectivity cannot distinguish between a spanning
tree, that is, a star versus a spanning tree, that is, a Hamilto-
nian path. However, star networks are considered to be more
robust towards any random failures of nodes or edges than
a Hamiltonian path. Algebraic connectivity serves as a better
measure in these cases because the algebraic connectivity of a
star network is much greater than the algebraic connectivity
of a Hamiltonian path.

In addition to UAV applications, algebraic connectivity
has also been used as a measure of well connectedness in
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the design of transportation networks. For example, an air
transportation network consists of airports and flight routes
between airport pairs [2]. Usually, an undirected graph is
used to describe an air transportation network [3–6] where
the set of nodes represents all the airports and the set of
edges represents all the flight routes. The topology or the
structure of this network plays a vital role in determining the
average time spent by the flights in the air and at airports,
the average number of flights waiting in queues over all
the airports, and the average number of hops or legs in a
passenger’s itinerary. The network also needs to be robust
towards unpredictable node or link failures that may happen
due to airline budget cuts, weather hazards, and economic
policies. There are several studies [4, 7–9] that have aimed
to relate the performance of an air transportation network in
terms of delays and failures (as mentioned above) with the
topology or the structure of the transportation network. The
overall approach here is that if a specific topology of structure
is better, then one can develop the required mathematical
tools to design a transportation network with the desired
topology. Specifically, the authors in [4, 7–9] have shown
that one of the factors that characterizes the performance
of a network is its algebraic connectivity. The authors in [4]
have demonstrated that an air transportation network for the
United States with a higher algebraic connectivity exhibited
superior performance in terms of average flight times, delays,
queue length, and the distance traveled by the passengers.
In order to restrict the number of legs or stops incurred by
the passengers as they travel, it is important to synthesize a
network with additional constraints that limit the number
of edges present in the path joining any two nodes in the
network.

In this paper, we restrict our attention to networks that are
spanning trees. We consider the basic mathematical problem
of synthesizing a spanning tree that maximizes the algebraic
connectivity of the spanning tree subject to a limit on the
diameter of the tree. The diameter of a tree is defined as
the number of edges present in the longest path connecting
any two nodes in the tree. Henceforth, we will refer to this
problem as the algebraic connectivity problem. It is well
known that this problem is NP-Hard [10]. Finding an optimal
solution to this problem seems to be very difficult even for a
network with 8 or 9 nodes [1, 11]. For 𝑛 nodes, the number
of distinct spanning trees available to connect all the nodes
is 𝑛𝑛−2; therefore, for 8 nodes, there are 262144 combinatorial
possibilities. As finding an optimal solution seems to be very
challenging, we focus on developing good heuristics in this
paper.

The algebraic connectivity problem has received scant
attention in the literature. In [12], the authors consider an
unweighted version of the algebraic connectivity problem
with no connectivity constraints. In [1], the authors explain
the importance of this problem in the context of several
applications and present an optimal algorithm to solve the
problem with no connectivity constraints. In [13], Wei and
Sun study a simpler variant of this optimization problem
which aims to add 𝑘 additional edges to strengthen the net-
work. In [11], the authors solve the algebraic connectivity

problem in the context of UAV applications. The following
are the contributions of this paper.

(i) We develop heuristics based on 𝑘-opt and tabu search
methods to find good feasible solutions to the prob-
lem.

(ii) We present computational results to corroborate the
performance of the proposed algorithms. These
results indicate that the 3-opt heuristic performed the
best among the proposed heuristics while the 2-opt
heuristic provided a good trade-off between finding
good solutions and the required computation time.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem. Local search heuristics like 𝑘-opt
and tabu search are presented in Sections 3 and 4, respectively.
In Section 5, we evaluate the performance of our algorithms
via simulations. Section 6 concludes this paper.

2. Problem Formulation

Consider an undirected graph 𝐺 := (𝑉; 𝐸) with 𝑉 denoting
all the 𝑛 nodes and 𝐸 representing all the edges in the graph.
Each edge in the graph is associated with a weight which acts
as a proxy to the likeliness of the edge to fail [14]. An edge
is assigned a larger weight if the edge is a stronger link and
is not likely to fail; on the other hand, an edge is assigned a
relatively smaller weight if the edge is more likely to fail. Let
𝑤
𝑒
represent the edge weight associated with the edge 𝑒 ∈ 𝐸.

For any edge 𝑒 ∈ 𝐸, let 𝑥
𝑒
represent a binary variable that

specifies if edge 𝑒 is present in the chosen network or not;𝑥
𝑒
=

1 if 𝑒 is chosen and 𝑥
𝑒
= 0 otherwise. Let the incidence vector,

𝑥 ∈ {0, 1}
|𝐸|, denote the entire network with the component

𝑥
𝑒
corresponding to 𝑒 ∈ 𝐸. Let 𝑐

𝑖
denote the 𝑖th column of

the identity matrix 𝐼
𝑛
of size |𝑉| = 𝑛. If the nodes 𝑖 and 𝑗

are connected using edge 𝑒, let 𝐿
𝑒
= 𝑤
𝑒
(𝑐
𝑖
− 𝑐
𝑗
) ⊗ (𝑐
𝑖
− 𝑐
𝑗
)

where ⊗ represents the tensor product. Using this notation,
the Laplacian [4, 12, 15] of the chosen networkmay be defined
as follows:

𝐿 (𝑥) = ∑

𝑒∈𝐸

𝑥
𝑒
𝐿
𝑒
. (1)

Let 𝜆
2
(𝐿(𝑥)) denote the algebraic connectivity of the

chosen network. To simplify the problem, we restrict our
search for optimal networks from the set of all the spanning
trees. A spanning tree connects all the nodes in the network
and contains exactly |𝑉|−1 edges. As stated by Fiedler in [15],
a graph is connected if and only if the algebraic connectivity
of the graph is greater than zero. Therefore, the algebraic
connectivity of any spanning tree will be greater than zero
and the algebraic connectivity of any disconnected graph will
be equal to zero. Hence, the problem of choosing a spanning
tree while maximizing its algebraic connectivity can be posed
as follows:

maximize
𝑥

𝜆
2
(𝐿 (𝑥)) , (2)
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subject to

∑

𝑒∈𝐸

𝑥
𝑒
= |𝑉| − 1, (3a)

𝑥 ∈ {0, 1}
|𝐸|

, (3b)

𝛿
𝑖𝑗
(𝑥) ≤ 𝐷 ∀𝑖, 𝑗 ∈ 𝑉, (3c)

where 𝛿
𝑖𝑗
(𝑥) denotes the number of edges in the shortest path

joining any two nodes 𝑖 and 𝑗 in the network represented by
𝑥 and𝐷 is the limit on the diameter of the network. Using the
results in [1, 4, 12], the above problem can be formulated as a
non-linear program with the diameter constraint as follows:

𝛾
∗

= maximize
𝑥,𝛾

𝛾, (4)

subject to

𝐿 (𝑥) ⪰ 𝛾 (𝐼
𝑛
− 𝑒
0
⊗ 𝑒
0
) , (5a)

∑

𝑒∈𝐸

𝑥
𝑒
= |𝑉| − 1, (5b)

𝑥 ∈ {0, 1}
|𝐸|

, (5c)

𝛿
𝑖𝑗
(𝑥) ≤ 𝐷 ∀𝑖, 𝑗 ∈ 𝑉, (5d)

where 𝑒
0
is the normalized eigenvector corresponding to the

first eigenvalue of 𝑥, and for any two square matrices 𝐴, 𝐵

with the same dimensions, 𝐴 ⪰ 𝐵 if and only if 𝐴 − 𝐵 is a
positive semidefinite matrix.

3. 𝑘-opt Heuristic

𝑘-opt heuristics were initially proposed for solving routing
problems in [16]. In this heuristic, a feasible spanning tree
is first generated by choosing any star graph with one of the
vertices having a degree equal to |𝑉|−1.Then, a new spanning
tree in a local neighborhood of the current, feasible solution is
chosen such that the new solution is feasible and has a larger
algebraic connectivity.This procedure is iterated until a better
spanning tree cannot be found.

Suppose T
1
and T

2
are two feasible solutions for the

algebraic connectivity problem. Then, T
2
is said to be in

the 𝑘-exchange neighborhood of T
1
if T
2
can be obtained

by replacing 𝑘 edges in T
1
. In a 𝑘-opt exchange, we find

a (new) feasible solution in the 𝑘-exchange neighborhood
of the current solution and replace the current solution
with this new solution if the algebraic connectivity of the
new solution is larger than the algebraic connectivity of the
current solution. In summary, a 𝑘-opt heuristic starts with
an initial feasible solution and iteratively applies a 𝑘-opt
exchange until no improvements can be made.

There are twomain steps in this 𝑘-opt exchange: choosing
a collection of 𝑘 edges to remove from the current solution
and then reconnecting the resulting, disjoint components
with a new collection of 𝑘 edges. Clearly, there are several
combinations of 𝑘 edges that can be removed from (𝑜𝑟
added to) a given solution. Therefore, choosing an efficient

procedure for the deletion and addition of edges is critical
for developing a relatively fast algorithm. In the following
subsections, we provide procedures for implementing these
steps.

3.1. Selecting a Collection of k-Edge Combinations to Delete.
The basic idea here is to list all the possible combinations of
𝑘-edges that can be deleted from the current feasible solution,
assign a value for each combination, rank the combinations
based on these values, and then choose a subset of these
combinations for further processing. We assign a value to a
combination of edges by first asking the following basic
question: which are the 𝑘 edges that need to be deleted from
the current solution T

0
so that T

0
(possibly) incurs the

smallest reduction in the algebraic connectivity? To answer
this question, let T

0
\ {𝑒} denote the graph obtained by

deleting an edge 𝑒 from the graph T
0
and let the Laplacian

of the graph,T
0
\ {𝑒}, be denoted by 𝐿(T

0
−𝑒). By variational

characterization, we have the following inequality:

𝜆
2
(𝐿 (T

0
− 𝑒)) ≤ V󸀠𝐿 (T

0
− 𝑒) V ∀V ∈ V (6a)

= V󸀠𝐿 (T
0
) V − V󸀠𝐿

𝑒
V ∀V ∈ V (6b)

= V󸀠𝐿 (T
0
) V − 𝑤

𝑒
(V
𝑖
− V
𝑗
)
2

∀V ∈ V,

(6c)

whereV := {V : ∑
𝑖
V
𝑖
= 0, ‖V‖ = 1}, 𝑤

𝑒
is the weight of edge

𝑒 = (𝑖, 𝑗), and V
𝑖
represents the 𝑖th component of the vector V.

One may observe from the above inequality that by choosing
an edge with a minimum value of 𝑤

𝑒
(V
𝑖
− V
𝑗
)
2, the upper

bound on the algebraic connectivity of the graph,T
0
\ {𝑒}, is

kept as high as possible. Also, we numerically observed that
𝑤
𝑒
(V
𝑖
− V
𝑗
)
2 was kept to a minimum by choosing V as the

eigenvector corresponding to the maximum eigenvalue of
𝐿(T
0
). Hence, for any combination of 𝑘 edges denoted by

𝑆, we assign a value given by ∑
𝑒=(𝑖,𝑗)∈𝑆

𝑤
𝑒
(V
𝑖
− V
𝑗
)
2. Then, we

rank all the combinations based on the increasing values and
choose a subset of these combinations that corresponds to the
lowest values. In this work, the fraction of combinations that
is considered for deletion is specified through a parameter
called the edge deletion factor. The edge deletion factor is
defined as the ratio of the number of 𝑘-edge combinations
considered for deletion to the maximum number of possible
𝑘-edge combinations (i.e., ( 𝑛−1

𝑘
)). We will discussmore about

this factor later in the simulations section.

3.2. Selecting a Collection of k-Edge Combinations to Add.
In the case of spanning trees, after removing 𝑘 edges, we
are guaranteed to have a graph T̃

0
with exactly 𝑘 + 1

connected components {𝐶
1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑘+1
}; therefore, by

suitably adding a collection of 𝑘 edges connecting all the
𝑘 + 1 components in T̃

0
, one is guaranteed to obtain a

spanning tree, T
1
. Also, we add these edges while ensuring

that the resulting tree satisfies the diameter constraints. The
new feasible solution T

1
is considered for replacing T

0
if it

has a larger algebraic connectivity thanT
0
.
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(1) Input:𝐷 (positive integer)
(2) T

0
← Initial feasible solution satisfying diameter constraints

(3) 𝜆
0
← 𝜆
2
(𝐿(T

0
))

(4) 𝐸del ← Subset of 𝑘-edge combinations considered for possible deletion as obtained by the edge ranking procedure in
Section 3.1

(5) for each edge combination in 𝐸del do
(6) Delete the 𝑘 edges present in the edge combination to obtain connected components 𝐶

1
, 𝐶
2
, 𝐶
3
, . . . , 𝐶

𝑘+1

(7) 𝐸add ← Subset of 𝑘-edge combinations considered for possible addition as obtained by the edge ranking procedure
in Section 3.2

(8) LetT
1
be the spanning tree which is feasible and has the largest connectivity obtained from adding the edges in an

edge combination from 𝐸add
(9) if 𝜆

2
(𝐿(T

1
)) > 𝜆

0
then

(10) T
0
← T

1

(11) 𝜆
0
← 𝜆
2
(𝐿(T

1
))

(12) end if
(13) end for
(14) OutputT

0
as the (new) current solution

Algorithm 1: 𝑘-opt exchange.

As in the edge-deletion procedure, checking for every
addition of 𝑘 edges may be computationally intensive for
large instances. Therefore, we develop another edge ranking
procedure for adding edges as follows. Let T̃

0
∪ {𝑒} denote

the graph obtained by adding an edge 𝑒 = (𝑖, 𝑗) to the graph
T̃
0
and let the Laplacian of the graph, T̃

0
∪ {𝑒}, be denoted

by 𝐿(T̃
0
+ 𝑒). By variational characterization, we have the

following inequality:

𝜆
2
(𝐿 (T̃

0
+ 𝑒)) ≤ V󸀠𝐿 (T̃

0
+ 𝑒) V ∀V ∈ V (7a)

= V󸀠𝐿 (T̃
0
) V + V󸀠𝐿

𝑒
V ∀V ∈ V (7b)

= V󸀠𝐿 (T̃
0
) V + 𝑤

𝑒
(V
𝑖
− V
𝑗
)
2

∀V ∈ V.

(7c)

One may observe from the aforementioned inequality
that by choosing an edge with a maximum value of 𝑤

𝑒
(V
𝑖
−

V
𝑗
)
2, the upper bound on the algebraic connectivity of the

graph T̃
0
∪ {𝑒} is kept as high as possible. Just like the edge

deletion step, let V be the eigenvector corresponding to the
maximum eigenvalue of 𝐿(T̃

0
). Hence, for any combina-

tion of 𝑘 edges denoted by 𝑆, we assign a value given by
∑
𝑒=(𝑖,𝑗)∈𝑆

𝑤
𝑒
(V
𝑖
− V
𝑗
)
2. Then, we rank all the combinations

based on decreasing values and choose a subset of these
combinations that corresponds to the highest values. The
number of combinations that are considered for addition is
another parameter and can be specified based on the problem
instances.

A pseudocode of the 𝑘-opt exchange is outlined in
Algorithm 1. An illustration of such a procedure on one such
pair (𝑘 = 2) of edges for a spanning treewith 4 nodes is shown
in Figure 1.This exchange is iteratively applied on the current
solution until no improvements can be made.

1

1

2

2

3

3

4

4

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

1 2

34

e12

e43

⇒ all edge combinations:
{(e12 , e14), (e14 , e43), (e12 , e43)}

Step 4
Edel = {(e12 , e14), (e14 , e43)}

Step 6 on (e12 , e14) Step 6 on (e14 , e43)

C1

C1

C2

C2
C3 C3

All edge combinations
{(e12 , e23), (e12 , e24), (e12 , e14),
(e14 , e23), (e13 , e23), (e13 , e12)}

{(e13 , e34), (e13 , e24), (e34, e24),
(e23 , e24), (e13 , e14), (e23 , e14)}

Step 7 Step 7

Eadd = {(e14, e23), (e12, e23)} Eadd = {(e13, e24), (e13, e34), (e34, e24)}

Step 8 Step 8

Pick a feasible solution,
with largest connectivity

𝒯0 = e14

𝒯1

Figure 1: An example illustrating a 2-opt exchange.

4. Tabu Search Heuristic

In this section, we present a tabu search heuristic
(Algorithm 2) for finding good feasible solutions for the
algebraic connectivity problem. Similar to the 𝑘-opt heuristic,
the tabu search heuristic first starts with a feasible solution
𝑠 and attempts to construct a candidate feasible solution 𝑠

󸀠,
in the neighborhood of 𝑠 with a larger algebraic connectivity
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Let 𝑠∗ be the best optimal solution found by the algorithm and let 𝜆∗
2
be the algebraic connectivity of 𝑠∗. Let𝑚 denote the

number of edges in the initial feasible solution (i.e.,𝑚 := |𝑉| − 1). Also, let𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 represent the maximum number
of iterations allowed in the tabu heuristic.
(1) T

0
← Initial feasible solution satisfying diameter constraints

(2) 𝑠 := T
0
, 𝜆∗
2
:= 𝜆
2
(T
0
), 𝑠∗ := T

0
, 𝑇 is an empty tabu list which can store at most𝑚 solutions.

(3) for 𝑖 = 1 to𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 do
(4) for edge 𝑒

𝑘
in 𝑠 do

(5) Construct the set of edges𝑁(𝑠, 𝑒
𝑘
)

(6) end for
(7) for any spanning tree 𝑠󸀠 such that 𝑠󸀠 contains exactly one edge from each of the sets in {𝑁(𝑠, 𝑒

1
), . . . , 𝑁(𝑠, 𝑒

𝑘
)} do

(8) if 𝑠
󸀠 is feasible then

(9) if 𝜆
2
(𝑠
󸀠

) > 𝜆
∗

2
then

(10) 𝑠 = 𝑠
󸀠

(11) 𝑇 ← 𝑇⋃{𝑠
󸀠

}; 𝑇 only stores at most 𝑚 solutions from iterations 𝑖 − 𝑚 + 1, . . . , 𝑖 − 1, 𝑖

(12) 𝜆
∗

2
= 𝜆
2
(𝑠), 𝑠∗ = 𝑠

(13) break
(14) else
(15) if 𝑠

󸀠 is not in 𝑇 then
(16) 𝑠 = 𝑠

󸀠

(17) 𝑇 ← 𝑇⋃{𝑠
󸀠

}; 𝑇 only stores at most 𝑚 solutions from iterations 𝑖 − 𝑚 + 1, . . . , 𝑖 − 1, 𝑖

(18) break
(19) end if
(20) end if
(21) end if
(22) end for
(23) if 𝑠 ̸= 𝑠

󸀠then
(24) break //The heuristic terminates here if there is no feasible tree 𝑠󸀠 in the neighborhood of 𝑠 or if every feasible 𝑠󸀠

with a lower algebraic connectivity (<𝜆∗
2
) is already in the tabu list.

(25) end if
(26) end for
(27) output 𝜆∗

2
and 𝑠
∗

Algorithm 2: Tabu search heuristic.

(we will later explain how we choose the neighborhoods for
the tabu search). If the algebraic connectivity of 𝑠󸀠 (𝜆

2
(𝑠
󸀠

)) is
larger than the best known value (𝜆∗

2
), 𝑠󸀠 is set as the current

feasible solution (i.e., 𝑠 := 𝑠
󸀠) and 𝜆

∗

2
is updated (steps 9–13

in the algorithm). If the algebraic connectivity of 𝑠󸀠 is at most
equal to 𝜆

∗

2
, 𝑠󸀠 is set as the current feasible solution but no

updates are made to 𝜆
∗

2
(steps 15–19 in the algorithm). The

above procedure is then repeated again until the number of
iterations reaches a maximum limit.

There are two features that makes the tabu search heuris-
tic different from the 𝑘-opt heuristic. Firstly, unlike the 𝑘-opt
heuristic which aims to make an exchange only if a better
solution is found, the tabu search allows for the heuristic
to move to solutions that may have a smaller algebraic
connectivity than the current best solution. Even though
there may not be any improvement in the short run, the
tabu search heuristic can end up finding better solutions as
the number of iterations increases. Secondly, in any iteration,
𝑠
󸀠 is set as the current feasible solution only if 𝑠

󸀠 has not
been encountered in any of the previous𝑚 iterations. This is
accomplished by creating a tabu list and storing all the recent

𝑚 feasible solutions that have been previously considered
by the algorithm in this list. Therefore, when the algebraic
connectivity of 𝑠󸀠 is found to be at most equal to 𝜆

∗

2
, 𝑠󸀠 is set

as the current feasible solution only if 𝑠󸀠 is not present in the
tabu list.

The overall tabu search heuristic is presented in
Algorithm 2. In the remainder of this subsection, we explain
how the local neighborhoods are chosen for the current
feasible solution 𝑠. Suppose 𝑒

𝑖
is the 𝑖th edge in 𝑠. Let the

edge 𝑒
𝑖
join vertices V

1
and V
2
in the solution 𝑠. Also, define

𝑁(𝑠, 𝑒
𝑖
) as the set of all the edges that are incident on V

1
or V
2

but not present in 𝑠. Then, the neighborhood of the current
solution 𝑠 consists of any solution 𝑠

󸀠 such that there is exactly
one edge present in 𝑠

󸀠 from𝑁(𝑠, 𝑒
𝑖
) for 𝑖 = 1, . . . , |𝑉| − 1.

5. Computational Results

The 𝑘-opt and tabu search heuristics were implemented in
MATLAB. The bound on the diameter of a feasible tree was
set to four (𝐷 = 4). The diameter of a tree is found by
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Figure 2: Average values of the algebraic connectivity (a) and computation times (b) obtained as a function of the edge deletion factor using
the 3-opt heuristic over ten instances. In these computations, the maximum number of edge combinations considered for addition between
any two components was set to 125.

implementing thewell-knownFloyd-Warshall algorithm [17].
To check for feasibility, we find the diameter of the given tree
using the Floyd-Warshall algorithmand verify if this diameter
is at most equal to the prescribed bound. For the tabu search
heuristic, the size of the tabu search list was set to 20 and the
parameterMaxIterations was set to 100.

For the 𝑘-opt heuristic, we set the edge deletion factor
(Section 3.1) to be equal to 0.15 in all the simulations. We
chose this value based on the simulation results shown in
Figure 2.This figure shows the average algebraic connectivity
of the final solution (and the computation time) obtained
using the 3-opt heuristic as a function of the edge deletion
factor. We observed that there was not much improvement
in the quality of the feasible solutions beyond a value of
0.15 (for the edge deletion factor) even for large instances
(𝑛 = 30, 40). Hence, we chose 0.15 as the edge deletion
factor. Also, we set the number of combinations of edges to be
added (Section 3.2) to be at most equal to 5

𝑘. For 3-opt, this
parameter was set to 125. We chose this value for 3-opt based
on the simulation results shown in Figure 3. For 2-opt, this
parameter was set to 25 after performing similar simulations.

The semidefinite programming toolboxes (Yalmip and
Sedumi) in MATLAB could not solve the proposed formula-
tion (B.1) with the semidefinite and diameter constraints even
for instances with 5 nodes primarily due to inefficient mem-
ory management. Therefore, Algorithm 3 was implemented
to find an optimal solution for instances up to 8 nodes. For
more than 8 nodes, the algorithm in the appendix could
not find an optimal solution in a reasonable amount of run
time.This algorithm was implemented in C++ programming
language and the resulting Integer Linear Programs (ILPs)
were solved using CPLEX 12.2 with all the solver options set

to default. All the developed algorithms were run on a Dell
Precision T5500 workstation (Intel Xeon E5630 processor @
2.53GHz, 12GB RAM).

Let us now compare the deviation of the solutions found
by the algorithms with respect to the optimal solution. We
define deviation (in %) as ((𝜆∗

2
− 𝜆

heuristic
2

)/𝜆
∗

2
) × 100 where

𝜆
heuristic
2

denotes the algebraic connectivity of the solution
found by the heuristic and 𝜆

∗

2
represents the optimum.

The results shown in Table 1 are for 10 random instances
generated for networks with 8 nodes. Based on the results
in Table 1, we observed that the average run time to obtain
an optimal solution was around 371 seconds. Also, it can be
seen that the 𝑘-opt (𝑘 = 2, 3) and tabu search heuristic found
optimal solutions for all problem instanceswith 8 nodes. Each
of the heuristics ran within a fraction of a second for each of
the instances with 8 nodes. Instance 1 of Table 1 is pictorially
shown in Figure 4.

For more than 8 nodes, we used the heuristics to generate
feasible solutions for the algebraic connectivity problem. In
the remainder of this section, we compare the results from
the 𝑘-opt and tabu search heuristics. As previouslymentioned
in the paper, choosing an initial solution for the heuristics is
relatively straightforward; we choose a star graph with the
largest algebraic connectivity (𝜆initial

2
) as an initial feasible

solution. A sample initial feasible solution is shown in part
(b) of Figure 4.

For more than 8 nodes, we inferred the deviation of a
solution for an instance by comparing it with the solution
obtained by using the 3-opt heuristic for the same instance.
Specifically, the deviation of a solution is defined as ((𝜆3opt

2
−

𝜆
heuristic
2

)/𝜆
3opt
2

)×100where 𝜆3opt
2

is the algebraic connectivity
of a solution obtained by using the 3-opt heuristic. For each
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Figure 3: The average algebraic connectivity (a) and computation times (b) obtained as a function of the maximum number of edge
combinations considered for addition between any two components in the 3-opt heuristic over ten instances. In these computations, the
edge deletion factor was set to 0.15.

Table 1: Comparison of the deviation of the solutions found by the heuristics for networks with 8 nodes. 𝜆∗
2
is the optimal algebraic

connectivity.

No. Optimal solution 𝑘-opt search (𝑘 = 2, 3) Tabu search
𝜆
∗

2
Time (sec) 𝜆

𝑘opt
2

Deviation (%) 𝜆
tabu
2

Deviation (%)
1 3.9712 180.57 3.9712 0.00 3.9712 0.00
2 4.3101 408.10 4.3101 0.00 4.3101 0.00
3 3.9297 621.85 3.9297 0.00 3.9297 0.00
4 3.5275 216.79 3.5275 0.00 3.5275 0.00
5 3.8753 470.63 3.8753 0.00 3.8753 0.00
6 3.7972 342.14 3.7972 0.00 3.7972 0.00
7 3.7125 377.47 3.7125 0.00 3.7125 0.00
8 3.9205 313.12 3.9205 0.00 3.9205 0.00
9 3.7940 341.84 3.7940 0.00 3.7940 0.00
10 3.8923 316.86 3.8923 0.00 3.8923 0.00
Average 0.00 0.00

problem size, the average deviation and computation time
obtained for the 10 instances is shown in Table 2. For each
of the instances, the solution obtained by the 3-opt heuristic
had the largest algebraic connectivity.

From the results in Table 2, it is clear that the 2-opt
heuristic performed better than the tabu search for medium
sized instances (up to 30 nodes). For larger problems (40,
45, 55, and 60 nodes), we observed that the quality of
the solutions found by the tabu search was better compared
to the 2-opt heuristic. In summary, we observe that the 2-
opt heuristic provides a good trade-off between obtaining
good feasible solutions and the required computation time.
Figure 5 illustrates the solutions obtained using the 𝑘-opt
and tabu search heuristic for a 40 nodes problem. Also, as
shown in Table 3, we observed that the maximum deviation

(out of 10 instances) of the 2-opt solutions remained lower
than that of tabu search for instances up to 30 nodes. For
large instances (35, 40, 45, 55, and 60 nodes), the maximum
deviation for tabu search remained lower that that of 2-opt
solutions. Overall, the tabu search heuristic performed better
than the 2-opt search heuristic formost of the large instances.

6. Conclusions

We studied design methods to maximize the robustness of
a network in the presence of diameter constraints. Algebraic
connectivity is used tomeasure the robustness of the network.
Our design methods mainly involve the development of
heuristics. Our first method, the 𝑘-opt heuristic, aims to iter-
atively search for better solutions by performing an exchange
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Figure 4: A network with all possible edges connecting 8 nodes including edge weights is shown in (a). (b) represents the initial feasible
solution which is a star graph. (c) represents an optimal network which also happens to be the solution found by the 2-opt, 3-opt, and tabu
search methods.

Table 2: Comparison of 3-opt, 2-opt, and tabu search heuristic solutions for various problem sizes. Here, the deviation was averaged over ten
random instances for each 𝑛.

𝑛
3-opt 2-opt Tabu

Deviation (%) Time (sec) Deviation (%) Time (sec) Deviation (%) Time (sec)
10 0 0.29 0.00 0.10 0.00 0.77
15 0 3.06 0.01 0.52 1.52 9.36
20 0 16.32 0.27 1.65 1.78 25.58
25 0 60.38 0.60 3.59 1.88 60.19
30 0 274.93 2.07 12.13 3.12 144.92
35 0 480.15 2.02 37.85 2.77 313.20
40 0 1016.99 5.62 57.28 2.48 3470.71
45 0 2309.60 7.10 116.09 5.10 4272.58
50 0 4219.17 1.38 139.99 3.55 6675.32
55 0 6798.34 6.98 350.83 4.90 8654.29
60 0 8974.46 7.97 505.36 6.06 10049.10

Table 3: Comparison of maximum deviations computed over ten
random instances for each 𝑛 for 2-opt and tabu search heuristic.

𝑛
Maximum deviation (%)

2-opt Tabu
10 0.00 0.00
15 0.08 6.67
20 2.73 10.86
25 4.92 6.36
30 7.56 9.07
35 12.59 7.64
40 17.89 8.91
45 15.41 12.23
50 5.10 8.68
55 17.56 11.47
60 16.92 13.91

of edges in each iteration. Unlike the 𝑘-opt heuristic, our
second method (the tabu search heuristic) iteratively moves
to solutions that may have a lower algebraic connectivity in
the short run but could find better solutions as the number of
iterations increases. Computational results suggested that the
3-opt heuristic performed the best while the 2-opt heuristic
provided a good trade-off between finding good solutions
and the required computation time. There are several future
directions for this work. One research direction would be to
generalize the network synthesis problem to include more
connectivity constraints. Another research direction would
be to compare the performance of the developed algorithms
in a simulation setting similar to the one in [4] and test the
performance in the presence of node or edge failures.

Appendices

For completeness, we summarize the algorithm in [11] for
finding an optimal solution to the algebraic connectivity
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Figure 5: 2-opt, 3-opt exchange, and tabu search solutions for a network with 40 nodes where𝐷 = 4.

problem. There are two issues that need to be addressed
before one can solve the formulation in (5a), (5b), (5c),
and (5d). First, the diameter constraint, 𝛿

𝑖𝑗
(𝑥) ≤ 𝐷, must

be converted to a more tractable form so that standard
optimization tools can be used to solve it. Second, one must
develop an algorithm to find an optimal solution to solve the
resulting algebraic connectivity problem.

A. Handling the Diameter Constraint

We assume that 𝐷 is even. A similar approach can be used
when 𝐷 is odd. To impose the the diameter constraint, we
add a source node (𝑟) to the graph (𝑉, 𝐸) and add an edge
joining 𝑟 to each vertex in 𝑉, that is, 𝑉̃ = 𝑉 ∪ {𝑟} and
𝐸 = 𝐸 ∪ (𝑟, 𝑗) for all 𝑗 ∈ 𝑉. We then construct a tree
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LetF be a set of cuts which must be satisfied by any feasible solution
(1) Input: A graph 𝐺 = (𝑉, 𝐸), 𝑤

𝑒
, 𝑟,𝐷, and a finite number of unit vectors, V

𝑖
, 𝑖 = 1, . . . ,𝑀

(2) Choose any spanning tree satisfying the diameter constraint as an initial feasible solution, 𝑥∗

(3) 𝜆̂ ← 𝜆
2
(𝐿(𝑥
∗

))

(4) loop
(5) F ← 0

(6) Replace the semi-definite constraint in (B.1) with (V
𝑖

𝑇

(𝐿 (𝑥)) V
𝑖
) ≥ 𝜆̂ (V

𝑖

𝑇

𝐼
𝑛
V
𝑖
) ∀𝑖 = 1, . . . ,𝑀, and with additional

constraint, 𝑥 satisfyingF and solve the ILP.
(7) if the above ILP is infeasible then
(8) break loop {𝑥

∗ is the optimal solution}
(9) else
(10) 𝑥

∗

← solution to the above ILP
(11) 𝛾

∗

← 𝜆
2
(𝐿(𝑥
∗

))

(12) if 𝐿(𝑥
∗

) 󳠣 𝛾
∗

(𝐼
𝑛
) then

(13) AugmentF with a constraint (V∗𝑇𝐿(𝑥∗)V∗) ≥ 𝛾
∗

(V∗𝑇𝐼
𝑛
V∗) where V∗ is the eigenvector corresponding to a negative

eigenvalue of 𝐿(𝑥∗) − 𝛾
∗

𝐼
𝑛
.

(14) Go to step 6.
(15) end if
(16) end if
(17) 𝜆̂ ← 𝜆̂ + 𝜖 {let 𝜖 be a small number}
(18) end loop

Algorithm 3: Synthesizing robust networks with maximum algebraic connectivity subject to diameter constraints.

spanning all the nodes in 𝑉̃ while restricting the length of
the path from 𝑟 to any other node in 𝑉̃. The additional edges
emanating from the root vertex are used only to formulate
the diameter constraints [11], and they do not play any role in
determining the algebraic connectivity of the original graph.
Hence, the diameter constraints in (5d) can be equivalently
formulated using the multicommodity flow constraints as
follows:

∑

𝑗∈𝑉̃\{𝑟}

(𝑓
𝑘

𝑖𝑗
− 𝑓
𝑘

𝑗𝑖
) = 1 ∀𝑘 ∈ 𝑉, 𝑖 = 𝑟, (A.1a)

∑

𝑗∈𝑉̃

(𝑓
𝑘

𝑖𝑗
− 𝑓
𝑘

𝑗𝑖
) = 0 ∀𝑖, 𝑘 ∈ 𝑉, 𝑖 ̸= 𝑘, (A.1b)

∑

𝑗∈𝑉̃

(𝑓
𝑘

𝑖𝑗
− 𝑓
𝑘

𝑗𝑖
) = −1 ∀𝑖, 𝑘 ∈ 𝑉, 𝑖 = 𝑘, (A.1c)

𝑓
𝑘

𝑖𝑗
+ 𝑓
𝑘

𝑗𝑖
≤ 𝑥
𝑒

∀𝑒 := (𝑖, 𝑗) ∈ 𝐸, ∀𝑘 ∈ 𝑉, (A.1d)

∑

𝑒∈𝐸

𝑥
𝑒
=
󵄨󵄨󵄨󵄨󵄨
𝑉̃
󵄨󵄨󵄨󵄨󵄨
− 1, (A.1e)

0 ≤ 𝑓
𝑘

𝑖𝑗
≤ 1 ∀𝑖, 𝑗 ∈ 𝑉̃, ∀𝑘 ∈ 𝑉, (A.1f)

𝑥
𝑒
∈ {0, 1} ∀𝑒 ∈ 𝐸, (A.1g)

∑

(𝑖,𝑗)∈𝐸

𝑓
𝑘

𝑖𝑗
≤ (

𝐷

2
+ 1) ∀𝑘 ∈ 𝑉, (A.1h)

∑

𝑗∈𝑉

𝑥
𝑟𝑗
= 1, (A.1i)

where 𝑓
𝑘

𝑖𝑗
is the 𝑘th commodity flowing from node 𝑖 to

node 𝑗. Constraints (A.1a) through (A.1c) state that each
commodity must originate at the root node and terminate
at its corresponding vertex. Equation (A.1d) states that the
flow of commodities between two vertices is possible only if
there is an edge joining the two vertices. Constraint (A.1e)
ensures that the number of edges in the chosen network
corresponds to that of a spanning tree. An advantage of using
this formulation is that one now has access directly to the
number of edges on the path joining the source node to any
vertex in the graph. That is, ∑

(𝑖,𝑗)∈𝐸
𝑓
𝑘

𝑖𝑗
denotes the length of

the path from 𝑟 to 𝑘 and hence (A.1h) represents the diameter
constraint.Therefore, the constraints in (A.1a), (A.1b), (A.1c),
(A.1d), (A.1e), (A.1f), (A.1g), (A.1h), and (A.1i) can be used to
replace the diameter (5d) and spanning tree constraints (5b)
in the formulation.

B. Optimal Algorithm

The second issue is to reduce the problem in (5a), (5b), (5c),
and (5d) to a pure binary semidefinite programming problem
(BSDP) as the tools associated with the construction of valid
inequalities are more abundant for BSDPs as compared to
mixed-integer programs. Also, with the further relaxation of
the semidefinite constraint, it can be solved using CPLEX
[18], a high performance solver for Integer Linear Programs
(ILP). Therefore, we adopt a different approach for finding
an optimal solution by casting the algebraic connectivity
problem as the following decision problem: is there an
augmented network such that the algebraic connectivity of
the network is at least equal to a prespecified value (𝜆̂

2
) and

the diameter of the graph is at most equal to𝐷?This problem
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can be posed as a BSDP by choosing to find a spanning tree
that minimizes the degree of the root vertex 𝑟. This can be
mathematically written as follows:

min ∑

𝑒∈𝛿(𝑟)

𝑥
𝑒

s.t. 𝐿 (𝑥) ⪰ 𝜆̂
2
(𝐼
𝑛
) ,

Diameter and spanning tree

constraints as in (A.1a) , (A.1b) , (A.1c) , (A.1d) ,

(A.1e) , (A.1f) , (A.1g) , (A.1h) , and (A.1i) .
(B.1)

In this formulation, 𝛿(𝑟) denotes a cutset defined as
𝛿(𝑟) = {𝑒 = (𝑟, 𝑗) : 𝑗 ∈ 𝑉 \ 𝑟}. The above BSDP
can be efficiently solved by a cutting plane procedure and
then a bisection algorithm can be used to maximize the
algebraic connectivity. In the cutting plane procedure, the
semidefinite constraint is replaced by a finite subset of the
infinite number of linear constraints and successively tighter
polyhedral approximations are constructed by augmenting
valid inequalities until a feasible solution is obtained by sat-
isfying a desired level of connectivity. Based on the notation
defined in this paper, a detailed pseudocode of this procedure
is outlined in Algorithm 3. Steps 4 though 16 of Algorithm 3
employ the cutting plane procedure until the semidefinite
constraint is satisfied and step 17 is the bisection step where
𝜆̂ is incremented until the optimization problem becomes
infeasible.
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