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OPTIMAL CONVERGENCE RATES OF hp MORTAR FINITE ELEMENT
METHODS FOR SECOND-ORDER ELLIPTIC PROBLEMS ******

FAKER BEN BELGACEM1, PADMANABHAN SESHAIYER2 AND MANIL SURI3

Abstract. We present an improved, near-optimal hp error estimate for a non-conformmg unité ele-
ment method, called the mortar method (MO). We also present a new hp mortarmg technique, called
the mortar method (MP), and dérive /i, p and hp error estimâtes for ît, m the présence of quasmmform
and non-quasmniform meshes Our theoretical resuîts, augmented by the computational évidence we
present, show that hke (MO), (MP) is also a viable mortarmg technique for the hp method
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1. INTRODUCTION

The complexity of domains encountered in problems solved by the finit e element method often nécessitâtes the
separate meshing of individual component s or sub domains. The resuit ing submeshes are generally incompatible
along interfaces, smce it is quite cumbersome to impose conformity. A similar situation also arises when pre-
existing meshes are to be used m a calculation, or when local refmement (say near singularities) is to be imposed
in selected régions of a mesh

Mortaring techniques are non-conformmg methods that were developed to pièce together such incompatible
meshes (see [10,15]) The original paper [14] discussed two methods, the fîrst being the "/j-mortar finite element
method" (which we dénote m this paper as (MO)), where it was assumed that the meshes were quasmmform but
incompatible and the degree p was fixed (h version) In addition, a second method called the "mortar spectral
element method" was also introduced (denoted hère by (MP)). For this method the mesh was fixed, and only
the degrees were allowed to vary. The non-conformity is due either to the incompatibihty of polynomial degrees
withm each element, to the non-matchmg meshes, or to their combined effect. It was established that (MO)
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had optimal convergence properties with respect to the mesh size and (MP) with respect to the degree These
results were generahzed to three dimensions m [7] See also [1-3,8,9], for related lesults

In [25-27] the hp version of method (MO) was consideied The practical motivation was an implementation
of mortarmg techniques m the hp commercial code MSC NASTRAN The method (MO) was analyzed for the
case that the meshes were non-quasiuniform (e g for radical and geometrical meshes, see [5]) and for the case
that both the meshes and the degrees were allowed to vary (Such hp techniques aie essential if smgulanties are
to be well-appioximated) In particular, ït was shown that (1) the h version is optimal for non-quasmniform
meshes as long as a minor meshmg condition is satisfied, (2) the p version satisfi.es an error estimate that is
suboptimal by O(p*), (3) the hp version with geometrical meshes gives exponential convergence

Expérimental results supported the above conclusions, except that the O(pï) suboptimality was not observed
In [25,28], two variations of (MO), called (Ml) and (M2) weie mtroduced, which had a simpler formulation than
(MO), generahzed more easily to three dimensions, and satisfied similar estimâtes

Our goal m this paper is two fold First of all, we show that the 0{pi) suboptimality m [26,27] may be
removed, to be replaced by an O(pe) loss (e > 0 arbitrary) Hence the method (MO) is essentially optimal m h
and p

Second, we extend the method (MP) to the case of incompatible meshes (possibly non quasiuniform) where
both h and p are allowed to vary, % e we consider ït m the context of hp implementation Our results show that
(MP) is optimal m p even when the meshes are incompatible, and agam yields exponential hp convergence with
geometrical meshes In terms of h} the method can suffer a loss of upto O(hï) foi solutions that aie sufficiently
smooth (the loss did not appear very significant m our numencal results m Section 6) Hence (MP) could be
considered as another viable candidate for hp implementation, though m hght of the optimahty of (MO) proved
hère, the latter may be a better choice

The plan of our paper is as follows In Section 2, we describe the (MO) method, and establish the O(p£)
optimahty for this method In Section 3, we introducé the method (MP), while Section 4 contams a proof of
the hp error estimate for quasiuniform meshes Section 4 1 extends this optimal resuit to the case of weakly
regular solutions In Section 5, we prove improved convergence results for non quasiuniform meshes Essentially,
we show hère that the "mortar projection operatoi" for (MP) is bounded as O(p£) m the appropriate norm,
mdependently of the mesh (for (MO) ït was shown that the correspondmg projection opeiatoi is bounded as
O(pï+£) provided the mesh was no more than geometrically refined) Fmally, Section 6 contams the results of
numencal experiment s

1 1 Notations

Let us assume that we have a Lipschitz domain C CM? and the genene point of C is denoted x The classical
Lebesgue space of square mtegrable fonctions L2(C) is endowed with the inner pioduct

Je

We assume standard Sobolev space notations, Hm(C), m > 1, provided with the norm

/ pip dx
Je

(

0<H<m

where a — (011,0:2) is a multi index m N2 and the symbol da represents a partial derivative The fractional
Sobolev space HT(C),r G R+ \ N, is defined by lts norm (see [22])
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where r — m-\-6^ m and 6 e]0,1[ being the integer part and the fractional part of r respectively. The closure in
HT(C) of the set @{C) of indefinitely differentiable functions whose support is contained in C is denoted H£(C).
We will also use the spaces W(J),W0(J), where J <zR.

For any portion of the boundary 7 C ÔC, the space H s (7) is the set of the traces over 7 of all the functions
of HX(C) and H~^(7) is its topological dual space. The duality pairing between H~2 (7) and 1^(7) is (-, -)*,7.
The special space HQO(7) is the subspace of H 2 (7) of the traces of all functions belonging to HQ(C,7°) = {ip E
H1(C), ijj^c — O}, where 7e = dC \ 7. It is endowed with the quotient norm,

\\p\\ = inf

1.2. Model problem

Let ft be a bounded polygonal domain in R2 with boundary F = dfl divided into Fj^ and FJV- Given
ƒ G L2(ü) and g € L2(FJV), consider the Poisson's problem with mixed boundary conditions: Find u such that,

in Q,
onF D , ( 1 1 )

on Fjv-

The Standard variational formulation which is based on a Green's intégration formula for this problem becomes:
Find u e H^(fï) = Hj(fi, TD) such that

f Vu . Vv dx = / ƒ v dx + / g v dF Vv e Hk(ïl). (1.2)

Problem (1.1) is well posed and has a unique solution u E ïLp(£ï). Moreover, the following stability condition
holds:

H M ) CII ƒ I I ( ) +

Remark 1.1. The hypothesis g € L2(FJV) is made only for the clarity of the présentation. The results however

can be easily extended to the more gênerai case where g e (HQO(FTV))/ without much difficulty.

2. THE NON-CONFORMING FINITE ELEMENT METHOD (MO)

We assume that the domain Çl is broken arbitrarily into k* non-overlapping polygonal subdomains (&>k)i<k<k* •
The edges of Qk are denoted by 0^k,j)i<j<3* and the vertices of each F ^ are denoted as v\3 and v\3. Such a
restriction on the shape of the subdomains and the global domain Q is made only for the sake of simplicity. Also,
to avoid technical concerns we assume that the portion of dflk contained in dft is a union of complete edges,
and that the boundary condition does not change type in the interior of any edge of fik • The outward normal
on the whole boundary dflk will be denoted as n^, when required. The décomposition is called geometrically
conforming if Tk,3 H F ^ ^ 0 implies either that the two edges are identical, or that the intersection contains
a single common vertex. Otherwise, the décomposition is called geometrically non-conforming. Following the
terminology of [14] the skeleton is defined' to be

s= (\Jank)\dsi.
\fc=i /
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FIGURE 1. Example of the shape of the M5(rfcj)-functions for pk = 2.

Among several possible choices, we select a set of edges 7m which we call mortar s such that

m*

S = ( J 7m, 7 m n 7 n = 0 if m ^ n, 7 m = r f c ( m ) i j ( m ) .

The mortar approximation of the Poisson problem we use is based on the p and hp finite éléments (see [4-6,20,
23,24]). The éléments used in the subdomain Q,k are specified by the parameter Ôk — {hkjPk)j where hk goes to
zero and/or pk tends to infmity. For any k (1 < k < &*), let S?S

k be a partition of Qk into triangulations with
a maximum size hk. This mesh is assumed regular in the classical sensé [18]. Since the {3? k)k are generated
independently, the meshes do not have to conform at the interface. For any K G ^k and any r G N,7V(K;)
dénotes the set of polynomials of total degree < r. The local spaces are then chosen to be

= { vs
k e v« e = o}.

We dénote by W6{Yk^3), the space of the traces on Yk^3 of all the functions of X6(Çlk)- In particular, for any
m, 1 < m < m*, the local mortar space is W0^^) = W0^^^^^^) while the global mortar space is defined
to be

WÖ(S) - {<pô - (<ps
m) , Vm, 1 < m < m*, <p*m e

Given these tools, the approximation functions v& are taken locally in Xô(nk) and glued together through the
interfaces by some suitable matching conditions. First, we consider method (MO), investigated in [7,10,14,26].
Each edge r&,j inherits from £?k a one-dimensional partition tf. on which is built the space (see Fig. 1)

, ) , W et{3, ip^t eVPk(t):

ipt G VPk~i(t) if t is the first or the last element of Tkj \.

The global approximation space is given by

f **
XÔ(Q) = I vô = (vi)k E J\ X$(Ük) such that: 3<ps G Wô(S),\/k,j}

vl(v) = <PÖM, for v = v\ , or v = vï n
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Note that the Dirichlet boundary conditions are incorporated in Xs(Qk)- Since it is not embedded in Hj(O),
the space XÔ(Q) is equipped with the Hilbertian broken norm,

The discrete problem obtained by a Galerkin procedure then becomes: Find us G XS(Q) satisfying,

a(us,vs)= [fv6dx+[ gvôdT, VvôeXô(tt)< (2.1)
Jo. JrN

[
JrN

where

k*

The discretization is nonconforming, however, the discrete solution uö approximates the exact one u in an
optimal way (see [14,26]). More precisely, for fixed (pk)k there exists a constant C ~ C((pk)k) not depending
on (hk)k such that, if Uk = ̂ infe G HTfc(fi&), we have

, (2.2)
fc=i

with rjk = min(r/c,pfc -h 1). Under the same hypothesis, doing a full hp analysis gives the following resuit for the
method (MO) (see [25,26]),

k* LVk-l 3

k). (2-3)

3.

Below, we show how this estimate can be improved to replace the factor p£ by p£
k.

Remark 2.1. Estimate (2.2) is proved in [12], it is a correction of that firstly given in [14] where
was missing. This term appears when handling the consistency error when the décomposition is geometrically
non-conforming and is removed otherwise.

Remark 2.2. In [25,26], is also considered the case of non-quasiuniform meshes i^fc, where it is shown that
the h-convergence remains optimal and that exponential convergence is obtained when the hp method is used
over meshes geometrically refined near singularity points such as corners.

2.1. Improved hp estimate for (MO)

We use an interpolation argument to improve (2.3). For clarity alone, we take g = 0, but the resuit easily
extends to this case as well.

Theorem 2.3. Assume the exact solution u G H^(r2) of problem (1.1) is such thatuk ~ W|nfe € HTfc(f2fc),Tfc > 1.
Then, for any e > 0 there exists C(e) > 0 such that f or u6, the solution of (MO), with g — 0,

k* h7**"1

fc=l

where rjk = min(rk,Pk 4- 1).
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Proof. Let r = (rk)k a n d e D e given. For simplicity, we prove the theorem where r^ = r, ftfc = /i,pfe — p, Vfc(l <
A; < fc*). Define the space 1^(0) by

(2.5)

with the mesh-dependent norm,

£-1 _LL
(2.6)

Hère a — 1 — ̂ ~- and £ = min(cr,p + 1). By Theorem 3.1 of [11], we have the foliowing interpolation resuit

(2.7)
l — 6

Then, consider the linear operator T : u H-» U8. The stability condition says that T is continuous from F1(

^l i JÎ£)(fifc) (-Atxfc = /fc and p = 0),

||u - T(u)||. < C 53(ll«fcllHi(ni) + || Aufc||L2(nfc)) < C||u||Yi(n). (2.8)
fc=l

Next, choose r such that

3 a - I 3( r - l )
- < e, î.e, c r > ^ ~ i + 1.
4 T - 1 4e

Then

so that by (2.3), we have

\\u-T(u)\U<C\\u\\Y»{Q). (2.9)

Now let 6 = J5^, so that 1 + 9(a - 1) = r. Interpolating (2.8), (2.9), we have with rj = min(r,p + 1),

t ? ~ 1 i

_ . | log/i|2 l|Aw||L=(nfc))-

But (r — l)a = (r — 1) — e, which gives the resuit. D

Remark 2.4. Estimate (2.4) can be sharpened further. Indeed, it is readily proven that the Iog-extra-term
T~ 1

is actually | log/i/d 2^-1>, so that for large values for p this term has not significant effect on the numerical
expériences.
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3. THE hp MORTAR FINITE ELEMENT METHOD (MP)

We now define a different mortar method (MP), which enforces a different hp mortar matching condition as
foliows. On each face Tkî3, that is not a mortar, a projection operator TTĴ  , which is more spécifie to the p version
is defined. For clarity, we will study its properties on the référence segment A = (—1,1) and so the projection
will simply be denoted TT5, where ô = (ft,p). Similar results can be deduced on TT^ in a straightforward way.
Let tô be the triangulation of A characterized by the subdivision (&)o<i<z* with £o = — 1 etnd £t# = 1 for the
vertices v1 and v2 respectively and (U =]&Î&+I[)O<*<4*-I for its éléments. The space W6(A) is then defined
as,

WÔ(A) = {xô e îf (3), Vt G t\ x\t e Vp(t)}.

Next, we consider the operator

suchthat: Vx € H1 (A),

Vz(O < i < i*), n5
X&) = X(6), (3-1)

Jtt

G Pp-2(«). / (X " 7r*x)tf* dA = 0. (3.2)

Then, we have the following two technical lemmas.

L e m m a 3 .1 . The operator TTS IS such that: Vx G H1 (A),

/ (X - T'X) V ) ' àA - 0, V^5 G W6(A).
JA

Proof. Writing

f (X - JxYW'y dA = ̂ 2 [ (X - *SX)\¥)'
JA ^ Ju

and integrating by parts, we have,

The lemma follows by observing the fact that (tpt)/f £ *Pp-2(t)- D

Lemma 3.2. For any r > 1, the following estimâtes hold: Vx € ïir(A),

- Ux - **X)'\\VHA) < C^TTIIXIIH^A), (3.3)

xUfA>
"oo^/ P

where rj = min(r,p + 1).
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Proof. By Lemma (3.1) we obtain,

Prom the hp finite element we deduce,

The L2~estimate in 3.3 is then derived by the Aubin-Nitsche duality argument.

The H|o estimate in 3.4 is proved by using a Hilbertian interpolation argument of the L2 and H1 estimâtes.
Actually we have local estimâtes: \/z(0 < % < z*),

D

We now revisit the mortar discretization and use all the ingrédients to define the new approximation space,

k*

X5(Q) = \vs = (vö
k)k e TT Xö(Qk) such that: 3tpô e WÔ(S),

< 3 < 3*k), <\rH, = 4,3<

It is clear that the stability of the mortar method (MP) is maintained, meaning that any function vó is associated
with only one mortar function:

Vm( l<m<m*) , ¥>m=<m) | W

The discrete problem (MP) is then formulated in the same terms as in (2.1) where XÔ(Q) is replaced by XÔ(Q).
This problem is well posed and has a unique solution uö € Xs(Sl) that satisfies

\\u ||* < C (|| ƒ ||L2(H) + IMIL^IV)) •

It remains to carry out the numerical analysis of our technique.

4. hp ERROR ESTIMATE FOR (MP)

We need the Berg-Scott-Strang Lemma (see [16]) better known as the second Strang Lemma currently used
for non conforming methods (see [18,29]).

Lemma 4.1. We have the following error estimate for u6
} the discrete solution computed by the (MP) -mortar

method,

\\u-u%<c\ inf \\u-vs\U+ sup ^

The évaluation of the consistency error should be done with a little care, even though we follow the methodology
developed in [14].
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Lemma 4.2. Assume Uk = u\çik G Wk(Qk)^k > §, then

sup

Proof. Only for simplicity we examine the case where (hk,Pk)
L2(dük) we have: Wwö G

log —
hk

— (/i,p),VA;(l < k < k*). Since

dr

where tps is the mortar function associated to ws and (fc, j) ^ (A;(m), j(m)) indicates that Tkt] is not a mortar.
Assuming the matching conditions we dérive: Vips S L2(rfc)J) such that tp\t € PPfc_2(t),Vt S i j ^ ,

(4.1)

Then, as ~\rKj G HTfc i (r f c j), we have
dnk

inf
~l h~£

<C-
du

with r?fc = + | ) . Substituting this in (4.1) we get,

qw5 drpv
an

dnk

(4.2)

Proceeding as in [12], we observe that

E

Inserting this in (4.2) and choosing e = (log £) -1 complètes the proof. D

Remark 4.3. As in the case of estimâtes for method (MO), the log term in Lemma 4.2 can be eliminated for
the case that the subdomains form a geometrically conforming partition (see [12]). This also holds for all log
terms present in estimâtes in the sequel.
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Rernark 4.4. The limitation r)k < Pk + \ is intrinsically connected to the h version finite element approximation
results (in (4.1) the degree of ips\t is at most pk — 2). However, for concrete situations the exact solution is
often singular so that for p large enough (as is often the case in practice), we will have r^ < pu + \ j so that no
effective détérioration will occur. Even when the solution is smooth, we observe that the détérioration may not
be very apparent, as observed from the computations in Section 6.

We are left with the best approximation error which turns out to be optimal. The proof of such results
requires us to proceed as in [14].

Lemma 4.5. Assume Uk — u\nk € HTfe(îîfc),Tfc > | , then we have

k* h?"'1
inf \\u-vs\\* ^

with r}k = mm(rk,Pk + 1).

Proof. The proof takes two steps, we build up a mortar function tps G WS(S) that is close to U|5) then we
construct v6 associated with (pô that satisfies the expected error estimate.

i. For any m(l < m < m*) let us define (p^ = 7rf(m\ 3{m)(u\irn) an<^ se^ ^ = (^fn)™,- It is clear that <pô is
continuous and belongs to WS(S). Moreover, by Lemma 3.2 the following holds

m=l

5 = {wf)k with tuf%% . For any k(l < h < Je*) there exists w5 = {wf.)k with tuf G X5(17fc) satisfying (see [4]),

hVk~1

\ \ ô \ \ < C ^

vS
k=wi+rs

k,

Then, we need to modify ws in order to enforce the matching conditions. It is realized as follows

vS
k=wi

where the correcting term r^ € Xô(Qk) and: Vj(l < j <

It remains to prove that

which is done following the same lines as in [14] and using estimate (3.4). D

Putting together Lemmas 4.1, 4.2 and 4.5 produces the concluding resuit of the final convergence rate.

Theorem 4.6. Assume the exact solution u E H^(Q) of problem (1.1) is such that Uk ~ U\QK e H.rk(flk)^
fk ^ f * Then, the discrete solution uö G Xô(Cl) computed by the hp-version of the (MP) -mortar finite element
vérifies the following error estimate

k' log fi
ï

(4-3)

with rjk =
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Remark 4.7. The continuity matching at the vertices of the éléments of dilk can be relaxed as in [7] and [8],
and the global error estimate is preserved. As shown in [9] (see also [8]) this is very advisable when carrying
computations on parallel machines, as the communication time between different processors is reduced.

Remark 4.8. When, pk — 1, corresponding to the /i-fmite éléments, we recover the convergence rate ö(y/hk)
of the interpolation matching analyzed in [10]. Of course, in such a case it is better to use the mortar space
X6(Çl). In f act, in the régions where the ft-version is more efficient, we can use the matching conditions of
XÔ(Q), and if for some reason the p-version should be privileged we use those specified in X6(Çl).

Remark 4.9. For the p-version of the finite element method estimate (4.2) becomes

fe=l Pk

and is then optimal (up to | logp^l 2) as for the mortar spectral element method (see [12]).

4.1. Convergence results for weakly regular solutions

When the regularity exponent (rk)k is lower than or equal to §, deriving the error estimate requires some
more technical work as it resorts to Hilbertian interpolation argument. We need to assume that the domain Q
is star-shaped with respect to a bail. For clarity alone, we take g = 0.

Theorem 4.10. Assume the exact solution u G H^(fi) of problem (1.1) is such that Uk = u\Qk G HTfc(fîfc),
Tk < §• Then, the following estimate holds for method (MP)

hh
IL. ?,<5|| < f V -h
\\u-u \\*<^ lZ

rk-i Pk
(4-4)

We leave the proof to the reader as it is made using a Hilbertian interpolation argument exact ly as in Theo-
rem 2.3.

5. IMPROVED CONVERGENCE RATES FOR NON-QUASIUNIFORM MESHES

So far, the analysis carried out, though still valid for non quasi-uniform meshes, does not provide sharp
estimâtes for some interesting catégories of such meshes. Indeed, when the domain has corners, or has points
where the type of boundary condition changes, the solution will possess ra type singularities at such points (r
being the distance to the corner under considération). To deal with such singularities, highly graded meshes
should be used in each domain in the vicinity of such points. For instance, radical meshes are the optimal ones
to use in the h version, while geometrical meshes are optimal for the hp version (see e.g. [5]). To be a suitable
candidate for hp implementation, the mortaring technique should be robust when such meshes lie along the
interface. We therefore now consider these kind meshes for the (MP)-method.

Accordingly, let us consider the mortar projection ir6 on A = (—1,1) again, as defined by (3.1)-(3.2), but
with the triangulation t6 on A now being non-quasiuniform. (The degree p is assumed uniform on tö). Then
the following stability estimate on nô is the key resuit of this section (compare with (3.4)).

Proposition 5.1. Given e > 0, there exists C(e) independent of p such that: V% G HQ £ (A),
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Theproof of Proposition 5.1 requires some preliminary technical lemmas. Let us consider the operator TT̂  = TTĴ ,
it coincides with n6 when the mesh tô is reduced to only one element.

L e m m a 5.2. The followtng holds: V% € HQ £(t%)

The constant C %s independant of t%.

Proof. By scaling we can consider tz — (—1,1) and 7r£ is then denoted by TTP. The operator np satisfïes the
following stability inequalities (see [13], Lemma A.l): VV Ç. @(—l, 1)

Using density, Hilbertian interpolation arguments and observing that HQO(—1,1) C H2+£(=-l3l) complètes the
proof (actually back to t% we should have a bound like Cp^h^). D

Lemma 5.3. Let (p G HQ €(A) and letTph dénote tbs piecewise linear interpolant on t5. Then for any 0 < e < \,
there exists a constant C{e) such that

Proof We construct the square Q = (—2,2) x (—2,2) with A — (—1,1) imbedded along the side y = —2. Let
SF (Q) dénote a regular mesh on Q whose trace on A is tó. Extend ip by a norm-preserving operator to (pe

deflned on dQ such that

and let $ € H1+e(Q) be a stable extension of <pe e Hi+£(9Q), satisfying

HftllHi+.w) < C||v.llHi+. (ao) < C||v»llHi+.(A)- (5-3)

Define &h to be the piecewise linear interpolant at mesh points of SF (Q). Then by [17], for 0 < e < | ,

so that by (5.3),

The result then follows by the trace theorem since $f^ = (ph, D

Proof of Proposition 5.1: Let x be in HQ £(^4), and let xh be the linear interpolant of % at the nodes (£i)z of
ts. Then we may write
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Consequently, we have

Using estimate (5.1)

The proposition follows from the stability (5.2).
Using Proposition 5.1, together with an hp extension theorem that allows us to stably lift piecewise poly-

nomials from the boundary into the interior of a meshed domain (Theorem 3.2 of [26]), we then obtain the
following estimate. The proof is similar to that of Theorem 3.3 of [26]. For any e > 0, there exists constants
Ci, C2 = C2(^), independent of u, h and p such that

k* f)
||ii — u ||* < Cip^ inf y \\u — v ||H1+e(nfc) + Cl / inf ——

uK > fc=i P/e ^non mortar i3 •L -LOOV-L &,3Jj

(5.4)

where
k*

X£(Ü) = {v6 = (vô
k) e Y[ Xs(ttk)i v{(v) = u{v)^v vertex of !

fc=i

Note that the first term in (5.4) is simply the consistency error, and the bound in (5.4) for this term is established
in the proof of Lemma 4.2.

Theorem 5.4. Suppose that the hp version of the (MP) method is used, with meshes refined geometrically m
the vicmity ofvertices of the domain Q. Then, the exact solution u of (1.2) and the discrete solution u5 of (2.1)
satisfy the following estimate

u — u j|t "̂- \~s e > ( 0 . 0 )

where N is the total number of degrees of freedom and 7 is independant of N.

Proof. It follows from (5.4) and from the best approximation error of the ra type singularities by hp finite
éléments when geometrical meshes are used (see [5]). D

Remark 5.5. Using (5.4), it may be shown, as was done for (MO) in [26], that the h version with radical meshes
gives an optimal O(N~%) asymptotic rate for the approximation error when polynomials of degree p are used,
even if the solution has ra type singularities. However, the consistency error in this case will not be optimal,
but willbeO(iV-ï+ i) .
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r

O C

FIGURE 2. (a) L-Shaped Domains (b) Tensor product mesh for m = n = 2.

Remark 5.6. We note that although an optimal convergence estimate can be proved for (MP) in terms of the
hp version (estimate (4.2)), there is also a small loss of stability of Ofj)*), as suggested by Proposition 5.1 (this
loss is only in p, with full stability being observed in h). A similar situation occurs for (MO), where we have
established the optimal convergence estimate (2.4), but the analog of Proposition 4.1 in [26] shows a stability
loss of O(p4+£) (which cannot be avoided, see [27]). The explanation of this apparent contradiction émerges
when we consider (MO) and (MP) as mixed methods, with the mortar matching condition taken care by a
Lagrange Multiplier. Following the analysis in [8], it is seen that the inf-sup condition of the mixed method
behaves essentially like HTT^H"1

 k x = p~i for (MP) (p~t for (MO)). Hence while this loss of stability
(0

2
0(A),H0

2
0(^))( ) )

does not affect the primary unknown uô in the mixed method formulation, it may be expected to affect the
auxiliary Lagrange multiplier unknown.

6. NUMERICAL RESULTS

We present hère the results of the numerical experiments performed by solving the model problem (1.1)
on the L-shaped domain shown in Figure 2. We assume that this domain is subdivided in two rectangular
subdomains fii and SI2, by the interface AO. For our experiments we impose a Dirichlet boundary condition
at the single point C (TD = {C}) and Neumann boundary conditions on TM = dfl\TD- We employ a mixed
method framework (see [8]), and implement the method by relaxing the nodal matching constraints (see Remark
4.3). This is reasonable to do as the approximation error on the primary variable u improves because we have
a larger space to choose the infimum. Since the Lagrange multipliers are still approximated by discontinuous
piecewise polynomials of degree p — 2, the consistency error also does not deteriorate.

We test our method with two different exact solutions, one being smooth and the other unsmooth. For our
computations, we consider tensor product meshes where Q2 is divided into n2 rectangular finite éléments and
Çl\ is divided into 2m2 rectangular finite éléments (see Figure 2). In all the graphs, we have plotted (on a
log—log scale) the percentage relative broken H1 error |[.||* versus the total number of degrees of freedom of the
solution. These plots compare our new method (MP) to the conforming method (CF) as well as the mortar
method (MO).

We flrst choose ƒ so that the exact solution is smooth, and is given by

u(r,d)=r4cos (jpj-l.

We fix the grid with (m, n) = (4,6) (uniform mesh) and p erf or m a p version by increasing the polynomial degree
3 < p < 10, for both (MO) and (MP). Figure 3 shows that (MP) performs as good as (MO) and the conforming
method.

In Figure 4, are plotted the results for which the polynomial degree is fixed at p = 3 and different choices
of (m,n) e {(2,3), (4,6),..., (12,18)} are taken, keeping the mesh uniform in both subdomains. We observe
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P-version (Smooth)

103

Degrees of freedom

FIGURE 3. p-version for smooth solution.

h—vôrsion (Smooth)

FIGURE 4. h-vevsion for smooth solution, p — 3.

that both (MO) and (MP) give optimal O(hp) rate like the conforming method, though (MP) shows a small
détérioration, due to a degraded consistency error.

We now consider our exact solution to be unsmooth, given by,

«(r,0)=r*cos(y)-l.

It is well-known that the domain in Figure 2 will resuit in a strong r i singularity which occurs at the corner
O. The above solution models this. This limits the convergence to O(h^) when the quasiuniform h version is
used. Figure 5 shows that this is the rate observed when degree p — 3 éléments are used on a uniform mesh.

To improve convergence, we refine the mesh more strongly around O. Let (xl,yl) be the coordinates of the
mesh points along OC and OA. Then in the radical mesh we choose
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h-vers ion {Unsmooth) P

^ 1 0 °
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101 102 103 104
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FIGURE 5. h version for unsmooth solution.

P-version (Unsmooth)

\ ^ \

MO

- - - MP

— CF

103

Degrees of freedom

FIGURE 6. p version for unsmooth solution.

Geometnc Mesh (0 17 0 13)

10Z 103 104

Degrees of f reedom

FIGURE 7. hp version for unsmooth solution.
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where for p = 3, the optimum j3 is determined experimentally to be 3. (We repeat on Oi with m rather than n).
Figure 5 shows that even for such meshes, (MP) (and (MO)) still préserve the improved convergence observed
with the conforming method.

Next, we consider géométrie meshes, where the grid on Q2 is designed so that

xo=yo = 0, Xi -yi =(?2~\ i = h'" >n-

On the région fîi, we take m = n, but use a différent ai ^ o% to induce non-conformity. The optimal value
of ai,a2 is 0.15 (see [23]), but we take <j\ = 0.13 and a2 — 0.17. Figure 6 shows the typical p convergence for
increasing p for fixed number of layers n.

Finally, in Figure 7 we perform the hp version for (MP). Hère, we plot différent p versions, using différent
number of layers n in the géométrie mesh. We see the typical exponential hp behavior if we take the envelope
of thèse curves.

Acknowledgements. FBB would like to say "Merci" to Y. Maday for his support. The authors would like to thank
Professors S. Brenner and J. Xu for helpful discussions concerning Lemma 5.3.
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