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Abstract: We calculate tree level scattering amplitudes for open strings using the NSR

formalism. We present a streamlined symmetry-based and pedagogical approach to the com-

putations, which we first develop by checking two-, three-, and four-point functions involving

bosons and fermions. We calculate the five-point amplitude for massless gluons and find

agreement with an earlier result by Brandt, Machado and Medina. We then compute the

five-point amplitudes involving two and four fermions respectively, the general form of which

has not been previously obtained in the NSR formalism. The results nicely confirm expecta-

tions from the supersymmetric F 4 effective action. Finally we use the prescription of Kawai,

Lewellen and Tye (KLT) to compute the amplitudes for the closed string sector.

http://arxiv.org/abs/1507.02172v4
mailto:kbecker@physics.tamu.edu
mailto:mbecker@physics.tamu.edu
mailto:ilarion@math.harvard.edu
mailto:drobbins@physics.tamu.edu
mailto:aroyston@physics.tamu.edu


Contents

1 Introduction 2

2 The world-sheet set up 3

2.1 Open string vertex operators 4

2.2 The open-string Koba–Nielsen amplitude 5

2.3 A little current algebra 6

2.4 Two-point and three-point correlation functions 8

2.5 Three-point super-Yang–Mills amplitudes 9

3 Four-point open superstring amplitudes 11

3.1 Four vectors 11

3.2 Two vectors and two gauginos 14

3.3 Four gauginos 18

4 Comparison to ordered super-Yang–Mills amplitudes 19

4.1 The ordered Feynman rules 19

4.2 The amplitudes 21

4.3 Comparison to the string theory results 22

5 Five-point open superstring amplitudes 23

5.1 The 5-point vector amplitude 24

5.2 Two fermions and three gauge bosons 27

5.3 Comparison with super-Yang–Mills 30

5.4 The second color ordering 32

5.5 Four fermions and a gauge boson 34

5.6 Comparison with super-Yang–Mills 36

6 KLT relations for the closed amplitudes 39

6.1 Closed string vertex operators 39

6.2 KLT relations 40

A A study of integrals 44

A.1 Reduction to K3 and T 44

A.2 Reduction of the K integrals to K3 and T 47

A.3 The small momentum expansion 48

– 1 –



1 Introduction

Superstring theory is free of ultraviolet divergences, which is one important reason this theory

is the leading candidate to unify gravity with quantum field theory. The low energy limit

of superstring theory contains gauge theory as well as gravitational interactions. In the mid

1980s the tree-level string corrections to Yang–Mills theory [1, 2] and the Einstein–Hilbert

theory [1] were computed from tree-level scattering amplitudes. These corrections emerge at

order α′2 and α′3 respectively, both of which originate from a four-point amplitude. About

one year later the (partial) five-point amplitude for gluons was computed in [3] using open

string theory and an effective action was proposed based on this result, which included F 5 as

well as D2F 4 terms.

Renewed interest in calculating higher order effective actions for open string theory

emerged around the year 2000. There were basically three different groups working on this

problem using three different methods [4], [5, 6] and [7, 8]. In [4] four-dimensional N = 4

supersymmetric Yang–Mills theory in superspace was used to calculate correlation functions

and the corresponding effective action, including F 5 terms. In [5, 6] deformations of BPS

solutions of D = 10 super Yang–Mills theory were used to calculate the bosonic non-abelian

effective action to order α′3. The third group [7, 8] uses the complete five gluon scattering

amplitude to calculate the bosonic (non-abelian) effective action for open strings. Their result

for the F 5 term in the effective action does not agree with the earlier calculations in [3, 4]

but agrees with the work of [5, 6]. A supersymmetric version of the bosonic action appearing

in [5, 7] was presented in [9]. This action was successfully tested in [10].

N -point gluon tree amplitudes for N ≥ 5 were investigated systematically starting in

[11, 12], following a tour de force analysis of the six gluon amplitude in [13]. Supersymmetric

Ward identities were developed in [14, 15], in order to infer relations between gluon amplitudes

and amplitudes involving gauginos and scalars. With the exception of [13], which was carried

out in a 10D covariant language, these references work in a four-dimensional set-up where one

can take advantage of the spinor helicity formalism to write compact expressions for MHV

and NMHV amplitudes, generalizing known 4D field theory results. Five-point amplitudes

involving matter fermions on D-brane intersections were considered in this context in [16].

In recent times diverse tree level N -point functions have been calculated using the pure

spinor approach of Berkovits [17]. In particular the five-point amplitude was calculated in

[18], while tree level N -point functions for N > 5 were presented in [19, 20] (see also the

references therein). The results were expressed in terms of 10D superspace variables (or in

terms of partial amplitudes of the SYM field theory limit which were identified from their

representation in terms of 10D superspace variables described in [21]). Hence by expanding

in components one can recover amplitudes involving bosons and fermions. Indeed a large

number of such results are available on the website [22]. (See also [23].) A nice review of

NSR and pure spinor approaches for open string amplitudes can be found in [24].

Calculations of five-point tree-level amplitudes involving fermions have not been previ-

ously carried out directly in the 10D-covariant NSR formalism. It has however been shown
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in [25] that the pure spinor and NSR formalisms give equivalent prescriptions for obtaining

tree-level amplitudes with an arbitrary number of bosons and up to four fermions. Therefore

results for tree-level five-point amplitudes obtained via NSR should agree with the corre-

sponding pure spinor results available in the literature cited above. Nevertheless, we feel that

an independent computation within the NSR formalism is valuable. The amplitudes are quite

nontrivial and yet take a remarkably elegant form when expressed in terms of color-ordered

field theory sub-amplitudes.

Our first goal is to see how this structure comes about when carrying out a standard

NSR analysis, following the lead of [7, 26] in the five gluon case. To that end we begin by

using the NSR formalism to reproduce results for open-string tree-level N -point amplitudes

involving gauge bosons and gauginos for N = 2, 3, 4. These have previously appeared in

the literature and we generally find agreement. However, our expression for the four-point

amplitude containing two bosons and two fermions with a particular color ordering differs by

a relative sign as compared to the standard references [27, 28]. This typo has propagated

into some standard literature [29, 30], so we give an additional check of the result. Next we

verify the complete five-point amplitude involving gauge bosons that was originally obtained

by Brandt, Machado and Medina [7] and then simplified in [26]. We find agreement with

their result, which has also been independently checked in [13].

We then explicitly compute, for the first time in the literature, the five-point amplitudes

involving two and four fermionic fields respectively in a manifestly 10D-covariant NSR for-

malism. Our calculation agrees with the proposal based on supersymmetry given in [31],

which was expressed in terms of color-ordered field theory amplitudes. To show this, we

provide some details of the necessary field theory calculation, decomposing the field theory

amplitudes into a sum of diagrams, and providing a comparison of the pole structure with

the string amplitude result.

Finally, we generalize our calculations to the closed string sector using the KLT formal-

ism [29].

Our second goal is to illustrate a pedagogical approach to computing amplitudes in the

NSR formalism. Such computations quickly become opaque if carried out by brute force.

Fortunately, however, the structure is greatly clarified by symmetries. We systematically

use the Ward identities of the world-sheet current algebra corresponding to the space-time

Lorentz symmetry to organize the computations. The requisite technology, the principles of

which were laid out in classic references, e.g. [32–34], is developed in the next section.

2 The world-sheet set up

In this section we provide some basic world-sheet conventions as well as tools that we will

use for the computation of the amplitudes. Essentially we work with the conventions of [35].

We have the following fields on a Euclidean world-sheet with complex coordinates (z, z):

1. the matter fields are the bosons Xµ(z, z), and the fermions ψµ(z), ψ̃µ(z), where µ =

0, . . . , 9 is a space-time vector index;
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2. the ghosts are the usual c(z) and c̃(z) (we have no need of the b ghosts), as well as the

ϕ(z), ϕ̃(z) bosons from bosonizing the βγ ghosts: βγ ∼ ∂ϕ;

3. we also have the spin fields Θa(z) and Θ̃a(z) that have weights (5/8, 0) and (0, 5/8)

respectively and transform as Majorana spinors under spin(1, 9).

The basic fields have the familiar OPEs:

Xµ(z, z)Xν(0) ∼ −α
′

2
ηµν log |z|2 , ψµ(z)ψν(0) ∼ ηµν

z
,

c(z)c(0) ∼ z , esϕ(z)etϕ(0) = z−st : esϕ(z)etϕ(0) : . (2.1)

Here ηµν is the ten-dimensional Minkowski metric. Note that esϕ then has weight (−s−s2/2, 0)
and carries a ghost number s. Throughout the computations we will leave off normal ordering

symbols from the fields whenever it is not likely to cause confusion.

2.1 Open string vertex operators

We will, for the most part, work in the open string sector, where we insert the vertex operators

on the real line in the complex plane, z = z = t. It is then convenient to work in units of

α′ = 1/2, as the physical vertex operators for massless fields take a simple form in terms of

the (1,0) holomorphic currents

Va ≡ e−ϕ/2Θa , Uµ ≡ e−ϕψµ , Jαβ ≡ ψαψβ . (2.2)

The Va are fermionic, while the Uµ and Jαβ are bosonic operators. With these currents the

gaugino vertex operator with polarization ζa and momentum k is given by

V −1/2
g [ζ, k] = C1V [ζ]eik·X , V [ζ] ≡ ζaVa , (2.3)

while the vector boson vertex operator with polarization ξ and momentum k takes one of two

forms:

V −1
v [ξ, k] = C2U [ξ]eik·X , U [ξ] ≡ ξµUµ , (2.4)

and

V 0
v [ξ, k] = C2(iξµẊ

µ + kαξβJ
αβ)eik·X . (2.5)

Here Ẋµ = ∂tX
µ. As we will see below, the normalization constants Ci are determined by

unitarity of the amplitude to be

C1
2 = − g2√

2
, C2 = −g , (2.6)
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where g is the Yang–Mills coupling constant.1

These massless vertex operators are physical provided that the polarizations and momenta

obey the physical state conditions:

k · ξ = 0 , k/ζ = kµΓ
µζ = 0 , k2 = 0. (2.7)

We also have gauge transformations on the vector polarizations,

ξµ ∼ ξµ + λkµ, (2.8)

for arbitrary λ. In particular, gauge invariance of an amplitude implies that if we take

any vector polarization to be proportional to the corresponding momentum, then the entire

amplitude must vanish.

We should also say a word about our Dirac–Majorana matrices Γµ. These are real and

obey the usual Clifford algebra {Γµ,Γν} = 2ηµν1, and we have an anti-symmetric charge

conjugation matrix C that satisfies C2 = 1 and CΓµC = − tΓµ; the Dirac conjugate spinor

is given by ζ = tζC. The GSO projection requires us to take ζ to be a Majorana–Weyl

spinor, i.e. Γζ = ζ, where Γ is the ten-dimensional chirality matrix. Note that {C,Γ} = 0

and tΓ = Γ.

Finally, we recall that in order to fix the super-diffeomorphisms on the plane we must fix

the positions of three vertex operators and arrange the total. The operator esϕ carries picture

charge s, and we indicated the picture charges of the vertex operators by a superscript.

2.2 The open-string Koba–Nielsen amplitude

The correlators for the bosonic fields are easily evaluated from the general formula for prod-

ucts of exponentials and derivatives of X.2 We will quote the results we will need for our

computation and in the process introduce some convenient notation.

Let us introduce a useful short-hand: we will often abbreviate the operator and its

insertion by the same label; e.g. eik1·X(z1, z1) will simply be eik1·X . This will reduce the

clutter and with any luck will not increase confusion. Let

qij ≡ ki · kj , ∆i
j ≡ ξi · kj , ωij ≡ ξi · ξj . (2.9)

We then have the following familiar results for the open bosonic amplitudes. First, we have

the “s-point tachyon amplitude”

Ts ≡ 〈eik1·X · · · eiks·X〉 = C3(2π)
10δ10(

∑
i ki)

∏
i<j |zij |qij , (2.10)

1Since the amplitude always involves an even number of fermions we need only determine C1
2.

2See, for instance, chapter 6 of [36].
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where unitarity fixes

C3 =
2i

g2
. (2.11)

In what follows we will leave off the factor of (2π)10δ10(
∑

i ki) when writing the amplitude.

Next, we have

T (2)
s ≡ 〈eik1·X [iξ2 · Ẋeik2·X ]2 · · · eiks·X〉 = −Ts

∑

l 6=2

∆2
l

zl2
. (2.12)

We will also have use for

T (2,3)
s ≡ 〈eik1·X [iξ2 · Ẋeik2·X ]2[iξ

3 · Ẋeik3·X ]3 · · · eiks·X〉 = Ts


ω

23

z223
+

∑

l 6=2,m6=3

∆2
l∆

3
m

zl2zm3


 ,

(2.13)

and

T (2,3,4)
s ≡ 〈eik1·X [iξ2 · Ẋeik2·X ]2[iξ

3 · Ẋeik3·X ]3[iξ
4 · Ẋeik4·X ]4 · · · eiks·X〉

=


ω

23

z223

∑

l 6=4

∆4
l

z4l
+
ω24

z224

∑

l 6=3

∆3
l

z1l
+
ω34

z234

∑

l 6=2

∆2
l

z2l
+

∑

l 6=2,m6=3,n 6=4

∆2
l∆

3
m∆4

n

z2lz3mz4n


 Ts . (2.14)

It is useful to keep in mind that the physical state conditions and momentum conservation

imply that for every i,

∆i
i = 0 ,

∑

j

∆i
j = 0 . (2.15)

2.3 A little current algebra

The world-sheet correlation functions that we will need can be computed in terms of the

free-field presentation. However, such computations quickly become unwieldy, and to tame

them it is useful to introduce the structure of a Kac–Moody (KM) algebra.

Recall that a holomorphic KM algebra is generated by (1, 0) conserved currents Ja(z),

where a runs over the adjoint of a Lie algebra g.3 The currents have the OPE

Ja(z)Jb(0) ∼ kab

z2
+
fabc
z
Jc(0) , (2.16)

where kab is a metric on g and fabc are the structure constants. The remaining fields of the

CFT assemble into KM-primary fields Φ in representations of g, as well as their descendants.

3A pedagogical presentation may be found in Chapter 11 of [35], as well as in [37].
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The primary fields in representation r are characterized by the OPE

Ja(z)Φ(0) ∼ ta
r
· Φ
z

, (2.17)

where ta
r
denote the (anti-Hermitian) generators of g in representation r.

The correlation functions of KM currents and KM primaries satisfy well-known Ward

identities, and we will use these to reduce some complicated correlators to simpler ones. For

instance, we have

〈Ja(z)Φ1(w1)Φ2(w2) · · ·Φn(wn)〉 =
n∑

i=1

1

z − wi
〈Φ1(w1) · · · tari · Φi(wi) · · ·Φn(wn)〉 . (2.18)

The situation is slightly modified in the presence of a quasi-primary KM field like a

current, but the Ward identity is still determined by the OPE. For example, we find

〈Ja(z)Jb(u)Φ1Φ2 · · ·Φn〉 =
fabc
z − u

〈Jc(u)Φ1Φ2 · · ·Φn〉+
kab

(z − u)2
〈Φ1Φ2 · · ·Φn〉

+

n∑

i=1

1

z − wi
〈Jb(u)Φ1 · · · tari · Φi · · ·Φn〉 . (2.19)

In our case, the relevant currents are the Lorentz currents Jαβ = ψαψβ with OPE

Jγδ(z)Jαβ(0) ∼ ηαδηβγ − ηαγηβδ

z2
+

1

z

[
ηαδJγβ(0) − ηβδJγα(0)− ηαγJδβ(0) + ηγβJδα(0)

]
.

The Jγδ generate the action of the global Lorentz symmetry so(1, 9) on the fermions. To see

this, let ωαβ be any anti-symmetric matrix. Then

−1

2
ωαβJ

αβ(z)ψµ(0) ∼ 1

z
ωµ

νψ
ν(0) . (2.20)

The Lorentz symmetry then fixes the OPE with the spin-field operators Va as well:

−1

2
ωαβJ

αβ(z)Va(0) ∼
1

z

[
−1

2
ωαβVb(0)Σ

αβ
ba

]
, (2.21)

where

Σαβ ≡ 1

4
[Γα,Γβ ] (2.22)

is the Lorentz generator in the Majorana representation.4 This presentation still suffers from

an over-abundance of indices. To cure this, we observe that for our applications the Jαβ are

4The Lorentz transformation of a spinor, such as the polarization ζ, is given by δωζ = 1

2
ωαβΣ

αβζ. The spin

fields then naturally transform as ζ = tζC since they are contracted with ζ to form a Lorentz scalar.
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always contracted into

m
i
αβ ≡ 1

2

(
kiαξ

i
β − kiβξ

i
α

)
, (2.23)

and so we define

J [m](z) ≡ mαβJ
αβ(z) , (2.24)

which have the OPEs

J [mi](zi)J [m
j ](zj) ∼

2 tr(mi
m

j)

z2ij
+

4

zij
J [mij ](zj) , (2.25)

where we use η to contract indices and anti-symmetrize:

tr(mi
m

j) ≡ ηαβmi
αγη

γδ
m

j
δβ , (mij)αβ ≡ 1

2

[
m

i
αγη

γδ
m

j
δβ − (α↔ β)

]
. (2.26)

In applying the Ward identities we use the OPEs

J [mi](zi)U [ξk](zk) ∼
2

zik
U [miξk](zk) , J [mi](zi)V [ζk](zk) ∼

1

2zik
V [m/ζ](zk) , (2.27)

where

m/i = mi
αβΓ

αβ = k/iξ/i = −ξ/ik/i , (2.28)

and as usual Γαβ = 1
2(Γ

αΓβ − ΓβΓα). Note that the JV OPE determines

ψµ(z1)Θa(z2) ∼ ± 1√
2z12

Θb(z2)Γ
µ
ba . (2.29)

2.4 Two-point and three-point correlation functions

Consider the sector of the world-sheet CFT generated by the ψµ and the βγ ghost ϕ. Almost

all correlation functions in this sector that are relevant to our computations can be reduced

by the Lorentz KM Ward identities to two- and three-point functions. (The one exception is

the 4-V correlator given in formula (3.35) below which does not involve any currents.) We

will present these in this section.

As a first step, we compute the two-point functions of U and V currents. First, up to

overall normalization the two-point function of the Uµ is determined by conformal invariance

and representation theory:

〈Uµ(z1)Uν(z2)〉 = −η
µν

z212
, (2.30)

where zij ≡ zi − zj . Conformal invariance fixes the position dependence, and Lorentz invari-
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ance determines the form of the coefficients: Sym2(10) contains a unique trivial representation

corresponding to η. The remaining overall constant can be absorbed into normalization con-

stants of the vertex operators, which are in turn fixed by unitarity of the S-matrix. Note that

the two-point function of the Va is necessarily zero on the disk or sphere, since it has a total

ghost number −1 6= −2.

Next, we consider the three-point function

〈Va(z1)Uµ(z2)Vb(z3)〉 = ± (CΓµ)ab√
2z12z13z23

. (2.31)

The position-dependence is once again fixed by conformal invariance, while the coefficient is

constrained by the OPE in (2.29); we absorb the sign ambiguity into a sign of the Γµ and

obtain

〈U [ξi]U [ξj ]〉 = −ω
ij

z2ij
, 〈V [ζ1]U [ξ2]V [ζ3]〉 = ζ

3
ξ/2ζ1√

2z12z13z23
. (2.32)

Finally, we consider the Va(z1)Vb(z2) OPE. By splitting the operators into the ghost e−ϕ/2

and spin field contributions, we arrive at

Va(z1)Vb(z2) ∼
Cbae−ϕ(z2)

z
3/2
12

+
(CΓµ)ba√

2z12
Uµ(z2) . (2.33)

The second term is consistent with the three-point function (2.31) and the two-point func-

tion (2.30), as it should be. Note that since {Γ, C} = 0, the first term in the OPE will vanish

when contracted with a pair of Majorana–Weyl spinors of the same chirality. This will play

an important role in computations involving 4 gaugino vertex operators.

2.5 Three-point super-Yang–Mills amplitudes

Armed with this knowledge, we embark on our first set of open string amplitudes: the three-

point functions. We begin with the color-ordered three-vector amplitude, which we write

as

A(1, 2, 3) = 〈c1V −1
v [ξ1, k1]c2V

0
v [ξ

2, k2]c3V
−1
v [ξ3, k3]〉. (2.34)

Factorizing the amplitude into c, X, and current algebra sectors, we obtain

A(1, 2, 3) = C2
3〈c1c2c3〉

[
〈U [ξ1]U [ξ3]〉T (2)

3 + 〈U [ξ1]J [m2]U [ξ3]〉T3
]
. (2.35)

The Ward identity yields the only so-far undetermined correlator:

〈U [ξ1]J [m2]U [ξ3]〉 = 2

z21
〈U 1[m

2ξ1]U [ξ3]〉+ 2

z23
〈U 3[m

2ξ3]U [ξ1]〉 = 2 tξ3m2ξ1

z12z13z23
. (2.36)
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Here the short-hand notation is

tξ3m2ξ
1 = ξ3µη

µα
m

2
αβη

βνξ1ν . (2.37)

Using 〈c1c2c3〉 = z12z13z23 , we obtain

A(1, 2, 3) = z12z13z23 ×
[
−ω

13

z213

(
−∆2

1

z12
− ∆2

3

z32

)
+

2 tξ3m2ξ1

z12z13z23

]
× T3. (2.38)

Since there are no non-vanishing Lorentz-invariants for massless 3 particle kinematics, we

have T3 = C3; finally, using ∆2
3 +∆2

1 = 0, and setting kij ≡ ki − kj , we find

A(1, 2, 3) = C2
3C3

[
ω13∆2

1 + 2 tξ3m2ξ1
]

= −C2
3C3

2

[
ξ1 · k23ξ2 · ξ3 + ξ2 · k31ξ3 · ξ1 + ξ3 · k12ξ1 · ξ2

]
. (2.39)

This is indeed the familiar color-ordered 3-point Yang–Mills amplitude with Yang–Mills cou-

pling g provided we set

C2
3C3 = −2ig (2.40)

and obtain

A(1, 2, 3) = AYM(1, 2, 3) = +ig
[
ξ1 · k23ξ2 · ξ3 + ξ2 · k31ξ3 · ξ1 + ξ3 · k12ξ1 · ξ2

]
. (2.41)

This agrees with [30] equation 7.4.40 once momentum conservation and physical state con-

ditions are taken into account. All of this notation is a very heavy-handed way to derive

this familiar result, but it will be of great help in organizing the computation of higher point

amplitudes.

Next, we compute the amplitude with two gauginos and one vector boson. We will

distinguish the gauginos by a ˜ over the corresponding index in the ordered amplitude, so

that we are interested in A(1̃, 2, 3̃). All the work is already done:

A(1̃, 2, 3̃) = 〈c1V −1/2
g [ζ1, k1]c2V

−1
v [ξ2, k2]c3V

−1/2
g [ζ3, k3]〉

= C2C1
2〈c1c2c3〉〈V [ζ1]U [ξ2]V [ζ3]〉T3 =

C2C1
2C3√
2

ζ
1
ξ/2ζ3 . (2.42)

We set

C2C1
2C3 = i

√
2g , (2.43)

so that the computation yields the standard 3-point super Yang–Mills (sYM) amplitude:

A(1̃, 2, 3̃) = AYM(1̃, 2, 3̃) = +igζ
1
ξ/2ζ3 , (2.44)
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see e.g. [30] formula 7.4.31.

3 Four-point open superstring amplitudes

In this section we recall the tree-level four-point amplitudes. The purpose is two-fold. First,

we will gain familiarity with the condensed notation and techniques. Second, the explicit

results will be useful in the following.

Before we jump into the details, we mention the massless kinematics in terms of the

Mandelstam variables

s = −2q12 = −2q34 , t = −2q23 = −2q14 , u = −2q13 = −2q24 , (3.1)

which satisfy s + t + u = 0. We will often find it convenient to work with q12 and q23 as

independent kinematic variables.

3.1 Four vectors

We write the color-ordered four-vector amplitude as

A(1, 2, 3, 4) =

∫ z3

z1

dz2〈c1V −1
v [ξ1, k1]V

0
v [ξ

2, k2]c3V
0
v [ξ

3, k3]c4V
−1
v [ξ4, k4]〉 . (3.2)

Some comments are due regarding the distribution of ghost insertions and picture choices.

Three ghost insertions are required on the half-plane to soak up the residual PSL(2,R) of

Diff ×Weyl. In (3.2) we have chosen to fix positions z1,3,4. In general, for a tree-level n-point

correlator we will follow the common convention of fixing z1, zn−1, zn. The remaining positions

will be integrated over, subject to the condition that the specified ordering is preserved. In

(3.2) for example, we integrate z2 over the range z1 ≤ z2 ≤ z3. The picture charges can be

distributed arbitrarily, subject to the constraint that they sum to −2 [35]. The amplitude

is independent of this choice. Comparing different choices can lead to interesting integral

identities, especially for higher point functions, which can in turn be helpful in simplifying

expressions. See e.g. [13]. We will make choices that streamline the computation as much as

possible.

Writing the correlator as a sum of terms, factorized into ghost, bosonic, and current

algebra sectors, we have

A(1, 2, 3, 4) = C2
4

∫ z3

z1

dz2〈c1c3c4〉
[
〈U [ξ1]U [ξ4]〉T (2,3)

4 + 〈U [ξ1]J [m2]U [ξ4]〉T (3)
4 +

+ 〈U [ξ1]J [m3]U [ξ4]〉T (2)
4 + 〈U [ξ1]J [m2]J [m3]U [ξ4]〉T4

]
. (3.3)

Making use of the Ward identity (2.19) together with the OPE’s (2.25), (2.27), the new
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correlator appearing in the last term of (3.3) is

〈U [ξ1]J [m2]J [m3]U [ξ4]〉 = 2 tr(m2
m

3)

z223
〈U [ξ1]U [ξ4]〉+ 4

z23
〈U [ξ1]J3[m

23]U [ξ4]〉+

+
2

z21
〈U1[m

2ξ1]J [m3]U [ξ4]〉+ 2

z24
〈U [ξ1]J [m3]U 4[m

2ξ4]〉 . (3.4)

Then with (2.32) and (2.36) this is simplified to

〈U [ξ1]J [m2]J [m3]U [ξ4]〉 = − 2 tr(m2
m

3)ω14

z223z
2
14

+
8 tξ4m23ξ1

z23z13z14z34
− 4 tξ4m3

m
2ξ1

z12z13z14z34
+

− 4 tξ4m2
m

3ξ1

z24z13z14z34

= − 2 tr(m2
m

3)ω14

z223z
2
14

+ tξ4
[

4m2
m

3

z13z14z23z24
− 4m3

m
2

z12z14z23z34

]
ξ1. (3.5)

In the last line we wrote the result in a way that makes the expected symmetry under the

separate exchanges 1 ↔ 4 and 2 ↔ 3 apparent. Collecting the remaining pieces, the full

amplitude is

A(1, 2, 3, 4) = C2
4

∫ z3

z1

dz2

{
− ω14

z241

[
ω23

z232
+

(
−∆2

1

z21
+

∆2
3

z32
+

∆2
4

z42

)(
−∆3

1

z31
− ∆3

2

z32
+

∆3
4

z43

)]
+

+
2 tξ4m2ξ1

z21z41z42

(
−∆3

1

z31
− ∆3

2

z32
+

∆3
4

z43

)
+

2 tξ4m3ξ1

z31z41z43

(
−∆2

1

z21
+

∆2
3

z32
+

∆2
4

z42

)
+

− 2 tr(m2
m

3)ω14

z232z
2
41

+
4 tξ4m2

m
3ξ1

z31z41z32z42
− 4 tξ4m3

m
2ξ1

z21z41z32z43

}
× (−z31z41z43)× T4 . (3.6)

Worldsheet diffeomorphism invariance guarantees that the amplitude is independent of

our choice for z1,3,4. At this point there is nothing to gain by leaving them arbitrary, so we

make the conventional choice that brings the integral into a well-known form:

z1 = 0 , z3 = 1 , z4 → ∞ . (3.7)

We also set z2 ≡ x ∈ (0, 1). Using the kinematic relations in (3.1), we find that the four-

tachyon correlator is finite as z4 → ∞ and given by

T4 = C3x
q12(1− x)q23 (1 +O(1/z4)) . (3.8)
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The integrand involves four types of denominator structure:

A(1, 2, 3, 4) = C2
4C3

∫ 1

0
dx tq12(1− x)q23

{
N1

(1− x)2
+

N2

x(1− x)
+

N3

1− x
+
N4

x

}

≡ C2
4C3

4∑

i=1

NiIi , (3.9)

where the numerators are

N1 = ω14ω23(1− q23) ,

N2 = − ω12ω34q23 − ω12∆3
2∆

4
1 − ω23∆1

2∆
4
3 + ω34∆

1
2∆

2
3 + ω41∆2

1∆
3
2 − ω24∆1

2∆
3
2 ,

N3 = ω13ω24q23 + ω23∆1
3∆

4
2 + ω34∆1

3∆
2
3 − ω41∆2

3∆
3
1 + ω13∆2

3∆
4
1 − ω24∆1

3∆
3
2 ,

N4 = ω12∆3
1∆

4
2 − ω34∆1

3∆
2
1 + ω41∆2

1∆
3
1 + ω13∆2

1∆
4
3 − ω24∆1

2∆
3
1 . (3.10)

In order to obtain these results we replaced the pieces of (3.6) involving m’s with equivalent

expressions in terms of the kinematic invariants (2.9); e.g.

2 tξ4m2ξ1 = ω12∆4
2 − ω24∆1

2 ,

2 tr(m2
m

3) = ∆3
2∆

2
3 − ω23q23 ,

4 tξ4m2
m

3ξ1 = ω13∆2
3∆

4
2 − ω23∆1

3∆
4
2 − ω13ω24q23 + ω24∆1

3∆
3
2 . (3.11)

The integral I2 is the standard Euler beta function

I2 = B(q12, q23) =
Γ(q12)Γ(q23)

Γ(q12 + q23)
, (3.12)

and the other integrals are simply related to it:

I1 =
q12

q23 − 1
I2 , I3 =

q12
q12 + q23

I2 , I4 =
q23

q12 + q23
I2 . (3.13)

Hence the amplitude can be put in the form of a kinematic factor times the beta function

I2. Momentum conservation and the mass shell condition imply q12 + q23 = −q24 = −q13.
By using (3.1), along with (2.15), we express the kinematic factor in the manifestly crossing-

symmetric form given by Green and Schwarz [27, 28], or [30] formula 7.4.44:

A(1, 2, 3, 4) =
C2

4C3

q13
B(q12, q23)×K(1, 2, 3, 4) , (3.14)

– 13 –



with

K(1, 2, 3, 4) ≡ −
{
ω12ω34q23q13 + ω23ω41q12q13 + ω13ω24q12q23+

+ q12
[
ω23∆4

2∆
1
3 + ω41∆2

4∆
3
1 + ω13∆4

1∆
2
3 + ω24∆3

2∆
1
4

]
+

+ q23
[
ω12∆3

1∆
4
2 + ω34∆1

3∆
2
4 + ω13∆2

1∆
4
3 + ω24∆1

2∆
3
4

]
+

+ q13
[
ω12∆4

1∆
3
2 + ω34∆2

3∆
1
4 + ω23∆1

2∆
4
3 + ω41∆3

4∆
2
1

]}
, (3.15)

or equivalently

K(1, 2, 3, 4) = − 1

4

(
tu ω12ω34 + suω23ω41 + st ω13ω24

)
+

+
s

2

[
ω23∆4

2∆
1
3 + ω41∆2

4∆
3
1 + ω13∆4

1∆
2
3 + ω24∆3

2∆
1
4

]
+

+
t

2

[
ω12∆3

1∆
4
2 + ω34∆1

3∆
2
4 + ω13∆2

1∆
4
3 + ω24∆1

2∆
3
4

]
+

+
u

2

[
ω12∆4

1∆
3
2 + ω34∆2

3∆
1
4 + ω23∆1

2∆
4
3 + ω41∆3

4∆
2
1

]
. (3.16)

It is not difficult to see that the amplitude has the Z4 cyclic symmetry that we expect

from the color-ordered open string amplitude. The polarization factor, (3.16), and the stringy

factor q−1
13 B(q12, q23) independently carry the symmetry. One must make use of the mass shell

constraints, (3.1), to see the latter. Of course the full amplitude is obtained by summing all

cyclically-inequivalent permutations of the color-ordered amplitudes and will have the full S4
permutation symmetry on the gauge boson lines.

In fact the polarization factor (3.16) itself carries the full S4 symmetry, as pointed out

by [27, 28]. While a priori this needn’t have been the case, it plays an important role in the

KLT relations for four-point amplitudes.

3.2 Two vectors and two gauginos

Next we consider the case where particles 1 and 4 are gauginos. We use vertex operators

(2.3) with picture charge −1/2. Particles 2 and 3 are gauge bosons, and we take their

vertex operators in the 0 and −1 pictures respectively. Hence the color-ordered amplitude we

consider is

A(1̃, 2, 3, 4̃) = C1
2C2

2

∫ z3

z1

dz2〈c1V −1/2
g [ζ1, k1]V

0
v [ξ

2, k2]c3V
−1
v [ξ3, k3]c4V

−1/2
g [ζ4, k4]〉

= C1
2C2

2

∫ z3

z1

dz2〈c1c3c4〉
[
〈V [ζ1]U [ξ3]V [ζ4]〉T (2)

4 +

+ 〈V [ζ1]J [m2]U [ξ3]V [ζ4]〉T4
]
. (3.17)

– 14 –



We use the Ward identity with (2.27) and (2.32) to evaluate the new correlator:

〈V [ζ1]J [m2]U [ξ3]V [ζ4]〉 = 1

2z21
〈V 1[m/

2ζ1]U [ξ3]V [ζ4]〉+ 2

z23
〈V [ζ1]U3[m

2ξ3]V [ζ4]〉+

+
1

2z24
〈V [ζ1]U [ξ3]V 4[m/

2ζ4]〉

= − ζ
1
m/2ξ/3ζ4

2
√
2z21z13z14z34

+
ζ
1
(ω23k/2 −∆3

2ξ/
2)ζ4√

2z23z13z14z34
+

ζ
1
ξ/3m/2ζ4

2
√
2z24z13z14z34

.

(3.18)

Note in order to use formula (2.32) in the case of the first term, one uses m/ζ ≡ t(m/ζ)C =

− tζCm/ = −ζm/. Hence the amplitude is

A(1̃, 2, 3, 4̃) =
C1

2C2
2

√
2

∫ z3

z1

dz2

[
ζ
1
ξ/3ζ4

z31z41z43

(
−∆2

1

z21
+

∆2
3

z32
+

∆2
4

z42

)
+

ζ
1
m/2ξ/3ζ4

2z21z31z41z43
+

+
ζ
1
(ω23k/2 −∆3

2ξ/
2)ζ4

z32z31z41z43
+

ζ
1
ξ/3m/2ζ4

2z42z31z41z43

]
× (−z31z41z43)× T4 . (3.19)

We fix z1,3,4 to the values (3.7) and use (3.8). In this case there are only two denominator

types, corresponding to the integrals I3,4 of (3.9). We find

A(1̃, 2, 3, 4̃) = − C1
2C2

2C3√
2

∫ 1

0
dxxq12(1− x)q23

{
Ñ3

1− x
+
Ñ4

x

}

=
C1

2C2
2C3√
2

B(q12, q23)×
{
q12
q13

Ñ3 +
q23
q13

Ñ4

}
, (3.20)

with

Ñ3 := ζ
1
[
∆2

3ξ/
3 + ω23k/2 −∆3

2ξ/
2
]
ζ4 , Ñ4 := ζ

1
[
−∆2

1ξ/
3 + 1

2m/
2ξ/3

]
ζ4 . (3.21)

Therefore we have

A(1̃, 2, 3, 4̃) =
C1

2C2
2C3

2
√
2

B(q12, q23)

q13
K(1̃, 2, 3, 4̃) , with

K(1̃, 2, 3, 4̃) ≡ 2q12ζ
1
[
∆2

3ξ/
3 −∆3

2ξ/
2 + ω23k/2

]
ζ4 − 2q23ζ

1
[
∆2

1ξ/
3 − 1

2
k/2ξ/

2ξ/3
]
ζ4 . (3.22)

We used m/2 = k/2ξ/
2, which follows from the physical state conditions and (2.23).

In order to compare this result with [28], we use momentum conservation and the physical
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state conditions to write

ζ
1
k/2ζ

4 = −ζ1k/3ζ4 ,
ζ
1
k/2ξ/

2ξ/3 = −ζ1(k/3 + k/4)ξ/
2 = ζ

1
[
ξ/2(k/3 + k/4)− 2(∆2

3 +∆2
4)
]
. (3.23)

In particular, the second relation leads to some cancelation of terms in K(1̃, 2, 3, 4̃) upon

using ∆2
1 +∆2

3 +∆2
4 = 0. Setting q12 = −s/2 and q23 = −t/2 as well, we have

K(1̃, 2, 3, 4̃) = −s ζ1
[
∆2

3ξ/
3 −∆3

2ξ/
2 − ω23k/3

]
ζ4 − t

2
ζ
1
ξ/2(k/3 + k/4)ξ/

3ζ4 , (3.24)

This differs from equation (4.33) of reference [28], (following from equation (4.13) of reference

[27]), by the relative sign of the s and t terms. The overall prefactor of K is of course a matter

of definition since there is an ambiguity in how we factorize A(1̃, 2, 3, 4̃) into a “polarization

factor” and the remaining stringy content. The relative sign between the two terms in K

however is physical.

We claim there is a typo in [27, 28] and that (3.24) is the correct expression. Since this

typo has propagated into some standard references, e.g. [29] and 7.6.46 of [30], we give a

quick check of the result. Longitudinal gauge bosons should decouple from the color-ordered

amplitude, and this requires the relative plus sign between the s and t terms. To see this, set

ξ2 = k2 and ξ3 = k3. Using the physical state conditions, the two terms in (3.24) reduce to,

respectively, − st
2 ζ

1
k/2ζ

4 and st
2 ζ

1
k/2ζ

4; gauge invariance only holds for the relative plus sign

as in (3.24).

With this corrected sign, the kinematic factor is actually even under exchange of the two

bosons, and odd under exchange of the fermions, i.e.

K(1̃, 3, 2, 4̃) = K(1̃, 2, 3, 4̃), K(4̃, 2, 3, 1̃) = −K(1̃, 2, 3, 4̃). (3.25)

The second color ordering

In the two-vector, two-gaugino case we are considering there is a second disk amplitude that

cannot be obtained from the previous computation by either cyclically permuting the particle

labels or reflecting them about a bisecting line. In the previous computation the ordering

around the disc was bffb where “b” stands for boson and “f” for fermion. The second

inequivalent amplitude corresponds to the ordering fbfb and is given by

A(1̃, 2, 3̃, 4) = C1
2C2

2

∫ z3

z1

dz2〈c1V −1/2
g [ζ1, k1]V

0
v [ξ

2, k2]c3V
−1/2
g [ζ3, k3]c4V

−1
v [ξ4, k4]〉

= − C1
2C2

2

∫ z3

z1

dz2〈c1c3c4〉
[
〈V [ζ1]V [ζ3]U [ξ4]〉T (2)

4 +

+ 〈V [ζ1]J [m2]V [ζ3]U [ξ4]〉T4
]
. (3.26)
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In comparing (3.26) with (3.17), we see that the only differences are an overall minus sign

and that particle labels 3 and 4 are exchanged in the ψ matter correlators, while the ghost

and Koba–Nielson amplitudes remain the same. The minus sign is due to the odd number

of exchanges of the worldsheet fermions ci and V [ζj] necessary to factorize the ghost and

matter sectors. Since V [ζ] and U [ξ] commute,

A(1̃, 2, 3̃, 4) = − C1
2C2

2

√
2

∫ z3

z1

dz2

[
ζ
1
ξ/4ζ3

z14z13z34

(
−∆2

1

z21
+

∆2
3

z32
+

∆2
4

z42

)
+

ζ
1
m/2ξ/4ζ3

2z21z14z13z34
+

+
ζ
1
(ω24k/2 −∆4

2ξ/
2)ζ3

z42z14z13z34
+

ζ
1
ξ/4m/2ζ3

2z32z14z13z34

]
× (z13z14z34)× T4 . (3.27)

Plugging in (3.7) and (3.8) we have

A(1̃, 2, 3̃, 4) =
C1

2C2
2C3√
2

∫ 1

0
dxxq12(1− x)q23

{
Ñ ′

3

1− x
+
Ñ ′

4

x

}

= − C1
2C2

2C3

2
√
2

B(q12, q23)×
{
q12
q13

Ñ ′
3 +

q23
q13

Ñ ′
4

}
, (3.28)

with

Ñ ′
3 := −ζ1

[
2∆2

3ξ/
4 + ξ/4m/2

]
ζ3 , Ñ ′

4 := ζ
1
[
2∆2

1ξ/
4 −m/2ξ/4

]
ζ3 . (3.29)

Hence

A(1̃, 2, 3̃, 4) = − C1
2C2

2C3

2
√
2

B(q12, q23)

q13
K(1̃, 2, 3̃, 4) , with

K(1̃, 2, 3̃, 4) ≡ − q12ζ
1
ξ/4

[
2∆2

3 + k/2ξ/
2
]
ζ3 + q23ζ

1
[
2∆2

1 − k/2ξ/
2
]
ξ/4ζ3 . (3.30)

Via the same sort of manipulations as in (3.23) we find that the polarization tensor can also

be written as

K(1̃, 2, 3̃, 4) =
s

2
ζ
1
ξ/4(k/2 + k/3)ξ/

2ζ3 +
t

2
ζ
1
ξ/2(k/3 + k/4)ξ/

4ζ3 , (3.31)

in agreement with [28] and 7.4.47 of [30]. In fact, this kinematic factor matches the factor

that appeared in the first ordering; with some now-familiar manipulations using momentum

conservation and physical state conditions we can show that

K(1̃, 2, 3̃, 4) = K(1̃, 2, 4, 3̃). (3.32)

As such, it also inherits the symmetries (3.25), i.e. it is even under exchange of the vectors

and odd under exchange of the gauginos. The amplitudes have prefactors proportional to

B(q12, q23)/q13 and B(q12, q24)/q14 respectively. Since these are different, the amplitudes
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themselves still disagree,

A(1̃, 2, 3̃, 4) 6= A(1̃, 2, 4, 3̃). (3.33)

3.3 Four gauginos

Our final four-point amplitude is the four-gaugino amplitude,

A(1̃, 2̃, 3̃, 4̃) = − C1
4

∫ z3

z1

dz2〈c1V −1/2
g [ζ1, k1]V

−1/2
g [ζ2, k2]c3V

−1/2
g [ζ3, k3]c4V

−1/2
g [ζ4, k4]〉

= − C1
4

∫ z3

z1

dz2〈c1c3c4〉〈V [ζ1]V [ζ2]V [ζ3]V [ζ4]〉T4 . (3.34)

We need to compute the correlator of four V currents. This is an easy task because the corre-

lator is holomorphic, and thus completely determined by its singularities and their residues.

These, in turn, are fixed by the OPE (2.33) and the three-point function in (2.32). Restricting

the external spinors to be Majorana–Weyl, which excludes the O(1/z2ij) term in (2.33), we

obtain

〈Va1Va2Va3Va4〉 = −(CΓµ)a2a1(CΓµ)a4a3
2z12z23z24z34

− (CΓµ)a3a1(CΓµ)a4a2
2z13z23z24z34

− (CΓµ)a4a1(CΓµ)a2a3
2z14z23z24z34

.

(3.35)

As a check, we can see that the operator satisfies the sl(2,R) conformal Ward identities.

Dilatation covariance and translation invariance hold trivially, while invariance under special

conformal transformations requires the right-hand side to be annihilated by
∑4

i=1(z
2
i ∂zi +

2zi); this holds as a consequence of the following famous ten-dimensional Fierz identity for

Majorana–Weyl spinors5 :

(CΓµ)a2a1(CΓµ)a4a3 + (CΓµ)a3a1(CΓµ)a4a2 + (CΓµ)a4a1(CΓµ)a2a3 = 0 . (3.36)

We emphasize that without the GSO projection to Majorana–Weyl spinors, (3.35) and (3.36)

do not hold.

Contracting (3.35) with the external spinors we obtain

〈V [ζ1]V [ζ2]V [ζ3]V [ζ4]〉 = −ζ
1
Γµζ2 ζ

3
Γµζ

4

2z21z32z43z42
− ζ

1
Γµζ3 ζ

2
Γµζ

4

2z31z32z42z43
− ζ

1
Γµζ4 ζ

2
Γµζ

3

2z41z42z32z43
. (3.37)

5A proof is given in the appendix of chapter 4 of [30].
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Setting 〈c1c3c4〉 = −z31z41z43 and using (3.7) and (3.8) leads to

A(1̃, 2̃, 3̃, 4̃) = − C1
4C3

2

∫ 1

0
dxxq12(1− x)q13

{
ζ
1
Γµζ2 ζ

3
Γµζ

4

x(1− x)
+
ζ
1
Γµζ3 ζ

2
Γµζ

4

1− x

}

= − C1
4C3

2

B(q12, q23)

q13
K(1̃, 2̃, 3̃, 4̃) , where ,

K(1̃, 2̃, 3̃, 4̃) ≡ q13ζ
1
Γµζ2 ζ

3
Γµζ

4 − q12ζ
1
Γµζ3 ζ

2
Γµζ

4 . (3.38)

The mass shell condition q12 + q13 + q23 = 0 together with the Fierz identity (3.36) allow us

to write this polarization tensor in different ways. For example, eliminating q13 = −u/2 in

favor of q12 = −s/2 and q23 = −t/2 leads to

K(1̃, 2̃, 3̃, 4̃) = −s
2
ζ
1
Γµζ4 ζ

2
Γµζ

3 +
t

2
ζ
1
Γµζ2 ζ

3
Γµζ

4 , (3.39)

which is the form given in [28] and 7.4.48 of [30]. Indeed one may show with such manipula-

tions that K(1̃, 2̃, 3̃, 4̃) is odd under the full S4 permutation group.

4 Comparison to ordered super-Yang–Mills amplitudes

We now compare the previous results to tree-level computations in gauge theory. This will

allow us to match the low energy limit, verify unitarity at the massless level, and fix the

normalization constants Ci as advertised in (2.6) and (2.11).

4.1 The ordered Feynman rules

We begin by writing down the color-ordered Feynman rules for our super-Yang–Mills theory.

For a nice introduction to these ideas the reader may consult one of the recent reviews [38, 39].

We write our amplitudes with all momenta incoming (as we already did tacitly above), and

we fix Feynman gauge. We construct color-ordered diagrams with external labels increasing

in a counter-clockwise fashion, and we add all cyclically inequivalent diagrams with desired
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external states using the following rules:

µ1µ2 o/ o/ o/ o/ o/ − i

k2
ηµ1µ2 ,

• 1

2

3 o/ o/ o/
O�

o/ o/ o/ +ig
[
(ξ1 · k23)(ξ2 · ξ3) + (ξ2 · k31)(ξ3 · ξ1) + (ξ3 · k12)(ξ1 · ξ2)

]
,

• 1

2

3

4

o/ o/ o/
O�

o/ o/ o/
�O +ig2

[
2(ξ1 · ξ3)(ξ2 · ξ4)− (ξ1 · ξ2)(ξ3 · ξ4)− (ξ1 · ξ4)(ξ2 · ξ3)

]
.

(4.1)

We wrote the vertices in a condensed notation by dotting in with dummy external polariza-

tions. To obtain the vertices we of course need to expand these as, say, ξ1µ1
ξ2µ2

ξ3µ3
V µ1µ2µ3 . We

will typically express these vertices by amplitudes with some polarizations stripped off. For

instance,

AYM(1, 2, ·)µ = ig
[
k12µ(ξ

1 · ξ2) + 2(ξ1 · k2ξ2µ − ξ2 · k1ξ1µ)
]
,

AYM(·, 3, 4)µ = ig
[
k34µ(ξ

3 · ξ4) + 2(ξ3 · k4ξ4µ − ξ4 · k3ξ3µ)
]
, (4.2)

where momentum conservation and the physical state conditions on the external polarizations

were used. We then have a key property: as long as ξ1,2 obey physical conditions, then

AYM(1, 2, ·)µ(k1 + k2)
µ = 0 . (4.3)

In other words, the longitudinal photon does not show up as an intermediate state.

To include the gauginos we use the rules (written in the same condensed fashion)

c b

p

<
oo

3 • 1

2

< <

O�
O�

2 • 1

3

< <

�O
�O

i(p/)cb
p2

igζ
3
ξ/2ζ1 igζ

2
ξ/3ζ1

(4.4)

As in QED, to completely specify the rules we must describe some additional signs due to the

Fermi statistics; we will only need these in our discussion of the 4-gaugino amplitude, and so

we will not give a complete description here.
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4.2 The amplitudes

The three-point “amplitudes” can be read off directly from the vertices, while the four-point

amplitudes are constructed by applying the rules. For starters we consider

AYM(1, 2, 3, 4) =

4

• •3

2

1/o/o/o /o/o/o
O�

o/ o/ o/
�O +

2

• •3

4

1/o/o/o /o/o/o
�O

o/ o/ o/
O�

+

4

•3

2

1
O�

/o/o/o
O�

o/ o/ o/

= D1 +D2 +D3 , (4.5)

with

D1 =
ig2

2q12
×

[
k12µω

12 + 2(∆1
2ξ

2
µ −∆2

1ξ
1
µ)
]
×

[
kµ34ω

34 + 2(∆3
4ξ

4µ −∆4
3ξ

3µ)
]
,

D2 =
ig2

2q41
×

[
k41µω

41 + 2(∆4
1ξ

1
µ −∆1

4ξ
4
µ)
]
×

[
kµ23ω

23 + 2(∆2
3ξ

3µ −∆3
2ξ

2µ)
]
,

D3 = ig2
[
2ω13ω24 − ω12ω34 − ω14ω23

]
. (4.6)

We can easily verify gauge invariance by setting ξ1 = k1, where we find

D1 → ig2
[
(∆2

3 −∆2
4)ω

34 + 2(∆3
4ω

24 −∆4
3ω

23)
]
,

D2 → −ig2
[
(∆4

2 −∆4
3)ω

23 + 2(∆2
3ω

34 −∆3
2ω

24)
]
,

D3 → ig2
[
2∆3

1ω
24 −∆2

1ω
34 −∆4

1ω
23
]
, (4.7)

so that the sum vanishes in the limit.

Next, we tackle the amplitudes with two fermions.

AYM(1̃, 2, 3, 4̃) =
4 • 1

•3 2

< <

O�
O�

o/ o/ o/ /o/o/o

+
4 • • 1

3 2

< < <

O�
O�

O�
O� ,

AYM(1̃, 2, 3̃, 4) = 3 • • 1

4

2

< < <

�O
�O

O�
O�

+ 3 • • 1

2

4

< < <

O�
O�

�O
�O

(4.8)

From the rules we obtain

AYM(1̃, 2, 3, 4̃) =
ig2

q23
ζ
4
[
ω23k/2 +∆2

3ξ/
3 −∆3

2ξ/
2
]
ζ1 − ig2

2q12
ζ
4
ξ/3(k/1 + k/2)ξ/

2ζ1 ,

AYM(1̃, 2, 3̃, 4) = − ig
2

2

1

q12
ζ
3
ξ/4(k/1 + k/2)ξ/

2ζ1 − ig2

2

1

q23
ζ
3
ξ/2(k/1 + k/4)ξ/

4ζ1 . (4.9)
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Finally, we have the four gaugino amplitude

AYM(1̃, 2̃, 3̃, 4̃) =
4 • 1

•3 2

< <

O�
O�

< <

+
3 • 4

•2 1

< <

O�
O�

< <

. (4.10)

The amplitude is then

AYM(1̃, 2̃, 3̃, 4̃) = ig2
(ζ

1
Γµζ

4)(ζ
2
Γµζ3)

2q23
+ (−1)× ig2

(ζ
1
Γµζ

2)(ζ
3
Γµζ4)

2q12
. (4.11)

The relative sign between the two diagrams is due to Fermi statistics. The simplest way to

obtain it is to compare the two sets of contractions that lead to the different contributions;

the result of this comparison is an extra sign due to an exchange of two fermions.

4.3 Comparison to the string theory results

We can now compare the string theory computations of the previous section with the super-

YM results. From matching the three-point computations, we obtain the normalizations

C2
3C3 = −2ig , C1

2C2C3 = i
√
2g . (4.12)

To compare the four-point amplitudes we need to take the momenta to zero and use

B(q12, q23)

q13
= − 1

q12q23
+
π2

6
+O(q) . (4.13)

Taking the leading term, we find the string amplitudes reduce to

A(1, 2, 3, 4) → −C2
4C3

1

q12q23
K(1, 2, 3, 4) ,

A(1̃, 2, 3, 4̃) → −C1
2C2

2C3

2
√
2

1

q12q23
K(1̃, 2, 3, 4̃) ,

A(1̃, 2, 3̃, 4) → C1
2C2

2C3

2
√
2

1

q12q23
K(1̃, 2, 3̃, 4) ,

A(1̃, 2̃, 3̃, 4̃) → C1
4C3

2

1

q12q23
K(1̃, 2̃, 3̃, 4̃) . (4.14)

By comparing the AYM amplitudes with these terms we find that they are matched by the

corresponding limit of a string amplitude if and only if

C2
4C3 = 2ig2 , C1

2C2
2C3 = −i

√
2g2 , C1

4C3 = ig2 . (4.15)

The only case where the comparison is not completely straightforward is in the 4-vector am-

plitude. To see that the claim is sensible, we can consider the ω2 terms in the two amplitudes.
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We have

AYM(1, 2, 3, 4)|ω2 = 2ig2 ×
[
−q23
q12

ω12ω34 − q12
q23

ω14ω23 − ω12ω34 − ω14ω23 + ω13ω24

]
,

−K(1, 2, 3, 4)|ω2 = ω12ω34q23q13 + ω23ω41q12q13 + ω13ω24q12q23

= −ω12ω34q223 − ω23ω41q212 + (ω13ω24 − ω12ω34 − ω23ω41)q12q23 . (4.16)

Once we have matched these Yang–Mills results unitarity is of course obvious, and we see

that the Ci take the values claimed in (2.6) and (2.11).

We can then finally summarize all of the color-ordered four-point amplitudes as follows:

A(1, 2, 3, 4) = 2ig2
B(q12, q23)

q13
K(1, 2, 3, 4) ,

A(1̃, 2, 3, 4̃) = − ig
2

2

B(q12, q23)

q13
K(1̃, 2, 3, 4̃) ,

A(1̃, 2, 3̃, 4) =
ig2

2

B(q12, q23)

q13
K(1̃, 2, 3̃, 4) ,

A(1̃, 2̃, 3̃, 4̃) = − ig
2

2

B(q12, q23)

q13
K(1̃, 2̃, 3̃, 4̃) . (4.17)

The leading terms in the momentum expansion are just the Yang–Mills amplitudes, while the

higher order terms arise from the supersymmetric form of the trF 4 coupling in the effective

Lagrangian [40, 41]. Indeed, we could explicitly subtract off the Yang–Mills contributions

from the amplitude to derive the additional vertices

�
O�
O�

/o/o/o

O�
O�

o/ o/ o/ �> >

]�
]�
]�

?�
?�

?�

�
O�
O�

>

O�
O�

> �
∨

∨

>> . (4.18)

5 Five-point open superstring amplitudes

We now turn to the five-point amplitudes. The five-vector amplitude has been tackled in

a number of works, and a very complete treatment has been given in [26]. The remaining

amplitudes involving gauginos can then also be determined from the knowledge of the bosonic

amplitude and space-time supersymmetry [31, 42]. Indeed, using the pure spinor approach the

full amplitudes can be computed in terms of SYM partial amplitudes [20]. On the other hand,

it is sometimes useful to have the explicit component expansions for these amplitudes, and

they are sufficiently complicated that it may be useful to have an independent computation

of these in the direct NSR approach. In this section, we will first review the results of [26] on

the five-vector amplitude in our notation and then turn to amplitudes involving fermions.
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The five-point massless kinematics is conveniently parametrized by the invariants

qij ∈ {q12, q13, q23, q24, q34} . (5.1)

The remaining qij are given by

q14 = −q12 − q13 − q24 − q34 − q23 ,

q15 = q24 + q34 + q23,

q25 = −q12 − q23 − q24,

q35 = −q13 − q23 − q34,

q45 = q12 + q13 + q23 . (5.2)

5.1 The 5-point vector amplitude

Setting up this amplitude is not much more difficult now that we gained experience with the

four-point functions. We fix positions z1,4,5 and denote the integration region T = {(z2, z3) ∈
R
2 | z1 ≤ z2 ≤ z3 ≤ z4}. Leaving the flat measure dz3dz2 implicit, we have

A(1, 2, 3, 4, 5) =

∫

T

〈c1V 0
v [ξ

1, k1]V
0
v [ξ

2, k2]V
0
v [ξ

3, k3]c4V
−1
v [ξ4, k4]c5V

−1
v [ξ5, k5]〉 , (5.3)

The correlation function is then given by 〈c1c4c5〉C2
5 = −z41z51z54C2

5 times the matter

correlator

〈U [ξ4]U [ξ5]〉T (1,2,3)
5

+ 〈J [m1]U [ξ4]U [ξ5]〉T (2,3)
5 + 〈J [m2]U [ξ4]U [ξ5]〉T (1,3)

5 + 〈J [m3]U [ξ4]U [ξ5]〉T (1,2)
5

+ 〈J [m2]J [m3]U [ξ4]U [ξ5]〉T (1)
5 + 〈J [m1]J [m3]U [ξ4]U [ξ5]〉T (2)

5 + 〈J [m1]J [m2]U [ξ4]U [ξ5]〉T (3)
5

+ 〈J [m1]J [m2]J [m3]U [ξ4]U [ξ5]〉T5 . (5.4)

The computation of these is now fairly mechanical and is reduced to the two-point function

〈U [ξ4]U [ξ5]〉 by the Ward identities. To evaluate these it is extremely convenient to take the

z5 → ∞ limit as soon as possible, thereby reducing the number of terms that appear. This is

easily done since the ghost factor scales as z25 , while

T5 = C3

∏

1≤i<j<5

z
qji
ji +O(z−1

5 ) , 〈U [ξ4]U [ξ5]〉 = −ω
45

z25
+O(z−3

5 ) , (5.5)
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so we can just take the leading terms as z5 → ∞ in all of the remaining terms. As an example,

we list the only correlator that is unfamiliar from the four-point computations:

lim
z5→∞

z25〈J1[m
1]J2[m

2]J3[m
3]U 4[ξ

4]U5[ξ
5]〉

= tξ5
{
8
tr(m12

m
3)

z21z31z32
+ 4

(
tr(m1

m
2)m3

z221z43
+

tr(m3
m

1)m2

z231z42
+

tr(m2
m

3)m1

z232z41

)
+

+ 8

[
m

1
m

2
m

3

z21z32z43
− m

2
m

1
m

3

z21z31z43
− m

3
m

1
m

2

z31z21z42
+

m
3
m

2
m

1

z32z21z41
− m

2
m

3
m

1

z32z31z41
− m

1
m

3
m

2

z31z32z42

]}
ξ4 .

(5.6)

As a check of this expression we note that it has the S3 symmetry that permutes the J [mi].

We now fix the remaining coordinates to z1 = 0, z2 = x2, z3 = x3, z4 = 1, and after some

algebra obtain the amplitude as a sum of 26 double integrals6

A(1, 2, 3, 4, 5) = C2
5C3

∑

I∈Σ′

N [I]× I . (5.7)

With a few simple integral identities these may be reduced to the 19 integrals presented

in [26]. We review these 19 integrals, the 17 relations among them, as well as their momentum

expansion in Appendix A. For now, suffice it to to say that the index set for them is

Σ = {K1, · · · ,K6, K
′
1, K

′
4, K

′
5, L1, · · · , L7, L

′
1, L

′
3, L

′
4} , (5.8)

and a typical integral is

K3 =

∫ 1

0
dx3

∫ x3

0
dx2 x

q13
3 (1− x3)

q34xq122 (1− x2)
q24(x3 − x2)

q23 × 1

(1− x2)x3

=

∫ 1

0
dy1

∫ 1

0
dy2 y

q45
1 (1− y1)

q34yq122 (1− y2)
q23(1− y1y2)

q24−1 . (5.9)

To obtain the last form we used q13 + q12 + q23 = q45 and the change of variables x3 = y1 and

x2 = y1y2. This integral is finite as qij → 0, and it may be expanded in powers of q, where

the coefficients reduce to integrals of standard power series. We obtain

K3 =
π2

6
− ζ(3) [q12 + 2q23 + q24 + 2q34 + q45] +O(q2)

=
π2

6
− ζ(3) [q12 + q23 + q34 + q45 + q51] +O(q2) . (5.10)

In the second line we used kinematic relations to write the answer in an explicitly cyclic-

invariant form. In fact, as shown in [26], the full K3 integral is Z5-invariant. The remaining

6We are not aware of the relation to either the critical bosonic string or to the English alphabet, but the
relations, if any, may be at least as deep as those explored in [43].
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18 integrals can be reduced to K3 and another cyclically-invariant and regular combination

T = q12q34K2 + (q51q12 − q12q34 + q34q45)K3 , (5.11)

which has the momentum expansion

T = 1− ζ(3) [q12q23q34 + q23q34q45 + q34q45q51 + q45q51q12 + q51q12q23] +O(q4) . (5.12)

Using these integrals, we find the following structure for the amplitude:

A(1, 2, 3, 4, 5) = C2
5C3 × [M1 +M2 +M3 +M4 +M5] , (5.13)

where

M1 = ω12ω34
[
∆5

3(q12 − 1)L5 −∆5
2q13L3 +∆5

1q23L2

]
+

+ ω13ω24
[
∆5

2(q13 − 1)L6 −∆5
3q12L1 −∆5

1q23L7

]
+

+ ω14ω23
[
∆5

1(q23 − 1)K6 +∆5
3q12K4 −∆5

2q13K5

]
+

+ ω23

{
∆5

1

[
∆1

2∆
4
3L2 −∆1

3∆
4
2L7

]
+

+∆5
2

[
∆1

2∆
4
3L2 +∆1

3∆
4
1K5 +∆1

3∆
4
3L

′
4 +∆1

4∆
4
3K

′
4

]
+

+∆5
3

[
−∆1

2∆
4
1K4 −∆1

3∆
4
2L7 −∆1

2∆
4
2L4 −∆1

4∆
4
2K

′
5

]}
+

+ ω14

{
∆5

2

[
∆2

1∆
3
4K2 −∆2

4∆
3
1K3

]
+

+∆5
1

[
∆2

1∆
3
4K2 −∆2

3∆
3
4K

′
4 +∆2

4∆
3
2K

′
5 −∆2

4∆
3
4K

′
1

]
+

+∆5
4

[
∆2

1∆
3
2K4 +∆2

1∆
3
1K1 −∆2

4∆
3
1K3 −∆2

3∆
3
1K5

]}
, (5.14)

and the remainingM2, . . . ,M5 are obtained by cyclic permutations ofM1. This matches (4.1)

of [26]. By using the relations among the integrals reviewed in Appendix A, one can express

the result in terms of just two members of the set (5.8). A convenient basis is T and K3, as

these integrals are Z5-invariant, resulting in an expression of the form

A(1, 2, 3, 4, 5) = A(i)(1, 2, 3, 4, 5)T +A(ii)(1, 2, 3, 4, 5)K3 . (5.15)

This form of the amplitude was explored further in [26]. It was shown that the coefficient

of T is precisely the Yang–Mills five-point color-ordered amplitude, while the coefficient of

K3 includes poles that use the four-vector vertex in (4.18), as well as a regular term. The

former originate from the F 4 terms in the low-energy effective action while the latter receives

contributions from both the F 4 and F 5 terms of the action.
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5.2 Two fermions and three gauge bosons

We now finally turn to a new computation, the string amplitude A(1̃, 2, 3, 4, 5̃). From the

basic form

A(1̃, 2, 3, 4, 5̃) =

∫

T

〈c1V −1/2
g [ζ1, k1]V

0
v [ξ

2, k2]V
0
v [ξ

3, k3]c4V
−1
v [ξ4, k4]c5V

−1/2
g [ζ5, k5]〉 , (5.16)

we arrive at

A(1̃, 2, 3, 4, 5̃) =
C1

2C2
3

√
2

∫

T

〈c1c4c5〉 ×
[
XT (2,3)

5 + Y2T (3)
5 + Y3T (2)

5 + ZT5
]
, (5.17)

where

X ≡
√
2〈V [ζ1]U [ξ4]V [ζ5]〉 , Y2 ≡

√
2〈V [ζ1]J [m2]U [ξ4]V [ζ5]〉 ,

Y3 ≡
√
2〈V [ζ1]J [m3]U [ξ4]V [ζ5]〉 , Z ≡

√
2〈V [ζ1]J [m2]J [m3]U [ξ4]V [ζ5]〉 . (5.18)

Of these the only new correlator is Z. By applying the Ward identity first with J [m2] and

then with J [m3] we obtain the result

Z√
2
=

1

4z21z31
〈V 1[m/

3
m/2ζ1]U [ξ4]V [ζ5]〉+ 1

z21z34
〈V 1[m/

2ζ1]U 4[m
3ξ4]V [ζ5]〉+

+
1

4z21z35
〈V 1[m/

2ζ1]U [ξ4]V 5[m/
3ζ5]〉+ 2 tr(m2

m
3)

z223
〈V [ζ1]U [ξ4]V [ζ5]〉+

+
2

z23z31
〈V 1[m/

23ζ1]U [ξ4]V [ζ5]〉+ 8

z23z34
〈V [ζ1]U 4[m

23ξ4]V [ζ5]〉+

+
2

z23z35
〈V [ζ1]U [ξ4]V 5[m/

23ζ5]〉+ 1

z24z31
〈V 1[m/

3ζ1]U 4[m
2ξ4]V [ζ5]〉+

+
4

z24z34
〈V [ζ1]U4[m

3
m

2ξ4]V [ζ5]〉+ 1

z24z35
〈V [ζ1]U4[m

2ξ4]V 5[m/
3ζ5]〉+

+
1

4z25z31
〈V 1[m/

3ζ1]U [ξ4]V 5[m/
2ζ5]〉+ 1

z25z34
〈V [ζ1]U4[m

3ξ4]V 5[m/
2ζ5]〉+

+
1

4z25z35
〈V [ζ1]U [ξ4]V 5[m/

3
m/2ζ5]〉 . (5.19)

In fact it follows from the definition of Z, (5.18), that this result should be symmetric under

the exchange of labels 2 and 3. Although it takes a little work, it can be shown that this is

indeed the case.

Every term in (5.19) is reduced to a three-point correlator, all of which have the same

denominator structure as X. Similarly, the Ward identity reduces Y2,3 to a sum of terms with

the same denominator structure as X—namely, every term scales as (z14z15z45)
−1, precisely

the ghost amplitude. So, we can once again easily take the z5 → ∞ limit, keeping the leading

terms in the matter correlators. These are the terms in (5.19), for example, that do not
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already have explicit z5’s in the prefactors of the three-point correlators. This reduces the

thirteen terms of (5.19) to seven.

Letting ξ/[iξ/j] ≡ ξiµξ
j
νΓµν and k/[ik/j] ≡ kµi k

ν
j Γµν , we obtain7

lim
z5→∞

z25Z =
2m2µν

m
3
µνζ

5
ξ/4ζ1

z232
−

1
2ζ

5
ξ/4

[
∆3

2k/3ξ/
2 + ω23k/[2k/3] + q23ξ/

[2ξ/3] −∆2
3k/2ξ/

3
]
ζ1

z32z21

+
ζ
5
[
(∆3

2ω
24 −∆4

2ω
32)k/3 + (∆2

3∆
4
2 − q32ω

24)ξ/3 − (2 ↔ 3)
]
ζ1

z42z32

−
1
4ζ

5
ξ/4m/2m/3ζ1

z31z21
+

1
2ζ

5
(−∆4

2ξ/
2 + ω24k/2)m/

3ζ1

z42z31
−

1
2ζ

5
(−ω34k/3 +∆4

3ξ/
3)m/2ζ1

z43z21

− ζ
5
[(ω34∆2

3 − ω23∆4
3)k/2 + (∆4

3∆
3
2 − ω34q23)ξ/

2]ζ1

z43z42
. (5.20)

Fixing positions as in the five-vector amplitude and combining the terms from the correlators

we find

A(1̃, 2, 3, 4, 5̃) =
∑

I∈ΣK

N [I]I , (5.21)

where the 9 K integrals in ΣK are of the form

I =

∫ 1

0
dx3

∫ x3

0
dx2x

q13
3 (1− x3)

q34xq122 (1− x2)
q24(x3 − x2)

q23 1

κ(I)
, (5.22)

and the denominators κ(I), together with the contributing correlator, are listed in table 1.

Using the determined values of the Ci, the 9 numerator factors are as follows:

N [K1] = ig3ζ
5
ξ/4(∆2

1 +
1
2m/

2)(∆3
1 +

1
2m/

3)ζ1 ,

N [K2] = ig3ζ
5
[
ω43k/3 +∆3

4ξ/
4 −∆4

3ξ/
3
]
(−∆2

1 − 1
2m/

2)ζ1 ,

N [K3] = ig3ζ
5
[
ω42k/2 +∆2

4ξ/
4 −∆4

2ξ/
2
]
(−∆3

1 − 1
2m/

3)ζ1 ,

N [K4] = ig3ζ
5
ξ/4

[
∆2

1∆
3
2 +

1
2(∆

3
2m/

2 +∆3
2k/3ξ/

2 + ω23k/[2k/3] + q23ξ/
[2ξ/3] −∆2

3k/2ξ/
3)
]
ζ1 ,

N [K5] = ig3ζ
5
ξ/4∆2

3

[
−∆3

1 − 1
2m/

3
]
ζ1 ,

N [K6] = ig3(1− q23)ω
23ζ

5
ξ/4ζ1 , (5.23)

7Here we exchanged labels 2 and 3 in (5.19) and then took the limit z5 → ∞.
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denominator κ(I) with z1,4 = 0, 1 name I location(fbbbf) location(fbbfb)

z21z31 x2x3 K1 X, Y2, Y3, Z X ′, Y ′
2 , Y

′
3 , Z

′

z21z43 x2(1− x3) K2 X, Y2, Y3, Z X ′, Y ′
2 , Y

′
3 , Z

′

z31z42 (1− x2)x3 K3 X, Y2, Y3, Z X ′, Y ′
2 , Y

′
3 , Z

′

z21z32 x2(x3 − x2) K4 X, Y2, Z X ′, Y ′
2

z31z32 x3(x3 − x2) K5 X, Y3 X ′, Y ′
3 , Z

′

z232 (x3 − x2)
2 K6 X, Z X ′, Z ′

z42z43 (1− x2)(1− x3) K ′
1 X, Y2, Y3, Z X ′, Y ′

2 , Y
′
3 , Z

′

z32z43 (1− x3)(x3 − x2) K ′
4 X, Y3 X ′, Y ′

3 , Z
′

z32z42 (1− x2)(x3 − x2) K ′
5 X, Y2, Z X ′, Y ′

2

Table 1. The type K denominators. The fourth column lists the terms of (5.17) that contribute to the
corresponding numerator. The fifth column does the same for the second ordering of the amplitude,
computed in subsection 5.4 below; see (5.39).

and

N [K ′
1] = ig3ζ

5
[
∆2

4∆
3
4ξ/

4 +∆3
4(ω

42k/2 −∆4
2ξ/

2) + ∆2
4(ω

43k/3 −∆4
3ξ/

3)

+(ω34∆2
3 − ω23∆4

3)k/2 + (∆4
3∆

3
2 − ω34q23)ξ/

2
]
ζ1 ,

N [K ′
4] = ig3ζ

5
[
∆2

3∆
3
4ξ/

4+∆2
3(ω

43k/3 −∆4
3ξ/

3)
]
ζ1 ,

N [K ′
5] = ig3ζ

5
[
−∆2

4∆
3
2ξ/

4 −∆3
2(ω

42k/2 −∆4
2ξ/

2)

−[(∆3
2ω

24 −∆4
2ω

32)k/3 + (∆2
3∆

4
2 − q32ω

24)ξ/3 − (2 ↔ 3)]
]
ζ1 . (5.24)

Finally, using (A.13) we can express the amplitude in the form

A(1̃, 2, 3, 4, 5̃) = A(i)(1̃, 2, 3, 4, 5̃)T +A(ii)(1̃, 2, 3, 4, 5̃)K3 . (5.25)

As we will argue next, in parallel to the discussion for the five-vector amplitude given in [26],

A(i) is precisely the super-Yang–Mills amplitude, while A(ii) arises from the fermionic cou-

plings that accompany the trF 4 couplings in the open string effective action.
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5.3 Comparison with super-Yang–Mills

From (A.13), we obtain the following form for A(i):

A(i) =
N [K1] +N [K4]

q12q45
+
N [K2]

q12q34
+
N [K5] +N [K4] + q13N [K6]

′

q23q45

+
N [K ′

5] +N [K ′
4]− q34N [K6]

′

q15q23
+
N [K ′

1] +N [K ′
4]

q15q34
− N [K6]

′

q15
, (5.26)

where N [K6]
′ = N [K6]/(1 − q23). The displayed pole structure is just right to match the

Yang–Mills computation, where we have the following diagrams for AYM(1̃, 2, 3, 4, 5̃):

D1,
1
q15

5 • 1

•4

3

2

< <

O�
O�

/o/o/o
O�

o/ o/ o/

D2,
1

q15q34

5 • 1

•
•

4 3

2

< <

O�
O�

/o/o/o

/o/o/oo/ o/ o/
O�
O�

D3,
1

q15q23

5 • 1

•
•4

3 2

< <

O�
O�

o/ o/ o/

o/ o/ o/ /o/o/o
O�
O�

D4,
1

q45q23

5 • • 1

4 •
3 2

< < <

W�
W�
W�

O�
O�

Z�
Z�

D�
D�

D5,
1

q12q34

5 • • 1

2•
4 3

< < <

Z�
Z�

O�
O�

D�
D�

G�
G�
G�

D6,
1

q45q12

5 • • • 1

4 3 2

< < < <

O�
O�

O�
O�

O�
O�

(5.27)

Of course there is no reason for the terms to line up as fortuitously as these naive poles suggest.

The numerators in (5.26) are generally cubic in the momenta of the external particles and

thus can, and do, contain terms in which one of the two qij factors in the denominator is

canceled. Such terms can contribute to D1 or cancel against each other. It is only the sum

of terms on the right of (5.26) that must match the sum of diagrams, and indeed it does. To

demonstrate how this comes about, we will first compare D5 with the N [K2] term in A(i).

Using our rules we have

D5 = −ig3 1

4q12q34
× ζ

5
[
ω34k/34 + 2∆3

4ξ/
4 − 2∆4

3ξ/
3
]
(k/1 + k/2)ξ/

2ζ1 . (5.28)

Since ζ
5
k/5 = 0 and (k/1 + k/2)

2 = 2q12, we may write this as

D5 = −ig3 1

2q12q34
× ζ

5
[
ω34k/3 +∆3

4ξ/
4 −∆4

3ξ/
3
]
(k/1 + k/2)ξ/

2ζ1 − ig3
1

2q34
× ζ

5
ξ/2ζ1 . (5.29)

On the other hand, we also have the simple relation

(∆i
1 +

1
2m/

i)ζ1 =
1

2
(k/1ξ/

i + ξ/ik/1 + k/iξ/
i)ζ1 =

1

2
(k/1 + k/i)ξ/

iζ1 , (5.30)
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and this allows us to write

N [K2] = − ig3

2q12q34
ζ
5
[
ω34k/3 +∆3

4ξ/
4 −∆4

3ξ/
3
]
(k/1 + k/2)ξ/

2ζ1 , (5.31)

so that evidently

N [K2] = D5 +
ig3ω34ζ

5
ξ/2ζ1

q34
. (5.32)

By similar manipulations, we obtain the following relations

0 = D1 −
ig3

2q15
ζ
5
[
2ω24ξ/3 − ω34ξ/2 − ω23ξ/4

]
ζ1 ,

(N [K ′
4] +N [K ′

1])

q15q34
= D2 −

ig3

2q34
ζ
5
ξ/2ζ1ω34 +

ig3

2q15
ζ
5
ξ/2ζ1ω34 ,

(N [K ′
4] +N [K ′

5]− q34N [K6]
′)

q15q23
= D3 −

ig3

2q23
ζ
5
ξ/4ζ1ω23 +

ig3

2q15
ζ
5
[
ω23ξ/4 + 2ω24ξ/3 − 2ω34ξ/2

]
ζ1 ,

N [K4] +N [K5] + q13N [K6]
′

q23q45
= D4 − ig3

ζ
5
ξ/4ξ/3ξ/2ζ1

2q45
+ ig3

ω23ζ
5
ξ/4ζ1

2q23
,

N [K2]

q12q34
= D5 +

ig3

2q34
ζ
5
ξ/2ζ1ω34 ,

N [K1] +N [K4]

q12q45
= D6 + ig3

ζ
5
ξ/4ξ/3ξ/2ζ1

2q45
,

−N [K6]
′

q15
= − ig

3

q15
ζ
5
ξ/4ζ1ω23 . (5.33)

Taking the sum, we therefore obtain the promised

A(i)(1̃, 2, 3, 4, 5̃) =
6∑

i=1

Di = AYM(1̃, 2, 3, 4, 5̃) . (5.34)

This is of course precisely in line with the results of [26] and expectations from space-time

supersymmetry.

We can also extend these observations to the coefficient of the K3 integral. We expect

these terms to arise from the superpersymmetric completion of the F 4 term in the effective

Lagrangian. Using the vertices from (4.18), we already expect a number of single pole con-

tributions such as (A.13) would suggest, as well as a local vertex. That is, we express A(ii)

– 31 –



as

A(ii) = =
1

q15
B15 +

1

q23
B23 +

1

q45
B45 +

1

q12
B12 +

1

q34
B34 +B0 , (5.35)

where

B34 = −q12q15q34(D2 +D5) ,

B12 = −q12q34q45(D5 +D6) ,

B45 = −q12q23q45(D4 +D6) ,

B23 = −q15q23q45(D3 +D4) ,

B15 = −q15q23q34(D1 +D2 +D3) ,

B0 = N [K3]− q15q45D1 + q15q23(D1 +D3) + q12q34D5 + q23q45D4

− 1
2 ig

3(q13 + q24)ζ
5
ξ/4ζ1 + 1

2q24ig
3ζ

5
ξ/4ξ/3ξ/2ζ1 , (5.36)

are all polynomial in momenta and can be given the following diagrammatic interpretation:

B15, 1/q15

5 • 1

�4

3
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< <
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o/ o/
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•
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< <
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:z
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3 2

< <
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d$
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:z
:z

:z

B45, 1/q45
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4 3 2

< < <

W�
W�
W�

W�
W�
W�
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G�
G�

B12, 1/q12

5 � • 1

24 3

< < <

W�
W�
W�

G�
G�
G�

G�
G�
G�

B0 .

5 � 1

4 3 2

< <

a!
a!
a!
O�
O�

=}
=}

=}

(5.37)

5.4 The second color ordering

As in the case of the four-point amplitude, there is a second, cyclically-inequivalent amplitude

with two gauginos:

A(1̃, 2, 3, 4̃, 5) =

∫

T

〈c1V −1/2
g [ζ1, k1]V

0
v [ξ

2, k2]V
0
v [ξ

3, k3]c4V
−1/2
g [ζ4, k4]c5V

−1
v [ξ5, k5]〉 . (5.38)

This factorizes to

A(1̃, 2, 3, 4̃, 5) = − C1
2C2

3

√
2

∫

T

〈c1c4c5〉 ×
[
X ′T (2,3)

5 + Y ′
2T (3)

5 + Y ′
3T (2)

5 + Z ′T5
]
, (5.39)
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where

X ′ ≡
√
2〈V [ζ1]U [ξ5]V [ζ4]〉 , Y ′

2 ≡
√
2〈V [ζ1]J [m2]U [ξ5]V [ζ4]〉 ,

Y ′
3 ≡

√
2〈V [ζ1]J [m3]U [ξ5]V [ζ4]〉 , Z ′ ≡

√
2〈V [ζ1]J [m2]J [m3]U [ξ5]V [ζ4]〉 . (5.40)

The ψ-sector correlators in the z5 → ∞ limit are

X ′ =
ζ
1
ξ/5ζ4

z41z51z54
,

Y ′
2 = − 1

z41z51z54

{
ζ
1
m/2ξ/5ζ4

2z21
+
ζ
1
ξ/5m/2ζ4

2z42
+O(1/z5)

}
,

Y ′
3 = − 1

z41z51z54

{
ζ
1
m/3ξ/5ζ4

2z31
+
ζ
1
ξ/5m/3ζ4

2z43
+O(1/z5)

}
, (5.41)

and

Z ′ =
1

z41z51z54

{
ζ
1
m/2m/3ξ/5ζ4

4z21z31
+
ζ
1
m/2ξ/5m/3ζ4

4z21z43
+

2 tr(m2
m

3)ζ
1
ξ/5ζ4

z232
+

2ζ
1
m/23ξ/5ζ4

z32z31
+

+
2ζ

1
ξ/5m/23ζ4

2z32z43
+
ζ
1
m/3ξ/5m/2ζ4

4z42z31
+
ζ
1
ξ/5m/3m/2ζ4

4z42z43
+O(1/z5)

}
. (5.42)

The prefactors of (z41z51z54)
−1 cancel the ghost correlator up to a sign. The result for Z ′ is

easily obtained by first exchanging the 4 and 5 labels in (5.19) and then sending z5 → ∞.

This selects a subset of seven terms from (5.19), different from the seven obtained in (5.20).

Making use of these correlators together with the relevant Koba–Nielsen ones, we find

that (5.39) reduces to a sum over same type K integrals, (5.22):

A(1̃, 2, 3, 4̃, 5) =
∑

I∈ΣK

N ′[I]I . (5.43)

The numerator factors receive contributions from the terms in (5.39) as listed in the last

column of Table 1. They are

N ′[K1] = ig3 ζ
1 (

∆2
1 − 1

2m/
2
) (

∆3
1 − 1

2m/
3
)
ξ/5ζ4 ,

N ′[K2] = − ig3 ζ
1 (

∆2
1 − 1

2m/
2
)
ξ/5

(
∆3

4 +
1
2m/

3
)
ζ4 ,

N ′[K3] = − ig3 ζ
1 (

∆3
1 − 1

2m/
3
)
ξ/5

(
∆2

4 +
1
2m/

2
)
ζ4 ,

N ′[K4] = ig3∆3
2 ζ

1 (
∆2

1 − 1
2m/

2
)
ξ/5ζ4 ,

N ′[K5] = ig3 ζ
1 [

2m/23 −∆2
3

(
∆3

1 − 1
2m/

3
)]
ξ/5ζ4 ,

N ′[K6] = ig3(1− q23)ω
23 ζ

1
ξ/5ζ4 , (5.44)
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and

N ′[K ′
1] = ig3 ζ

1
ξ/5

(
∆3

4 +
1
2m/

3
) (

∆2
4 +

1
2m/

2
)
ζ4 ,

N ′[K ′
4] = ig3 ζ

1
ξ/5

[
2m/23 +∆2

3

(
∆3

4 +
1
2m/

3
)]
ζ4 ,

N ′[K ′
5] = − ig3∆3

2 ζ
1
ξ/5

(
∆2

4 +
1
2m/

2
)
ζ4 . (5.45)

Using (A.13) this amplitude can also be put in the form (5.15). Since the same set of K

integrals appear here as in the first color ordering, the form of A(i)(1̃, 2, 3, 4̃, 5) will be the

same as (5.26) with N [·] → N ′[·]. One can check that the factor associated with T is the

corresponding color-ordered Yang–Mills amplitude.

5.5 Four fermions and a gauge boson

Our final five-point open string tree amplitude has four gauginos and one gauge boson as

external states. There is a single amplitude up to cyclic permutations. Placing the boson in

position three,

A(1̃, 2̃, 3, 4̃, 5̃) =C1
4C2

∫

T

〈c1V −1/2
g [ζ1, k1]V

−1/2
g [ζ2, k2]V

0
v [ξ

3, k3]c4V
−1/2
g [ζ4, k4]c5V

−1/2
g [ζ5, k5]〉

=− C1
4C2

2

∫

T

(
FT (3)

5 +GT5
)
〈c1c4c5〉 , (5.46)

where the ψ-sector correlators are

F ≡ 2〈V [ζ1]V [ζ2]V [ζ4]V [ζ5]〉 , G ≡ 2〈V [ζ1]V [ζ2]J [m3]V [ζ4]V [ζ5]〉 . (5.47)

A simple relabeling of indices of (3.37) gives

F = −ζ
1
Γµζ2 ζ

4
Γµζ

5

z21z42z54z52
− ζ

1
Γµζ4 ζ

2
Γµζ

5

z41z42z52z54
− ζ

1
Γµζ5 ζ

2
Γµζ

4

z51z52z42z54
. (5.48)

With 〈c1c4c5〉 = −z41z51z54 as usual, it is clear that only the leading O(1/z25) terms of F will

contribute to the amplitude in the z5 → ∞ limit. We take this limit immediately and set the

remaining z values to z1 = 0, z2,3 = x2,3, and z4 = 1. Then

〈c1c4c5〉F =
ζ
1
Γµζ2 ζ

4
Γµζ

5

x2(1− x2)
+
ζ
1
Γµζ4 ζ

2
Γµζ

5

(1− x2)
+O(1/z5) . (5.49)

Now for G we use the Ward identity:

G =
1

2z31
〈V 1[m/

3ζ1]V [ζ2]V [ζ4]V [ζ5]〉+ 1

2z32
〈V [ζ1]V 2[m/

3ζ2]V [ζ4]V [ζ5]〉+

+
1

2z34
〈V [ζ1]V [ζ2]V 4[m/

3ζ4]V [ζ5]〉+ 1

2z35
〈V [ζ1]V [ζ2]V [ζ4]V 5[m/

3ζ5]〉 . (5.50)
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name denominator

K3 (1− x2)x3

K ′
1 (1− x2)(1− x3)

K ′
5 (1− x2)(x3 − x2)

L1 x2(1− x2)x3

L4 x2(1− x2)(x3 − x2)

L′
3 x2(1− x2)(1 − x3)

Table 2. The denominators appearing in (5.52).

The z-dependences of each four-point correlator will be exactly the set of denominators ap-

pearing in (5.48). Hence, considering the z5 → ∞ limit, we can ignore the fourth term in

(5.50), and when we plug in the four-point correlators for the remaining three we only get

the first two type of terms in (5.48). This will give a total of six terms:

〈c1c4c5〉G =
1

2x3

{
−ζ

1
m/3Γµζ2 ζ

4
Γµζ

5

x2(1− x2)
− ζ

1
m/3Γµζ4 ζ

2
Γµζ

5

(1− x2)

}
+

+
1

2(x3 − x2)

{
ζ
1
Γµ

m/3ζ2 ζ
4
Γµζ

5

x2(1− x2)
− ζ

1
Γµζ4 ζ

2
m/3Γµζ

5

(1− x2)

}
+

− 1

2(1 − x3)

{
−ζ

1
Γµζ2 ζ

4
m/3Γµζ

5

x2(1− x2)
+
ζ
1
Γµ

m/3ζ4 ζ
2
Γµζ

5

(1− x2)

}
+O(1/z5) . (5.51)

In terms of these two results, the full amplitude is

A(1̃, 2̃, 3, 4̃, 5̃) =
C1

4C2

2

∫

T

(
〈c1c4c5〉F

(
−∆3

1

x3
− ∆3

2

x3 − x2
+

∆3
4

1− x3

)
− 〈c1c4c5〉G

)
T5 ,

(5.52)

where T5 is understood to be evaluated on its leading behavior as z5 → ∞. We encounter

both type L and type K integrals. The full list of denominators appearing in the amplitude,

together with the corresponding integral names, is given in Table 2. The F and G terms

contribute one term to each of these. Denoting the collection of integrals by

Σ′ = {K3,K
′
1,K

′
5, L1, L4, L

′
3} , (5.53)

we have

A(1̃, 2̃, 3, 4̃, 5̃) =
∑

I∈Σ′

N ′′[I]I . (5.54)
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The corresponding numerators are

N ′′[K3] =
ig3

2
ζ
1 (

∆3
1 − 1

2m/
3
)
Γµζ4 ζ

2
Γµζ

5 ,

N ′′[K ′
1] = − ig3

2
ζ
1
Γµ

(
∆3

4 +
1
2m/

3
)
ζ4 ζ

2
Γµζ

5 ,

N ′′[K ′
5] =

ig3

2
ζ
1
Γµζ4 ζ

2 (
∆3

2 − 1
2m/

3
)
Γµζ

5 ,

N ′′[L1] =
ig3

2
ζ
1 (

∆3
1 − 1

2m/
3
)
Γµζ2 ζ

4
Γµζ

5 ,

N ′′[L4] =
ig3

2
ζ
1
Γµ

(
∆3

2 +
1
2m/

3
)
ζ2 ζ

4
Γµζ

5 ,

N ′′[L′
3] = − ig3

2
ζ
1
Γµζ2 ζ

4 (
∆3

4 − 1
2m/

3
)
Γµζ

5 . (5.55)

We could of course use (A.14) to exchange the type L integrals for type K ones, but

there is no particular reason to do so. Rather one can use (A.14) and (A.13) to write the

amplitude directly in the form (5.25):

A(1̃, 2̃, 3, 4̃, 5̃) = A(i)(1̃, 2̃, 3, 4̃, 5̃)T +A(ii)(1̃, 2̃, 3, 4̃, 5̃)K3 , (5.56)

with

A(i) =
N ′′[K ′

1] +N ′′[L′
3]

q34q15
+
N ′′[K ′

5] +N ′′[L′
4]

q23q15
+
N ′′[L1] +N ′′[L4]

q12q45
+
N ′′[L4]

q23q45
+
N ′′[L′

3]

q12q34
,

(5.57)

and where A(ii) will be given below. The results of [26] combined with supersymmetry dictate

that A(i) must be the tree-level color-ordered super-Yang–Mills amplitude, while A(ii) is the

correction to the Yang–Mills amplitude due to the higher derivative vertices (4.18). In the

next subsection we perform field theory checks of these statements analogous to those we did

for the three gauge boson – two gaugino amplitude in subsection 5.3.

5.6 Comparison with super-Yang–Mills

The tree-level diagrams contributing to AYM(1̃, 2̃, 3, 4̃, 5̃), along with their associated pole

structures, are the following:

D1,
1

q15q34

5 • 1

4 • 2

3

•

>

<

>

< <

�O
�O
�O

�O
�O
�O

D2,
1

q15q23

5 • 1

4 • 2

3

•

>

<

>

< <

�O
�O
�O

�O
�O
�O

D3,
1

q45q12

4 3 2

• • •

5 1

∧

∧

o/ o/ o/ o/ o/ o/ o/

∨

∨

�O
�O
�O
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and

D4,
1

q45q23

4 3

• • •

5 1

2
∧

∧

o/ o/ o/

∨

<
�O
�O
�O

<

D5,
1

q34q12
.

3 2

4 • • •

5 1

O�
O�
O�

o/ o/ o/< <

∧

∨

∨

(5.58)

The double poles match precisely with those appearing in (5.57).

In contrast to the amplitude involving three gauge bosons and two gauginos, there are

no explicit single pole terms in (5.57), nor are there implicit single pole terms. Indeed, the

numerators of (5.57) are linear in the external momenta and therefore cannot contain terms

in which the double pole structure indicated by the denominator is reduced because one of

the qij factors is canceled. This simplifies the comparison: each of the five diagrams above

must match the corresponding term in (5.57) on the nose.

Explicit evaluation of the diagrams using the rules (4.1), (4.4) confirms this. The case of

D1 provides a good illustration. On the one hand the color-ordered rules straightforwardly

yield

D1 = igζ
1
Γµζ5

( −iηµν
(k1 + k5)2

)
ig(ζ

4
ξ/3)a

i(−k/3 − k/4)ab
(k3 + k4)2

ig(Γνζ2)b

=
ig3

4q15q34
ζ
1
Γµζ5 ζ

4
ξ/3(k/3 + k/4)Γµζ

2

=
ig3

2q15q34
ζ
1
Γµζ5 ζ

4 (
∆3

4 − 1
2m/

3
)
Γµζ

2 , (5.59)

where in the last step we invoked the physical state conditions ζ
4
k/4 = 0 and ∆3

3 = 0. On the

other hand we can employ the Fierz identity (3.36) to write

N ′′[K ′
1] +N ′′[L′

3] = − ig3

2

{
ζ
1
Γµ

(
∆3

4 +
1
2m/

3
)
ζ4 ζ

2
Γµζ

5 + ζ
1
Γµζ2 ζ

4 (
∆3

4 − 1
2m/

3
)
Γµζ

5

}

= − ig3

2

{
∆3

4

(
ζ
2
Γµζ5 ζ

1
Γµζ

4 + ζ
4
Γµζ5 ζ

1
Γµζ

2
)
+

+
1

2

(
ζ
2
Γµζ5 ζ

1
Γµ(m/

3ζ4) + (m/3ζ4)Γµζ5 ζ
1
Γµζ

2
)}

=
ig3

2
ζ
1
Γµζ5 ζ

4 (
∆3

4 − 1
2m/

3
)
ζ2 , (5.60)

whence

D1 =
N ′′[K ′

1] +N ′′[L′
3]

q15q34
. (5.61)
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Similar manipulations show that

D2 =
N ′′[K ′

5] +N ′′[L′
4]

q23q15
, D3 =

N ′′[L1] +N ′′[L4]

q12q45
, D4 =

N ′′[L4]

q23q45
, D5 =

N ′′[L′
3]

q12q34
,

(5.62)

and therefore

A(i)(1̃, 2̃, 3, 4̃, 5̃) =
5∑

i=1

Di = AYM(1̃, 2̃, 3, 4̃, 5̃) . (5.63)

We note that diagrams D3,4,5 received an extra sign relative to D1,2 for the same reason as

described under equation (4.11).

We can also give a diagrammatic interpretation of A(ii), the coefficient of the K3 integral

in (5.56). By making use of (A.14) and (A.13) together with the relations (5.61), (5.62), one

finds

A(ii) =
1

q23
B23 +

1

q34
B34 +

1

q45
B45 +

1

q12
B12 +

1

q15
B15 +B0 . (5.64)

with

B23 = − (q12 + q13)q23q15D2 − (q24 + q34)q23q45D4 ,

B34 = − q12q34q15D1 − (q23 + q24)q12q34D5 ,

B45 = − q34q12q45D3 − q12q23q45D4 ,

B12 = − q12q45q34D3 − (q13 + q23)q12q34D5 ,

B15 = − q23q34q15D1 − q34q23q15D2 , (5.65)

and

B0 = N [L′
3]−N [K3]−N [L1] . (5.66)

The Bij correspond to field theory diagrams with a single pole in qij and constructed

using one of the higher derivative vertices (4.18), while B0 is a five-point contact interaction.

The diagrams are

5 � •
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2
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>

∨

<
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2

3
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∧
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<

4

•

5
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1

2

3
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∧

o/ o/
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�O
�O

∨

<

4

�

5

3

•

1

2
∧

∧
�?
�?
�?
�?

<o/ o/

∨

B1, 1/q23 B2, 1/q34 B3, 1/q45 B4, 1/q12
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and

4 � 2

5 • 1

3

> >

<
�O
�O
�O

<
O�
O�
O�

�5

4 3

2

1

> <

∨

∧
�?
�?
�?
�?

B5, 1/q15 B0 .

(5.67)

6 KLT relations for the closed amplitudes

6.1 Closed string vertex operators

Now we turn to the computation of tree-level closed string amplitudes. The closed-string

vertex operators are simply products of open string vertex operators. For example, an NS-NS

sector operator in the (−1,−1) picture would be given by

V
(−1,−1)
NS−NS [ξ, k] = ξµνUµŨνeik·X . (6.1)

This represents a dilaton, a graviton, or a B-field, depending on whether the polarization

tensor ξµν is a trace8, traceless symmetric, or antisymmetric, respectively. As with the open

string vertex operators, there are physical state conditions

ξµνk
µ = 0, ξµνk

ν = 0, k2 = 0, (6.3)

and gauge invariances,

ξµν ∼ ξµν + λµkν + kµλ̃ν , (6.4)

where the vectors λµ and λ̃µ satisfy k · λ = k · λ̃ = 0.

The gravitini vertex operators in the (−1,−1/2) and (−1/2,−1) pictures (the (0,−1/2)

and (−1/2, 0) pictures are similar) are

V
(−1,−1/2)
NS−R = ΨµaUµṼaeik·X , V

(−1/2,−1)
R−NS = Ψ′

µaVaŨµeik·X . (6.5)

In type IIB string theory the two gravitini are spinors of the same chirality, while for type

IIA Ψµ and Ψ′
µ have opposite chirality.

The physical state conditions on the polarizations Ψµ are that (suppressing the spinor

indices)

Ψµk
µ = 0, k/Ψµ = 0, k2 = 0. (6.6)

8More precisely, the polarization for a dilaton is constructed by first choosing a null vector ℓµ that satisfies
k · ℓ = 1. Then we choose

ξµν = Ξ (ηµν − kµℓν − ℓµkν) , (6.2)

where Ξ is the scalar “polarization” of the dilaton.
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Additionally there is a gauge symmetry,

Ψµa ∼ Ψµa + kµζa, (6.7)

where k/ζ = 0. Of course Ψ′
µa has the same physical state conditions and gauge symmetry.

Finally, for states in the Ramond-Ramond sector we will use the (−1/2,−1/2) picture,

and we can write

V
(−1/2,−1/2)
R−R = ζabVaṼbeik·X . (6.8)

The polarization ζab is a bispinor, and we can expand it in terms of differential forms in ten

dimensions. For IIA, the left and right spinors have opposite chirality and the forms will have

even degree, while for IIB they have the same chirality and the forms will have odd degree.

Explicitly,

ζ
(IIA)
ab =

2∑

i=0

F
(2i)
µ1···µ2i

(CΓµ1···µ2i)ab , ζ
(IIB)
ab =

2∑

i=0

F
(2i+1)
µ1···µ2i+1

(CΓµ1···µ2i+1)ab . (6.9)

For the purposes of amplitude calculations, it is more convenient to leave the polarization as

ζab, in either theory, rather than breaking it up into a sum of forms.

The correlation functions now roughly factorize into holomorphic and anti-holomorphic

parts, where unlike in the open string case we are not constrained to the real line z = z̄. Fi-

nally, the amplitudes are computed by fixing the positions of three of the vertex operators and

integrating over the positions of the remaining vertex operators in the complex plane. This

means in particular that a closed string N -point amplitude involves integration over 2N − 6

real variables, compared to N−3 for an N -point open string amplitude. Fortunately, by situ-

ating some of these real integrations as contours in complex planes, and by judicious contour

rotations and careful analysis of the resulting phases, it was shown by Kawai, Lewellen, and

Tye [29], that the closed string amplitudes can in fact be written as weighted sums (over a

subset of the possible permutations of the operators) of products of open string amplitudes.

6.2 KLT relations

We will simply quote the results of [29] for three-, four-, and five-point amplitudes.

A
(3)
closed =

iκ

2g2
Aopen(1, 2, 3)Ãopen(1, 2, 3) , (6.10)

A
(4)
closed =

iκ2

2πg4
sin(πq12)Aopen(1, 2, 3, 4)Ãopen(1, 2, 4, 3) , (6.11)
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and

A
(5)
closed =

iκ3

2π2g6

[
sin(πq12) sin(πq34)Aopen(1, 2, 3, 4, 5)Ãopen(2, 1, 4, 3, 5)

+ sin(πq13) sin(πq24)Aopen(1, 3, 2, 4, 5)Ãopen(3, 1, 4, 2, 5)
]
. (6.12)

In each case, gauge invariance of the closed string amplitude is guaranteed by the gauge

invariance of the open string amplitudes.

These relations are of course somewhat schematic. The tildes on the second open string

amplitude in each term above just means that we compute the amplitude using the right-

moving sectors of our vertex operators. If one wishes to restore dimensions to these ampli-

tudes, one must use the conventional closed string choice, α′ = 2, in contrast to α′ = 1/2

which was used for the open string amplitudes. Also, when we expand the right-hand side

we should replace each product of left and right polarizations by a closed string polarization

tensor. For example, if particle 1 is in the NS-NS sector, then we should make the replacement

ξ1µξ̃
1
ν −→ ξ1µν . (6.13)

Let’s see how this works for the three-point functions.

For three NS-NS sector fields, we use (2.41) and get

A
(3)
closed(ξ

1, k1; ξ
2, k2; ξ

3, k3)

= − i

2
κξ1µµ′ξ2νν′ξ

3
ρρ′

[
kµ23η

νρ + kν31η
ρµ + kρ12η

µν
] [
kµ

′

23η
ν′ρ′ + kν

′

31η
ρ′µ′

+ kρ
′

12η
µ′ν′

]
. (6.14)

Recall that the original open string three-vector amplitude was invariant under Z3 cyclic

symmetry, but was antisymmetric under exchange of any two vectors, and hence was not

invariant under the full S3 symmetry group. The closed string amplitude is S3-invariant;

it inherits the cyclic symmetry from the open string amplitudes, and under exchange of two

vectors we get a minus sign from each factor, leaving the product invariant. This enhancement

from cyclic symmetry to the full permutation symmetry occurs in each of the cases we will

examine.

For one NS-NS sector field and two NS-R sector gravitini, we plug in (2.41) and (2.44)

to find

A
(3)
closed(ξ

1, k1; Ψ
2, k2; Ψ

3, k3) =
i

2
κξ1µµ′Ψ

2
νΓ

µ′

Ψ3
ρ

[
kµ23η

νρ + kν31η
ρµ + kρ12η

µν
]
. (6.15)

The case of two R-NS sector gravitini is completely analogous.

Two more amplitudes remain, and they are both products of two bff (boson-fermion-

fermion) open string amplitudes. First we have one NS-NS and two R-R fields,

A
(3)
closed(ξ

1, k1; ζ
2, k2; ζ

3, k3) = − i

2
κξ1µν Tr(ζ

2CΓµζ3TCΓν) . (6.16)
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The other possibility is one R-R, one NS-R, and one R-NS field,

A
(3)
closed(ζ

1, k1; Ψ
2, k2; Ψ

′ 3, k3) = − i

2
κΨ

′ 3
µ Γνζ1CΓµΨ2

ν . (6.17)

All of these amplitudes match the results that would be obtained (at tree level) from the

effective action of type IIA or IIB supergravity. For graviton fields in particular, we would

expand the Einstein-Hilbert Lagrangian around flat space, with fluctuations

Gµν(x) = ηµν + 2κξµνe
ik·x , (6.18)

with traceless symmetric ξµν .

Next we move on to four-point functions. For four NS-NS sector fields we have, using

(6.11) and (3.14),

A
(4)
closed(ξ

1, k1; ξ
2, k2; ξ

3, k3; ξ
4, k4)

= −2i

π
κ2 sin(πq12)

B(q12, q23)

q13

B(q12, q24)

q14
K(1, 2, 3, 4)K̃(1, 2, 4, 3)

= −2iκ2
Γ(q12)Γ(q13)(Γ(q14)

Γ(1− q12)Γ(1− q13)Γ(1 − q14)
K(1, 2, 3, 4)K̃(1, 2, 4, 3) , (6.19)

where we have used the identity

π

sin(πq12)
= Γ(q12)Γ(1− q12) , (6.20)

and it is understood that we make the replacement (6.13). K(1, 2, 3, 4) or K̃(1, 2, 4, 3) are

both given by (3.16), with the right-moving polarizations inserted in the latter case (as an

intermediate step before we substitute (6.13)). Note that the prefactor,

P =
Γ(q12)Γ(q13)Γ(q14)

Γ(1− q12)Γ(1− q13)Γ(1− q14)
, (6.21)

is now invariant under the full S4 symmetry. Since the kinematic factor K(1, 2, 3, 4) also has

S4 symmetry, the full amplitude has the appropriate permutation symmetry.

Similarly, for the amplitude with two NS-NS fields and two NS-R gravitini, we would

compute

A
(4)
closed(ξ

1, k1; ξ
2, k2; Ψ

3, k3; Ψ
4, k4) =

iκ2

2πg4
sin(πq12)A

(4)
open(1, 2, 3, 4)Ã

(4)
open(1, 2, 4̃, 3̃)

=− iκ2

2πg4
sin(πq12)A

(4)
open(1, 2, 3, 4)Ã

(4)
open(3̃, 1, 2, 4̃)

=− i

2
κ2PK(1, 2, 3, 4)K̃ (3̃, 1, 2, 4̃) , (6.22)
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where now K̃(3̃, 1, 2, 4̃) is given by (3.24). In the third line we have used the cyclicity of Ã
(4)
open,

with an extra sign since we moved the fermions through each other. In the last line we made

the substitutions from (4.17). This result has the expected symmetry under exchange of the

two bosons and antisymmetry under exchange of the two fermions. Note, however, that we

could have put the states in a different order to start, writing

A
(4)
closed(ξ

1, k1; Ψ
3, k3; Ψ

4, k4; ξ
2, k2) =

iκ2

2πg4
sin(πq13)A

(4)
open(1, 3, 4, 2)Ã

(4)
open(1, 3̃, 2, 4̃)

=
iκ2

2πg4
sin(πq13)A

(4)
open(1, 3, 4, 2)Ã

(4)
open(3̃, 2, 4̃, 1)

=− i

2
κ2PK(1, 3, 4, 2)K̃ (3̃, 2, 4̃, 1) , (6.23)

which uses (3.31). The equivalence of these two computations relies on the symmetries of

the kinematic factors, as well as the equality (3.32) between the kinematic factors of the two

open string amplitudes and the relative sign appearing in (4.17) between the two types of

ordering.

Similar stories can be told for all other possible four-point functions of massless closed

strings. In each case the leading term in the momentum expansion matches the result derived

from the type IIA or IIB effective action at tree-level, while the higher terms in the momentum

expansion originate from corrections (in fact the corrections are eight-derivative or higher, or

(α′)3) to those actions.

Finally we turn to the five-point function. The procedure is the same as for the three- and

four-point functions, so we will be brief. As above, the closed-string amplitudes are obtained

by simply substituting our open string amplitudes (5.13) or the appropriate version of (5.25)

into the KLT formula (6.12).

As with the four-point amplitude, the closed string amplitude can have enhanced symme-

try compared to the open string. For example, the amplitude for five identical NS-NS sector

states has a full S5 permutation symmetry, which is not manifest from (6.12) (other than the

transposition of particles labeled 2 and 3, which clearly just exchanges the two lines of the

formula). Indeed, verifying the full symmetry involves certain nontrivial identities, quadratic

in generalized hypergeometric functions, which can be checked numerically.

Similarly, the fact that the closed string amplitudes are independent of the distribution

order of particles implies certain relations between different open string orderings. For exam-

ple, consider the amplitude with three NS-NS and two NS-R states. If we put the fermions in

positions 1 and 5, then the closed string result is constructed purely from the second ordering

computed in section 5.4,

A
(5)
closed =

iκ3

2π2g6

[
sin(πq12) sin(πq34)Aopen(1, 2, 3, 4, 5)Ãopen(1̃, 4, 3, 5̃, 2)

+ sin(πq13) sin(πq24)Aopen(1, 3, 2, 4, 5)Ãopen(1̃, 4, 2, 5̃, 3)
]
, (6.24)
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where we used cyclic symmetry to put the antiholomorphic sector amplitudes into the form

we computed. On the other hand, if we assign the fermions to positions 1 and 4, then it is the

first ordering which appears. The equivalence of these two choices implies a relation between

the two orderings, though not one that is expressible in a simple way.

We should mention that another way to uncover the emergence of the full permutation

symmetry is through the use of linear relations (with momentum-dependent coefficients)

between the open string n-point ordered amplitudes that reduce the number of independent

open sub-amplitudes to (n− 3)! [44, 45].
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A A study of integrals

In this appendix we discuss the integrals relevant for the five-point amplitudes. All of this

structure is already given in [26], and we merely include this for ease of reference. First, recall

that in (5.4) we have the following correlation functions:

Z = 〈U [ξ4]U [ξ5]〉T (1,2,3)
5 , Yi = 〈J [mi]U [ξ4]U [ξ5]〉T (2,3)

5 ,

Xij = 〈J [mi]J [mj ]U [ξ4]U [ξ5]〉T (1)
5 , W123 = 〈J [m1]J [m2]J [m3]U [ξ4]U [ξ5]〉T5 . (A.1)

After fixing the positions as indicated in section 5.1, we find that these correlators give rise

to the denominators collected in tables 3, 4, and 5. These integrals are of the hypergeometric

form, and with some manipulations can be reduced to a product of Beta functions and 3F2.

The latter is a sufficiently complicated object that for the most part it is best to work with the

integral representations directly. In each case, the integral corresponding to a denominator κ

is given by

I[κ] =

∫ 1

0
dx3

∫ x3

0
dx2

τ

κ
, τ = xq133 (1− x3)

q34xq122 (1− x2)
q24(x3 − x2)

q23 . (A.2)

A.1 Reduction to K3 and T

The 26 integrals satisfy 24 relations. These are obtained by a combination of integration by

parts and partial fractions.
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For instance, we have

∫ 1

0
dx3

∫ x3

0
dx2 τ

(
q12 − 1

x22x3
− q23
x2x3(x3 − x2)

)
=

=

∫ 1

0
dx3

∫ x3

0
dx2

(
q12 − 1

x2
− q23
x3 − x2

)
xq12−1
2 (1− x2)

q24xq13−1
3 (1− x3)

q34(x3 − x2)
q23

=

∫ 1

0
dx3

∫ x3

0
dx2

{
∂

∂x2

[
xq12−1
2 (x3 − x2)

q23
]}

(1− x2)
q24xq13−1

3 (1− x3)
q34

= −
∫ 1

0
dx3

∫ x3

0
dx2

(
− q24
1− x2

)
xq12−1
2 (1− x2)

q24xq13−1
3 (1− x3)

q34(x3 − x2)
q23

=

∫ 1

0
dx3

∫ x3

0
dx2

q24τ

x2(1− x2)x3
, (A.3)

which leads to the relation

(q12 − 1)M2 − q23M1 = q24L1 . (A.4)

In a similar fashion we obtain

(q23 − 1)M4 + q13M1 = q34L2 ,

−(q23 − 1)M5 + q12M1 = q24L7 ,

(q13 − 1)M6 + q23M1 = q34L3 . (A.5)

For a partial fraction example, we have

1

x2x3(x3 − x2)
=

1

x22(x3 − x2)
− 1

x22x3
, (A.6)

which implies

M1 =M3 −M2 . (A.7)

Similarly, we obtain

M1 =M4 −M5 , M1 =M6 +M7 . (A.8)

Thus, we have 7 linear relations that allow us to determine the M integrals in terms of the

K and L integrals.
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denominator with z1 = 0, z4 = 1 name location

z21z31z42 x2x3(1− x2) L1 W123, X12, Y2, Z

z21z32z43 x2(x3 − x2)(1− x3) L2 W123, X23, Y3, Z

z21z31z43 x2x3(1− x3) L3 W123, X31, Y3, Z

z21z32z42 x2(1− x2)(x3 − x2) L4 X12, X23, Y2, Z

z221z43 x22(1− x3) L5 W123, X12, Y3, Z

z231z42 x23(1− x2) L6 W123, X31, Y2, Z

z31z32z42 (1− x2)x3(x3 − x2) L7 W123, X23, Y2, Z

z31z42z43 (1− x2)x3(1− x3) L′
1 X31, Y2, Y3, Z

z21z42z43 x2(1− x2)(1− x3) L′
3 X12, Y2, Y3, Z

z31z32z43 x3(1− x3)(x3 − x2) L′
4 X23, X31, Y3, Z

Table 3. The type L denominators and their origins in the five-vector amplitude.

denominator with z1 = 0, z4 = 1 name location

z21z31z41 x2x3 K1 X12, X31, Y1, Z

z21z41z43 x2(1− x3) K2 X12 Y1, Y3, Z

z31z41z42 (1− x2)x3 K3 X31, Y1, Y2, Z

z21z32z41 x2(x3 − x2) K4 W123, X12, Y1, Z

z31z32z41 x3(x3 − x2) K5 W123, X31, Y1, Z

z232z41 (x3 − x2)
2 K6 W123, X23, Y1, Z

z41z42z43 (1− x2)(1 − x3) K ′
1 Y1, Y2, Y3, Z

z32z41z43 (1− x3)(x3 − x2) K ′
4 X23, Y1, Y3, Z

z32z41z42 (1− x2)(x3 − x2) K ′
5 X23, Y1, Y2, Z

Table 4. The type K denominators and their origins in the five-vector amplitude.

The remaining integrals are then reduced according to [26]. Integration by parts yields

q43K2 − q31K1 − q32K4 = 0 ,

q42K3 − q21K1 + q32K5 = 0 ,

(q32 − 1)K6 − q43K
′
4 + q31K5 = 0 ,

q21K2 − q42K
′
1 − q32K

′
4 = 0 ,

q31K3 − q43K
′
1 + q32K

′
5 = 0 . (A.9)
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denominator with x1 = 0, x4 = 1 name location

z21z31x32 x2x3(x3 − x2) M1 W123, Z

z221z31 x22x3 M2 X12, Z

z221z32 x22(x3 − x2) M3 X12, Z

z21z
2
32 x2(x3 − x2)

2 M4 X23, Z

z31z
2
32 x3(x3 − x2)

2 M5 X23, Z

z21z
2
31 x2x

2
3 M6 X31, Z

z231z32 x23(x3 − x2) M7 X31, Z

Table 5. Type M denominators and their origins in the five-vector amplitude.

while from partial fractions we learn that

K1 −K4 +K5 = 0 , K ′
1 −K ′

4 +K ′
5 = 0 . (A.10)

These 7 relations allow us to express the nine K integrals in terms of just two independent

ones, which we take to be K3, and the linear combination ingeniously identified in [26]:

T = q21q43K2 + (q51q21 − q21q43 + q43q54)K3 . (A.11)

The cyclic invariance of T is highly non-trivial and requires the integral relations. There is

a good reason that the relations for the K integrals close without involving any of the L

integrals: the two-fermion, three-vector amplitude only involves the K integrals.

A.2 Reduction of the K integrals to K3 and T

Here we give the expressions for all the integrals in terms of our basis K3 and T with a

composition according to the pole structure. We use

q15 = q23 + q24 + q34 , q45 = q12 + q13 + q23 . (A.12)
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K1 = −
[
q23
q45

+
q34
q12

]
K3 +

T

q12q45
,

K2 = −
[
q23 + q24
q34

+
q13 + q23
q12

+ 1

]
K3 +

T

q12q34
,

K4 = −
[
q12 + q23
q45

+
q34
q12

+
q24 + q34
q23

]
K3 +

1

q45

[
1

q23
+

1

q12

]
T ,

K5 = −
[
q24 + q34
q23

+
q12
q45

]
K3 +

1

q23q45
T ,

K ′
1 = −

[
q12
q34

+
q23
q15

]
K3 +

1

q34q15
T ,

K ′
4 = −

[
q23 + q34
q15

+
q12
q34

+
q12 + q13
q23

]
K3 +

1

q15

[
1

q34
+

1

q23

]
T

K ′
5 = −

[
q34
q15

+
q12 + q13
q23

]
K3 +

1

q23q15
T

(q23 − 1)K6 = −
[
q13K5 − q34K

′
4

]

= −
[
q12 + q34

(
q23 + q34
q15

+
q12 + q13
q23

)
− q13

(
q24 + q34
q23

+
q12
q45

)]
K3

+

[
1

q15
+

1

q23

(
q34
q15

− q13
q45

)]
T . (A.13)

Note that terms with double poles only show up as coefficients of T .

The remaining L integrals can also be expressed in terms of K3 and T . From partial

fractions we obtain

L1 = K1 +K3 , L′
1 = K ′

1 +K3 ,

L3 = K1 +K2 , L′
3 = K ′

1 +K2 ,

L4 = K4 +K ′
5 , L′

4 = K ′
4 +K5 ,

L2 = L3 + L′
4 ,

L7 = L4 − L1 , (A.14)

while integration by parts yields

(q21 − 1)L5 = q42L
′
3 + q32L2 , (q31 − 1)L6 = q43L

′
1 − q32L7 . (A.15)

A.3 The small momentum expansion

We now tackle the small momentum expansion of the integrals. This is most easily done for

integrals that are finite as qij → 0, such as K3. Here, after setting x3 = y1 and x2 = y1y2 we

– 48 –



obtain

K3 =

∫ 1

0
dy1

∫ 1

0
dy2 y

q45
1 (1− y1)

q34yq122 (1− y2)
q23(1− y1y2)

q24−1 . (A.16)

In what follows we will not explicitly specify the integration domain or the obvious measure

dy1dy2. Expanding in the qij leads to the form claimed in (5.10) :

K3 = C0 + (q45 + q12)C1 + (q34 + q23)C2 + q24C3 +O(q2) , (A.17)

with

C0 =

∫ ∞∑

k=0

(y1y2)
k =

π2

6
,

C1 =

∫
log y1

1− y1y2
= −ζ(3) ,

C2 =

∫
log(1− y1)

1− y1y2
= −2ζ(3) ,

C3 =

∫
log(1− y1y2)

1− y1y2
= −ζ(3) . (A.18)

All of these integrals are evaluated by expanding the logarithms and integrating term by

term. We give an example below.

The K2 integral presents a little more of a challenge because it is singular in the qij → 0

limit. However, a close examination of the integration region shows that the poles arise from

different regions, and thus we can easily subtract them off to find a finite remainder. We

begin with

K2 =

∫ 1

0
dy1

∫ 1

0
dy2 y

q45
1 (1− y1)

q34−1yq12−1
2 (1− y2)

q23(1− y1y2)
q24 . (A.19)

With a little effort, we see that we can write this as

K2 =
1

q12q34
+K ′

2 ,

K ′
2 =

∫
(1 − y1)

q34−1yq12−1
2 [yq451 (1− y2)

q23(1− y1y2)
q24 − 1] ,

K ′
2 =

1

q34

[
B(q12, 1 + q23 + q24)−

1

q12

]
+

1

q12

[
B(q34, 1 + q45)−

1

q34

]
+K ′′

2 ,

K ′′
2 =

∫
(1 − y1)

q34−1yq12−1
2

[
yq451 ((1− y2)

q23(1− y1y2)
q24 − 1)− (1− y2)

q23+q24 + 1
]
.

(A.20)
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The remaining non-trivial integral K ′′
2 is regular as qij → 0 and has expansion

K ′′
2 = q24C4 +O(q2) , C4 =

∫
log(1− y1y2)− log(1− y2)

(1− y1)y2
. (A.21)

We evaluate C4 is by power-series expansion:

C4 =

∞∑

k=1

1

k

∫
(1− yk1)y

k−1
2

1− y1
=

∞∑

k=1

1

k2

∞∑

l=1

[
1

l
− 1

l + k

]
=

∞∑

k,l=1

1

kl(k + l)
= 2ζ(3) . (A.22)

The last equality can be obtained as follows. Observe that the sum can be written as

∫ 1

0
dx

∞∑

l=1

∞∑

k=1

xl+k−1

lk
=

∫ 1

0
dx

log(1− x)2

x
= 2

∫ 1

0
dx

log(1− x) log(x)

x

= −2

∞∑

k=1

1

k

∫ 1

0
dx xk−1 log(x) = 2

∞∑

k=1

1

k3
= 2ζ(3) . (A.23)

Using this in T we find the form claimed in (5.12).

The integrals K2 and K3 also have closed-form expressions in terms of Gamma functions

and 3F2 hypergeometric functions—and hence, via (A.13) and (A.14), so do all of the other

K’s and L’s. We have not found these expressions useful in this work, but for completeness

we give them here:

K3 =
Γ(1 + q23)Γ(1 + q34)Γ(1 + q15)Γ(1 + q45)

Γ(2 + q23 + q45)Γ(2 + q15 + q45)
3F2

[
1 + q23, 1− q35, 1 + q15
2 + q23 + q34, 2 + q15 + q45

∣∣∣∣∣ 1
]
,

(A.24)

K2 =
Γ(1 + q23)Γ(q34)Γ(1 + q15)Γ(1 + q45)

Γ(1 + q23 + q45)Γ(2 + q15 + q45)
3F2

[
1 + q23, 1− q35, 1 + q15
1 + q23 + q34, 2 + q15 + q45

∣∣∣∣∣ 1
]
. (A.25)
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