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1 Introduction

One of the discoveries of the seminal analysis in [1] is the existence of interacting quantum

field theories in five and six dimensions. Of particular interest are six-dimensional (2, 0)

superconformal theories which are supposed to describe the low energy limit of multiple

coincident M5 branes.

However, no Lagrangian description for these theories is known and it is in general

believed that no such formulation exists: The M/string theory origin implies that these

theories have no free (dimensionless) parameter, which would allow a parametrization to

weak coupling and thus make the existence of a Lagrangian description plausible. This

conclusion was also drawn from symmetry properties which imply that tree level amplitudes

have to vanish [2]. In addition, these (2, 0) theories consist of chiral tensor multiplets and

so far it has often been considered as impossible to define non-abelian gauge couplings for

such multiplets.
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Regarding the first aspect the situation is similar to that of multiple M2 branes, as

it was before the recent developments that were triggered by the discovery of the three

dimensional N = 8 superconformal BLG model [3, 4]. The meaning of this N = 8 model

in the M/string theory context has been discussed in [5]. Subsequently an N = 6 super-

conformal theory (ABJM model) was formulated for an arbitrary number of M2 branes [6].

The decisive observation in [6] is that M theory/supergravity on a particular orbifold pro-

vides a dimensionless, though discrete, parameter k which allows a parametrization to

weak coupling and thus also a Lagrangian formulation. This formulation breaks N = 8

supersymmetry down to N = 6 except for k = 1, 2, where the theory is strongly coupled.

The N = 6 ABJM model has the same field content as the N = 8 multiplet and it has been

argued that monopole operators enhance the supersymmetry to N = 8 for k = 1, 2 [7, 8]

(for U(2) gauge group see [9, 10]).

We take here an analogous route. Instead of focusing on (2, 0) supersymmetry we

construct (1, 0) superconformal models for interacting multiple tensor multiplets. One

major obstacle, the nonabelian gauging of the (self dual) tensor fields, is resolved by the

introduction of a tensor hierarchy [11–13] which besides the Yang-Mills gauge field and

the two-form gauge potentials of the tensor multiplets contains also three-form gauge po-

tentials. We therefore have an extended tensor gauge freedom with p = 0, 1, 2 p-form

gauge parameters.

We then formulate essentially unique supersymmetry transformations for the various

fields, where we find a suitable extension of the structures introduced in [14]. While

in [14] the 2-form potential is a singlet, here it carries a representation of the local gauge

group, which is facilitated by the introduction of a 3-form potential that mediates couplings

between the tensor and vector multiplets. While the brane interpretation of our models

requires further investigation, it is worth mentioning that the field content of the model

in [14] is known to arise in the worldvolume description of D6 branes stretch between

NS fivebranes [15–19]. The closure of the supersymmetry algebra into translations and

extended tensor gauge transformations puts the system on-shell with a particular set of

e.o.m. For example the tensor multiplet field strength has to satisfy its self-duality condition

and the Yang-Mills field strength is related to the field strength of the three-form potentials

by a first-order duality equation. Consequently, the three-form gauge potentials do not

introduce additional degrees of freedom. They communicate degrees of freedom between

the tensor multiplets and the Yang-Mills multiplet. We also describe the extension of

the tensor hierarchy to higher p-form gauge potentials and briefly discuss the inclusion of

hypermultiplets which complete the field content to that of superconformal (2, 0) theories.

Consistency of the tensor hierarchy imposes a number of conditions on the possible

gauge groups and representations. We discuss several solutions of these conditions. Gener-

ically these models provide only equations of motions, but for a subclass also a Lagrangian

formulation exists. In particular we find a Lagrangian model with SO(5) gauge symmetry.

However, the existence of a Lagrangian description necessarily implies indefinite metrics for

the kinetic terms. It is at the moment not clear if the resulting ghost states can be decou-

pled with the help of the large extended tensor gauge symmetry. This and other questions
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regarding the quantization of the theory we have to leave for a further investigation. A

general feature of all considered cases is that the models are perturbatively defined only

in the spontaneously broken phase with the vev of the tensor multiplet scalars serving as

inverse coupling constants of the Yang-Mills multiplets.

To write down a Lagrangian for a self dual field strength is in general a formidable task.

For a single M5 brane, in which case the e.o.m. are known [20], this has been done in [21–24].

We consider these difficulties to be of a different category than finding a superconformal

non-abelian theory. When we formulate a Lagrangian we understand that the first order

duality equations are consistently imposed in addition to the second order Lagrangian

e.o.m., just as in the democratic formulation of ten-dimensional supergravity [25].

Finally we want to comment on some recent attempts and proposals for the description

of the (2, 0) theory. The low energy description of the theory when compactified on a small

circle is expected to be given by the maximal supersymmetric Yang-Mills theory in five

dimensions. Recent attempts tried to basically rewrite five-dimensional Yang-Mills theory

in six dimensions [26, 27] or introduced non-abelian gaugings at the cost of locality [28].

Furthermore, it was recently proposed that the (2, 0) theory is identical to five-dimensional

super Yang-Mills theory for arbitrary coupling or compactification radius [29, 30]. It is not

clear yet how one could obtain Yang-Mills theories in five dimensions from the models pre-

sented here (even when including hypermultiplets). Clearly a mechanism more complicated

than a trivial dimensional reduction has to be considered.

The paper is organized as follows: in section 2 we present the general non-abelian

hierarchy of p-forms in six dimensions. We show that all couplings are parametrized in

terms of a set of dimensionless tensors that need to satisfy a number of algebraic con-

sistency constraints. In particular, we find that non-abelian charged tensor fields require

the introduction of Stückelberg-type couplings among the p-forms of different degree. In

section 3, we extend the non-abelian vector/tensor system to a supersymmetric system.

Closure of the supersymmetry algebra puts the system on-shell and we derive the modified

field equations for the vector and tensor multiplets. In particular, we obtain the first-order

duality equation relating vector fields and three-form gauge potentials. In section 3.4 we

sketch the extension of the model upon inclusion of hypermultiplets and gauging of their

triholomorphic isometries. In section 3.5 we derive the general conditions for maximally

supersymmetric vacua and compute the fluctuation equations by linearizing the equations

of motion around such a vacuum. Finally, we give in section 3.6 an explicit example with an

arbitrary compact gauge group and tensor fields transforming in the adjoint representation.

Section 4 presents the additional conditions on the couplings in order to allow for a La-

grangian formulation. We give the full action in section 4.2. In section 4.3 we calculate the

fluctuation equations induced by the action and show that the degrees of freedom arrange

in the free vector and self-dual tensor multiplet as well as in certain ‘non-decomposable’

combinations of the two. We illustrate the general analysis in sections 4.4 and 4.5 with

two explicit models that provide solutions to the consistency constraints with compact

gauge group SO(5) and nilpotent gauge group N8, respectively. Finally, we summarize our

findings in section 5.
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2 Non-abelian tensor fields in six dimensions

In this section, we present the general (non-abelian) couplings of vectors and anti-symmetric

p-form fields in six dimensions. While the standard field content of the ungauged theories

falls into vector and tensor multiplets, it is a general feature of these theories that the

introduction of gauge charges generically requires the introduction of and couplings to

three-form potentials. The specific couplings can be derived successively and in a systematic

way by building up the non-abelian p-form tensor hierarchy, as worked out in [11–13], see

also [31–33] for some applications to the specific 6D context. Rather than going again step

by step through the derivation of the general couplings, we directly present the final result

as parametrized by a set of constant tensors (generalized structure constants) that need

to satisfy a system of algebraic consistency equations (generalized Jacobi identities). In

section 2.1 we present the couplings for the minimal field content required to introduce non-

abelian couplings between vector and tensor fields. In section 2.1, we extend the system to

include also four-form gauge potentials.

2.1 Minimal tensor hierarchy

The basic p-form field content of the theories to be discussed is a set of vector fields Ar
µ,

and two-form gauge potentials BI
µν , that we label by indices r and I, respectively. In

addition, we will have to introduce three-form gauge potentials that we denote by Cµνρ r.

The fact that three-form potentials are labeled by an index r dual to the vector fields is in

anticipation of their dynamics: in six dimensions, these fields will be the on-shell duals to

the vector fields. For the purpose of this section however, the dynamics of these fields is

not yet constrained, the construction of the tensor hierarchy remains entirely off-shell, and

the indices ‘ r ’ and ‘r’ might be taken as unrelated. Similarly, throughout this section, the

self-duality of the field strength of the two-form gauge potentials, which is a key feature of

the later six-dimensional dynamics, is not yet an issue.

The full non-abelian field strengths of vector and two-form gauge potentials are given

as

Fr
µν ≡ 2∂[µAr

ν] − fst
rAs

µAt
ν + hr

I BI
µν ,

HI
µνρ ≡ 3D[µBI

νρ] + 6 dI
rsA

r
[µ∂νAs

ρ] − 2fpq
sdI

rsA
r
[µAp

νAq
ρ] + gIrCµνρ r , (2.1)

in terms of the antisymmetric structure constants fst
r = f[st]

r, a symmetric d-symbol dI
rs =

dI
(rs), and the tensors gIr, hr

I inducing Stückelberg-type couplings among forms of different

degree.1 Covariant derivatives are defined as Dµ ≡ ∂µ −Ar
µXr with an action of the gauge

generators Xr on the different fields given by Xr · Λ
s ≡ −(Xr)t

sΛt, Xr · Λ
I ≡ −(Xr)J

IΛJ ,

etc. The field strengths are defined such that they transform covariantly under the set of

1We use canonical dimensions such that a p-form has mass dimension p and as a result all constant

tensors fst
r, dI

rs, gIr, hr
I , are dimensionless.
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non-abelian gauge transformations

δAr
µ = DµΛr − hr

IΛ
I
µ ,

∆BI
µν = 2D[µΛI

ν] − 2 dI
rsΛ

rFs
µν − gIrΛµν r ,

∆Cµνρ r = 3D[µΛνρ] r + 3 bIrs F
s
[µν ΛI

ρ] + bIrs H
I
µνρ Λs + . . . , (2.2)

where we have introduced the compact notation

∆BI
µν ≡ δBI

µν − 2dI
rs Ar

[µ δAs
ν] ,

∆Cµνρ r ≡ δCµνρ r − 3 bIrs BI
[µν δAs

ρ] − 2 bIrs dI
pq As

[µ Ap
ν δAq

ρ]
. (2.3)

The ellipsis in the last line of (2.2) represent possible terms that vanish under projection

with gIr. This system is completely defined by the choice of the invariant tensors gIr, hr
I ,

bIrs, dI
rs, and frs

t. It is obvious from (2.2) that the shift symmetry action on the p-form

gauge fields can be used to gauge away some of the p-forms, giving mass to others by the

Stückelberg mechanism. However, for the general analysis of couplings, we find it the most

convenient to work with the uniform system (2.2) and to postpone possible gauge fixing to

the analysis of particular models.2

Consistency of the tensor hierarchy requires that the gauge group generators in the

various representations are parametrized as

(Xr)s
t = −frs

t + dI
rs ht

I ,

(Xr)I
J = 2hs

Id
J
rs − gJsbIsr , (2.4)

in terms of the constant tensors appearing in the system. The second relation exposes an

important feature of the tensor hierarchy: tensor fields can be charged under the gauge

group only if either hr
I or gIr are non-vanishing, i.e. they require some non-vanishing

Stückelberg-type couplings in the field strengths (2.1).3 This corresponds to the known

results [35, 36] that in absence of such couplings and the inclusion of additional three-form

gauge potentials, the free system of self-dual tensor multiplets does not admit any non-

abelian deformations. On the other hand, the first relation of (2.4) shows that in presence

of hr
I , the gauge group generators in the ‘adjoint representation’ (Xr)s

t are not just given

by the structure constants but acquire a modification, symmetric in its indices (rs).

Furthermore, consistency of the system, i.e. covariant transformation behavior of the

field strengths (2.1) under the gauge transformations (2.2) requires the constant tensors to

satisfy a number of algebraic consistency constraints. A first set of constraints, linear in

f , g, h, is given by

2
(

dJ
r(udI

v)s − dI
rsd

J
uv

)

hs
J = 2fr(u

sdI
v)s − bJsrd

J
uv gIs ,

(

dJ
rs bIut + dJ

rt bIsu + 2 dK
rubKstδ

J
I

)

hu
J = frs

ubIut + frt
ubIsu + gJubIurbJst , (2.5)

2For a possible embedding into the general framework of L∞-algebra connections, we refer to [34]. We

thank U. Schreiber for pointing out this link.
3Note that the presence of Stückelberg-type couplings does not imply a breakdown of conformal invari-

ance in our model. Indeed, the superconformal invariance of our model be demonstrated in section 4.2.
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and ensures the invariance of the d- and the b-symbol under gauge transformations. The

remaining constraints are bilinear in f , g, h and take the form

f[pq
ufr]u

s − 1
3hs

I dI
u[pfqr]

u = 0 ,

hr
Ig

Is = 0 ,

frs
thr

I − dJ
rs ht

Jhr
I = 0 ,

gJshr
KbIsr − 2hs

Ih
r
K dJ

rs = 0 ,

− frt
sgIt + dJ

rth
s
JgIt − gItgJsbJtr = 0 . (2.6)

They may be understood as generalized Jacobi identities of the system: together with (2.5)

they ensure the closure of the gauge algebra according to

[Xr,Xs] = −(Xr)s
t Xt , (2.7)

for the generators (2.4), as well as gauge invariance of the tensors f , g and h. The first

equation of (2.6) shows that the standard Jacobi identity is modified in presence of a

non-vanishing hI
r . Even though the set of constraints (2.5), (2.6) looks highly restrictive,

it admits rather non-trivial solutions and we will discuss explicit examples of solutions in

sections 3.6, 4.4, and 4.5, below. The system admits different abelian limits with frs
t = 0 =

gIr and either hr
I or dI

rs vanishing, in which the constraints (2.5), (2.6) are trivially satisfied.

A slightly more general solution is given by vanishing hr
I = 0 = gIr with frs

t representing

the structure constants of a Lie algebra. With the particular choice dI
rs = dIδrs, the vector-

tensor system then reduces to the coupling of the Yang-Mills multiplet to an uncharged

self-dual tensor multiplet as described in [14].

The covariant field strengths (2.1) satisfy the modified Bianchi identities

D[µF
r
νρ] = 1

3hr
I H

I
µνρ ,

D[µH
I
νρσ] = 3

2dI
rs F

r
[µνF

s
ρσ] + 1

4gIrH(4)
µνρσ r , (2.8)

where the non-abelian field strength H
(4)
µνρσ r of the three-form potential is defined by the

second equation. In turn, its Bianchi identity is obtained from (2.8) as

D[µH
(4)
νρστ ] r = −2 bIrs F

s
[µν H

I
ρστ ] + . . . , (2.9)

where the ellipsis represents possible terms that vanish under projection with gIr. We

finally note that the general variation of the field-strengths is given by

δFr
µν = 2D[µδAr

ν] + hr
I ∆BI

µν ,

δHI
µνρ = 3D[µ∆BI

νρ] + 6 dI
rs F

r
[µν δAs

ρ] + gIr ∆Cµνρ r ,

δH(4)
µνρσ r = 4D[µ∆Cνρσ]r − 6 bIrs F

s
[µν ∆BI

ρσ] + 4 bIrs H
I
[µνρ δAs

σ] + . . . , (2.10)

again with the ellipsis representing possible terms that vanish under projection with gIr.
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2.2 Extended tensor hierarchy

The field content introduced in the last section were the p-forms Ar
µ, BI

µν , Cµνρ r, for

which in particular we have defined their non-abelian field strengths. Strictly speaking,

in the entire system, only a subset of the three-form potentials have appeared, defined by

projection with the tensor gIr as gIrCµνρ r . As it turns out, this truncation is precisely the

‘minimal field content’ required in order to write down an action and/or define a consistent

set of equations of motion. Off-shell on the other hand, the tensor hierarchy may be

extended to the full set of three-form potentials, which then necessitates the introduction

of four-form gauge potentials, etc.

For later use, we present in this section the results of the general tensor hierarchy for

the four-form gauge potentials which we denote by C
(4)
µνρλ α with covariant field strength

H
(5)
α . The full version of the Bianchi identity (2.9) then reads

D[µH
(4)
νρστ ] r = −2 bIrs F

s
[µν H

I
ρστ ] + 1

5kr
α H(5)

µνρστ α , (2.11)

where now the field strength H
(5)
α itself satisfies the Bianchi identity

D[µH
(5)
νρλστ ] α = 10

3 cα IJH
I
[µνρH

J
λστ ] −

5
2ct

α sF
s
[µνH

(4)
ρλστ ] t + · · · , (2.12)

up to terms vanishing under projection with the tensor kr
α. The new constant tensors kr

α,

cα IJ , and ct
α s are constrained by the relations

kr
αcα IJ = hs

[IbJ ]rs , kr
αct

α s = frs
t − bIrsg

It + dI
rsh

t
I , gKr kr

α = 0 , (2.13)

which extend the constraints (2.5), (2.6). As a consistency check, we note that equa-

tions (2.5), (2.6) imply the orthogonality relations

gKr hs
[IbJ ]rs = 0 ,

gKr
(

frs
t − gItbIrs + ht

Id
I
rs

)

= 0 , (2.14)

showing that (2.13) does not imply new constraints among the previous tensors. Further-

more, consistency of the extended system requires an additional relation among b- and

d-symbol to be satisfied

bJr(sd
J
uv) = 0 , (2.15)

as also noted in [31]. The new tensor gauge transformations take the form

∆Cµνρ r = 3D[µΛνρ] r + 3 bIrs F
s
[µν ΛI

ρ] + bIrs H
I
µνρ Λs − kr

α Λµνρ α ,

∆C(4)
µνρσ α = 4D[µΛνρσ] α − 8 cα IJ H

[I
[µνρ

Λ
J ]
σ] + 6 ct

α s F
s
[µν Λρσ] t

+ ct
α s H

(4)
µνρσ t Λs + . . . , (2.16)

where the first equation completes the corresponding transformation law of (2.2) and the

second transformation is given up to terms that vanish under projection with the tensor

– 7 –
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kr
α. Accordingly, the general variation of the non-abelian field strengths from (2.11), (2.12)

is given by

δH(4)
µνρσ r = 4D[µ∆Cνρσ]r − 6 bIrs F

s
[µν ∆BI

ρσ] + 4 bIrs H
I
[µνρ δAs

σ] + kr
α ∆C(4)

µνρσ α ,

δH(5)
µνρστ α = 5D[µ∆C

(4)
νρστ ] α − 10 ct

α s F
s
µν ∆Cρστ ] t − 20cα IJ H

[I
[µνρ

∆B
J ]
στ ]

− 5 ct
α s δAs

[µ H
(4)
νρστ ] t + . . . . (2.17)

Continuing along the same line, the tensor hierarchy can be continued by introducing five-

form and six-form potentials together with their field strengths and non-abelian gauge

transformations. For the purpose of this paper we will only need the vector/tensor system

up to the four-form gauge potentials given above.

3 Superconformal field equations

In the previous section we have introduced the tensor hierarchy for p-form gauge poten-

tials (p = 1, 2, 3) with the associated generalized field strengths (2.1) and Bianchi iden-

tities (2.8). Gauge covariance w.r.t. the extended tensor gauge symmetry (2.2) implies a

number of conditions on the (dimensionless) invariant tensors and generators of the gauge

group (2.4)–(2.6), but otherwise does not contain any information about the dynamics of

theses fields.

The aim of this section is to complete the bosonic fields of the tensor hierarchy into

supersymmetry multiplets in order to obtain a non-abelian superconformal model for the

(1, 0) vector and tensor multiplets. With the given (bosonic) field content of the ten-

sor hierarchy (2.1), a supersymmetric tensor hierarchy will contain Yang-Mills multiplets

(Ar
µ, λi r, Y ij r), and tensor multiplets (φI , χi I , BI

µν), labeled by indices r and I, respectively.

The index i = 1, 2 indicates the Sp(1) R-symmetry, the field Y ij denotes the auxiliary field

of the off-shell vector multiplets. In addition one has to accommodate within this structure

the three-form potential Cµνρ r whose presence was crucial in the last section in order to

describe non-abelian charged tensor fields.

3.1 Supersymmetry

The coupling of a single (1, 0) self-dual tensor multiplet to a Yang-Mills multiplet was

introduced in [14] and as a first step we give the necessary generalization for a non-abelian

coupling of an arbitrary number of these tensor multiplets. To this end, we introduce

supersymmetry transformations such that they close into translations and the extended

tensor gauge symmetry (2.2) according to

[δǫ1 , δǫ2 ] = ξµ∂µ + δΛ + δΛµ + δΛµν , (3.1)

with field dependent transformation parameters for the respective transformations. These

parameters are given by

ξµ ≡ 1
2 ǭ2γ

µǫ1 ,

Λr = −ξµAr
µ ,

ΛI
µ = −ξνBI

νµ + dI
rsΛ

rAs
µ + ξµ φI ,

Λµν r = −ξρCρµν r − bIrsΛ
sBI

µν − 2
3bIrpd

I
qsΛ

sAp

[µAq

ν] , (3.2)

– 8 –
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as will be shown shortly. With dI
rs = α′dIδrs, bIrs = 0, this reproduces the corresponding

algebra of [14].4 The supersymmetry transformations for the Yang-Mills multiplet are given

by

δAr
µ = −ǭγµλr ,

δλi r = 1
8 γµνFr

µνǫi − 1
2 Y ij rǫj + 1

4hr
Iφ

Iǫi ,

δY ij r = −ǭ(iγµDµλj)r + 2hr
I ǭ(iχj)I . (3.3)

Here the generalization w.r.t. the transformations for the off-shell pure Yang-Mills mul-

tiplet is parametrized by the constant tensor hr
I and brings in the fields (φI , χi I , BI

µν)

of the tensor multiplets on the r.h.s. of the transformations. These additional terms are

necessary for the supersymmetry algebra to close to the generalized tensor gauge symme-

try (3.1), (3.2). E.g. the last term in δλi r is required to produce the proper δΛµ action

in the commutator of supersymmetries on the vector field Ar
µ. Likewise, the last term in

δY ij r ensures the proper closure of the supersymmetry algebra on λi r. It then comes as a

non-trivial consistency check, that the variation of this last term is precisely what is needed

for closure of the algebra on Y ij r. Even though, fields from the tensor multiplets appear

in these transformation rules, the Yang-Mills multiplet by itself, using the necessary tensor

multiplet transformations, still closes off-shell.

Next we give the supersymmetry transformations of the tensor multiplet

δφI = ǭχI ,

δχi I = 1
48 γµνρ HI

µνρǫ
i + 1

4 γµDµφIǫi − 1
2dI

rsγ
µλi r ǭγµλs ,

∆BI
µν = −ǭγµνχI ,

∆Cµνρ r = −bIrs ǭγµνρλ
sφI , (3.4)

where we have used the same notation (2.3) for general variation introduced in the tensor

hierarchy. We also note that γµνρǫi acts as a self-duality projector such that only HI +
µνρ,

see (A.1), is actually alive in δχi I . W.r.t. the couplings discussed in [14], the r.h.s. of

these transformations has been generalized by the introduction of the general d-symbol,

and the inclusion of covariant field strengths and derivatives on the now charged fields of

the tensor multiplets. In particular, the important new ingredient in these transformation

rules is the three-form potential Cµνρ r which is contained in the definition of HI
µνρ and

contributing to its supersymmetry transformation according to (2.10). Its presence has

been vital in establishing the non-abelian bosonic vector-tensor system in the last section,

and similarly, its presence turns out to be indispensable for closure of the supersymmetry

algebra here. To group it with the tensor multiplet in (3.4) is a mere matter of convenience;

with the same right it might be considered as a member of the gauge multiplet (indeed, as

mentioned before by its dynamics the three-form potential will be the dual of the vector

fields Ar
µ). The form of its supersymmetry transformation (3.4), mixing Yang-Mills and

tensor multiplet fields, displays its dual role as a messenger between these two multiplets.

4Note that in canonical dimensions, the tensor dI
rs is dimensionless.
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Note that we have given in (3.4) the supersymmetry transformation for the uncontracted

three-form Cµνρ r, although all the explicit couplings only contain the contracted expression

gK rCµνρ r. We will come back to this difference in the following.

Closure of the supersymmetry algebra on the tensor multiplet according to (3.1) is now

rather non-trivial and heavily relies on the extra terms arising from variation of the three-

form potential. In particular, the algebra closes only on-shell on the tensor multiplets. In

the search for new model or theory such a property may be considered as feature that

provides a certain uniqueness. We will discuss these equations and their individual origin

now in detail.

3.2 Minimal model

We first investigate the equations of motion resulting from supersymmetrization of the

bosonic field content of the minimal tensor hierarchy of section 2.1. In particular, this

model includes only the projected subset gK rCµνρ r of three-form gauge potentials. The

resulting tensor multiplet field equations are given by

HI −
µνρ = −dI

rsλ̄
rγµνρλ

s ,

γσDσχiI = 1
2dI

rsF
r
στ γστλis + 2dI

rsY
ij r λs

j +
(

dI
rsh

s
J − 2bJsrg

Is
)

φJλir ,

DµDµ φI = −1
2dI

rs

(

Fr
µνF

µν s − 4Y r
ijY

ij s + 8λ̄rγµDµλs
)

−2
(

bJsrg
Is − 8dI

rsh
s
J

)

λ̄rχJ − 3 dI
rsh

r
Jhs

K φJφK . (3.5)

The first equation, which imposes a self duality condition on the three-from field strength,

originates in the closure of supersymmetry on the associated two-form potential BI
µν . The

closure on δχi I gives the fermionic equations of motion while the scalar field equation

is obtained by the supersymmetry transformation of the χiI- equation. The fact that the

tensor fields are charged under the gauge group has rather non-trivial consequences, namely

supersymmetry variation of the field equations (3.5) in turn implies the following first-order

equations of motion for the Yang-Mills multiplets

gKrbIrs

(

Y s
ij φI − 2λ̄s

(iχ
I
j)

)

= 0 , (3.6)

gKrbIrs

(

Fs
µνφI − 2 λ̄sγµνχI

)

= 1
4! εµνλρστ gKr H(4) λρστ

r ,

gKrbIrs

(

φIγµDµλs
i + 1

2γµλs
iDµφI

)

= gKrbIrs

(

1
4F

s
µνγµνχI

i + 1
24H

I
µνργ

µνρλs
i − Y s

ij χj I

+ 3
2hs

JφIχJ
i + 1

3dI
uv γµλu

i λ̄sγµλv
)

.

The first equation is the algebraic equation for the auxiliary field Y ij r, while the second

equation provides the anticipated duality of vector fields and three-form potentials by

relating their respective field strengths. In particular, derivation of this equation and use

of the Bianchi identity (2.9) gives rise to a standard second-order equation of Yang-Mills

type for the vector fields Ar
µ . Equivalently, the first two equations of (3.6) can be inferred

from closure of the supersymmetry algebra on the three-form gauge potentials gKrCµνρ r .

The appearance of the Yang-Mills dynamics (3.6) from supersymmetry of the tensor field
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equations (3.5) is in strong contrast to the model of [14] (in which effectively gKr = 0, and

the tensor field are not charged) where the vector fields remain entirely off-shell or can

alternatively be set on-shell with field equations that do not contain the tensor multiplet

fields. Moreover, in the model of [14], an algebraic equation analogous to the first equation

of (3.6) is excluded by the appearance of an anomaly in its supersymmetry variation (see

also [37]). We should stress that in the present model, such anomalies are actually absent

due to the particular Fierz identities (A.6), (A.7) in combination with the identity (2.15).

I.e. the cubic fermion terms in the supersymmetry variation of (3.6) cancel precisely, which

yields a strong consistency check of the construction.

To summarize, the system of equations of motion (3.5), (3.6) consistently transforms

into itself under supersymmetry. It describes a novel system of supersymmetric non-abelian

couplings for multiple (1, 0) tensor multiplets in six dimensions. The equations of motion

contain no dimensionful parameter and hence the system is at least classically (super)-

conformal. A crucial ingredient to the model are the three-form gauge potentials Cµνρ r

which are related by first-order duality equations to the vector fields of the theory and thus

do not constitute new dynamical degrees of freedom. This is similar to the situation of

Chern-Simons matter theories in the context of multiple M2 branes [3, 6]. The actual model

depends on the explicit choice of the gauge group and representations and the associated

invariant tensors of the gauge group which have to satisfy the conditions (2.4)–(2.6). The

task that remains is to find explicit solutions for these constraints. We will discuss different

examples in sections 3.6, 4.4 and 4.5 below.

3.3 Extended model

The above described model represents the minimal field content and equations of motion,

required for closure of the supersymmetry algebra and the supersymmetry of the equa-

tions of motions. In particular, it relies on the projected subset gK rCµνρ r of three-form

gauge potentials. Just as for the bosonic tensor hierarchy in section 2.2, one may seek

to extend the above supersymmetric system to the full set of three-form gauge potentials.

With the supersymmetry transformation of general Cµνρ r given by (3.4), closure of the

supersymmetry algebra leads to the following uncontracted equations

bIrs

(

Y s
ij φI − 2λ̄s

(iχ
I
j)

)

= 0 , (3.7)

bIrs

(

Fs
µνφI − 2 λ̄sγµνχ

I
)

= 1
4! εµνλρστ H

(4) λρστ
r ,

bIrs

(

φIγµDµλs
i + 1

2γµλs
iDµφI

)

= bIrs

(

1
4F

s
µνγµνχI

i + 1
24H

I
µνργ

µνρλs
i − Y s

ij χj I +

+ hs
J

(

2φIχJ
i − 1

2φJχI
i

)

+ 1
3dI

uv γµλu
i λ̄sγµλv

)

,

In order to have this system close under supersymmetry it is necessary to introduce also

a four-form gauge potential. Consequently the tensor hierarchy has to be continued one

step further as described in section 2.2. The resulting supersymmetry transformation of

the four-form potential is

∆C(4)
µνρσ α = 2cα IJ φ[I ǭγµνρσχJ ] , (3.8)
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Furthermore, supersymmetry of the field equations (3.7) induces the first-order field equa-

tions

1
5! εµνρλστ kr

α H(5) µνρλσ
α = 2kr

α
(

cα IJ

(

φIDµφJ − 2χ̄IγµχJ
)

− ct
α ubJtv λ̄uγµλv

)

. (3.9)

This shows that the dynamics of C
(4)
µνρσ α is given by a first-order duality equations, which

relates these four-form potentials to the Noether current of some underlying global sym-

metry. In particular, this first-order equation ensures that the four-form gauge potentials

do not constitute new dynamical degrees of freedom.

3.4 Adding hypermultiplets

Another possible extension of the supersymmetric model presented above is the inclusion

of hypermultiplets.5 As is well known, global supersymmetry requires the hyperscalars

to parametrize a hyper-Kähler manifold Mh, more precisely superconformal symmetry

requires Mh to be a hyper-Kähler cone. The above presented non-abelian theories can

be extended to include gaugings of isometries on the hyper-Kähler cone along the lines

of [39–41], from which the additional couplings and in particular the resulting scalar po-

tential can be inferred. While we defer the details of this extension to another publication,

here we only sketch a few relevant elements of the construction. Within in the above

construction, gauging of triholomorphic isometries on the hyper-Kähler cone is achieved

by introducing an embedding tensor ϑr
α that encodes the coupling of vector fields Ar

µ to

hyper-Kähler isometries Kα and is subject to the algebraic conditions

fpr
sϑs

α = fβγ
αϑp

βϑr
γ , hr

I ϑr
α = 0 , (3.10)

with the structure constants fαβ
γ of the algebra of hyper-Kähler isometries. On the other

hand, in the presence of hypermultiplets, the vector multiplet equations of motion (3.7)

allow for a consistent modification, in particular in the Y -field equation as

bIrs

(

Y s
ij φI − 2λ̄s

(iχ
I
j)

)

= kr
αP ij

α , (3.11)

with the constant tensor kr
α from (2.13), and the moment maps P ij

α associated with the

triholomorphic hyper-Kähler isometries. It is only by means of this algebraic equation for

Y s
ij that the hyperscalars enter the tensor multiplet field equations. Further requiring the

existence of an action eventually leads to the identification

kr
α = ϑr

α , (3.12)

i.e. relates the gauging of hyper-Kähler isometries to a modification of the vector and tensor

multiplet field equations.

5For superconformal couplings of hypermultiplets to Yang-Mills, see [38].
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3.5 Supersymmetric vacua and excitation spectrum

We study now supersymmetric vacua for the minimal model of section 3.2 and the excitation

spectrum in such vacua, i.e. the linearized field equations. The algebraic equation for the

vector field strength, the second equation in (3.6), indicates that the expectation value of

the tensor multiplet scalar φI serves as an (inverse) coupling constant. This notion will

become more evident in the subsequent sections where we discuss models which provide a

Lagrangian. Consequently, the perturbative analysis is limited to the spontaneously broken

phase where φI has a (large) expectation value.

The Killing spinor equations of the theory (4.3) are obtained from (3.3), (3.4)

0
!
≡ δλi r = 1

8 γµνFr
µνǫi − 1

2 Y ij rǫj + 1
4hr

Iφ
Iǫi ,

0
!
≡ δχi I = 1

48 γµνρHI +
µνρǫ

i + 1
4 γµDµφIǫi , (3.13)

and characterize solutions that preserve some fraction of supersymmetry. These equa-

tions show that a Lorentz-invariant solution preserving all supersymmetries corresponds to

setting the scalar fields to constant values φI
0 satisfying

φI
0 hr

I = 0 , (3.14)

and setting all other fields to zero. Expanding the scalar fluctuations as φI ≡ φI
0 + ϕI

and imposing the condition (3.14) one obtains at the linearized level for the field equa-

tions (3.5), (3.6) the system:

( dBI + gIrCr )− = 0 , N I
r Y r

ij = 0 ,

/∂ χiI + 2N I
r λir = 0 , N I

r dAr − gIr ∗dCr = 0 ,

✷ϕI − N I
r ∂ · Ar = 0 , N I

r
/∂λir = 0 , (3.15)

where we have defined the matrices

Krs ≡ φI
0 bIrs , N I

r ≡ gIs Ksr . (3.16)

and used that N I
r hr

J = 0, by the first identity in (2.14) and the susy vacuum condi-

tion (3.14).

Unbroken gauge symmetry. For a generic supersymmetric vacuum which satis-

fies (3.14) the vector gauge transformations Λr Xr are broken down to the subgroup of

transformations Λr Xr which satisfy

Xr J
I φJ

0 = − N I
r

!
= 0 , (3.17)

where the index r labels the subset of unbroken generators (2.4). The rest of the extended

tensor gauge symmetry (2.2) remains intact. Consequently, in the case that the gauge

group is not completely broken, the matrix N I
r , and for invertible gIr also the matrix Krs,

always has some null-directions, i.e. the matrix has one or more vanishing eigenvalues.
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The fluctuation equations (3.15) show that for these null-directions the fields of the cor-

responding vector multiplets drop out of this perturbative analysis. This is nothing else

than the above mentioned observation that the perturbative analysis is valid only in the

spontaneously broken phase and that the unbroken sector of the Yang-Mills multiplet is

(infinitely) strongly coupled and perturbatively not visible.

In general it is rather difficult to break the gauge symmetry completely with a single

scalar field. The addition of hypermultiplets as sketched in section 3.4 may offer addi-

tional possibilities in this directions. This is for example comparable with the situation of

N = 2 SQCD, for which mixed Coulomb-Higgs phases with vev’s for vector multiplet and

hypermultiplet scalars exist where the theory is completely higgsed. In such a case there

would be regions in the moduli space of vacua where the complete spectrum of the models

discussed here is perturbatively accessible. For the extended models of section 3.3 on the

other hand, the coupling of the Yang-Mills multiplet is given by the matrix Krs which may

have less null directions than the matrix N I
r .

3.6 A model with adjoint tensor multiplets

A particular solution to the constraints (2.5), (2.6) is given by choosing some semi-simple

compact gauge group G with Lie-algebra g, identifying both I and r with the adjoint

representation of G, and the tensor grs with the Cartan-Killing metric. Moreover we set

hs
r ≡ 0 , dp

rs ≡ drstg
pt , bp rs ≡ fprs , (3.18)

with the totally symmetric d-symbol drst and the totally antisymmetric structure constants

frst . As will be discuss in detail in the next section, for a solution of this form the

resulting theory does not admit an action and is described by the set of equations of

motion (3.5), (3.6) only.

With grs being the (invertible) Cartan-Killing metric, the matrices N and K introduced

in (3.16) are essentially the same,

N r
s = grt Kts =: Kr

s = −φt
0 fts

r , (3.19)

and the matrix Kr
s defines the adjoint action of the vev φ0. By a gauge rotation the φ0 can

always be chosen to lie in the Cartan subalgebra t, and we decompose g into the orthogonal

sum g = t⊕ g̃ . In that case, the unbroken sector of the Yang-Mills multiplets, which drops

out of the fluctuation equations, spans the Cartan subalgebra t on which the action of Kr
s

vanishes. On the orthogonal complement g̃ and for generic choice of φ0, the matrix Kr
s is

invertible, and using the Cartan-Weyl basis we introduce the notation K r̃
red s̃ = kr̃ δr̃

s̃ for the

reduced matrix on this subspace (there is no summation over repeated indices in this case).

Before giving the explicit excitation equations for this specific model we discuss the

gauge fixing of the vector field gauge symmetry, which for hs
r = 0 is an ordinary gauge

symmetry, see (2.2). A convenient gauge, which disentangles the scalar field and gauge

field fluctuations is given by the Lorenz gauge condition

∂ · Ar = 0 . (3.20)
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Since the gauge fields are determined by first-order equations the Lorenz gauge, and not

a ’t Hooft Rξ-gauge, decouples the scalar and gauge field kinetic terms. The fluctuation

equations (3.15) thus take the form

/∂ χir = 0 , dC r = 0 ,

( dBr + Cr )− = 0 , ✷ϕr = 0 ,

/∂ χir̃ + 2 kr̃ λir̃ = 0 , dAr̃ −
1

kr̃

∗dC r̃ = 0 ,

/∂λir̃ = 0 , Y r̃
ij = 0 , (3.21)

where we have split the gauge indices as r = (r, r̃) according to the decomposition

g = t ⊕ g̃. For the unbroken sector t, the first line of (3.21) together with the second

line for r = r thus describe a free tensor multiplet coupled to the three-form potential

Cr which has vanishing field strength and may be gauged away. Alternatively, one may

employ the two-form shift symmetry in (2.2) with gauge parameter Λ
r
µν to set Br = 0.

Then the linearized equations describe a self-dual closed field Cr which gives an equivalent

description of the free tensor multiplet.

The broken sector g̃ is described by the second line of (3.21) for r = r̃ together with the

last two lines. Here also the Yang-Mills multiplet is present but the structure is somewhat

unusual. The multiplet structure is not the direct sum of a free tensor and Yang-Mills

multiplet, but forms a multiplet that we call henceforth non-decomposable, as can be seen

in particular from the fermionic field equations. This seems to be a general feature of the

models considered here and will be discussed in section 4.3. The third equation in the right

column again demonstrates the dual role of the three-form potential C r̃: Acting with d ∗ on

this equation implies the second-order free field equation ✷Ar̃ = 0. The original equation

then fixes C r̃ in terms of Ar̃ up to an two-form br̃ whose field strength has to be self dual

in the Br = 0 gauge, see the second line of (3.21). The three-form potential C r̃ therefore

shifts or communicates degrees of freedom between the gauge and tensor multiplet.

Note added. Another example for a tensor gauge symmetry that satisfies the con-

straints (2.5), (2.6), without specifying any supersymmetric dynamics, has recently been

given in [60]. In this example, the tensor fields Br
µν are in the adjoint representation of a

compact gauge group G, and vector fields are taken to appear in two copies of the adjoint

representation Ar
µ, Ar′

µ . The choice

frs
t = frs

t , frs′
t′ = −fs′r

t′ = 1
2 frs′

t′ ,

dt
rs′ = dt

s′r = −1
2 frs′

t , hr′

s = δr′

s , (3.22)

with all other components vanishing, defines a solution of (2.5), (2.6) in terms of the

structure constants frs
t of the group G. The resulting model does not involve any coupling

to three-forms (grs = 0) but exhibits the Stückelberg-type coupling between vector fields

Ar′

µ and the tensors. The supersymmetric field equations for the tensor multiplet are as

given in (3.5), with (3.22) used, while the Yang-Mills multiplet is off-shell. An action that
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produces the tensor multiplet field equations can be easily written down, with the self-

duality condition on the 3-form field strength understood to be imposed after the variation

of the action, but it can also easily be checked that such an action is not supersymmetric.

4 Action

So far, we have found a set of field equations that consistently transform into each other

under (1, 0) supersymmetry. The full system is entirely determined by the choice of the con-

stant tensors gIr, hr
I , bIrs, dI

rs, and frs
t subject to the set of algebraic constraints (2.5), (2.6).

In this section we present the additional conditions, which these tensors have to satisfy in

order for the field equations to be integrated to an action. We give the full supersymmetric

action and discuss the general structure of supersymmetric vacua and the fluctuation equa-

tions around such vacua. The non-unitarity of the action manifests itself in the generic

appearance of some unusual ‘non-decomposable’ multiplet couplings. Finally, we illus-

trate the general analysis by two concrete models, with compact gauge group SO(5) and a

nilpotent eight-dimensional gauge group, respectively.

4.1 Conditions for existence of an action

The existence of an action first of all requires the existence of a constant non-degenerate

metric ηIJ by which tensor multiplet indices can be raised and lowered, in order to provide

a kinetic term for the scalar fields and the other fields of the tensor multiplets. Further

inspection of the field equations (3.5)–(3.7) then shows that their integrability to an action

requires the identifications

hr
I = ηIJgJr , dI

rs = 1
2ηIJbJrs , (4.1)

i.e. in particular a b-symbol that is symmetric in its indices (rs). Moreover, in the process

of computing the action, one finds that the identity (2.15) needs to be imposed in order to

ensure the existence of a proper topological term. From (4.1) it is obvious that the models

we have discussed in section 3.6 indeed do not admit an action.

To summarize, with these identifications, the algebraic consistency condi-

tions (2.5), (2.6), (2.15) reduce to

bI r(ubI
vs) = 0 ,

(

bJ
r(u bI

v)s − bJ
uv bI

rs + bK rsb
K
uv ηIJ

)

gs
J = 2fr(u

sbI
v)s ,

6f[pq
ufr]u

s − gs
I bI

u[pfqr]
u = 0 ,

2frs
tgr

I − bJ
rs gt

Jgr
I = 0 ,

gr
Kgs

[IbJ ]sr = 0 ,

gr
Ig

Is = 0 . (4.2)

Finding non-trivial solutions to these constraints is a formidable task. We will give in

sections 4.4, 4.5 below some explicit solutions that are inspired from similar constructions

in gauged supergravity theories.
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4.2 The action

In case the constant tensors satisfy all algebraic conditions (4.2), the equations of mo-

tion (3.5), (3.6) can be lifted to an action. In fact, one may verify a somewhat stronger

conclusion: the identifications (4.1) and thus the set of constraints (4.2) appear already to

be necessary in order to construct a conserved supercurrent underlying the equations of

motion (3.5), (3.6) from a canonical structure for the fermions [42].

In order to write an action, we ignore for the moment the subtleties of writing an action

for a self-dual three-form field strength, but give a standard second-order action, keeping

in mind that the corresponding first-order equation of (3.5) is supposed to be imposed after

having derived the second-order equations of motion, just as in the democratic formulation

of ten-dimensional supergravities [25].6 The full action then reads

L = −1
8DµφI DµφI − 1

2 χ̄I γµDµχI + 1
16bIrsφ

I
(

Fr
µνF

µν s − 4Y r
ijY

ij s + 8λ̄rγµDµλs
)

− 1
96H

I
µνρ H

µνρ
I − 1

48bIrsH
I
µνρ λ̄rγµνρλs − 1

4bIrsF
r
µν λ̄sγµνχI + bIrsY

r
ij λ̄i sχj I

+ 1
2 (bJsrg

s
I − 4bIsrg

s
J )φI λ̄rχJ + 1

8bIrsg
r
Jgs

K φIφJφK − 1
48Ltop

− 1
24bIrsb

I
uv λ̄rγµλuλ̄sγµλv , (4.3)

which shows explicitly the role of the scalar fields φI as inverse coupling constants for the

Yang-Mills multiplet. Like the equations of motion, this action contains no dimensionful

parameter such that the system is (super)-conformal at least at the classical level. The

topological term is given by integrating

dV δLtop = 6
{

bIrs δAr
∧Fs

∧HI − ∆BI
∧

(

gr
I H

(4) − 1
2bIrsF

r
∧Fs

)

− gr
I∆Cr∧H

I
}

, (4.4)

and has the explicit form

dV Ltop =−6 gr
I Cr∧H

I + bIrsB
I
∧Fr

∧Fs − bIrsh
r
Jhs

K BI
∧ BJ

∧BK

+BI
∧

[

hs
Ib

J
subJvrA

u
∧Av

∧ dAr + 3
4(bIrsfpq

r + 4bJqsXp I
J) fuv

sAp
∧Aq

∧ Au
∧Av

]

− 1
10 fup

sbJ
qsbJvr Ap

∧Aq
∧Au

∧Av
∧ dAr . (4.5)

It can be understood in compact form as the boundary contribution of a manifestly gauge-

invariant seven-dimensional term
∫

∂M7

Ltop ∝

∫

M7

(

bIrs F
r
∧Fs

∧HI −HI
∧DHI

)

. (4.6)

As usual, gauge invariance of the topological term may lead to quantization conditions for

the various coupling constants. For the tensor multiplet, it is straightforward to verify that

the action (4.3) induces the field equations (3.5) from above with the first order equation

imposed by hand. For the fields of the vector multiplet, we obtain the first and the last of

the uncontracted equations (3.7), while the duality equation relating Fr
µν and H

(4)
µνρσ r only

6Alternatively, this self-duality can be implemented by using a non-abelian version [43] of the Henneaux-

Teitelboim action [44] that breaks manifest space-time covariance.
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appears in its contracted form (3.6). In addition, variation w.r.t. the vector field gives rise

to the Yang-Mills equation

bIrs Dν
(

φIFs
µν − 2λ̄sγµνχI

)

=
(

φIDµφJ − 2χ̄IγµχJ
)

Xr IJ − 2φIbIpqXrs
q λ̄pγµλs

− 1
12bIrs εµνρλστ F

νρ sHλστ I , (4.7)

that can alternatively obtained as a derivative of the uncontracted duality equation (3.7)

upon use of the first-order equation (3.9).

We note that the last constraint equation of (4.2) shows that non-trivial solutions to

these constraints (i.e. solutions in which the tensor fields are charged) exist only if the

metric ηIJ is indefinite, which in turn implies that some of the scalars (and some of the

two-forms) in (4.3) have a negative kinetic term. This somewhat reminds the situation

for the three-dimensional BLG theories [3, 4] with Lorentzian three-algebra [45–49], and

certainly requires further investigation. We also note that similar structures as encountered

in this section have appeared in generic 6d supergravity theories [50–55].

We conclude with a presentation of the superconformal symmetry transforma-

tions [58] which leave the action invariant. Denoting the fields in the theory by Φ =

(φI , BI
µν , χI , Ar

µ, Y ij, λr, Cµνρr), the conformal transformations are given by

δCΦ = LξΦ + λDΩΦ , (4.8)

where Lξ is the Lie derivative with respect to the conformal Killing vector defined by

∂(µξν) = Ωηµν , which also defines Ω, and λD are the Weyl weight for Φ given by

(2, 0, 5/2, 0, 2, 3/2, 0). The Lie derivative for the fermionic fields Ψ = (χI , λr), in par-

ticular, takes the form LξΨ = ξµ∂µΨ + 1
4∂µξνγ

µνΨ. It is straightforward to check that

these transformations leave the action (4.3) invariant. Note that the bosonic conformal

transformation together with supersymmetry ensures the full superconformal symmetry

since the commutator of conformal boost with supersymmetry yields the special supersym-

metry generator [59]. The conformal supersymmetry transformations involve conformal

Killing spinors, consisting of a pair (η+, η−) that satisfy ∂µη+ − 1
2γµη− = 0. The super-

conformal transformations take the form of supersymmetry transformations in which the

constant supersymmetry parameter ǫ is replaced by η+, and the parameter η− arises only

in δη−χI = −1
2φIη−.

4.3 Multiplet structure of excitations

The supersymmetry transformations of the model (4.3) are still given by equa-

tions (3.3), (3.4), such that the Killing spinor equations remain of the form (3.13). In

particular, the existence of a maximally supersymmetric vacuum is still encoded in the

condition (3.14) on the scalar expectation values. In this vacuum, the linearized field equa-

tions obtained from (4.3) extend the fluctuation equations (3.15) by the linearization of

the second-order equation for the vector fields (4.7), which takes the form

Krs

(

✷As
µ − ∂µ∂νAs

ν

)

= NIr

(

∂µϕI − ∂νBI
νµ

)

. (4.9)
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With the gauge fixing ∂νBI
νµ = 0 = ∂µAr

µ + gr
Iϕ

I , the equation turn into the free Klein-

Gordon equation for the vector field components Ar
µ.7 With this gauge fixing, the full set

of linearized field equations obtained from (4.3) is given as

( dBI + gIrCr )− = 0 , Krs Y s
ij = 0 ,

/∂ χiI + 2N I
r λir = 0 , N I

r dAr − gIr ∗dCr = 0 ,

✷ϕI = 0 , Krs /∂λis − 2NrIχ
iI = 0 ,

Krs ✷As
µ = 0 , (4.10)

with the matrices Krs and N I
r from (3.16). We note that N I

r grJ = 0 = grIN s
I . With

a proper choice of basis such that Krs is diagonal, the lowest order dynamics contains

rK = rank(K) vector multiplets. The fluctuation equations (4.10) decouple into various

multiplets which we denote as follows, and whose multiplicities are given in table 1:

(V) : ✷Aµ = 0 , /∂λ = 0 ,

(T) : ✷ϕ = 0 , /∂χ = 0 , (dB)− = 0 ,

(T′) : ✷ϕ = 0 , /∂χ = 0 , (dB)− = −gC− , dC = 0 ,

(TV) : ✷ϕ = 0 , κ dA = ∗dC , (dB)− = −gC− , /∂λ = 0 , /∂χ = −2gκλ ,

(VT) : ✷ϕ = 0 , ✷Aµ = 0 , (dB)− = 0 , /∂χ = 0 , /∂λ = 2g χ . (4.11)

We have kept the coupling constants g and κ to keep track of the scales of gIr and φI
0, re-

spectively. The first two multiplets (V) and (T) are the free vector and self-dual tensor mul-

tiplet, respectively, the third one (T’) is the self-dual tensor multiplet enhanced by a non-

propagating three-form potential. The fourth line (TV) describes the ‘non-decomposable’

combination of a free vector multiplet and a self-dual tensor multiplet for which the vector

multiplet acts as a source. In addition it contains a non-propagating 3-form potential dual

to the vector fields, which also acts as a source to the tensor multiplet field equations.

It is obvious from the fermionic field equations that these two multiplets cannot be sep-

arated. This is the type of coupling we have encountered in the broken sector g̃ of the

model described in section 3.6. The last line (VT) describes the dual version of such a

‘non-decomposable’ coupling, here a free self-dual tensor multiplet acts as the source for

a vector multiplet. This situation is similar to the observation made in [37] regarding the

BSS model [14]. Diagonalizing for example the χ-equation and using the relations for N I
r

given above shows that there are rN = rank(N) TV-multiplets. It is straightforward to

verify that only the combination of (TV) and (VT) can be derived from an action, which

implies that they appear with equal multiplicity and thus the λ-equation in (4.10) describes

rK−2 rN vector multiplet (VT) fermions. In a similar fashion one finds the multiplicities of

the other couplings in (4.11) as obtained from the equations (4.10) and which are entirely

encoded in the rank of the matrices gIr, N I
r and Krs. We collect the explicit result in ta-

ble 1. In the following, we will illustrate these general structures in some explicit examples.

7Alternatively, this can be achieved by choosing Lorenz gauge for the vector fields and fixing the tensor

gauge freedom by ∂νBI
νµ ≡ ∂µϕI . This is a consistent gauge choice since the scalar field equation in this

gauge turns into the massless Klein-Gordon equation.
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multiplet (V) (T) (T’) (TV) (VT)

# rK − 2rN nT − rN − rg rg − rN rN rN

Table 1. Multiplicities of the different structures (4.11) appearing in the lowest order fluctua-

tions (4.10) expressed in terms of the number of tensor multiplets nT and the ranks rg, rN , rK of

the matrices gIr, N I
r and Krs, respectively.

4.4 Example: SO(5) gauge group

The constraints (4.2) constitute a rather non-trivial system of consistency conditions for

the undetermined constant tensors and structure constants. Fortunately, a number of

solutions can be inferred from analogous construction in gauged supergravity theories. In

this section, we discuss a solution to (4.2) that is inspired by gaugings of the maximal

six-dimensional supergravity theory [32].

Let the indices I and r parametrize the vector and spinor representations of the group

SO(5, 5), respectively, let ηIJ to be corresponding invariant metric, and set

bI
rs ≡ γI

rs , frs
t ≡ − 4 γIJK

rs γIJ p
t gp

K , (4.12)

where we have chosen a real representation of gamma matrices. With this choice, the

first equation of (4.2) is the well known magic identity for SO(5, 5) gamma-matrices. The

second equation reduces to a non-trivial SO(5, 5) gamma-matrix identity if in addition one

imposes the tensor gIr to be gamma-traceless according to

gIrγIrs = 0 , (4.13)

i.e. to parametrize the real 144c representation. Some further calculation shows that

the remaining equations of (4.2) which are quadratic in gIr then reduce to the last two

equations which transform in the 10 + 126c + 320 of SO(5, 5) . A particular solution to

these equations can be found by choosing gIr to live within the 15 ⊂ 144c upon breaking

to the maximal subgroup GL(5) ⊂ SO(5, 5) . This simply follows from the fact that the

symmetric tensor product (15 ⊗ 15)sym does not contain any representation that lies in

the 10 + 126c + 320 in which the bilinear constraints transform. Representing the 15

parameters as a symmetric 5 × 5 matrix, the resulting gauge group is CSO(p, q, r) with

p + q + r = 5 according to the signature of the matrix, cf. [32] for details. In particular,

these gaugings include the theory with compact gauge group SO(5). It is instructive, to

give the bosonic field content in representations of this gauge group:

Ar
µ −→ 1+5 + 5−3 + 10+1 ,

(φI , BI
µν) −→ 5+2 + 5−2 ,

Cµνρ r −→ 1−5 + 5+3 + 10−1 , (4.14)

where the subscripts refer to GL(1) charges under the embedding GL(1) × SO(5) ⊂

GL(5) ⊂ SO(5, 5), under which the tensor gIr has charge −1. In particular, the tensor

multiplets transform in two copies of the fundamental representation of the gauge group.
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The scalar field content shows that the gauge invariant cubic potential of (4.3) for this

theory vanishes identically.

In order to elucidate the structure of the SO(5) theory, we will calculate the fluctuations

around a maximally supersymmetric solution according to general analysis of section 4.3.

It follows from (3.14) and the particular form of gIr that maximal supersymmetry of the

vacuum amounts to restricting φI
0 to values within the 5+2 of (4.14). For the supersymmet-

ric SO(5) invariant vacuum φI
0 = 0, both matrices Krs, NIr from (3.16) vanish identically.

As a result, the linearized field equations (4.10) simply describe ten copies of the self-dual

tensor multiplet whereas as discussed above in the unbroken phase, the vector multiplets

are invisible in this perturbative analysis. In the notation of section 4.3 we find five copies

of (T) and of (T’), respectively.

Let us instead consider a non-vanishing value of φI
0 in the 5+2 which breaks the gauge

symmetry at the vacuum down to SO(4) but preserves all supersymmetries. Accordingly,

the bosonic fields break into

Ar
µ −→ 1+5 + 1−3 + 4−3 + 4+1 + 6+1 ,

(φI , BI
µν) −→ 1+2 + 4+2 + 1−2 + 4−2 ,

Cµνρ r −→ 1−5 + 1+3 + 4+3 + 4−1 + 6−1 , (4.15)

under SO(4) × GL(1) . In this case, the only non-vanishing entries in the kinetic vector

matrix Krs are the off-diagonal entries in its 4+3 × 4−1 and 4−1 × 4+3 blocks, correspond-

ing to eight non-vanishing eigenvalues, of which four are negative. Accordingly, the vector

fields from the 1+5 + 1−3 + 6+1 (which include the fields in the adjoint representation

of the unbroken gauge group) do not appear in the lowest order fluctuations (4.10). On

the other hand, the matrix gIr as chosen above has its only non-vanishing entries in the

(1+2 + 4+2)× (1−3 + 4−3) block. This shows in particular, that from the three-form fields

Cµνρ r, only the components in the 1+3 + 4+3 appear in the action (4.3). Evaluating the

linearized field equations (4.10) for these fields, one verifies that these indeed fall into the

structures identified in (4.11). The explicit result for the representation content of the vari-

ous multiplets is displayed in table 2. In order to correctly keep track of the GL(1) charges,

it is worth to keep in mind that the gauge coupling constant g and the scalar vacuum ex-

pectation value κ appearing in these equations are of charge −1 and +2, respectively.

4.5 Example: nilpotent gauge group

Another solution to the constraints (4.2) may be obtained from the gauged supergravities

of [33]. In this case, vector and tensor multiplets are supposed to come in the spinor

and vector representation, respectively, of the group SO(9, 1). Since real gamma matrices

exist, and their algebra is the same as in the previous example, with the choice (4.12),

the first two equations of (4.2) again reduce to gamma-tracelessness (4.13) of the tensor

gIr . However, in this case, the remaining constraint equations turn out to admit a unique

solution, which is given by

gIr ≡ g ζrζsζtγI
st , (4.16)
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(T) (T’) (TV) (VT)

1−2: (ϕ−, χ−, B−) 1+3: C+ 4+3: Cm

1+2: (ϕ+, χ+, B+) 4+2: (ϕm, χm, Bm) 4−2 (ϕ̃m, χ̃m, B̃m)

4+1: (Am, λm) 4−3: (Ãm, λ̃m)

Table 2. Lowest order fluctuations around the SO(4) invariant vacuum.

with gauge coupling constant g and an arbitrary constant SO(9, 1) spinor ζr. This choice

corresponds to a nilpotent gauge group whose algebra N+
8 is embedded into so(9, 1) ac-

cording to the three-grading

so(9, 1) −→ N−

8 ⊕ (so(8) ⊕ so(1, 1)) ⊕ N+
8 , (4.17)

see [33] for further details. Under the little group SO(7) of the spinor defining (4.16), the

multiplets decompose as

Ar
µ −→ 1−1 + 7−1 + 8+1 ,

(φI , BI
µν) −→ 1+2 + 1−2 + 80 ,

Cµνρ r −→ 1+1 + 7+1 + 8−1 , (4.18)

where again we keep the charges under the GL(1) under which the gauge coupling constant

carries charge −3. A distinctive feature of this model as compared to the previous one, is a

nonvanishing cubic scalar potential. More precisely, the scalar Lagrangian takes the form

L = −1
8Dµφi Dµφi − 1

8∂µφ+Dµφ− + g2(φ+)3 , (4.19)

where (φ+, φ−, φi) represent the 1+2 +1−2 +80 scalars in the 80 according to the decompo-

sition (4.18). A maximally supersymmetric vacuum is found by choosing a non-vanishing

φi
0, which breaks one generator of the nilpotent gauge group, and the little group down from

SO(7) to G2. In this case, the matrix Krs in (4.10) remains invertible, such that all fields

contribute to the linearized fluctuation equations. Evaluating the fluctuation equations,

one confirms that all fluctuations again fall into the structures identified in (4.11). The

final result for the representation content of the various multiplets is displayed in table 3.

5 Conclusions

In this paper, we have constructed a general class of six-dimensional (1,0) superconformal

models with non-abelian vector and tensor multiplets. The construction is based on the

non-abelian hierarchy of p-form fields and strongly relies on the introduction of further

three-form gauge potentials. These are related to the vector fields by a first-order duality

equation and do not constitute new degrees of freedom, however they play a crucial role

in communicating the degrees of freedom between the vector and tensor multiplets. The

models are parametrized by a set of dimensionless constant tensors, which are constrained

to satisfy a number of algebraic identities (2.5)–(2.6). Generically these models provide only

equations of motions which we have derived from closure of the supersymmetry algebra.
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(V) (T) (TV) (VT)

7 + 7 7 + 1 1 1

Table 3. Lowest order fluctuations around the G2 invariant vacuum.

For particular choice of the parameters, the equations of motion may be integrated to

an action. However, the kinetic metrics in the vector and the tensor sector appear with

indefinite signature. It will require further work to understand the fate of the resulting

ghost states and if one can for example decoupled them with the help of the large extended

tensor gauge symmetry. For the M2-brane theories, a similar structure has appeared in

the theories based on Lorentzian signature 3-algebras. In these models, the ghost states

have been eliminated at the cost of breaking conformal symmetry by further gauging of

particular shift symmetries [49], which are however absent in the models constructed here.

The cubic potential, if non-vanishing, will generically be unbounded from below. However,

since the indefinite metric brings in negative norm states, the relation E = ||Q||2 ≥ 0 is

no longer valid in such cases (E = energy, Q = supercharge) and a non-vanishing cubic

potential is in principle possible and not forbidden by supersymmetry.

We have discussed several explicit examples which satisfy all algebraic consistency

conditions. An arbitrary compact gauge group with tensor fields in the adjoint represen-

tation can be realized on the level of equations of motion. Lagrangian models have been

given for the compact gauge group SO(5) and for a particular eight-dimensional nilpotent

gauge group embedded in SO(9, 1). All these models share some peculiar features. The

fluctuation spectrum of excitations around a supersymmetric vacuum contain not only

free vector and tensor multiplets, but also certain ‘non-decomposable’ combinations of

couplings between the two, which we have collected in (4.11). Moreover, null-directions

in the kinetic vector matrix may appear for unbroken gauge symmetries and cause that

the fields of the corresponding vector multiplets drop out of this perturbative analysis.

In general this analysis is valid only in the spontaneously broken phase, however, the

unbroken sector of the Yang-Mills multiplet is still (infinitely) strongly coupled and

perturbatively not visible. The corresponding part of the spectrum decouples and should

be integrated out for a proper treatment.

Let us note that although we have used in our explicit examples the algebraic structure

underlying gauged supergravity theories in order to find solutions to the algebraic consis-

tency constraints (4.2), none of these theories can be obtained as a suitable flat-space limit

of the supergravities of [32, 33, 56]. E.g. globally supersymmetric theories derived as a flat

space limit of these supergravities (if they exist) would not have ghosts in the scalar sector,

which seems to be an inevitable feature of the theories presented here.

An obvious direction of further investigation is the study of the constraints (4.2)

and (2.5)–(2.6) for models with and without action, respectively. Especially for the case

with an action, it would be highly interesting to understand, if the model with compact

SO(5) gauge group that we have presented in section 4.4 corresponds to very particular

solution of these constraints or if it may be generalized to other gauge groups. In this con-

text, it may be interesting to pursue the comparison to the five-dimensional superconformal

models classified and studied in [57], which may elucidate the geometric role of the set of
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algebraic consistency constraints (4.2) that underlie our construction. Another interesting

research direction is the generalization of the analysis our maximally supersymmetric vacua

of these models to such states which only preserve a fraction of supersymmetry.

An intriguing question about the models is, how much of the presented structures can

be carried over to (2, 0) theories. Although there is no propagating-(2, 0) vector multiplet,

the present construction has illustrated the possible relevance of the inclusion of non-

propagating degrees of freedom. As a first step in this direction, we have briefly sketched

in section 3.4 the inclusion of hypermultiplets to the gauged models. Adding nT hyper-

multiplets with flat target space completes the present field content from (1,0) to the (2,0)

theories. A different extension of our models within the (1,0) framework could be obtained

by studying the possibilities of coupling linear multiplets as sketched in [58]. A pending

question is of course the quantization of the models, in particular the decoupling of the

ostensible ghost states and if the conformal symmetry is preserved at the quantum level.

Last but not least, the study of anomalies for the presented models with their new gauge

symmetries and non-abelian couplings raises an entirely new set of questions.

It seems clear from our discussion and the many open questions that we are still far

from a profound understanding of the models we have presented in this paper. On the other

hand, given the hitherto lack of non-abelian models in six dimensions the very existence of

these models is rather fascinating. They provide new and very intriguing structures that de-

serve more study and may yet reserve further surprises. We look forward to further analysis.
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A Conventions

In this appendix, we summarize our space-time and spinor conventions. We work with

a flat space-time metric of signature (− + + + ++) and Levi-Civita tensor ε012345 = 1.

(Anti-)selfdual three-forms are defined such as to satisfy

H±

µνρ = ±
1

3!
ελστµνρ Hλστ ± , (A.1)

with Hµνρ = H+
µνρ + H−

µνρ . Six-dimensional gamma-matrices satisfy the basic relations

{γµ, γν} = 2gµν ,

γ7 ≡ γ012345 , γ2
7 = 1 ,

γa1···an =
sn

(6 − n)!
εa1···anb1···b6−nγb1···b6−n

γ7 , sn =

{

−1 : n = 0, 1, 4, 5

+1 : n = 2, 3, 6
, (A.2)

as well as the particular identities γλγµνργλ = 0, γµνργλγµνρ = 0, γµνργλστγµνρ = 0.
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The spinor chiralities are given by Spinor chiralities

γ7 ǫ = ǫ , γ7 λr = λr , γ7 χX = −χX . (A.3)

In addition, the fermions carry Sp(1) indices for which we use standard northwest-southeast

conventions according to λi = εijλj, etc. Accordingly, their bilinear products satisfy the

symmetry properties

λ̄iγ(n)χj = tnχ̄jγ(n)λi , tn =

{

−1 : n = 0, 3, 4

+1 : n = 1, 2, 5, 6
. (A.4)

The Fierz identities are of the form

ǫj
2ǭ

i
1 = −

1

4

(

ξµγµεij +
1

6
ξij
µνρ γµνρ

)

1 − γ7

2
,

with ξµ ≡ 1
2 ǭ2γ

µǫ1 , ξij
µνρ ≡ 1

2 ǭ2
iγµνρǫ

j
1 . (A.5)

In addition, we will employ some particular Fierz identities, cubic in a spinor λr

0 = trs,uv

(

3 ǭγρλu λ̄sγµνρλ
v + 4 ǭγ[µλu λ̄sγν]λ

v − ǭγµνρλ
u λ̄sγρλv

)

, (A.6)

0 = trs,uv

(

ǭ(iγ
µλu

j) λ̄sγµλv − 3 ǭγµλu λ̄s
(iγ

µλv
j)

)

, (A.7)

with an arbitrary tensor trs,uv = t[rs],(uv) satisfying tr(s,uv) = 0 . These identities can be

derived by making use of the following well known γ-matrix identity

ηµν γµ
δℓ,(αi

γν
βj,γk) = 0 (A.8)

as follows. Multiplication of this identity by

trs,uv (γρσ)ηm
αi ǫδℓλβj,u λγk,s ληm,v (A.9)

and using the conventions

γµ
αi,βj = γαβεij , λαiγµ

αβλβ
j = λ̄iγµλj (A.10)

yields the identity (A.6). Similarly, multiplication of (A.8) with

trs,uvλ
δn,s λαu

j λβk,v ǫγℓ (A.11)

produces the identity (A.7).
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