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1. Introduction.

String theory appeared extremely useful in study of the propertieys of non-commuta-

tive field theories. Moreover, considering strings and membranes in constant B-field

background not only helps to investigate properties of the low-energy field theories [1]

but also gives new insight on the string and M-theory itself by producing new mod-

els and connecting old ones for example into the framework of OM-theory [2]–[4]

and [6]. From this point of view it is interesting to ask if there is correspondence

between non-commutative and ordinary Yang-Mills appearing as decopling limit of

the string theory in the large B-field, how the correspondence between both non-

commutative and ordinary cases will be looking like from the point of you of strings

and membranes. In this note we study first the decoupling limits of both theories and

investigate the possible ways of disappearing non-commutativity. First we start from

example of decoupling limit of bosonic string. Here we work in the hamiltonian for-

malism which is equivalent to world-sheet treatment and then discuss the procedure

from both points of view. Correspondence between non-commutative and ordinary

Yang-Mills comes from considering instantons in both theories [1]. But how can we

see that from point of view of the string theory. From the world-sheet consideration

non-commutativity appears from interpreting time ordering as operator ordering in

two-point functions as well as in product of vertex operators [7]. In the hamiltonian

treatment non-commutativity arises from modification of the usual constraints de-

scribing open string theory by additional constraint coming from modified boundary
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conditions due to presence of the constant B-field [8]–[13]. This new constraints, com-

ing from boundary, is of the second class and for a first sight spoils commutational

relations between the target space coordinate and momenta on the world-volume of

D-brane. Apparently, one of the ways to struggle with the second class constraints is

to introduce the Dirac brackets [9] and [11]–[13]. On these Dirac brackets inconsis-

tency between commutators of coordinates and momenta disappear, instead, target

space coordinates of the string on the surface of D-brane do not commute anymore.

There is another way of working with the second class constraints - to use the con-

version procedure [14]–[16]. Usually, conversion means extending the phase space of

variables by introducing new degrees of freedom as well as modification of the second

class constraints in such a way that they become of the first class, i.e. either commute

or give another constraints. This new first class constraints correspond, as usually,

to the gauge symmetries of the theory, i.e. by introducing new variables we acquire

new gauge symmetries of the generalized action. This framework could be under-

stood from BRST-quantization point of view. In this case one can treat additional

variables as ghosts and new modified action in additional to previous symmetries

possess new gauge invariance. It is similar to having new local fermionic symmetry

in ordinary BRST approach. But in the case of the conversion new symmetry could

be bosonic. There were interesting connections of BRST conversion procedure with

Fedosov quantization [17]. We apply conversion to the system with second class

constraints and instead of going to Dirac brackets we end up with the model with

all or crucial part of constraints of the first class. In this case we don’t have Dirac

brackets and all target space coordinates commute between each other. In some sense

one is able to substitute model with non-commutative coordinates by the ordinary

ones on the level of BRST quantization. It is not necessary to BRST quantize the

theory, it is possible to use ordinary Dirac quantization of systems with first class

constraints only, but we need the former one to get rid of ambiguity of appearance

of the new variables and to interpret these extra coordinates of the extended phase

space as a “ghosts”. Here we mostly consider bosonic part of the theories. It could

be extended to the supersymmetric case by following [23]–[25] and references therein.

Description of connection of noncommutative Yang-Mills with ordinary one was also

considered in [18].

The organization of paper is the following: in section 2 we start from decoupling

limit of the string in constant B-field and then see origin of non-commutativity

from hamiltonian analysis of the constraints using Dirac brackets. Then we apply

conversion to the system, finding equivalent one with commutative coordinates. In

section 3 we discuss general framework of the bosonic string in the B-field, consider

origin of non-commutativity and discuss possible ways of its removal. In section 4 we

investigate decoupling limit of the membrane ending on M-5-brane in large C-field.

We discuss analysis of constraints and ways of obtaining equivalent theory without

non-commutativity. Discussions and conclusion could be found in section 5.
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2. String in constant B-field, decoupling limit and constraints

The bosonic part of the world-sheet action of the string ending on D-brane in ten

dimensional Minkowski space in constant B-field background is given by

S =
1

4πα′

∫ ab
M2

∂Xµ∂Xµ − 1

2πα′

∫
∂M2

BabX
a∂tX

b , (2.1)

where Bab is nonzero only along Dp-brane and in general case includes B-field to-

gether with two-form field strength on the D-brane. The boundary conditions along

D-brane are

gab∂nX
b + 2πα′Bab∂tXb = 0 , (2.2)

where ∂n is derivative normal to the boundary of the world-sheet.

Here the effective metric seen by the open string is

Gab =

(
1

g + 2πα′B
g

1

g − 2πα′B
)ab

, (2.3)

Gab = gab − (2πα′)2(Bg−1B)ab . (2.4)

And noncommutativity parameter

θab = −(2πα′)2
(

1

g + 2πα′
B

1

g − 2πα′B
)ab

. (2.5)

In the decoupling, zero slope, limit [1] one can take α′ → 0 keeping fixed open
string parameters, i.e. on the world volume of D-brane

Gab = − 1

(2πα′)2

( 1
B
g
1

B

)ab
, (2.6)

Gab = −(2πα′)2(Bg−1B)ab , (2.7)

θab =
( 1
B

)ab
. (2.8)

In this limit the kinetic term in (2.1) vanishes. The remaining part, which

governs the dynamics is the second term in the (2.1) which in this case describes the

evolution of the boundary on the string, i.e. particle living on the world-volume of

D-brane. This part of the action is given by

S =
1

2

∫
∂M2

dtBabX
a∂tX

b . (2.9)

For simplicity and without loss of generality one can take Bab nonzero only in

two space directions on the D-brane, i.e. Bab = 2bεab where a, b = 1, 2 and the rest

of string coordinates do not give any contribution to (2.9).
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Now let us see how noncommutativity appears on the level of hamiltonian for-

malism. The string action in decoupling limit is

S = b

∫
dtεabX

aẊb . (2.10)

Canonical momentum is given by

Pa = −bεabXb . (2.11)

So, the constraints that fully describe this model are

φa = Pa + bεabX
b . (2.12)

All these constraints are of the second class, i.e. they don’t commute with each

other:

[φa, φb] = 2bεab . (2.13)

Going to Dirac brackets gives

[Xa, Xb]D = [X
a, Xb]− [Xa, φc]ε

cd

2b
[φd, Xb] , (2.14)

and

[Xa, Xb]D =
1

2b
εab . (2.15)

We see that coordinates of the string on the D-brane do not commute and in

the decoupling limit one has noncommutative Yang-Mills on the world-volume of

D-branes. It is possible to calculate a two-point function of the fields propagating

on the boundary of the string world-sheet. And it is given by

〈Xa(t), Xb(0)〉 = 1
2b
εab , (2.16)

which leads to noncommutative coordinates on the D-brane.

Another way to treat constraints (2.12) is to extend the phase space of the

variables and in the framework of BRST quantization to introduce additional pair of

canonically conjugated variables ξ and Pξ with commutator [ξ, Pξ] = 1. In this case

it is possible to convert the second class constraints (2.12) into the first one.

φ̂1 = P1 + b(X
2 −√2ξ) , φ̂2 = (P2 +

√
2Pξ)− bX1 , (2.17)

where new constraints are of the first class and they commute. Let us count number

of degrees of freedom to be sure that we did not loose any information. Each of the

second class constraints eliminate one degree of freedom, but each of the first class

one kills two, so instead of two second class constraints we have two first one now,

therefore we need to add two independent degrees of freedom (i.e. ξ and Pξ).
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Now we can identify new variables, they are: P1, X1 which are unchanged and

P+ = −P2 −
√
2Pξ, X− = X2 −√2ξ , (2.18)

and

P− = −P2 +
√
2Pξ , X+ = X2 +

√
2ξ , (2.19)

where they are consequently canonically conjugate. The variables P−, X+ are not
dynamical ones because they don’t participate in the constraints. (2.17) now is

taking the form:

φ̂1 = P1 + bX
−, φ̂2 = P

+ + bX1 . (2.20)

Those two constraint not only of the first class but also assume that propaga-

tor (2.16) is not antisymmetric anymore, but rather symmetric in interchange of a

and b and leads to commutative coordinates not only on the level of Poisson brackets

but on the level of two-point function on the boundary of the string worldsheet, that

could be seen using correspondence between operator and time ordering [7]. So, new

two-point functions are

〈X1(t), X−(0)〉 = 〈X−(t), X1(0)〉 , (2.21)

and could be calculated using path-integral BRST approach. Therefore, we removed

the noncommutativity of the string end-point coordinates by introducing new vari-

ables, and applying the conversion of the constraints. By this way we ended up with

only first class constraints where we don’t have to use Dirac brackets and all coordi-

nates commute on the level of the Poisson brackets. Also, after field redefinition the

new coordinates of the string boundary are described now by X1, X−, that commute,
because propagator is symmetric. So using time ordering product gives commuta-

tivity on the boundary of string world-sheet. It could be more appropriate showed

by using BRST quantization of the theory described by the constraints (2.20).

The hamiltonian of the system which is equivalent one given by (2.1) is

H = λφ̂1 + λ1φ̂2 , (2.22)

where λ and λ1 are Lagrange multipliers.

The BRST charge is given by

Q = c(P1 + bX
−) + c1(P+ + bX1) , (2.23)

where c and c1 are ghosts corresponding to each first class constraint. It is also

possible to include information that boundary action comes from string as was done

in [1], but the main result that conversion together with change of variables and fields

redefinition gives ordinary, commutative behavior for the string boundary. In some

sense the conversion procedure is equivalent to restoring gauge symmetry of theory
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where it was broken. For example if one starts from Maxwell theory with fixed gauge

and then introduce new variables, that were fixed, i.e. nondynamical before, then use

conversion, one get abelian gauge symmetry on the level of effective action. And two

models, with fixed gauge and with gauge invariance, are equivalent to each other not

only on classical but also on quantum level. In our case of interest the situation is

almost the same except that we start from theory without apparent gauge fix, but this

theory could be interpreted as one with fixed gauge and the main task of conversion

is just to find equivalent extended and therefore more general theory described by

the system of first class constraints only. This procedure helps us to argue that

noncommutativity appearing in initial theory is not a fundamental property of the

theory but just a some particular choice of gauge fixing of equivalent model. It

is possible to conduct conversion for string in decoupling limit in more covariant

way. To do so let us start from system of constraints (2.12) and then introduce new

variables ξa and P ξa , [ξ
a, P ξb ] = δ

a
b where a = 1, 2. Then generalizing (2.18) define

P+a = Pa + P
ξ
a , X+a = Xa + ξa ,

P−a = Pa − P ξa , X−a = Xa − ξa . (2.24)

Then (2.12) could be modified into

φ̂a = P
−
a + bεabX

+b . (2.25)

Now all the constraints φ̂a are of the first class, i.e. commute. But, in difference

from previous example of conversion, degrees of freedom counting tells us that we

need to add one more first class constraint, otherwise modified system is not going

to be equivalent to initial one. This constraint could be chosen in the form

Ψ = P+X+ − P−X− . (2.26)

This choice in some sense reminds constraint that could be obtained from (2.12)

by projecting by Xa. If one puts all new variables equal to zero the constraints (2.25)

transform to (2.12), and (2.26) is becoming equal to zero, i.e. does not dependent

on φa and doesn’t carry any new information.

In this Section we gave two examples of conversion that produced equivalent

systems with commuting variables (i.e. commuting string end-points). Those exam-

ples could be of the strong suggestion that noncommutativity could be removed not

only on the level of constraints/Dirac brackets, but also on the level of two-point

functions.

3. String in constant B-field, general case

Here we step aside from decoupling limit of string which was described in previous

section and analyze complete set of constraints coming from the action (2.1). It

is more convenient to start not from lagrangian (2.1) but rather from one without

B-dependent term [1] and impose boundary condition (2.2) as additional boundary

6
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constraint. The starting action is

S =
1

4πα′

∫
d2σ∂Xµ∂Xµ , (3.1)

and boundary constraint

X ′a + ẊbBba = 0 , X ′m = 0 , (3.2)

where Xµ is full set of target-space coordinates for string, Xa are coordinates of

string endpoints on the D-brane and Xm is the rest of coordinates.

As usually, we have first class constraints which follows from (3.1)

H = 2πα′P 2 − 1

2πα′
X ′2, H1 = PµX

′µ . (3.3)

The hamiltonian is given by

Ht =

∫
dσ
(
NH +N1H1

)
. (3.4)

The momentum in this case is

Ẋa = 2πα′P a . (3.5)

Then the boundary condition (3.2) could be rewritten as constraint

Φa = X ′a + 2πα′P cBca . (3.6)

If B-field is absent, the boundary condition X ′ = 0 leads to infinite number of
constraints in the form

N (2k+1) = 0 , N
(2k)
1 = 0 , X(2k+1) = P (2k+1) = 0 , (3.7)

where (k) denotes k’s derivative in respect to σ. All these constraints are equivalent

to extending σ to [−π, π] and taking the orbifold projection [19], [13]

X(−σ) = X(σ) , P (−σ) = P (σ) , N(−σ) = N(σ) , N1(−σ) = −N1(σ) .
(3.8)

In the presence of constant B-field the secondary constraints appear, as usually,

from the fact that commutator of Φa with hamiltonian gives either constraint or

condition for Lagrange multipliers. First of all, in constant B-field, conditions for

the Lagrange multipliers are the same as in (3.7) and using the linear combinations

of Φ’s leads to the same boundary conditions for Xa and Pa as in (3.7) except that

for Xa if k = 0 we have constraint (3.6).

7
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Because we start from (3.1) but not (2.1) in difference from [9] and [11]–[13] we

don’t have modification of the higher derivative constraints but rather after going to

Dirac brackets contribution to the noncommutativity is given only due to Φa i.e.

[Xa(σ), Xb(σ′)]D = [Xa, Xb]−
∫
dσ′′[Xa,Φc(σ′′)]C−1cd [P

′d(σ′′), Xb] , (3.9)

where C−1cd is inverse matrix of commutator coefficients between Φ and P
′, and also

we have to use regularization for the endpoints (see [9, 11]) , i.e. for σ, σ′ = 0 or π.
The same contribution is given by considering higher odd derivatives of Pa. We see

that coordinates of endpoints do not commute but momenta do. Let us investigate

the nature of this noncommutativity. Here we will not use conversion of the system

of second class constraints into the first ones. It is more transparent to modify the

system by the way that second class constraints Φ, X(2k+3) and P (2k+1) reminded ones

for the case of zero B-field. The noncommutativity on the level of Dirac brackets

appears because of the nonzero commutator of Xa and Φb. If B-field is zero we see

that they commute and Dirac brackets are the same as Poisson ones. Let us modify

the system of constraints to obtain one that is equivalent to initial system. For a

moment we will forget about higher derivative constraints, but it is straightforward

to incorporate them into the whole picture. We will start from

Φa = X ′a + 2πα′PcBca , P ′a = 0 , (3.10)

where a runs from 1 to r. We have 2r second class constraints here. To modify them

introduce 2r new canonical variables ca and P
(c)
a , [ca, P

(c)
b ] = δab and 2r additional

second class constraints. With modified initial ones we have

Φ̂a = X ′a + ca , φa1 = c
a − 2πα′PcBca , (3.11)

P ′a = 0 , P (c)a = 0 . (3.12)

Now, instead of 2r constraints we have 4r ones but we added 2r new variables,

so number of degrees of freedom remains the same. The Dirac brackets (3.9) are

identically equal to zero because Φ̂ commute with Xa as in the case of string without

B-field and the rest of constraints (3.11), (3.12) also don’t give any contribution to

Dirac brackets. Procedure, which we used here, is different from conversion. First

of all because conversion assumes that one can obtain initial constraints after fixing

some particular values of additional variables. For example in Section 2 we showed

that after putting all new variables equal to zero one has initial constraint system.

Here it is not the case. We can’t fix c, otherwise it gives P = 0. One can ask why new

model is equivalent to old one. It could be argued that what we did is just redefining

the variables. And we don’t have to fix any particular value of ca or P
(c)
a because

additional constraints are not of the first class, but rather second one and that’s

why they can be solved algebraically to produce initial system. Here we considered

8
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simplified system comparing to one of [9]. The main difference in sets of constraints

is that in the later case there were taken even higher derivatives of φa rather then

X ′a. And application of the same technique is straightforward. Now we see that
introducing new variables even without changing the nature of constraints (from sec-

ond to the first class) produces the Dirac brackets for string endpoints which are

equal to zero. Therefore we were able to show that endpoints of the string expressed

in new variables commute between each other. Analysis of two-point functions is

not so straightforward as for the case of the decoupling limit but after change of

variables and field redefinition 〈X̂a, X̂b〉, where X̂ are new variables playing role of
effective string coordinates on the boundary, two-point functions become symmetric

and interpreting time ordering as operator ordering gives commutativity. Here we

argue that noncommutativity of string endpoints is not fundamental but rather re-

movable and depends on the change of basis. It also possible as in the section 2 to

consider modified BRST charge and perform analysis of mode decomposition and to

show that by the same way it is possible to introduce new algebraic variables which

produce commutativity of the string endpoints on the level of Dirac brackets. It is

becoming straightforward if one starts from constraints for the string modes given

in [13] and modify them by introducing c and P (c) by the same way as in (3.11).

4. Membrane in constant C-field, decoupling limit

In this section we discuss how to remove noncommutativity for the decoupling limit

of membrane ending on the M-5 branes. First of all, there are some crucial differences

between taking decoupling limit of the string and membrane [4, 5]. The only constant

in eleven dimensions is the Plank constant. Also we can’t take flat background

metric generated by the five-branes as was was explained in [4]. Moreover we have to

consider stock of five branes and probe membrane ending on one of the five-branes.

Then the decoupling limit could be found from the following :

1. bulk modes of the membrane must decouple and disappear;

2. string, that lives on the boundary, i.e. on the surface of the five-brane is fully

described by only Wess-Zumino membrane term;

3. then, after decoupling, all dynamics of the world-volume theory of five-brane

is governed by (2, 0) six-dimensional tensor multiplet.

As was shown in [4] and [6] by rewriting membrane kinetic term in terms of Lorenz

harmonics it is possible to produce decoupling explicitly in the limit when lp → 0 but
open membrane metric is fixed. Following [4] one can find convenient form of Wess-

Zumino membrane term in the case of constant C-field. The Wess-Zumino term for

membrane has two contributions - from pullback of eleven-dimensional three form

9
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A(3) to membrane surface and from pullback of five-brane two-form B(2) to membrane

boundary, i.e.

SWZ =

∫
M3

A(3) +

∫
∂M3

B(2) . (4.1)

The constant C-field on the five-brane is given by C(3) = dB(2)+A(3), where here

A(3) is pullback to five-brane world-volume. The notion of nonlinear self-duality for

C-field on the five-brane is extremely important here [20]. At least locally we can

write A(3) = da(2). Excluding part of A(3) which gives zero pullback to the five-brane

world-volume and using the fact that C is constant one has

C
(3)
µνλX

λ = 3(B(2)µν + a
(2)
µν ) . (4.2)

The components of constant C-field could be chosen in the form [1]

C
(3)
012 = −

h√
1 + l6ph

2
, C

(3)
456 = h . (4.3)

The action of the membrane ending on M-5-brane in decoupling limit is given

by two terms [4]

S =

∫
d2σ

h

3
√
1 + l6ph

2
εijkX

iẊjX ′k +
∫
d2σ

h

3
εabcX

aẊbX ′c , (4.4)

where 5-brane world-volume was decomposed into the two three-dimensional pieces,

where X i lies on the membrane and Xa are five-brane coordinates normal to the

membrane and prime denotes differentiation in respect to σ and dot - in respect to

time.

Consider the second part of the (4.4)

S =

∫
d2σ

h

3
εabcX

aẊbX ′c , (4.5)

The momentum is given by

Pa = −h
3
εabcX

bX ′c . (4.6)

With constraints

φa = Pa +
h

3
εabcX

bX ′c , (4.7)

and Poisson brackets

[φa(σ), φb(σ
′)] =

2

3
hεabcX

′cδ(σ − σ′) . (4.8)

Among three constraints two are of the second class and one is the first class.

To see that project φa by X,X
′, P . Then first class constraint is

Ψ = X ′aPa , (4.9)

and the second ones

XaPa = 0, P 2 +
h

3
εabcP

aXbX ′c = 0 . (4.10)
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The equations of motion are

εabcẊ
bX ′c = 0 . (4.11)

Here, because we have a mixture of first and second class constraints it is more

convenient to convert them directly in the mixture, i.e. we need to find additional

variables which give us all constraints of the first class. The discussions on conversion

in mixture of first and second class constraints and references therein could be found

in [21]. To do it covariantly in three dimensions orthogonal to membrane world-

volume let us introduce new variables ξa and P
(ξ)
b with [ξ

a(σ), P
(ξ)
b (σ

′)] = δab δ(σ−σ′).
But if we want to convert two second class constraints into the first one counting

of degrees of freedom tells us that we need only two extra variables and we added

six. The resolution of this problem is that not all of the above new variables are

independent and that’s why we need to impose two extra first class constraints that

kills four degrees of freedom leaving as with only two extra independent variables

that we needed. It is convenient to proceed as follows. Let us define

Xa+ = Xa + ξa , P a+ = P a + P (ξ)a , (4.12)

Xa− = Xa − ξa , P a− = P a − P (ξ)a . (4.13)

Then the modified constraints (4.7) could be rewritten as the following first class

constraints

φ̂a = P
−
a +

h

3
εabcX

b+X ′c+ , (4.14)

and they identically commute. Now we need two additional commuting with every-

thing constraints. It is possible to choose them in the form

P+X+ − P−X− = 0 , P ′+X+ + P−X ′− = 0 . (4.15)

It is not unique but convenient choice. Now all the constraints (4.14) and (4.15)

are of the first class. The BRST charge is now given by sum of the first class

constraints multiplied by corresponding ghosts plus contribution from commutators.

This BRST charge describes theory equivalent to initial one not only on the

classical but also on the quantum level. Fixing gauge ξ = 0 and Pξ = 0 gives initial

theory. In some sense one can think that model before conversion was one with fixed

gauge symmetries , which could be restored on the level of BRST invariant action.

By the same way one can proceed for the first term in (4.4).

In this example we see that even for the nonlinear case of membrane boundary

it is possible to change variables to end up with commutative coordinates. This

procedure is close to one in the end of second section except that for the case of

membrane one of the constraints was of the first class and we were forced to have

conversion directly in the mixture of two types of constraints.
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5. Discussions and conclusion

In this note we showed that by appropriate change of variables and extension of

the phase space of the models of noncommutative string and membrane they appear

to be equivalent to ordinary ones. It is possible to argue that noncommutativity

of string/membrane endpoints, appearing fundamental, is rather removable and de-

pends on field content and change of variables. Not only conversion is doing it’s

job, as for the case of string/membrane in decoupling limit, but also equivalence

of two phase spaces without changing type of constraints is giving the same result.

It is important to investigate the correspondence between noncommutative string

and ordinary one from worldsheet point of view. It is not quite clear yet how this

equivalence works for the product of vertex operators, which apriori obey noncom-

mutative algebra.

Here we presented only analysis of bosonic part of theories. It is interesting to

consider whole supersymmetric case extending approach of [23]–[25]. For supersym-

metric case it is also important to understand situation on the level of supersymmetric

solutions and Dp-Dq brane systems [26, 27].

Hamiltonian systems with boundaries were also extensively studied in [28] from

the similar point of view as well as in [29, 30] where instead of interpreting boundary

conditions as constraints the Poisson brackets were modified to include boundary

contribution. It is interesting to compare results coming from two approaches.

It could be noted that membrane boundary string in decoupling limit and critical

C-field should be not only tensionless but also doesn’t have gravity in it’s spectrum,

that reminds a Little String Theory concept, see [31] and references therein. Usual

world-sheet formulation of tensionless string [22] has kinetic term quadratic in fields

together with null vectors and world-sheet of such a string is a null surface. Some-

times in literature it is called null-string. Unfortunately this theory is anomalous and

complete spectrum is not known yet. It could be interesting to assume that tension-

less string could be described by equations of motion (4.7) and by lagrangian (4.5).

But because (4.5) describes membrane boundary in decoupling limit the mentioned

above tensionless string doesn’t contain graviton in it’s spectrum and it’s low energy

limit is described by (2, 0) six-dimensional theory. Therefore there is a connection to

Little String Theory. Modified system of the first class constraints (4.14) and (4.15)

could be quantized in the BRST framework. At least it is straightforward to conduct

operator BRST quantization. It is interesting to find a spectrum of this model as

well as build vertex operators and study this model from world-sheet point of view.

It is interesting to ask what are the other nonlinear models which posses the

same equations of motion as (4.11) and carry some resemblance with the membrane

in the decoupling limit.

First of all, because action (4.5) is pure Wess-Zumino term of the membrane it

is useful to start from known nonlinear Wess-Zumino models in two dimensions. Let

12
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us consider Wess-Zumino term of SU(2) WZNW model. It is given by the action:

SWZ−WZNW =
k

96π

∫
dr

∫
d2ξg−1ġg−1εµν∂µgg−1∂νg . (5.1)

Using parametrization of SU(2) in terms of Euler‘s angles φ, θ, ψ it is possible

to rewrite (5.1) as

SWZ−WZNW =
k

4π

∫
d2ξφεµνsinθ∂µθ∂νψ . (5.2)

At least for compact Xa it is possible to identify (φ,−cosθ, ψ) with (X3, X4, X5)
consequently. In this case WZ part of WZNW SU(2) model could be rewritten as

SWZ−WZNW =
k

4π

∫
d2ξX3(Ẋ4X ′5 − Ẋ5X ′4) , (5.3)

and it is always possible to go to free-field realization of (5.3). This action gives the

same equations of motion as (4.11). So, two models, string describing membrane

endpoints on five-brane and Wess-Zumino part of SU(2) WZNW model, are equiva-

lent on the level of equations of motion, but not the action because the symmetries

of lagrangians are different. Therefore, it could be useful to find a connection if any

between description of evolution of the boundary string on the surface of five-brane

and topological part of SU(2) WZNW model at least for compact coordinates of

membrane end-points.
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