
OPTIMIZATION METHODS AND ALGORITHMS FOR CLASSES OF BLACK-BOX AND

GREY-BOX PROBLEMS

A Dissertation

by

ISHAN BAJAJ

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, M. M. Faruque Hasan
Committee Members, Mahmoud El-Halwagi

Erick Moreno-Centeno
Joseph Sang-Il Kwon

Head of Department, M. Nazmul Karim

May 2019

Major Subject: Chemical Engineering

Copyright 2019 Ishan Bajaj

ABSTRACT

There are many optimization problems in physics, chemistry, finance, computer science, en-

gineering and operations research for which the analytical expressions of the objective and/or the

constraints are unavailable. These are black-box problems where the derivative information are

often not available or too expensive to approximate numerically. When the derivative information

is absent, it becomes challenging to optimize and guarantee optimality of the solution. The objec-

tive of this Ph.D. work is to propose methods and algorithms to address some of the challenges of

blackbox optimization (BBO). A top-down approach is taken by first addressing an easier class of

black-box and then the difficulty and complexity of the problems is gradually increased.

In the first part of the dissertation, a class of grey-box problems is considered for which the

closed form of the objective and/or constraints are unknown, but it is possible to obtain a global

upper bound on the diagonal Hessian elements. This allows the construction of an edge-concave

underestimator with vertex polyhedral solution. This lower bounding technique is implemented

within a branch-and-bound framework with guaranteed convergence to ε-global optimality. The

technique is applied for the optimization of problems with embedded system of ordinary differen-

tial equations (ODEs). Time dependent bounds on the state variables and the diagonal elements

of the Hessian are computed by solving auxiliary set of ODEs that are derived using differential

inequalities.

In the second part of the dissertation, general box-constrained black-box problems are ad-

dressed for which only simulations can be performed. A novel optimization method, UNIPOPT

(Univariate Projection-based Optimization) based on projection onto a univariate space is pro-

posed. A special function is identified in this space that also contains the global minima of the

original function. Computational experiments suggest that UNIPOPT often have better space ex-

ploration features compared to other approaches.

The third part of the dissertation addresses general black-box problems with constraints of

both known and unknown algebraic forms. An efficient two-phase algorithm based on trust-region

ii

framework is proposed for problems particularly involving high function evaluation cost. The

performance of the approach is illustrated through computational experiments which evaluate its

ability to reduce a merit function and find the optima.

iii

DEDICATION

To my parents and wife.

iv

ACKNOWLEDGMENTS

The past four and half years of my PhD have been one of the most exciting, inspiring and

satisfying years of my life. This dissertation would not have been possible without the constant

support and encouragement from my advisor, Professor Faruque Hasan. I owe him a great debt

for spending a lot of his time and energy on the work in this dissertation and on my education and

professional development. He has constantly motivated me to realize my full potential in research.

Professor Hasan has always been open to new ideas and that enabled me to broaden my skills

and expertise. He has always been able to find time to explain and discuss concepts whenever I

needed, and for this, I am truly grateful. He has taught me to do research and present the ideas

succinctly. Outside research, he has actively encouraged and supported me to take leadership

positions even though these are not necessary to complete PhD, but are nonetheless essential in

life. Professor Hasan’s work ethics and energy are some of the qualities that I hope to ingrain in

my own professional life. He has been truly an exceptional mentor with whom I enjoyed working

very much and consider as a role model.

I am also grateful for the feedback I have received from the members of my dissertation com-

mittee - Professors Mahmoud El-Halwagi, Erick Moreno-Centeno, and Joseph Sang-Il Kwon lead-

ing to improved version of this dissertation. Special thanks to Professors El-Halwagi and Kwon

to take out time from their schedule and offer career advice. I enjoyed the lectures of Professor

Efstratios Pistikopoulos and late Professor Christodoulos Floudas covering several aspects of opti-

mization methods and applications. My journey towards PhD would not have even started if I had

not met my first mentor, Professor Mani Bhushan at IIT Bombay who influenced me to pursue this

path.

I would like to thank the members of my research group: Shachit Iyer, Emre Demirel, Jianping

Li, Priyadarshini Balasubramanian, Spyridon Tsolas, Akhil Arora and Manali Zantye for all the

times in and outside the office and teaching me several things. Special thanks to Shachit Iyer,

Priyadarshini Balasubramanian and Akhil Arora for the collaborations that led to a more productive

v

PhD. A special shout out to GERB/JEB tennis club members: Patrick Lathrop, Doga Demirhan,

Chen Ling, Abhinav Narasingam, and Sourav Bandyopadhyay for making my stay in College

Station memorable. Thanks to Prashanth Siddhamshetty for all the interesting discussions and his

support. I am grateful to my roommate Dr. Avinash Parnandi for his kindness during the most

difficult times. I am also indebted to members of IIT Alumni of Greater Houston, South Asian

Connections, Artie McFerrin Department of Chemical Engineering, Dr. Narendra Kumar, Dr.

Nirup Nagabandi, Dr. Sushmitha Kotu, Dr. Prerna Jain, Dr. Monjoo Lee, Dr. Sagar Lonkar, Dr.

Pratik Darvekar, Dr. Nandita Kohli, Abhijeet Shinde, Purvali Chaudhari, Pankaj Goel, Smit Shah,

Pratik Krishnan, Patrick Lathrop, Katy Mears and Steven White for their generosity. Thanks to my

another roommate, Chiranjivi Botre for persuading me to adopt healthier lifestyle.

This work would not have been possible without the unconditional love and unwavering support

of my parents - Devraj and Manju. They have ingrained the strong work ethics in me that allowed

me to complete the work in this dissertation. I am endlessly grateful to my wife, Sakshi for her

patience and sacrifices. She has been there for me in the most difficult of times and makes me a

better and happier person. I thank my in-laws for their support and encouragement.

vi

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor M. M. Faruque

Hasan, Professor Mahmoud El-Halwagi and Professor Joseph Sang-Il Kwon of the Artie McFerrin

Department of Chemical Engineering and Professor Erick Moreno-Centeno of the Department of

Industrial and Systems Engineering.

The process simulation model depicted in Chapter 5 was provided by Shachit S. Iyer of the De-

partment of Chemical Engineering and was published in 2017 in an article listed in the references.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by Faculty start-up grant from Artie McFerrin Department

of Chemical Engineering and U.S. National Science Foundation grant (award number CBET-

1606027).

vii

NOMENCLATURE

BBO Black-box Optimization

BPBC Black-box Problems with Bound Constraints

GPBC Grey-box Problems with Bound Constraints

BPUC Black-box Problems with Unknown Constraints

BPHC Black-box Problems with Hybrid Constraints

BPKC Black-box Problems with Known Constraints

GPGC Grey-box Problems with Grey-box Constraints

ODE Ordinary Differential Equation

PDE Partial Differential Equation

NAPDE Nonlinear Algebraic Partial Differential Equation

B&B Branch and Bound

ECU Edge-concave Underestimator

UNIPOPT Univariate Projection-based Optimization

EPIC Envelope Predictor and Corrector

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vii

NOMENCLATURE . viii

TABLE OF CONTENTS . ix

LIST OF FIGURES . xii

LIST OF TABLES. xiv

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Theoretical and Algorithmic Advances in Black-box Optimization . 4
1.2 Key Research Gaps and Challenges . 9
1.3 Research Objectives . 11
1.4 Outline of the Dissertation . 12

2. GLOBAL OPTIMIZATION OF GREY-BOX PROBLEMS WITH BOUNDED
HESSIAN . 14

2.1 Introduction. 14
2.2 Lower Bounding Method . 16

2.2.1 Illustrative Example 2.1 . 18
2.3 A Branch-and-Bound Algorithm . 18

2.3.1 Illustrative Example 2.2 . 21
2.4 Computational Studies . 22
2.5 Conclusions. 27

3. GLOBAL OPTIMIZATION OF GREY-BOX PROBLEMS WITH EMBEDDED ODES . . 28

3.1 Introduction. 28
3.2 Constructing a Valid Relaxation . 31

3.2.1 Properties of Edge-concave Underestimator . 31
3.2.2 Edge-concave Relaxation of P2. 32

ix

3.2.3 Estimating θfai and θgaji . 35
3.2.3.1 Illustrative Example 3.1 . 36

3.2.4 Estimating θfdi and θgdji . 37
3.2.4.1 Illustrative Example 3.2 . 40

3.2.5 Estimating θψi and θξji . 41
3.2.5.1 Illustrative Example 3.3 . 42

3.2.6 Relaxed Problem Formulations . 42
3.2.6.1 Relaxation of a Special Form of P2 . 43
3.2.6.2 A Hybrid Method to Compute Lower Bound . 45
3.2.6.3 Relaxation of P2 . 46

3.3 Overall Algorithm . 47
3.3.1 Branching Rule . 49
3.3.2 Computing Lower Bound: Solving R3 and R2-L . 49
3.3.3 Computing Upper Bound . 50
3.3.4 Convergence Criteria . 51

3.4 Case Studies . 51
3.4.1 Case Study 3.1 . 53
3.4.2 Case Study 3.2 . 55
3.4.3 Case Study 3.3 . 57
3.4.4 Case Study 3.4 . 59
3.4.5 Case Study 3.5 . 59

3.5 Conclusions. 61

4. OPTIMIZATION OF BOX-CONSTRAINED BLACK-BOX PROBLEMS: UNIPOPT
FRAMEWORK . 63

4.1 Introduction. 63
4.2 Projection on Univariate Space . 65

4.2.1 Illustrative Example 4.1 . 67
4.2.2 Properties of G(t) . 69

4.3 UNIPOPT Framework . 69
4.3.1 Outline and Implementation of the UNIPOPT Algorithm. 70
4.3.2 Finding the Lower Envelope using Envelope PredIctor and Corrector (EPIC)

Method . 72
4.3.2.1 Predicting G(t): Obtaining Ĝ(tp+1) from G(tp) . 72
4.3.2.2 Correcting G(t): Converging to G(tp+1) from Ĝ(tp+1) 78
4.3.2.3 Estimating Lagrange Multipliers and Criticality Measure 82
4.3.2.4 Interpolation Set and Surrogate Modeling . 84
4.3.2.5 Model Improvement . 87

4.3.3 Selecting α . 89
4.3.4 Updating tl and tu . 89

4.4 Convergence . 90
4.4.1 Convergence Proof of Correcting Algorithm to First-order Critical Point. 90
4.4.2 Convergence of Overall Framework . 101

4.5 Computational Studies . 101

x

4.5.1 Illustrative Example 4.2 . 101
4.5.2 Experimental Setup for the Solvers . 104
4.5.3 Computational Results . 105

4.5.3.1 Convex Nonsmooth Problems . 105
4.5.3.2 Nonconvex Smooth Problems . 106

4.5.4 Comparison of Performance of Quadratic Model with Cubic Radial Basis
Function . 108

4.5.5 Comparison of Strategies for Optimizing the Lower Envelope 109
4.6 Conclusions. 110

5. OPTIMIZATION OF CONSTRAINED BLACK-BOX PROBLEMS: A TWO-PHASE
TRUST-REGION FRAMEWORK . 112

5.1 Preliminaries . 113
5.1.1 Trust Region Framework . 113

5.2 Two Phase Algorithm . 116
5.2.1 Outline of the Algorithm . 116
5.2.2 Feasibility Phase . 117
5.2.3 Optimization Phase . 120
5.2.4 Model Improvement . 123
5.2.5 Surrogate Modeling . 126
5.2.6 Initial Sampling. 127

5.3 Computational Studies . 129
5.3.1 An Illustrative Example . 129
5.3.2 GlobalLib Test Problems . 132

5.3.2.1 Importance of Feasibility Phase . 136
5.3.2.2 Computational Comparison with Other Solvers . 136

5.3.3 Optimal design of a Cyclic and Integrated Carbon Capture and Conversion
Process . 142
5.3.3.1 Process Modeling . 143
5.3.3.2 Process Simulation and Constraints . 145
5.3.3.3 Optimization Results . 149

5.4 Conclusions. 153

6. CONCLUSIONS AND RECOMMENDATIONS . 154

REFERENCES . 158

xi

LIST OF FIGURES

FIGURE Page

1.1 Illustration of the BBO problem. The values of y are obtained by fixing x. Using
the values x and y, the values of the black-box objective function (blue circles), the
unknown constraints (red diamonds), and known constraints (black solid line) are
computed.. 2

1.2 Simulation at 10000 points of the process proposed in [1] are performed and adapted
from [1]. Each simulation is represented by a line joining different outputs and the
decision variables. The red line represents when a simulation is infeasible with
respect to the optimization problem while green represents a feasible design points. . 10

2.1 Illustration of the function and its ECU. 19

2.2 (a) Illustration of branch-and-bound algorithm on a 5-D black-box problem (Prob-
lem 11a in Table 2.1). (b) The progress of the algorithm with iterations. 22

2.3 Data profile comparing the ability of different methods to solve a problem to global
optimality. EC-Θg and EC-Θint represents the proposed method with Θ calculated
by globally optimizing the diagonal elements of the Hessian matrix and interval
method, respectively. 27

3.1 Illustrating θψ as a function of t for Example 3. 43

3.2 An overview of the spatial branch-and-bound algorithm for solving P2 and P3. 48

3.3 The objective function of case study 3.1 is shown along with the corresponding
edge-concave underestimator. 56

4.1 Branin function and its projected samples: (a) Branin function, (b) Point-to-set map
and the lower envelope of the Branin function, and (c) Global minima of Branin
function located on the lower envelope.. 67

4.2 Schematic of the UNIPOPT Algorithm Framework. 70

4.3 Illustration of pointwise evaluation of G(t) from t = tp to t = tp+1. This involves
two major steps: (1) prediction from A to B, and (ii) correction from B to C. 72

4.4 Initial interpolating samples generated around a point . 85

4.5 Distribution of problems with number of variables for (a) 232 nonconvex smooth
and (b) 161 convex nonsmooth problems. 102

xii

4.6 Distribution of samples used by (a) BOBYQA, (b) IMFIL, (c) ORBIT, (d) SNOB-
FIT, and (e) UNIPOPT. 103

4.7 Fraction of problems solved by each of the solvers for 161 convex nonsmooth
problems using CRBF. The performance is compared based on the two criteria
given in Eqs. 4.99 and 4.100. The values of the parameters used is Figure (a) are
d = 0.01 and β = 0.001, and Figure (b) are d = 0.05 and β = 0.1. 107

4.8 Fraction of problems solved by each of the solvers for 232 nonconvex smooth
problems using CRBF. The performance is compared based on the two criteria
given in Eqs. 4.99 and 4.100. The values of the parameters used is Figure (a) are
d = 0.01 and β = 0.001, and Figure (b) are d = 0.05 and β = 0.1. 108

4.9 Fraction of problems solved as a function of number of evaluations for (a) 232
nonconvex smooth problems and (b) 161 convex nonsmooth problems using CRBF
and quadratic model. A problem is deemed to be solved if the solution is within
1% of the global minima. 109

4.10 Comparison of model-based strategy, Golden section and Fibonacci algorithms for
optimizing G. The strategies were compared on a set of 81 problems. 110

5.1 Schematic of the overall algorithm. 117
5.2 Constraint violation function for st_e18. 131

5.4 Trend of constraint violation and objective function . 133

5.5 Distribution of test problems . 134

5.6 Data profile considering convergence test on global minima and comparing with
single phase. 137

5.7 Data profile considering convergence test on global minima . 138

5.8 Data profile based on convergence test on reduction in merit function with τ = 10−1 139

5.9 Data profile based on convergence test on reduction in merit function with τ = 10−3 139

5.10 Data profile based on convergence test on reduction in merit function with τ = 10−6 140

5.11 Performance profile considering convergence test on global minima 140

5.12 Data profile based on convergence test on reduction in merit function with τ =
10−1, τ = 10−3.τ = 10−6 . 141

5.13 Process schematic for ICCC . 142

5.14 Progression of the algorithm. 150

xiii

LIST OF TABLES

TABLE Page

2.1 Test functions and results. 24

3.1 Summary of the results obtained by different underestimators for case study 3.1. 55
3.2 Summary of the results obtained by different underestimators for case study 3.2. 57

3.3 Experimental data for case study 3.3. 58

3.4 Summary of the results for case study 3.3.. 59

3.5 Summary of the results obtained by different underestimators for case study 3.4. 60

3.6 Summary of the results obtained by different underestimators for case study 3.5. 61

4.1 Best function values reported by solvers on denschnc and corresponding number
of evaluations. 102

4.2 Initial guess and optima generated during the first iteration of the UNIPOPT frame-
work for Illustrative Example 2. 104

5.1 Algorithm parameters. 130

5.2 Samples and corresponding constraint violation at iteration 0 of feasibility phase. . . . 130

5.3 Samples and corresponding Lagrange polynomials at iteration 0. 131

5.4 Decision variables for Problem (5.57). 146

5.5 Initial guess for Problem (5.57). 150

5.6 Optimum results obtained for the four case studies with constraint violation and
objective function at the initial point. 151

5.7 Comparison of solution provided by the Two phase algorithm, COBYLA and NO-
MAD. 152

xiv

1. INTRODUCTION AND LITERATURE REVIEW1

Black-box optimization (BBO) refers to a class of problems in which the analytical form of

the objective function and/or constraints are not available explicitly in terms of decision variables.

There are many important problems in engineering, physics, finance, medicine, and operations

research where the problem is posed as BBO. In many cases, the values of the objective function

and constraints are only obtained as outputs of deterministic large-scale simulation, evaluation

of legacy codes or experimentation. Moreover, the derivative information is either not available

or too expensive to evaluate. Automatic differentiation fails when the objective function values

are available only as a result of simulating legacy. Due to proprietary restrictions, the closed

form of the objective function is unavailable. Applying finite difference to an expensive computer

simulation can be prohibitive since it would require at least n + 1 evaluations, (n represents the

problem dimension) to approximate the gradient at a point. To this end, BBO algorithms strive to

find a solution in a computationally efficient manner.

In the most general form, the BBO problems that are addressed in this dissertation can be

represented as follows:

min
x

f(x, y)

s.t. gi(x, y) ≤ 0 ∀i ∈ P := {1, . . . , p}

y = d(x)

x ∈ [xL, xU]

(1.1)

where x ∈ Rn are the independent variables, y ∈ Rq are the dependent variables, f(x, y) and

g(x, y) denote the objective function and the constraints, respectively, and d(x) represents a com-

plex model whose mathematical form may be known or unknown. For instance, y could be ob-

1Part of this chapter is reprinted with permission fromI. Bajaj, S. S. Iyer, and M. M. F. Hasan, "A trust region-based
two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point" Computers &
Chemical Engineering, vol. 116, pp. 306-321. Copyright 2018 Elsevier.

1

tained as a result of solving an ODE/PDE model, using a black-box simulator, or by performing

experiments. When the underlying model d(x) is complex and only input-output data are avail-

able, then the problem is referred as black-box. If it is possible to extract other information (e.g.

derivatives, bounds on diagonal elements of the Hessian, etc.) besides the simulation data, the

problem is considered as grey-box. If P = ∅, then the respective problems are called black-box

problems with bound constraints (BPBC) and grey-box problems with bound constraints (GPBC).

Similarly, if d(x) is black-box, P 6= ∅ and all the constraints are functions of y, then the prob-

lems are referred as black-box problems with unknown constraints (BPUC). If d(x) is black-box,

P 6= ∅ and some of the constraints are functions of y, then the problems are referred as black-box

problems with hybrid constraints (BPHC). If d(x) is black-box, P 6= ∅ and none of the constraints

are functions of y, then the problems are referred as black-box problems with known constraints

(BPKC). Finally, if d(x) is grey-box, the the problems are simply called grey-box problems with

grey-box constraints (GPGC). BBO problem is illustrated in Figure 1.1.

Figure 1.1: Illustration of the BBO problem. The values of y are obtained by fixing x. Using
the values x and y, the values of the black-box objective function (blue circles), the unknown
constraints (red diamonds), and known constraints (black solid line) are computed.

In process systems engineering, BBO methods have been applied, among many applications,

to natural gas liquefaction [2], heavy hydrocarbons removal [3], membrane reactor for hydrogen

and methanol production [4], methanol reactor [5], co-production of ethylene and electricity via

methane oxidative coupling [6], material screening and optimization [7, 8], multi-scale optimiza-

2

tion [9], carbon capture process [10], pressure swing adsorption [11], oil-field operations [12] and

refrigerant circuitry design for heat exchangers [13]. Palmer and Realff [14] developed polynomial

and kriging models for a steady state ammonia synthesis flowsheet and subsequently optimized

the surrogate model. Lima et. al. [15] applied stochastic algorithm for dynamic optimization of a

batch polymerization reactor assuming the reactor model to be black-box. Neural networks have

been used as estimator, predictor and controller for a batch reactor [16]. Egea et. al. [17] opti-

mized the wastewater treatment plant using several black-box optimization solvers and compared

their results. Caballero and Grossmann [18] developed a Kriging-based algorithm for flowsheet

optimization. Boukouvala and Ierapetritou [19] employed Kriging model in combination with

black-box feasibility for optimization of tablet manufacturing process. Yang et. al. [20] optimized

the reaction selectivity based on CFD-based compartment model using MISO [21]. Dias et. al.

[22] applied surrogate-based optimization method to integrate scheduling and control of air sepa-

ration units. BBO methods have also been applied in the optimization of parameters of numerical

code for simulation and optimization [23, 24], optimization of groundwater bioremediation [25],

protein structure prediction [26], design of cardiovascular surgeries [27], aircraft routing [28] and

dynamic pricing [29].

BBO methods are also growing in importance due to increased use of computationally expen-

sive PDE models. These models account for spatial and temporal variation of the system prop-

erties, thereby enabling detailed optimization of design and operating conditions. Although PDE

models have higher predictive ability, rigorous optimization with PDE models is challenging. One

of the approaches investigated in the literature is to discretize the PDEs and convert into algebraic

equations. The resulting optimization model then becomes a large-scale nonlinear programming

problem. For instance, Nilchan and Pantelides [30] optimized a periodic adsorption process by

applying a sequential quadratic programming algorithm to the discretized equations. Biegler and

co-workers [31, 32] applied IPOPT [33] to optimize the discretized model of a adsorption based

process. Although promising results were obtained, the level of discretization used in these works

were moderate to keep the nonlinear model tractable and by doing so, a certain degree of accuracy

3

was lost. An alternative and promising strategy is to use black-box optimization concepts that in-

volves using simulation data to optimize while maintaining the high level of accuracy of the model.

This approach has been successfully used to optimize an integrated carbon capture and conversion

process [1] and sorption enhanced reaction processes [34, 35].

Clearly, black-box optimization has numerous practical applications and is one of the open

problems in science and engineering [36]. Effective black-box optimization methods are needed

in Chemical Engineering now more than ever. This is due to the growing importance of high-

fidelity computationally expensive models being used in Chemical Engineering to model several

processes such as reactor, furnace, adsorption, etc. From the study performed by Iyer et. al.

[1], it is concluded that integrating and intensifying different physiochemical process introduces

complexities which are not trivial to understand. Therefore, obtaining the appropriate process

parameters that leads to an economical feasible process is a challenging problem. To balance

different trade-offs, a systematic optimization approach is needed for which the current solvers are

not very effective. To this end, the primary motivation of this Ph.D. study is to develop optimization

methods and algorithms for black-box problems where the interactions are complex with multiple

variables affecting the process output.

1.1 Theoretical and Algorithmic Advances in Black-box Optimization

The growing number of applications has led to development of several algorithms for solving

black-box problems. Intuitively, one can think of two approaches to optimize black-box problems.

The first one is a sequential approach where all the simulations are performed at once, followed

by developing an accurate surrogate model for the entire domain and thereafter, optimizing the

surrogate model. The second approach is iterative with attempts being made to simulate in the

promising regions where there is a possibility of finding an optima. The first approach is not ad-

equate when the simulations are expensive and the problem is high dimensional. Therefore, the

main interest is in following the second approach involving sampling in a smart manner such that

a minima is obtained using few function evaluations. These algorithms can be classified into two

major categories, namely direct search and model-based [37]. Direct search algorithms use the

4

function values directly by generating search directions that positively span the search space and

then sequentially examining the function values to determine the next step. The search directions

can be local [38, 39] or global [40, 41, 42, 43, 44, 45]. Local search techniques generate a set

of points to form a simplex or pattern by considering only local search space. Global search is

categorized into deterministic and stochastic techniques. One of the stochastic algorithms is the

hit-and-run algorithm that generates new candidate points from the current points by randomly

generating directions and step sizes [43]. The current point is updated only if an improvement in

the objective function is obtained. Simulated annealing [46] generates and accepts a new candidate

point as the current point if an increase in the objective function is obtained. Genetic algorithms are

based on the idea of natural selection that assures the survival of the fittest [47]. Each point is as-

sociated with fitness measure that mutates following probabilistic rules. Particle swarm algorithms

[48] are based on generating new set of points from previous points based on certain parameters

and randomly generated weights.

Several deterministic approaches also exist for global black-box optimization. The first ap-

proach is based on the Lipschitzian-based partitioning scheme that constructs and optimizes a

linear underestimator by using Lipschitz constant (e.g., [49]). In this approach, the value of the

Lipschitzian constant must be known. Another observation is that the required number of func-

tion evaluations typically increases exponentially with the problem dimension. Jones et. al. [40]

addressed this issue by dividing the search space into hyperrectangles and performing function

evaluations only at the rectangle centers. The method proceeds by iteratively dividing the rectan-

gle that either corresponds to the lowest objective function value or likely to produce substantial

reduction in the objective value. In the absence of the Lipschitz constant, the algorithm converges

when the function evaluation limit is reached. In contrast, the multilevel coordinate search (MCS)

method [41] performs function evaluation at any point within the rectangle, thus avoiding lot of

evaluations. Branch-and-bound methods have been also proposed based on estimated upper bound

of the Lipschitz constant [50]. In this case, the rate of convergence may depend on the tightness

of the estimation. However, the global search methods often require a lot of function evaluations

5

and do not provide theoretical guarantee of convergence to the global minima. Direct methods are

often easier to implement and parallelize compared to model-based methods [36].

Model-based methods implicitly approximate derivatives to determine a search direction. Typ-

ically, the model-based methods sample the search space, develop and optimize inexpensive surro-

gate models and then iteratively update the models. Model-based algorithms are also categorized

into local [51, 52, 53, 54] and global [55, 56, 57]. Local model-based methods rely on function

evaluations and building a fully-linear or fully-quadratic interpolation or regression models in a

trust-region. The new point is obtained by solving the trust-region subproblem. The trust-region

size is increased, decreased or kept constant and the center is shifted as the iteration progresses.

Several algorithms based on trust-region has been developed in the literature [54]. Powell [53] de-

veloped BOBYQA based on constructing quadratic models of the objective function and utilized

two trust-reigons. Gilmore and Kelley [51] proposed IMFIL based on fully-quadratic approxima-

tion of the gradient while Wild et. al. [52] employed radial basis function to approximate the

original function. Oeuvray and Bierlaire [58] proposed BOOSTERS that used radial basis func-

tion for medical image registration problem. One of the global model-based approach is based on

developing global surrogate models. In this case, the algorithm typically performs space-filling

sampling, estimates parameters of a global surrogate model, and obtains candidate solutions via

surrogate-based optimization. Some of the commonly used surrogate models are kriging [59], ra-

dial basis function [60], quadratic response surface, and polynomial approximation [61]. Due to

the inaccuracy of the surrogate models, the results obtained from the surrogate-based optimization

may not always correspond to the actual solution. Therefore, auxiliary functions such as expected

improvement [55] are used that enable exploring the unexplored space. In some cases, the feasible

region is divided into smaller subregions with separate surrogate models capturing the local char-

acteristics of the problem [57]. Quadratic models are used in the regions that are more likely to

have global minima, while linear models are employed at other evaluated points. Lately, the idea

of hybrid approaches is also being explored. For instance, SID-PSM [62] combines pattern search

method with quadratic models to improve the search step, while using simplex gradients for the

6

poll step.

Some of the these approaches have been extended to solve constrained black-box problems by

incorporating several constraint handling strategies. One of the approaches to handle constraints is

to transform the original constrained problem into an unconstrained problem using exact penalty

method [63]. A line-search method is applied to optimize the resulting problem. However, the

penalty parameter needs to be chosen carefully such that it is smaller than a certain threshold

that is not known a priori. Liuzzi et. al. [64] defined a merit function and applied a sequential

penalty approach to handle constraints. The penalty parameter update rule was connected to the

sampling technique to ensure convergence. An alternative approach proposed to handle constraints

is by employing augmented lagrangian approach [65]. This method formulates a shifted penalty

function that includes black-box constraints in the objective function. This results in a black-

box bound constrained problem for which both model-based and direct-search approaches were

applied. Other methods have been proposed in the literature that handle constraints directly. Mesh

adaptive direct-search (MADS) is a direct-search method that treats constraints using an extreme

barrier [66] or a progressive barrier approach [67]. The extreme barrier based method rejects

all infeasible points while progressive barrier method balances the trade-offs between constraint

violation and objective function. The threshold on constraint violation is reduced iteratively such

that the iterates move towards feasible region. Filter methods have been applied along with direct-

search methods to solve constrained black-box problems [68].

COBYLA [69] is one of the first model-based approaches for solving constrained black-box

problems. In COBYLA, linear models for the objective function and constraints are developed

using interpolation points on the vertices of a simplex and the optimization is performed in a

trust-region framework. Augustin and Marzouk [70] developed NOWPAC based on a trust-region

framework. An offset function is added to the constraints to convexify the local feasible region and

facilitate the generation of feasible trial points. However, NOWPAC requires the initial point to be

feasible. Arouxét et. al. [71] applied an inexact restoration method with polynomial models and

used merit function to measure the progress of the algorithm. Audet et. al. [72] employed quadratic

7

polynomials to approximate the objective function and constraints and progressive barrier approach

is applied to handle constraints. Sampaio and Toint [73] extended the trust-funnel method [74] to

constrained black-box problems. Each iteration in trust-funnel algorithm is composed of two steps.

The first step reduces the infeasibility and the second step aims to improve the optimality. The

bound on allowed infeasibility is decreased monotonically with iterations so that infeasible points

are also acceptable at certain iterations but the final point is feasible. Radial basis functions are used

as surrogate models to approximate the objective function and constraints in CONORBIT [75].

Eason and Biegler [76, 77] proposed trust-region based filter algorithm for black box and glass-

box models and applied it to optimize a carbon capture case study. Boukouvala and Floudas [78]

proposed ARGONAUT based on constrained sampling and bound tightening techniques. Wang

and Ierapetritou [79] developed a radial basis function based methodology to approximate the

feasible region of black-box systems. Kieslich et. al. [80] used Smolyak grid to perform global

sampling and constructed polynomial models to guide search towards the optimal point.

The model-based methods do not attempt to construct accurate surrogate models through-

out the domain. However, applications such as superstructure-based process synthesis (see e.g.

[81, 82]) warrants development of globally accurate surrogate models. Cozad et. al. [83] devel-

oped ALAMO based on adaptive sampling to construct simpler model. Garud et. al. [84] proposed

LEAPS2 to enable selection of the best surrogate model using the idea of knowledge pyramid. Nu-

chitprasittichai and Cremaschi [85] developed an algorithm to select the optimal sample size to

construct artificial neural network model and optimized a process synthesis problem to validate

their methodology. Straus and Skogestad [86] used self-optimizing variables theory to efficiently

develop surrogate models of low complexity. Tran and Georgakis [87] used a net-elastic regular-

ization method to estimate the parameters of a surrogate model such that overfitting was avoided

and insignificant terms were eliminated.

Many algorithms mentioned above are currently available as software packages such as NO-

MAD [88], ORBIT [52], SNOBFIT [57], BOBYQA [53], DFO [89], NEWUOA [90], PSWARM

[91], CMA-ES [44], ASA [92], DAKOTA [93], GLOBAL [94], IMFIL [51], MCS [41], DIRDFN

8

[95], DFSA [96], and SDPEN [64]. While PSWARM, CMA-ES, ASA, DAKOTA, GLOBAL,

MCS, DIRDFN, DFSA, and SDPEN belong to the family of direct search methods, SNOBFIT,

BOBYQA, DFO, NEWUOA, and IMFIL are model-based methods. NOMAD is based on a hy-

brid approach that uses quadratic model in its search step. Rios and Sahinidis [37] have extensively

compared the performance of 27 solvers on a set of 502 unconstrained or box-constrained prob-

lems.

Two excellent books [36, 97] and several review papers (see e.g. [37, 98, 99, 100]) have been

published that summarizes the developments in the field of black-box/derivative-free optimization.

1.2 Key Research Gaps and Challenges

In a recently published paper, Iyer et. al. [1] proposed an intensified carbon capture and con-

version process to convert flue gas to syngas. The system was modeled using nonlinear algebraic

partial differential equations (NAPDE) to accurately depict the underlying physio-chemical phe-

nomenon. The aim of the process was to economically produce syngas with certain quality while

satisfying greenhouse gas emission constraints. The resulting optimization problem was a black-

box problem that involved objective function and constraints for which the closed form expressions

in terms of the decision variables were unavailable. However, their values were obtained by fix-

ing the decision variables and solving the NAPDE model. When simulations were performed at

a large number of random points, even obtaining a feasible point is challenging as illustrated in

Figure 1.2. The optimal design and operating conditions were sought that could make the process

economically viable and also satisfy the quality and regulatory constraints. Therefore, it is critical

to obtain a high quality solution. Secondly, since the model is computationally expensive, it is

desired that an optimal solution is obtained within few simulations/function evaluations. Due to

complex interactions of the decision variables, relying on heuristics may not be sufficient to study

the techno-economic feasibility of a process and systematic optimization approach is essential.

In spite of numerous theoretical and algorithmic advancements in black-box optimization, there

are several limitations of the current solvers that need to be addressed. First, in many cases when

the model is too complex, it is considered black-box. However, it is actually grey-box and extract-

9

Figure 1.2: Simulation at 10000 points of the process proposed in [1] are performed and adapted
from [1]. Each simulation is represented by a line joining different outputs and the decision vari-
ables. The red line represents when a simulation is infeasible with respect to the optimization
problem while green represents a feasible design points.

ing some information to exploit the model may allow solving a problem to guaranteed global op-

timality. Therefore, the challenge is to identify a class of grey-box problems for which an ε-global

optimal solution can be computed. Second, the optimization problems with embedded systems of

ODEs are identified as a class of grey-box problems for which the global minima can be guar-

anteed. Since the analytical form of the objective and constraints in terms of decision variables

are unknown, it is challenging to find tight underestimator. Third, the scale of the problems that

can be solved by black-box optimization solvers are relatively small. Fourth, finding global solu-

tions for a general non-convex black-box problem is challenging. When the problem is completely

black-box, direct methods such as PSWARM, MCS, CMA-ES are more successful in achieving

the global minima [37] because they explore the search space by either partitioning the space or

randomly sampling the unexplored space. However, they do not even provide theoretical guaran-

tee of convergence to a local minima. On the other hand, except SNOBFIT, model based methods

often converge to local minima owing to their inability to explore the search space. Fifth, many

10

of the current solvers for constrained black-box problems assume availability of an initial feasible

point which is unreasonable for many practical applications. It is also assumed in many cases

that all the constraints are black-box and relaxable. By doing so, many critical model insights are

neglected. It is possible in many cases that the simulation would fail if the samples do not satisfy

certain constraints. The challenge is to have a convergent method that finds optimal solution even

if an initial feasible point is not provided and handles hard constraints.

The key challenges can be summarized as follows:

• Global optimization of black-box problems with only available information on the upper

bounds of the diagonal Hessian elements.

• Efficient computation of the diagonal elements of the Hessian for global black-box optimiza-

tion.

• Projection-based approaches as potential alternatives to optimize black-box problems.

• Efficient algorithms for black-box problems that explore space efficiently to improve the

chances of finding global minima and are guaranteed to converge to atleast a local minima.

• Efficient black-box optimization in the presence of constraints and sampling methods that

ensure that the hard constraints are always satisfied and the simulations do not fail.

1.3 Research Objectives

In this Ph.D. work, novel methods to solve constrained black-box and grey-box problems are

proposed. A focus has been on global optimization, whenever possible. The proposed methods

have the been applied to solve both literature problems and practical engineering problems. The

primary objective of this work are:

1. Develop a guaranteed underestimator for the global optimization of problems of problems

where only the upper bounds on the diagonal Hessian elements are known.

2. Develop a deterministic algorithm that incorporates the underestimator and efficiently solve

the grey-box problems to ε-global optimality.

11

3. Develop a projection-based algorithm based on identifying and optimizing a univariate func-

tion for box-constrained black-box problems.

4. Develop an algorithm that have the ability to handle black-box problems with hard/unrelaxable

constraints, and

5. Provide rigorous proofs and identify conditions of convergence of the proposed algorithms

1.4 Outline of the Dissertation

This dissertation includes six chapters. Optimization of grey-box problems with bound con-

straints (GPBC) and grey-box problems with grey-box constraints (GPGC) problems are addressed

in Chapter 2 and Chapter 3, respectively. A projection based methodology for solving black-box

problems with bound constraints (BPBC) is given in Chapter 4. The algorithm given in Chapter 5 is

capable of solving BPBC, black-box problems with hybrid constraints (BPHC) and and black-box

problems with unknown constraints (BPUC).

In Chapter 2, a class of grey-box problems is defined for which the maximum of the upper

bounds of the diagonal elements of the Hessian are available. Using this information, a novel

underestimator is constructed and incorporated within a branch-and-bound framework. The pro-

posed methodology is also compared to other available solvers on several nonconvex problems and

results indicate that the proposed method is computationally advantageous.

It is inferred that optimization problems with integral terms in the objective function and con-

straints with embedded system of nonlinear ODEs are a special case of grey-box problems defined

in Chapter 2. In Chapter 3, the details of the deterministic global optimization method to compute

ε-global optimal solution of dynamic optimization problems are provided. The effectiveness of the

method is illustrated through several case studies.

In Chapter 4, bound constrained black-box problems are addressed. An algorithm based on

univariate projection is developed. The problem is completely black-box in the sense that only

simulation data are needed. The algorithm is shown to converge to the local minima of the original

black-box problem when certain assumptions are satisfied. The algorithm is thoroughly compared

12

to existing model-based approaches using an extensive set of test problems. The proposed method-

ology offers an advantage in terms of finding the global minima for more number of problems

compared to other approaches.

In Chapter 5, a trust-region based two-phase algorithm is developed for optimization of con-

strained black-box problems. This algorithm is also guaranteed to converge to the local minima

of the original problem. The two-phase methodology is compared to other solvers on a extensive

set of problems from standard test libraries. It is shown that this algorithm is computationally

advantageous to other solvers.

Finally, several conclusions and recommendations for future research are provided in Chapter

6.

13

2. GLOBAL OPTIMIZATION OF GREY-BOX PROBLEMS WITH BOUNDED HESSIAN

2.1 Introduction

A special form of the original problem in Eq. (1.1) is considered and given by:

min
x∈S

f(x) (P1)

where, x ∈ S = {xL ≤ x ≤ xU} ⊆ Rn, and f(x) : S 7→ R is a twice differentiable grey-box

function with unknown algebraic form. However, the values of f can be obtained by performing

deterministic simulation, evaluation of legacy codes, or experiments for fixed x. Furthermore, a

global upper bound of the diagonal Hessian elements of f i.e., max
i

[
∂2f
∂x2i

]U
is known.

It is assumed that computing derivatives at every point is not possible or computationally ex-

pensive but a global upper bound on the elements of the Hessian can be quickly estimated based on

physical interpretation and model analysis or even intuition. For instance, consider the following

optimization problem:

min
k1,k2

y1(tf)

s.t. ẏ1 = k1y
2
1 − k2y2, ∀t ∈ (t0, tf]

y1(t0) = y0

k1, k2 ∈ [0, 1]

(2.1)

where, the time variation of y2 could be given by computationally expensive proprietary code.

However, assume that it is known through physical insights that y2 is independent of y1 and the

decision variables - k1 and k2. In the above problem, the objective function is grey-box and com-

puting derivatives will be computationally expensive. However, it is possible to compute the upper

bound of the elements of the Hessian.

Furthermore, consider another example involving estimating kinetic parameters of the follow-

14

ing reaction:

A
k−→ B

Typically, the parameter estimation problem involves solving an optimization problem such that

the error between the experimental data and that predicted by model is minimized. Consider the

following optimization problem:

min
k

p∑
i=1

(y(ti)− yexp(ti))2

s.t. ẏ = − kαy

1 + y
, ∀t ∈ (0, 1]

y(t0) = y0

k ∈ [0, 10]

(2.2)

where, yexp denote the composition of A measures at different time instants, α is the activity coef-

ficient. Due to proprietary reasons, the catalyst manufacturer may not provide the equations gov-

erning the deactivation of catalyst but may instead provide a blackbox simulator or the equations

are given by computationally expensive set of PDEs [101] or it is determined using experiments.

However, since it is known through system knowledge that α ∈ [0, 1], it is possible to obtain the

bounds on the elements of the Hessian.

Except for the cases with known Lipschitz constants, most global methods require dense sam-

pling to guarantee the optimality for black-box problems. In this chapter, the main interest is in

optimizing a class of grey-box problems for which a valid lower bound can be generated via min-

imum information, such as a bound on the diagonal Hessian elements. This would allow to use a

branch-and-bound [102] scheme in a deterministic fashion. At each node, a general underestimator

would provide a lower bound, and a local optimizer would generate an upper bound. These lower

and upper bounds would be iteratively updated until their difference converges to an ε tolerance.

In the absence of any algebraic functional forms for the objective function, it is not possible to

either use termwise convexification [103] or construct factorable reformulations [104]. To this end,

15

a general underestimator is desired such that (i) it does not require the explicit algebraic form of the

original function, and (ii) its minima can be obtained using finite number of evaluations. Therefore,

the problem P1 can be considered with no exploitable mathematical structure. To this end, the

vertex polyhedral property of the recently proposed edge-concave underestimator (ECU) [105] of

general C2-continuous functions is exploited that provides an avenue for the global optimization of

a certain class of grey-box problems. The edge-concave underestimator has a special property that

its minima lies at one of the corner points. Construction of an ECU requires that the upper bound

of the diagonal elements of the Hessian of the original function is known. Once this information is

known, valid lower bound can be obtained by simply evaluating the underestimator at the corner

points.

In this chapter, a method for deterministic global optimization of a class of grey-box problems

ir proposed. Valid lower bounds are obtained by constructing ECU by assuming that the upper

bound on the diagonal elements of the Hessian of the original function is known. The method

is implemented in a branch-and-bound framework. The efficiency of the algorithm is illustrated

using a set of black-box problems.

The remaining of the chapter is organized as follows. In Section 2.2, the edge-concave under-

estimator based lower bounding of grey-box functions with known Hessian bounds is discussed.

In Section 2.3, a branch-and-bound algorithm towards solving these classes of grey-box problems

to ε-global optimality is presented. Computational results and conclusions are provided in Section

2.4 and 2.5, respectively.

2.2 Lower Bounding Method

Establishing valid lower bounds is central in any deterministic global optimization based on a

branch-and-bound framework. The following result enables one to provide such a lower bound on

f(x) based on finite input-output simulation or sampling of f(x). The mathematical form of the

edge-concave underestimator is given as follows:

L(x) = f(x)−
n∑
i=1

θi(x− xmi)2 (2.3)

16

where,

θi = max

{
0,∇2

iif

}
xmi =

xli + xui
2

(2.4)

The parameter θi requires upper bounds of each of the diagonal elements of the Hessian. However,

the result presented next enables computation of a valid lower bound by just knowing the maximum

of θi.

Theorem 2.1. Let f(x): Rn 7→ R be a C2-continuous function. Then LB is a lower bound of f(x),

i.e., LB ≤ f(x) over S, if

LB = min
xv∈V

[
f(xv)−Θ

n∑
i=1

(xvi − xmi)2

]
(2.5)

where,

Θ = max
i

[
max

{
0,

1

2

[
∇2
iif

]U}]
, (2.6)

where, V denotes the set of 2n vetrices in S, and [∇2
iif]U denotes the known upper bound of the

diagonal elements of the Hessian of f .

Proof. Hasan [105] showed that L(x) in Eq. (2.3) is an underestimator of f(x) over x ∈ S. By

definition, Θ = ||θ||∞ ≥ θi. Therfore, LB ≤ L(xv) for any xv ∈ V . Moreover, since ∇2
iiL ≤ 0,

L(x) is an edge-concave function. Therefore, L(x) admits a vertex polyhedral convex envelope

(Theorem 3.2, Tardella [106]). This means that the convex envelope of an edge-concave function

on a polyhedron S coincides with the convex envelope of its restrictions to the vertices of S. As a

consequence, min
xv∈V

L(xv) ≤ L(x). This leads to LB ≤ min
x∈Xv

L(x) ≤ L(x) ≤ f(x).

REMARK 1. The fact that the minimum of L(x) is located at one of the vertices xv ∈ V is very

useful in the context of black-box optimization, since a valid lower bound can be obtained in finite

number of evaluations. This suggests that edge-concave underestimators have the ability to relax

a twice differentiable nonconvex function with no special structure. Furthermore, only Θ needs to

17

be known to construct the global underestimator. As long as Θ is equal or greater than the value

obtained from Eq. (2.6), the LB value obtained by Eq. (2.5) is a valid lower bound of f(x).

Property 2.1. . The maximum separation distance between f(x) and LB is bounded and given by

dmaxsep =
Θ

4

n∑
i=1

(xui − xli)2 (2.7)

2.2.1 Illustrative Example 2.1

To illustrate ECU, lets consider the following 1-dimensional function:

f(x) = 20− 20exp(−0.02
∣∣∣ x
30

∣∣∣) + e− exp
(cos(2πx)

30

)
, x ∈ [1, 3] (2.8)

Here, the global minimum of f(x) is 1.757. The exact upper bound of the Hessian of function

listed in Eq. (2.8) is 1.36. The original function and its edge-concave underestimator (Eq. (2.3))

are shown in Figure 2.1 for different Θ values. Note that the underestimators, L(x) are obtained

with θi = Θ. Even if the actual form of f(x) is unknown as given by Eq. (2.8) but only the value

of Θ is given, then based on only two simulations of f(x) at the vertices (x = 1, and x = 3), a

valid lower bound is obtained. For instance, for Θ = 1.36, lower bound is obtained as follows:

LB = min
[
{f(1)− 1.36(1− 2)2}, {f(3)− 1.36(3− 2)2}

]
(2.9)

This results in the lower bound value to be 0.396. It is apparent from Figure 2.1 that for Θ > 1.36,

the underestimators constructed are valid but becomes loose with increasing Θ. The lower bound

obtained for Θ = 2.5, and Θ = 4 are −0.742 and −2.24, respectively.

2.3 A Branch-and-Bound Algorithm

Based on Property 2.1 (Eq. (2.7)), the maximum separation distance between the black-box

function and its edge-concave underestimator is proportional to
∑n

i=1(xui −xli)2. As the size of the

domain becomes smaller, the maximum separation distance decreases. Therefore, a method can be

18

Figure 2.1: Illustration of the function and its ECU.

deployed that refines the bounds systematically so that they collapse to ε-optimality. To this end,

a spatial branch-and-bound scheme is adopted that repeatedly partitions a rectangle into subrect-

angles. At each node, a lower bound using Eq. (2.5) is computed over the subdomain defined by

the partitioning. The global lower bound is updated by taking the minimum of these lower bounds

amongst all subrectangles. This way the algorithm generates a nondecreasing sequence of global

lower bound as the iteration proceeds. The upper bound is a nonincreasing sequence of points

generated by a local data-driven optimizer for different subrectangles. Any feasible point can also

serve as a valid upper bound. However, a good upper bound obtained initially can expedite the

convergence of the branch-and-bound algorithm. In this work, BOBYQA [53] is employed as the

local solver to compute the upper bounds.

The following steps are involved in the proposed algorithm:

Step 1. Initialize a tolerance ε on the difference between lower and upper bound, the iteration

counter i = 0, and the current region M0 ≡ [xL, xU]. Obtain lower bound LB and upper bound

UB. Let x̂0 denote the point at which UB is obtained.

19

Step 2. If UB − LB ≤ ε, or UB−LB
|LB| ≤ ε, then ε-global minima has been obtained. Report

the global solution:

f opt ← UB, xopt ← x̂i

Otherwise, go to the next step.

Step 3. Partition the current rectangle, M i into two rectangles, M i
L and M i

R by dividing M i

along the longest edge.

M i
L =



xl,i1 xu,i1

...
...

xl,ij
(xl,ij +xu,ij)

2

...
...

xl,in xu,in


, M i

R =



xl,i1 xu,i1

...
...

(xl,ij +xu,ij)

2 xu,ij
...

...

xl,in xu,in


(2.10)

where j represents the variable with the longest edge of M i.

Step 4. Use Eq. (2.5) to compute lower bounds for both M i
L and M i

R represented by LBi
L and

LBi
R, respectively. Store the solutions and mark the rectangles as “unexplored" if they are less

than the upper bound, UB. Update the overall lower bound by finding the minimum of the stored

lower bounds:

LB = min
I

[
min{LBI

L, LB
I
R}
]

where I = 0, . . . , i. Increase the iteration counter as i = i+ 1.

Step 5. Let im denote the iteration at which the minima of the lower bound amongst “unexplored"

rectangles is obtained. Update the current rectangle as follows:

If LB = LBim

L , then

20

M i = M im

L

else if LB = LBim

R

M i = M im

R

end if

The selected rectangle is removed from the “unexplored" category and the solution is deleted i.e.,

it is no longer considered when updating the lower bound, LB.

Step 6. Use the local optimizer to find the optima within M i and denote the solution by f̃ i and x̃i.

Update the upper bound as follows:

UB = min{UB, f̃ i}

If UB = f̃ i, then the best point is updated, x̂i = x̃i. Go to Step 2.

Note that in order to reduce function evaluations in Step 6, the local optimizer need not be run

at each iteration. This will not affect the ability of the algorithm to find global solution. In our

implementation, the local optimizer is applied at every iteration while allowing a maximum of 100

function evaluations.

2.3.1 Illustrative Example 2.2

The algorithm is illustrated on Problem 11a listed in Table 2.1. Although the objective function

has an explicit expression, no derivative information is used. The only information that are used are

the variable bounds and a valid upper bound on the diagonal elements of the Hessian. Although,

the tightest upper bound of Θ (Θg) is 0.1, it is further relaxed and the value of Θ used is 5.06. The

nodes at which the lower bound is evaluated are counted when determining the number of explored

nodes.

The number of nodes explored for this illustrative example to converge to ε-global minima

are 29 and the steps are illustrated in Figure 2.2. Figure 2.2 (a) illustrates the branch-and-bound

21

Figure 2.2: (a) Illustration of branch-and-bound algorithm on a 5-D black-box problem (Problem
11a in Table 2.1). (b) The progress of the algorithm with iterations.

tree explored and corresponding lower and upper bounds. Figure 2.2 (b) shows the nondecreasing

sequence of lower bound and nonincreasing sequence of upper bounds obtained with each iteration.

Note that the global minima of the problem is -93264.82. At root node, the local optimizer gives

the value of the upper bound that is far from the global minima. The lower bound is obtained by

minimizing the ECU. The initial rectangle is then divided into two subrectangles and lower bound

is calculated for both of them. Depth-first search is employed to explore the nodes. Lower bound

at node 3 is less than the lower bound at node 2. Therefore, node 3 is further explored by dividing

the rectangle into two smaller subrectangles. The upper bound corresponding to the global minima

is obtained at node 15. This enables pruning many nodes of the branch-and-bound tree, thereby

expediting the convergence of the algorithm. The branch-and-bound requires 29 nodes and 908

evaluations to converge to ε-global optimum.

2.4 Computational Studies

The branch-and-bound algorithm is implemented in MATLAB R2016a and the problems are

solved using a 64-bit Intel Xeon E5-2670 2.5 Ghz processor running Linux. The fortran subrou-

22

tines of BOBYQA is called within MATLAB to obtain upper bound. The algorithm is implemented

on a test suite of 24 problems [107, 105] to illustrate its effectiveness. The dimensions of the prob-

lems vary from 2 to 6. The details of the problem set and results are given in Table 2.1. The first

column gives the problem number, the objective function is provided in column 2, the variable

bounds and problem dimension is given in column 3 and 4 respectively. The global minima (f opt)

is provided in column 5. The parameter required to construct the edge-concave underestimator

(Θ) in Eq. (2.5) for each of the problem is given in column 6. Column 7 shows the maximum

separation distance between the black-box function and at the root node. Column 8 and 9 presents

the number of nodes explored (Nnodes) and function evaluations (N evals) needed for the algorithm

to converge. The algorithm converges when either UB − LB ≤ ε; or UB−LB
|LB| ≤ ε. The value of

the parameter ε used is 10−4.

As expected, the algorithm converges to ε-global optimum for all the problems. One of the ma-

jor factor affecting the performance is the quality of the underestimator constructed. For instance,

problem 7, 9, 13, 14, 15 are edge-concave and the underestimator is the same as that of the original

function. As a result, the global minima is obtained by exploring only few nodes and relatively

less evaluations are needed. From the results of problem 10a, 10b and 10c; it can be concluded

that with increasing dimension, the number of nodes and evaluations needed to converge increases.

Note that the parameter Θ also plays a critical role in the convergence rate of the algorithm. Specif-

ically, for problems 16 and 20, even though they are 2 and 3 dimensional problems, it requires a

lot of function evaluations and nodes to obtain the global minima. The parameter Θ affects the

tightness of the relaxation and for these two problems, the value of Θ is high leading to loose re-

laxation. Therefore, relatively more nodes and function evaluations are required to converge to the

global optima.

Another important factor that influences the required number of nodes is the maximum sep-

aration distance (dmaxsep) between the edge-concave underestimator and the original function. In

general, the number of nodes required to converge increase with increasing maximum separation

distance. For some problems with dmaxsep = 0, the global minima is obtained at the root node while

23

Ta
bl

e
2.

1:
Te

st
fu

nc
tio

ns
an

d
re

su
lts

.

#
O

bj
ec

tiv
e

fu
nc

tio
n
f

(x
)

[x
L
,x

U
]n

n
f
o
p
t

Θ
g

d
m
a
x

se
p

N
n
o
d
es

N
ev
a
ls

1
−
x

1
x

2
+
x

2
x

3
x

4
−
x

1
x

2
x

3
x

4
−
x

1
x

2
x

3
x

4
x

5
+

0.
01
x

2 1
−

0.
2x

5
−

50
x

3 2
−
x

1
x

4 3
x

4

[0
,1

]
5

-5
3.

19
0.

01
0.

01
25

9
22

9

2
10
x

2 1
−

50
x

3 2
+

x
2 1
x

1
.4

3
x

4
−

2x
1
.5

5
−

5x
1
.5

1
x

2
x

0
.9

3
x

2
.7

4
x

2
.9

5
5

+
15
x

1
x

2
x

0
.9

3
−

x
2
.1

1
x

2
.3

2
x

2
.9

3
x

4
.5

4
x

2 5

[1
,2

]
5

−
17

14
5.

96
8.

43
10

.5
3

17
32

1

3
−
x

1
x

2
+
x

2
x

3
x

4
−
x

1
x

2
x

3
x

4
−
x

1
x

2
x

3
x

4
x

5
+

0.
01
x

2
.5

1
−

0.
2x

0
.5

5
−

50
x

3 2
−
x

1
x

4
.4

3
x

4

[1
,2

]
5

-5
28

.6
7

0.
02

7
0.

03
3

1
56

4
−
x

1
x

2
+
x

2
x

3
x

4
−
x

1
x

2
x

3
x

4
−
x

1
x

2
x

3
x

4
x

5
+

10
x

2
.5

1
−

50
x

3 2
−
x

1
x

4
.4

3
x

4

[0
,5

]
5

-3
90

85
.5

8
41

.9
5

1.
31

E
+3

45
85

0

5
x

2
.5

2
−

5x
3 2

+
5x

1
x

2
−

10
x

2
x

3
x

4
+

2x
1
x

2
x

3
x

4
−

x
1
x

2
x

3
x

4
x

5

[0
,1

]
5

-1
4

0.
05

86
0.

07
3

71
89

0

6
−

10
x

1
x

2
+

10
x

1
x

3
−

10
x

1
x

4
+

10
x

1
x

5
−

10
x

2
x

3
+

10
x

2
x

4
−

10
x

2
x

5
+

10
x

3
x

4
−

10
x

3
x

5
+

10
x

4
x

5
−

10
x

1
x

2
x

3
+

10
x

1
x

2
x

4
−

10
x

1
x

2
x

5
+

10
x

2
x

3
x

4
−

10
x

2
x

3
x

5
+

10
x

3
x

4
x

5
−

10
x

1
x

2
x

3
x

4
+

10
x

1
x

2
x

3
x

5
−

10
x

1
x

2
x

4
x

5
+

10
x

2
x

3
x

4
x

5
−

10
x

1
x

2
x

3
x

4
x

5
+

0.
01
x

2 1
+

0.
01
x

2 2
+

0.
01
x

2 3
+

0.
01
x

2 4
+

0.
01
x

2 5

[1
,5

]
5

-3
12

48
.7

5
0.

01
0.

2
1

69

7
−
x

1
x

2
+
x

2
x

3
x

4
−
x

1
x

2
x

3
x

4
+
x

1
x

2
x

3
x

4
x

5
[0

,1
]

5
-1

0
0

5
13

2
8

2x
1
x

2
+

2x
1
x

3
+

2x
2
x

3
−

0.
2x

1
x

2
x

3
+

0.
01
x

2 1
+

0.
01
x

2 2
+

0.
01
x

2 3

[-
10

,1
0]

3
-3

97
0.

01
3

43
24

3

9
−
x

1
x

2
+
x

2
x

3
x

4
[0

,1
]

4
-1

0
0

5
85

10
a
−

1 2

∑ n i=
1
(x

4 i
−

16
x

2 i
+

5x
i)

[-
5,

2]
3

-3
00

8
29

4
85

15
4

10
b

4
-4

00
8

39
2

16
9

38
8

10
c

5
-5

00
8

49
0

57
9

91
7

11
x

2
.5

2
−

5x
3 2

+
5x

1
x

2
−

10
x

2
x

3
x

4
+

2x
1
x

2
x

3
x

4
−

x
1
x

2
x

3
x

4
x

5
x

6

[0
,1

]
6

-1
4

0.
05

9
0.

09
2

29
5

30
10

12
x

1
x

2
+
x

1
x

2
x

3
[-

1,
1]

3
-2

0
0

9
72

13
x

1
x

2
−
x

2
x

3
−
x

3
x

4
+
x

1
x

2
x

3
−
x

1
+
x

4
[0

,1
]

4
-1

0
0

1
55

24

Ta
bl

e
2.

1
co

nt
in

ue
d.

#
O

bj
ec

tiv
e

fu
nc

tio
n
f

(x
)

[x
L
,x

U
]n

n
f
o
p
t

Θ
g

d
m
a
x

se
p

N
n
o
d
es

N
ev
a
ls

14
a
x

1
x

2
+
x

1
x

3
+
x

1
x

4
+
x

1
x

5
+
x

1
x

6
+
x

2
x

3
+

x
2
x

4
+
x

2
x

5
+
x

2
x

6
+
x

3
x

4
+
x

3
x

5
+
x

3
x

6
+

x
4
x

5
+
x

4
x

6
+
x

5
x

6
+
x

1
x

2
x

3
−
x

1
x

2
x

4
+
x

1
x

2
x

5
+

x
1
x

2
x

6
+
x

2
x

3
x

4
+
x

2
x

3
x

5
+
x

2
x

3
x

6
+
x

3
x

4
x

5
+

x
3
x

4
x

6
+
x

4
x

5
x

6
+
x

1
x

2
x

3
x

4
+
x

1
x

2
x

3
x

5
+

x
1
x

2
x

3
x

6
+
x

1
x

2
x

4
x

5
+
x

1
x

2
x

4
x

6
+
x

1
x

2
x

5
x

6
+

x
1
x

2
x

3
x

4
x

6
+
x

1
x

2
x

3
x

5
x

6
+
x

1
x

2
x

3
x

4
x

5
x

6
−

(x
1

+
1)

0
.2
−
x

2 2
−
x

2 3
−
x

2 4
−
x

2
.1

5
+

0.
1x

2 6
−

0.
1(
x

1
+

1)
1
.3
−

0.
1x

3 2
−

0.
1x

3 3
−

0.
1(
x

4
+

10
)0
.3
−

0.
1x

3 5
−

0.
1x

2
.1

6
−

0.
01
x

4
.1

1
−

0.
01
x

4 2
−

0.
01
x

4 3
−

0.
01
x

4 4
−

0.
01
x

4 5
−

0.
01
x

4 6
−
x

5 1
−
x

5 2
−
x

5 3
−
x

5 4
−

x
5 5
−
x

5 6
−
x

6 1
−
x

6 2
−
x

6 3
−
x

6 4
−
x

6 5
−
x

6 6

[0
,5

]
6

-9
32

64
.8

3
0.

1
3.

75
15

48
4

14
b

[0
,1

]
6

-7
.7

3
0.

1
0.

15
49

10
05

14
x

1
x

2
−
x

2
x

3
−
x

3
x

4
+
x

1
x

2
x

3
−
x

1
+
x

4
[0

,1
]

4
-1

0
0

1
55

15
a
x

1
x

2
+
x

2
x

3
x

4
+
x

2
x

4
−
x

1
x

3
x

4
x

5
+
x

2
x

3
x

5
−

x
1
x

5

[-
1,

1]
5

-4
0

0
1

66

15
b

[1
,3

]
5

-1
80

0
0

1
72

16
∑ n−

1
i=

1
(4
x

2 i
−

2.
1x

4 i
+

x
6 i 3

+
x
ix
i+

1
−

4x
2 1
+

4x
4 i+

1
)

[-
2,

2]
3

-1
3.

37
12

5.
6

15
07

.2
15

14
5

11
86

5
17

∑ n i=
1
(−

0.
1c
os

(5
π
x
i)

+
x

2 i
)

[-
1,

1]
3

-0
.3

13
.3

4
40

.0
2

19
13

30
02

18
10

0(
x

2
−
x

2 1
)2

+
(1
−
x

1
)2

+
90

(x
4
−
x

2 3
)2

+
(1
−

x
3
)2

+
10
.1

((
1
−
x

2
)2

+
(1
−
x

4
)2

)
+

19
.8

(2
−

x
2
−
x

4
)

[0
,1

]
4

0
60

1
60

1
15

71
66

16

19
10
∏ n i=

1
(x

i
+

1)
+

0.
01
∑ n i=

1
x

2 i
[1

,5
]

5
32

0.
05

0.
01

0.
2

17
17

3
20

(1
+

(x
1

+
x

2
+

1)
2
(1

9
−

14
x

1
+

3x
2 1
−

14
x

2
+

6x
1
x

2
+

3x
2 2
))

(3
0

+
(2
x

1
−

3x
2
)2

(1
8
−

32
x

1
+

12
x

2 1
+

48
x

2
−

36
x

1
x

2
+

27
x

2 2
))

[-
2,

2]
2

3
8.

86
E

+5
7.

02
E

+6
1.

76
E

+5
37

81
5

25

for other problems, the branch-and-bound tree needs to be further explored. This occurs because

the local optimizer is able to find an upper bound that is equal to global minima at the root node.

Therefore, finding a good upper bound quickly is also critical to the convergence rate of the algo-

rithm.

The performance of the proposed approach is compared with PSWARM (Particle Swarm op-

timizer) [48] and CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [44]. Unlike the

proposed deterministic algorithm, both PSWARM and CMA-ES are stochastic global methods.

PSWARM performs global search step based on the particle swarm algorithm and local poll step

based on coordinate search. CMA-ES is an evolutionary algorithm based on sampling from a

normal distribution and updating the mean and covariance matrix such that the new samples are

performed in the areas likely to have lower objective function value. In Table 2.1, the value of

the parameter Θ is obtained by globally optimization of the diagonal elements of the Hessian ma-

trix. Although this approach results in tight Θ value, it is computationally expensive and difficult

to apply to the type of problems in (2.1) and (2.2). A practical approach for these problems and

relatively computationally inexpensive alternative is using interval based methods. Therefore, the

performance of the two methods to estimate Θ, i.e., global optimization and interval method is also

compared. The interval calculations are performed using C-XSC [108].

The comparison of the aforementioned approaches is provided as data profile and shown in

Figure 2.3. The performance metric used is the number of function evaluations since it is assumed

that the simulations are computationally expensive. CMA-ES and PSWARM require an initial

guess and for all the problems, both of them are provided the middle point as the initial guess. A

time limit of 24 hours is provided for each of the solvers and default parameters are used for both

the solvers. The two variants of the proposed approach (represented as EC-Θg and EC-Θint) are

successful in solving more number of problems to global optimality using less function evaluations

compared to other approaches. As expected, using global optimization to estimate Θ leads to a

tighter relaxation compared to that obtained by interval method. Therefore, EC-Θg performs better

than EC-Θint.

26

Figure 2.3: Data profile comparing the ability of different methods to solve a problem to global
optimality. EC-Θg and EC-Θint represents the proposed method with Θ calculated by globally
optimizing the diagonal elements of the Hessian matrix and interval method, respectively.

2.5 Conclusions

A class of grey-box problems is identified for which a valid underestimator can be constructed

using maximum of the upper bounds of the diagonal elements of the Hessian of the original grey-

box function. A strategy is proposed that enables finding valid lower bound for the grey-box

problem. Since the algebraic form of the objective function is unknown, a general underestimator

that does not depend on the mathematical structure is suitable. The methodology depends on the

assumption that the upper bound on the diagonal elements of the Hessian of the original function

(Θ) is known. This enables construction of a valid edge-concave underestimator of the grey-box

problem. The lower bound is thereby obtained by enumerating the vertices of the polyhedral space

and choosing the minimum. A local solver BOBYQA is applied to obtain valid upper bounds.

To converge to ε-global minima, a branch-and-bound framework is utilized. The effectiveness of

the method is shown on a set of 24 numerical problems from literature. The global minima is

obtained in finite number of evaluations without performing dense sampling. The influence of the

factors such as the tightness of the underestimator, problem dimension on the convergence rate of

the algorithm has also been discussed.

27

3. GLOBAL OPTIMIZATION OF GREY-BOX PROBLEMS WITH EMBEDDED ODES

3.1 Introduction

In Chapter 2, a broad class of grey-box problems are defined for which global optimization

is possible if the maximum of an upper bound on the diagonal elements of the Hessian is either

available or it can be estimated. In this chapter, the focus is on identifying the problems that belong

to this class of grey-box problem. It is recognized that for optimization problems with embedded

system of ordinary differential equations, it is possible to estimate bounds of the Hessian elements

using the model insights. Specifically, in this chapter, the following grey-box optimization problem

is addressed:

min
x

fa(x) + fd(y(x, tf)) +

∫ tf

t0

ψ(t, y(x, t))dt

s.t. gaj(x) + gdj(y(x, tf)) +

∫ tf

t0

ξj(t, y(x, t))dt ≤ 0, j ∈ J

ẏk = φk(t, y, x), ∀t ∈ (t0, tf], k ∈ K

yk(x, t0) = y0k(x), k ∈ K

x ∈ [xL, xU]

(P2)

where t ∈ (t0, tf] ⊆ R is time, x ∈ [xL, xU] ⊆ Rn are optimization variables, y ∈ Rp are

state variables, and ẏ ∈ Rp denote derivatives of the state variables with respect to time. J

and K are set of inequalities and state variables, respectively. Let m = |J | and p = |K|. The

functions fa(x) and gaj are twice continuously differentiable with respect to x ∈ [xL, xU] such that

fa : Rn 7→ R and gaj : Rn 7→ R, j ∈ J . Similarly, the functions fd(y(x, tf)) and gdj(y(x, tf))

are twice continuously differentiable functions with respect to y for all x ∈ [xL, xU] at t = tf

such that fd : Rp 7→ R and gdj : Rp 7→ R, j ∈ J . The functions ψ(t, y(x, t)), ξj(t, y(x, t)) and

φk(t, y, x) are Lebsegue integrable, twice continuously differentiable function with respect to y

and x ∈ [xL, xU] at all t ∈ [t0, tf] such that ψ : (t0, tf]× Rp 7→ R, ξj : (t0, tf]× Rp 7→ R, j ∈ J ,

28

and φk : (t0, tf]×Rp ×Rn 7→ R, k ∈ K. Finally, y0k is twice continuously differentiable function

with respect to x such that y0k : Rn 7→ R, k ∈ K.

P2 is considered grey-box because the objective function and constraints can not be expressed

analytically in terms of decision variables but besides simulation data, other information (e.g.

derivative) can be extracted based on model analysis. Solving P2 is of primary importance in

many engineering areas. One application involves estimating kinetic parameters using time series

data. In this case, a cost function measuring the discrepancy of the model with respect to the

available experimental data is minimized while subjected to the dynamics of the system [109, 110,

111, 112, 113]. Another class of problems in this domain seeks time varying optimal control inputs

that optimize certain performance metric under transient conditions [114, 115, 116, 117, 118, 15].

It has been recognized that even simple instances of P2 are often nonconvex and exhibit multiple

local solutions [119].

The primary motivation in this chapter is to provide a deterministic global optimization method

for P2. To this end, branch-and-bound is a deterministic method that guarantees convergence to

ε-global optima as long as valid relaxations are generated [102]. While convex envelopes provide

tightest lower bounds, they are available for only a handful of functions and it is often difficult

to derive convex envelopes of dynamic systems with nonconvexity. Therefore, underestimators

that have the ability to relax general nonconvex terms are more promising alternatives. The global

optimization algorithm for solving P2, presented in this chapter, belongs to this category of deter-

ministic and sequential approach based on a spatial branch-and-bound (B&B) framework.

One of the earliest deterministic algorithms for global optimization of problems with embedded

ODEs was proposed by Esposito and Floudas [120, 121]. αBB [122] underestimator was generated

to find a valid lower bound. It is constructed by adding a quadratic term to a general nonconvex

function such that the convexity of the quadratic term overpowers the nonconvexity of the original

function. A key challenge is estimating α parameters for the quadratic term that ensures convexity

of the underestimator. To estimate the α parameters, Esposito and Floudas relied on sampling

methods. Since the method relies on sampling, at times, it may lead to generation of invalid

29

underestimator. Papamichail and Adjiman [123, 124] overcame this drawback by defining second

order sensitivity equations and using differential inequalities to obtain bounds on the Hessian of

the state variables. Chachuat and Latifi [125] used adjoint method instead of sensitivity equations

for higher dimensional problems to obtain second order derivatives of the objective function.

Singer and Barton [126, 127, 128] developed a global optimization method by utilizing Mc-

Cormick relaxations and illustrated its effectiveness on several case studies. Their method avoided

calculating bounds on second-order sensitivities and required bounds on state variables only. Ef-

forts have been made [129, 130, 131, 132, 133, 134, 135, 136, 137] to obtain tighter state bounds

of nonlinear ODEs and further improve the performance of McCormick relaxation-based global

optimization. Furthermore, Lin and Stadtherr [138, 139] estimated state bounds by utilizing a

combination of interval analysis and Taylor models, and incorporated domain reduction technique.

The method was also extended to handle problems with inequality path constraints [140].

The tightness of the underestimator is critical to the rate of convergence of B&B algorithm.

Depending on the domain of the problem under consideration, one underestimator may be tighter

than the other, as illustrated by Papamichail and Adjiman [123]. Therefore, there is a need to

further explore other relaxation schemes. Recently, edge-concave underestimator [105] has been

proposed as an alternative method to relax a general twice continuously differentiable function.

Numerical examples suggest that edge-concave underestimator (ECU) can perform better than

αBB in many instances. In this chapter, a method is proposed for global optimization of P2 that

uses ECU to find valid lower bounds of P2. The details of constructing the underestimator will be

discussed in the subsequent sections. The performance of the algorithm will be demonstrated by

solving several benchmark problems. A hybrid approach is also discussed that combines different

underestimators to further improve the performance of the global optimization algorithm.

The rest of the chapter is organized as follows. In Section 3.2, the details of constructing

edge-concave underestimator for different terms and finding lower bound are provided. Section

3.3 gives an overview of the spatial branch and bound algorithm. Implementation details and the

case studies are discussed in Section 3.4. Finally, concluding remarks are given in Section 3.5.

30

3.2 Constructing a Valid Relaxation

Computing lower bounds through relaxation of the original problem is key to convergence of a

sBB algorithm. The mathematical form of ECU is given by Eq. (2.3). Some theoretical results are

also presented that allows formulating a valid relaxation of P2 using edge-concave underestimator.

3.2.1 Properties of Edge-concave Underestimator

The following properties make an ECU attractive for global optimization applications.

Property 3.1. [141] An edge-concave function defined on a polytope B = {x ∈ Rn : xL ≤ x ≤

xU} attains its minima at a vertex x = xv.

Property 3.2. Let L1(x), L2(x), . . ., LS(x) be edge-concave functions such that Ls : Rn 7→

R, ∀s = 1, . . . , S, then the function LT defined as:

LT (x) =
S∑
s=1

Ls(x) (3.1)

is also edge-concave.

Proof. Considering the diagonal elements of the Hessian of Eq. (3.1),

∂2LT
∂x2

i

=
S∑
s=1

∂2Ls
∂x2

i

, ∀i = 1, . . . , n

By hypothesis, since each of Ls, ∀s = 1, . . . , S are edge-concave, the following holds by defini-

tion of an edge-concave function,

∂2Ls
∂x2

i

≤ 0, ∀i = 1, . . . , n; ∀ s = 1, . . . , S

This leads to ∂2LT
∂x2i
≤ 0, ∀i = 1, . . . , n, which implies that LT is edge-concave.

Property 3.3. A function defined by the sum of edge-concave functions (LT (x) =
∑S

s=1 Ls(x)) on

a polytope B = {x ∈ Rn : xL ≤ x ≤ xU} attains its minima at a vertex x = xv.

31

Proof. Proof follows trivially based on Property 3.1 and 3.2.

Although ECU given in Eq. (2.3) can be directly used to relax a nonconvex problem, the result-

ing relaxed problem may be nonconvex and difficult to solve. To avoid this issue, it is advantageous

to consider the form of ECU that results in formulation of a simpler and preferably a linear relaxed

problem. Property 3.4 allows generation of tight linear relaxation of P2 by constructing linear

facets of the convex envelope of the nonlinear ECU.

Property 3.4. [141] An edge-concave function L(x) has a vertex polyhedral convex envelope on

a polytope B = {x ∈ Rn : xL ≤ x ≤ xU}. The linear facets of the convex envelope of L(x) on B

at a point x is given as follows [142]:

CE(L,B)
∣∣
x

= min
λv

2n∑
v=1

λvL(xv)

s.t.
2n∑
v=1

λvx
v = x

2n∑
v=1

λv = 1

λv ≥ 0, ∀v ∈ 1, . . . , 2n

(3.2)

where xv denotes a vertex of the polytope B.

3.2.2 Edge-concave Relaxation of P2

P2 is composed of two types of terms, namely algebraic and dynamic terms. The algebraic

terms are dependent on only optimization variables, while the dynamic terms are composed of the

state variables. The algebraic nonconvex terms (fa(x), gaj(x)) are relaxed by constructing ECUs

for all. The ECU for fa(x) is as follows:

Lfa(x) = fa(x)−
n∑
i=1

θfai (xi − xMi)2 (3.3)

32

where,

θfai = max

{
0,

1

2

[
∂2fa
∂x2

i

]U}
(3.4)

Similarly, ECU for gaj is given by:

Lgaj(x) = gaj(x)−
n∑
i=1

θ
gaj
i (xi − xMi)2 (3.5)

where,

θ
gaj
i = max

{
0,

1

2

[
∂2gaj
∂x2

i

]U}
(3.6)

ECU for fd(y(x, tf)) is defined as:

Lfd(x) = fd(y(x, tf))−
n∑
i=1

θfdi (xi − xMi)2 (3.7)

where,

θfdi = max

{
0,

1

2

[
∂2fd
∂y2

(
∂y

∂xi

)2∣∣∣
t=tf

+
∂fd
∂y

∂2y

∂x2
i

∣∣∣
t=tf

]U}
(3.8)

Analogously, ECU for gdj(y(x, tf)) is as follows:

Lgdj(x) = gdj(y(x, tf))−
n∑
i=1

θ
gdj
i (xi − xMi)2 (3.9)

where,

θ
gdj
i = max

{
0,

1

2

[
∂2gdj
∂y2

(
∂y

∂xi

)2∣∣∣
t=tf

+
∂gdj
∂y

∂y2

∂x2
i

∣∣∣
t=tf

]U}
(3.10)

Finally, the edge-concave relaxation for the integral term is needed. The results are described

that will allow the construction of the edge-concave relaxation of the integral by generating edge-

concave relaxation of the integrand. Next, the integral monotonicity of the Lebesgue integrable

function is stated.

Lemma 3.1. [143] Let t ∈ (t0, tf], x ∈ Rn and ζ1(t, x), ζ2(t, x) are Lebesgue integrable function

33

such that ζ1, ζ2 : (t0, tf]× Rn 7→ R. If the following condition holds:

ζ1(t, x) ≤ ζ2(t, x), ∀ t ∈ (t0, tf], x ∈ Rn

then their corresponding integrals defined as Z1(x) =
∫ tf
t0
ζ1(t, x)dt, Z2(x) =

∫ tf
t0
ζ2(t, x)dt are

related as follows,

Z1(x) ≤ Z2(x), ∀x ∈ Rn

To generate an edge-concave relaxation of the integral that is valid in the decision variable

space, it is sufficient to construct edge-concave relaxation of the integrand in decision variable

space Rn for each fixed time t ∈ (t0, tf]. This is formalized through Theorem 3.1.

Theorem 3.1. Let t ∈ (t0, tf], x ∈ Rn and ζ(t, x) be a Lebesgue integrable function such that

ζ : (t0, tf] × Rn 7→ R. If ζ(t, x) is edge-concave on decision variable space and for each fixed

t ∈ (t0, tf], then

Z(x) =

∫ tf

t0

ζ(t, x)dt (3.11)

is edge-concave on Rn.

Proof. Differentiating Eq. (3.11) twice with respect to the decision variable xi,

∂2Z

∂x2
i

=
∂2

∂x2
i

∫ tf

t0

ζ(t, x)dt, ∀i = 1, . . . , n (3.12)

Using Leibniz’s integral rule [144],

∂2Z

∂x2
i

=

∫ tf

t0

∂2ζ(t, x)

∂x2
i

dt, ∀i = 1, . . . , n

Since ζ(t, x) is edge-concave on Rn for each t ∈ (t0, tf], the following should hold by definition

of edge-concave function,

∂2ζ(t, x)

∂x2
i

≤ 0, ∀ t ∈ (t0, tf], x ∈ Rn, i = 1, . . . , n (3.13)

34

Using Eq. (3.13) and Lemma 3.1 in Eq. (3.12) completes the proof.

The edge-concave underestimator for the integral term, Ψ(x) =
∫ tf
t0
ψ(t, y(x, t))dt is explicitly

written as follows:

LΨ(x) =

∫ tf

t0

[
ψ(t, y(x, t))−

n∑
i=1

θψi (xi − xMi)2

]
dt (3.14)

where,

θψi = max

{
0,

1

2

[
∂2ψ

∂y2

(
∂y

∂xi

)2

+
∂ψ

∂y

∂2y

∂x2
i

]U}
(3.15)

Correspondingly, ECU for the integral term Ξj(x) =
∫ tf
t0
ξj(t, y(x, t))dt is defined as:

LΞj(x) =

∫ tf

t0

[
ξj(t, y(x, t))−

n∑
i=1

θ
ξj
i (xi − xMi)2

]
dt (3.16)

where,

θ
ξj
i = max

{
0,

1

2

[
∂2ξj
∂y2

(
∂y

∂xi

)2

+
∂ξj
∂y

∂2y

∂x2
i

]U}
(3.17)

Constructing valid edge-concave underestimators rely on reliably estimating the parameters

defined in Eq. (3.4), (3.6), (3.8), (3.10), (3.15), and (3.17). Next, the methods to estimate these

parameters are discussed.

3.2.3 Estimating θfai and θgaji

By construction, ECUs Lfa and Lgaj for the algebraic terms fa(x) and gaj(x) ensure that

Lfa(x) ≤ fa(x), and Lgaj(x) ≤ gaj(x), ∀x ∈ [xL, xU]

Here, the details of the construction of ECU for the term fa(x) are only discussed. The ECU

for gaj,∀j ∈ J is constructed following similar arguments. Unlike αBB underestimator, ECU

requires only diagonal elements of the Hessian of the function for which the underestimator is

being constructed. In particular, the upper bound of the diagonal elements of the Hessian are

needed. The maximum separation distance [105] between fa(x) and Lfa(x) considered in x ∈

35

[xL, xU] is equal to 1
4

∑n
i=1 θ

fa
i (xUi −xLi)2. Therefore, smaller values of the parameters θfai and θgaji

results in tighter underestimator.

In certain cases, all the diagonal elements of a nonconvex function may be convex. In such

cases, each of the elements can be locally optimized. However, for an arbitrary function, finding

the smallest possible θfai parameters require solving n nonconvex problems. Alternatively, interval

methods [145] allows to compute lower and upper bound of a function given the range of variables.

The bounds provided by interval methods may be loose, but they are obtained in computationally

inexpensive manner.

3.2.3.1 Illustrative Example 3.1

Consider the following polynomial in two variables:

fa(x) = x5
1 − x1x

2
2, ∀x1, x2 ∈ [0, 1]

The Hessian of the above function is

Hfa =

20x3
1 −2x2

−2x2 −2x1


The corresponding interval matrix is

[Hfa] =

 [0, 20] [−2, 0]

[−2, 0] [−2, 0]


Finally, the parameters θfa1 = 10 and θfa2 = 0. Since the diagonal elements of the Hessian are

monotonic, the bounds given by the interval method are globally optimal. The corresponding

expression for the ECU is given as follows:

Lfa(x) = x5
1 − x1x

2
2 − 10

(
x1 −

1

2

)2

36

3.2.4 Estimating θfdi and θgdji

Computing θfdi and θ
gdj
i are more challenging than computing θfai and θgai . The difficulty

arises because the Hessian is implicitly dependent on the decision variables and requires evalu-

ating bounds on second-order derivatives of state variables with respect to the decision variables.

Lets consider the original set of ODEs (for brevity, the index k is excluded):

ẏ = φ(t, y, x)

y(x, t0) = y0(x)

(3.18)

A set of first-order sensitivity equations are obtained by differentiation Eq. (3.18):

∂ẏ(x, t)

∂xi
=
∂φ

∂y

∂y

∂xi
+
∂φ

∂xi
∂y(x, t0)

∂xi
=
∂y0

∂xi

(3.19)

The above set of ODEs are differentiated again w.r.t. x to obtain second-order sensitivity equations:

∂2ẏ(x, t)

∂x2
i

=
∂2φ

∂y2

[
∂y

∂xi

]2

+
∂φ

∂y

∂2y

∂x2
i

+
∂2φ

∂x2
i

∂2y(x, t0)

∂x2
i

=
∂2y0

∂x2
i

(3.20)

A key issue that needs to be addressed in order to solve sensitivity equations is the continuity

and differentiability of y(x, t). The solution of ODE system, y(x, t), is in fact twice continuously

differentiable with respect to the decision variables x, based on the assumptions on φ and the

following results.

Assume that the function φ and its partial derivative with respect to y (∂φ
∂y

) is continuous over

domain Π defined by the space of variables t, x, and y.

Theorem 3.2. [146] If (t0, x0 and y0) is a point in Π, positive real numbers β1 and β2 exists such

that for

|x− x0| < β1

37

the solution of Eq. (3.18) defined as

y = χ(x, t)

that satisfies the initial condition χ(x, t0) = y0 is defined on the interval |t − t0| < β2 and is a

continuous function of the variables t and x.

Theorem 3.3. [146] Let ∂φ
∂x

exist and be continuous in Π. If (t0, x0, p0) is a point in Π, then there

exists positive real numbers β′1 and β′2 such that for

|x− x0| < β′1 and |t− t0| < β′2

the solution of Eq. (3.18), χ(x, t) that satisfies the initial condition χ(x, t0) = y0, has continuous

partial derivative with respect to x i.e., ∂χ(t,x)
∂x

is continuous.

Corollary 3.1. [146] Let all the partial derivatives of φ with respect to the variables x and y exist

up to the k-th order inclusive and are continuous, then the solution of Eq. (3.18), χ(x, t) also

have partial derivatives with respect to the parameters x up to the k-th order inclusive that are

continuous.

From Eq. (3.7), it is apparent that the bounds on the state variables and their first-order and

second-order derivatives with respect to decision variables are needed. The B&B algorithm con-

sidered here is in x space and, therefore, the bounds on x are refined automatically. However, since

y is not an optimization variable, the bounds of y need to be derived separately. It is theoretically

possible to ensure convergence to ε global optimality even if θfdi computed at the root node is used

in the subsequent nodes. This is due to the fact that as ||xu − xl|| → 0, by construction of the

underestimator, Lfd → fd. However, the convergence of the algorithm may be slow.

The solution of the set of ODEs given in Eqs. (3.18) - (3.20) are dependent on the realization

of a particular value of the decision variables. Essentially, the right hand side of the ODE is a set

of twice continuously differentiable functions. Therefore, the lower and upper bounds on the state

variables (y ∈ [yl, yu]) depends on the bounds of the decision variables (x ∈ [xl, xu]). Next, the

38

results based on differential inequalities [147] are presented that provides a practical approach to

compute bounds on the state variables that are valid for each t ∈ [t0, tf]. The bounds on first-order

and second-order derivatives of the state variables can be computed following same reasoning.

The bounds on the state variables for system of ODE given in Eq. (3.18) are now derived. Let

y(t, x) denote its solution for each t ∈ [t0, tf], x ∈ B = [xl, xu] ⊆ Rn. The lower and upper

bounds on the state variables for each t ∈ [t0, tf] are denoted as yl(t) and yu(t), respectively, such

that yl(t), yu(t) ∈ Y (t).

Theorem 3.4. [123] Let φ be continuous such that it satisfies a uniqueness condition on (t0, tf]×

Rp ×B. If,

ẏlk = ωlk(t, y
l, yu, xl, xu) ≤ inf

z∈Y (t),x∈B,
zk=ylk(t)

φk(t, z, x), ∀k ∈ K

ẏuk = ωuk (t, yl, yu, xl, xu) ≥ sup
z∈Y (t),x∈B,
zk=yuk (t)

φk(t, z, x), ∀k ∈ K

and,

ylk(t0) = ωlk(t0, xl, xu) ≤ inf
x∈B

yk0(x), ∀k ∈ K

yuk (t0) = ωuk (t0, xl, xu) ≥ sup
x∈B

yk0(x), ∀k ∈ K

where z ∈ [yl(t), yu(t)], then the following holds true:

ylk(t) ≤ y(t, x) ≤ yuk (t), ∀t ∈ [t0, tf], x ∈ B, k ∈ K

Theorem 3.4 provides a practical way to compute state bounds for each t ∈ [t0, tf]. It requires

deriving lower and upper bounds of the right side of Eq. (3.18) that are valid for both x and y.

Interval method is a realistic approach that can compute these bounds in an inexpensive manner. In

the differential equation corresponding to the lower bound of k-th state variable, the corresponding

state variable is fixed to the lower bound. However, interval arithmetic is applied for all other state

variables. Same strategy is employed for computing upper bound of the k-th state variable.

It is worth mentioning that there are alternative approaches [130, 131, 129, 132, 134, 135] to

39

interval method that may yield tighter bounds. However, interval method is used for deriving state

bounds.

3.2.4.1 Illustrative Example 3.2

Consider the following function:

fd = −y(1, x)2

with the governing ODE given by:

ẏ = −y + x3, ∀t ∈ (0, 1]

y(0, x) = 1

(3.21)

where, x ∈ [−1, 1]. Differentiating fd twice w.r.t x yields the following expression of θfd:

θfd = max

{
0,

1

2

[
− 2

(
∂y(1, x)

∂x

)2

− 2y(1, x)
∂2y(1, x)

∂x2

]U}

Further simplifying the above expression yields:

θfd = max

{
0,−inf

(
∂y(1, x)

∂x

)2

− inf
(
y(1, x)

∂2y(1, x)

∂x2

)}

Let y1 = ∂y
∂x

, ẏ1 = ∂
∂t

(
∂y
∂x

)
, y2 = ∂y1

∂x
and ẏ2 = ∂

∂t

(
∂y1
∂x

)
. These are used to define the first and

second-order sensitivity equations as follows:

ẏ1 = −y1 + 3x2, ∀t ∈ (0, 1]

ẏ2 = −y2 + 6x, ∀t ∈ (0, 1]

y1(0, x) = 0

y2(0, x) = 0

(3.22)

40

Based on Theorem 3.4, the following set of ODE is solved to compute bounds on the state variables

of ODE system given by Eq. (3.22):

ẏl = −yl − 1, ∀t ∈ (0, 1]

ẏl1 = −yl1, ∀t ∈ (0, 1]

ẏl2 = −yl2 − 6, ∀t ∈ (0, 1]

ẏu = −yu + 1, ∀t ∈ (0, 1]

ẏu1 = −yu1 + 3, ∀t ∈ (0, 1]

ẏu2 = −yu2 + 6, ∀t ∈ (0, 1]

yl(0) = 1, yl1(0) = 0, yl2(0) = 0, yu(0) = 1, yu1 (0) = 0, yu2 (0) = 0

(3.23)

Finally, θfd is given by

θfd = max

{
0,−yc1(1)−min[yl(1)yl2(1), yl(1)yu2 (1), yu(1)yl2(1), yu(1)yu2 (1)]

}
, (3.24)

where,

yc1(1) =


0 if yl1(1) ≤ 0 and yu1 (1) ≥ 0

min{(yl1(1))2, (yu1 (1))2} otherwise

The bounds on the state variable (y), its first-order derivative (y1) and second-order derivative (y2)

at t = 1 are obtained by solving the system of ODEs in Eq. (3.23). Once the desired bounds are

computed, Eq. (3.24) yields θfd = 3.79.

3.2.5 Estimating θψi and θξji

Computing θψi and θξji enables construction of ECUs for the integral terms
∫ tf
t0
ψ(t, y(x, t))dt

and
∫ tf
t0
ξ(t, y(x, t))dt, respectively. To keep the discussion simple, the focus here is on computing

θψi and same arguments are applicable to computing θξji . From the definition of θψi in Eq. (3.15),

the bounds on the state variables and their first-and second-order derivatives are needed for each

t ∈ [t0, tf]. Theorem 3.4 is employed to compute the bounds. Note that Theorem 3.4 is also used

41

to determine θfdi , as discussed previously. However, a key difference is that in determining θfdi ,

only the value of the bounds at t = tf is of interest, whereas θψi depends on the bounds for each

t ∈ [t0, tf].

3.2.5.1 Illustrative Example 3.3

Consider the following function:

ψ(t, y(x, t)) = −y2

The system of ODEs considered is the same as that given in Eq. (3.21). The parameter θψ,

corresponding to the edge-concave underestimator LΨ(x), is given as follows:

θψ(t) = max

{
0,−yc1(t)−min[yl(t)yl2(t), yl(t)yu2 (t), yu(t)yl2(t), yu(t)yu2 (t)]

}
, ∀t ∈ [0, 1]

(3.25)

where,

yc1(t) =


0 if yl1(t) ≤ 0 and yu1 (t) ≥ 0

min{(yl1(t))2, (yu1 (t))2} otherwise

The required bounds on the state variables are obtained by solving Eq. (3.23), which are subse-

quently used in Eq. (3.25) to compute θψ(t). Figure 3.1 shows the resulting θψ for each t ∈ [0, 1].

3.2.6 Relaxed Problem Formulations

In the previous sections, the methodologies to develop edge-concave underestimators corre-

sponding to different classes of nonlinear terms involved in P2 are discussed. In this section, the

formulation to compute lower bound for P2 is presented. The formulation of relaxed problem for

a special form of P2 with no inequality constraints (i.e., J is empty) is first examined and then the

relaxed problem for P2 in its original form will be formulated.

42

Figure 3.1: Illustrating θψ as a function of t for Example 3.

3.2.6.1 Relaxation of a Special Form of P2

A special form of P2 with no inequality constraints is as follows:

min
x

fa(x) + fd(y(x, tf)) +

∫ tf

t0

ψ(t, y(x, t))dt

s.t. ẏk = φk(t, y, x), ∀t ∈ (t0, tf], k ∈ K

yk(x, t0) = y0k(x), k ∈ K

x ∈ [xL, xU]

(P3)

Replacing each of the nonlinear terms fa(x), fd(y(x, tf)), and
∫ tf
t0
ψ(t, y(x, t))dt in the objective

function with the edge-concave underestimators Lfa(x), Lfd(x), and LΨ(x), respectively, yields

43

the following relaxation:

LEC = min
x

Lfa(x) + Lfd(x) + LΨ(x)

s.t. Lfa(x) = fa(x)−
n∑
i=1

θfai (xi − xMi)2

Lfd(x) = fd(y(x, tf))−
n∑
i=1

θfdi (xi − xMi)2

LΨ(x) =

∫ tf

t0

[
ψ(t, y(x, t))−

n∑
i=1

θψi (xi − xMi)2

]
dt

(R3)

where y(x, t) is given by solving following ODEs:

ẏk = φk(t, y, x), ∀t ∈ (t0, tf], k ∈ K

yk(x, t0) = y0k(x), k ∈ K

At every iteration of the B&B algorithm, R3 needs to be solved to yield lower bounds. The ECUs

Lfd(x) and LΨ(x) depends on the state variables and therefore, the original system of ODEs need

to be solved. R3 can be solved in a sequential manner, i.e., the system of ODEs is solved at x

determined by the optimization algorithm.

Property 3.3 allows to solve R3 by simply evaluating the sum of the ECUs at the vertices of the

polytope and choosing the minimum value. (R3) can be rewritten as follows:

LEC = min
x∈V

Lfa(x) + Lfd(x) + LΨ(x)

s.t. Lfa(x) = fa(x)−
n∑
i=1

θfai (xi − xMi)2

Lfd(x) = fd(y(x, tf))−
n∑
i=1

θfdi (xi − xMi)2

LΨ(x) =

∫ tf

t0

[
ψ(t, y(x, t))−

n∑
i=1

θψi (xi − xMi)2

]
dt

(R3)

44

where y(x, t) is given by solving following ODEs:

ẏk = φk(t, y, x), ∀t ∈ (t0, tf], k ∈ K

yk(x, t0) = y0k(x), k ∈ K

where V denotes the set of vertices of the polytope B = {x ∈ Rn : xL ≤ x ≤ xU}. Besides

generating tight underestimator, it is also desirable for the fast convergence of B&B algorithm that

the computational cost at each node be kept at minimum. Solving ODE is the most computationally

demanding step and, therefore, it is advantageous that function calls be kept at minimum. In this

respect, edge-concave based relaxation may offer additional computational benefits. This is due to

the fact that other underestimators, such as αBB, rely on solvers that may take many evaluations

for even simple problems to find the lower bound.

3.2.6.2 A Hybrid Method to Compute Lower Bound

Solving auxiliary set of ODEs based on Theorem 3.4 to compute θfdi and θψi yields bounds

on state variables (y), first-and second-order derivatives of the state variables w.r.t the decision

variables. An alternative lower bound can be obtained by interval method using the bounds on

state variables y ∈ [yl, yu] and decision variables x ∈ [xl, xu] only and is given by:

LINT = inf

{
fa([x

l, xu]) + fd([y
l([xl, xu], tf), y

u([xl, xu], tf)])+∫ tf

t0

ψ(t, [yl([xl, xu], t), yu([xl, xu], t)])dt

} (3.26)

It is possible that there are subregions of the original feasible space whereLINT ≥ LEC . Therefore,

it is advantageous to use a hybrid approach by choosing the tighter amongst the two:

LHY B−EC = max{LINT , LEC} (3.27)

where LHY B−EC is a valid lower bound of P3.

45

3.2.6.3 Relaxation of P2

Similar to P3, the nonconvex terms fa(x), fd(y(x, tf)), and
∫ tf
t0
ψ(t, y(x, t))dt are replaced

by Lfa(x), Lfd(x), and LΨ(x), respectively. All nonconvex terms in the j-th constraint such as

gaj(x), gdj(y(x, tf)) and
∫ tf
t0
ξj(t, y(x, t))dt are also replaced by their edge-concave underestima-

tors Lgaj(x), Lgdj(x), and LΞj(x), respectively. This results in the formulation of the following

nonlinear relaxed problem:

min
x

Lfa(x) + Lfd(x) + LΨ(x)

s.t. Lgaj(x) + Lgdj(x) + LΞj(x) ≤ 0, ∀j ∈ J

x ∈ [xL, xU]

(R2)

Since Lfd , LΨ, Lgdj and LΞj are dependent on the state variables, these are obtained by solving the

following ODEs:

ẏk = φk(t, y, x), ∀t ∈ (t0, tf], k ∈ K

yk(x, t0) = y0k(x), ∀t ∈ (t0, tf], k ∈ K

Although R2 includes only algebraic terms, it is still nonlinear and nonconvex. Therefore, it is

beneficial to further relax it and formulate an easier problem to compute the lower bound of P2.

This can be done by considering the linear facets of the vertex polyhedral convex envelopes of the

edge-concave underestimators [105]. Meyer and Floudas [142] proposed an algorithm based on

geometric arguments to construct the following unique facets of the convex envelope of L(x) on

polytope B = {x ∈ Rn : xL ≤ x ≤ xU}:

CE[L(x),B] ≡
{
γ ≥

n∑
i=1

ηi,lxi + η0,l, l ∈ L
}

(3.28)

Here L denotes set of unique facets that determines the convex envelope, whereas ηi,l and η0,l

are parameters defining the linear facet. Although using Eq. (3.28) may result in the formulation

of a relaxed problem, it is only applicable to problems of upto 3 dimensions. Therefore, the

46

linear facets defined in Eq. (3.2) are used to formulate the linear relaxed problem. Lets define

F0(x) = Lfa(x) +Lfd(x) +LΨ(x) and Fj(x) = Lgaj(x) +Lgdj(x) +LΞj(x), ∀j ∈ J yielding the

following linear relaxation of P2:

LEC = min
x,λj′,v

υ0

s.t. υj ≤ 0, ∀j ∈ J

υj′ ≥
2n∑
v=1

λj′,vFj′(x
v), j′ = 0, . . . ,m

2n∑
v=1

λj′,vx
v = x, j′ = 0, . . . ,m

2n∑
v=1

λj′,v = 1, j′ = 0, . . . ,m

λj′,v ≥ 0, j′ = 0, . . . ,m; v = 1, . . . , 2n

x ∈ [xL, xU]

(R2-L)

where each of the functions Fj′ are evaluated at x = xv by solving the following set of ODEs:

ẏk = φk(t, y, x
v), ∀t ∈ (t0, tf]; k ∈ K

yk(x
v, t0) = y0k(x

v), ∀k ∈ K

It is possible to formulate a similar linear relaxed problem corresponding to R3. However, this

would be unwarranted since the solution of R3 lies at a vertex and generating convex envelopes

will add to the computational cost.

3.3 Overall Algorithm

A spatial branch-and-bound (sBB) algorithm is used for deterministic global optimization of

P2. A brief overview of the algorithm is provided in Figure 3.2. The algorithm functions by

dividing the space into subregions and eliminating those regions that can not contain the optimum.

At any node of the B&B tree, subregions with the lower bound that are greater than the overall

47

Set absolute and relative tolerances εa and εr,
and iteration counter, iter = 0

Compute lower (LB) and upper bounds (UB)
at the root node

UB − LB ≤ εa

or UB−LB
|LB| ≤ εr

Select branching variable and divide the cur-
rent region into two sub-regions

Compute lower bounds for each subregion

iter mod 10 = 0

Compute upper bound at the current node

Update the overall lower bound, LB and upper
bound, UB. Select the subregion with the low-
est lower bound as the current region. Prune
nodes for which the lower bound is greater
than the upper bound

STOP!

No

Yes

Yes

No

it
er

=
it
er

+
1

Figure 3.2: An overview of the spatial branch-and-bound algorithm for solving P2 and P3.

upper bound are eliminated. The sub-regions where the relaxed problem is infeasible are also

eliminated. The algorithm consists of three main steps: (1) computing lower bounds using valid

underestimators, (2) computing upper bound, and (3) selecting branching variable to divide the

current region into subregions. The algorithm converges to global optimum within ε tolerance

[102] if the bounding and selection operations are consistent and bound improving, respectively.

The procedure to construct valid relaxations based on edge-concave underestimators (R3 or R2-

L) was discussed in Section 3.2. Next, the branching operation, computation of lower and upper

bounds, and the convergence criteria are briefly discussed.

48

3.3.1 Branching Rule

In the branching operation, the current region is further partitioned into two subregions. At

each node, the branching variable xb corresponding to the longest edge of the current region is

selected:

xb = arg max
i
|xui − xli|

In case there are more than one variable corresponding to the largest range, the variable with the

lowest index is selected for branching. Thereafter, the two subregions are obtained by bisecting the

branching variable. There are other branching and range reduction strategies [148, 149] that can

accelerate the convergence of the sBB algorithm. However, the branching rule discussed above is

used to keep the implementation simple.

3.3.2 Computing Lower Bound: Solving R3 and R2-L

First, the technique used to solve R3 to obtain valid lower bounds is discussed. As mentioned

before, Property 3.3 allows finding lower bound by computing objective function at the vertices

of the polytope B and taking the minimum. The focus here is on describing the approach used to

evaluating LΨ at x = xv. The two terms comprising LΨ are separated as follows:

LΨ(x) = L1
Ψ(x)− L2

Ψ(x)

The terms L1
Ψ and L2

Ψ are defined as follows:

L1
Ψ(x) =

∫ tf

t0

[
ψ(t, y(x, t))

]
dt

L2
Ψ(x) =

∫ tf

t0

[n∑
i=1

θψi (xi − xMi)2

]
dt

=
n∑
i=1

(xi − xMi)2Θψ
i (tf)

49

where, Θψ
i =

∫ tf
t0
θψi dt. The details of the method used to compute Θψ

i is given in Section 3.2.5.

Since ΘΨ
i depends on the bounds of the optimization variables, it is calculated before computing

lower bound. These parameters computed at the parent node of the branch and bound tree is also

valid for the child nodes. Since computing ΘΨ and θfdi requires solving larger system of ODEs, it

is possible to compute them only at the root note or parent node without affecting the theoretical

convergence of the algorithm. However, this may lead to construction of loose relaxations and

consequently, exploring more nodes of the sBB tree. To avoid this, θ parameters are updated at

each node of the sBB tree to generate tight underestimators. L1
Ψ is computed at x = xv by solving

the original system of ODEs. Finally, the value of LΨ at x = xv is:

LΨ(xv) = Ψ(xv)−Θψ(tf)
n∑
i=1

(xvi − xMi)2

where Ψ(xv) =
∫ tf
t0
ψ(t, y(xv, t))dt. Lfd is evaluated at x = xv analogously by computing θfdi

first and then solving the original set of ODEs to obtain the value of state variables at t = tf . To

compute lower bounds of P2, the linear relaxed problem R2-L is solved. It involves computing

each of the ECUs at all the vertices of the polytope of B using the same technique as discussed

previously. This results in a linear relaxed problem that is solved using CPLEX.

3.3.3 Computing Upper Bound

Any feasible point or a locally optimal solution of P2 will serve as a valid upper bound. Al-

though finding a feasible point may need less simulations than locally optimizing P2, finding

a good upper bound can help eliminate many subregions and accelerate the convergence of the

branch and bound algorithm. To balance this trade-off, local optimization is performed after every

10 iterations using fmincon. A sequential approach is used, where the simulation is performed

at a point x that is determined by the local optimization. The first-order derivative information is

provided by solving the sensitivity equations along with the original ODEs.

50

3.3.4 Convergence Criteria

The maximum separation distance between a function and its ECU on a polytope B = {x ∈

Rn : xl ≤ x ≤ xu} is given by [105]:

dmax =
1

4

n∑
i=1

θi(x
u
i − xli)2 (3.29)

The sBB algorithm operates by dividing the current region into smaller subregions. As the size of

the region becomes smaller, i.e., ||xu − xl|| → 0, by construction, LB → UB. From Eq. (3.29),

it is clear that unless the original function is edge-concave (θi = 0, i = 1, . . . , n), the separation

distance can not be reduced to exactly zero. Therefore, to converge in a finite number of iterations,

it is essential to provide reasonable tolerance (ε) of the gap between lower and upper bound. The

sBB algorithm is terminated when the absolute or relative gap between the lower and upper bound

is within user defined tolerances εa or εr, respectively. Consequently, the final result obtained on

the convergence of the algorithm will be ε-global optimal.

3.4 Case Studies

For all case studies, the sBB algorithm has been implemented as follows. The value of the tol-

erances εa and εr are both set to 10−4. The lower and upper bounds are obtained using a sequential

approach that requires numerically solving the ODEs. The sensitivity equations are also solved

along with the original ODEs to locally optimize P2. Constructing a valid underestimator also

requires solving auxiliary ODE system based on Theorem 3.4. The ODE solver ode45 in MAT-

LAB R2016a is used for numerically solving all the system of ODEs with absolute and relative

tolerances set to 10−8. The function trapz is used to compute the required integrals.

The lower bound is obtained by simply evaluating the value of the objective at all the corner

points if the problem to be solved in P3. If the problem under consideration is P2, then the corre-

sponding relaxed problem R2-L is linear and the lower bound is obtained using CPLEX. The upper

bound is computed after every 10 iterations using fmincon with default optimization tolerances.

The algorithm used by fmincon is set to sequential quadratic programming (SQP). SQP method-

51

ology is an iterative procedure that approximates the original nonlinear problem at a point using

quadratic programming (QP) subproblem. The QP subproblem is iteratively solved to obtain new

points until the optimality and constraint satisfaction tolerances are met.

Interval calculations are needed to estimate θ parameters to construct edge-concave underesti-

mators. The calculations are explicitly performed for simple functions. Otherwise, the open source

C++ library C-XSC [108] is used to compute interval bounds of a function. Note that alternate

modules can be used to perform various tasks. For instance, instead of fmincon, derivative-free

optimization approaches [150, 151] can also be employed for locally optimizing P2. Similarly,

interval arithmetic package INTLAB [152] may be used instead of C-XSC. Nevertheless, the pur-

pose of the chapter is to demonstrate the utility of edge-concave underestimator to compute tight

lower bounds.

The performance of the algorithm is examined on a variety of problems from literature. All the

case studies are solved on a 64-bit Intel Xeon E5-2670 2.5 GHz processor running Linux. The first

case study is a modified version of a problem reported in Singer [126], while the second case study

is an optimal control problem taken from Papamichail and Adjiman [123]. The third example is a

parameter estimation problem of a first-order irreversible series of reactions reported by Tjoa and

Biegler [153]. The fourth case study is taken from Singer [126], while the fifth case study is a

modified problem from Singer [126] to include nonlinear constraints.

52

3.4.1 Case Study 3.1

The optimization problem is given as follows:

min
x

∫ 2

0

[4y2
1 − 2.1y4

1 −
y6

1

3
+ y1y2 − 4y2

2 − 4y4
2]dt

s.t. ẏ1 = y1 + 5y2 + 0.1x2, ∀t ∈ (0, 2]

ẏ2 = −5y1 − 2y2 − 0.3x2, ∀t ∈ (0, 2]

y1(x, 0) =
x1

4

y2(x, 0) = 0

x1 ∈ [0, 5], x2 ∈ [−7, 5.5]

(3.30)

Let ψ(y(x, t)) = 4y2
1 − 2.1y4

1 − y61
3

+ y1y2− 4y2
2 − 4y4

2 . The corresponding edge-concave underes-

timator is:

LΨ =

∫ 2

0

[ψ(y(x, t))−
n∑
i=1

θψi (xi − xMi)2]dt (3.31)

where y(x, t) is obtained by solving the ODEs. For illustration, the objective function along with

the corresponding edge-concave underestimator is shown in Figure 3.3. It can be observed that the

proposed underestimator provides a tight relaxation of the original objective function. The values

of the parameters ΘΨ
1 and ΘΨ

2 are 0.072 and 0.0243, respectively. This indicates that the original

problem is not edge-concave.

The edge-concave underestimator is compared with three convex relaxations. The first one is

the αBB underestimator:

LαBBΨ (x) =

∫ 2

0

[ψ(y(x, t)) +
n∑
i=1

αψi (xi − xLi)(xi − xUi)]dt (3.32)

where αψi are positive parameters that ensure the convexity of LαΨ(x), ∀x ∈ [xL, xU]. While writing

the αBB underestimator in Eq. (3.32), the result is used that if the integrand is convex for each t,

then the integral is also convex [126]. The parameters αψi are calculated using Gerschgorin method

53

as follows:

αψi = max

{
0,−1

2

([
∂2ψ

∂x2
i

]L
−
∑
i 6=j

max

{∣∣∣∣[∂2ψ

∂xi∂xj

]L∣∣∣∣, ∣∣∣∣[∂2ψ

∂xi∂xj

]U ∣∣∣∣})}

The values of the parameters
∫ 2

0
αψ1 dt and

∫ 2

0
αψ2 dt at the root node are 2 × 1013 and 1.73 × 1013,

respectively.

The second convex relaxation can be derived by exploiting the special structure of the objective

function. The integrand is composed of one convex term (4y2
1), four concave functions (−2y4

1 ,−y61
3

,

−4y2
2 , −4y4

2) and one bilinear term (y1y2). Since the sum of convex functions is convex, replacing

each of the nonconvex terms by its convex relaxation will yield a convex underestimator. Each

concave function is replaced by its convex envelope, while bilinear term is underestimated using

McCormick relaxation. Finally, the following underestimator is obtained:

LSSΨ (x) =

∫ 2

0

[4y2
1 + l1(t) + l2(t) + l3(t) + l4(t) + l5(t)]dt (3.33)

where, l1(t), l2(t), l3(t), l4(t) and l5(t) denote the convex relaxation of −2.1y4
1 , −y61

3
, y1y2, −4y2

2

and −4y4
4 , respectively. The expression of the convex relaxations are given as follows:

l1(t) = −2.1[yL1]4 − 2.1([yU1]2 + [yL1]2)(yU1 + yL1)(y1 − yL1)

l2(t) = − [yL1]6

3
− ([yU1]3 + [yL1]3)([yU1]2 + [yL1]2 + yL1 y

U
1)(y1 − yL1)

3

l3(t) = max{yL1 y2 + y1y
L
2 − yL1 yL2 , yU1 y2 + y1y

U
2 − yU1 yU2 }

l4(t) = 4yL2 y
U
2 − 4y2(yU2 + yL2)

l5(t) = −4[yL2]4 − 4([yU2]2 + [yL2]2)(yU2 + yL2)(y2 − yL2)

The third underestimator based on interval arithmetic and Lemma 3.1 can also be derived:

LINT =

∫ 2

0

inf
{

4[yL1 , y
U
1]2 − 2.1[yL1 , y

U
1]4 − [yL1 , y

U
1]6

3
+

[yL1 , y
U
1][yL2 , y

U
2]− 4[yL2 , y

U
2]2 − 4[yL2 , y

U
2]4
}
dt

(3.34)

54

Table 3.1: Summary of the results obtained by different underestimators for
case study 3.1.

Underestimators LBroot NT FL FU
Edge-concave −11.615 21 24 10
αBB −8.017× 1014 10,000* 3.26× 105 2132
Special Structure −4.53× 1021 10,000* 2× 104 2159
Interval −4.53× 1021 10,000* - 2138
* An optimal solution was not found.

The results of different underestimators are shown in Table 3.1. The list of underestimators

used for relaxing the problem is provided in column 1. The lower bounds obtained by different

underestimators at the root node (denoted as LBroot) are presented are listed in Column 2 and the

total number of nodes (NT) required to converge to ε-global optimality are shown in column 3.

The total number of function evaluations required to obtain lower (FL) and upper bound (FU) are

shown in column 4 and column 5, respectively. While computing lower bound for edge-concave

underestimator requires solving original ODEs, for special structure and αBB based underestima-

tors, both the original ODEs and first-order sensitivity equations need to be solved. The lower

bound for interval based underestimator is constant and, therefore, there is no need to solve ODEs

to compute the lower bound. Hence, function evaluations by αBB and special structure based

underestimator are more expensive than those of edge-concave underestimator.

The global minima of the problem is -10.209. The local solver fmincon is able to find it at

the root node as an upper bound. However, different underestimators required different number

of nodes to tighten the lower bound. The edge-concave underestimator is found to be the tightest

amongst all other relaxation schemes. This results in finding the global minima using only 21

nodes, while other methods could not converge to the global solution within 10,000 nodes. The

best lower bounds obtained after exploring 10,000 nodes by αBB, special structure and interval

based methods are −36912, −4.76× 1011, and −4.85× 1011, respectively.

3.4.2 Case Study 3.2

The second example is an optimal control problem from Papamichail and Adjiman [123]:

55

𝐿𝛹

Figure 3.3: The objective function of case study 3.1 is shown along with the corresponding edge-
concave underestimator.

min
x

− y(1)2

s.t. ẏ = −y2 + x, ∀t ∈ (0, 1]

y(x, 0) = 9

x ∈ [−5, 5]

(3.35)

The global minima of the problem is -8.2326 and corresponds to x = −5. The upper bound ob-

tained by fmincon at the root node corresponds to the global minima. Table 3.2 shows the results

given by different underestimators. For this example, edge-concave underestimator is tighter than

αBB at the root node. However, the nodes required for both the methods are the same because as

the bounds are updated, αBB becomes tighter. Although αBB needs the same number of nodes

to converge, the number of function calls are almost four times more than that those needed by

edge-concave.

As mentioned before, the auxiliary system of ODEs solved to compute θ also yields the lower

and upper bounds on the state variables. This can be used to inexpensively compute valid lower

bounds by interval method as shown in Eq. (3.26). Furthermore, it would be advantageous to use

56

a hybrid approach given in Eq. (3.27) to choose the tighter lower bound amongst the lower bounds

given by ECU and interval-based method. When the hybrid approach is used, the problem is solved

to global optimality at the root node. Similarly, the hybrid technique for αBB can also be used.

The lower bound obtained by choosing the tighter lower bound amongst αBB and interval-based

method is given as follows:

LHY B−αBB = max{LINT , LαBB} (3.36)

where LαBB is the lower bound obtained by generating αBB relaxation. It is observed that when

the hybrid of αBB and interval-based relaxation is used, the problem is solved at the root node.

Table 3.2: Summary of the results obtained by different underestimators for case study 3.2.

Underestimators LBroot NT FL FU
Edge-concave −66.20 9 5 5
αBB −152.05 9 67 5
Hybrid of Edge-concave and Interval (Eq. (3.27)) −8.2326 1 2 5
Hybrid of αBB and Interval (Eq. (3.36)) −8.2326 1 10 5

3.4.3 Case Study 3.3

The third example is a parameter estimation problem of a first-order irreversible series of reac-

tions [153]:

A
x1−→ B

x2−→ C

The optimization problem involves estimating kinetic parameters of the reactions (x1 and x2) such

that the errors between experimental observations and model prediction are minimized. The ex-

57

perimental data are shown in Table 3.3. The problem formulation is given as follows:

min
x

10∑
i=1

2∑
j=1

(yj(ti)− yexpj (ti))
2

s.t. ẏ1 = −x1y1, ∀t ∈ (0, 1]

ẏ2 = x1y1 − x2y2, ∀t ∈ (0, 1]

y1(x, 0) = 1

y2(x, 0) = 0

x1 ∈ [0, 10], x2 ∈ [0, 10]

(3.37)

The sBB algorithm is applied with different relaxation schemes and the results are summarized in

Table 3.3: Experimental data for case study 3.3.

ti yexp1 yexp2 ti yexp1 yexp2

0.1 0.606 0.373 0.6 0.05 0.624
0.2 0.368 0.564 0.7 0.03 0.583
0.3 0.223 0.647 0.8 0.018 0.539
0.4 0.135 0.669 0.9 0.011 0.494
0.5 0.082 0.656 10 0.007 0.451

Table 3.4. All the relaxation schemes converge to the global solution of 1.18×10−6 at x1 = 5.0035

and x2 = 1. In this case study, the edge-concave relaxation is found to be weaker compared to

αBB at the root node and takes more number of nodes to converge. Although the nodes required by

the edge-concave underestimator is more, the number of function calls needed by αBB to compute

lower bound is order of magnitude more than that taken by edge-concave relaxation. When the

edge-concave and interval-based relaxations are combined as described in Case Study 3.2, the

problem is solved at the root node. The same number of nodes are explored when αBB is used

along with the interval-based relaxation. However, almost six times more number of function calls

(FL = 23) are needed when computing the lower bound. Furthermore, Papamichail and Adjiman

[123] required 35 iterations to converge to global minima with relative tolerance of 10−3 using

58

the same principle but different problem formulation. Their formulation involved introducing new

variables corresponding to each state variable at a fixed time, and defining equality constraints

incorporating the relationship between new and state variables. This equality constraint is then

relaxed by lower and upper bounding inequalities resulting in a convex relaxed problem. Singer

and Barton [128] also employed McCormick relaxation for this example and converged to the

global minima at the root node.

Table 3.4: Summary of the results for case study 3.3.

Underestimators LBroot NT FL FU
Edge-concave −1.71×105 3713 2093 775
αBB −5.55×104 1331 23, 011 339
Hybrid of Edge-concave and Interval (Eq. (3.27)) 0 1 4 21
Hybrid of αBB and Interval (Eq. (3.36)) 0 1 23 21

3.4.4 Case Study 3.4

This involves a one dimensional problem with integral objective function and linear ODE:

min
x

∫ 1

o

−y2dt

s.t. ẏ = −2y + x, ∀t ∈ (0, 1]

y(x, 0) = 1

x ∈ [−4, 4]

(3.38)

The results are reported in Table 3.5. The globally optimum value of decision variable is x = 4

and the corresponding objective function value is −2.516. The problem is edge-concave which

is identified by computing θ. Therefore, there is no need to locally optimize Eq. (3.38) since the

minima of an edge-concave function lie at a vertex.

3.4.5 Case Study 3.5

This case study involves two decision variables with integral objective function, nonlinear con-

straints and a system of ODEs. A version of this problem was originally reported by Singer [126]

59

Table 3.5: Summary of the results obtained by different underestimators for case study 3.4.

Underestimators LBroot NT FL FU
Edge-concave −2.516 1 2 0
αBB −2.516 1 6 5
Hybrid of Edge-concave and Interval (Eq. (3.27)) −2.516 1 2 0
Hybrid of αBB and Interval (Eq. (3.36)) −2.516 1 6 5

but did not involve nonlinear constraints (x1x2 ≤ 4). The optimization formulation is as follows:

min
x

∫ 1

0

[cos(y1)sin(y2) +
y1

y2
2 + 1

]dt

s.t. x1x2 ≤ 4

ẏ1 = ty1 + x1, ∀t ∈ (0, 1]

ẏ2 = y1 − y2 + p1 − p2, ∀t ∈ (0, 1]

y1(x, 0) = 0, y2(x, 0) = 0

x1 ∈ [−5, 6], x2 ∈ [−5, 6]

(3.39)

This problem is of the form P2 and, therefore, the lower bound can not be determined by simply

evaluating the objective function at the vertices. The lower bound is computed by solving the linear

relaxed problem R2-L. For the objective function, the values of the desired parameters
∫ 1

0
θψ1 dt

and
∫ 1

0
θψ2 dt at the root node are 1.01× 103 and 265.68, respectively. The values of the parameters

θ
gaj
i is 0 which indicates that the bilinear term in the constraint is edge-concave. The values of

the parameters required to relax the objective function using αBB underestimators,
∫ 1

0
αψ1 dt and∫ 1

0
αψ2 dt at the root node are 1.31 × 103 and 323.84, respectively. The value of α for bilinear

term is 0.5. This results in a nonlinear convex problem which is solved using fmincon. The sBB

algorithm converges to yield a global solution of -0.94966 at x1 = −1.7921 and x2 = −2.232. The

results for the case study are provided in Table 3.6. The edge-concave underestimator is tighter

than αBB at the root node but αBB converges in slightly less number of nodes. However, the

number of function calls (solving ODEs) required by αBB is an order of magnitude more than

60

those needed by ECU based method.

Table 3.6: Summary of the results obtained by different underestimators for case study 3.5.

Underestimators LBroot NT FL FU
Edge-concave −3.87×104 291 199 105
αBB −4.40×104 289 3013 117

3.5 Conclusions

In this chapter, a branch-and-bound-based deterministic global optimization algorithm is pre-

sented to globally solve black-box problems with embedded ordinary differential equations and

the objective function and the constraints comprises of the algebraic and integral terms. Instead

of gradient-based approach, a data-driven approach is considered. To generate lower bounds, an

edge-concave underestimator is constructed for algebraic and integral terms. It requires computing

the upper bound on the diagonal elements of the Hessian of both algebraic and integral terms. Ob-

taining the underestimator is straightforward for algebraic terms involving only decision variables.

Since the Hessian of an algebraic term involves decision variables explicitly, interval method is

directly applied to obtain the upper bound. However, it is challenging to obtain the upper bound on

diagonal elements of the Hessian for the algebraic and integral terms involving state variables. The

difficulty is overcome by defining differential inequalities and solving auxiliary set of ODEs. The

algorithm is applied to several case studies for ε-global optimality. The edge-concave relaxation

offers several advantages over other relaxations. Firstly, for small to medium scale problems, lower

bound can be computed in small number of evaluations. On the other hand, αBB relaxation relies

on external nonlinear solvers to compute lower bound and the solver may need a lot of evaluations

if the initial point is not too close. Secondly, computing parameters to construct edge-concave

relaxations require upper bounds on only the diagonal elements of the Hessian, while generating

αBB relaxation need bounds on all the Hessian elements. Thirdly, unlike McCormick relaxation,

edge-concave relaxation is smooth, which is advantageous when computing lower bounds. It is

also illustrated through the case studies that using interval method based relaxation along with

61

the edge-concave is often beneficial in reducing the required number of nodes. Finally, it is not

trivial to determine a-priori which underestimator will provide tightest relaxation. This difficulty

is exacerbated further due to inability to express the objective function and constraints explicitly

in terms of decision variables. Nevertheless, edge-concave relaxation offers advantages over other

approaches and presents an alternative approach for global optimization of nonconvex problems

with embedded system of ODEs.

62

4. OPTIMIZATION OF BOX-CONSTRAINED BLACK-BOX PROBLEMS: UNIPOPT

FRAMEWORK

4.1 Introduction

In the previous chapters, global optimization of grey-box problems with embedded ODEs was

considered for which the bounds on the diagonal elements of the Hessian can be estimated. How-

ever, due to several reasons, computing these bounds may be tedious or computing finite may not

be even possible. Furthermore, the underlying model may be black-box for which only simulation

data are available. In this chapter, the focus is now turned on solving general black-box problems

for which first and second-order derivatives information are not available and only simulation can

be performed. The form of the optimization problem addressed in this chapter is the same as that

in Chapter 2 and it is represented as following:

min
x∈S

f(x) (P1)

where x ∈ S = {xL ≤ x ≤ xU} ⊆ Rn, and f (x) : S 7→ R is a continuous black-box function

whose values are obtained as outputs of deterministic simulation, evaluation of legacy codes or

experimentation.

The current state-of-the-art solvers outlined in Chapter 1 can solve only relatively small di-

mensional problems. Besides, solving nonconvex black-box problems to global optimality is a

challenge. In the absence of Jacobian and Hessian information, global blackbox optimization

methods rely on exploring the global space to improve the chances of finding the global minima.

Although numerical results indicate that they are successful in finding the global minima, there is

no guarantee of convergence to even local minima. In contrast to the global methods, there are

local methods (see e.g. [54]) that guarantee convergence to a local minima but lack strategies to

explore the global space.

To this end, UNIPOPT (UNIvariate Projection-based OPTimization) is presented in this chap-

63

ter, that explores the global space and is also guaranteed to converge to a local minima when

certain conditions are satisfied. UNIPOPT is a BBO framework based on projection of samples

onto a univariate space defined by a linear summation of the decision variables. The projection re-

sults in a multivalued function also known as point-to-set map or set-valued map or multifunction

[154] since there are multiple function values corresponding to the variable. It is observed that a

function exists on this map such that its minima is also the minima of the original n-dimensional

problem. This function is called the lower envelope. The points on this lower envelope are identi-

fied by applying a combination of an approximation of the sensitivity theorem (prediction step) and

optimizing a subproblem using a trust-region method (correction step). Once the lower envelope is

identified, it is then minimized (strictly speaking, the analytical form of the lower envelope is not

identified but rather, it is evaluated at discrete points). Specifically, in this chapter, the following is

described:

(i) a univariate function whose minima is the same as the minima of f (x) and proposing an

algorithm to evaluate this function at discrete points,

(ii) the UNIPOPT framework that is based on evaluating the univariate function while exploring

any arbitrary n-dimensional space,

(iii) EPIC (Envelope PredIctor and Corrector) for obtaining the samples on the lower envelope,

(iv) key theoretical results related to the bounds on the solution given by prediction step is derived

and the convergence of the algorithm is proven, and

(v) a comparison of the performance of UNIPOPT with BOBYQA, ORBIT, SNOBFIT, IMFIL

on 161 convex nonsmooth and 232 nonconvex smooth problems.

The remaining chapter is structured as follows. Section 4.2 presents the main idea of projection.

The optimization algorithm is presented in Section 4.3 and the convergence results are provided

in Section 4.4. The numerical results and conclusions are given in Section 4.5 and Section 4.6

respectively.

64

4.2 Projection on Univariate Space

Before presenting the main idea of projection, the notations that are used in the chapter are

briefly discussed. A subscript is used to represent an element of sequence of vectors (sk) when a

vector s ∈ Rn is given. The ith component of a vector s is represented by (si). The subscript k is

used as the subscript to represent sequence of vector to avoid ambiguity in representing component

of a vector and sequence of vectors. The superscript is used (sj) to denote the jth element of a finite

set of vectors. The norm ||.|| is the L1-norm unless otherwise specified. Next, the definitions are

provided that are relevant for the discussions presented in this section.

Definition 4.1. Point-to-set Map: A point-to-set map (also known as multivalued function, multi-

function, set-valued map, multi-valued map, set-valued function) is a map (Ψ) from a set X into a

set Y that associates a subset of Y with each element of X .

Definition 4.2. Lower Envelope: Lower envelope is a function obtained by associating the mini-

mum of the elements of set Y with each element of X .

An auxiliary variable added to P1 is equivalent to projecting the original function in the τ space

that results in the following problem:

min
x,τ

f(x)

s.t. 1Tx = τ

x ∈ [xL, xU], τ ∈ [τL, τU]

(P4)

where τL = 1TxL and τL = 1TxU .

Remark 4.1. Adding an auxiliary variable that is linearly dependent on the decision variables

does not modify the optimization problem and therefore, the problems P4 and P1 are equivalent

problems, i.e., they have the same feasible, local and global optima sets.

65

Without loss of generality, the above problem can be rewritten by scaling τ as follows:

min
x,t

f(x)

s.t. 1Tx = τL + t(τU − τL)

x ∈ [xL, xU], t ∈ [0, 1]

(P4′)

While there are many choices of defining the auxiliary variable, the one shown above is a simple

choice. Note that the objective function is independent of the auxiliary variable (t) and it is just a

mathematical artifact. On writing the KKT conditions for P4′, the Lagrange multiplier correspond-

ing to the equality constraint becomes zero. Therefore, the KKT conditions for P4′ and P1 are the

same, which implies that they have the same local optima. Furthermore, P4′ can be rewritten as:

min
t

G(t)

s.t. G(t) = min
x

f(x)

s.t. 1Tx = τL + t(τU − τL)

x ∈ [xL, xU], t ∈ [0, 1]

(P4′′)

where,G(t) is the lower envelope of the point-to-set map from t to f . Expressing problem as shown

in P4′′ enables us to decompose the problem into two steps. The lower problem is equivalent to

identifying the samples on the lower envelope. Once the lower envelope is known, it can then be

minimized. Solving the lower level problem includes optimizing a linearly constrained problem

for different fixed values of t, such as tp, to obtain G(tp), where tp ∈ Z = {t1, . . . , tP}:

G(tp) = min
x

f(x)

s.t. gL,i(x) := xLi − xi ≤ 0 ∀i ∈ {1, . . . , n}

gU,i(x) := xi − xUi ≤ 0 ∀i ∈ {1, . . . , n}

h1(x, tp) := 1Tx = τL + tp(τU − τL)

(P5)

66

(a) (b)

(c)

Point-to-set-map from 𝑡 to 𝑓

Lower envelope,

𝐺(𝑡)

𝐺(𝑡)

Figure 4.1: Branin function and its projected samples: (a) Branin function, (b) Point-to-set map
and the lower envelope of the Branin function, and (c) Global minima of Branin function located
on the lower envelope.

Let us denote x̄p to be the solution of P5 at t = tp. This (G(t)) is the optimal value function that

also arises in developing algorithms for decomposable mathematical programming problems [155],

interim steps of techniques for solution of canonical constrained optimization problem [156], and

chemical equilibrium studies [157]. Solving P5 will yield a point on the lower envelope of the

point-to-set map from t to f . Its properties such as continuity, differentiability have been studied

previously [158, 159, 160] in a different context than shown here and it is briefly mentioned in

Section 4.2.2.

4.2.1 Illustrative Example 4.1

To illustrate the idea of univariate projection, let us consider the Branin function (Figure 4.1(a))

given by:

f(x1, x2) = (x2 −
5.1

4π2
x2

1 +
5

π
x1 − 6)2 + 10(1− 1

8π
)cos(x1) + 10

x1 ∈ [−5, 10], x2 ∈ [0, 15]

(4.1)

67

The Branin function has 3 global minima at f ∗ = 0.397887 and is achieved at x∗ =(−π, 12.275),

(π, 2.275), and (9.424, 2.475). The point-to-set map from t to f is shown by red region in Figure

4.1 (b) and the lower envelope is shown in black. The red region in Figure 4.1 (b) contains all the

samples shown in Figure 4.1 (a). The lower envelope represents the minimum value of the Branin

function at different fixed values of τ . Figure 4.1 (c) provides a closer look at the lower envelope

and shows that the three minima in Figure 4.1 (a) are conserved after projection and are located on

the lower envelope.

Essentially, for any arbitrary n-dimension problem, there exists a univariate function (G(t))

minimizing which is equivalent to solving the original problem P1. In other words, it is possi-

ble to map important features of an optimization problem using an auxiliary univariate function.

However, determining this map/transformation is a challenging problem and will be addressed in

this chapter. Although, P5 is difficult to solve, but a good initial guess can facilitate obtaining the

solution quickly. The strategy to provide initial guess and solve P5 is provided in later sections.

Another novel aspect of this method is that unlike many local-model based methods which only

explore a region locally around a given point, solving P1 using a two step strategy allows for im-

plicitly exploring the n-dimensional space. It may not be always possible to solve a problem in

less number of evaluations compared to other local methods but it is expected that the proposed

methodology will converge to the global optima in many instances.

The geometrical interpretation of the transformation here is as follows. The linear equation

(1Tx = τL + tp(τU − τL)) represents an n-dimensional hyperplane for a fixed value tp. All the

points in n-dimensional space projected to 1-dimension will result in a point-to set map (Ψ) from

set t to function value set, f where for each input, at least one output exists. Correspondingly, there

will be numerous points where the plane intersects the function. But a one-to-one or many-to-one

map i.e. a single function value is desired corresponding to tp and the minimum of these function

values is taken. Similarly, if the minima of the points on the plane are taken, there will exist a plane

corresponding to the optimal value t∗ which intersects the function at the optimum x∗.

68

4.2.2 Properties of G(t)

It is observed that P5 is a parametric problem in t, and therefore, the results about convexity,

concavity and differentiability from sensitivity literature can be utilized to explore the properties

of G(t). These properties are critical to derive the conditions that will influence the convergence

of the algorithm.

Property 4.1. [154] If f(x) is continuous, then G(t) is continuous.

Property 4.1 implies that a lower envelope will always exist for point-to-set map from t into f

when f is continuous in the original space.

Property 4.2. [161] If f(x) is convex (concave), then G(t) is convex (concave).

Property 4.3. (Corollary 3.4.4 in Fiacco [162]) Assume that KKT conditions, second order suf-

ficient condition (SOSC), LICQ and strict complementarity slackness (SCS) hold true at x̄p with

associated Lagrangian multipliers ν̄ and λ̄, then in the neighborhood of tp, the optimal function

G(t) is twice continuously differentiable.

Note that even if the original function is differentiable, lower envelope of the point-to-set map

from t to f can be non-differentiable. This also explains the nonsmooth behavior observed in

Figure 4.1(c) for Branin function.

Property 4.4. G(tL) = f (xL), and G(tU) = f (xU).

4.3 UNIPOPT Framework

Now that a method to obtain G at discrete values of t is provided, the following is further pro-

posed: 1) sampling scheme in the univariate (t) space, and 2) optimization of the lower envelope.

Therefore, an algorithm is needed to obtain the minima of the original function using the route

of projection onto a univariate space. In this section, the outline of UNIPOPT is provided that

integrates the sampling scheme in t-space to evaluate G(t) and then G(t) is optimized such that

the final solution of UNIPOPT corresponds to the solution of P1.

69

Set tl = tL and tu = tU

Set p = 1, initialize
parameter tp = tl and

α0 = tu−tl
T

Use EPIC given in Sec-
tion 4.3.2 to obtain
G(tp+1)

G(tp+1) ≤ G(tp)
Select αp using criteria
listed in Section 4.3.3

Update bounds on t
based on Section 4.3.4

|tu − tl| ≤ εt

STOP

Yes

No

p
=
p
+
1

No

Yes

Figure 4.2: Schematic of the UNIPOPT Algorithm Framework.

4.3.1 Outline and Implementation of the UNIPOPT Algorithm

The overall schematic of UNIPOPT is shown in Figure 4.2. The basic idea of the algorithm

is to iteratively sample in the t-space, construct surrogate model and narrow down the bounds

around the minima. The outline of the first iteration of UNIPOPT is given. The first iteration starts

with setting tl (first sample in t-space) to tL and a positive starting step length, α0 (α0 = tU−tL
T

)

is selected by dividing the t-space into T parts. For t = tL, based on Property 4.4, the optimal

solution of P5 is (x̄1 = xL). This will allow us to use EPIC given in Section 4.3.2.2 to obtain the

optimum solution at t = t2. Assume that G has been evaluated at tp and equivalently, the optima

of P5 (x̄p) is known. Now, the next sample (tp+1) at which G needs to be evaluated has to be

determined. The details of the criteria to select the step length αp to decide the parameter value

70

tp+1 (= αp + tp) is given in Section 4.3.3.

The next step involves comparing the lower envelope value at tp+1 with that at the previous

point (tp). If G(tp+1) is less than G(tp), p is increased by 1 and the next t is selected. The

objective function corresponding to the parameter value tp+1 being more than that at the previous

iteration implies that G(t) has started to increase and that optima (atleast local) lies within [tl,tp].

A univariate surrogate model is then constructed using samples in the interpolation set, Z and the

corresponding values on the lower envelope. After developing the surrogate model, it is optimized

and the bounds [tl, tu] are updated. The samples that already exist in the bounds are reused in the

next iteration for building surrogate models. The details of building and optimizing the univariate

surrogate models, and the bounds updating strategy is given in Section 4.3.4. This procedure is

repeated until the size of the bounds on t is smaller than a pre-specified tolerance.

Note that the surrogate model of G is developed and optimized only after G has been explored

to a certain extent. Doing this increases the chances of locating the global minima. Ideally, to

further improve the chances of obtaining global minima, it would be desirable to move to the next

outer iteration after the space from tl to tu has been covered but that would lead to even more

function calls.

While there are a number of alternatives to address different issues and achieve some effect,

each decision that was finally taken related to algorithmic steps were based on computational ex-

periments. Of course, the alternatives tested were by no means exhaustive. The algorithm compris-

ing of combination of different alternatives was applied to a subset of problems and the alternatives

that did not result in favorable results were weeded out. For instance, an alternative is to use fixed

step length, α but it was observed that using variable step length, as used in the algorithm is more

effective. Another choice is scaling the x variables. It was observed from computational experi-

ments that scaling x helps in reducing number of evaluations. This analysis is not shown here in

order to limit the length of the chapter.

71

𝑮(𝒕)

A
𝐺(𝑡𝑝)

B

𝑡𝑝 𝑡𝑝+1

෠𝐺(𝑡𝑝+1)

𝐺(𝑡𝑝+1)
C

Prediction Step

𝐺 𝑡𝑝 → ෠𝐺(𝑡𝑝+1)

Correction Step
෠𝐺(𝑡𝑝+1) → 𝐺 𝑡𝑝+1

Co-ordinates:

A(𝑡𝑝, ҧ𝑥𝑝, 𝑓 ҧ𝑥𝑝 , 𝐺 𝑡𝑝 = 𝑓 ҧ𝑥𝑝)
B(𝑡𝑝+1, ො𝑥𝑝+1, 𝑓 ො𝑥𝑝+1 , ෠𝐺(𝑡𝑝+1)= 𝑓 ො𝑥𝑝+1)

C(𝑡𝑝+1, ҧ𝑥𝑝+1, 𝑓 ҧ𝑥𝑝+1 , 𝐺(𝑡𝑝+1)= 𝑓 ҧ𝑥𝑝+1)

Figure 4.3: Illustration of pointwise evaluation of G(t) from t = tp to t = tp+1. This involves two
major steps: (1) prediction from A to B, and (ii) correction from B to C.

4.3.2 Finding the Lower Envelope using Envelope PredIctor and Corrector (EPIC) Method

In this section, an algorithm is described for point evaluation of G(t) at t = tp+1 when it is

known at t = tp. Solving P5 to obtain G(t) at a given point t = tp+1 from an arbitrary point is a

challenging problem. However, if a good initial guess is provided, the problem can be solved with

relatively ease. Therefore, EPIC is proposed that involves predicting (Section 4.3.2.1) and then

correcting (Section 4.3.2.2) the solution of P5. The overall idea of EPIC is illustrated in Figure

4.3. Assume that the minima of P5 (x̄p) is known at tp, a prediction step is taken to predict the

minima of P5 (x̂p+1) and obtain Ĝ(tp+1) at tp+1. Furthermore, a correcting step is taken to converge

to the minima (x̄p+1).

4.3.2.1 Predicting G(t): Obtaining Ĝ(tp+1) from G(tp)

In this section, a method to estimate G(tp+1) and x̄p+1 is described assuming G(tp) and x̄p are

known. A well known result by [163] is used that provides a technique to estimate the sensitivity

72

of a local solution of a general nonlinear program to small perturbation in the problem parameters.

This result provides an explicit expression of the partial derivatives of the local optima and its

corresponding multipliers with respect to the parameters. Let ȳp = [x̄p, ν̄pL, ν̄
p
U , λ̄

p] denote vector

of minima and the corresponding Lagrangian multipliers of P5 at the parameter value t = tp. ν̄pL,

ν̄pU , and λ̄p are the Lagrange multipliers corresponding to gL, gU , and h1 respectively in P5 at the

parameter value t = tp and the corresponding optimal solution x̄p. The result though valid for

general nonlinear constrained parametric problem is stated for P5 in Theorem 4.1.

Theorem 4.1. Basic Sensitivity Theorem [163]. Suppose assumptions of Property 4.3 hold true,

then (i) x̄p is a local minimizer and the Lagrange multipliers are unique, (ii) there exists a once

continuously differentiable vector function y =[x(t), νL(t), νU(t), λ(t)] such that x(t) satisfies the

KKT conditions of P5 at t in the neighborhood of tp:

dy(t)

dt
= −M−1N (4.2)

where,

M =



∇2L ∇gL,1 . . . ∇gL,n ∇gU,1 . . . ∇gU,n ∇h1

−νL,1∇T gL,1 −gL,1
...

. . .

−νL,n∇T gL,n −gL,n
−νU,1∇T gU,1 −gU,1

...
. . .

−νU,n∇T gU,n −gU,n 0

∇Th1 . . . 0



,

N =

[
∇2
txL,−νL,1∇T

t gL,1, . . . ,−νL,n∇T
t gL,n,−νU,1∇T

t gU,1, . . . ,−νU,n∇T
t gU,n,∇T

t h1

]T
,

gL,1 := xL1 − x1 ≤ 0, gL,n := xLn − xn ≤ 0, gU,1 := x1 − xU1 ≤ 0, gU,n := xn − xUn ≤ 0,

h1 := 1Tx = τL + t(τU − τL)

and

73

L(x, t) = f(x) +
n∑
i=1

νL,igL,i(x) +
n∑
i=1

νU,igU,i(x) + λh1(x, t)

A first order Taylor series approximation can be used to estimate the difference in the optimal

solution of P5 at a point tp+1 and tp by:

∆yp = −(M(ȳp))−1(N(ȳp))(tp+1 − tp) (4.3)

where ∆yp = [∆xp,∆νpL,∆ν
p
U ,∆λ

p], ∆xp = x(tp+1) − x̄p, ∆νpL = νL(tp+1) − ν̄pL, ∆νpU =

νU(tp+1)− ν̄pU , and ∆λp = λ(tp+1)− λ̄p. The above result has been used to obtain explicit solution

in optimal control problems [164, 165, 166], where the objective function is typically quadratic

and the constraints are linear with parameters appearing on the right hand side. Other forms of the

above result with modified assumptions have been reported as well [167, 168, 169, 170, 171].

Theorem 4.1 provides a transformation to convert a point-to-set map (Ψ) to construct a linear

approximation of the lower envelope. However, the sensitivity theorem requires Hessian of the

original function. In black-box problems, this information is generally absent. If the problem being

addressed were a classical nonlinear convex program and the steps were sufficiently small, it would

have been possible to obtain the exact optima of P5 at tp+1. In this work, relatively larger steps

will be taken and the Hessian of the Lagrangian function is not known but rather approximated by

the Hessian of a surrogate model.

Let ŷ =[x̂(t), ν̂L(t), ν̂U(t), λ̂(t)] be obtained by using the Hessian of the surrogate model in

Sensitivity Theorem as shown below:

dŷ(t)

dt
= −M̂−1N̂ (4.4)

74

where,

M̂ =



∇2Lr ∇gL,1 . . . ∇gL,n ∇gU,1 . . . ∇gU,n ∇h1

−ν̂L,1∇T gL,1 −gL,1
...

. . .

−ν̂L,n∇T gL,n −gL,n
−ν̂U,1∇T gU,1 −gU,1

...
. . .

−ν̂U,n∇T gU,n −gU,n 0

∇Th1 . . . 0


N̂ =

[
∇2
txL

r,−ν̂L,1∇T
t gL,1, . . . ,−ν̂L,n∇T

t gL,n,−ν̂U,1∇T
t gU,1, . . . ,−ν̂U,n∇T

t gU,n,∇T
t h1

]T
and,

Lr(x, t) = f r(x) +
n∑
i=1

ν̂L,igL,i(x) +
n∑
i=1

ν̂U,igU,i(x) + λ̂h1(x, t) (4.5)

where f r(x) is the surrogate model of f(x). The details of the procedure to develop surrogate

model is given in Section 4.3.2.4. Furthermore, a first order Taylor series approximation of Eq.

(4.4) can be used to estimate the difference in the optimal solution at a point tp+1 and tp by:

∆ŷp = −(M̂(ȳp))
−1

(N̂(ȳp))(tp+1 − tp) (4.6)

where ∆ŷp = [∆x̂p,∆ν̂pL,∆ν̂
p
U ,∆λ̂

p],∆x̂p = x̂(tp+1) − x̄p, ∆ν̂pL = ν̂L(tp+1) − ν̄pL, ∆ν̂pU =

ν̂U(tp+1)− ν̄pU and ∆λ̂p = λ̂(tp+1)− λ̄p. For simplicity in notation, x̂(tp+1), ν̂L(tp+1), and ν̂U(tp+1)

are denoted as x̂p+1, ν̂p+1
L , and ν̂p+1

U respectively. Note that since the constraints in P5 are linear and

box constraints, the Hessian of the surrogate model of Lagrange function would simply be Hessian

of the original function (∇2Lr = ∇2f r). Furthermore, Eq. (4.6) requires Lagrange multiplier

values corresponding to the optima of P5 at tp. The details of estimating the Lagrange multipliers

is given in Section 4.3.2.3.

Next, the difference in the solutions given by Eq. (4.3) and Eq. (4.6) is shown to be bounded.

For simplicity in notation, M(ȳp), M̂(ȳp), N(ȳp), and N̂(ȳp) are denoted as Mp, M̂p, Np, and N̂p,

75

respectively. The step length is defines as α = tp+1 − tp.

Theorem 4.2. Let κM̂p
and κMp denote the condition number of M̂p and Mp respectively, and

κH∆p denote the bounds corresponding to the fully quadratic model. ∆yp, ∆ŷp denote the solu-

tions of Eq. (4.3) and Eq. (4.6) respectively. For simplicity in notation, let us denote M(ȳp) and

M̂(ȳp) as Mp and M̂p, respectively. Assume that the surrogate model is fully quadratic and the

assumptions of Theorem 4.1 are satisfied at tp, then the difference between the solution given by

Eq. (4.3) (∆yp)and Eq. (4.6) (∆ŷp) is:

||∆ŷp −∆yp|| ≤
ακMpκM̂p

κH∆p||Np||
||Mp||||M̂p||

(4.7)

Proof. Rewriting first-order sensitivity approximation (Eq. (4.3)) compactly when the Hessian is

known, the following is obtained:

∆yp = −(Mp)
−1(Np)α (4.8)

Taking norm on both sides and using the Cauchy-Schwarz inequality,

||∆yp|| ≤ α||Mp
−1||.||Np|| (4.9)

Using the definition of condition number of Mp as κM = ||M−1
p ||.||Mp|| and substituting in Eq.

(4.9).

||∆yp|| ≤ α
κMp ||Np||
||Mp||

(4.10)

Rewriting Eq. (4.6) compactly:

M̂p∆ŷ
p = −N̂pα (4.11)

Np is a vector with 3n+1 rows, where all the elements except the last are zero. Therefore,Np = N̂p

76

holds true and this relationship allows us to write

M̂p∆ŷ
p = Mp∆y

p (4.12)

Subtracting M̂p∆y
p on both sides

M̂p(∆ŷ
p −∆yp) = (Mp − M̂p)∆y

p (4.13)

Taking norm on both sides and using the Cauchy-Schwarz inequality,

||∆ŷp −∆yp|| ≤ ||M̂−1
p ||||Mp − M̂p||||∆yp|| (4.14)

Utilizing the definition of condition number (κM̂p
= ||M̂−1

p ||2.||M̂p||2) of M̂p, Eq. (4.10),

||∆ŷp −∆yp|| ≤
κM̂p

||M̂p||
||Mp − M̂p||

ακMp ||Np||
||Mp|| (4.15)

It can be verified using definitions of M , M̂ that the following relation holds,

||Mp − M̂p|| = ||∇2L−∇2Lr|| (4.16)

where, L and Lr are the Lagrangian function and surrogate model of the Lagrangian function

respectively. Using Eq. (4.16) in Eq. (4.15), the following is shown

||∆ŷp −∆yp|| ≤ ακMp||Np||
||Mp||

κM̂p

||M̂p||
||∇2L−∇2Lr|| (4.17)

Assuming the model to be fully quadratic (||∇2f − ∇2f r||2 ≤ κH∆p), the above expression can

be rewritten more compactly as follows:

||∆ŷp −∆yp|| ≤
ακMpκM̂p

κH∆p||Np||
||Mp||||M̂p||

(4.18)

77

Due to approximations involved, Eq. (4.6) is an approximate solution of P5 at the parameter

value tp+1. Nevertheless, the point suggested by the first-order approximation of the sensitivity

theorem in Eq. (4.6) serves as an initial guess for a trust-region based optimization algorithm to

solve (P5) and obtain the optima.

Remark 4.2. Although Eq. (4.6) is a powerful result in estimating an optima of a parametric

problem, there are assumptions involved which may not always be satisfied even if x̄p is a minima.

For instance, when the components of x̄p are at the bounds, LICQ is not satisfied, and M̂p becomes

singular. Similarly, if the multiplier corresponding to an active constraint is zero, SCS is violated

and that leads to one of the rows of M̂p becoming zero leading to its singularity. In case this

happens, the following strategy is opted to obtain an initial guess for solving P5 that satisfies the

equality constraint (
∑n

i=1 x̂
p+1
i = tp+1):

x̂p+1 = x̄p +
tp+1 − tp

n
(4.19)

While Eq. (4.19) may sometimes lead to arbitrary point, a point needs to be generated for the

algorithm to progress. Due to approximations involved in Eq. (4.6), it is possible that the predicted

point given by Eq. (4.6) (x̂p+1) or Eq. (4.19) is infeasible. Therefore, the suggested optima is made

feasible by projecting in the feasible space:

x̂p+1 = PB(x̂p+1) (4.20)

where B denotes the set of points in [xl, xu].

4.3.2.2 Correcting G(t): Converging to G(tp+1) from Ĝ(tp+1)

After Eq. (4.6) yields a predicted point, it needs to be corrected or atleast verified if the op-

timality conditions are satisfied. In other words, Ĝ(tp+1) is already known by Eq. (4.6) that is

close to G(tp+1) and an algorithm is needed to converge to G(tp+1). The goal of finding G(tp+1)

78

is equivalent to solving P5 at the parameter value tp+1. The choice of the correcting algorithm and

the nature of the problem affects the overall convergence of UNIPOPT. In case the problem is non-

convex, it should be globally optimized. On the other hand, if the problem is convex, using a local

method will suffice. However, available global solvers for blackbox problems do not guarantee

convergence in finite number of evaluations. Therefore, a local method is used as the correcting

algorithm. Specifically, a trust-region method is used that is known to converge quickly if a good

initial guess is provided. The goal here is to apply a trust-region based n-dimensional search for

G(tp+1) and x̄p+1 starting from Ĝ(tp+1) and x̂p+1. While single trust-region based methods [54, 52]

can be used, method based on managing two trust-regions [90, 53, 172] is applied. Single trust-

region is easy to manage, it has been reported that using two trust-regions (ρ,∆) is more efficient

[90]. The basic approach is to use samples to construct a surrogate model f r(x) to approximate

f(x) and solve the following optimization problem iteratively in a trust-region framework:

min
x

f r(x)

s.t. 1Tx = τL + tp(τU − τL)

||x− xk|| ≤ ∆k

(4.21)

The optimization problem in Eq. (4.21) is solved to obtain a new candidate point. If the new

point reduces the objective function, it becomes the trust-region center for the next iteration and

the trust-region size is potentially increased. Conversely, if the new point does not reduce the

objective function, it could be due to inaccuracy of the surrogate model or the minima has been

obtained. If the current point is indeed a minima, the trust-region sizes will continue to decrease

until it is within a pre-specified tolerance and the algorithm will converge. On the other hand, the

surrogate model may be inaccurate either due to poor geometry of the samples or the trust-region

size is too large for the surrogate model to approximate the original function effectively. If the

reason is former, the geometry of the sample set is improved and if it is latter, the trust-region size

is decreased.

The trust-region algorithm used in this work is based on two trust-regions (ρk,∆k) and given

79

Algorithm 4.1 Correcting Algorithm for Converging to G(tp+1) from Ĝ(tp+1)

1: STEP 0: Let Yk denote the interpolation set at iteration k, c(j) ∈ Yk denote the jth interpola-
tion point and ψrk be the criticality measure defined using surrogate model. Select initial 2n+1
interpolation points, initial guess (x0), initial trust region radius (ρ0= ∆0), other parameters (η0,
η1, λdec, λinc, ερ) and initialize the iteration counter k = 0.

2: STEP 1: Construct the surrogate model, solve Eq. (4.21) and obtain xr.
3: STEP 2: Update the trust-regions and interpolation set.
4: cf = arg max

c(j)∈Yk
||c(j) − xk||

5: if (f(xr) < f(xk)) then, xk+1 = xr and Yk+1 = Yk\cf ∪ xr
6: end if
7: if (||xr − xk|| ≤ 0.5ρk) then,
8: if (|f(xr)− f r(xr)| ≤ 1

8
ψrkρ

2
k) then,

9: if (ρk ≤ ερ) then, STOP!
10: else ρk+1 = max{ερ, 0.1ρk}, ∆k+1 = max{0.5ρk, ρk+1}.
11: end if
12: else ∆k+1 = max{0.1∆k, ρk}, ρk+1 = ρk
13: rk = −1
14: cf = arg max

c(j)∈Yk
||c(j) − xk||

15: if (||cf − xk|| ≥ 2∆k) then,
16: if (max{∆k, ||xr − xk||} ≤ ρk) then,
17: if (ρk ≤ ερ) then, STOP.
18: else ρk+1 = max{ερ, 0.1ρk}, ∆k+1 = max{0.5ρk, ρk+1}.
19: end if
20: end if
21: else Initiate model improvement step to obtain a new point, x̄l that replaces cf , i.e.,
22: Yk+1 = Yk\cf ∪ x̄l
23: end if
24: end if
25: else Calculate rk = f(xr)−f(xk)

fr(xr)−fr(xk)

26: if (rk ≥ η1) then, ∆k = λinc∆k

27: else if (η0 ≤ rk < η1) then, ∆k = ∆k

28: else if (rk < η0) then, ∆k = λdec∆k

29: end if
30: ∆k+1 = ∆k

31: cf = arg max
c(j)∈Yk

||c(j) − xk||
32: if (rk ≥ η0) then,
33: Yk+1 = Yk\c

f
k ∪ xr

34: ρk+1 = ρk
35: else
36: Perform steps stated in lines 15-24.
37: end if
38: end if
39: Step 3: Increment the iteration number, k = k + 1 and go to Step 1.

80

in Algorithm 4.1. The Correcting Algorithm starts by obtaining 2n + 1 design points. The details

of the sampling scheme is given in Section 4.3.2.4. The algorithm also needs an initial guess and

is provided by the prediction step (Eq. (4.6)). For simplicity in notation, the initial point is simply

represented by x0. The initial sizes of the trust-regions are also provided such that ρ0 = ∆0. The

factors by which the trust-region size (∆) is increased or decreased are defined as λinc and λdec

respectively. Note that the trust-region size ρ is always decreased by a factor of 10. The values of

constants η0 and η1 are set and the iteration counter k is initialized to 0.

The trust-region radius ρk is a lower bound on ∆k. While the parameter ρk is always decreased,

the trust-region radius ∆k can be decreased, increased or kept constant provided it is lower than ρk.

This allows the algorithm to take steps exceeding ρk. The parameter ρk is defined to manage the

samples in a smaller trust-region while ∆k is specified to consider a bigger region where the surro-

gate model is considered. ρk is decreased whenever the objective function has stopped decreasing

because of the constraint on ∆k.

Once the simulations are performed at the design points, the surrogate model is developed. Eq.

(4.21) is solved at each iteration to obtain a new point represented by xr. A check is performed

to see if the step length is small compared to the trust-region radius ρk. If this is true, it indicates

that either xr is near the optima or the surrogate model is inaccurate. If xr gives a better objective

function, the interpolation point farthest from the current iterate is replaced by xr. A check on the

accuracy of the surrogate model is then performed by comparing the difference between original

function value f(xr) and the surrogate model f r(xr) with reference to the criticality measure

(ψrk) and the trust-region radius ρk. If the difference is small, the model is deemed accurate and

convergence test on ρk is performed. If ρk is less than some pre-specified tolerance, the algorithm

converges or the trust-region sizes ρk and ∆k are decreased reflecting that the actual optima is near

and the current trust-region ρk is restricting the algorithm to decrease the objective function. If

the model is not accurate, ∆k is decreased and an attempt is made to improve the geometry of the

samples. It is then checked if the distance of farthest interpolating point from the current iterate

is more than 2∆k. If such a point, cf exists, model improvement step is initiated that replaces

81

the farthest point. If cf does not exist, then the interpolation set is well poised and ρk is checked

if it is less than the maximum of trust-region radius ∆k and step length. ρk is decreased if the

convergence criteria is not satisfied.

If the norm distance between the xr and xk is more than half of ρk, ∆k is updated by comparing

the ratio of actual decrease to the predicted decrease (rk). If rk is more than a specific parameter

η0, the new point xr is included in the interpolation set and the farthest point is excluded. If the

ratio rk is less, this indicates that the model is inaccurate and a model improvement step is initiated

to obtain x̄l that replaces the farthest point. Same steps as mentioned in the previous paragraph are

then repeated.

4.3.2.3 Estimating Lagrange Multipliers and Criticality Measure

As mentioned earlier, the point given by Eq. (4.6) serves as an initial guess for the correcting

algorithm (Section 4.3.2.2). When Eq. (4.6) is applied from tp−1, it also provides an estimate of

the Lagrange multipliers corresponding to the optima of P5 at tp. However, this estimate of the

Lagrange multipliers may not be accurate since Eq. (4.6) does not guarantee the exact optima

for a general nonlinear problem. Therefore, once Algorithm 4.1 yields the optimal point of P5

at the parameter value tp, the corresponding multipliers are estimated by solving a mixed integer

linear program (MILP). The MILP is formulated such that if a candidate point xk is optimal,

KKT conditions are satisfied and positive multipliers corresponding to the active constraints are

obtained. Binary variables are introduced to ensure that whenever the constraints are active, the

corresponding Lagrange multipliers are positive. Solving this problem serves two purposes: 1)

The objective function gives the criticality measure, and 2) The Lagrange multipliers are estimated

that can be used in Eq. (4.6).

ψrk = min
SPi,SNi,
νL,i,νU,i,λ
zL,i,zU,i

n∑
i=1

SPi + SNi (4.22a)

s.t. ∇f r
∣∣
xk,i

+ λ− νL,i + νU,i = SPi − SNi ∀i ∈ {1, . . . , n} (4.22b)

zL,i −MB(xLi − xk,i) ≥ 1 ∀i ∈ {1, . . . , n} (4.22c)

82

zL,i(x
L
i − xk,i) ≥ 0 ∀i ∈ {1, . . . , n} (4.22d)

νL,i +MBzL,i ≥ 0 ∀i ∈ {1, . . . , n} (4.22e)

νL,i ≤MBzL,i ∀i ∈ {1, . . . , n} (4.22f)

νL,i +MB(1− zL,i) ≥ LS ∀i ∈ {1, . . . , n} (4.22g)

zU,i −MB(−xUi + xk,i) ≥ 1 ∀i ∈ {1, . . . , n} (4.22h)

zU,i(−xUi + xk,i) ≥ 0 ∀i ∈ {1, . . . , n} (4.22i)

νU,i +MBzU,i ≥ 0 ∀i ∈ {1, . . . , n} (4.22j)

νU,i ≤MBzU,i ∀i ∈ {1, . . . , n} (4.22k)

νU,i +MB(1− zU,i) ≥ LS ∀i ∈ {1, . . . , n} (4.22l)

νL,i, νU,i, SPi, SNi ≥ 0 ∀i ∈ {1, . . . , n} (4.22m)

zL,i, zU,i ∈ {0, 1} ∀i ∈ {1, . . . , n} (4.22n)

where∇f r is the Jacobian of the surrogate model, MB and LS are arbitrarily large and small num-

bers respectively, while zL, zU are binary variables. In the above optimization problem, the slack

variables (SPi, SNi) are minimized such that at the optima of P5, the Jacobian of the surrogate

model of the Lagrangian function defined in Eq. (4.5) is equal to zero. The Lagrange multipliers

are desired to be positive when the inequality constraints are active so that SCS is not violated. To

do this, binary variables (zL, zU) are introduced. Lets assume that ith component of xk is at its

lower bound (xk,i = xLi). Eq. (4.22c) ensures that zL,i = 1, Eq. (4.22d) and Eq. (4.22e) become

trivial, Eq. (4.22f) sets the upper bound on the Lagrange multiplier (νL,i) to a large number and

Eq. (4.22g) sets the lower bound of νL,i as a non-zero small positive number. Thus, the Lagrange

multipliers corresponding to the active constraints are positive. On the other hand, Eq. (4.22h) and

Eq. (4.22l) becomes trivial, Eq. (4.22i) sets zU,i = 0, and Eq. (4.22j) and Eq. (4.22k) ensures that

83

the corresponding Lagrange multiplier is zero.

ψrk defined above can also be used as a criticality measure. Derivative-based criticality mea-

sure has been been extensively used in the nonlinear programming literature [173]. The primary

idea of the measure is to estimate if further decrease in the objective function is achievable while

satisfying the linearized constraints. These measures have been adapted for use in derivative-free

optimization context [70, 174, 73], where the derivative of the function is approximated by that of

the surrogate model. The objective function of the problem defined in Eq. (4.22) can be written as

follows:

ψrk = ||∇f r(xk) + ξr|| (4.23)

where ξr = λ − νL + νU . Similar problem as Eq. (4.22a)-4.22n with exact criticality measure by

using derivative of the function may also be defined as follows:

ψk = ||∇f(xk) + ξ|| (4.24)

When ψk = 0 holds at a point xk, a candidate point is said to be critical. At the final iteration

of the Correcting Algorithm, a critical point is returned (denoted by x̄p). The MILP optimization

problem in Eq. (4.22) is then solved to obtain the corresponding Lagrange multipliers (ν̄pL = νL,

ν̄pU = νU , λ̄p = λ).

4.3.2.4 Interpolation Set and Surrogate Modeling

As mentioned earlier, the original function is assumed to be unknown and derivatives are un-

available. Therefore, input-output data is used to build an inexpensive data-driven/surrogate/me-

tamodel/reduced-order model to approximate the original function. Sampling and modeling are

critical steps in any model-based blackbox optimization algorithm. Samples should be provided

such that it spans the entire space and the model should have the ability to capture the curvature

and multimodality feature of the original function.

The purpose of the sampling phase is to obtain points at which the simulation should be

performed and forms the primary step of developing predictive models. Interested reader may

84

Figure 4.4: Initial interpolating samples generated around a point

refer to a recent review article by [100] for more information about several static and adap-

tive sampling schemes. The procedure by [90] is followed to obtain an initial interpolation set

Y = {c1, c2, . . . , c2n+1}. Rules to generate more points was also proposed but in the algorithm, the

number of points are restricted to 2n+ 1. ci and cn+i are defined for i = 1, 2, . . . , n:

ci+1 = c1
i + ρ0ei, cn+i = c1

i − ρ0ei, if xLi < c1
i < xUi

ci+1 = c1
i + ρ0ei, cn+i = c1

i + 2ρ0ei, if c1
i = xLi

ci+1 = c1
i − ρ0ei, cn+i = c1

i − 2ρ0ei, if c1
i = xUi

(4.25)

where ei is the ith component of the coordinate vector, c1 and ρ0 are the trust-region center and

size respectively. The set of samples with c1 = (0.1076, 0.3174) and ρ0 = 0.1 are shown in Figure

4.4.

In contrast to derivative-based nonlinear programs where Taylor based models are used to ap-

proximate the function, interpolating or regression models are used in blackbox optimization algo-

rithms. In the literature, several surrogate models including quadratic [175, 176, 90]), polynomial

[61], kriging [55] and radial basis functions [52, 60, 177] have been used for optimization of black-

box problems. [78] proposed to select surrogate model amongst quadratic, kriging and signomial

85

based on the cross validation error. In this work, the performance of cubic radial basis function

and quadratic models are compared on test problems. In this section, the details of constructing

quadratic model are omitted and only radial basis function will be discussed.

Radial basis functions (RBFs) [60] are a broad class of interpolating functions that are given

by linear combination of nonlinear basis functions as follows:

s(x) =

|Y|∑
j=1

ωjφ(||x− cj||2) + p(x) (4.26)

The basis function (φ) can be linear (φ = r), cubic (φ = r3), multiquadratic (φ =
√
γ2 + r2), thin

plate spline (φ = r2log r) and Gaussian (φ = e−γr
2). In general, p(x) is a polynomial function.

In this work, cubic is used as the basis function and linear function as p(x) and refer it to as cubic

radial basis function (CRBF). The form of the surrogate model used is:

f r(x) =
n∑
i=1

bixi +

|Y|∑
j=1

ωj

(√√√√ n∑
i=1

(xi − cji)2

)3

(4.27)

where bi and ωj are the unknown parameters.

A linear optimization problem is formulated that imposes interpolating and conditional defi-

niteness conditions [60] to estimate the model parameters and it is solved using GAMS/CPLEX

12.6.0.1:

min
bi,ωj

SP1i,SN1i
,SP2j ,SN2j

n∑
i=1

(SP1i + SN1i)) +

|Y|∑
j=1

(SP2j + SN2j) (4.28a)

s.t.
n∑
i=1

bic
j
i +

|Y|∑
j′=1

ωj′

(√√√√ n∑
i=1

(cj
′
i − cji)2

)3

= fj + SP2j − SN2j, ∀j = {1, · · · , |Y|}

(4.28b)
|Y|∑
j=1

ωjc
j
i = SP1i − SN1i, ∀i = {1, · · · , n} (4.28c)

SP1i, SN1i, SP2j, SN2j ≥ 0 (4.28d)

86

The above parameter estimation problem is formulated as a feasibility problem with slack

variables (SP1i, SN1i, SP2j, SN2j). The sum of the slack variables is minimized so that the

interpolation condition in Eq. (4.28b) and conditional definiteness in Eq. (4.28c) are satisfied. A

similar linear optimization problem is formulated to estimate the parameters of quadratic model.

4.3.2.5 Model Improvement

It is important to account for the error between the objective function and surrogate model to

guarantee convergence of Algorithm 4.1 to a first-order critical point. To ensure convergence to

the optima of P5, the following condition need to be satisfied:

||∇f(xk)−∇f r(xk)|| ≤ C1ρk (4.29)

where, ρk and xk are the trust-region size and center at iteration k respectively. The parameter C1

depends on the parameter ΛY that indicates the poisedness of the interpolation set. The condition

given by Eq. (4.29) ensures that the surrogate model satisfies Taylor-like error bounds. The basic

idea of introducing this concept is to ensure that as the trust-region step approaches zero, the

algorithm converges to the true local optima. Therefore, as a consequence of Eq. (4.29), a descent

direction would ultimately be found as the trust-region or line-search step is decreased unless

the current iterate is an optimum solution. Hence, it is critical to bound ΛY especially when the

iterations fail to provide a better point. ΛY provides a basis to estimate how well the interpolating

sample set Y spans the search space and is defined as follows:

ΛY ≥ max
i∈Y

max
x∈B
|li(x)| (4.30)

where B denotes the set of points in [xl, xu]. For a set of interpolating points, Y = {c1, . . . , cp
′}, a

basis of polynomials lj(x), j = 0, · · · , q′ of degree ≤ d′, is called basis of Lagrange polynomials

if the following holds:

li(y
j) = δij (4.31)

87

To uniquely obtain Lagrange polynomial basis of d′ = 1 requires p′ = q′ = n + 1 samples, while

d′ = 2 uses p′ = q′ = 1
2
(n + 1)(n + 2) samples. As mentioned earlier, the Correcting Algorithm

maintaints a set of p′ = 2n+ 1 interpolation points at every iteration. Therefore, under determined

Lagrange polynomials of d′ = 2 are denoted and represented as:

lf (x) = a+ sTx+
1

2
xTHx (4.32)

Note that the model improvement step is called to replace a point cf and the new point is ob-

tained by optimizing the Lagrange polynomial corresponding to cf represented as lf (x). Hence,

obtaining Lagrange polynomials corresponding to all the interpolating points is unnecessary as

was done in [90]. A convex optimization is formulated, where norm of the Hessian of the La-

grange polynomial corresponding to the point cf is minimized to estimate its parameters using

GAMS/CONOPT [178]:

min
a,g,H

||∇2lf ||

s.t. lf (y
i) = δif ∀i ∈ Y

(4.33)

Pivoting algorithms have also been proposed in the literature [36, 52] to maintain poised set of

interpolation points. However, the absolute value of the Lagrange polynomial, lf (x) is maximized

to obtain a new candidate point x̄l and cf is replaced. Lagrange polynomials are nonconvex with

bilinear terms and ideally should be optimized globally but that can be computationally demanding.

Therefore, the following optimization problem is solved locally using CONOPT [178]:

max
x
± lf (x)

s.t. 1Tx = τ l + tp(τu − τ l)

x ∈ [xl, xu]

(4.34)

88

4.3.3 Selecting α

If the lower envelope (G(t)) continues to decrease, i.e., G(tp) ≤ G(tp−1), a step is needed

to select next parameter value tp+1 at which P5 is solved. An adaptive step length rule is used

which is governed by number of evaluations taken by the correcting algorithm. The premise is

that the number of evaluations taken by correcting algorithm is dependent on the distance of the

initial guess and the optimal solution. Furthermore, this distance is dependent on the step length.

Therefore, if the step length is small, correcting algorithm would take less number of evaluations

and more function calls would be needed for larger step length. Let Np denote the number of

evaluations taken by the correcting algorithm at parameter value tp. Let αp denote the step length

at tp to obtain the new design point tp+1 at which G(t) is next evaluated. The updating scheme for

αp is:

αp = min{tu − tp, 0.5αp−1}, if Np > maxt(N t) ∀t ∈ {1, · · · , p− 1}

αp = min{tu − tp, 1.5αp−1}, otherwise

(4.35)

4.3.4 Updating tl and tu

In this section, the methodology adopted to update bounds on t is described. At a given iteration

of UNIPOPT, if an increase in the lower envelope is observed (i.e., G(tp+1) > G(tp)), a surrogate

model to approximate G(t) is constructed using samples in the interpolation set Z = {t1, · · · , tP}.

Eq. (4.36) is then solved to obtain a new point tr:

min
t

Gr(t)

s.t. t ∈ [tl, tu]

(4.36)

The current iterate t0 is chosen as the design point in Z corresponding to the minimum of G(t):

t0 = arg min
t∈Z

G(t) (4.37)

89

EPIC is then applied from the closest interpolating point to tr to obtain G(tr). The bounds on t are

updated using conditions given in Eq. (4.38).

R =
G(tr)−G(t0)

Gr(tr)−Gr(t0)

∆̂ =


λinc(tu − tl), if R ≥ η1

tu − tl, if η0 ≤ R < η1

λdec(tu − tl), if R < η0

(4.38)

The bounds in the original space as well as the univariate space are then updated:

tl = t0 − ∆̂, tu = t0 + ∆̂ (4.39)

Before moving to the next iteration, the samples on the lower envelope within the new bounds are

stored and will be used in the constructing the surrogate model in the next iteration. Note that

the surrogate model to approximate G is full linear when G is differentiable because through the

construction of the algorithm, the interpolation set Z always lie within the trust-region and are

well-poised. The reader can refer [70] for more details of the algorithm.

4.4 Convergence

In order to prove the convergence, it is important to prove that the correcting algorithm as well

as the overall framework used to obtain and optimize the lower envelope (G(t)) converges to a

first-order critical point. Next, the convergence proof of the correcting algorithm is provided.

4.4.1 Convergence Proof of Correcting Algorithm to First-order Critical Point

The global convergence for unconstrained blackbox optimization for the form of algorithm

given in Algorithm 1 was proven by [179] and [180]. To the best of my knowledge, the convergence

analysis for the constrained case has not been done. The steps in [180] will be followed to extend

the analysis for constrained case. The proof presented here is applicable to black-box problems

90

with known constraints for the form of algorithm as Algorithm 4.1. The proof also does not require

an initial point to be feasible but solving Eq. (4.21) exactly will yield atleast a feasible point. The

analysis is valid when the surrogate model, f r is an interpolating quadratic model. The model can

be represented at iteration k as Qk with the following functional form:

Qk(x) = Qk(xk) + (x− xk)Tgk +
1

2
(x− xk)TGk(x− xk) (4.40)

The following is assumed to hold true:

A1 The objective function, f is continuous differentiable.

A2 The objective function, f is bounded from below.

A3 The surrogate model interpolates the original function at the trust-region center (xk), Qk(xk) =

f(xk).

A4 The Hessian of the surrogate model is bounded, ||∇2Qk(x)|| ≤ QH .

A5 The Hessian of the objective function is bounded, ||∇2f(x)|| ≤ FH .

A6 Let xr = xk + dk with ||dk|| ≤ ρk and it is possible to find a point that reduces the surrogate

model as follows:

Qk(xk)−Qk(xk + dk) ≥ C0ψ
r
kρk (4.41)

where, C0 ∈ (0, 1). The proof is provided next.

The first result is taken from [179] which gives the bound on the difference of the gradients of

the original model and the surrogate model at the trust-region center.

Lemma 4.1. Let ρk be the trust-region radius at iteration k. Then a constant C1 exists such that

||∇Qk(xk)−∇f(xk)|| ≤ C1ρk (4.42)

Proof. The result holds when there are atleast n + 1 samples. For details of the proof, refer [179]

and Lemma 4.2 in [180].

A result is presented next that bounds the difference between ψk and ψrk. The result is motivated

91

by the proof done in Lemma 3.5 in [181].

Lemma 4.2. Assuming that SCS condition is satisfied at a point xk, then

|ψk − ψrk| ≤ C1ρk (4.43)

Proof. Case 1. Assume ψk ≥ ψrk,

0 ≤ ψk − ψrk = ||∇fk + ξ|| − ||∇Qk + ξr||

= ||∇fk + ξ|| − ||∇fk + ξr||+ ||∇fk + ξr|| − ||∇Qk + ξr||
(4.44)

Note that ||∇fk + ξ|| − ||∇fk + ξr|| ≤ 0 (since ξ minimizes ψk). Expanding the terms in the

assumption that ψk ≥ ψrk:

||∇fk + ξ|| − ||∇Qk + ξr|| ≥ 0

⇒ ||∇fk + ξr|| − ||∇Qk + ξr|| ≥ 0

(4.45)

Second inequality holds since ξ minimizes ψk. Subsequently, using reverse triangle inequality and

Lemma 4.1:

0 ≤ ||∇fk + ξr|| − ||∇Qk + ξr|| ≤ C1ρk (4.46)

Using Eq. (4.44) and Eq. (4.46), the following is obtained:

0 ≤ ψk − ψrk ≤ C1ρk (4.47)

Now, considering the second case.

Case 2. Assume that ψrk > ψk.

0 ≤ ψrk − ψk = ||∇Qk + ξr|| − ||∇fk + ξ||

= ||∇Qk + ξr|| − ||∇Qk + ξ||+ ||∇Qk + ξ|| − ||∇fk + ξ||
(4.48)

92

Similarly, ||∇Qk+ξr||−||∇Qk+ξ|| ≤ 0 and ||∇Qk+ξ||−||∇fk+ξ|| > 0. Again, using triangle

inequality and Lemma 4.1:

0 < ||∇Qk + ξ|| − ||∇fk + ξ|| ≤ C1ρk (4.49)

Finally, the following is obtained:

0 < ψrk − ψk ≤ C1ρk (4.50)

From Eq. (4.50) and Eq. (4.47), the desired result stated in Eq. (4.43) is proven.

Lemma 4.3. For all k, the following holds:

|Qk(xk + dk)− f(xk + dk)| ≤ (C1 +
1

2
(QH + FH))ρ2

k
(4.51)

Proof. Refer [179] and Lemma 4.4 in [180].

Next, the conditions are derived that ensures that an iteration is successful. An iteration is

considered successful if:

f(xk)− f(xk + dk)

Qk(xk)−Qk(xk + dk)
= rk > η, (4.52)

where η ∈ (0, 1].

Lemma 4.4. Let C2 be a constant defined as follows:

C2 = (3C1 + 2QH + 2FH)max(1,
1

C0(1− η)
) (4.53)

If at iteration k, the following holds true

ψk > C2ρk, (4.54)

93

then the iteration k is considered to be successful, i.e., it satisfies Eq. (4.52).

Proof. From the assumption in Eq. (4.41), following will hold as well,

Qk(xk + dk) ≤ Qk(xk)− C0ψ
r
kρk +

1

8
C0QHρ2

k
(4.55)

Using triangle inequality, Eq. (4.54) and Lemma 4.2,

ψrk ≥ ψk − |ψk − ψrk| > (C2 − C1)ρk (4.56)

Using the above equation in Eq. (4.55),

Qk(xk)−Qk(xk + dk) > C0(C2 − C1 −
QH
2

)ρ2
k

(4.57)

Using definition of C2, he have that

C2 − C1 −
QH
2

> 0 (4.58)

Furthermore,

C2 − C1 −
QH
2

> C2 − (1 +
1

C0(1− η)
)C1 −

1

2
(1 +

1

C0(1− η)
)QH − 1

2

1

C0(1− η)
FH > 0

(4.59)

From Eq. (4.59),

C2 − C1 −
QH
2

>
1

C0(1− η)
(C1 +

1

2
(QH + FH)) (4.60)

Finally,
C1 + 1

2
(QH + FH)

C2 − C1 − QH2
< C0(1− η) (4.61)

94

|rk − 1| =
∣∣∣∣ f(xk + dk)− f(xk)

Qk(xk + dk)−Qk(xk)
− 1

∣∣∣∣
≤
∣∣∣∣f(xk + dk)−Qk(xk + dk)

Qk(xk)−Qk(xk + dk)

∣∣∣∣+

∣∣∣∣ f(xk)−Qk(xk)

Qk(xk)−Qk(xk + dk)

∣∣∣∣ (4.62)

Using assumption A3, Lemma 4.3 and Eq. (4.57),

|rk − 1| ≤ C1 + 1
2
(QH + FH)

C0(C2 − C1 − QH2)
(4.63)

Using Eq. (4.61) completes the second part of the proof that rk > η.

Lemma 4.5. The number of iterations at which the trust-region size, ρk remains the same are finite.

Proof. By construction of the algorithm, an iterate is only acceptable when a decrease in the objec-

tive function is obtained. Therefore, the sequence of iterates (f(xk)) are monotonically decreasing.

From assumption A2,

lim
k→∞

(f(xk)− f(xk+1)) = 0 (4.64)

Suppose by contradiction that the number of iterations are infinite. By construction of the algo-

rithm, ρk is decreased when the iteration is not successful and the model is ensured to be accurate.

Since the trust-region size, ρk is not being decreased, the number of successful iterations are infi-

nite. When the iterations are successful, following holds,

f(xk)− f(xk + dk) > η(Qk(xk)−Qk(xk + dk)) (4.65)

Using Eq. (4.57),

f(xk)− f(xk + dk) > η(C2 − C1 −
QH
2

)ρ2
k

(4.66)

This violates Eq. (4.64) and therefore the number of iterations corresponding to ρk should be

finite.

Corollary 4.1. The sequence of the trust-region size, ρk generated by the algorithm converges to

zero.

95

Proof. Due to fact that ρk is monotonically decreasing, this is a direct consequence of the last

lemma. From Eq. (4.66) and Eq. (4.64), it can be concluded that limk→∞ ρk = 0.

Lemma 4.6. The sequence of points generated by the algorithm has a critical limit point.

Proof. Consider set of unsuccessful iterations N when the objective function could not be de-

creased. From Lemma 4.4, for an unsuccessful iteration,

ψk ≤ C1ρk ∀k ∈ N (4.67)

From Corollary 4.1, it is known that the trust-region size tends to zero. Therefore,

lim inf
k→∞

ψk = 0 (4.68)

This completes the proof that the limit point is a critical point.

The previous result (Eq. (4.68)) is a weak convergence proof. A stronger result would be that

limk→∞ ψk = 0. The results provided next will ensure that the algorithm actually converges to a

critical point.

Let kε be the first iteration so that trust-region size ρk satisfies

ρk ≤
ε

C2

, ∀k ≥ kε (4.69)

where ε > 0. From Corollary 4.1, it is known that such iteration will exist. Since the trust-region

ρk is always decreased, for all the iterations k ≥ kε, the condition on the trust-region given in Eq.

(4.69) will hold.

Lemma 4.7. For all the iterations k ≥ kε, the following condition on criticality measure holds:

|ψk+1 − ψk| < ε, ∀k ≥ kε (4.70)

96

Proof. Using mean value theorem on∇f ,

∇f(xk+1)−∇f(xk)

xk+1 − xk
= ∇2f(xc) (4.71)

where xc is some point that lies between xk and xk+1. Taking norm on both sides, using Cachy-

Schwarz inequality, assumption A5 and the fact that ||xk+1 − xk|| ≤ ρk.

||∇f(xk+1)−∇f(xk)|| ≤ FHρk (4.72)

Using Eq. (4.69) and definition of C2,

FH < C2 ≤
ε

ρk
, ∀k ≥ kε (4.73)

Finally, using Eq. (4.72) and Eq. (4.73),

||∇f(xk+1)−∇f(xk)|| < ε, ∀k ≥ kε (4.74)

Following similar procedure as in Lemma 4.2, the following two cases are considered:

Case 1. Assume ψk+1 ≥ ψk,

0 ≤ ψk+1 − ψk = ||∇f(xk+1) + ξk+1|| − ||∇f(xk) + ξk||

= ||∇f(xk+1) + ξk+1|| − ||∇f(xk+1) + ξk||+ ||∇f(xk+1) + ξk|| − ||∇f(xk) + ξk||
(4.75)

||∇f(xk+1) + ξk+1|| − ||∇f(xk+1) + ξk|| ≤ 0 (since ξk+1 minimizes ψk+1). Expanding the terms

in the assumption that ψk+1 ≥ ψk,

||∇f(xk+1) + ξk+1|| − ||∇f(xk) + ξk|| ≥ 0

⇒ ||∇f(xk+1) + ξk|| − ||∇f(xk) + ξk|| ≥ 0

(4.76)

97

Subsequently, using reverse triangle inequality and from Eq. (4.74),

0 ≤ ψk+1 − ψk < ε, ∀k ≥ kε (4.77)

Case 2. Assume ψk > ψk+1:

ψk − ψk+1 = ||∇f(xk) + ξk|| − ||∇f(xk+1) + ξk+1||

= ||∇f(xk) + ξk|| − ||∇f(xk) + ξk+1||+ ||∇f(xk) + ξk+1|| − ||∇f(xk+1) + ξk+1||
(4.78)

Note that ||∇f(xk) + ξk|| − ||∇f(xk) + ξk+1|| ≤ 0 (since ξk minimizes ψk). Expanding the terms

in the assumption that ψk > ψk+1,

||∇f(xk) + ξk|| − ||∇f(xk+1) + ξk+1|| > 0

⇒ ||∇f(xk) + ξk+1|| − ||∇f(xk+1) + ξk+1|| > 0

(4.79)

Subsequently, using reverse triangle inequality and from Eq. (4.74),

0 < ψk − ψk+1 < ε, ∀k ≥ kε (4.80)

From Eq. (4.77) and Eq. (4.80), the desired result stated in Eq. (4.70) is obtained.

Lemma 4.8. If for an iteration k ≥ kε, the following holds,

ψk > ε (4.81)

then k is a successful iteration and

f(xk)− f(xk+1) >
2

3
ρkεη (4.82)

98

Proof. Using Eq. (4.81) and Eq. (4.69),

ψk > C2ρk (4.83)

Hence, k is a successful iteration by Lemma 4.4. Using triangle inequality, Eq. (4.81) and Lemma

4.2,

ψrk ≥ ψk − |ψk − ψrk| > ε− C1ρk, ∀k ≥ kε (4.84)

Using this and Eq. (4.69) in Eq. (4.41),

Qk(xk)−Qk(xk + dk) > (ε− C1ρk)ρk > (ε− C1

C2

ε)ρk, ∀k ∈ kε (4.85)

Using the definition of C2, it is known that C2 > 3C1 and the fact that the iteration is successful,

f(xk)− f(xk + dk) >
2

3
ερkη, ∀k ≥ kε (4.86)

Theorem 4.3. If the assumptions A1-A6 hold true, then all the limit points of the sequence of points

generated by Algorithm 4.1 is a critical point, i.e. limk→∞ ψk = 0.

Proof. This result is proven by contradiction. Lets define a set of iterations K such that

K = {k ∈ S | ψk > 4ε} (4.87)

where S denotes a set of successful iterations. Assume that the set K is infinite. Assume that

k ≥ kε + 2 and let qk > k be the first index such that ψqk+1 ≤ ε. The iteration qk is guaranteed to

exist due to Lemma 4.6. Using triangle inequality and Lemma 4.7, the following is obtained,

ψk−1 ≥ ψk − |ψk − ψk−1| > 3ε (4.88)

99

Similarly, ψk−2 > 2ε. Therefore, all the iterations between [k−2, qk] are successful due to Lemma

4.8. Using reverse triangle inequality, and the definition of qk and k,

|ψqk+1 − ψk| ≥ ||ψqk+1| − |ψk|| > 3ε (4.89)

Using the above relation, the triangle inequality and Lemma 4.7,

3ε < |ψqk+1 − ψk| = |
qk+1−k∑
i=1

(ψk+i − ψk+i−1)| < θε (4.90)

where θ = qk + 1− k. Using the Mean Value Theorem, assumption A5 and the triangle inequality,

|∇f(xqk+1)−∇f(xk)| ≤ FH ||xqk+1 − xk|| (4.91)

The trust-region size from iteration k to qk are the same because by the construction of the algo-

rithm, it is not reduced when the iterations are successful. Using this fact and Eq. (4.91),

|∇f(xqk+1)−∇f(xk)| ≤ FHθρk (4.92)

Using above equation, it can be proved using the procedure in Lemma 4.7 that

|ψqk+1 − ψk| ≤ FHθρk (4.93)

From Eq. (4.93) and Eq. (4.90),

θ >
3ε

FHρk
and θ > 3 (4.94)

It is known that the sequence of iterates f(xk) is non-increasing,

f(xk)− f(xqk+1) ≥
qk+1−k∑
i=1

(f(xk+i−1)− f(xk+i)) ∀k ∈ K (4.95)

100

Furthermore, using Lemma 4.8 and Eq. (4.94),

f(xk)− f(xqk+1) >
2

3
θρkεη >

2ε2η

FH
(4.96)

By assumption A2, f(xk) − f(xqk+1) → 0 leading to contradiction in Eq. (4.96). Therefore the

assumption in Eq. (4.87) that K is infinite must not hold.

4.4.2 Convergence of Overall Framework

Since the overall procedure is similar to NOWPAC [70], interested reader may refer their paper

for the convergence proof. Note that if the following assumptions are satisfied, the algorithm for

optimizing G will converge to the first-order critical point:

1. G is continuously differentiable and have Lipschitz continuous gradients.

2. The function G is bounded from below.

3. The Hessian of the G is bounded such that ||∇2G|| ≤ GH

4.5 Computational Studies

The UNIPOPT algorithm has been applied to a test suite of 393 problems. These problems

are listed in [37]. The test suite comprises of 232 nonconvex smooth and 161 convex nonsmooth

problems and the distribution of problems with respect to number of variables is provided in Figure

4.5. UNIPOPT is compared with other model-based BBO solvers. Specifically, the performance

of UNIPOPT is compared to that of BOBYQA SNOBFIT, ORBIT, and IMFIL.

4.5.1 Illustrative Example 4.2

UNIPOPT and other solvers are applied on a two-dimensional nonconvex smooth problem,

denschnc to demonstrate how the search space is explored by each of the solvers. The following

101

Figure 4.5: Distribution of problems with number of variables for (a) 232 nonconvex smooth and
(b) 161 convex nonsmooth problems.

problem is optimized by each of the solvers:

min
x

(−2 + x2
1 + x2

2)2 + (−2 + e(x1−1) + x3
2)2

s.t. x1, x2 ∈ [−9, 11]

(4.97)

The global solution of this problem is 0. The samples used by each of the solver is provided in

Figure 4.6 where the x and y axis represent the normalized variables, x1 and x2 respectively. It

Table 4.1: Best function values reported by solvers on denschnc and corresponding number of
evaluations.

Solvers BOBYQA IMFIL ORBIT SNOBFIT UNIPOPT
fmin 3.64 0.158 3.646 0.1834 1E-6
No. of evalua-
tions

315 82 63 169 1512

can clearly be seen that all other solvers except SNOBFIT explore only local region and therefore

102

(a) BOBYQA (b) IMFIL (c) ORBIT

(d) SNOBFIT (e) UNIPOPT

Figure 4.6: Distribution of samples used by (a) BOBYQA, (b) IMFIL, (c) ORBIT, (d) SNOBFIT,
and (e) UNIPOPT.

converges to local optima. It can be observed that UNIPOPT has better exploration characteristics

compared to BOBYQA, IMFIL, ORBIT. This is also evident from the solution obtained and are

listed in Table 4.1. Although, the number of evaluations taken by UNIPOPT for a two-dimensional

problem might seem a lot, the value reported in the table correspond to the final minimum value

achieved by the algorithm. If a less accurate solution is acceptable, the required number of evalu-

ations will decrease. For instance, if a solution of 0.01 is deemed satisfactory, UNIPOPT requires

1027 evaluations. At the end of first outer iteration, minimum value of 0.1977 is achieved in

137 evaluations. Table 4.2 shows for the first iteration of the UNIPOPT framework, the initial

guess provided by the prediction step, final point obtained by correcting algorithm, corresponding

function values and the norm difference between the two points. Note that the variables are nor-

malized. It can be observed in the table that for this example, sensitivity theorem provides a good

initial guess which is close to the actual optima. At each tp before the lower envelope (G) starts

increasing, sensitivity approximation given by Eq. (4.6) provides a sequence of points at which the

objective function is decreasing, i.e. the trend of G is being followed.

103

Table 4.2: Initial guess and optima generated during the first iteration of the UNIPOPT framework
for Illustrative Example 2.

tp x̂p x̄p f (x̂p) f (x̄p) ||x̂p − x̄p||2 iterations
needed
(k)

0 (0,0) (0,0) 5.59E+5 5.59E+5 0 8
0.05 (0.05,0.05) (0,0.1) 2.8E+5 1.35E+5 0.0707 8
0.1 (0,0.2) (0,0.2) 2.69E+4 2.69E+4 0 21
0.175 (0,0.35) (0.0477,0.3023) 6.98E+3 5.87E+3 0.0675 18
0.2125 (0.0412,0.3838) (0.1076,0.3174) 4.45E+3 3.12E+3 0.0939 17
0.2687 (0.1578,0.3797) (0.1953, 0.3422) 1.18E+3 962.26 0.0530 19
0.3531 (0.2610,0.4452) (0.3184, 0.3878) 155.18 57.05 0.0812 20
0.4797 (0.4332,0.5262) (0.5226, 0.4368) 3.41 0.23 0.1264 24
0.543 (0.5915, 0.4944) (0.5658, 0.5201) 70.57 48.57 0.0363 17

4.5.2 Experimental Setup for the Solvers

All the algorithms are given a limit of 10,000 function evaluations in order to get the complete

sense of the performance of all the solvers. So, depending on the computational budget of a user,

appropriate solver can be chosen. In the computational comparison in this section, UNIPOPT uses

cubic radial basis function (CRBF) as the surrogate model. Although, the convergence result shown

in Section 4.4 holds when the surrogate model is quadratic, CRBF performs more efficiently. The

algorithmic parameters for UNIPOPT are set as follows: εt = 10−3, η0 = 0.1, η1 = 0.7, λdec = 0.5,

λinc = 3, T = 20, and ερ = 10−5. For many of the problems, the bounds on the variables are not

provided. So, when this happens, the following strategy is used to get the bounds:

xLi = x∗i − 10ei, xUi = x∗i + 10ei ∀i = {1, . . . , n} (4.98)

where, x∗i represents the global solution found by BARON [182] or LINDOGLOBAL [183] and

ei represents the unit vector. For some problems, if appropriate bounds are not provided, that

resulted in numerical difficulties. For example, some of the problems had exponential terms that

led to very large objective function values. The bounds are heuristically tightened so that no

104

numerical difficulties are encountered. Nevertheless, all the solvers are provided the same variable

bounds. The lower bound (xL) is given as the initial guess to all the solvers. It is assumed that

no derivative is available and only function evaluations are possible. Two convergence criteria are

used to compare the performance of the solvers. The first criteria is the ability of a solver to obtain

a solution that is close to the global minima. Specifically, a solver is said to have solved a problem

if a point xf is such that it is within d fraction of the global minima (x∗):

f(xf) ≤ max((1 + d)f(x∗), f(x∗) + d) (4.99)

The second criteria used for comparison is to test if the reduction in the objective obtained by a

solver is comparable to the maximum reduction achieved. The criteria is defined as follows:

f(x0)− f(xf) ≥ (1− β)(f(x0)− fM) (4.100)

where x0 is the initial guess, 1 − β is the degree of reduction desired and fM is the least of the

minimum values obtained by each of the solvers for a particular problem.

4.5.3 Computational Results

UNIPOPT is applied to a test suite of 393 test problems comprising of sets of 161 convex

nonsmooth and 232 nonconvex smooth black-box problems, and the performance is compared to

those of other model-based solvers. A total of 1965 problem instances were tested.The results are

discussed in the subsequent sections.

4.5.3.1 Convex Nonsmooth Problems

The performance of the solvers is compared on a set of 161 convex nonsmooth problems.

Figure 4.7 (a) shows the performance of different model-based solvers on 161 convex nonsmooth

problems by using d = 0.01 in Eq. (4.99) and β = 0.001 in Eq. (4.100) with CRBF as the

surrogate model. In Figure 4.7(a), the y-axis indicates the fraction of problems that satisfy the

two convergence criteria within 10,000 function evaluations and the x-axis represents the solvers.

105

UNIPOPT solves more number of problems compared to all other algorithms. It is able to obtain

a solution within 1% of the global minima for 36 of 161 problems. BOBYQA ranks second by

solving 15 problems followed closely by ORBIT that solves 13 problems. Although IMFIL and

SNOBFIT are expected to be suited for nonsmooth problems, they are able to solve only 8 and 2

problems, respectively. Based on criteria in Eq. (4.100), UNIPOPT, BOBYQA, SNOBFIT, IMFIL

and ORBIT solves 103, 74, 75, 80 and 94 problems, respectively. This implies that for majority

of the problems, UNIPOPT is either finding the least or very close to the least function value

compared to other solvers. The performance of the solvers for d = 0.05 and β = 0.1 is shown in

Figure 4.7(b). It can be observed that on relaxing the convergence criteria, the performance of all

the solvers improve. Especially, the performance of ORBIT increases dramatically and it is able

to find a solution that is close to global optimum for 37 problems. However, UNIPOPT is still

competitive and solves 39 problems. BOBYQA, SNOBFIT and IMFIL satisfy the global solution

criteria for 23, 9 and 23 problems, respectively. In general, ORBIT and UNIPOPT performs better

than BOBYQA. Note that in this comparison, ORBIT and UNIPOPT uses radial basis function as

the surrogate model while BOBYQA uses quadratic function. One reason could be that radial basis

function might be more effective in approximating nonsmooth problems. When β is increased to

0.1 in Eq. (4.100), IMFIL’s performance increases dramatically. IMFIL and UNIPOPT performs

superior and are able to solve 145 and 150 problems, respectively. BOBYQA, SNOBFIT and

ORBIT solves 81, 111 and 115 problems, respectively. Based on the computational results, it can

be concluded that UNIPOPT is competitive in finding an optimal solution and it also consistently

finds the least objective function value compared to other solvers.

4.5.3.2 Nonconvex Smooth Problems

The performance of the solvers is also compared on a set of 232 nonconvex smooth problems.

Figure 4.8(a) shows the performance of the solvers based on the convergence criteria given in

Eq. (4.99) and Eq. (4.100) with d = 0.01 and β = 0.001, respectively while restricting the

number of function evaluations to 10,000. UNIPOPT ranks first by obtaining a solution within

1% of the global minima for 144 problems. On the other hand, BOBYQA ranks second and

106

(a) (b)
F

ra
ct

io
n
 o

f
p
ro

b
le

m
s

F
ra

ct
io

n
 o

f
p
ro

b
le

m
s

Figure 4.7: Fraction of problems solved by each of the solvers for 161 convex nonsmooth problems
using CRBF. The performance is compared based on the two criteria given in Eqs. 4.99 and 4.100.
The values of the parameters used is Figure (a) are d = 0.01 and β = 0.001, and Figure (b) are
d = 0.05 and β = 0.1.

solves 124 problems. SNOBFIT, IMFIL and ORBIT are able to solve 82, 84 and 93 problems,

respectively. When the solvers are compared based on their ability to reduce the initial function

value, UNIPOPT, BOBYQA, SNOBFIT, IMFIL and ORBIT are able to solve 210, 173, 153, 187

and 190 problems, respectively. The convergence criteria are further relaxed by choosing d =

0.05 and β = 0.1 and the comparison results are shown in Figure 4.8(b). UNIPOPT, BOBYQA,

SNOBFIT, IMFIL and ORBIT attains a solution within 5% of the global minima for 168, 133, 92,

94, and 110 problems, respectively. As expected, all the solvers satisfy the relaxed convergence

criteria for more number of problems. However, the performance rank remains unchanged. Based

on the criteria in Eq. (4.100) with β = 0.1, UNIPOPT, BOBYQA, SNOBFIT, IMFIL and ORBIT

solves 228, 191, 209, 210 and 211 problems, respectively. From this computational comparison,

it can be concluded that UNIPOPT explores the global space more efficiently compared to other

solvers and this makes it competitive for solving nonconvex problems.

107

(a) (b)
F

ra
ct

io
n
 o

f
p
ro

b
le

m
s

F
ra

ct
io

n
 o

f
p
ro

b
le

m
s

Figure 4.8: Fraction of problems solved by each of the solvers for 232 nonconvex smooth problems
using CRBF. The performance is compared based on the two criteria given in Eqs. 4.99 and 4.100.
The values of the parameters used is Figure (a) are d = 0.01 and β = 0.001, and Figure (b) are
d = 0.05 and β = 0.1.

4.5.4 Comparison of Performance of Quadratic Model with Cubic Radial Basis Function

While both quadratic model and cubic radial basis function are used in existing solvers, it is

not conclusive which one is better to use. Therefore, their performance is tested in the context of

the proposed algorithm. Figure 4.9 compares the performance of the UNIPOPT on 232 nonconvex

smooth problems using quadratic model and cubic radial basis function as the surrogate model in

the Correcting Algorithm. When the CRBF model is used in the algorithm, it performs slightly

better compared to the case when quadratic model is used. Their performance is also compared

on a set of 161 convex nonsmooth problems. The comparison is shown in Figure 4.9. The two

variants are compared based on their ability to obtain global minima using d = 0.01 in Eq. (4.99).

It can be seen that UNIPOPT performs better when CRBF model is used.

108

Figure 4.9: Fraction of problems solved as a function of number of evaluations for (a) 232 noncon-
vex smooth problems and (b) 161 convex nonsmooth problems using CRBF and quadratic model.
A problem is deemed to be solved if the solution is within 1% of the global minima.

4.5.5 Comparison of Strategies for Optimizing the Lower Envelope

Besides the strategy presented earlier to optimize the lower envelope, there are other alterna-

tives that can be used to optimize it. In this work, golden section type and Fibonacci algorithm

were compared with the model based strategy presented earlier on a subset of 81 problems. The

list of the problem name is provided in the supplementary material. Both golden section and Fi-

bonacci algorithms are based on direct search that aims to reduce the variable bounds iteratively. In

the implementation of golden section and Fibonacci algorithms, whenever value ofG was required

at new parameter value tp, the predictor step was implemented from the closest point at which

the optima was known. In the implementation of golden section type algorithm, the step length

is taken to be 0.2. The comparison is given in Figure 4.10 and it can be observed that the golden

search is economical in terms of number of evaluations but model based approach solves more

number of problems. The comparison is shown to illustrate that there are many different strategies

that can be applied for optimizing G(t). However, in this work, the model-based approach is used

for optimizing G(t) when comparing on the complete set of problems.

109

Number of evaluations

Figure 4.10: Comparison of model-based strategy, Golden section and Fibonacci algorithms for
optimizing G. The strategies were compared on a set of 81 problems.

4.6 Conclusions

In this chapter, a novel approach for solving black-box problems with bound constraints is

proposed. The concept of projecting multidimensional variables to a univariate space is proposed

that is given by the linear combination of the variables. This leads to a point-to-set map because

of the existence of multiple function values corresponding to the univariate variable. A function

on this map is identified such that its minima is also the minima of the original function. This

function is called the lower envelope. The UNIPOPT framework is developed to solve the multi-

dimensional problem by identifying the lower envelope and minimizing it such that the obtained

minima corresponds to the minima of the original problem. A two-step method, EPIC (Envelope

PredIctor and Corrector) is proposed which finds discrete points on the lower envelope curve. The

first step predicts the point by using approximating the Fiacco’s Sensitivity theorem and the second

step corrects the point given in the first step to obtain the exact point on the lower envelope. Once

the lower envelope is obtained, it is then optimized using univariate surrogate model. Theoretical

bounds on the difference between the solution given by exact and approximate sensitivity theorem

is also provided. The convergence of UNIPOPT is also shown. The performance of the algorithm

is compared with other model-based solvers on an extensive set of 161 convex nonsmooth and 232

110

nonconvex smooth problems. Overall, UNIPOPT performs better compared to other model-based

approaches.

111

5. OPTIMIZATION OF CONSTRAINED BLACK-BOX PROBLEMS: A TWO-PHASE

TRUST-REGION FRAMEWORK1

In Chapter 2 and Chapter 3, grey-box problems for which upper bounds of the diagonal el-

ements of the Hessian were globally optimized. Chapter 4 further proposed a projection based

algorithm for black-box problems with bound constraints. In addition to bound constraints, many

practical engineering problems often comprises of black-box constraints and that makes the opti-

mization problem even more challenging as illustrated in Figure 1.2. Therefore, in this chapter,

black-box problems are addressed that can have constraints of both known and unknown alge-

braic forms. Specifically, an optimization algorithm is proposed that can handle BPKC, BPUC and

BPHC. The form of the optimization problem addressed here can be represented as follows:

min
x

f(x)

s.t. gui(x) ≤ 0 ∀i ∈ {1, . . . , p}

gj(x) ≤ 0 ∀j ∈ {1, . . . , q}

x ∈ [xL, xU]

(5.1)

where x ∈ Rn are the decision variables, f (x) : Rn → R and gi(x) : Rn → R, i ∈ {1, . . . , p}

are C1 functions with hidden expressions in a black-box simulator. However, gj(x) : Rn → R,

i ∈ {1, . . . , q} are functions with known algebraic expressions.

In spite of the advances made in blackbox optimization for solving box-constrained or uncon-

strained problems, there are a lot of challenges that still need to be addressed for constrained prob-

lems. Firstly, many of the current available algorithms require a feasible initial guess. Secondly,

many of the solvers treat all the constraints as black-box. However, in many practical applications,

some of the constraints are known and critical problem insights are neglected by treating them as

1Reprinted with permission from I. Bajaj, S. S. Iyer, and M. M. F. Hasan, "A trust region-based two phase al-
gorithm for constrained black-box and grey-box optimization with infeasible initial point" Computers & Chemical
Engineering, vol. 116, pp. 306-321. Copyright 2018 Elsevier.

112

black-box. Thirdly, there is a need for an effective strategy to handle hard constraints that lead to

simulation failure. Fourthly, finding global minima for nonconvex problems is also a challenge.

In this work, an optimization algorithm for constrained black-box problems is presented. The

proposed algorithm has two phases: (i) feasibility phase, and (ii) optimization phase. The feasi-

bility phase finds a feasible point while the optimization phase attempts to decrease the objective

function. Both phases of the algorithm are based on developing and optimizing surrogate models

in a trust region framework. The two phase algorithm does not require a feasible initial point. A

novel optimization-based sampling strategy is also proposed which can handle hard constraints ef-

fectively so that the samples generated are feasible with respect to these constraints. The efficiency

of the algorithm is demonstrated by applying on a set of 92 nonlinear test problems from GlobalLib

and a chemical engineering case study. The algorithm is also compared to NOMAD [150, 184]

and COBLYA [69], two widely used solvers for constrained black-box problems.

The chapter is organized as follows. The notations are the same as used in Chapter 4. Pertinent

fundamental concepts are given in Section 5.1. Section 5.2 provides the details of the algorithm

while Section 5.3 describes the numerical test problems and the chemical engineering case study.

Some conclusions are made in Section 5.4.

5.1 Preliminaries

5.1.1 Trust Region Framework

In a trust-region method [173], a surrogate model is typically constructed in the neighborhood

of a point xk such that the model is believed to be an adequate representation of the original

function in the region around xk. The trust-region is defined to be the set of points around a point

xk such that:

B(xk,∆k) = {x ∈ Rn : ||x− xk|| ≤ ∆k}

When the analytical form of the objective is known, the model Q is considered quadratic such

that it incorporates the first and second order derivative information. The form of the model is as

113

follows:

Q(x) = f(xk) +∇Tf(xk)x+ xT∇2f(xk)x

A new point, x̄ is obtained by solving a subproblem of the form:

min
x

Q(x)

s.t. x ∈ B(xk,∆k)

(5.2)

It is not even necessary to solve Problem 5.2 exactly but a point x̄ providing sufficient decrease

in the model is admissible. For unconstrained optimization problems with known derivative infor-

mation of the objective function, the decisions about moving trust-region center and changing size

are based on the ratio of actual reduction in the objective function to the predicted reduction, i.e.

ρk =
f(xk)− f(x̄)

Q(xk)−Q(x̄)
(5.3)

Given the parameters 0 ≤ η0 ≤ η1 < 1, 0 < γde < 1 and γin > 1, the trust-region size is decided

by the following rule:

∆k+1 =


γin∆k, if ρk ≥ η1

∆k, if η0 ≤ ρk < η1

γde∆k, if ρk < η0

(5.4)

The trust-region center is updated as follows:

xk+1 =


x̄ if ρk ≥ η0

xk, if ρk < η0

(5.5)

The size of the trust-region is increased if ρk is appreciable and it is decreased otherwise. The

algorithm converges to a second-order critical point (x∗) when at each iteration, (5.2) is solved

approximately and the trust-region center and radius are updated as per the rules given by Eq.

114

(5.4) and Eq. (5.5). It is always possible in derivative-based methods to decrease the trust-region

sufficiently and obtain a better objective function value unless the trust-region center is an optimal

point. However, critical information is lost when the derivatives are unavailable. For optimization

problems with the absence of first-order and second-order derivative information, input-output data

are used to develop surrogate models. In BBO, the trust-region not only restricts the step length to

the region where model is considered appropriate but also forms the basis for choosing samples to

build data-driven models. In this case, the trust-region size is not the only factor that prevents us to

obtain a better objective function. The models need to be sufficiently accurate before the decision

to decrease the trust-region is taken. [175] formalized the concept of accuracy by defining fully

linear and fully quadratic models. Ensuring fully quadratic models require the original function

to be twice continuously differentiable function. In this work, the function is assumed to be once

continuously differentiable and therefore focus on fully linear class of models.

Definition 5.1. Assume that the function, f (x) and its data-driven surrogate model, f r(x) are

continuously differentiable and ∇f and ∇f r are Lipschitz continuous. f r(x) is said to be fully

linear if the error between the gradient of the model and the function is bounded such that

||∇f(x)−∇f r(x)|| ≤ κdf∆ ∀x ∈ B(xk,∆) (5.6)

And also, the error between the function and model satisfy the following relationship:

|f(x)− f r(x)| ≤ κf∆
2 ∀x ∈ B(xk,∆) (5.7)

where the constants κdf , κf > 0 are dependent on the Lipschitz constants of the surrogate

model and the function and a constant Λ that measures the poisedness of the interpolation points

[175]. Note that the parameters that can be controlled are, Λ and the trust-region size, ∆. The

relations (5.6) and (5.7) indicate that the gradient of the function and the function itself can be

approximated well if the trust-region size is small and the samples are well poised. If the sample

set is well poised, the model is said to be fully linear. In other words, if the surrogate model is

115

not able to obtain a better point, consideration should be given on constructing accurate models to

estimate the direction of decrease. If the model is accurate and the trust-region is sufficiently small,

a better objective function will be obtained. These bounds are similar to those of Taylor models

and are essential to ensure convergence. The update rule for trust-region center remains the same

but the criteria for updating the trust-region size is given as follows:

∆k+1 =


γin∆k, if ρk ≥ η1

∆k, if ρk < η1 and f r is not fully linear

γde∆k, if ρk < η1 and f r is fully linear

(5.8)

For constrained black-box problems with black-box constraints, in addition to developing data-

driven models for objective function, the models are also constructed for constraints. The surrogate

models for the constraints are also ensured to satisfy the fully linear property, i.e.

||∇gi(x)−∇gri (x)|| ≤ κdgi∆ ∀x ∈ B(xk,∆)

|gi(x)− gri (x)| ≤ κgi∆
2 ∀x ∈ B(xk,∆)

(5.9)

5.2 Two Phase Algorithm

Next, an outline of the algorithm for solving Problem (5.1) is given and the detailed description

of each of the components is also provided.

5.2.1 Outline of the Algorithm

The overall scheme is shown in Figure 5.1. The algorithm is designed such that the goal of

finding a feasible point and the goal of decreasing the objective function are considered indepen-

dently. The overall algorithm consists of two phases: the first is the feasibility phase that focuses

on finding a feasible point and the second phase is termed as optimization phase that focuses on

decreasing the objective function while maintaining feasibility at most of the iterations. One may

argue that it might be more efficient to consider decreasing the objective function and infeasibility

116

Figure 5.1: Schematic of the overall algorithm.

simultaneously as is done in penalty-based and filter methods. However, from a practitioner’s point

of view, it is preferred that when the optimization code stops, at least a feasible point is obtained.

This is especially important when the problem is black-box and simulations are computationally

expensive.

The basic idea of the optimization phase is to construct surrogate models of the objective func-

tion and the black-box constraints and solve the optimization subproblems. The updating rule for

the objective function and the constraints is based on feasibility of the candidate point as well as

the decrease in objective function. It is not necessary to construct fully linear models at each it-

eration but only when criticality measure is below a certain threshold so that Eq. (5.6), (5.7) and

5.9 provide meaningful bounds. Another instance when the construction of fully linear models

become necessary is when the algorithm could not decrease the objective function or the constraint

violation.

5.2.2 Feasibility Phase

The feasibility phase is initiated when the initial point provided by the user is infeasible. The

degree of infeasibility is measured at a point by defining a smooth constraint violation function for

117

unknown constraints as follows:

θ(x) =

p∑
i=1

(max(0, gi(x)))2 (5.10)

Note that θ = 0 when a point is feasible and is positive otherwise. The optimization problem to be

solved during feasibility phase is defined as follows:

min
x

θ(x)

s.t. gj(x) ≤ 0 ∀j ∈ {1, . . . , q}

x ∈ [xL, xU]

(5.11)

Problem (5.11) is a black-box problem with known constraints.

The feasibility problem is a box-constrained problem with black-box objective when there are

no known constraints. It becomes a black-box problem subject to known constraints when some

of the constraints are known. Both of these problems are relatively easy to solve. A trust-region

framework is adopted to solve feasibility problem. The decision regarding updating of trust-region

center and size are similar to that of unconstrained minimization of black-box problems. For the

case when the closed form of all the constraints is known, the sampling technique used in the chap-

ter always ensure the feasibility of samples. The overall algorithm for the Feasibility phase (FPA)

is given in Algorithm 5.1. The algorithm initiates by considering the entire space as the initial

trust-region and obtaining m + 1 feasible samples with respect to known constraints. The reason

for considering the entire space initially is explore the problem globally and thereby increasing

the chances of obtaining global minima. The algorithm allows the user to provide an initial point

enabling them to exploit the systems knowledge. The function evaluation is then performed on

the samples and the constraint violation values are collected. A surrogate model for the constraint

violation, θr is then developed using the samples data and optimized using ANTIGONE [103] to

118

obtain a candidate point, xfop by solving:

min
x

θr(x)

s.t. gj(x) ≤ 0 ∀j ∈ {1, . . . , q}

||x− xk|| ∈ ∆k

(5.12)

The constraint violation is calculated at xfop and is defined as θ(xfop). If θ(xfop) is less than a

pre-specified tolerance, θal, a feasible point is obtained and the algorithm goes to the optimization

phase. If the constraint violation is not below the tolerance, it is then checked if a decrease in the

constraint violation is obtained compared to the current iterate. If this is the case, the new trust-

region center is updated to xfop. The interpolation point which is distant from xfop and damaging

the geometry of the sample set is replaced. The first term on the right hand side of Eq. (5.14)

measures the distance and the second measures poisedness. The interpolation set is updated by

removing a point that maximizes the combined criteria of distance and poisedness. It is possible

that Problem (5.11) has a local minima at an infeasible point and in order to give an indication to

the user to try with a new point, it is important to check if a point xfop is locally optimal. This is

done by the comparing criticality measure with the size of the trust-region. The criticality measure

for the feasibility problem is given by:

ψθ(xfop) = min
d
∇θr(xfop)d

s.t. gj(x
fop) +∇gj(xfop)Td ≤ 0 ∀j ∈ {1, . . . , q}

||d|| ≤ 1

(5.13)

If both trust-region size and criticality measure is small, xfop is an optimal point for problem (5.11).

If the criticality measure, ψθ at xfop is smaller than some tolerance (εψθ), it is possible that xfop is

an optimal point of Problem (5.11). However, bounds given by Eq 5.9 is ineffective unless the trust-

region is small. Therefore, the size of the trust-region is checked if it is less than some threshold

value (ε∆). In that case, a local minima is achieved but is an infeasible point and the algorithm

119

should be started with a different initial point. If the trust-region size is not below a threshold, the

criticality measure gives an indication of proximity to the optima and it is beneficial to decrease

the trust-region. Before decreasing the trust-region, it is checked if the surrogate models are fully

linear.

If the criticality measure is above εψθ , a parameter defining the ratio of reduction in the con-

straint violation to the predicted reduction by the surrogate model, ρθk is calculated. If ρθk is above

a certain threshold value (η0), this indicates that the model is sufficiently accurate within the cur-

rent trust-region size and that the trust-region size can be further increased to allow for larger step

length. The trust-region is only decreased if a decrease in the constraint violation is not obtained

and the model is fully linear. Another possibility of not being able to obtain a decrease in constraint

violation could be due to the inaccuracy of the surrogate model. When this happens, a model im-

provement step is called to construct a fully linear model. The model improvement algorithm

(MIA) is discussed in Section 5.2.4 in detail.

5.2.3 Optimization Phase

Once a feasible point is obtained, optimization phase is triggered. The feasible point obtained

in the feasibility phase is included in the initial set of samples for the optimization phase. This

allows the surrogate models in the optimization phase to have the information about at least one

point in the feasible region. With this information, the optimization phase then focuses on finding

points with better objective function values in the feasible region. This phase attempts to find a

non-increasing sequence of feasible iterates which converges to at least a local minima. Similar to

the feasibility phase, the optimization phase considers m interpolation points in the entire space

to explore the global features of the problem. A feasible point xf0 is also provided as one of the

initial samples to give an indication to the model about the feasible region. The pseudocode of the

optimization phase is given in Algorithm 5.2. It is similar in spirit to the feasibility phase except for

the rule to update the trust-region center. After performing the function evaluation at the sample

set, Yk, surrogate models are constructed for the objective function (f r(x)) and the constraints

(gri (x)) with unknown closed forms. The following problem is then solved to obtain a candidate

120

Algorithm 5.1 Feasibility Phase Algorithm (FPA)
STEP 0: Choose initial m interpolation points, initial guess (x0), initial trust-region radius
∆0 = ∆max = ||xU − xL||, η0, γde, γin, k = 0, ε∆, εψθ and θal.
STEP 1: Solve Eq. (4.28a) to construct the surrogate model, θr for constraint violation, θ and
solve (5.12) to obtain xfop.
STEP 2: Update the next iterate, trust-region and interpolation set. Define

yok = argmax
yj∈Yk
||yj − xfop||2|lj(xfop)| (5.14)

if (θ(xfop) ≤ θal) then, STOP and return xfop

end if
if (θ(xfop) < θ(xk)) then, xk+1 = xfop and Yk+1 = Yk\yok ∪ xfop
end if
if (ψθ(xfop) ≤ εψθ) then,

if (∆k ≤ ε∆) then, STOP, no feasible point found. Restart from a different initial point.
else

if (model is fully linear) then, ∆k+1 = γde∆k

else ∆k+1 = ∆k and initiate MIA
end if

end if
else Calculate ρθk = θ(xfop)−θ(xk)

θr(xfop)−θr(xk)

if (ρθk ≥ η0) then, ∆k+1 = γin∆k

else if (ρθk < η0 and θ(xfop) < θ(xk)) then, ∆k+1 = ∆k

else if (θ(xfop) ≥ θ(xk) and the model is not fully linear) then, ∆k+1 = ∆k and initiate
MIA and replace at most 2 sampling points

else if (θ(xfop) ≥ θ(xk) and the model is fully linear) then, ∆k+1 = γde∆k

end if
end if
Step 3: Increment k by one and go to Step 1.

point, xsop:

min
x

f r(x)

s.t. gri (x) ≤ 0 ∀i ∈ {1, . . . , p}

gj(x) ≤ 0 ∀j ∈ {1, . . . , q}

||x− xk|| ∈ ∆k

(5.15)

where gri is the surrogate model for the ith constraints whose form is unknown. The constraint

violation at xsop is calculated and checked if it is less than a pre-specified tolerance (θtol). If it is

121

less, it is examined if a decrease in the objective function is obtained. If that is the case, then the

trust-region center is updated to xsop. The interpolation set is also updated by including xsop and

discarding the worst point. To determine if xsop is optimal, the criticality measure (ψf (xsop)) is cal-

culated and examined if it is less than some tolerance (εψf). The criticality measure corresponding

to the optimization phase is calculated by:

ψf (xsop) = min
d
∇f r(xsop)d

s.t. gri (x
sop) +∇gri (xsop)Td ≤ 0 ∀i ∈ {1, . . . , p}

gj(x
sop) +∇gj(xsop)Td ≤ 0 ∀i ∈ {1, . . . , q}

||d|| ≤ 1

(5.16)

The criteria about the trust-region size is also verified before giving the certificate of optimality.

The criticality measure can be small due to inaccuracy of the surrogate models. Therefore, be-

fore the trust-region is decreased, the fully linear property of the model is ensured to hold true.

If the criticality measure is above the threshold (εψf), the ratio of actual reduction in the objec-

tive function to the predicted reduction given by the surrogate model is calculated. Note that it

is not reasonable to assume the predicted reduction to be always positive as it happens in clas-

sic derivative- based problems. The reason for predicted reduction being negative can be due to

inaccuracy of the surrogate models. Therefore, it is ensured that there is an actual reduction in

the objective function before the the trust-region size is increased. And it is kept constant if the

ratio, ρfk is less. The trust-region size is decreased when the model is fully linear and there is no

improvement in the objective function.

In many problem instances, it may happen that the objective function can be decreased while

maintaining feasibility only along a thin domain. In extreme cases, such a thin domain can be

an equality constraint. It is not trivial to obtain a search direction when the derivatives are not

available. NOWPAC and CONORBIT addressed this issue by adding a small offset in problem

(5.15). Once it is ensured that the model is fully linear, the trust-region size is decreased. The

122

filter approach e.g., [76] accepts infeasible point if the new point reduces the objective function

sufficiently compared to the constraint violation. The criticality measure is compared to the trust-

region size to verify if it is indeed the case of thin domain. If the criticality measure is more than

a fraction of the trust-region size, the tolerance on the allowable constraint violation is increased

so that slightly infeasible solution is admissible. Once a better objective function is obtained, the

tolerance on the constraint violation is reset to the original value. It is possible that problem (5.15)

becomes infeasible at certain iterations. This is due to finite tolerance on constraint violation, all

the samples may be slightly infeasible. When this happens, the following subproblem is solved:

min
x

f r(x)

s.t. gri (x) ≤ gi(xk) ∀i ∈ {1, . . . , p}

gj(x) ≤ 0 ∀j ∈ {1, . . . , q}

||x− xk|| ∈ ∆k

(5.17)

At this point, it should be pointed out that the tolerance on constraint violation can be selected as

0 but that may slow the progression of the algorithm.

5.2.4 Model Improvement

It is known that to ensure the surrogate models to satisfy fully linear property, the set of interpo-

lating points need to be well-poised and is very critical to ensure convergence of BBO algorithms

[54]. In broad terms, the meaning of well-poised samples is that their geometry is adequate in the

sense that it should span all the directions of the space. It is possible to choose an initial set of

samples which are well-poised. The models need to be ensured to be fully linear. A very simple

but crude way for doing so is to replace all the samples at each iteration such that all of them lie

in the trust-region, B(xk,∆k). However, this approach is not efficient and most likely will result

in large number of evaluations. Therefore, assuming that the initial set of interpolating samples

are well-poised, a mechanism is needed that replaces one sample at each iteration while improving

the geometry of the samples. Also, note that the models are not required to be fully-linear at all

123

Algorithm 5.2 Optimization Phase Algorithm (OPA)
STEP 0: Choose initial m interpolation points, feasible point obtained from feasibility phase
(x0

f), initial trust-region radius ∆0 = ∆max = ||xU − xL||, η0, γde, γin, k = 0, ε∆, εψf and θal,
θtol = θal, ν < 1.
STEP 1: Solve Eq. (4.28a) to construct surrogate model, f r for the objective function and set
of surrogate models, gri ∀i ∈ {1, · · · , p} to approximate unknown constraints. Solve Problem
(5.15) to obtain xsop.
if (Problem (5.15) is infeasible) then, solve Problem (5.17) to obtain xsop

if (ψf (xsop) > ν∆k) then, Replace all the interpolation point by Eq. (??)
end if

end if
STEP 2: Update the next iterate, trust-region and interpolation set.
yok = argmax

yj∈Yk
||yj − xsop||2|lj(xsop)|

if (θ(xsop) > θtol) then,
if (Model is fully linear) then, ∆k+1 = γde∆k

if (ψf (xsop) > ν∆k) then, θtol = 10θal
end if

else Initiate MIA
end if

else
if (f(xsop) < f(xk)) then, set θtol = θal, xk+1 = xsop, Yk+1 = Yk\yok ∪ xsop
end if
if (ψf (xsop) ≤ εψf) then,

if (∆k ≤ ε∆) then, STOP!
else

if (Model is fully linear) then, ∆k+1 = γde∆k

else ∆k+1 = ∆k and initiate MIA
end if

end if
else Calculate ρfk = f(xsop)−f(xk)

fr(xfop)−fr(xk)

if (ρfk ≥ η0 and f(xsop) < f(xk)) then, ∆k+1 = γin∆k

else if (ρfk < η0 and f(xsop) < f(xk)) then, ∆k+1 = ∆k

else if (f(xsop) ≥ f(xk) and the model is not fully linear) then, ∆k+1 = ∆k and initiate
MIA

else if (f(xsop) ≥ f(xk) and the model is fully linear) then, ∆k+1 = γde∆k

end if
end if

end if
Step 3: Increment k by one and go to Step 1.

124

iterations but only when the objective function is not reduced or the criticality measure is below a

certain threshold.

To this end, the self-correcting geometry approach proposed by [185] is employed. The idea

of the method is to replace an existing point in the interpolation set, Yk by either xfop or xsop if the

algorithm is in the feasibility phase or the optimization phase, respectively.

In the literature, one of the metrics of well-poisedness is given by Lagrange polynomials [186].

If a set of interpolation points Yk = {y0, y1, . . . , ym} is defined, correspondingly a basis of poly-

nomials li(x), i = 0, 1, . . . ,m is basis for Lagrange polynomials such that:

li(yj) = δij (5.18)

where δij is the Kronecker delta. Clearly, if the degree of the Lagrange polynomials is 2, the

number of interpolation points required to uniquely determine its coefficients is mQ = (n+1)(n+2)
2

.

But, this is not favorable when the computational budget is limited. In this chapter, the number

of interpolation points that is less than mQ are maintained. To compute the coefficients of the

Lagrange polynomials, a convex optimization problem that minimizes the Hessian of the Lagrange

polynomials is solved:

min ||∇2li||

s.t. li(y
j) = δij

(5.19)

A set of interpolation points is said to be Λ-poised if the corresponding Lagrange polynomials are

bounded, i.e.

max
i=0,1,...,m

max
x∈B

|li(x)| ≤ Λ (5.20)

The criteria used to replace a point is based on combined poisedness and distance measure such

that on replacement, the geometry of the samples are improved. The model improvement algorithm

is called by either the optimization phase or the feasibility phase whenever the geometry of the

samples need to be improved. A pseudocode for MIA is given in Algorithm 5.3.

Firstly, the set of points lying outside the current trust-region are identified denoted by Fk. The

125

point which maximizes the distance and poisedness measure is replaced. If Fk is empty, a set of

non-poised close points, Ck is identified. Again, a point that maximizes the combined distance and

poisedness criteria is identified. If both the sets Fk and Ck are empty, then the current interpolation

set is well-poised and the surrogate model is fully linear.

Algorithm 5.3 Model Improvement Algorithm (MIA)
STEP 0: Choose parameters β ≥ 1, Λ > 1 and given a candidate point xop.
STEP 1: Define a set consisting of distant interpolation points such that:

Fk = {yj ∈ Yk| ||yj − xop|| > β∆k and |lk,j| 6= 0} (5.21)

if (Fk 6= ∅) then, amongst the farthest points, replace a point yr ∈ Fk such that

yr ∈ argmax
yj∈Fk

||yj − xop||2|lj(xop)| (5.22)

Define the new interpolation set, Yk+1 = Yk \ {yr} ∪ {xop}
else if (Fk = ∅) then Define a set consisting of close interpolation points such that:

Ck = {yj ∈ Yk \ {xk}| ||yj − xop|| ≤ β∆k and |lk,j(xop)| > Λ} (5.23)

if (Ck 6= ∅) then, Amongst the closest point, replace a point yr ∈ Ck

yr ∈ argmax
yj∈Ck

||yj − xop||2|lj(xop)| (5.24)

Define the new interpolation set, Yk+1 = Yk \ {yr} ∪ {xop}
else The model is fully linear
end if

end if

5.2.5 Surrogate Modeling

As discussed earlier, surrogate models θr, f r and gri are developed. Surrogate model is an

inexpensive approximation of the unknown equations that enables one to utilize derivative-based

algorithms to guide the search towards the true optimum of the problem. The surrogate model

serves the purpose of implicitly approximating derivative of the underlying function. The sur-

rogate models considered are interpolation or regression based. Certain surrogate model might

126

be well suited for some problems while another surrogate model might be more appropriate for

other problems. The surrogate models that satisfy the fully linear property are of prime interest.

Quadratic ([90], [54], [73], [172]) and radial basis function ([52], [174], [75]) are some of the

commonly used surrogate models to approximate the original function. The surrogate models are

built for the constraint violation function during feasibility phase and for the objective function and

unknown constraints during optimization phase. Similar to Chapter 4, cubic radial basis function

(CRBF) is used as the surrogate model and the details of the model are given in Section 4.3.2.4.

5.2.6 Initial Sampling

In many of black-box optimization problems, the simulation is computationally expensive. In

this scenario, it is critical that initial set of samples to be selected spans the entire space efficiently.

Several sampling schemes are available in the literature and interested reader may refer a recent

review paper by [100] to learn about various static and adaptive sampling schemes. Two alternate

approaches for sampling are used depending on the constraints of the problem. If all the constraints

of the problem are black-box, then the approach of [90] is used as the first sampling strategy and

given by Eq. (4.25).

In many engineering applications, all the constraints may not be completely black-box and

may have a subset of known constraints. It is beneficial to take the advantage of known constraints

by sampling only in the feasible region [187]. The known constraints may be unrelaxable which

means that the simulation fails at certain samples that do not satisfy the unrelaxable constraints.

[78] suggested a two step strategy to obtain feasible samples. The first step involved obtaining a

large number of samples using Latin Hypercube design (LHD) and filtering out the ones which are

infeasible with respect to known constraints. In the next step, distance criteria is used to select the

final set of samples. A key issue with this approach is that it is difficult to determine appropriate

number of samples to be given by LHD a priori.

Therefore, in the second sampling strategy, an optimization based sampling strategy is pro-

posed such that a desired number of samples, which are space filling and feasible with respect

to known constraints, is obtained. Optimization formulations based on entropy, integrated mean

127

squared error, minimax and maximin distances and discrepancies can be used as metric to measure

space filling characteristics. The wrap-around L2 discrepancy [188] is minimized and the known

constraints are incorporated resulting in the following nonlinear problem:

min
u

(
4

3

)n

+
1

m2

m∑
j=1

m∑
j′=1

n∏
i=1

[
3

2
− |uji − uj

′
i |(1− |uji − uj

′
i |)
]

s.t. gj(u) ≤ 0 ∀j ∈ {1, . . . , q}

||u− uk|| ∈ ∆̂k

(5.25)

Here, uji is the scaled ith component of jth sample. Both of the sampling strategies are determinis-

tic in nature and the only parameter that will change the output of the algorithm is the initial guess.

Therefore, the proposed strategy is deterministic in nature as long as the initial guess remains the

same.

While the filter approach of [76] considers decreasing objective function and constraint viola-

tion simultaneously by building a pareto front, the two aspects are considered independently. It is

sometimes not possible to get a point which is feasible and improves the objective function at the

same time especially when the feasible domain is thin. The filter approach of [76] deals with this

problem by accepting an infeasible point if it decreases the objective function sufficiently. How-

ever, in the proposed approach, the tolerance on constraint violation is increased by checking if

criticality measure is above a threshold, size of trust-region is below a threshold and the model is

fully linear. The algorithm proposed in this chapter is similar in spirit to NOWPAC and CONOR-

BIT in the sense that it is neither based on penalty or filter approach. A key difference, however

is that no assumption on the availability of an initial feasible point. Secondly, a margin or offset

is not used in the constraints. NOWPAC and CONORBIT also assume that all the constraints are

black-box and relaxable. It is possible in many cases that the simulation fails if the samples do

not satisfy certain constraints. The proposed blackbox optimization framework can handle these

constraints efficiently.

128

5.3 Computational Studies

In this section, computational results for the two phase algorithm are provided. After demon-

strating the algorithm on a nonlinear 2 dimensional example, comparison of the performance of

the proposed method is also provided. Moreover, the two-phase algorithm is also compared to

COBYLA and NOMAD. The details of the algorithm parameters with their values used is provided

in Table 5.1. The application of the algorithm is also demonstrated on a chemical engineering case

study.

5.3.1 An Illustrative Example

The two phase algorithm is illustrated using a two-dimensional nonlinear smooth problem,

st_e18. The problem can be stated as follows:

min
x

x1 + x2

s.t.− x2
1 − x2

2 ≤ −1

x2
1 + x2

2 ≤ 4

− x1 + x2 ≤ 1

x1 − x2 ≤ 1

x1 ∈ [−2, 2]

x2 ∈ [−2, 2]

(5.26)

In this numerical problem, although the analytical functional form is known, the derivative infor-

mation is not utilized and only simulations can be performed. The variable bounds are assumed to

be known and only the nonlinear constraints are considered black-box.

The algorithm starts by providing the lower bound, i.e., (−2,−2) as the initial guess. Clearly,

the initial guess is infeasible and feasibility phase is therefore initiated. Initial samples generated

at iteration 0 using Eq. 4.25 and the corresponding constraint violation values are listed in Table

5.2. None of the initial samples are feasible. Figure 5.2 shows the behavior of the constraint

129

Table 5.1: Algorithm parameters.

Parameters Values
Threshold for changing the trust-region size (η0) 0.1
Factor of decreasing the trust-region size (γde) 0.5
Factor of increasing the trust-region size (γin) 3
Minimum trust-region size (ε∆) 10−6

Tolerance on criticality measure for feasibility problem (εψθ) 10−3

Allowable constraint violation for the final solution (θal) 10−8

Comparison factor of trust-region size and criticality measure (ν) 0.1
Factor indicating a particular point to be farther compared to the trust-region size (β) 1.2
Threshold on poisedness measure (λ) 2

Table 5.2: Samples and corresponding constraint violation at iteration 0 of feasibility phase.

Sample no. Sample θ
1 (-2,-2) 16
2 (2,-2) 25
3 (-2,2) 25
4 (0,-2) 1
5 (-2,0) 1

violation function. Note that the feasible region is small and a systematic method is needed to

obtain a feasible point. In the next step, surrogate model for the scaled constraint violation is

developed and the model parameters are estimated by solving Eq. (4.28a). The functional form of

the obtained surrogate model is:

f r(x) = −1.185x1 − 1.185x2 + 2.278
(√

(x1)2 + (x2)2
)3

+ 0.427
(√

(x1 − 1)2 + (x2)2
)3

+

0.427
(√

(x1)2 + (x2 − 1)2
)3

− 0.853
(√

(x1 − 0.5)2 + (x2)2
)3

−

0.853
(√

(x1)2 + (x2 − 0.5)2
)3

(5.27)

The above surrogate model is then optimized and the sample (0.4199,0.4199) is obtained.

When the function is evaluated at this point, there is improvement in the constraint violation. The

interpolation point which maximizes the combined distance and poisedness measure is replaced

130

Figure 5.2: Constraint violation function for st_e18.

Table 5.3: Samples and corresponding Lagrange polynomials at iteration 0.

Sample Lagrange Polynomials (l)
(-2,-2) −1− 0.25x1 − 0.25x2 + 0.5(0.25x2

1 + 0.25x2
2)

(2,-2) 0.25x1 + 0.5(0.25x2
1)

(-2,2) 0.25x2 + 0.5(0.25x2
2)

(0,-2) 1 + 0.5(−0.5x2
1)

(-2,0) 1 + 0.5(−0.5x2
2)

by the new point. The Lagrange polynomials used to measure the poisedness is listed in Table

5.3. Note that the Lagrange polynomials do not depend on the objective function values but rather

only on set of interpolation points. The criticality measure at this point is 1.426 × 10−9 which is

less than the pre-specified tolerance, εψθ but the size of the trust-region is more than the tolerance,

ε∆. Repeating the steps as listed in Algorithm 5.1, a feasible point is obtained in 8 iterations and

requires a total of 13 function evaluations. Figure 5.3(a) shows the movement of iterates during the

feasibility phase. The feasibility phase starts with an infeasible point and ultimately gives a feasible

solution Figure 5.4(a) gives the progress of the iterates with cumulative number of evaluations.

Figure 5.3 shows the movement of the iterates during the optimization phase. It starts with

the objective value of -1.5897 and finally obtains an objective function value of -2.823. The global

minima of the problem is -2.8284. The progress of minimum objective function value with number

131

Figure 5.3: The figure shows the contour plot of the objective function and the feasible region is
shown by the grey region. It also illustrates the progression of the iterates in (a) feasibility phase
and (b) optimization phase.

of evaluations during the optimization phase is given in Figure 5.4(b). The algorithm is able to

obtain a solution which is within 1% of the global minima in 24 function evaluations.

5.3.2 GlobalLib Test Problems

The two-phase approach is applied to a comprehensive list of 92 test problems from GlobalLib

[189] for which the global minima are known. The test problems are the same as those used by

[78]. All the problems have only inequality constraints. The most difficult problem are solved by

assuming that all the constraints have unknown analytical functional form. The dimensions of these

92 problems vary from 1 to 65 while the number of constraints range from 1 to 81. The distribution

of the problems with dimension and constraints is given in Figure 5.5. For the problems which did

not have lower and upper bounds for the variables given in the problem formulation, the lower and

upper bounds are assigned as follows:

xLi = xglobi − 10 ∀i ∈ {1, . . . , n}

xUi = xglobi + 10 ∀i ∈ {1, . . . , n}
(5.28)

132

Figure 5.4: Decreasing (a) constraint violation, and (b) objective function with number of evalua-
tions

It is assumed that a single function evaluation gives the values of the objective function and all

the constraints. For all the problems, lower bound on the variables is provided as the initial guess.

Table 1 in the supplementary material lists each of the problem’s dimension, number of constraints

and whether the initial point is feasible or infeasible. The algorithm is implemented in MATLAB

while GAMS/ANTIGONE is used to solve the surrogate optimization problems. At each iteration,

2n+ 1 samples are maintained for developing surrogate models.

In derivative-based solvers, the performance measure is generally the time taken by a solver s

to solve a problem p. The computational expense required by a blackbox solver includes the simu-

lation time and the time required to solve all the subproblems. The numerical examples used in this

chapter require negligible computation cost for simulation and therefore, computation time is not

an appropriate metric. The simulation cost can be much higher in other applications and therefore

an appropriate metric to measure the performance is the number of samples required to satisfy a

convergence test. Two major approaches to compare the performance of blackbox optimizations

have been proposed in the literature [190]. One of the approaches is to use a performance profile.

It compares solvers by defining the performance ratio for a solver. Let the set of test problems

133

Figure 5.5: Distribution of problems with (a) number of variables, and (b) number of constraints.

be T, set of solvers/algorithms be S and the performance measure be Nt,s. To get a performance

profile, the performance ratio is defined as follows:

rt,s =
Nt,s

min
s∈S

Nt,s
(5.29)

The ratio, rt,s is 1 for the best solver and greater than 1 for worse solvers. The performance profile

for a solver is defined as the fraction of problems for which the performance ratio is at most α:

%s(α) =
1

|T|size{t ∈ T : rt,s ≤ α} (5.30)

where |T| denotes the cardinality of T. %s(α) represents the fraction of problems that has perfor-

mance ratio less than α. A solver with higher value of %s(α) is favorable compared to the lower

values.

While the performance profile provides a ranking of the solvers relative to each other, it does

not give the complete information about the fraction of problems solved with the number of func-

tion evaluations by an individual solver. A data profile considers the absolute performance of a

solver and determines its ability to solve an optimization problem. Data profile represents the

134

fraction of problems solved within α function evaluation and defined as follows:

ds(α) =
1

|T|size{t ∈ T : Nt,s ≤ α} (5.31)

The comparison is shown using both performance and data profiles. The convergence test used to

certify a problem to be solved is also critical for the analysis of different algorithms. Two conver-

gence criteria are examined in the computational comparison. The first criterion is to compare the

absolute merit of the solution. One of the approaches that can be used is to compare the accuracy

with the global solution as done by [37]. Therefore, one of the convergence test used in this study

is that a solver is said to have solved a problem if the constraint violation is less than 10−8 and

the solution is within 1% of the global solution. A solver is able to solve a problem if a point x̂ is

obtained by the solver that satisfies:

θ(x̂) <= 10−8 & f(x̂) ≤ max(1.01f(x∗), f(x∗) + 0.01) (5.32)

where x∗ is the global solution. The above criterion is often used when a user is interested in the

accuracy of the solution. However, when the computational budget of the user is limited, the ability

of a solver to improve an initial point can also be of interest. For an unconstrained problem, the

criteria is defined as follows:

f(x̂) ≤ f(x∗) + τ(f(x0)− f(x∗)) (5.33)

This criterion can be interpreted as follows. If a solver is able to reduce the objective function by

at least 1−τ times the maximum reduction possible. The smaller value of τ implies that a solution

closer to global minima is desired.. For constrained problems, the ability to improve the constraint

violation corresponding to the initial point is critical. Therefore, a merit function is defined that

135

incorporates the constraint violation information:

ϕ(x) = f(x) + υθ(x) (5.34)

In this chapter, a fixed penalty parameter value of υ = 1000 is chosen. The second criterion is

based on the merit function and is defined similar to (5.33) by replacing f with ϕ.

ϕ(x̂) ≤ ϕ(x∗) + τ(ϕ(x0)− f(x∗)) (5.35)

5.3.2.1 Importance of Feasibility Phase

CONORBIT, COBYLA, NOWPAC solves Eq. (5.15) iteratively and do not have any feasibility

phase in their algorithm. Eq. (5.15) embeds the information about the constraints as well as the

objective function. Therefore, it is important to elucidate the advantage of using the feasibility

phase. To understand the contribution of the feasibility phase in convergence of the algorithm, it

is tested with and without feasibility phase on the entire set of numerical test problems. Figure 5.6

illustrates the performance of the algorithm with and without feasibility phase. If the feasibility

phase is not used, a total of 40 problems are solved while 56 problems are solved when feasibility

phase is used. Therefore, the feasibility phase plays a critical role to provide superior starting point

for the optimization phase and is important for convergence.

5.3.2.2 Computational Comparison with Other Solvers

The algorithm is compared with NOMAD and COBYLA. NOMAD [184] is an implementation

of Mesh Adaptive Direct Search algorithm in C++ and has an option to deal with constraints using

extreme barrier, filter technique or progressive barrier approach. Progressive barrier option is

chosen to handle constraints while comparing on the numerical problems. All other parameters

were set to default except the maximum number of evaluations is allowed to be 10000.

COBYLA [186], on the other hand, approximates the objective function and the constraints

using linear functions that interpolated at the vertices of a simplex. The algorithm is based on a

136

Figure 5.6: Data profile indicating the fraction of problems solved with number of evaluations
based on the convergence test that the solution is within 1% of the global minima (Eq. (5.32)).The
figure compares the performance of the two phase algorithm with the algorithm when no feasibility
phase is involved.

trust-region framework and the new point obtained at each iteration either improves the geometry

of the simplex or improves a merit function. Default parameters are used except the maximum

number of evaluations are allowed to be 10000 and the lower bound on the trust-region size is set

to 10−6.

The data profile based on convergence criteria in (5.32) is given in Figure 5.7. The proposed

two phase approach solves 56 of the 92 numerical problems, while COBYLA and NOMAD is able

to attain a solution within 1% of the global minima for 38 and 33 problems, respectively. The two

phase method is not only better in terms of obtaining global minima for this set of problems, it

is also competitive in terms of number of evaluations. NOMAD in general takes more number of

evaluations indicating that a model-based approach is more suited for smooth problems. Note that

COBYLA approximates the objective function and the constraints using linear models and is able

to perform marginally better than NOMAD.

The performance profile is given in Figure 5.11. Note that for rt,s = 1, the proposed approach

performs better or the same for 60 of the 92 problems. The plot of data and performance profile for

137

Figure 5.7: Data profile indicating the fraction of problems solved with number of evaluations
based on the convergence test that the solution is within 1% of the global minima (Eq. (5.32)).

convergence test (5.35) is presented next. These plots are done based on three different required

levels of reduction in the merit function: τ = 10−1, 10−3, 10−6. The data profiles are given in

Figure 5.8 based on convergence test (5.35) with the requirement that a solution is obtained which

achieves 90% reduction in the merit function compared to maximum reduction possible. As seen

in Figure 5.8, the proposed two phase algorithm satisfies this criteria for 78 out of 92 problems

while COBYLA and NOMAD satisfy the convergence test for 53 and 59 problems, respectively.

This indicates that even though, there are certain problems which can not be solved to global

optimality, significant reduction in at least constraint violation is achieved. When τ is decreased

further to 10−3, as expected, the performance deteriorates for all the algorithms. However, the

proposed approach still outperforms the other two and COBYLA solves more number of problems

compared to NOMAD. Decreasing τ further to 10−6 reduces the number of problems that satisfy

the convergence test (5.35) but the rank of performance of the solver still remains the same.

The performance profiles with convergence test (5.35) are given in Figure 5.12(a), 5.12(b), and

5.12(c) for τ = 10−1, 10−3 and 10−6, respectively. For τ = 10−1, at small alpha values, proposed

algorithm slightly outperforms COBYLA but with increasing α, COBYLA performs better. NO-

138

Figure 5.8: Data profile indicating the fraction of problems solved with number of evaluations
based on the convergence test that a significant reduction in the final merit function is obtained
when compared to its value at the initial point (Eq. (5.35) with τ = 10−1).

Figure 5.9: Data profile indicating the fraction of problems solved with number of evaluations
based on the convergence test that a significant reduction in the final merit function is obtained
when compared to its value at the initial point (Eq. (5.35) with τ = 10−3).

139

Figure 5.10: Data profile indicating the fraction of problems solved with number of evaluations
based on the convergence test that a significant reduction in the final merit function is obtained
when compared to its value at the initial point (Eq. (5.35) with τ = 10−6).

Figure 5.11: Performance profile indicating the relative performance of the solvers based on the
convergence test that the solution is within 1% of the global minima (Eq. (5.32)).

140

Figure 5.12: Performance profile indicating the relative performance of the solvers based on the
convergence test that a significant reduction in the final merit function is obtained when compared
to its value at the initial point (Eq. (5.35)) for (a) τ = 10−1, (b) τ = 10−3, (c) τ = 10−6

MAD performs inferior compared to the other methods on these set of test problems. When the

required level of reduction is increased, the proposed method outperforms other methods and this

can be observed in Figure 5.12(b) and 5.12(c). The proposed approach is efficient in terms of the

required number of evaluations. This is due to the use of an efficient model improvement algorithm

which replaces no more than 2 interpolating points whenever the geometry of the samples deteri-

orates. The success of tje method can also be attributed to the use of global solver (ANTIGONE

in this case) for solving the sub-problems, the algorithm for improving the geometry of the sam-

ples, and the initialization of the initial trust-region for the entire space. The initial trust-region

allows for globally exploring the search space, while using a global solver gives an indication of

the global solution if the surrogate model is able to approximate the original model well in the

limited number of initial samples. However, using a global solver is computationally expensive.

The performance of the algorithm is compared on a few problems using local and global solver to

solve the subproblems. It is observed that although using local solver is computationally inexpen-

sive, more problems converged to the global minima for the cases when the global solver is used.

However, this is not conclusive and requires further investigation.

141

Figure 5.13: Schematic of the process for integrated carbon capture and conversion.

5.3.3 Optimal design of a Cyclic and Integrated Carbon Capture and Conversion Process

A chemical engineering case study is now presented which has combination of known and un-

known analytical form of the constraints with black-box constraints. Due to emergence of process

intensification [191, 192] efficient BBO algorithms are needed more than ever. Process intensi-

fication merges processes with different aims to lessen number of units in order to reduce cost

and/or energy consumption. In these cases, different phenomena interact in a complex manner and

obtaining even the appropriate operating conditions and design that satisfies regulatory and perfor-

mance constraints is not trivial [1]. Therefore, an optimization strategy is needed to asses if the

intensified process is economically viable and that it meets quality and regulatory constraints. A

multifunctional process is proposed that integrates adsorption and reaction to directly utilize CO2

from flue gas to produce syngas in [1]. The operating conditions and design parameters are opti-

mized of the process using a preliminary version of the current algorithm. This chapter presents

an improved optimization algorithm with more effective sampling strategy. Instead of performing

multiple evaluations at each iteration, no more than 2 additional function calls are used.

The process configuration is given in Figure 5.13. The flue gas contains large amount of N2

(around 86 %), while the rest is CO2 and it is therefore important to separate CO2 from N2. The

overall process contains two columns. The first is an adsorption column while second is a reac-

142

tor. The process is configured such that CO2 from flue gas is adsorbed more favorably than N2

using an adsorbent. After adsorption, CO2 is desorbed using methane by utilizing the gradient in

concentration rather than pressure. This leads to energy savings since applying pressure swings

is energy intensive. The adsorption and desorption steps are run in a cyclic manner until a cyclic

steady-state is achieved. The outlet of the adsorption column contains CO2, N2 and CH4. It would

be advantageous to remove as much N2 as possible from the gas mixture and keeping the loss of

CO2 and CH4 to a minimum. The gas is then sent to the reaction section filled with catalyst that

enables dry reforming. CO2 and CH4 need to be mixed in a ratio conducive for dry reforming and

is considered to be one of the parameters for optimization.

5.3.3.1 Process Modeling

The process consists of two sections, namely adsorption and reaction. The adsorption section

is dynamic in nature and is therefore, modeled by one-dimensional nonlinear algebraic partial dif-

ferential equations (NAPDE). The model includes component-wise mass balance, energy balance

and other relationships. The gas phase mass balance includes the accumulation, convection, axial

dispersion and adsorption terms and is given by the following equation:

∂ci
∂t

= − ∂

∂z

(
− cD∂yi

∂z
+ civ

)
− (1− e)

e

∂qi
∂t

∀i ∈ GA (5.36)

Here ci and yi denotes the bulk concentration and mole fraction of the gaseous species and qi

is the loading on the solid adsorbent. GA is the set of species in adsorption column, GA =

{CO2,CH4,N2}. The variation of the pressure with time and along the bed is given by:

∂P

∂t
=
P

T

∂T

∂t
− T ∂

∂z

(
Pv

T

)
−RT (1− e)

e

∑
i∈GA

∂qi
∂t

(5.37)

143

where P and T are the column pressure and temperature respectively. Assuming gas and adsorbent

to be at the same temperature, energy balance of the streams are given by:

(1− e)
(
ρaCp,ad

∂T

∂t
+ Cp,g

∂(
∑

i∈GA qiT)

∂t

)
+ eCp,g

∂(ρgT)

∂t
+ eCp,g

∂(ρgvT)

∂z

= K
∂2T

∂z2
+ (1− e)

∑
i∈GA

(−∆Hi)
∂qi
∂t
− 2hic

ric
(T − Tc)

(5.38)

The heat will also be transferred across the column wall and is given by equation 5.39 as follows.

ρcCp,c
∂Tc
∂t

= Kc
∂2Tc
∂z2

+
2richic
r2
oc − r2

ic

(T − Tc)−
2rochoc
r2
oc − r2

ic

(Tc − Tam) (5.39)

where Tc is the wall temperature of the column and Tam is the ambient temperature in K respec-

tively.

The linear driving force equation describing the rate of gas adsorption into the adsorbent is

given by the following equation.

∂qi
∂t

= ki(q
∗
i − qi) ∀i ∈ GA (5.40)

where ki is the lumped mass transfer coefficient and q∗i is the equilibrium gas loading. For a

complete description of the NAPDE model with other empirical relations and boundary conditions

and values of parameters used, the readers are referred to Eq. 9-19 of [1].

The outlet gas mixture from the adsorption column is mixed with additional CO2 and CH4. The

primary reactions considered in the conversion of CO2 and CH4 to methane is the dry reforming

and the reverse water gas shift reaction:

CH4 + CO2 ⇔ 2CO + 2H2 ∆H298K = 247kJ/mol

CO2 + H2 ⇔ CO + H2O ∆H298K = 41.7kJ/mol

(5.41)

The dry reforming reaction is endothermic and produces more number of moles in the product

144

as compared to the reactants. So, according to Le Chatelier’s principle, the reaction is favorable

at high temperature and low pressure. Since operation of adsorption section is favored at low

temperature, the outlet from the adsorption column is heated in the reaction section for favor-

able conversion. Although, the adsorption process is dynamic, the adsorption column outlet gas

over a cycle is mixed with additional CO2 and CH4 and the mixture is then fed to the reactor at

constant flow rate and composition. The reactor is thus operated at steady state and is modeled

by one dimensional pseudohomogenous model assuming plug flow and isothermal behavior. The

component mass balances in the reactor is given by:

dFR
i

dz
= ρrArr

g
i ∀i ∈ GR (5.42)

where FR
i is the species flow rate and ri is the rate of generation of each species. The heat duty re-

quired (Qr) to maintain isothermal operation of the reactor is obtained by integrating the following

equation describing the heat consumed by the reactions.

dQr

dz
= ρrAr

∑
m

(−∆Hm)Rm (5.43)

The pressure variation along the bed length of the reactor (Pr) is given by Ergun equation.

dPr
dz

= −ρrgvr(1− er)
dcee2

r

f (5.44)

Here ρrg is the density of the gas phase in kg/m3, vr is the superficial velocity in m/s and f is the

friction factor. Other important empirical relations, rate of reactions and boundary conditions are

given in Eq. 22-26, 28-31 and 34-36 in [1].

5.3.3.2 Process Simulation and Constraints

The performance of the process is evaluated based on several metrics. Two very important

metrics are utilization of CO2 and cost of the process. Since the process steps involve venting of

gases, it needs to be ensured that the greenhouse gases (CO2 and CH4) are emitted below those al-

145

lowed by regulatory agencies. Additionally, in order for syngas to be utilized for further processes,

it should be of high quality with adequate ratio of CO and H2.

As mentioned earlier, the adsorption process is described by NAPDE model. To solve the

model, the partial differential equations are spatially discretized using upwind differencing scheme

to form a set of ordinary differential equations (ODEs). These set of ODEs are solved using ode23s

in MATLAB. On solving the model, concentration and temperature profiles are obtained along the

adsorption column length and over time. The adsorption process is a cyclic two-step process.

During the first step, flue gas enters the column and CO2 is selectively adsorbed. In the second

step, CH4-rich feed enters the column and CO2 is desorbed due to concentration driving force.

The initial condition of the column during second step is the final condition in the first step. The

two steps are repeated in a cyclic manner until cyclic steady state (CSS) is attained. The input

conditions for the reactor are calculated based on the solution obtained at CSS. The reactor model

is given by ordinary differential equations (ODEs) and are solved using ode23s. For obtaining the

simulations, the number of spatial discretizations and cycles used are both set to five.

Table 5.4: Decision variables for Problem (5.57).

.

Decision variables xL xU

Pressure set at the outlet of adsorption column (POA)[bar] 1 10
Length of adsorption column (La)[m] 0.5 2.5
Reactor temperature (Tc) [K] 373 1223
Reactor bed length (Lr) [m] 0.5 10
Duration of step 1 (t1s) [s] 10 tct
Total cycle time (tct) [s] 10 200
Venting start time (tv1) [s] 0 tct
Venting end time (tv2) [s] 0 tct
Makeup CO2 before reaction (FM

CO2
) [mol/s] 0 5

Makeup CH4 before reaction (FM
CH4

) [mol/s] 0 5

Iyer et. al. [1] utilized simulations to study the performance metrics of the process and iden-

tified key optimization parameters. The key decision variables along with the bounds are listed in

146

Table 5.4. Note that the process needs to occur in a chronological order such that it makes logical

sense. The following set of unrelaxable constraints always need to be satisfied to ensure that the

simulation does not fails:

10 ≤ t1s ≤ tct (5.45)

10 ≤ tct − t1s ≤ tct (5.46)

0 ≤ tv1 ≤ tct (5.47)

0 ≤ tv2 ≤ tct (5.48)

10 ≤ tv2 − tv1 ≤ tct (5.49)

Eq. (5.45) states that the first step time does not exceed the cycle time. Eq. (5.46) puts a constraint

that the second step should be less than the cycle time. The lower bound in Eq. (5.45) and 5.46

allows for the first and second step to run for at least 10 seconds. Similarly, the start and end

time of venting should always be less than the cycle time is given in Eq. (5.47) and (5.48). Eq.

(5.49) states that the difference in the start and ending times should be at least 10 seconds. In other

words, the venting can not end before starting. The upper bound will always be satisfied due to the

relations 5.47 and 5.48.

Note that the constraints (5.45)-(5.49) are expressed explicitly in terms of the decision vari-

ables. In this problem, there are constraints which can not be explicitly expressed in terms of the

decision variables unless the model is discretized. Such constraints are referred as black-box con-

straints and the value of the constraint is obtained as a result of a simulation. Unlike constraints

in (5.45)-(5.49), violating the black-box constraints will not result in a simulation failure. These

147

constraints are given as follows:

lmaxCH4
− 10

100
≤ 0 (5.50)

Umin
CO2
− 90

100
≥ 0 (5.51)

SGmin ≥ 0.9 (5.52)

SGmax ≤ 1.1 (5.53)

ymsgCH4
≤ 0.03 (5.54)

ymsgCO2
≤ 0.03 (5.55)

ymsgN2
≤ 0.1 (5.56)

Eq. (5.50) gives an upper bound on the methane loss from the process since it is a greenhouse gas

and will violate regulatory constraints. The constraint on the minimum overall utilization of CO2

is given in Eq. (5.51). The requirement on minimum and maximum ratio of H2/CO is given by

inequalities (5.52) and Eq. (5.53). It is important to maintain this ratio so that syngas can be used in

further downstream processes. The produced syngas should be of high quality with minimal CO2,

CH4 and N2 and it is imposed by Eqs. (5.54)-(5.56). Since the process is novel with large number

of variables and complex interactions between the variables and constraints it is not trivial to obtain

a feasible point using parametric studies. Two key performance metrics are of main interest for

the process. The design and operating parameters are desired that yields minimum cost per ton of

syngas produced and secondly maximize overall CO2 utilization. The two objectives are black-box

and the details of calculation procedure can be found in [1]. The resulting optimization problem is

a grey-box problem. Rigorous optimization needs to be performed to balance different trade-offs.

148

The optimization problem is formulated as follows:

min
x

f(x, z)

s.t. gi(x, z) ≤ 0 ∀i ∈ {1, . . . , p}(Eq.(5.50)− 5.56)

gj(x) ≤ 0 ∀j ∈ {1, . . . , q}(Eq.(5.45)− 5.49)

hu(x, z) = 0 ∀u ∈ {1, . . . , s}(process model)

x ∈ [xL, xU]

(5.57)

where z represents intermediate variables in the process model. The variables z can be thought of

as the black-box part of the optimization problem (5.57). The model equations h(x, z) = 0 are

solved for z for given value of x and thereby, the objective function and constraint values (gi(x, z))

are obtained.

5.3.3.3 Optimization Results

The following four case studies are performed:

Case 1: Minimize cost of production of syngas using natural gas as methane source,

Case 2: Maximize overall CO2 utilization using natural gas as methane source,

Case 3: Minimize cost of production of syngas using biogas as methane source,

Case 4: Maximize overall CO2 utilization using biogas as methane source.

The sampling scheme given by Eq. (5.25) is used to generate initial samples such that they are

feasible with respect to the known constraints given by Eq. (5.45) - (5.49). Here, 6n + 1 samples

are maintained at all the iterations. Same initial guess was provided for all the case studies and is

given in Table 5.5. The two phase algorithm is then applied to the problem to generate optimum

results for the four cases. Figure 5.14 shows the progress of the best objective function values

and the constraint violations obtained with number of evaluations for case 1. The initial point

is infeasible and, therefore, the feasibility phase is triggered which finds a feasible point within

68 evaluations. Once a feasible point is obtained, the optimization phase is started that reduces

149

Figure 5.14: Progress of the best constraint violation and the best objective function value with
number of evaluations for case 1.

the objective function value. The algorithm ultimately provides the optimal design and operating

conditions that gives the production cost to be $109.57. The value of the objective function, the

corresponding decision variables at the optimum are given in Table 5.6. The constraint violation

and the objective function at the initial point and the number of evaluations required for obtaining

the final optimal result are also reported for all the cases.

Table 5.5: Initial guess for Problem (5.57).

.

Decision vari-
ables

x0

POA 1.001
La 0.71
Tc 478.69
Lr 4.05
t1s 135.85
tct 149.92
tv1 29.76
tv2 122.87
FM
CO2

1.26
FM
CH4

0

It is observed from Table 5.6 that the optimal pressure is at the lower bound throughout all

150

Table 5.6: Optimum results obtained for the four case studies with constraint violation and objec-
tive function at the initial point.

Case
Studies

f(x̂) x̂(POA, La, Tc, Lr, t1s, tct, tv1, tv2, F
M
CO2

, FM
CH4

) Nevals θ(x0) f(x0)

Case 1 $109.57 (1, 0.8513, 1209.9, 0.5, 85.31, 95.31, 58.86,
91.3354, 5, 4.8)

681 2.17 3.32×105

Case 2 99.71% (1, 2.49, 1223, 8.78, 12.19, 22.19, 9.69, 19.69,
4.48, 4.64)

332 1.38 0.88

Case 3 $110.27 (1, 2.33, 1208.1, 0.5, 189.99, 199.99, 189.86,
199.95, 5, 4.90)

662 2.2 4.14×105

Case 4 99.75% (1, 2.37, 1223, 4.96, 55.07, 65.07, 47,16,
65.07, 4.6, 5)

244 1.41 1.017

the the four cases. The algorithm, however, has increased the temperature of the reactor and the

amounts of makeup CO2 and CH4 in order to increase the conversion of CO2 and CH4 to syngas

while meeting the constraints on process metrics and improving the objective in each case. It is

also observed that the temperature has reached the upper bound while maximizing CO2 utilization

in both the natural gas and biogas cases. This is because dry reforming is an endothermic reac-

tion, hence, a high temperature is needed to increase the conversion of CO2 and CH4 to syngas.

This helps in meeting constraints on loss of CO2 and CH4, while improving overall utilization and

reducing the total cost per ton of syngas. Although increase in temperature results in more CO2

conversion and more syngas being produced, there are increased utility costs involved in main-

taining the reactor at high temperature. This is observed from the optimal reactor temperature for

the cost minimization problem for both the natural gas and biogas cases not reaching the upper

bound (1223 K). Instead it is maintained at a high enough value (around 1208 K) while balancing

different trade-offs. Similarly it is observed that while moderate to high values of reactor lengths

are obtained at optimum for the maximizing CO2 utilization case, the optimal reactor length is at

the lower bound in the cost minimization case for both gases. All the decision variables relating to

the step and venting times in each case meet the unrelaxable constraints listed in Eq. (5.45)–(5.49).

While the flue gas step durations and venting times at optimum are vary between the different

cases, methane rich feed step duration however is at the lower bound of 10 s in all cases.

151

Table 5.7: Comparison of solution provided by the Two phase algorithm,
COBYLA and NOMAD.

Case Studies Two phase COBYLA NOMAD
f(x̂) Nevals f(x̂) Nevals f(x̂) Nevals

Case 1 $109.57 681 $115.75 364 $2.79×105* 628
Case 2 99.71% 332 99.6% 206 97.59% 1248
Case 3 $110.27 662 $114.94 203 $109.61 1473
Case 4 99.75% 244 99.25% 261 98.8% 1382

* A feasible solution could not be obtained.

The performance of the algorithm is compared on the case studies with COBYLA and NO-

MAD. For both the solvers, it is not possible to avoid simulations at points which violates Eq.

(5.45) - Eq (5.49). The simulations fail if the design point do not satisfy these constraints. To

avoid simulation failure, a very high arbitrary value (1015) is assigned for the objective function

and the constraints. All solvers are given the same initial guess listed in Table 5.5. Table 5.7 pro-

vides a summary of the results. COBYLA is economical in terms of function evaluations compared

to the two phase algorithm but does not provide a better objective function value. NOMAD, on the

other hand takes a lot of function evaluations. Furthermore, for case 1, a feasible point could not be

obtained. However, NOMAD finds a point that gives the least objective function value compared

to all other algorithms for case 3.

In summary, the two phase algorithm has been able to obtain a feasible point from a high initial

constraint violation and then improve the objective function value in each case for a complex chem-

ical process model involving both explicit and black-box constraints and inter-dependent decision

variables. Thus, the use of this algorithm with such novel integrated process designs can greatly

help in identifying the feasible and optimal operating regions which may otherwise be difficult to

predict based on just parametric studies of individual variables. This can accelerate and pave the

way for effective feasibility analyses of novel integrated process technologies.

152

5.4 Conclusions

After addressing global optimization of grey-box problems with bound constraints (GPBC) and

grey-box constraints (GPGC) in Chapter 2 and 3, respectively, black-box problems with bound-

constraints are optimized in Chapter 4. This chapter addresses general black-box problems that

may have bound, known, unknown and hybrid constraints. A trust-region based two phase algo-

rithm is presented. The first phase of the algorithm finds a feasible point if the initial point is

infeasible while the second phase decreases the objective function. It is also observed that fea-

sibility phase is critical for superior performance of the algorithm. A maximum of two samples

are replaced at each iteration using model improvement algorithm to improve the geometry of the

samples and make the model fully linear. The samples are economically used and this makes the

algorithm suitable for problems with computationally expensive simulations. The efficiency of the

algorithm is shown by comparing with two widely used solvers namely, NOMAD and COBYLA.

The performance of the solvers are compared by constructing data and performance profile. Two

convergence tests were used to plot data and performance profile. The two-phase algorithm not

only finds the global minima for more number of problems compared to other solvers but achieves

that in economical number of evaluations. The algorithm is also applied to optimize a cyclic and

integrated carbon capture and conversion process. Four case studies are solved involving maxi-

mization of CO2 utilization and cost minimization with biogas and natural gas used as methane

source. Starting from a point with high infeasibility, the algorithm is able to obtain design and

operation parameters that enables the process technology to be effective for CO2 utilization. NO-

MAD and COBYLA were also applied to the integrated carbon capture and conversion case study.

On comparing the performance of the three algorithms, it was observed that the proposed approach

gives a high quality solution using economical number of evaluations.

153

6. CONCLUSIONS AND RECOMMENDATIONS

Black-box optimization problems are prevalent in several disciplines including engineering,

science, finance, medicine and operations research. Effective black-box optimization strategies

will enable more efficient processes and design, and contribute towards global energy sustainabil-

ity. This dissertation proposed several novel methods and algorithms for optimization of classes of

black-box and grey-box problems.

It was recognized from the beginning that finding guaranteed global optimum solution of a

general black-box problem without using any information of the original problem. Therefore, the

goal in Chapter 2 was to identify a class of grey-box problems for which it is possible to compute

an ε-global optimum solution. Another important consideration is that the lower bound should be

computed in finite number of black-box function evaluations. A broad class of grey-box problems

with bound constraints was defined for which the maximum of the upper bounds of the diagonal

elements of the Hessian are available. With this information, a novel underestimator called edge-

concave underestimator (ECU) was then constructed. ECU exhibits a critical property that its

minima lies at a vertex when box-constraints are involved and this allows computing lower bound

in finite number of evaluations. A branch-and-bound algorithm is developed that enables to find

ε-global optimal solution. The proposed methodology is also compared to other available solvers

on several nonconvex problems and results indicate that the proposed method is computationally

advantageous. In the literature, there are several instances that if a model is too complex, it is

treated as black-box. This work presents a key step towards global optimization of many of these

problems based on the argument that it is possible to construct a valid underestimator if only one

parameter, i.e. the maximum of the upper bound of the diagonal elements of the Hessian, is known.

Identification of practical applications that belong to this class of grey-box have yet to be fully

explored. An important area that needs more research is exploring the possibility of estimating the

maximum of the diagonal elements of the Hessian using simulation data.

The global optimization of problems with integral terms in the objective function and con-

154

straints with embedded system of nonlinear ODEs are addressed in Chapter 3. These problems

also belong to a special case of grey-box problems defined in Chapter 2. However, it is possible

to compute the upper bounds of all the diagonal elements of the Hessian and enables construction

of tight relaxations. The terms in the objective function and constraints are separated into alge-

braic and dynamic parts and replaced by the corresponding ECUs or their convex envelopes to

formulate the relaxed problem. The problems were solved to ε-global optimality using a branch-

and-bound framework. The effectiveness of the method is illustrated through several case studies

and compared to existing approaches. It is concluded that ECUs provide a promising avenue for re-

laxations of optimization problems with embedded ordinary differential equations. The challenge

that is identified in this work is that while there are packages that enable symbolic differentiation

of algebraic expressions, but software tools are needed that automatically provides expressions for

the sensitivity equations by taking the derivatives of the differential equations. Furthermore, it is

not always possible to compute finite and tight bounds on the state variables and its derivatives. A

lot of advancements have been made to compute tight bounds but the problem is not completely

solved. These challenges limit the applicability of the proposed approach to optimization prob-

lems with embedded large-scale system of ordinary differential equations. Until these issues are

resolved, large-scale embedded system of ODE/PDEs can be treated as black-box and optimization

approaches based on simulation data provides promising alternatives. Simulation/experimental

data based optimization approaches also enable optimization of problems where the underlying

model is not available.

Chapter 4 addresses the optimization of box-constrained black-box problems. The problem is

completely black-box in the sense that only simulation data are needed. A novel algorithm based

on univariate projection is developed. A univariate function referred as the lower envelope is iden-

tified in a new space defined by a linear combination of the decision variables. An algorithmic

framework, UNIPOPT was proposed based on identifying the points on the lower envelope and

subsequently using them for optimization. To identify the points, a predictor and corrector ap-

proach is used, where approximated Sensitivity theorem serves as the prediction step and a trust-

155

region based algorithm is employed as the correction step. Through rigorous mathematical proof,

it was shown that the algorithm converges to the local minima of the original black-box problem

when certain assumptions are satisfied. The algorithm is thoroughly compared to existing model-

based approaches using an extensive set of test problems. Computational experiments suggest that

the proposed methodology explores the global space more efficiently but, it takes a lot of function

evaluations. Specifically, the bottleneck is the correcting algorithm. Therefore, eliminating the

correcting step could lead to significant improvement in the performance of the overall algorithm.

Furthermore, the prediction step involves using approximated Sensitivity theorem that relies on the

ability of the surrogate model to approximate the original black-box function. Of course, more ac-

curate surrogate models will lead to a better prediction resulting in less function evaluations by the

correcting algorithm. More advancements are needed in sampling and modeling to better capture

the original black-box function. Currently, the idea of projection has been viewed from the point

of view of f space. However, more research is needed towards identifying the optimal parametric

map of x corresponding to the lower envelope. Application of several important results established

in the parametric programming literature (see e.g., [193, 194, 195]) could be used in the context of

black-box problems to potentially improve the performance of the approach. The idea of projection

has only been investigated for black-box problems and can be extended to nonlinear programming

problems.

The algorithm proposed in Chapter 5 provides an avenue for optimization of constrained black-

box problems. In particular, inequality constraints are considered that can be of known or unknown

form. A trust-region based two-phase algorithm is developed. The first phase finds a feasible point

if the initial guess provided by a user is infeasible. The point given by the feasibility phase is

then passed to the optimization phase so that the algorithm gets a clue of the feasible region. The

optimization phase then proceeds to find the optimal point while maintaining feasibility. This

algorithm is also guaranteed to converge to the local minima of the original problem. The two-

phase methodology is compared to other solvers on an extensive set of problems from standard

test libraries and a carbon capture and conversion case study. It is shown that this algorithm is

156

computationally advantageous to other solvers and it is also able to handle unrelaxable constraints.

The computational performance of the approach on black-box equality constraints is unexplored.

Furthermore, it has been observed that the algorithm finds the optimum solution quickly but takes

several evaluations/iterations to converge. In general nonlinear programming problem, criticality

measure based on actual derivatives are used and that allows to converge faster even when the

trust-region size is not very small. However, for black-box problems, criticality measure based on

the derivatives of the surrogate model is used. When the trust-region size is large and the model

fully-linear, there is a gap between the derivatives of the actual function and the surrogate model

that is proportional to trust-region size. This leads to inexact estimation of the criticality measure

and the algorithm converges only when the trust-region becomes small. One way to overcome

the slow convergence is to strategically compute exact derivatives, wherever possible, so that the

algorithm converges faster without taking a lot of expensive function evaluations. One application

where computing exact derivative is possible is for the system governed by large-scale ODE/PDEs

that can not be managed by methodologies given in Chapter 3.

157

REFERENCES

[1] S. S. Iyer, I. Bajaj, P. Balasubramanian, and M. M. F. Hasan, “Integrated carbon capture

and conversion to produce syngas: Novel process design, intensification, and optimization,”

Industrial & Engineering Chemistry Research, vol. 56, no. 30, pp. 8622–8648, 2017.

[2] M. S. Khan and M. Lee, “Design optimization of single mixed refrigerant natural gas liq-

uefaction process using the particle swarm paradigm with nonlinear constraints,” Energy,

vol. 49, pp. 146–155, 2013.

[3] A. Dutta, I. A. Karimi, and S. Farooq, “Heating value reduction of LNG (liquefied natural

gas) by recovering heavy hydrocarbons: Technoeconomic analyses using simulation-based

optimization,” Industrial & Engineering Chemistry Research, vol. 57, no. 17, pp. 5924–

5932, 2018.

[4] H. Rahmanifard, R. Vakili, T. Plaksina, M. R. Rahimpour, M. Babaei, and X. Fan, “On

improving the hydrogen and methanol production using an auto-thermal double-membrane

reactor: Model prediction and optimisation,” Computers & Chemical Engineering, 2018.

[5] A. Alarifi, Z. Liu, F. S. Erenay, A. Elkamel, and E. Croiset, “Dynamic optimization of

lurgi type methanol reactor using hybrid ga-gps algorithm: the optimal shell temperature

trajectory and carbon dioxide utilization,” Industrial & Engineering Chemistry Research,

vol. 55, no. 5, pp. 1164–1173, 2016.

[6] Y. K. Salkuyeh and T. A. Adams II, “A novel polygeneration process to co-produce ethylene

and electricity from shale gas with zero CO2 emissions via methane oxidative coupling,”

Energy Conversion and Management, vol. 92, pp. 406–420, 2015.

[7] M. M. F. Hasan, E. L. First, and C. A. Floudas, “Cost-effective CO2 capture based on in sil-

ico screening of zeolites and process optimization,” Physical Chemistry Chemical Physics,

vol. 15, no. 40, pp. 17601–17618, 2013.

158

[8] E. L. First, M. M. F. Hasan, and C. A. Floudas, “Discovery of novel zeolites for natural

gas purification through combined material screening and process optimization,” AIChE

Journal, vol. 60, no. 5, pp. 1767–1785, 2014.

[9] M. M. F. Hasan, E. L. First, F. Boukouvala, and C. A. Floudas, “A multi-scale framework

for CO2 capture, utilization, and sequestration: CCUS and CCU,” Computers & Chemical

Engineering, vol. 81, pp. 2–21, 2015.

[10] A. Nuchitprasittichai and S. Cremaschi, “Optimization of CO2 capture process with aqueous

amines using response surface methodology,” Computers & Chemical Engineering, vol. 35,

no. 8, pp. 1521–1531, 2011.

[11] L. T. Biegler, Y.-d. Lang, and W. Lin, “Multi-scale optimization for process systems engi-

neering,” Computers & Chemical Engineering, vol. 60, pp. 17–30, 2014.

[12] B. Beykal, F. Boukouvala, C. A. Floudas, N. Sorek, H. Zalavadia, and E. Gildin, “Global

optimization of grey-box computational systems using surrogate functions and application

to highly constrained oil-field operations,” Computers & Chemical Engineering, vol. 114,

pp. 99–110, 2018.

[13] N. Ploskas, C. Laughman, A. U. Raghunathan, and N. V. Sahinidis, “Optimization of cir-

cuitry arrangements for heat exchangers using derivative-free optimization,” Chemical En-

gineering Research and Design, 2017.

[14] K. Palmer and M. Realff, “Optimization and validation of steady-state flowsheet simulation

metamodels,” Chemical Engineering Research and Design, vol. 80, no. 7, pp. 773–782,

2002.

[15] R. Lima, G. François, B. Srinivasan, and R. Salcedo, “Dynamic optimization of batch emul-

sion polymerization using msimpsa, a simulated-annealing-based algorithm,” Industrial &

engineering chemistry research, vol. 43, no. 24, pp. 7796–7806, 2004.

159

[16] I. M. Mujtaba, N. Aziz, and M. A. Hussain, “Neural network based modelling and control

in batch reactor,” Chemical Engineering Research and Design, vol. 84, no. 8, pp. 635–644,

2006.

[17] J. A. Egea, D. Vries, A. A. Alonso, and J. R. Banga, “Global optimization for integrated

design and control of computationally expensive process models,” Industrial & Engineering

Chemistry Research, vol. 46, no. 26, pp. 9148–9157, 2007.

[18] J. A. Caballero and I. E. Grossmann, “An algorithm for the use of surrogate models in

modular flowsheet optimization,” AIChE Journal, vol. 54, no. 10, pp. 2633–2650, 2008.

[19] F. Boukouvala and M. G. Ierapetritou, “Surrogate-based optimization of expensive flow-

sheet modeling for continuous pharmaceutical manufacturing,” Journal of Pharmaceutical

Innovation, vol. 8, no. 2, pp. 131–145, 2013.

[20] S. Yang, S. Kiang, P. Farzan, and M. Ierapetritou, “Optimization of reaction selectivity using

cfd-based compartmental modeling and surrogate-based optimization,” Processes, vol. 7,

no. 1, p. 9, 2019.

[21] J. Müller, “Miso: mixed-integer surrogate optimization framework,” Optimization and En-

gineering, vol. 17, no. 1, pp. 177–203, 2016.

[22] L. S. Dias, R. C. Pattison, C. Tsay, M. Baldea, and M. G. Ierapetritou, “A simulation-based

optimization framework for integrating scheduling and model predictive control, and its

application to air separation units,” Computers & Chemical Engineering, vol. 113, pp. 139–

151, 2018.

[23] C. Audet and D. Orban, “Finding optimal algorithmic parameters using derivative-free op-

timization,” SIAM Journal on Optimization, vol. 17, no. 3, pp. 642–664, 2006.

[24] J. Liu, N. Ploskas, and N. V. Sahinidis, “Tuning BARON using derivative-free optimization

algorithms,” Journal of Global Optimization, pp. 1–27, 2018.

160

[25] J.-H. Yoon and C. A. Shoemaker, “Comparison of optimization methods for ground-water

bioremediation,” Journal of Water Resources Planning and Management, vol. 125, no. 1,

pp. 54–63, 1999.

[26] G. A. Gray, T. G. Kolda, K. Sale, and M. M. Young, “Optimizing an empirical scoring func-

tion for transmembrane protein structure determination,” INFORMS Journal on Computing,

vol. 16, no. 4, pp. 406–418, 2004.

[27] A. L. Marsden, J. A. Feinstein, and C. A. Taylor, “A computational framework for

derivative-free optimization of cardiovascular geometries,” Computer Methods in Applied

Mechanics and Engineering, vol. 197, no. 21, pp. 1890–1905, 2008.

[28] M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P. Wilson, “Using DIRECT to solve

an aircraft routing problem,” Computational Optimization and Applications, vol. 21, no. 3,

pp. 311–323, 2002.

[29] T. Levina, Y. Levin, J. McGill, and M. Nediak, “Dynamic pricing with online learning and

strategic consumers: An application of the aggregating algorithm,” Operations Research,

vol. 57, no. 2, pp. 327–341, 2009.

[30] S. Nilchan and C. Pantelides, “On the optimisation of periodic adsorption processes,” Ad-

sorption, vol. 4, no. 2, pp. 113–147, 1998.

[31] Y. Kawajiri and L. T. Biegler, “Optimization strategies for simulated moving bed and pow-

erfeed processes,” AIChE Journal, vol. 52, no. 4, pp. 1343–1350, 2006.

[32] A. Agarwal, L. T. Biegler, and S. E. Zitney, “A superstructure-based optimal synthesis of

PSA cycles for post-combustion co2 capture,” AIChE journal, vol. 56, no. 7, pp. 1813–1828,

2010.

[33] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search

algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106,

no. 1, pp. 25–57, 2006.

161

[34] A. Arora, I. Bajaj, S. S. Iyer, and M. M. F. Hasan, “Optimal synthesis of periodic sorp-

tion enhanced reaction processes with application to hydrogen production,” Computers &

Chemical Engineering, vol. 115, pp. 89–111, 2018.

[35] A. Arora, S. S. Iyer, I. Bajaj, and M. M. F. Hasan, “Optimal methanol production via sorp-

tion enhanced reaction process,” Industrial & Engineering Chemistry Research, 2018.

[36] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization,

vol. 8. SIAM, 2009.

[37] L. M. Rios and N. V. Sahinidis, “Derivative-free optimization: a review of algorithms and

comparison of software implementations,” Journal of Global Optimization, vol. 56, no. 3,

pp. 1247–1293, 2013.

[38] J. A. Nelder and R. Mead, “A simplex method for function minimization,” The Computer

Journal, vol. 7, no. 4, pp. 308–313, 1965.

[39] V. Torczon, “On the convergence of pattern search algorithms,” SIAM Journal on Optimiza-

tion, vol. 7, no. 1, pp. 1–25, 1997.

[40] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimization without

the lipschitz constant,” Journal of Optimization Theory and Applications, vol. 79, no. 1,

pp. 157–181, 1993.

[41] W. Huyer and A. Neumaier, “Global optimization by multilevel coordinate search,” Journal

of Global Optimization, vol. 14, no. 4, pp. 331–355, 1999.

[42] R. L. Smith, “Efficient monte carlo procedures for generating points uniformly distributed

over bounded regions,” Operations Research, vol. 32, no. 6, pp. 1296–1308, 1984.

[43] C. J. Bélisle, H. E. Romeijn, and R. L. Smith, “Hit-and-run algorithms for generating mul-

tivariate distributions,” Mathematics of Operations Research, vol. 18, no. 2, pp. 255–266,

1993.

162

[44] N. Hansen, “The CMA evolution strategy: A tutorial,” arXiv preprint arXiv:1604.00772,

2016.

[45] S.-K. S. Fan and E. Zahara, “A hybrid simplex search and particle swarm optimization for

unconstrained optimization,” European Journal of Operational Research, vol. 181, no. 2,

pp. 527–548, 2007.

[46] E. H. Aarts and P. J. Van Laarhoven, “Statistical cooling: A general approach to combina-

torial optimization problems.,” Philips J. Res., vol. 40, no. 4, pp. 193–226, 1985.

[47] A. D. Bethke, Genetic algorithms as function optimizers. PhD thesis, Department of Com-

puter and Communication Sciences, University of Michigan, Ann Arbor, 1978.

[48] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in Micro Ma-

chine and Human Science, 1995. MHS’95., Proceedings of the Sixth International Sympo-

sium on, pp. 39–43, IEEE, 1995.

[49] B. O. Shubert, “A sequential method seeking the global maximum of a function,” SIAM

Journal on Numerical Analysis, vol. 9, no. 3, pp. 379–388, 1972.

[50] J. D. Pintér, Global optimization in action: continuous and Lipschitz optimization: algo-

rithms, implementations and applications, vol. 6. Springer Science & Business Media,

2013.

[51] P. Gilmore and C. T. Kelley, “An implicit filtering algorithm for optimization of functions

with many local minima,” SIAM Journal on Optimization, vol. 5, no. 2, pp. 269–285, 1995.

[52] S. M. Wild, R. G. Regis, and C. A. Shoemaker, “ORBIT: Optimization by radial basis func-

tion interpolation in trust-regions,” SIAM Journal on Scientific Computing, vol. 30, no. 6,

pp. 3197–3219, 2008.

[53] M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization with-

out derivatives,” Cambridge NA Report NA2009/06, University of Cambridge, Cambridge,

2009.

163

[54] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Global convergence of general derivative-

free trust-region algorithms to first-and second-order critical points,” SIAM Journal on Op-

timization, vol. 20, no. 1, pp. 387–415, 2009.

[55] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of expensive

black-box functions,” Journal of Global Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[56] A. J. Booker, J. Dennis Jr, P. D. Frank, D. B. Serafini, V. Torczon, and M. W. Trosset,

“A rigorous framework for optimization of expensive functions by surrogates,” Structural

optimization, vol. 17, no. 1, pp. 1–13, 1999.

[57] W. Huyer and A. Neumaier, “SNOBFIT–stable noisy optimization by branch and fit,” ACM

Transactions on Mathematical Software (TOMS), vol. 35, no. 2, p. 9, 2008.

[58] R. Oeuvray and M. Bierlaire, “A new derivative-free algorithm for the medical image regis-

tration problem,” International Journal of Modelling and Simulation, vol. 27, no. 2, pp. 115–

124, 2007. cited By 14.

[59] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and analysis of computer

experiments,” Statistical science, pp. 409–423, 1989.

[60] H.-M. Gutmann, “A radial basis function method for global optimization,” Journal of Global

Optimization, vol. 19, no. 3, pp. 201–227, 2001.

[61] R. R. Barton, “Metamodeling: a state of the art review,” in Simulation Conference Proceed-

ings, 1994. Winter, pp. 237–244, IEEE, 1994.

[62] A. L. Custódio and L. N. Vicente, “Using sampling and simplex derivatives in pattern search

methods,” SIAM Journal on Optimization, vol. 18, no. 2, pp. 537–555, 2007.

[63] G. Liuzzi and S. Lucidi, “A derivative-free algorithm for inequality constrained nonlinear

programming via smoothing of an `∞ penalty function,” SIAM Journal on Optimization,

vol. 20, no. 1, pp. 1–29, 2009.

164

[64] G. Liuzzi, S. Lucidi, and M. Sciandrone, “Sequential penalty derivative-free methods

for nonlinear constrained optimization,” SIAM Journal on Optimization, vol. 20, no. 5,

pp. 2614–2635, 2010.

[65] M. Diniz-Ehrhardt, J. Martínez, and L. G. Pedroso, “Derivative-free methods for nonlinear

programming with general lower-level constraints,” Computational & Applied Mathematics,

vol. 30, no. 1, pp. 19–52, 2011.

[66] C. Audet and J. E. Dennis Jr, “Mesh adaptive direct search algorithms for constrained opti-

mization,” SIAM Journal on Optimization, vol. 17, no. 1, pp. 188–217, 2006.

[67] C. Audet and J. E. Dennis Jr, “A progressive barrier for derivative-free nonlinear program-

ming,” SIAM Journal on Optimization, vol. 20, no. 1, pp. 445–472, 2009.

[68] C. Audet and J. E. Dennis Jr, “A pattern search filter method for nonlinear programming

without derivatives,” SIAM Journal on Optimization, vol. 14, no. 4, pp. 980–1010, 2004.

[69] M. J. Powell, “A direct search optimization method that models the objective and constraint

functions by linear interpolation,” in Advances in optimization and numerical analysis,

pp. 51–67, Springer, 1994.

[70] F. Augustin and Y. Marzouk, “NOWPAC: a provably convergent derivative-free nonlinear

optimizer with path-augmented constraints,” arXiv preprint arXiv:1403.1931, 2014.

[71] M. B. Arouxét, N. E. Echebest, and E. A. Pilotta, “Inexact restoration method for nonlin-

ear optimization without derivatives,” Journal of Computational and Applied Mathematics,

vol. 290, pp. 26–43, 2015.

[72] C. Audet, A. R. Conn, S. Le Digabel, and M. Peyrega, “A progressive barrier derivative-free

trust-region algorithm for constrained optimization,” tech. rep., Technical Report G-2016-

49, Les cahiers du GERAD, 2016.

[73] P. R. Sampaio and P. L. Toint, “A derivative-free trust-funnel method for equality-

constrained nonlinear optimization,” Computational Optimization and Applications, vol. 61,

no. 1, pp. 25–49, 2015.

165

[74] N. I. Gould and P. L. Toint, “Nonlinear programming without a penalty function or a filter,”

Mathematical Programming, vol. 122, no. 1, pp. 155–196, 2010.

[75] R. G. Regis and S. M. Wild, “CONORBIT: constrained optimization by radial basis function

interpolation in trust regions,” Optimization Methods and Software, vol. 32, no. 3, pp. 552–

580, 2017.

[76] J. P. Eason and L. T. Biegler, “A trust region filter method for glass box/black box optimiza-

tion,” AIChE Journal, 2016.

[77] J. P. Eason and L. T. Biegler, “Advanced trust region optimization strategies for glass

box/black box models,” AIChE Journal, vol. 64, no. 11, pp. 3934–3943, 2018.

[78] F. Boukouvala and C. A. Floudas, “ARGONAUT: Algorithms for global optimization

of constrained grey-box computational problems,” Optimization Letters, vol. 11, no. 5,

pp. 895–913, 2017.

[79] Z. Wang and M. Ierapetritou, “A novel feasibility analysis method for black-box processes

using a radial basis function adaptive sampling approach,” AIChE Journal, vol. 63, no. 2,

pp. 532–550, 2017.

[80] C. A. Kieslich, F. Boukouvala, and C. A. Floudas, “Optimization of black-box problems us-

ing smolyak grids and polynomial approximations,” Journal of Global Optimization, pp. 1–

25, 2018.

[81] C. A. Henao and C. T. Maravelias, “Surrogate-based superstructure optimization frame-

work,” AIChE Journal, vol. 57, no. 5, pp. 1216–1232, 2011.

[82] P. Balasubramanian, I. Bajaj, and M. M. F. Hasan, “Simulation and optimization of reform-

ing reactors for carbon dioxide utilization using both rigorous and reduced models,” Journal

of CO2 Utilization, vol. 23, pp. 80–104, 2018.

[83] A. Cozad, N. V. Sahinidis, and D. C. Miller, “A combined first-principles and data-driven

approach to model building,” Computers & Chemical Engineering, vol. 73, pp. 116–127,

2015.

166

[84] S. S. Garud, I. A. Karimi, and M. Kraft, “LEAPS2: Learning based evolutionary assistive

paradigm for surrogate selection,” Computers & Chemical Engineering, vol. 119, pp. 352–

370, 2018.

[85] A. Nuchitprasittichai and S. Cremaschi, “An algorithm to determine sample sizes for opti-

mization with artificial neural networks,” AIChE Journal, vol. 59, no. 3, pp. 805–812, 2013.

[86] J. Straus and S. Skogestad, “Surrogate model generation using self-optimizing variables,”

Computers & Chemical Engineering, vol. 119, pp. 143–151, 2018.

[87] A. P. Tran and C. Georgakis, “On the estimation of high-dimensional surrogate models of

steady-state of plant-wide processes characteristics,” Computers & Chemical Engineering,

vol. 116, pp. 56–68, 2018.

[88] S. Le Digabel, “Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm,”

ACM Transactions on Mathematical Software (TOMS), vol. 37, no. 4, p. 44, 2011.

[89] K. Scheinberg, “Manual for fortran software package DFO v2. 0,” 2003.

[90] M. J. D. Powell, “The NEWUOA software for unconstrained optimization without deriva-

tives,” in Large-scale nonlinear optimization, pp. 255–297, Springer, 2006.

[91] A. I. F. Vaz and L. N. Vicente, “A particle swarm pattern search method for bound con-

strained global optimization,” Journal of Global Optimization, vol. 39, no. 2, pp. 197–219,

2007.

[92] L. Ingber, A. Petraglia, M. R. Petraglia, and M. A. S. Machado, “Adaptive simulated anneal-

ing,” in Stochastic global optimization and its applications with fuzzy adaptive simulated

annealing, pp. 33–62, Springer, 2012.

[93] A. Dakota, “Multilevel parallel object-oriented framework for design optimization, param-

eter estimation, uncertainty quantification, and sensitivity analysis,” Sandia National Labo-

ratories, SAND2010-2183, 2009.

167

[94] T. Csendes, L. Pál, J. O. H. Sendin, and J. R. Banga, “The global optimization method

revisited,” Optimization Letters, vol. 2, no. 4, pp. 445–454, 2008.

[95] G. Di Pillo, G. Liuzzi, S. Lucidi, V. Piccialli, and F. Rinaldi, “A direct-type approach for

derivative-free constrained global optimization,” Computational Optimization and Applica-

tions, vol. 65, no. 2, pp. 361–397, 2016.

[96] G. Liuzzi, S. Lucidi, V. Piccialli, and A. Sotgiu, “A magnetic resonance device designed via

global optimization techniques,” Mathematical Programming, vol. 101, no. 2, pp. 339–364,

2004.

[97] C. Audet and W. Hare, Derivative-free and blackbox optimization. Springer, 2017.

[98] F. Boukouvala, R. Misener, and C. A. Floudas, “Global optimization advances in mixed-

integer nonlinear programming, minlp, and constrained derivative-free optimization, cdfo,”

European Journal of Operational Research, vol. 252, no. 3, pp. 701–727, 2016.

[99] A. Bhosekar and M. Ierapetritou, “Advances in surrogate based modeling, feasibility anal-

ysis, and optimization: A review,” Computers & Chemical Engineering, vol. 108, pp. 250–

267, 2018.

[100] S. S. Garud, I. A. Karimi, and M. Kraft, “Design of Computer Experiments: A Review,”

Computers & Chemical Engineering, vol. 106, 2017.

[101] B. K. Olsen, F. Castellino, and A. D. Jensen, “Modeling deactivation of catalysts for se-

lective catalytic reduction of no x by kcl aerosols,” Industrial & Engineering Chemistry

Research, vol. 56, no. 45, pp. 13020–13033, 2017.

[102] R. Horst and H. Tuy, Global optimization: Deterministic approaches. Springer Science &

Business Media, 2013.

[103] R. Misener and C. A. Floudas, “ANTIGONE: Algorithms for coNTinuous/Integer Global

Optimization of Nonlinear Equations,” Journal of Global Optimization, vol. 59, no. 2-3,

pp. 503–526, 2014.

168

[104] M. Tawarmalani and N. V. Sahinidis, “Global optimization of mixed-integer nonlinear pro-

grams: A theoretical and computational study,” Mathematical programming, vol. 99, no. 3,

pp. 563–591, 2004.

[105] M. M. F. Hasan, “An edge-concave underestimator for the global optimization of twice-

differentiable nonconvex problems,” Journal of Global Optimization, vol. 71, no. 4, pp. 735–

752, 2018.

[106] F. Tardella, “On the existence of polyhedral convex envelopes,” in Frontiers in global opti-

mization, pp. 563–573, Springer, 2004.

[107] Y. A. Guzman, M. F. Hasan, and C. A. Floudas, “Performance of convex underestimators in

a branch-and-bound framework,” Optimization Letters, vol. 10, no. 2, pp. 283–308, 2016.

[108] W. Hofschuster and W. Krämer, “C-xsc 2.0–a c++ library for extended scientific comput-

ing,” in Numerical software with result verification, pp. 15–35, Springer, 2004.

[109] C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in biochemical pathways: a

comparison of global optimization methods,” Genome Research, vol. 13, no. 11, pp. 2467–

2474, 2003.

[110] K. G. Gadkar, R. Gunawan, and F. J. Doyle, “Iterative approach to model identification of

biological networks,” BMC Bioinformatics, vol. 6, no. 1, p. 155, 2005.

[111] S. Katare, A. Bhan, J. M. Caruthers, W. N. Delgass, and V. Venkatasubramanian, “A hybrid

genetic algorithm for efficient parameter estimation of large kinetic models,” Computers &

Chemical Engineering, vol. 28, no. 12, pp. 2569–2581, 2004.

[112] V. Ramadesigan, V. Boovaragavan, J. C. Pirkle, and V. R. Subramanian, “Efficient reformu-

lation of solid-phase diffusion in physics-based lithium-ion battery models,” Journal of The

Electrochemical Society, vol. 157, no. 7, pp. A854–A860, 2010.

[113] W. Hu, B. Lowry, and A. Varma, “Kinetic study of glycerol oxidation network over Pt–Bi/C

catalyst,” Applied Catalysis B: Environmental, vol. 106, no. 1-2, pp. 123–132, 2011.

169

[114] K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control, vol. 40. Prentice Hall

New Jersey, 1996.

[115] D. E. Kirk, Optimal control theory: An introduction. Courier Corporation, 2012.

[116] C. Wu and K. Teo, “Global impulsive optimal control computation,” Journal of Industrial

& Management Optimization, vol. 2, no. 4, pp. 435–450, 2006.

[117] C. G. Moles, J. R. Banga, and K. Keller, “Solving nonconvex climate control problems:

pitfalls and algorithm performances,” Applied Soft Computing, vol. 5, no. 1, pp. 35–44,

2004.

[118] T. Miri, A. Tsoukalas, S. Bakalis, E. Pistikopoulos, B. Rustem, and P. Fryer, “Global op-

timization of process conditions in batch thermal sterilization of food,” Journal of Food

Engineering, vol. 87, no. 4, pp. 485–494, 2008.

[119] R. Luus and D. Cormack, “Multiplicity of solutions resulting from the use of variational

methods in optimal control problems,” The Canadian Journal of Chemical Engineering,

vol. 50, no. 2, pp. 309–311, 1972.

[120] W. R. Esposito and C. A. Floudas, “Deterministic global optimization in nonlinear optimal

control problems,” Journal of Global Optimization, vol. 17, no. 1-4, pp. 97–126, 2000.

[121] W. R. Esposito and C. A. Floudas, “Global optimization for the parameter estimation

of differential-algebraic systems,” Industrial & Engineering Chemistry Research, vol. 39,

no. 5, pp. 1291–1310, 2000.

[122] C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier, “A global optimization method,

αBB, for general twice-differentiable constrained NLPs—I. Theoretical advances,” Com-

puters & Chemical Engineering, vol. 22, no. 9, pp. 1137–1158, 1998.

[123] I. Papamichail and C. S. Adjiman, “A rigorous global optimization algorithm for problems

with ordinary differential equations,” Journal of Global Optimization, vol. 24, no. 1, pp. 1–

33, 2002.

170

[124] I. Papamichail and C. S. Adjiman, “Global optimization of dynamic systems,” Computers

& Chemical Engineering, vol. 28, no. 3, pp. 403–415, 2004.

[125] B. Chachuat and M. Latifi, “A new approach in deterministic global optimisation of prob-

lems with ordinary differential equations,” in Frontiers in Global Optimization, pp. 83–108,

Springer, 2004.

[126] A. B. Singer and P. I. Barton, “Global solution of optimization problems with parameter-

embedded linear dynamic systems,” Journal of Optimization Theory and Applications,

vol. 121, no. 3, pp. 613–646, 2004.

[127] A. B. Singer and P. I. Barton, “Bounding the solutions of parameter dependent nonlin-

ear ordinary differential equations,” SIAM Journal on Scientific Computing, vol. 27, no. 6,

pp. 2167–2182, 2006.

[128] A. B. Singer and P. I. Barton, “Global optimization with nonlinear ordinary differential

equations,” Journal of Global Optimization, vol. 34, no. 2, pp. 159–190, 2006.

[129] J. K. Scott, B. Chachuat, and P. I. Barton, “Nonlinear convex and concave relaxations for

the solutions of parametric odes,” Optimal Control Applications and Methods, vol. 34, no. 2,

pp. 145–163, 2013.

[130] J. K. Scott and P. I. Barton, “Bounds on the reachable sets of nonlinear control systems,”

Automatica, vol. 49, no. 1, pp. 93–100, 2013.

[131] J. K. Scott and P. I. Barton, “Interval bounds on the solutions of semi-explicit index-one

DAEs. Part 2: computation,” Numerische Mathematik, vol. 125, no. 1, pp. 27–60, 2013.

[132] M. E. Villanueva, B. Houska, and B. Chachuat, “Unified framework for the propagation of

continuous-time enclosures for parametric nonlinear ODEs,” Journal of Global Optimiza-

tion, vol. 62, no. 3, pp. 575–613, 2015.

[133] B. Houska, M. E. Villanueva, and B. Chachuat, “Stable set-valued integration of nonlinear

dynamic systems using affine set-parameterizations,” SIAM Journal on Numerical Analysis,

vol. 53, no. 5, pp. 2307–2328, 2015.

171

[134] S. M. Harwood, J. K. Scott, and P. I. Barton, “Bounds on reachable sets using ordinary dif-

ferential equations with linear programs embedded,” IMA Journal of Mathematical Control

and Information, vol. 33, no. 2, pp. 519–541, 2015.

[135] S. M. Harwood and P. I. Barton, “Efficient polyhedral enclosures for the reachable set of

nonlinear control systems,” Mathematics of Control, Signals, and Systems, vol. 28, no. 1,

p. 8, 2016.

[136] M. E. Villanueva, R. Quirynen, M. Diehl, B. Chachuat, and B. Houska, “Robust MPC via

min–max differential inequalities,” Automatica, vol. 77, pp. 311–321, 2017.

[137] S. M. Harwood and P. I. Barton, “Affine relaxations for the solutions of constrained para-

metric ordinary differential equations,” Optimal Control Applications and Methods, vol. 39,

no. 2, pp. 427–448, 2018.

[138] Y. Lin and M. A. Stadtherr, “Deterministic global optimization for parameter estimation of

dynamic systems,” Industrial & Engineering Chemistry Research, vol. 45, no. 25, pp. 8438–

8448, 2006.

[139] Y. Lin and M. A. Stadtherr, “Deterministic global optimization of nonlinear dynamic sys-

tems,” AIChE Journal, vol. 53, no. 4, pp. 866–875, 2007.

[140] Y. Zhao and M. A. Stadtherr, “Rigorous global optimization for dynamic systems subject to

inequality path constraints,” Industrial & Engineering Chemistry Research, vol. 50, no. 22,

pp. 12678–12693, 2011.

[141] F. Tardella, “On a class of functions attaining their maximum at the vertices of a polyhe-

dron,” Discrete applied mathematics, vol. 22, no. 2, pp. 191–195, 1988.

[142] C. A. Meyer and C. A. Floudas, “Convex envelopes for edge-concave functions,” Mathe-

matical Programming, vol. 103, no. 2, pp. 207–224, 2005.

[143] W. Rudin, Principles of mathematical analysis, vol. 3. McGraw-Hill New York, 1976.

172

[144] L. H. Loomis and S. Sternberg, Advanced Calculus: Revised. World Scientific Publishing

Company, 2014.

[145] R. E. Moore, Methods and applications of interval analysis, vol. 2. SIAM, 1979.

[146] L. Pontryagin, “Chapter 4 - Existence Theorems,” in Ordinary Differential Equations

(L. Pontryagin, ed.), pp. 150 – 199, Pergamon, 1962.

[147] V. Lakshmikantham and S. Leela, Differential and Integral Inequalities: Theory and Appli-

cations: Volume I: Ordinary Differential Equations. Academic press, 1969.

[148] H. S. Ryoo and N. V. Sahinidis, “A branch-and-reduce approach to global optimization,”

Journal of Global Optimization, vol. 8, no. 2, pp. 107–138, 1996.

[149] Y. Puranik and N. V. Sahinidis, “Domain reduction techniques for global NLP and MINLP

optimization,” Constraints, vol. 22, no. 3, pp. 338–376, 2017.

[150] M. A. Abramson, C. Audet, G. Couture, J. E. Dennis Jr, S. Le Digabel, and C. Tribes, “The

NOMAD project,” 2011.

[151] I. Bajaj, S. S. Iyer, and M. M. F. Hasan, “A trust region-based two phase algorithm for

constrained black-box and grey-box optimization with infeasible initial point,” Computers

& Chemical Engineering, vol. 116, pp. 306–321, 2018.

[152] S. M. Rump, “INTLAB—INTerval LABoratory,” in Developments in Reliable Computing,

pp. 77–104, Springer, 1999.

[153] I. B. Tjoa and L. T. Biegler, “Simultaneous solution and optimization strategies for pa-

rameter estimation of differential-algebraic equation systems,” Industrial & Engineering

Chemistry Research, vol. 30, no. 2, pp. 376–385, 1991.

[154] W. W. Hogan, “Point-to-set maps in mathematical programming,” SIAM Review, vol. 15,

no. 3, pp. 591–603, 1973.

[155] A. M. Geoffrion, “Primal resource-directive approaches for optimizing nonlinear decom-

posable systems,” Operations Research, vol. 18, no. 3, pp. 375–403, 1970.

173

[156] W. I. Zangwill, Nonlinear programming: a unified approach. Prentice-Hall, 1969.

[157] G. B. Dantzig, J. Folkman, and N. Shapiro, “On the continuity of the minimum set of a

continuous function,” Journal of Mathematical Analysis and Applications, vol. 17, no. 3,

pp. 519–548, 1967.

[158] J. P. Evans and F. J. Gould, “Stability in nonlinear programming,” Operations Research,

vol. 18, no. 1, pp. 107–118, 1970.

[159] R. Meyer, “The validity of a family of optimization methods,” SIAM Journal on Control,

vol. 8, no. 1, pp. 41–54, 1970.

[160] B. Gollan, “On the marginal function in nonlinear programming,” Mathematics of Opera-

tions Research, vol. 9, no. 2, pp. 208–221, 1984.

[161] A. V. Fiacco and J. Kyparisis, “Convexity and concavity properties of the optimal value

function in parametric nonlinear programming,” Journal of optimization theory and appli-

cations, vol. 48, no. 1, pp. 95–126, 1986.

[162] A. V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming.

Academic Press, New York, 1984.

[163] A. V. Fiacco, “Sensitivity analysis for nonlinear programming using penalty methods,”

Mathematical Programming, vol. 10, no. 1, pp. 287–311, 1976.

[164] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit linear quadratic

regulator for constrained systems,” Automatica, vol. 38, no. 1, pp. 3–20, 2002.

[165] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari, “Dynamic programming for con-

strained optimal control of discrete-time linear hybrid systems,” Automatica, vol. 41, no. 10,

pp. 1709–1721, 2005.

[166] V. Dua, N. A. Bozinis, and E. N. Pistikopoulos, “A multiparametric programming approach

for mixed-integer quadratic engineering problems,” Computers & Chemical Engineering,

vol. 26, no. 4, pp. 715–733, 2002.

174

[167] J. Kyparisis, “Sensitivity analysis for nonlinear programs and variational inequalities with

nonunique multipliers,” Mathematics of Operations Research, vol. 15, no. 2, pp. 286–298,

1990.

[168] K. Jittorntrum, “Solution point differentiability without strict complementarity in nonlinear

programming,” Sensitivity, Stability and Parametric Analysis, pp. 127–138, 1984.

[169] A. Shapiro, “Sensitivity analysis of nonlinear programs and differentiability properties of

metric projections,” SIAM Journal on Control and Optimization, vol. 26, no. 3, pp. 628–

645, 1988.

[170] J. Gauvin and R. Janin, “Directional behaviour of optimal solutions in nonlinear mathe-

matical programming,” Mathematics of Operations Research, vol. 13, no. 4, pp. 629–649,

1988.

[171] A. Auslender and R. Cominetti, “First and second order sensitivity analysis of nonlinear

programs under directional constraint qualification conditions,” Optimization, vol. 21, no. 3,

pp. 351–363, 1990.

[172] P. Conejo, E. W. Karas, and L. Pedroso, “A trust-region derivative-free algorithm for con-

strained optimization,” Optimization Methods and Software, vol. 30, no. 6, pp. 1126–1145,

2015.

[173] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust region methods, vol. 1. SIAM, 2000.

[174] R. G. Regis, “Constrained optimization by radial basis function interpolation for high-

dimensional expensive black-box problems with infeasible initial points,” Engineering Op-

timization, vol. 46, no. 2, pp. 218–243, 2014.

[175] A. R. Conn, K. Scheinberg, and L. N. Vicente, “Geometry of interpolation sets in derivative

free optimization,” Mathematical Programming, vol. 111, no. 1-2, pp. 141–172, 2008.

[176] M. J. D. Powell, “UOBYQA: unconstrained optimization by quadratic approximation,”

Mathematical Programming, vol. 92, no. 3, pp. 555–582, 2002.

175

[177] M. Björkman and K. Holmström, “Global optimization of costly nonconvex functions using

radial basis functions,” Optimization and Engineering, vol. 1, no. 4, pp. 373–397, 2000.

[178] A. S. Drud, “CONOPT—a large-scale grg code,” ORSA Journal on computing, vol. 6, no. 2,

pp. 207–216, 1994.

[179] M. J. D. Powell, “On the convergence of trust region algorithms for unconstrained mini-

mization without derivatives,” Computational Optimization and Applications, vol. 53, no. 2,

pp. 527–555, 2012.

[180] P. S. Ferreira, E. W. Karas, and M. Sachine, “A globally convergent trust-region algorithm

for unconstrained derivative-free optimization,” Computational and Applied Mathematics,

vol. 34, no. 3, pp. 1075–1103, 2015.

[181] A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint, “Global convergence of a class of trust

region algorithms for optimization using inexact projections on convex constraints,” SIAM

Journal on Optimization, vol. 3, no. 1, pp. 164–221, 1993.

[182] M. Tawarmalani and N. V. Sahinidis, “A polyhedral branch-and-cut approach to global op-

timization,” Mathematical Programming, vol. 103, pp. 225–249, 2005.

[183] Y. Lin and L. Schrage, “The global solver in the LINDO API,” Optimization Methods &

Software, vol. 24, no. 4-5, pp. 657–668, 2009.

[184] S. Le Digabel, “Algorithm 909: NOMAD: Nonlinear optimization with the mads algo-

rithm,” ACM Trans. Math. Softw., vol. 37, pp. 44:1–44:15, Feb. 2011.

[185] K. Scheinberg and P. L. Toint, “Self-correcting geometry in model-based algorithms for

derivative-free unconstrained optimization,” SIAM Journal on Optimization, vol. 20, no. 6,

pp. 3512–3532, 2010.

[186] M. J. D. Powell, A Direct Search Optimization Method That Models the Objective and Con-

straint Functions by Linear Interpolation, pp. 51–67. Dordrecht: Springer Netherlands,

1994.

176

[187] I. Bajaj and M. M. F. Hasan, “Effective sampling, modeling and optimization of constrained

black-box problems,” Computer Aided Process Engineering, vol. 38, pp. 553–558, 2016.

[188] F. J. Hickernell, Lattice rules: how well do they measure up? Springer, 1998.

[189] GlobalLib, “Global library,” 2015. http://www.gamsworld.org/global/globallib.htm.

[190] J. J. Moré and S. M. Wild, “Benchmarking derivative-free optimization algorithms,” SIAM

Journal on Optimization, vol. 20, no. 1, pp. 172–191, 2009.

[191] A. I. Stankiewicz, J. A. Moulijn, et al., “Process intensification: transforming chemical

engineering,” Chemical engineering progress, vol. 96, no. 1, pp. 22–34, 2000.

[192] S. E. Demirel, J. Li, and M. M. F. Hasan, “Systematic process intensification using building

blocks,” Computers & Chemical Engineering, vol. 105, pp. 2–38, 2017.

[193] A. Gupta, S. Bhartiya, and P. Nataraj, “A novel approach to multiparametric quadratic pro-

gramming,” Automatica, vol. 47, no. 9, pp. 2112–2117, 2011.

[194] J. SpjøTvold, E. C. Kerrigan, C. N. Jones, P. TøNdel, and T. A. Johansen, “On the facet-to-

facet property of solutions to convex parametric quadratic programs,” Automatica, vol. 42,

no. 12, pp. 2209–2214, 2006.

[195] R. Oberdieck and E. N. Pistikopoulos, “Explicit hybrid model-predictive control: The exact

solution,” Automatica, vol. 58, pp. 152–159, 2015.

177

