

CAMERA PLACEMENT UTILITY FOR DIALOGUE SEQUENCES

A Thesis

by

RYAN DAVIS SHARPE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Ann McNamara
Committee Members, Carol LaFayette
 Daniel Humphrey
Head of Department, Tim McLaughlin

May 2019

Major Subject: Visualization

Copyright 2019 Ryan Davis Sharpe

ii

ABSTRACT

Cinematography is critical in communicating visual ideas. In narrative driven games,

dialogue sequences have a common set of camera shots that are repeated over the sequence such

as the interior, exterior, and apex shots. I propose a tool that procedurally places these shots

allowing anyone with limited cinematographic knowledge to create dialogue sequences easily.

Procedural placement also reduces the need for manual placement and speeds workflow in

constructing shots. In addition, the tool also allows the user to define their own shots to be

procedurally placed allowing further customization in creating a dialogue sequence.

iii

CONTRIBUTORS AND FUNDING SOURCES

This work was supervised by a dissertation committee consisting of Professor Ann

McNamara and Professor Carol LaFayette of the Department of Visualization and Professor

Daniel Humphrey of the Department of Liberal Arts.

All work for the thesis was completed independently by the student. No other external

contributions were made.

iv

NOMENCLATURE

LOD Line of Dialogue

LOA Line of Action

PSO Playable Script Object

UI User Interface

v

TABLE OF CONTENTS

Page

ABSTRACT .. ii

CONTRIBUTORS AND FUNDING SOURCES .. iii

NOMENCLATURE ... iv

TABLE OF CONTENTS .. v

LIST OF FIGURES .. vii

1. INTRODUCTION .. 1

 1.1 A Tool for a Non-Cinematographically Familiar Audience 1

2. LITERATURE REVIEW ... 2

 2.1 Challenges & Solutions in Automated Cinematography Tools 2
 2.2 Frameworks Utilizing Narrative Information .. 3
 2.3 Relevant Techniques to Determine Camera Placement ... 5

3. METHODOLOGY & DESIGN .. 8

 3.1 Proposed System .. 8
 3.2 Functionality Overview ... 8
 3.3 Shot Calculation Classes .. 9

 3.3.1 CameraShot .. 10
 3.3.2 FrameShare .. 12
 3.3.3 OverShoulder ... 15
 3.4 Maintaining the Line of Action.. 17
 3.5 UI Design Overview .. 18
 3.5.1 Adding Cuts and the Opposite Option ... 20
 3.5.2 Custom Shot Creator and Editor .. 21
 3.5.3 Dialogue Objects and Assigning Audio & Animation 22
 3.5.4 Exporting Shots, Dialogue Text, Audio, and Animation 23
 3.6 Saving Shot Patterns .. 23

vi

4. CONCLUSION & FUTURE WORK ... 25

 4.1 Conclusion ... 25
 4.2 Future Work ... 25
 4.2.1 Extending CineCam ... 25
 4.2.2 Crowdsourcing Cinematographic Styles.. 26
 4.2.3 Allowing for Different Character Heights ... 27

REFERENCES ... 28

vii

LIST OF FIGURES

Page

Figure 1: Reprinted from Lai example output of a shot from their system 3

Figure 2: Reprinted from Tomlinson an example output from their system 4

Figure 3: Several examples of CameraShot Specifications, in order Default, Default-Close,
Default-Mid, Parallel, Low Angle, High Angle. ... 11

Figure 4: Visual representation of the CameraShot shot specification algorithm. 12

Figure 5: FrameShare shot. ... 14

Figure 6: Visual representation of the FrameShare shot specification algorithm. 14

Figure 7: OverShoulder shot. .. 16

Figure 8: Visual representation of the OverShoulder shot specification algorithm. 16

Figure 9: Default composition determined by left or right side. ... 17

Figure 10: Visual representation of CineCam maintating the line of action with the left and
right side marker. ... 18

Figure 11: The Complete User Interface of CineCam. ... 19

Figure 12: The Cuts Panel Interface. .. 20

Figure 13: Custom Shot Creator Panel. .. 21

Figure 14: Edit Shot Panel. ... 22

Figure 15: Adding Audio & Animation Panel. ... 22

Figure 16: Previz and Export Buttons. .. 23

1

1. INTRODUCTION

 Cinematography is a key component of modern computer games as the way a scene is

presented to the player plays a critical role in their perception of the story. There has been an

interest in developing systems and methodologies that automate camera placement so as to

remove or reduce the need for a cinematographer. This thesis specifically focuses on

cinematography in dialogue contexts. Games like “Mass Effect” and “Life is Strange” have

many dialogue sequences in them to advance the narrative. Dialogue scenes commonly have

variations of the interior, exterior, and apex shots. Procedurally placing these shots instead of

manually placing them with a tool would be beneficial in speeding workflow. Previous research

efforts explored systems that procedurally compose shots from narrative information. However, I

do not believe these types of systems are effective because capturing the intent of the

cinematographer is difficult to automate with an engine or AI.

1.1 A Tool for a Non-Cinematographically Familiar Audience

 Game development is a very multidisciplinary and evolving field. Often a developer can be

involved in roles that go beyond their expertise. Creating tools that take into account the

limitations of knowledge of the user is beneficial in speeding workflow. I have designed a

camera placement tool for a non-cinematographically familiar audience. With the system’s UI,

and built in cinematographic knowledge, anyone using the tool can create a dialogue sequence

easily.

2

2. LITERATURE REVIEW

2.1 Challenges & Solutions in Automated Cinematography Tools

 Throughout the field of automated cinematography, there have been several avenues where

automated camera placement has been explored. This includes real-time camera placement, as

well creating a formalized language for camera placement.

 Previous research has been done in automating camera placement in real-time within

dynamic environments. In video games, the player often is in control of the camera. Burelli’s

research noted that player control often conflicts in an automated camera system, as an

automated camera takes control away from the player, making the game less playable at the

expense of making the game look more cinematographic [8]. This is one of the many challenges

in real-time automated systems.

 Bares et al. focused their research on the challenges of real-time camera control in dynamic

environments as well. They proposed a system called UCAM that employs “cinematographic

user models to render customized visualizations of dynamic 3D environments” [9]. Essentially

UCAM’s cinematographic adaptive models change as the environment changes, enabling the

camera to visualize the environment in a clear way independent of where it is in the

environment.

 Though solving the automated camera placement in real-time contexts has been a focus,

formalizing a language for camera placement has also been explored. In the research done by

Chistianson et al, they proposed encoding cinematographic principles into a formalized language

3

in “Declarative Camera Control for Automatic Cinematography” [10]. The encodings written in

the language is fed into a system which has a Hueristic evaluator that places the camera in the

scene. This formalized language is useful for engines or systems implementing camera positions.

2.2 Frameworks Utilizing Narrative Information

 Many previously proposed procedural camera placement systems often have narrative

engines that analyze a story or a script to determine shot placement. Pei-Chun Lai et al in their

paper proposed a pattern-based tool for creating virtual cinematography [6]. In their system, the

story context is inputted as XML parameters that include Scene, Emotion, Communicative

Goals, Actions, and Character elements. The system matches these story elements with camera

patterns and outputs a shot sequence. After viewing an example of a shot sequence outputted by

their system, I noticed the scene did not cinematographically flow well. This speaks to the

difficulties in automating artistic decision making.

 Figure 1: Reprinted from Lai example output of a shot from their system
[6]

4

 In Tomlinson et. al’s system “Expressive Autonomus Cinematography for Interactive

Virtual Environments”, narrative information is encoded into the scene. The characters have

encoded emotion information like happy, sad, angry, and surprised. The scene also contains

motivation information and it is characterized as “DesireForTwoShot”, and

“DesireForCloseUp”. The system extracts the emotion and motivation information as well as the

height and position of the characters into a behavior tree. The behavior tree consists of

predefined shots and uses this information to make decisions on shot placement [11].

 In Tomlinson et. al’s assessment of their system, they noted that when participants used

their system, sometimes the character would travel offscreen and the participant would be

confused. They determined when the participant was confused when participant would audibly

Figure 2: Reprinted from Tomlinson an example output
from their system [11].

5

tell the person conducting the assessment that they could no longer see the character. Their

system highlights the general challenge in using narrative information for autonomous camera

behavior.

 Another tool not directly related to camera placement but similarly uses story or script to

inform decision making is Disney Research’s Cardinal. Cardinal provides a means of viewing a

script through a variety of perspectives [7]. Cardinal uses natural language processing to

visualize traditional movie scripts. “The system takes the text and stores it in an internal meta-

annotated representation format. Text of actions is further passed to a natural language

processing server and transformed into other visualizations” [7]. Cardinal can create an

interaction view, which visualizes the actors as set lines and groups the lines in terms of

interactions the actors have. Cardinal also offers a 3D view that uses the ADAPT framework

which uses behavior trees to determine character animations [7].

 The Cardinal System shows that using narrative information to create a visual output can be

useful if utilized in a correct context. In this case, the goal of Cardinal is to visualize the flow of

actions in the script and not necessarily create a production ready representation. In this sense,

Cardinal is successful in creating a useful result from narrative information as their end result is a

preliminary.

2.3 Relevant Techniques to Determine Camera Placement

 Previous efforts in camera placement systems have used various techniques to determine

camera placement. Three noteworthy techniques are Director’s Volumes, idioms, and

constraints.

6

 The Director’s Volume technique as proposed by Lino et al computes spatial partitions in

the space of viewpoints around a key subject. “Each partition is qualified with a semantic tag

representing its shot distance and relative angle to subjects” [03]. Categorization of regions of

space around the subject is useful for a system to determine what is a close shot versus a mid-

shot.

 Idioms are a convenient and straightforward way to encode cinematographic knowledge as

mentioned by Cozic [01]. They are essentially hard-coded shot specifications. They are very

useful for capturing cinematographic techniques accurately, however they become difficult to

adapt to dynamically changing virtual scenes. Studies by Galvane et al stated that idiom-based

techniques would typically fail in this area due to the inability of the technique to handle

complex situations and the necessity arises to design idioms for many situations [02].

 The solution to drawbacks of idioms are constraint-based solutions. Given a set of

constrains about the objects to appear in the frame, the system tries to find the camera parameters

that best satisfy the constraints as seen in Friedman’s proposed system [04]. Constraints are

essentially a set of rules that allow the camera to react in different ways depending on the

situation or condition. For example, if the character entered a new area, and the scene needed be

viewed and played from a bird-eye view, the camera could be positioned at the top of the scene

and be constrained from rotating while following where the player travels. Previous systems

have applied constraints as rules of editing [05]. Rules such as continuity of style, line of action,

screen continuity, and motion continuity.

7

Considering these limitations and the techniques used in other systems, I propose an

automated camera system specifically focused on dialogue sequences. This system has the

capability to procedurally frame compositions accurately within the dialogue context.

8

3. METHODOLOGY & DESIGN

3.1 Proposed System

 The proposed system CineCam, is a camera utility exclusively designed for dialogue

sequences. Sequences involving dialogue have common camera cuts such as variations of apex,

interior, and exterior. Unlike a real-time camera context, the dialogue scene context lends itself

well to being automated as dialogue shots have the potential be procedurally placed accurately.

Unlike other systems, CineCam does not use a script or narrative engine to inform camera

placement but instead uses a UI to allow the user to select shots. CineCam is designed to be a

utility to reduce manual camera placement.

 CineCam stores camera definitions as idioms. These idioms are associated with different

cinematographic techniques. CineCam’s user interface (UI) allows the user to select and place a

shot. They can also edit any shot by changing the idiomatic variables associated with the selected

shot. The tool also allows the user to create their own custom idioms, giving the user flexibility

in composing shots.

 As previously mentioned, the user in most cases might not be cinematographically familiar.

When the user creates a custom shot, it is based on a pre-existing shot definition. This allows

them to create shots that are approximately accurate to commonly found shots found in dialogue

sequences.

3.2 Functionality Overview

 A script with the actors and their corresponding lines of dialogue is read by the CineCam

system and assigns a default camera shot for each line of dialogue. The UI displays the

resulting actor name, dialogue, and camera shot. Additional shots can be added with the “Add

Cut” button and removed with the “X” button. This allows for multiple cuts to happen during a

single line of dialogue. A dropdown menu allows the user to select the type of shot from a list.

The user can choose from various cinematographic techniques such as “High Angle”, “Low

Angle”, “Overshoulder”, “Parallel”, and “FrameShare”. The user can additionally assign audio

and animation that the character is saying for that LOD.

The resulting shots, audio and animation data can be exported into a PSO (Playable Script

Object). The PSO contains all the relevant sequence information such as shot idioms, dialogue

text, dialogue audio, animations, and the location of the characters in the sequence. When the

PSO is accessed and called in the script through a public function, the sequence is played.

The custom shot creator which is the second aspect of the tool, allows the user to create and

define their own custom shot. The custom shot creator has a preview windows that displays

what the shot will look like. When a custom shot is created, it can be saved as an idiom and can

be added through the dropdown list and applied on any character. The custom shot creator also

allows the user to further edit current placed shots. For example, the user could take the Default

shot, tweak the values, rename it and save it as a custom shot.

3.3 Shot Calculation Classes

There are three types of shot classes: CameraShot, FrameShare, and OverShoulder. Each

class has its own implementation and calculation for composing the camera around the actor or

9

10

actors. Distance, height, orbit, and Xbias are variables that are shared in the calculations of each

of these shots. Distance is the length away from the actor, height is the length above the actor,

orbit is the degree of rotation around the actor, and the Xbias is the distance the camera shifts on

its local x axis, framing the actor on either the right or left side of the screen.

3.3.1 CameraShot

 The CameraShot class is used to create interior shots and variations of an interior shot.

These include mid-shots, closeups, extreme closeups, as well as high angle and low angle shots.

It is used for when the focus is on a singular character. The other character is irrelevant in

calculating the composition of the shot. Figure 1 shows variations of the CameraShot

specification.

The following Unity C# code and vector math is the algorithm the CameraShot class uses

to calculate a CameraShot shot.

//Set Camera Distance Away From Target
 Vector3 targPos = targetObj.transform.position;
 CamPos = targPos;
 Vector3 forwardN = (targetObj.transform.forward).normalized;
 CamPos = CamPos + (forwardN * distanceFromTarget);

 //Adjust Camera Height to Go up or Down
 CamPos = new Vector3(CamPos.x, CamPos.y + height, CamPos.z);

 //Calculate Camera Rotation
 GameObject cam = new GameObject();
 cam.transform.position = CamPos;
 cam.transform.RotateAround (targPos, Vector3.up, orbitAngle);
 Vector3 option1 = cam.transform.position;
 cam.transform.position = CamPos;
 cam.transform.RotateAround (targPos, Vector3.up, -orbitAngle);
 Vector3 option2 = cam.transform.position;
 CamPos = GetClosest(sidemarker, option1, option2);

11

 //Look Directly at Target
 CamRot = Quaternion.LookRotation(targPos - CamPos);
 //Apply the Bias Shift
 cam.transform.position = CamPos;
 cam.transform.position += Vector3.forward * biasX;
 option1 = cam.transform.position;
 cam.transform.position = CamPos;
 cam.transform.position += Vector3.forward * -biasX;
 option2 = cam.transform.position;
 CamPos = GetFarthest (sidemarker, option1, option2);

 UnityEngine.Object.DestroyImmediate (cam);

Figure 3: Several examples of CameraShot shots. An implementation of the interior
shot. The shots are in order defined as Default, Default-Close, Default-Mid, Parallel,

LowAngle, HighAngle.

12

3.3.2 FrameShare

The FrameShare class is used to create apex shots and variations of the apex shot. An apex

shot is a shot that includes both actors as seen in Figure 3. FrameShare shots are calculated by

finding the midpoint between two actors. The camera is oriented around that midpoint based on

the distance, height, Xbias, and orbit values. FrameShare shots are effective in conveying affinity

between two actors. They are commonly used in romantic dialogue scenes as well as scenes

where two actors are communicating something that is of mutual value.

The following Unity C# code and vector math is the algorithm used by the FrameShare

class to calculate a FrameShare shot.

 //Calculate Camera Position distance
 cam.transform.position = targetObj1.transform.position;
 float actorDistance = Vector3.Distance(targetObj1.transform.position,
 targetObj2.transform.position);

Figure 4: Visual representation of the CameraShot shot specification
algorithm.

13

 //Get Direction of Actor1 towards Actor2
 Vector3 actorADirN = (targetObj2.transform.position -
 targetObj1.transform.position).normalized;

 //Midpoint in actor direction
 Vector3 MidPoint = targetObj1.transform.position + (actorADirN * (actorDistance / 2));

 //Calculate Perpendicular vector
 //Rotate ActorADirN 90 degrees on y axis
 Vector3 PDir1 = Quaternion.AngleAxis(90, Vector3.up) * actorADirN;
 Vector3 PDir2 = Quaternion.AngleAxis(-90, Vector3.up) * actorADirN;

 Vector3 option1 = MidPoint + (PDir1 * distanceFromTarget);
 Vector3 option2 = MidPoint + (PDir2 * distanceFromTarget);

 CamPos = GetClosest (sidemarker, option1, option2);

 //Adjust height to go up or down
 CamPos = new Vector3(CamPos.x, CamPos.y + height, CamPos.z);
 cam.transform.position = CamPos;

 //Orbit around Midpoint
 cam.transform.RotateAround (MidPoint, Vector3.up, -orbitAngle);

 //Look At MidPoint
 Vector3 groupDirN = (MidPoint - cam.transform.position).normalized;
 Quaternion rotation = Quaternion.LookRotation(groupDirN);
 cam.transform.rotation = rotation;

 CamPos = cam.transform.position;
 CamRot = cam.transform.rotation;
 UnityEngine.Object.DestroyImmediate (cam);

14

 Figure 5: FrameShare Shot, an implementation of the apex shot. Both characters
share screen space equally.

 Figure 6: Visual representation of the FrameShare shot
specification algorithm

15

3.3.3 OverShoulder

 The OverShoulder class is used for shots when the focus is on the speaker but the recipient

also needs to be in the frame. The shot is calculated by orienting the camera on the recipient,

then it is rotated towards the speaker so the speaker can be seen over the recipient’s shoulder.

Like CameraShot and Frameshare, the properties of this shot can be changed with the distance,

orbit, Xbias, and height variables. Figure 5 shows an example of an OverShoulder shot.

 The following Unity C# code and vector math is the algorithm carried out to calculate an

OverShoulder shot.

 Vector3 targPos = targetObj.transform.position;
 CamPos = targPos;
 Vector3 forwardN = (targetObj.transform.forward).normalized;
 CamPos = CamPos + (forwardN * distanceFromTarget);

 //Adjust height either up or down
 CamPos = new Vector3(CamPos.x, CamPos.y + height, CamPos.z);

 //Calculate Camera rotation
 GameObject cam = new GameObject();
 cam.transform.position = CamPos;
 cam.transform.RotateAround (targPos, Vector3.up, orbitAngle);
 Vector3 option1 = cam.transform.position;
 cam.transform.position = CamPos;
 cam.transform.RotateAround (targPos, Vector3.up, -orbitAngle);
 Vector3 option2 = cam.transform.position;

 CamPos = GetClosest(sidemarker, option1, option2);

 //Look Directly at Target
 CamRot = Quaternion.LookRotation(targetObj2.transform.position - CamPos);

 UnityEngine.Object.DestroyImmediate (cam);

16

Figure 7: OverShoulder Shot. An implementation of the exterior
shot. Another character included in the composition.

Figure 8: Visual representation for the OverShoulder shot
specification algorithm

17

3.4 Maintaining the Line of Action

 All shots maintain the line of action (LOA) also known in cinematography as the 180-

degree rule. Maintaining the LOA means that the shots always stay on the left or right side of the

actors and do not cross the axis between the two actors. Crossing the LOA often can be

disorienting and it can distract the audience from the intent of the scene.

 When CineCam is run, it checks which side has been selected (right or left). Then a

SideMarker is placed which is a vector variable that contains coordinates for a position in the 3D

space on the left or right side of the actors. When the orbit angle of a shot is calculated, it orbits

in the direction closest to the SideMarker. This allows for the shots to maintain the LOA and stay

visually consistent. The dropdown menu allows the user to select either the left or right side to

change which side of the actors the shots are being calculated on.

Figure 9: Default composition determined by left or right side toggle

18

3.5 UI Design Overview

 Implementation of the CineCam system is done through the CineCam UI. The UI is

separated by four main sections. The Actor, Dialogue, Shots, and Audio / Animation as seen in

figure 9. In the middle of the UI are the export and previsualization buttons. On the bottom of the

UI is the shot customizer where the user can edit current shots and create their own. The window

on the bottom right previews what the camera composition looks like when a shot is being edited

or created.

 The goal of the design of the CineCam UI is to clearly display actor and dialogue

information as well as shot information so the user can modify and arrange and edit shots. The

dialogue and shot information are listed the order of the dialogue script.

Figure 10: Visual representation of CineCam maintaining
the line of action with the Left and Right sidemarkers

19

Figure 11: The complete User Interface of CineCam

20

3.5.1 Adding Cuts and the Opposite Action

 After the Actor section and the Dialogue sections are listed, there is the Shots section. In the

Shots section, the shots listed in the sequence that they will be played. The panel allows the user

to add and remove shots while also setting the LOA.

 The Add Cut button adds another shot to an actor’s LOD. A dropdown menu lists the

various shots the user can choose such as Default, Mid, Close, XtremeClose, High Angle,

LowAngle, OverShoulder, and Frameshare. The edit button allows the user to edit a shot by

changing the distance, height, orbit and Xbias variables associated with that shot. The Opp

checkbox (short for opposite) sets the camera to focus on the opposite actor in the scene. For

example, if the user set the Shot as “Default” on ActorA, and the Opp checkbox was enabled,

then that shot would focus on ActorB. This feature essentially creates a reverse shot. The “X”

box removes the shot from the panel and the sequence.

Figure 12: The Cuts Panel Interface

21

3.5.2 Custom Shot Creator and Editor

 The Custom Shot editor is located on the bottom of the UI. It allows the user to create new

shot compositions and edit existing ones. When the user clicks the Edit button the preview

window displays what the shot looks like. The user can change the values in the fields, name the

shot and save it as a new shot or as a replacement for the selected one. The shot creator window

is displayed in Figure 11.

 Every shot is defined by the orbit, height, Xbias, and distance values. When the user clicks

on the “Edit” button in the UI, variables of the shot being edited are displayed in the text fields.

The user can change these values and the preview window will show what the shot looks like. If

a shot was edited the updated shot will be highlighted in blue in the UI. The edit window is

displayed in Figure 12.

Figure 13: Custom Shot Creator

22

3.5.3 Dialogue Objects and Assigning Audio and Animation

 With each LOD, there is an associated audio with the actor speaking and character

animation. The user can assign the audio clip and animation by dragging them into the fields.

The duration of the shots is informed the duration of the audio clip. For example, if the audio is 9

seconds long and there are 3 shots assigned for that LOD, each shot will be 3 seconds in

duration. Basically, the shots are timed evenly within the length of the audio clip.

Figure 14: Custom Shot Creator

Figure 15: Adding Audio & Animation Panel

23

3.5.4 Exporting Shots, Dialogue Text, Audio, and Animation

 After the user has finished making and assigning shots, assigning audio and animations, this

data is exported into a PSO. This is done by pressing the “Export as Playable Script Object”

button. The PSO stores information needed to play the sequence such as the locations of the

actors, dialogue, audio clips, animation clips, and the shots. When the play function in the PSO is

called from a script, the actors will be set into their respective locations when the shots were set.

The game camera will play the sequence of shots along with the assigned audio and animation

data. After the sequence is over the main game camera will reset itself to its original location

before the sequence was played.

 The “PreViz Sequence” button plays the sequence in the editor. This allows the user to

experiment with different shots and visualize the resulting sequence.

3.6 Saving Shot Patterns

 The tool also allows the user to save a “shot pattern”. If a sequence of shots has been set and

calculated. They can be saved as dialogue objects and applied over any audio sequence. For

example, the user has saved a dialogue sequence as follows a Default, and OverShoulder shot for

Figure 16: Previz and Export Buttons

24

dialogue for audio 1, then Frameshare for dialogue 2. The user can save the sequence as a shot

pattern and apply it to any dialogue.

 The user would load the shot pattern and then apply the dialogue. This has applicability

because dialogue sequences often have similar patterns and they are often reused.

25

4. CONCLUSION & FUTURE WORK

4.1 Conclusion

 CineCam’s capacity to save shot idioms and apply them through a UI reduces the need to

place the camera manually in 3D space. This technique has applicability not just in games, but also

can be applied to previsualization tools in films as well. I realize an experienced

layout/cinematographic artist who is used to navigating 3D space quickly and composing camera

shots might not find this tool useful. However as mentioned earlier, this tool is designed for

developers who are unfamiliar with cinematography. The built-in idioms allow them to compose

cinematographically accurate dialogue sequences quickly and with relative ease.

 As previously stated, in narrative games, dialogue sequences can be a large portion of

gameplay. The CineCam tool facilitates a framework to create these sequences quickly. In this

sense, a large portion of a narrative game is already built into the CineCam tool which can help

to reduce overall development time.

4.2 Future Work

4.2.1 Extending CineCam

 Future work in this tool involves adding the capability for shots such as OverShoulder and

FrameShare to include 3 or more characters as it is common for dialogue scenes to include

groups of actors. Currently the tool only takes-into-account 2 characters. Another feature would

be having the camera follow subjects around in a scene as they are moving. Often characters can

26

be pacing around in the scene while they are talking. Incorporating this feature would make for a

more dynamic tool.

 Another future improvement would be exporting the shots, corresponding audio and

animation into Unity’s CineMachine’s timeline feature. CineMachine’s timeline is similar to an

editor timeline that is seen in Adobe Premiere where the user can edit the timing of cuts and clips

by scaling and sliding the cuts. Having the ability to do this would give the user further

flexibility to edit the sequence.

 Finally, animation clips can currently be assigned in the tool but the models do not currently

play the animations at runtime. Fully integrating models to play assigned animations is subject

for future work as well.

 For further discussion, this tool could inform the design of immersive characters as it is

important to design characters in a way that can be framed recognizably. Focus should be on the

character’s eyes and head as the calculations of the tool are based on that area.

4.2.2 Crowdsourcing Cinematographic Styles

 In addition to extending the tool’s features, it would also be helpful for researchers to be

able crowdsource cinematographic styles by parametrically extracting cinematographic

information from other films using the same parameters that CineCam uses to compose shots.

For example, in Wes Anderson films, shots are consistently framed where the actor is

centralized. This would mean there is always be low or no Xbias value to shift the camera when

shots are being framed. The orbit value would be 0 or close to 0 so the character is seen head on.

The distance value would be a value that would change arbitrarily depending on the user’s

27

preference. Being able to stylize shot techniques to fit a cinematographic style would allow users

to stylized their dialogue sequence to fit those of famous directors.

4.2.3 Allowing for Different Character Heights

 Often in dialogue sequences characters can have different heights. The tool operates on the

assumption that the characters are the same height. Future work would include the tool to take

into account the different heights of the characters. It would use a character height variable to

factor in the camera height. Different character heights would also change the way the

OverShoulder shot is calculated as it would need to adjust to be able to include in the view a

shorter or taller character.

28

REFERENCES

1. Cozic, L. Automated Cinematography for Games. Master’s Thesis – Lansdown Centre

for Electronic Arts, School of Arts, Middlesex University. Londres, Inglaterra, 2007.

2. Galvane, Quentin, et al. “Narrative-Driven Camera Control for Cinematic Replay of

Computer Games.” Proceedings of the Seventh International Conference on Motion in Games -

MIG '14, 2014, doi:10.1145/2668064.2668104.

3. Lino, C., Christie, M., Ranon, R., & Bares, W. The director's lens: an intelligent assistant

for virtual cinematography. In Proc. ACMMM ‘11. ACM (2011), 323-332.

4. Friedman, D., Feldman, Y.A.: Automated cinematic reasoning about camera behavior.

Expert Syst. Appl. 30, 694–704 (2006).

5. R. Ronfard. A Review of Film Editing Techniques for Digital Games. In R. M. Y. Arnav

Jhala, editor, Workshop on Intelligent Cinematography and Editing, Raleigh, United States, May

2012. ACM.

6. Lai, P., Wu, H., Sanokho, C., Christie, M. and Li, T. A Pattern-based Tool for Creating

Virtual Cinematography in Interactive Storytelling. In Anonymous Smart Graphics. (August 27-

29, 2014). Springer, Taiwan, 2014, 121-132.

7. Marti, Marcel, et al. “Cardinal.” Proceedings of the 2018 Conference on Human

Information Interaction&Retrieval - IUI '18, 2018, doi:10.1145/3172944.3172972.

8. P. Burelli, “Virtual cinematography in games: investigating the impact on player

experience,” Foundations of Digital Games, 2013.

29

9. Bares W. H., Lester J. C.: Cinematographic user models for automated realtime camera

control in dynamic 3D environments. InProceedings of the sixth International Conference on

User Modeling (UM 97) (Vien New York, 1997), Springer-Verlag, pp. 215–226.

10. Christianson, D., Anderson, S., He, L., Salesin, D., Weld, S., and Cohen, F., Declarative

Camera Control for Automatic Cinematography, in the Proceedings of the Conference of the

American Association for Articifical Intelligence, page 148-155, 1996.

11. Tomlinson, B., Blumberg, B., and Delphine, N. 2000. Expressive Autonomous

Cinematography for Interactive Virtual Environments. In Proc. of the 4th International Conf. on

Autonomous Agents.

