
 

 

CHARACTERIZATION OF MULTIPLE TRANSVERSE FRACTURE WELLS 

USING THE ASYMPTOTIC APPROXIMATION OF THE DIFFUSIVITY 

EQUATION 

 

A Thesis 

by 

ANDREW DAVID MALONE  

 

Submitted to the Office of Graduate and Professional Studies of 

Texas A&M University 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

Chair of Committee,  Michael J. King 

Committee Members, David Schechter 

 Juan Carlos Laya 

Head of Department, Jeff Spath 

 

May 2019 

Major Subject: Petroleum Engineering 

Copyright 2019 Andrew David Malone



 

ii 

 

ABSTRACT 

 

Shale oil and gas remains a developing field of study because of the inherent 

complexities of producing fluids from ultra-tight media via wells with highly complex, 

uncertain geometries. Production analysis provides evaluators with powerful tools for 

the optimization of production from unconventional reservoirs, requiring only limited 

geologic and petrophysical data, given that certain assumptions are made. In this study, 

we present a new subset of analytic formulations for the production analysis of Multiple 

Transverse Fracture Wells (MTFW’s). These analytic models are based upon the 

asymptotic approximation of the diffusivity equation and are unique in that they apply 

the asymptotic solution in conjunction with the principle of superposition to represent 

the interactions between hydraulic fractures during reservoir drainage from MTFW’s. 

With these models we show that the interaction between hydraulic fractures during 

MTFW production will appear similar to boundary-dominated flow (BDF) on a 

diagnostic plot but is in fact a unique interference signature that results from the 

superposition of pressure drawdowns induced upon each fracture by its neighbors. 

 In addition, we present our work on the explicit definition of the end of transient 

linear flow in MTFW’s. Previous authors have observed and defined the “end of linear 

flow”, however, we discovered that this definition remains ambiguous in industry 

literature. We present our own definition of the end of linear flow, based upon the core 

construction of the asymptotic approximation of the diffusivity equation, founded upon 

the concept of detectability. Our definition, dubbed the “limit of detectability” is 
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intuitive, recognizable on classic pressure transient diagnostic and specialized plots, and 

independent of inner boundary conditions. 
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CHAPTER I  

SHALE OIL & GAS INTRODUCTION 

Introduction 

Shale oil and shale gas reservoirs have dominated a growing share of the oil and 

gas industry’s attention for decades. With immense resource potential and technical 

complexity, these reservoirs present us with a great opportunity for natural resource 

development and continued scientific discovery. Over the years since Mitchell Energy 

Development Corp. (MEDC) first successfully pioneered production from the Barnett 

Shale, the production of oil and gas from ultra-tight reservoirs has exploded on a global 

scale (Jarvie 2012a). With recent technological advancement, more shale resources have 

become economic, and more countries have been able to participate in the “shale 

revolution” as our understanding of production from ultra-tight rocks has improved. This 

is reflected by growth in estimated resource volumes. Rogner (1997) estimated total 

worldwide shale gas volume to be 16 * 1015 cubic feet. 14 years later, EIA (2011) 

estimated it to be 22 * 1015 cubic feet, and updated this number to 31 * 1015 in 2013 

(EIA 2013). This prolific rise in resources comes from both increases on local scales, 

and from the inclusion of more nations in each report. 

 One of the greatest commonalities between shale plays remains the necessary 

drilling of horizontal wells completed with multi-stage hydraulic fracturing stimulation 

treatments – otherwise known as multiple transverse fracture wells (MTFW’s). This 

drilling and completion strategy is the primary reason that production from ultra-tight oil 

and gas resources became economic in the first place (Jarvie 2012a). The production of 
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oil and gas from shales through MTFW’s presents interesting challenges that come about 

as a result of complexity in both rock properties and geometric parameters. Successfully 

developing shale plays depends upon evaluators’ abilities to identify and interpret both 

the important geologic/reservoir parameters and the geometric completion-related 

parameters that control the fluid flow in MTFW’s (Cipolla et al. 2011).  

  Previous work from our research group (Agarwal 2011) discussed the 

importance of prior assumptions made about reservoir parameters in the context of a 

history-matching exercise for an offshore turbidite reservoir. Our goal in this new study 

is to approach shale reservoir evaluation through the same lens, focusing on both the 

geology and completion-related complexities present in MTFW’s. Through rigorous 

literature review we identify the key geologic and engineering parameters for 

unconventional shale reservoirs and contextualized those parameters as they apply to a 

single shale play – the south Texas Eagle Ford play. We present this review and list in 

this chapter. From this list we approach a subset of problems – those pertaining to the 

nature of fluid flow in MTFW’s and the onset of flow interference between neighboring 

hydraulic fractures – and develop analytic methods for the interpretation of production 

data as it pertains to MTFW’s. 

 Using the asymptotic approximation of the diffusivity equation (King et al. 2016) 

in conjunction with the principles of superposition in space and linearity, we are able to 

accurately model the pressure transient behavior of a MTFW while taking the effects of 

fracture interference into account. We developed formulations for both constant-rate and 

constant-BHP inner boundary conditions for both linear and “pillbox” flow models. 
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These models are able to compute the rate-normalized pressure drop (RNP) and its 

derivative with respect to the natural logarithm of time (RNP’) on a by-fracture or 

whole-well basis for a single MTFW. We validate this model by comparison with a 

commercial simulator. As it stands, our constant-rate formulations either exactly or 

approximately match simulator results, and our constant-BHP formulations see varying 

but lesser degrees of success. We discuss the development of these formulations in 

Chapter II. 

 Production from shale reservoirs is ultimately difficult because it is the 

production of fluids from extremely low-permeability rock (Blasingame 2008). This low 

permeability leads to transient flow periods that exceed those observed in conventional 

reservoirs even by orders of magnitude. For a MTFW, this early transient flow 

commonly takes the form of either linear or bilinear flow (Clarkson 2013; Song and 

Ehlig-Economides 2011) and eventually transitions to an apparent pseudo-steady state 

flow regime as hydraulic fractures begin to interact. We refer to the time at which this 

interaction begins as the “end of linear flow”, or telf. 

 We find that the current literature fails to fully understand the end of linear flow. 

Numerous definitions for the end of linear flow exist in the literature (Ehlig-Economides 

1992; Lee et al. 2003; Song et al. 2011; Song and Ehlig-Economides 2011; Wattenbarger 

et al. 1998). None are truly in agreement – neither regarding the physical nature of the 

end of linear flow nor the mathematical definition. Authors generally agree that the end 

of linear flow should be defined using either the depth of investigation or some 

analogous principle but find no consistency regarding the specific equation. We propose 
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with this study that the “limit of detectability” (LOD) concept provides an ample method 

for defining the end of linear flow and guiding its detection in the field when analyzing 

production data. We substantiate this claim with numerical simulation results from a 

commercial simulator, detailed diagnostic data from our aforementioned analytic model, 

and with a field example from the Montney shale play in Canada. 

 

A Brief History of Shale Oil & Gas 

 The ability to exploit hydrocarbons contained in rocks with nano-darcy 

permeability is not an extremely new concept. In 1821 gas was produced from the 

Devonian Dunkirk Shale in Appalachia (Sondergeld et al. 2010b). In the early-to-mid 

1900’s, the Columbia Gas System Service Corp developed Devonian shales in 

Appalachia (Sondergeld et al. 2010b). The “shale boom” began later on when Mitchell 

Energy & Development Corporation (MEDC) became involved with the Barnett Shale 

(Hinton 2012). 

MEDC drilled their first shale gas well, C.W. Slay No. 1, in 1981 (Hinton 2012). 

Spurred on by potential new revenue under the Natural Gas Policy Act, George P. 

Mitchell sought to revitalize his company’s already-developed acreage near Fort Worth, 

Texas with new shale production (Hinton 2012). The C.W. Slay No. 1 was not 

economic, and MEDC staff struggled to unlock the secret to shale gas exploitation until 

their major breakthrough in 1997 (Hinton 2012). By using slickwater in lieu of the more 

common viscous hydraulic fracturing fluids, MEDC was able to both cut costs and 
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improve well performance, transforming the Barnett Shale from an unproducible source 

rock to a massive potential reservoir rock (Hinton 2012). 

 The Barnett Shale boom soon followed, and MEDC was later purchased by 

Devon Energy in 2002 (Jarvie 2012a). Devon continued to pursue production in the 

Barnett, and Southwestern Energy soon announced success in the Fayetteville Shale of 

Arkansas (Jarvie 2012a). MEDC’s expertise propagated through the industry, and we 

saw the “shale revolution” that led to where the industry is today (Jarvie 2012a) with 

recoverable shale oil and gas resources in over 137 formations and 42 countries 

worldwide (EIA 2013). 
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Key Parameters for Shale Oil & Gas 

 In the usual, or “conventional”, context, shales are seen as seals, traps, and 

source rocks – anything but a reservoir rock (Clarkson et al. 2016). This paradigm 

persisted until improvements in hydraulic fracturing technology enabled economic 

production from shales (Clarkson et al. 2016). In a general sense, this is the greatest 

similarity between shale reservoirs – economic production from any ultra-tight shale 

reservoir will require large-scale stimulation through hydraulic fracturing or some yet 

undiscovered technology.  

Another great similarity between shales is their variance. No two shales are the 

same. They can produce oil, gas, condensate, or a diverse mixture of fluids, varying with 

both spatial distribution and kerogen maturity (Jarvie 2012a, 2012b). They originate 

from both marine and lacustrine environments (Zou 2017). Mineralogically, shales can 

form as siliclastic rocks, calcareous rocks, or a mixture of the two (Jarvie 2012a, 2012b). 

Though many cite shales as clay-heavy, their clay content can vary substantially from 

basin to basin, and even show both small-scale and large-scale heterogeneities within a 

single formation (Bohacs et al. 2013; Passey et al. 2010). 

This introductory chapter will address the various generalized challenges we face 

in shale reservoir evaluation through a review of recent literature in the fields of 

unconventional reservoir geology, petrophysics, and reservoir engineering. Since the 

field of unconventional resources is so broad, we present generalized challenges, and 

contextualize them as they apply to a single reservoir – the Eagle Ford Shale. We strive 

to maintain this list of challenges as a foundation for future studies in unconventional 
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resources. In Chapters 2 and 3, we present our work intended to address just a few of the 

challenges we list. 

 

 

Figure 1 - Unconventional Reservoir Framework – Eagle Ford Reservoir 

 

 

Category 1 – Classical Geologic Factors 

 Though unconventional reservoirs present their own unique challenges to 

evaluators, classical tools provided by geology, petrophysics, and reservoir engineering 

still apply when attempting to produce from shales (Bohacs et al. 2013). In Category 1, 

we briefly address the more “conventional” parameters that apply to unconventional 

reservoirs and to the Eagle Ford shale.  
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Environments of Deposition (EOD’s) 

 Authors tend to agree that shales are defined by a very small grain size. Exact 

definitions of “shale” via grain size vary, but many authors will argue that shales should 

really be referred to as producible mudstones, and have grain sizes less than 

approximately 65 micrometers (Bohacs et al. 2013; Loucks et al. 2009; Sondergeld et al. 

2010a; Sondergeld et al. 2010b). This categorization lends itself to a simple and broad 

description of shale environments of deposition (EOD’s) – hydrocarbon-bearing shales 

are formed in low-energy environments where these small particles can accumulate and 

where the prerequisites for organic matter accumulation and maturation are met (Bohacs 

et al. 2013; Passey et al. 2010). These can be terrestrial or marine settings where surface 

water plankton productivity is high, water is deep, oxygen content is poor, and the ratio 

of organic matter production to sediment influx is balanced (Passey et al. 2010; Zou 

2017). Typical terrestrial EOD’s are deep lakes (Zou 2017) and typical marine 

environments include constructional shelf margins, platforms and ramps, and continental 

slope basins (Passey et al. 2010). 

 The Eagle Ford shale already breaks from the unconventional mold in that it is 

not entirely composed of shale intervals. The Cretaceous Eagle Ford shale is well known 

as the source rock for the overlaying Austin Chalk formation (Donovan and Staerker 

2010) and certainly includes organic-rich mudstone layers, but is actually what Jarvie 

(2012b) refers to as a “hybrid system”. A hybrid system is one composed of organic-rich 

mudstone layers interbedded with non-shale intervals (Jarvie 2012b). In the Eagle Ford, 

these non-shales are carbonate beds that crop up with varying frequency, dependent 
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upon their location in the Eagle Ford basin and depth within the Eagle Ford formation 

itself (Hentz 2010; Lock et al. 2010). Eagle Ford black shales were most likely formed 

as seabed intervals when ocean levels were higher during transgressive cycles (Donovan 

and Staerker 2010). 

 

Reservoir Structure & Geography 

 Broadly defining reservoir structure for an entire subset of reservoirs, e.g. shales, 

is difficult because no two reservoirs are the same. This being said, shales are often 

referred to as “resource plays” (Russell and Freeborn 2012) for a reason. Shales are 

typically structurally uninteresting on a small scale and show a large-scale shape that 

simply reflects the geography of their original deposition and subsequent burial and 

deformation. 

 The Eagle Ford shale’s structure reflects the locations of various basins that 

existed during its original deposition. It lies mostly in Texas, and is well known for 

sitting above the Buda Limestone and beneath the Austin Chalk (Donovan and Staerker 

2010; Hentz 2010; Lock et al. 2010). Within Texas, the Eagle Ford extends from the 

southwest border with Mexico up to the East Texas Basin where the Sabine uplift sits  

(Hentz 2010). The Eagle Ford is often broken into two sections, the Upper Eagle Ford 

(UEF) and Lower Eagle Ford (LEF), which evaluators can identify easily on wireline 

logs through a higher gamma ray signature through the LEF than what is seen in the 

UEF, primarily due to higher organic content in the LEF (Hentz 2010). The LEF is 

present through the entirety of the Eagle Ford and has a much greater black shale content 
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and higher total organic carbon (TOC) (Donovan and Staerker 2010; Hentz 2010; Lock 

et al. 2010; Tian et al. 2013). The UEF is typically less productive, has less organic 

matter, and has higher carbonate content (Donovan and Staerker 2010; Hentz 2010; 

Lock et al. 2010; Tian et al. 2013).  

The Eagle Ford is often broken up into 3 major geographic localities – the 

Maverick Basin, the San Marcos Arch, and the East Texas Basin (Hentz 2010) (Figure 

3). The Maverick Basin holds the deepest Eagle Ford accumulations and represents the 

thickest portion of the Eagle Ford shale, presenting both UEF and LEF intervals (Hentz 

2010). Moving northeast from the Maverick Basin, the Eagle Ford begins to thin as it 

approaches the San Marcos Arch (Hentz 2010). The UEF eventually pinches out in 

Atascosa county, and appears again only briefly in one instance, mostly in Gonzales 

County (Hentz 2010). As we approach the East Texas Basin further northwest, the Buda 

Limestone and Austin Chalk grow further apart, but this growth does not necessarily 

make the Eagle Ford thicker (Lock et al. 2010). Other groups – namely the Pepper Shale 

and the Sandy Woodbine Group, appear in intervals beneath the LEF, separating it from 

the underlying Buda Limestone (Figure 2) (Lock et al. 2010).  

 

Facies Distribution and Petrophysics 

 Since we intend to discuss “classical” parameters in this section, we will avoid 

discussion of unconventional petrophysics topics like organic matter, which we will 

discuss later. Shale reservoirs can present siliclastic or calcareous lithologies, with 

varying levels of clay content (Bohacs et al. 2013; Passey et al. 2010). The oft-cited high 
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gamma ray response of shales can come about as a result clay content, but also happens 

to be a signature of high total organic carbon (TOC) (Bohacs et al. 2013; Passey et al. 

2010). Shales are well-known for extreme anisotropy, which is a result of the large-scale 

alignment of mineral grains and clay platelets by compaction processes, that typically 

results in much higher bed-parallel (horizontal) permeability relative to bed-

perpendicular (vertical) permeability (Sondergeld et al. 2010a). Perhaps the most 

important petrophysical property of shales is their permeability, which is extremely low 

(Blasingame 2008). Hard limits on shale permeability don’t necessarily exist, but soft 

limits are forced upon us by nature. The combination of fluid resistance to flow 

(viscosity) and a rock’s tendency to transmit fluids (permeability) will dictate what 

shales can ultimately produce economically. Gas shales are documented to have 

produced in as low as the nanodarcy range (less than 1,000 nanodarcies), and shale oil is 

typically producible in the high nano-darcy range (not much less than 1,000 nanodarcies) 

to the microdarcy range (greater than 1,000 nanodarcies) (Bohacs et al. 2013). The 

extremely low permeability of shale correlates to its very small grain size and resulting 

tiny pore throats (Nelson 2009). Porosity values can be very small (as low as 1-2% in 

Sondergeld et al. (2010a)) or surprisingly high (Bohacs et al. (2013) reports 15%. 
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Figure 2 - Eagle Ford Structure – From Hentz (2010) - Republished by permission 

of the Gulf Coast Association of Geological Societies, whose permission is required 

for further publication use 

 

 

 

Figure 3 - Eagle Ford Shale Extent and Geography – From Hentz (2010) - 

Republished by permission of the Gulf Coast Association of Geological Societies, 

whose permission is required for further publication use 
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in some samples) but vary heavily between basins, and even between core samples 

within single basins. As it is a “hybrid” reservoir, the Eagle Ford shale exhibits a wide 

variety of facies and associated petrophysical properties. Dawson (2000) documents a 

total of six major facies groups observed in Eagle Ford outcrop and subsurface core rock 

samples. They report the presence of pyritic shale (facies 1), phosphatic shale (facies 2), 

bentonitic shale (facies 3), fossiliferous shale (facies 4), silty shale (facies 5), and 

bituminous claystone (facies 6) in studied core samples (Dawson 2000). Donovan and 

Staerker (2010) reports a series of calcareous mudstones with interbedded wackestones 

and packstones observed in an Eagle Ford outcrop interval. Eagle Ford porosities 

typically sit between 3% and 9%, with permeabilities less than 0.1 mD (Zou 2017). 

 

Natural Fracturing 

 Shales are known for producing at rates much higher than expected for 

nanodarcy rock, and natural fractures provide a likely source for this excess production 

(Gale et al. 2014). Natural fractures occur frequently in shales, particularly those with 

low clay content and high brittleness (Gale et al. 2014). Natural fractures in shales are 

highly prone to sealing via re-compaction, and those that stay open often see the 

precipitation of mineral fill over time, which can either hurt or help production (Gale et 

al. 2014). Shale fracture systems tend to form at high angle to the bedding plane of their 

associated intervals but can also form parallel to bedding (Gale et al. 2014). The role of 

natural fractures in production from shales remains somewhat nebulous because it can be 

very difficult to evaluate the effects of natural fractures on production separately from 
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the effects of hydraulic fractures, especially when considering the complex interactions 

observed between hydraulic and natural fractures (Gale et al. 2014). These interactions 

will be discussed later. 

 Ferrill et al. (2014) suggests that the Eagle Ford experienced numerous 

deformation events that should lead to natural fracturing. The Eagle Ford has natural 

fractures associated with salt growth, tertiary extension, the Balcones fault system, and 

most importantly, the Laramide deformation during the late Cretaceous period (Ferrill et 

al. 2014). An outcrop study of the Eagle Ford revealed two main fracture sets – one 

primary set with a southwest-to-northeast strike that likely formed before the secondary 

southeast-to-northwest striking set that tends to abut against the primary set (Ferrill et al. 

2014). These fractures mostly formed perpendicular to the bedding plane, and showed 

consistency in orientation (Ferrill et al. 2014). Eagle Ford reservoir models have been 

shown to benefit from the inclusion of natural fractures in numerical simulations 

(Cipolla et al. 2011; Li et al. 2018; Sun et al. 2016), however, it remains unclear whether 

this is because natural fractures affect fluid flow substantially on their own, or because 

of their interactions with induced hydraulic fractures. 

 

Category 2 – Unconventional Geologic & Fluid-Flow/Storage Parameters 

 Though unconventional reservoirs are effectively producible mudrocks, they 

possess one quality that starkly separates them from conventional reservoirs – the 

presence of organic solids in the rock matrix of source rock intervals. To compound 

upon the complexity seen in their evaluation, the nature of flow in unconventional 
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reservoirs deviates from classical expectations due to the presence of nano-pores in lieu 

of the micro-pores commonly seen in conventional reservoirs. In this section, we discuss 

these and other geologic properties which are truly unique to unconventional reservoirs, 

and what effect they have on engineering evaluations. 

 

Organic Matter 

 Many of the complications seen in quantifying shale reservoir properties stem 

from the duality of the shale (or source rock) matrix. Shale reservoirs are effectively 

producible source rock that contain residual un-released hydrocarbons that were 

originally produced by the thermal maturation of in-situ kerogen (Cipolla et al. 2011; 

Passey et al. 2010). This in-situ kerogen should be considered a secondary matrix 

element, and any evaluation of a shale resource needs to consider its effect on fluid 

storage capacity, fluid flow, geomechanics, and field measurements (Clarkson et al. 

2016; Loucks et al. 2009; Sondergeld et al. 2010a; Sondergeld et al. 2010b; Wang and 

Reed 2009). 

 The presence of organic matter (OM) in unconventional reservoir rocks 

introduces entirely new dimensions to their petrophysical evaluation. The porosity of 

OM usually differs from that of the coexisting inorganic matrix components, enough so 

that even up to 50% of a shale’s total porosity may be contained within the OM (Passey 

et al. 2010; Sondergeld et al. 2010a). Scanning electron microscope (SEM) studies 

revealed that OM typically hosts an internal pore network of its own (Loucks et al. 2009; 

Sondergeld et al. 2010a; Wang and Reed 2009) and Loucks et al. (2009) suggested that 
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the porosity of this internal pore network depends upon the OM’s thermal maturity and 

can be related to vitrinite reflectance (Ro) measured in a laboratory setting. 

Quantification of OM content can help evaluators determine the “sweet spots” along a 

horizontal wellbore (Cipolla et al. 2011; Passey et al. 2010) 

 OM complicates permeability measurements as well. OM interacts with oil and 

gas in unique ways that inorganic matrix components do not, and this can influence 

measurements made in the laboratory setting (Cui et al. 2009). OM is not the sole culprit 

however – the anisotropy present in shales, and the nano-scale nature of flow in shale 

samples are also responsible (Sondergeld et al. 2010a; Sondergeld et al. 2010b). 

Sondergeld et al. (2010b) and Passey et al. (2010) document even order-of-magnitude 

discrepancies between permeabilities measured by different labs on identical rock 

samples of organic-rich shales. Most core lab permeability measurements are based on 

Darcy’s Law (Sondergeld et al. 2010b), which many authors argue does not apply to 

nano-scale flow (Akkutlu and Fathi 2012; Javadpour 2009), and use core flooding 

methods that suffer from inherent inadequacies when measuring flow through ultra-tight 

porous media (Sondergeld et al. 2010b). Sondergeld et al. (2010b) argues that these 

issues beg for the standardization of core lab tests industry-wide, and that the only 

trusted permeability measurements should be those made using the pulse decay and 

pressure decay methodologies. 

 Another unique property of OM is its density. OM densities typically vary from 

1.1-1.4 g/cc (Passey et al. 2010), which is substantially lower than the densities of 

typical matrix elements like quarts (2.65 g/cc) and calcite (2.71 g/cc). This affects bulk 
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density measurements immensely, leading to open hole (OH) logs that show erroneously 

high density porosity in organic-rich intervals (Passey et al. 2010). Evaluators should 

take note when looking at total organic carbon (TOC) values as well. Labs often cite 

TOC in weight percent (wt%) rather than volume percent (vol%), regardless of the fact 

that vol% more closely reflects the actual reservoir rock volume taken up by OM 

(Passey et al. 2010). TOC values listed in vol% will generally equal approximately 

double their corresponding value in wt% (Passey et al. 2010). 

 Within the context of the Eagle Ford shale, the role of OM is uniquely low 

relative to other systems such as the Barnett shale. SEM studies on Eagle Ford core 

samples have revealed that though OM is certainly present in the Eagle Ford, its pore 

network is still dominated by pores in the inorganic matrix (Ko et al. 2017; Pommer and 

Milliken 2015). Pommer and Milliken (2015) showed that most OM porosity exists in 

isolated bodies of OM that are not necessarily connected. Interestingly, they also showed 

that rock samples with higher maturity organic matter might tend more towards hosting 

pore networks dominated by OM in lieu of the mineral grains. That said, Eagle Ford 

TOC values still compare closely with many other basins, generally sitting within the 

range of 3-7% (Zou 2017). 
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Reservoir Fluids and OM Maturity 

 Producible shales are ultimately producible source rocks, so the maturity of the 

contained organic matter drives the type of fluids that said source rock contains (Bohacs 

et al. 2013; Jarvie 2012a, 2012b; Passey et al. 2010). Less mature OM is prone to 

generating oil, and more mature OM is prone to generating gas (Bohacs et al. 2013; 

Jarvie 2012a, 2012b). Oil-OM also tends to contain less porosity than gas-prone OM 

simply because it tends to be less mature, meaning less of it has converted to fluid 

hydrocarbons than (Bohacs et al. 2013). 

 These observations are consistent with observations made by Yao Tian (2013) 

regarding the fluid typing and OM maturity of the Eagle Ford. The Eagle Ford produces 

a wide array of fluids. In the northwest, the Eagle Ford has low-maturity OM and mainly 

produces oil (Yao Tian 2013).  Along its center we see medium-maturity OM and a 

combination of oil production and condensate production (Yao Tian 2013). In the 

southeast, the Eagle Ford has highly mature OM and it primarily produces dry gas (Yao 

Tian 2013).  
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Figure 4 - Eagle Ford Shale Fluid Production Map – From Yao Tian (2013) – 

Republished by permission of the Gulf Coast Association of Geological Societies, 

whose permission is required for further publication use 

 

 

Non-Darcy Flow 

 Given the extremely small grain size of shales, pore throats tend to be at the 

nano-scale as well (Nelson 2009). In many shales, pores are small enough that pore 

throats begin to approach the size of a single molecule of oil, and in some cases even the 

size of a single molecule of methane (Blasingame 2008; Nelson 2009). Many authors 

argue that this gives rise to a need for alternatives to Darcy’s Law in both shale gas and 

shale oil reservoirs. 

  Javadpour (2009) describes the nature of flow in nano-pores and brings up the 

relevance of Knudsen diffusion and no-slip flow in gas flow through shales. Knudsen 

diffusion is a phenomenon whereby diffusive flow is accelerated in conduits where the 
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mean free path of a molecule is longer than the diameter of the conduit. Javadpour 

(2009) points out that erroneously high flow rates observed in shale gas wells could be 

caused by Knudsen diffusion and slip-free flow and present a flow expression in the 

form of Darcy’s Law that corrects for these phenomena. This expression gives rise to the 

property “apparent permeability”, which describes an equivalent Darcy permeability to 

gas, corrected for the effects of Knudsen diffusion and no-slip flow 

 Wasaki and Akkutlu (2015) took another approach and argued that gas flow in 

shales is heavily influence by the effects of gas adsorption to organic matter, and by 

local phase changes near pore throat walls caused by the varying density of gas in a 

single nano-pore could accelerate flow rates. They also presented an alternative to 

Darcy’s Law with validation and presented another description of “apparent 

permeability”. 

 Less work has been done on shale oil reservoirs, but Wang et al. (2016) presents 

the argument that the slip-free flow assumption in Darcy’s Law also fails for oil flow. 

They present methods for compensating for no-slip flow when using Darcy’s Law. 

 It is well established that the Eagle Ford has both micro- and nano-pores (Ko et 

al. 2017; Mullen 2010; Pommer and Milliken 2015), so the possibility of non-Darcy 

flow in the Eagle Ford is very real. Given that the Eagle Ford produces oil, condensate, 

and dry gas from rocks with micro- and nano-darcy permeability, fluid flow modeling in 

the Eagle Ford could become extremely complex if evaluators wish to correct for all the 

possible non-Darcy flow effects. Fortunately, many commercial simulators allow for 

non-Darcy flow corrections, and any modeling effort in the Eagle Ford should at least 
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include a sensitivity study of the different non-Darcy flow effects that hold relevant for a 

given area. 

 

Sorption Effects 

 Original gas in place (OGIP) estimations in shale gas reservoirs see the effects of 

organic matter through distortions in volumetric calculations that have little to do with 

the actual pore volume of a rock (Ambrose et al. 2012). Shale gas reservoirs store gas as 

free gas in pores and cracks, but also as an adsorbed phase on the surfaces of OM and 

clay material, and as an absorbed, or “diffuse”, phase within the molecular structure of 

OM (Ambrose et al. 2012; Sondergeld et al. 2010a). Because much of the sorbed gas 

phase is irrecoverable, OGIP calculations mislead evaluators who account for the 

entirety of OM-hosted porosity in shale reservoirs (Ambrose et al. 2012). This is 

particularly relevant in unconventional reservoirs because the ratio of surface area to 

pore volume is very high in nano-scale pore networks, meaning a substantial component 

of stored gas might be adsorbed to organic pore walls and clay material (Ambrose et al. 

2012). Ambrose et al. (2012) proposed an OGIP calculation methodology that corrects 

for the effects of adsorption, and Hartman et al. (2011) expounds upon this work by 

investigating the effects of adsorption in the context of multi-component (not exclusively 

methane) gas storage. 

 Sorption effects do not exclusively affect gas reservoirs. Oil adsorbs to organic 

matter much like gas, and this adsorption affects both the storage and flow of oil in shale 

reservoirs (Jarvie 2012b; Wang et al. 2015; Wang et al. 2016). Wang et al. (2015) even 
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argues that a given quantity of organic matter will adsorb oil in greater quantities than it 

would gas. Adsorption more drastically affects heavier phases of oil (Wang et al. 2015). 

This being said, productive shale oil reservoirs tend to have high permeability relative to 

their shale gas cousins because higher permeability is required to produce higher 

viscosity fluids, and higher permeability ties into larger pores (Jarvie 2012b; Nelson 

2009). In addition, many shale oil reservoirs fall into the aforementioned “hybrid 

reservoir” category, and have lower TOC than shale gas reservoirs, giving oil less 

surface area to adsorb to. 

 The Eagle Ford reservoir produces a wide spectrum of fluids – dry gas, wet gas, 

condensate, and black oil (Tian et al. 2013), and would most likely see the effects of 

adsorption in organic-rich facies that produce gas phases (ie. gas-producing LEF 

intervals). OGIP numbers from the Eagle Ford should likely take this into consideration. 

Oil-producing intervals could certainly see the effects of adsorption, however, this would 

be a function of TOC and oil composition. 

 

Category 3 – Completion Parameters 

 Multi-stage hydraulic fracturing along horizontal wellbores is the keystone 

technology that enabled production from unconventional reservoirs (Clarkson et al. 

2016). Fractures provide a flow conduit to the wellbore through formation with a 

permeability far in excess of the surrounding rock matrix. Hydraulic fracturing 

technology’s development through the shale boom drives what is ultimately economic 

and uneconomic, and our understanding of how our fractures interact with the formation 
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is critical when designing hydraulic fracture stimulation programs. In this paper, we do 

not attempt to discuss the design of hydraulic fracturing treatments in depth. Instead we 

focus on how the pre-existing conditions of the formation affect hydraulic fracture 

propagation, and the ramifications of different resulting fracture geometries. 

 

Natural Fractures 

 We established earlier that shale reservoirs often contain an abundance of natural 

fractures (Gale et al. 2014). When hydraulic fractures (HF’s) propagate through 

naturally-fractured rock, they interact with pre-existing natural fractures (NF’s) in a 

variety of ways. Dahi Taleghani and Olson (2013) documents three possibilities. In the 

case where a HF propagates normally to a NF, it can simply cross through, unperturbed 

(Dahi Taleghani and Olson 2013). At shallower angles, hydraulic fracturing fluids may 

also divert into the NF, re-opening it and likely filling it with proppant, ultimately 

including in the final fracture network that connects to the wellbore (Dahi Taleghani and 

Olson 2013). NF’s can also cause a propagating HF to “split” as a refractive process 

(Dahi Taleghani and Olson 2013). Fracture propagation models (FPM’s) such as the 

ones described in Wu and Olson (2016) and Li et al. (2018) provide reservoir evaluators 

with powerful predictive tools that can generate complex fracture models based upon a 

user-input pump schedule and geologic model. 
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Rock Mechanical Properties 

 Cipolla et al. (2011) describes the appraisal of unconventional reservoirs and 

highlights the importance of evaluating what they call “completion quality”, defined as a 

formation’s tendency to allow the initiation, propagation, and maintenance of conductive 

hydraulic fractures. Completion quality encompasses a variety of rock properties, the 

foremost of which are the in-situ principal stresses, Poisson’s ratio, and Young’s 

modulus (Cipolla et al. 2011). 

 Hydraulic fractures propagate perpendicular to the minimum horizontal stress 

direction in a formation, and the magnitude of each principal stress controls the pressure 

required to make a fracture propagate (Gidley et al. 1990). In a stress field with greater 

stress anisotropy, fracture propagation paths are more obvious and certain than in 

isotropic stress fields (Cipolla et al. 2011). Poisson’s Ratio tells us the expected 

expansion in a material along one axis as a function of the compression of the same 

material along a perpendicular axis. This can be used to compute horizontal stresses as a 

function of vertical stresses (Gidley et al. 1990). Young’s modulus tells us about the 

stiffness of the rock – a high Young’s modulus ties into high stiffness and narrower 

fractures, whereas a low Young’s modulus ties into low stiffness and wide fractures 

(Gidley et al. 1990). 

 Another mechanical component that has gained traction in the unconventional 

reservoir sphere is mineralogy. With the common abundance of clays in shales, rocks 

can have high ductility and thus present resistance to the initiation of hydraulic fractures 

(Sondergeld et al. 2010b). Jarvie et al. (2007) and Rickman et al. (2008) present the 
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“brittleness index” (BI) (1.1) that describes the brittleness (and thus tendency to allow 

fracture initiation) as a function of mineralogy. Quartz-heavy rocks are commonly very 

brittle, clay-heavy rocks are commonly very ductile, and carbonate-heavy rocks fall 

somewhere in the middle (Sondergeld et al. 2010b).   

 (%)
Quartz

BI
Quartz Carbonate Clays

=
+ +

  (1.1) 

 The Eagle Ford shale is a marine marl formation, heavy in carbonate with 

varying levels of clay and quartz content (Donovan and Staerker 2010; Ko et al. 2017; 

Lock et al. 2010). It has seen numerous tectonic events that led to natural fracturing 

(Ferrill et al. 2014) and will have varying stress profiles depending on proximity to salt 

bodies and tectonic folds throughout the basin. The informed evaluator would certainly 

want to consider rock mechanical properties and mineralogy when designing hydraulic 

fracture programs in the Eagle Ford. Where possible, horizontal wells should be drilled 

along the minimum horizontal stress direction to allow maximum hydraulic fracture 

propagation coverage, and fractures should be targeted in zones with higher brittleness 

and lower Young’s modulus. 

 

Fracture/Stage Spacing 

 Multi-stage hydraulically fractured horizontal wells enable production from shale 

reservoirs, but designing these wells introduces a new set of questions that have to do 

with their design. Operators must decide on a lateral section length along with the 

combined design of hydraulic fracturing and perforation parameters. Perforations are 
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typically shot in “clusters”, and isolated via plugs during “plug-and-perf” operations, and 

subsequently hydraulically fractured as a single unit. Smaller perforation clusters are 

preferred when attempting to initiate “planar” fractures, and thicker perforation clusters 

are preferred when attempting to initiate “network” fractures. 

 Perforation cluster and fracturing spacing optimization is a field of study of its 

own, but at its core, its goal is to optimize costs to provide the cheapest possible well for 

the greatest possible productivity by initiating fractures at an optimal distance from each 

other by placing perforation clusters at optimum distances from each other. Mayerhofer 

et al. (2010) tells us that the optimal stage spacing is that which generates a large 

“stimulated reservoir volume” (SRV) with a high density of hydraulic fractures.  

  

Fracture Network Geometry 

 Classical hydraulic fracture fluid flow theory looks at fractures as single planar 

entities, mostly as a simplifying assumption to enable derivation of fluid flow principles 

(Economides et al. 2013; Lee et al. 2003). Planar models certainly seem too good (or 

simple) to be true, but many authors have shown that planar models provide a foundation 

for useful production analysis in unconventional reservoirs (Bello and Wattenbarger 

2010; Chen and Rajagopal 1997; Samandarli et al. 2012; Song et al. 2011; Wattenbarger 

et al. 1998). That said, it would be naïve to assume that fractures simply follow a planar 

bi-wing geometry in the presence of variable stress fields, anisotropic and heterogeneous 

rock properties, and natural fractures. 



 

27 

 

 Microseismic studies provide very strong evidence that hydraulically fracturing a 

rock formation actually produces a complex network of fractures as the combined results 

of non-uniform hydraulic fracture propagation and the reactivation of pre-existing 

natural fractures (Cipolla et al. 2011; Cipolla et al. 2009; Mayerhofer et al. 2010; 

Warpinski et al. 2008). Accounting for the complexity of network hydraulic fractures is 

beyond the scope of classical analytic models but can be done with more complex 3-

dimensional numerical reservoir models. Perpendicular bisector (PEBI) grids provide 

one avenue for modeling complex fracture networks, and allow evaluators to represent 

fractures discretely as actual grid blocks on a simulation grid (Sun and Schechter 2016). 

Though these simulations can be computationally expensive, they enable the explicit 

testing of properties like stress-dependent permeability and fracture aperture 

distributions through the modification of fracture cell properties (Sun and Schechter 

2016; Sun et al. 2016). Alternatively, embedded discrete fracture model (EDFM) based 

techniques provide a slightly simpler, albeit less rigorous way to model complex fracture 

networks in unconventional reservoirs (Li et al. 2018).  

 

Stimulated Reservoir Volume (SRV) 

 Whether through micro-fractures that are undiscernible in microseismic surveys, 

or through some sort of intrinsic permeability stimulation, the SRV has become a nearly 

ubiquitous piece of any unconventional reservoir model. Typically, the SRV is simply a 

rectangular region of rock, placed around the whole well or around individual fractures, 
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where evaluators assume that permeability is enhanced by some multiple of the pre-

fracturing rock matrix permeability (Clarkson et al. 2009). 

 Mayerhofer et al. (2010) expounds upon the SRV concept with evidence from 

microseismic surveys, claiming that the SRV is just a way to represent highly complex 

fracture networks. They draw comparisons between complex fracture networks and 

enhanced-permeability rocks, and propose that the estimation of SRV pore volume 

through microseismic surveys can provide a powerful volumetric tool (Mayerhofer et al. 

2010). 

 The SRV concept has implications on shale production analysis as well. In the 

field, operators have observed that shale wells typically flow under transient bilinear or 

linear conditions for years before eventually exhibiting the “boundary-dominated” flow 

(BDF) behavior in pressure and rate data (Anderson et al. 2010; Clarkson et al. 2009; 

Duong 2010; Yu et al. 2013). The onset BDF represents the beginning of interference 

between fractures, where fractures’ drainage areas grow large enough to affect their 

neighbors (Anderson et al. 2010).  

 

Conclusions 

 In this chapter we presented a review of current literature in the field of 

unconventional reservoir geology, petrophysics, and engineering, and topics that we 

believe should be considered in any unconventional reservoir study. We contextualized 

these topics as they pertain to the Eagle Ford reservoir of south Texas and provide this 
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work as a framework for future studies in unconventional reservoirs. We provide a 

summary of these topics in Figure 1. 

For the remainder of this document, we will focus on a subset of challenges – 

namely those that have to do with the flow of reservoir fluids to multi-stage 

hydraulically-fractured horizontal wells (Figure 5). In addition, we provide a focus on 

the onset of fracture interference. The onset of fracture interference represents a critical 

time in unconventional reservoir evaluation. The detection of the onset of this 

interference can be used to calculate the permeability of rock between the fractures, and 

to evaluate the volume of an SRV (Song et al. 2011; Song and Ehlig-Economides 2011). 

In Chapters 2 and 3, we will discuss the implications of fracture interference and the 

time at which it begins (referred to as the “end of linear flow” (telf)). 

 

 

Figure 5 - Unconventional Reservoir Framework – This study’s focus highlighted in 

red box 
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CHAPTER II  

DEVELOPMENT OF ANALYTIC MTFW SOLUTIONS* 

MTFW Production Analysis Introduction 

Economic production from shale gas and shale oil resources almost universally 

requires the drilling and completion of multi-stage hydraulically-fractured horizontal 

wells (Clarkson 2013). This technology has been in development for decades, but the 

industry’s understanding of the physical phenomena in play still has much to gain. 

Between advances in decline curve production forecasting, improvements in 3-d 

reservoir models, and the development of various analytical models, our understanding 

of the fluid flow phenomena in unconventional shale developments has improved over 

time. 

This chapter focuses on the development of production analysis and rate transient 

analysis (RTA). As a starting point for the rate transient field, Palacio and Blasingame 

(1993) constructed a new type curve based upon the Fetkovich type curve (Fetkovich 

1980). Palacio and Blasingame (1993) showed that when using material balance time (

mbt ) instead of actual time, a series of transients with varying rate and pressure can be 

reduced to the harmonic solution (or stem) of the Fetkovich type curve. Palacio and 

Blasingame (1993) focused on the development of type curves for the interpretation of 

long-term transient flow for a variety of geometries under varying-rate inner boundary 

                                                 

* Reprinted with permission from “Characterization of Multiple Transverse Fractured Wells Using the 

Asymptotic Approximation of the Diffusivity Equation” by Andrew Malone, Michael J. King, and 

Zhenzhen Wang, 2019. SPE Europec featured at the 81st EAGE Conference and Exhibition, Copyright 

[2019] by the Society of Petroleum Engineers 
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conditions, however their study made it clear that diagnostic plots can also be built and 

interpreted for non-constant well rate production data but interpreted using the same 

principles we use for constant rate data. 

Unconventional shale oil and gas developments almost necessitate the use of 

rate-transient techniques in lieu of pressure-transient analysis. Most shale reservoirs have 

permeabilities on the order of 10 to 100 nanodarcies (Cipolla et al. 2009). Given this 

ultra-low permeability, transient flow periods can persist through the entire life cycle of 

a well. In such situations, classic pressure-transient methodologies cannot be applied for 

the determination of rock properties and reservoir size, and rate-transient analysis can 

play a part. 

Song et al. (2011) investigated the progression of flow regimes for MTFW wells, 

and how the interaction of pressure transients between multiple transverse fractures will 

affect a long-term production response at the wellhead. They identified the fact that 

hydraulic fractures initially behave independently, exhibiting linear or bilinear early-

time flow. Eventually, fracture drainage areas will begin to overlap, and no-flow 

boundaries develop between the fractures. At this point, a period boundary-dominated 

flow begins, which shows up as a unit slope on the derivative curve (in this case RNP’) 

of a diagnostic plot. Song et al. (2011) coined the term “pseudo pseudo-steady state” to 

describe this phenomenon and showed how this new flow regime may be used to 

describe reservoir and completion properties for a MTFW. 

Song and Ehlig-Economides (2011) elaborated on the work in Song et al. (2011), 

and described how rate-normalized pressure (RNP) and its derivative (RNP’) may be 
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used in conjunction with the material balance time concept to build equivalent constant-

rate diagnostic plots from varying-rate and varying-pressure production data. They show 

that as long as the progression of flow regimes described in Song et al. (2011) is 

observed, shale permeability and stimulated reservoir volume (SRV) may be calculated 

using rate-transient analysis. 

One shortcoming of the methodology described in Song and Ehlig-Economides 

(2011) is the determination of the “end of linear flow”. Their methodology defines the 

SRV as a finite region that fully describes the drainage volume of a well at the point in 

time when “pseudo pseudo-steady state” flow begins. The identification of the beginning 

of this flow regime and the associated interpretation can drastically affect the calculation 

of shale matrix permeability and SRV volume. 

Wattenbarger et al. (1998) provides some work on a different type of reservoir – 

tight gas – that can be used in the context of MTFW’s. Wattenbarger et al. (1998) tells us 

that many tight gas wells are drilled as vertical wells with single vertical hydraulic 

fracture completions and will experience long-term linear flow followed by boundary-

dominated or pseudo-steady state flow. This is analogous to the MTFW case, where we 

see early-time linear or bilinear flow (with fractures acting independently) followed by 

“pseudo pseudo-steady state” flow. Wattenbarger et al. (1998) developed an analytic 

model and type curve that describes this behavior by placing a planar pressure sink in a 

rectangular drainage area. This type curve describes the flow to a single fracture but has 

no way of accounting for the level of interaction that occurs between hydraulic fractures 

during production. 
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In this chapter we construct our own analytic model to describe the behavior of 

MTFW’s for the simplifying single-phase oil flow case. Utilizing the asymptotic 

approximation of the diffusivity equation as described in King et al. (2016), we propose 

both 1-dimensional and 2-dimensional flow models for MTFW’s under constant 

wellbore rate, constant bottom hole pressure, and variable rate constraints. In this chapter 

we describe the background mathematics and specific formulations used to construct this 

set of solutions. We validate each case against a commercial simulator base case and 

describe the nature of fracture interference and SRV drainage as dictated by our model. 

In the following chapter (Chapter 3), we will investigate the methods for determining the 

end of linear flow in MTFW’s, and how this connects to our analytic MTFW model. 
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Asymptotic Approximation of the Diffusivity Equation 

Base Theory 

King et al. (2016) introduced the asymptotic approximation of the diffusivity 

equation in its current form with the goal of reducing 3-dimensional reservoir flow 

problems in the domain ( ), ,x y z  to 1-dimensional flow problems defined in terms of the 

“diffusive time of flight”, ( )( )x . Their formulation begins with the generalized form of 

the 3-dimensional reservoir diffusivity equation (Eq. (2.1)). 

 ( )
( )

( ) ( )
,

,t

p x t
x c k x p x t

t
 


 =  
  

  (2.1) 

 In lieu of the classical Laplace transform methodology, we can take the Fourier 

transform of Eq. (2.1), yielding the diffusivity equation in the frequency domain. 

 ( ) ( ) ( ) ( ) ( ), , 0tx c i p x k x p x     − −  =
  

  (2.2) 

The frequency domain solution is provided by Virieux et al. (1994) (Eq. ). 
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,
ki x

k
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p x e
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





− −

=

=

−
   (2.3) 

We then take the high-frequency limit ( ) →  of  Eq. (2.3), which corresponds to the 

propagation of a sharp front. In this case, that sharp front is the front of a “pressure 

wave”. The high-frequency limit gives rise to Eq. (2.4), Eq. (2.5), and Eq. (2.6). 

 ( ) ( ) ( ) ( ) tx k x x x c      =   (2.4) 
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 ( ) ( )( ), ,p x t p x t   (2.5) 

 
2 4tp

e
t

−


  (2.6) 

Equation (2.4) is the Eikonal Equation (Kulkarni et al. 2001), and it describes the 

development of the contours of   with respect to the reservoir diffusivity,  . Equation 

(2.5) tells us that the contours of pressure will follow the shape of the contours of  . 

Finally, Equation (2.6) expresses the time derivative of pressure as proportional to the 

time-domain form of the exponential term from (2.3). 

The Eikonal Equation (Eq. (2.4)) may be solved numerically in heterogeneous 

reservoir cases using the Fast Marching Method (Zhang et al. 2013). For homogeneous 

reservoirs, we can solve Eq. (2.4) simply with (2.7). 

 
r


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=  (2.7) 

 
t

k

c



=  (2.8) 

In field units, 

 
3792 t

k

c



=  (2.9) 

From this point, we may express Darcy’s Equation in terms of   with Eq. (2.11), and 

diffusivity in terms of   with Eq. (2.10) 
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 ( ) ( )
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p t
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
=


 (2.11) 

The function ( )w   also warrants an individual explanation. ( )w   is the derivative of the 

pore volume (
pV ) with respect to  . 

 ( )
( )pdV r

w
d




=   (2.12) 

pV  is the total pore volume of the drained area, determined primarily by drainage pattern 

or flow regime. For example, with radial flow, we have 

 ( ) 2

pV r r h =   (2.13) 

Finally, we recall Equation (2.6) and represent the time derivative of pressure as an 

exponential term multiplied by an unknown pre-factor, ( ),A t  (Equation (2.14)), which 

we approximate with a power series (Equation (2.15)). 
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Now we insert these expressions into Eq. (2.10), allowing us to rewrite the diffusivity 

equation in terms of   with a third term (Eq. (2.16). 
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Equation (2.16) equates the pressure derivative at any given point in time and   

to the flux derivative with respect to   and the infinite series listed on the far right side 

of Equation (2.16). This infinite series is referred to as the “asymptotic expansion” and 

provides a simple tool for constructing diffusivity relationships for a long list of flow 

regimes and boundary conditions. The infinite series term sums up of the increasing 

powers of   multiplied by an unknown function, ( )nA t . This series may be truncated, 

giving us an estimation of the left-hand terms, rather than an exact solution. The number 

of terms required for this series varies by problem, but King et al. (2016) shows that 2-

term approximations sufficiently resolve most flow problems. In this study, we limit 

ourselves to 1- and 2-term approximations. In the next subsections, we describe how the 

asymptotic approximation may be used to describe either flux or pressure at the wellbore 

or any point in the reservoir. 

 

Asymptotic Approximation – Flux 

To describe wellbore flow, we rearrange Eq. (2.16) and take the first integral. 
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We refer to flux at the sand face as equal to well rate, and hence label it wq . We assume 

infinite-acting flow and say 0q →  as  → . Because of this, and because wq q→  as 

0 → , (2.18) evaluates to 
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Rearrange and we have the following expression. 
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 For the purpose of simplification, we define the “volume moment integral”, ( ),nV t  as 

the following. 
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Since we are describing the flux at the wellbore ( 0 = ), this becomes ( )0,nV t , or just 

( )nV t , and can be simplified (2.22). This expression defines the transient drainage 

volume of the well (or of the pressure sink located at 0 = ) (Wang et al. 2018).  
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We can now rewrite (2.20) as the product of volume moment integrals and unknown 

functions. This provides further simplification for use when deriving specific 

expressions for flux at the wellbore. 
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For flux at the wellbore, we have 
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Away from the wellbore, we also have 
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Asymptotic Expansion - Pressure Drawdown 

To obtain a pressure drop expression, we first rearrange Eq. (2.11) 
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Rearrange again and integrate, and we have 
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Because of our infinite-acting flow assumption, we can say ip p→  as  → .  
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Using (2.16) we rewrite this as 
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Rearrange to get 
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Again, for simplification, we define the “pressure drop moment integral”, ( ),nW t  
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In terms of the volume moment integral, 
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We can now rewrite (2.30) as the product of pressure drop moment integrals and 

unknown functions. This provides further simplification for use when deriving specific 

expressions for pressure drop at the wellbore and at locations in the reservoir. At the 

wellbore this becomes Equation (2.33). 
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Away from the wellbore, we have Equation (2.34). 
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Inner Boundary Conditions 

Equations (2.25) and (2.34) provide us with powerful tools for constructing a 



 

41 

 

variety of diffusivity relationships within a simple framework, primarily because of how 

well each piece of each equation connects to different components of a given flow 

system. The moment integrals, nV  and nW , are influence by the flow geometry of the 

system through the pore volume terms contained within the ( )w   function. Their 

integrands control the point at which pressure or flux is observed, and the extent of the 

flow system in the   domain. Finally, the unknown functions, ( )nA t , are influenced by 

the inner boundary conditions of the system. 

 The connection between specific ( )nA t  terms and the derivatives of flux and 

pressure allows us to use the unknown functions to impose inner boundary constraints on 

our flow system. The derivative of flux at the wellbore with respect to time relates to the 

first unknown function, ( )1A t , as in Eq. (2.35). The derivative of pressure at the 

wellbore with respect to time relates directly to the zeroth unknown function, ( )0A t , as 

in Eq. (2.36). 
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 With this, we can set wellbore rate as constant by setting the first unknown 

function, ( )1A t , to zero. Another way to say this is we set a constant-rate IBC by setting 

0n =  in the asymptotic expansion term of Eq. (2.16). 
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 We may set wellbore bottom hole flowing pressure as constant by setting the 

zeroth unknown function, ( )0A t , to zero. In other words, we can set a constant-BHP 

IBV by setting 1, 0n n=   in the asymptotic expansion term of Eq. (2.16). 

 One last set of constraints exists, which includes one functional constraint we 

name “variable rate” and one non-functional constraint which we simply call “constant 

BHP”. When working with multiple fracture cases (as will be discussed later), we must 

define flow to all fractures independently as well as to the well. To have a functional 

solution, we cannot simply constrain ( )0A t  or ( )1A t  to zero for all fractures as we do 

for a single-fracture solution. As we will show, the derivative is constrained at the well 

level, not the individual fracture level. This gives rise to a second pair of IBC’s, both of 

which say nothing of the derivatives of rate or bottom hole pressure, and which assume 

that the term, 0 1A A+ , may be approximated by either  ( )0A t  or ( )1A t  alone (Eq. and 

Eq. respectively). 

 0 1 0A A A+    (2.37) 

 0 1 1A A A +    (2.38) 

  Using these constraints allows for simpler solutions but introduces error. As we 

will show, the variable rate solution is worth using, however the 1-term constant-BHP 

constraint falls short in its ability to model wellbore flow properly. 
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Applying the Asymptotic Approximation to Specific Flow Geometries 

 In Section 2.2 we went through the derivation of expressions for flux and 

pressure drawdown using the asymptotic approximation of the diffusivity equation. We 

concluded these derivations with the simplified forms shown by Equation (2.25) and 

Equation (2.34). These forms are hardly useful for any real scenario however, until the 

moment integrals, V and W, and the unknown functions, An, have been determined. In 

this section we describe how these terms are obtained for both 1-dimensional and 2-

dimensional flow to a single hydraulic fracture. These solutions are not new but will help 

the reader understand how the asymptotic approximation may be used to derive classical 

diffusivity relationships. In addition, the moment integral terms derived in this section 

will be used in the development of the MTFW solutions described later in this chapter. 

 

1-Dimensional Solutions – Infinite-Acting Linear Flow (IALF) 

 Consider a single infinite-conductivity planar fracture in an infinite 

homogeneous, isotropic medium (Figure 6). The fracture has height h  and is fully-

penetrating (this means the fracture height equals the pay height, h ). Since the fracture 

is infinitely-conductive, we consider it to be a planar source and thus it has a negligible 

width. Given that this is a 1-dimensional flow case, the fracture will drain perpendicular 

to its face only. 

To construct a diffusivity relationship for this system, we begin by defining   as 

the ratio of the perpendicular distance r  from the fracture (Figure 7) to the square root 

of the reservoir diffusivity,  . 
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r




=  (2.39) 

 

 

Figure 6 - IALF Diagram (after Malone et al. (2019)) 

 

 

 

Figure 7 - IALF Coordinates (from Malone et al. (2019)). Copyright 2019, SPE. 

Reproduced with permission of SPE. Further reproduction prohibited without 

permission. 
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We then define the pore volume of this system in terms of r  and  .  

 ( )pV r A r=  (2.40) 

 ( )pV A  =  (2.41) 

Note that A  is the cross-sectional area of flow, which in the planar fracture case will 

equal twice the area of the fracture. 

 4 fA x h=  (2.42) 

Now we take the derivative of pore volume with respect to   and find ( )w  . 

 ( )
( )pdV r

w A
d

  


= =  (2.43) 

Next the volume and pressure drop moment integrals must be calculated. For this study, 

we truncate the asymptotic expansion at 1 and 2 terms, so we use  0,1n = . 

 ( ) ( )
2

'

' 4

'

, ' ' 'n t

nV t w e





 

   
=

−

=

=   (2.44) 

 ( )
( )

( )

'

'

'
, '

'

n

n

V
W t

w



 


 



=

=

=   (2.45) 

 ( )0 ,
4

V t A terfc
t


  

 
=  

 
 (2.46) 

 ( )0V t A t =  (2.47) 
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 ( )
2 4

0 , 2
4

tW t te t erfc
t

 
  −  

= −  
 

 (2.48) 

 ( )0 2W t t=  (2.49) 

 ( )
2 4

1 , 2 tV t tA e    −=  (2.50) 

 ( )1 2V t tA =  (2.51) 

 ( ) 3

1 , 2
4

W t t erfc
t


 

 
=  

 
 (2.52) 

 ( ) 3

1 2W t t=  (2.53) 

Using these expressions, we can arrive at the classical equations for IALF. We 

first assume a constant wellbore rate with single-phase slightly compressible liquid flow. 

To set our IBC, we constrain rate to a constant value by setting ( )1A t  to zero. Flux can 

then be expressed with Eq. (2.23). 

 ( ) ( )0 0wq A t V t=  (2.54) 

Plug in ( )0V t  and rearrange to arrive at an expression for the unknown function, ( )0A t . 

 ( )
( )

0

0

w wq q
A t

V t A t 
= =  (2.55) 

Pressure drawdown may be calculated with (2.34). 

 ( ) ( ) ( )0 0, ,tc p t A t W t  =  (2.56) 
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 ( )
2 4, 2

4

tw
t

q
c p t te t erfc

A t t

 
  

 

−  
 = −  

  
 (2.57) 

Rearrange, and write this equation in terms of r  instead of  , and we have the same 

form as listed by Lee et al. (2003). 

 ( )
2 42

,
2 4

r tw

t

q t r
p r t e erfc

A c t t

  

  

−
   

 = −  
   

 (2.58) 

In dimensional form, this is 

 ( )
2 4, 16.26

2 4

r tw

t

q t r
p r t e erfc

A c t t

  

  

−
   

 = −  
   

 (2.59) 

For the constant bottom hole pressure (constant-BHP) case, we instead set ( )0A t  

to zero to constrain the pressure derivative at the wellbore. For the pressure drawdown 

expression, we use Eq. (2.34). 

 ( ) ( ) ( )1 1, ,tc p t A t W t  =  (2.60) 

With bottom hole pressure (BHP) constrained, we set   to zero, and have 

 ( ) ( )1 1t wfc p A t W t =  (2.61) 

Plug in ( )1W t  and rearrange to arrive at an expression for the unknown function, ( )1A t . 

 ( )1
32

t wfc p
A t

t


=  (2.62) 

With this, the pressure drop at any point ( ), t  may be represented with 
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 ( ),
4

wfp t p erfc
t




 
 =   

 
 (2.63) 

The flux at any point ( ), t  may be calculated with the following. 

 ( ) ( ) ( )1 1, ,q t A t V t =  (2.64) 

 ( )
2 4, t

wf tq t p A c e
t


 



−=   (2.65) 

Set 0 =  to obtain the expression for wellbore rate. 

 ( ) ( )1 1wq A t V t=  (2.66) 

 w wf tq p A c
t





=   (2.67) 

Alternatively, this may be written as shown below (in dimensional form), which is 

equivalent to the expression shown in Lee et al. (2003). 

 25.54 w
wf

t

q t
p

A c 
 =  (2.68) 

 

2-Dimensional Solutions – Infinite Acting “Pillbox” Flow (IAPF) 

 The process for deriving the 2-dimensional “pillbox” flow model is very similar 

to that of the IALF model. As with the linear flow case we present the process for 

deriving this solution with the asymptotic expansion method to set the stage for the 

development of the pillbox MTFW model. 
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 Consider a single infinite-conductivity planar fracture in an infinite 

homogeneous, isotropic medium (Figure 8). The fracture has height h  and is fully-

penetrating. Since the fracture is infinitely-conductive, we consider it to be a planar 

source and thus give it negligible width. In this case the fracture will drain both 

perpendicular to its face and radially to its tips. 

 

 

Figure 8 - Pillbox Model (after Malone et al. (2019)). Copyright 2019, SPE. 

Reproduced with permission of SPE. Further reproduction prohibited without 

permission. 

 

 

 As in the IALF case, to develop a diffusivity relationship we first define the   

parameter as the ratio of the shortest distance r  from any point in ( ),x y  to the fracture 

(Figure 9). For a point located perpendicular to the fracture, this will simply be the 

perpendicular distance to the fracture. For a point beyond the fracture tips, this will be 

the radius of a semi-circle centered at the fracture tip that intersects that point. 

 
r




=  (2.69) 
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We define pore volume next in terms of both r  and   

 ( ) ( )24p fV r h x r r = +  (2.70) 

 ( ) ( )24p fV h x     = +  (2.71) 

 

 

Figure 9 - Pillbox model distance parameters (from Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 

 

 

Taking the derivative of pore volume with respect to   we have 

 ( )
( )

( )4 2
p

f

dV
w h x

d


   


= = +  (2.72) 

The volume and pressure drop moment integrals for 0,1n = come from (2.21) and (2.32)

.  

 ( ) ( )
2

'

' 4

'

, ' ' 'n t

nV t w e





 

   
=

−

=

=   (2.73) 
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 ( )
( )

( )

'

'

'
, '

'

n

n

V
W t

w



 


 



=

=

=   (2.74) 

In this case, an additional complication arises in that the pressure drop moment 

integrals cannot be evaluated analytically. Numerical integration will be required to 

evaluate the 0W  and 1W  terms. 

 ( )
2

4
0 , 4

2

t
fV t h t x erfc te

t




   
−   

= +  
   

 (2.75) 

 ( )  0 4 fV t h t x t  = +  (2.76) 

 ( )

2'

4
'

0

'

'

2
, 2 '

2 '

t
f

f

x erfc te
t

W t t d
x





 




  
 

−

=

=

 
+ 

 =
+

  (2.77) 

 ( )

2

4

0

0

2
2

2

t
f

f

x erfc te
t

W t t d
x










 
 

−

=

=

 
+ 

 =
+

  (2.78) 

 ( ) ( )
2 4 3 2 3 2

1 , 4 2
2

t

fV t h x t t e t erfc
t

 
      −  

= + +  
  

 (2.79) 

 ( ) 3 2 3 2

1 4 2 fV t h x t t    = +
 

 (2.80) 

 ( )
( )

( )

2 4 3 2 3 2

'

1

'

'
2 2 '

2
, '

2 '

t

f

f

x t t e t erfc
t

W t d
x





 


     

 
  

−

=

=

  
+ +  

  =
+

  (2.81) 
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 ( )
( )

( )

2 4 3 2 3 2

1

0

2 2
2

2

t

f

f

x t t e t erfc
t

W t d
x








    


 

−

=

=

  
+ +  

  =
+

  (2.82) 

From here we can derive diffusivity expressions in the same way as for the IALF case. 

To begin building the constant wellbore rate case, we start with (2.23) and say 0n = . 

 ( ) ( )0 0wq A t V t=  (2.83) 

 
 

0

4

w

f

q
A

h t x t  
=

+
 (2.84) 

From here we can define the pressure drawdown expression with (2.34). 

 ( ) ( ) ( )0 0, ,tc p t A t W t  =  (2.85) 

 ( )
 

2'

4
'

'

'

2
, '

2 '4

t
f

w

ft f

x erfc te
q t

p t
xc h t x t





 




 
   

−

=

=

 
+ 

  = 
++

  (2.86) 

For the constant-BHP case we begin with (2.34) and set 1n = . 

 ( ) ( ) ( )1 1, ,tc p t A t W t  =  (2.87) 

With BHP constrained, we set 0 = . 

 ( ) ( )1 1t wfc p A t W t =  (2.88) 
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 ( )
( )

( )

2

1

4 3 2 3 2

1

0

2
2

2 2

t

f

wf t

f

x t t e t erfc
p c t

A t d
t x








    


 

−

−

=

=

   
+ +       =  

+ 
 
 



 (2.89) 

With that we express the pressure drawdown at any point ( ), t  as 

 ( )

( )

( )

( )

( )

2

2

4 3 2 3 2

'

'

4 3 2 3 2

0

'
2 '

2
'

2 '
,

2
2

2
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f

f

wf
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


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






     


  




    


 

−

=

=

−

=

=

  
+ +  

  

+
 = 

  
+ +  

  

+





 (2.90) 

And wellbore flux may be expressed as 

 ( ) ( )1 1wq A t V t=  (2.91) 

 ( )

( )

2 4 3 2 3 2
3 2 3 2

0

2
4 2

2

t

f
wf t f

w

f

x t t e t erfc
h p c x t t t

q d
t x








    

   


 

−

=

=

   
+ +     +      =  

+ 
 
 



 (2.92) 

These expressions are significantly more complex and must be evaluated numerically. In 

the cases presented in this study, we evaluate this integral using simple trapezoidal 

integration. 
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Development of MTFW Solutions 

 In Section 2.3 we showed how the asymptotic approximation of the diffusivity 

equation may be used to derive a diffusivity formulation for a single fracture in either a 

1-dimensional or 2-dimensional reservoir. In this section, we use the same methodology, 

in conjunction with the principle of superposition in space to derive a solution to the 

MTFW case, and account for the interactions between fractures during wellbore flow. 

We have developed a set of solutions based on the asymptotic expansion to 

describe the flow behavior of a MTFW that can take fracture interference into account, 

thus enabling the distribution of flux to individual fractures and the calculation of a rate-

normalized pressure curve for both the entire well and individual fractures. We 

developed a total of 8 solutions and compared their behavior to a reference model built 

in a commercial reservoir simulator. These 8 solutions include both 1-term and 2-term 

asymptotic approximations of both 1-dimensional (IALF) and 2-dimensional (IAPF) 

flow, for both constant wellbore rate and constant bottom hole pressure inner boundary 

conditions. 

Take note that not every solution matches the commercial simulator response, 

and some solutions are not stable. We present them to document the issues we saw, and 

what degree of success should be expected for each implementation.  
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Figure 10 – MTFW System (X-Z Plane View) 

 

 

Each solution considers an infinite, homogeneous, isotropic reservoir accessed by 

a horizontal well via a series of equally-spaced, infinitely-conductive, symmetrical, 

fully-penetrating planar fractures (Figure 10, Figure 11, Figure 12). We do not treat the 

well as fully-completed. It accesses the reservoir exclusively through the hydraulic 

fractures, so we may also describe this system as a series of interconnected planar 

sources. 

sx
wL

nf hydraulic fractures

hz

x
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Figure 11 - MTFW System (X-Y Plane View) 

 

 

 

Figure 12 - MTFW System (Y-Z Plane View) 

 

 We evaluated both an infinite acting linear flow (IALF) system and an infinite 

acting pillbox flow (IAPF) system. In the IALF system we consider a well that sits in an 

sx

fx

wL

x

y

nf hydraulic fractures

fx

h

fx fx

z

y



 

57 

 

infinite medium in the x-direction, and each fracture drains a growing box-shaped 

volume with a height equal to fracture height, a width equal to twice the fracture half-

length and a length of infinity on both sides (Figure 13).  

 

 

 

Figure 13 - IALF System Diagram 

 

 

 For the IAPF case, we consider a well that sits in an infinite medium in the X-Y 

plane with a height equal to fracture height. Each fracture drains a growing pillbox-

shaped volume as depicted in Figure 8, and the entire system appears as depicted in 

Figure 14. 
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Figure 14 - IAPF System Diagram (after Malone et al. (2019)). Copyright 2019, 

SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

 

 

Variable Rate (1-term A0 Approximation) 

 For the variable rate IBC, we constrain the well rate, wq , and state that the well 

oil rate will be equal to the sum of the flux to each fracture j  out of the 
fn  fractures 

connected to the wellbore. We say nothing of the derivative of wellbore rate or pressure, 

but assume that the ( )0A t  term alone can approximate 0 1A A+  (Eq. (2.37)). We then 

define the wellbore flux as the sum of the flux from each fracture by (2.25). 

 ( ) ( )0, 0

1

fn

w j

j

q A t V t
=

  (2.93) 

 We already assumed that both the fractures and the well are infinitely conductive. 

As a logical extension of this assumption, we state that the fractures are in complete 

hydraulic communication with each other and must be at the same pressure and 
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experience the same pressure drawdown, which will equal the well’s bottom hole 

flowing pressure drawdown, 
wfp .  

 ,1 ,2 ,...
fwf wf wf wf np p p p =  =  = =   (2.94) 

With the principal of superposition, we say that the pressure drop seen at any 

individual fracture will equal the sum of the pressure drop induced by every fracture in 

the system. This will include both the fracture’s self-induced pressure drawdown and the 

pressure drop induced by its neighbors. Again setting 0n =  we base our total pressure 

drawdown expression on (2.34). We represent the total pressure drawdown at any one 

fracture i  as the sum of the pressure drawdown induced by all fractures 1... fj n= , where 

ij  is that value of   for which r  equals the distance between fractures i  and j  (2.95). 

 ( ) ( )0, 0

1

,
fn

t wf j ij

j

c p A t W t
=

   (2.95) 

 We now have a set of 1fn +  unknowns. There is an unknown function, 
0, jA , for 

each fracture ( 1... fj n= ), and an unknown shared pressure drop, 
wfp . With the 

drawdown summation (2.95) we have 
fn  equations, and with the flux equation (2.93) 

we have 1fn + . Represented as a system of equations, this becomes a simple matrix 

problem (2.96). The equation used to compute the terms  ( )0V t  and ( )0 ,W t  is dictated 

by the flow regime model. For an IALF calculation, we compute ( )0V t  with (2.47) and 
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( )0 ,W t  with (2.48). For an IAPF calculation, we compute ( )0V t  with (2.76) and 

( )0 ,W t  with (2.77). 

 

0,1 11 0,2 12 0, 1 0,1

0,1 21 0,2 22 0,2

0,1 1 0, 0,

0 0 0

( , ) ( , ) ... ( , ) 1
0

( , ) ( , ) ... ... 1 0

... ... ... ... ... ... ...

( , ) ... ... ( , ) 1

( ) ( ) ... ( ) 0

f

f f f f

N n

n N n n n

t wf

W t W t W t A

W t W t A

W t W t A

V t V t V t c p

  

 

 

−   
   

−   
   

=   
   −
   
   
   

0

wq

 
 
 
 
 
 
  

 (2.96) 

To solve, we simply consider this system instead as 

 Ax b=  (2.97) 

and we may solve for the 0A  terms using matrix inversion as in (2.98). 

 \x A b=  (2.98) 

Individual fracture flowrates are given by 

 ( ) ( ) ( )0, 0j jq t A t V t=  (2.99) 

And for individual fracture diagnostics, we use the rate-normalized pressure (RNP) as in 

(2.100) 

 ( )
( )

( )
j

j

wf

q t
RNP t

p t
=


 (2.100) 

For whole-well diagnostics, instead we use 

 ( )
( )

w
well

wf

q
RNP t

p t
=


 (2.101) 
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Constant Rate (2-term A0 and A1 Approximation) 

 In this case we constrain the well rate, wq , and state that the well oil rate will be 

equal to the sum of the flux to each fracture j  out of the 
fn  fractures connected to the 

wellbore. We also constrain the derivative of the well rate with respect to time, wq

t




, to 

zero, and set the well’s derivative as equal the sum of the rate derivates of all fractures. 

With this, the individual fracture fluxes are permitted to vary, but the total well rate is 

constrained. The derivative constraint (2.103) comes from (2.35). 

 ( ) ( )
1

,

1 0

fn

w n j n

j n

q A t V t
= =

  (2.102) 

 
( )

1,

1

1
0

0

fn

w
j

j

q
A

w t =


= − =


  (2.103) 

 We then constrain pressure in the same way as in the variable rate case – we state 

that the fractures are in complete hydraulic communication with each other and must be 

at the same pressure and experience the same pressure drawdown, which will equal the 

well’s bottom hole flowing pressure drawdown, 
wfp . The same also applies to the 

derivative of the pressure drop with respect to time. 

 ,1 ,2 ,...
fwf wf wf wf np p p p =  =  = =   (2.104) 

 
,,1 ,2

...
fwf nwf wf wf

pp p p

t t t t

  
= = = =

   
 (2.105) 
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 Once again using the principle of superposition, we say that the pressure drop 

seen at any individual fracture will equal the sum of the pressure drop induced by every 

fracture in the system, including itself. In this case we set 1n =  and base our pressure 

drawdown expression on Eq. (2.34). We represent the total pressure drawdown at any 

one fracture i  as the sum of the pressure drawdown induced by all fractures 1... fj n= , 

where 
ij  is that value of   for which r  equals the distance between fractures i  and j  

(Eq. (2.95)). 

 ( )
1

,

1 0

,
fn

t wf n j n ij

j n

c p A W t
= =

   (2.106) 

 For our final set of expressions, we use Eq. (2.16) to represent the total pressure 

drawdown derivative with respect to time at any one fracture i  as the sum of the 

pressure drawdown derivatives induced by all fractures 1... fj n= , where 
ij  is that value 

of   for which r  equals the distance between fractures i  and j  (Eq. (2.16)). 
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N
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t j j ij
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p
c A A e
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


−

=


 +


  (2.107) 

 We have two unknown functions for each fracture, 0A  and 1A , an unknown 

shared pressure drop, 
wfp , an unknown shared pressure drop derivative, 

wfp

t




, giving 

us ( )2 2fn +  unknowns. Equation (2.102) gives us 1 equation, Equation (2.103) gives us 

1 equation, Equation (2.106) gives us 
fn  equations, and Equation (2.107) gives us 

fn  
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equations – together giving us ( )2 2fn +  equations to solve. Represented as a matrix 

problem, we have Equation (2.108). 

 

1 1 1 0 0 0

1 1 21 1 1 0 0 21 0 1

1 12 1 1 32 0 12 0 0 32

1 23 0 23

1 1 ... 1 0 0 ... 0 0 0

( ) ( ) ... ( ) ( ) ( ) ... ( ) 0 0

( ) ( , ) ... ( , ) ( ) ( , ) ... ( , ) 1 0

( , ) ( ) ( , ) ... ( , ) ( ) ( , ) ... 1 0

... ( , ) ... ... ... ( , ) ... ... ..

f fn n

V t V t V t V t V t V t

W t W t W t W t W t W t

W t W t W t W t W t W t

W t W t

   

   

 

2 2
2 2

1 1
21 21

2 22 2
32 3212 12

2 2
23 23

1

1 1 1 0 1 0

4 44 4

21 1

4 44 4

12 32

4 4

23

1

. ...

( , ) ... ... ( ) ( , ) ... ... ( ) 1 0

0 ... 1 ... 0 1

0 ... 1 ... 0 1

... ... ... ... ... ... ... ...

f f

n nf f

f

n f

f

n n

t tt t

n

t tt t

t t

n

W t W t W t W t

e e e e

e e e e

e e

e

  

  

 



 

 

 





− −− −

− −− −

− −

− 2 2
1

1,1

1,2

1,

0,1

0,2

0,

4 4

0
...

0

0

...

0

0

0...

...

0

... ... 0 ... ... 1 0 1

f

f

n f

w

n

n

t wf
t t

wf
t

A

A

q

A

A

A

A

c p

e d p
c

dt

−

 
  
  
  
  

  
  
  
  
  
  
  

=   
  
  
  
  

  
  
   
  

  
  

   
 














 
 
 

 (2.108) 

We consider this as the following 

 Ax b=  (2.109) 

And solve with matrix inversion 

 \x A b=  (2.110) 

Individual fracture flow rates may be computed with 

 ( ) ( ) ( )
1

,

0

j n j n

n

q t A t V t
=

  (2.111) 

For individual fracture diagnostics, we can use RNP 

 ( )
( )

( )
j

j

wf

q t
RNP t

p t
=


 (2.112) 

And for whole-well diagnostics, we use the whole-well RNP 
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 ( )
( )

w
well

wf

q
RNP t

p t
=


 (2.113) 

 

Constant BHP (1-term A1 Approximation) 

 This case represents the non-functional IBC referenced by Eq. (2.38). This case 

has been tested to have a complete set of solutions but does not provide a sufficient 

estimate of wellbore flow or pressure relative to a reference model. For this case we 

constrain neither the wellbore flow or bottom hole pressure’s time derivatives, and 

instead assume that the ( )1A t  term alone can sufficiently approximate 0 1A A+ . As 

with the constant-rate cases, we state that the fractures are in complete hydraulic 

communication with each other and must be at the same pressure and experience the 

same pressure drawdown, which will equal the well’s bottom hole flowing pressure 

drawdown, 
wfp . 

 ,1 ,2 ,...
fwf wf wf wf np p p p =  =  = =   (2.114) 

 Using the principle of superposition, we represent the total pressure drawdown at 

any one fracture i  as the sum of the pressure drawdown induced by all fractures 

1... fj n= , where 
ij  is that value of   for which r  equals the distance between fractures 

i  and j  (2.95). We acknowledge that the principle of superposition is not applicable to 

constant-BHP boundary conditions and present this methodology simply to document its 

results. 
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 ( ) ( )1 1

1

,
fn

t wf ij

j

c p A t W t
=

 =  (2.115) 

 The well rate will equal the sum of the rate from all individual fractures. In this 

case the well rate is not constrained. 

 ( ) ( )1, 1

1

fn

w j

j

q A t V t
=

  (2.116) 

 We have a total of 1fn +  unknowns - 
fn  unknown function ( 1A ) terms and a 

single unknown well rate. Written as a matrix problem, this system of equations 

becomes the following. 

 

1,1 11 1,2 12 1, 1 1,1

1,1 21 1,2 22 1,2

1,1 1 1, 1,

1 1 1

( , ) ( , ) ... ( , ) 0

( , ) ( , ) ... ... 0

... ... ... ... ... ...

( , ) ... ... ( , ) 0

( ) ( ) ... ( ) 1

f

f f f f

N n
t wf

t w

n N n n n

w

W t W t W t A
c p

W t W t A c p

W t W t A

V t V t V t q

  

 

 

   
   

    
   

=   
   
   
   −
   

...

0

f

t wfc p

 
 
 
 
 
 

 
 

 (2.117) 

We consider this as the following 

 Ax b=  (2.118) 

And solve with matrix inversion 

 \x A b=  (2.119) 

Individual fracture flow rates may be computed with 

 ( ) ( ) ( )1, 1j jq t A t V t  (2.120) 
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For individual fracture diagnostics, we can use RNP 

 ( )
( )

( )
j

j

wf

q t
RNP t

p t
=


 (2.121) 

And for whole-well diagnostics, we use the whole-well RNP 

 ( )
( )

w
well

wf

q
RNP t

p t
=


 (2.122) 

 

Constant BHP (2-term A0 and A1 Approximation) 

Here we constrain the bottom hole pressure, 
wfp , and its derivative with respect to  

time, 
wfp

t




 (2.124). We state that the fractures are in complete hydraulic 

communication with each other and must be at the same pressure and experience the 

same pressure drawdown, which will equal the well’s bottom hole flowing pressure 

drawdown, 
wfp . 

 ,1 ,2 ,...
fwf wf wf wf np p p p =  =  = =   (2.123) 
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 Using the principle of superposition, we represent the total pressure drawdown at 

any one fracture i  as the sum of the pressure drawdown induced by all fractures 

1... fj n= , where 
ij  is that value of   for which r  equals the distance between fractures 

i  and j  (2.95). We acknowledge that the principle of superposition is not applicable to 
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constant-BHP boundary conditions and present this methodology simply to document its 

results. 
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,
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   (2.125) 

 With this we have a system of 2 fn  unknown functions, 0A  and 1A  for each 

fractures, with 2 fn  equations between (2.124) and (2.125). In matrix form, we have Eq. 

(2.126). 
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 (2.126) 

We consider this as the following 

 Ax b=  (2.127) 

And solve with matrix inversion 

 \x A b=  (2.128) 

Individual fracture flow rates may be computed with 

 ( ) ( ) ( )
1

,

0

j n j n

n

q t A t V t
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  (2.129) 
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For individual fracture diagnostics, we can use RNP 

 ( )
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j
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q t
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 (2.130) 

And for whole-well diagnostics, we use the whole-well RNP 
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w
well
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q
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 (2.131) 
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MTFW Solution Testing & Results Summary 

Reference Models 

 We constructed two reference models in the reservoir commercial simulator, 

Eclipse. Both models incorporated a horizontal well intersecting 20 planar fractures with 

infinite conductivity. Fractures were represented explicitly as grid blocks with a width of 

0.05 ft. A tartan simulation grid was used, with grid block widths increasing 

logarithmically with perpendicular distance from the fracture blocks. Well completions 

were simply modeled as zero-skin perforations in the fracture cells. Reservoir properties 

were kept consistent between models and shown in Table 1. Both a constant well rate (

0.1 /q bbl day= ) and constant BHP ( 3000wfp psi = ) inner boundary condition were 

tested. 

 For comparison with the IALF analytic solutions, we used a fully linear reservoir 

model, constructed as a channel with a width and height equal to that of the fractures.  

 

 

Figure 15 - IALF Reference Model Dimensions 

 

950wL ft=

2 100fx ft=
Effectively infinite
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Though technically a 3-dimensional model, this reservoir model is effectively 1-

dimensional. The reservoir is bounded beyond the tips of the fractures, but effectively 

infinite in both directions perpendicular to the fracture faces (Figure 15).  

 

 

Figure 16 - IALF Reference Model Screenshot (Pressure Property Displayed) 

20 Fractures 
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Table 1 - Reference Model Reservoir Properties (from Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 

 

 

For comparison with the IAPF analytic solutions, we used a bounded reservoir 

model, wherein the horizontal well sits in the middle of a bounded rectangular reservoir. 

In this case the reservoir thickness also equals the fracture height. We did not make any 

attempts to represent an infinite reservoir in this case, simply to save time on simulation 

runs. This will cause the numerical simulation results to differ slightly from the analytic 

solutions during very late time. 

 

Permeability, k = 0.0002 md

Porosity, φ = 6%

Total Compressibility, ct  =   2*10-5 psi-1

Oil Viscosity, μ = 1 cp

Pay Height, h = 30 ft

Formation Volume Factor, B = 1 rb/stb

Diffusivity, α = 0.044 ft2/hr

Fracture Half-Length, xf = 50 ft

Fracture Spacing, xs = 50 ft

Number of Fractures, Nf = 20 fractures

Fracture Permeability, kf = 1000 md

Fracture Width, wf = 0.05 ft

Dimensionless Frac. Cond., Crd = 1600 (infinite Cond.)

Model Fracture Properties

Rock & Fluid Properties

Reference Model Properties
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Figure 17 - IAPF Reference Model Dimensions (from Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 

 

 

 

Figure 18 - IAPF Reference Model Screenshot (Pressure Property Displayed) 
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2 100fx ft=

1000 ft
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20 Fractures 
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 With constant rate boundary conditions, the simulations show the typical 

expected progression of flow regimes for this well and reservoir geometry. Note that in 

the following descriptions we use the rate-normalized pressure’s derivative with respect 

to the natural logarithm of time ( 'RNP ) as a flow regime identifier. For the linear 

reservoir case (Figure 19) we see an initial linear flow period (shown by a half-slope), 

then a fracture interference period (nearly unit slope), and then a transition to a fully 

linear flow out to infinite time.  

 

 

Figure 19 – IALF Constant-Rate Simulation Diagnostic Plot 
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Linear Flow Fracture Interference  
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Flow  
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 For the bounded 2-dimensional reservoir case (Figure 20) we see an initial linear 

flow period (shown by a half-slope). This is followed by a very brief transition to 

elliptical flow, shown as a very small dip from the linear half-slope (zoomed in view in 

Figure 21). Fracture interference then appears as a near unit slope. Next, we see the 

transition to radial flow as the fractures act as a single drainage source (trend towards a 

zero-slope), and then a pseudo steady state signature (unit slope) as the reservoir 

boundary effects begin. 

 

 

Figure 20 - IAPF Constant-Rate Simulation Diagnostic Plot (after Malone et al. 

(2019)). Copyright 2019, SPE. Reproduced with permission of SPE. Further 

reproduction prohibited without permission. 
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Figure 21 – IAPF Constant-Rate Simulation - Elliptical Flow Dip Signature 

(zoomed in view) (after Malone et al. (2019)). Copyright 2019, SPE. Reproduced 

with permission of SPE. Further reproduction prohibited without permission. 

  

 

Interpreting diagnostic plots of RNP and RNP’ versus time can be difficult for 

production data under a constant-BHP inner boundary condition. We can ease this 

interpretation through use of material balance time ( mbt ) (Equation (2.132)), which is the 

superposition function for pseudo-steady state flow. By plotting RNP and RNP’ versus 

mbt  we can generate a diagnostic plot from constant-BHP or varying-BHP, varying-rate 

data that will appear like a constant-rate diagnostic plot (Palacio and Blasingame 1993; 

Song and Ehlig-Economides 2011). Note that when we do this, RNP’ must also be 

computed as a derivative with respect to the natural logarithm of mbt  instead of time 

(2.133), and will be denoted as ( )' mbRNP t . We plot the constant-BHP reference 

Half Slope 

Elliptical Flow “Dip” 
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simulation results here as functions of time (which will be used as the reference to our 

analytic solutions), but also as functions of mbt  simply to clarify the flow regimes that 

occur. 

 
( )

( )
p

mb

N t
t

q t
=  (2.132) 

 ( )
( )

'
ln

mb

mb

RNP
RNP t

t


=


 (2.133) 

 In our constant-BHP linear flow model (Figure 22), we begin with the typical 

half-slope signature of linear flow. At the onset of fracture interference, the RNP’ curve 

crosses the RNP curve, and then non-monotonically dips back to a half-slope as the 

long-term late-time linear flow begins. When plotted as RNP and ( )' mbRNP t  versus mbt  

(Figure 23), our diagnostic plot looks nearly identical to its constant-rate counterpart 

(Figure 19). It shows the characteristic linear half-slope, fracture interference unit slope, 

and long-term half-slope in the same order as we see in the constant-rate model. 
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Figure 22 - IALF Constant-BHP Simulation Diagnostic Plot  

 

 

 

Figure 23 - IALF Constant-BHP Simulation Diagnostic Plot (tmb)  
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 In the bounded 2-dimensional reservoir case we have the same progression of 

flow regimes with a constant BHP inner boundary condition as we do for the constant-

rate case. Once again, the standard diagnostic plot (Figure 24) shows a linear half-slope 

signature during the early time where linear flow perpendicular to the fractures 

dominates. We then see the characteristic “dip” signature of a trend towards elliptical 

flow (Figure 26), which is quickly overtaken by the fracture interference signature. 

Fracture interference appears as an exponential increase at middle time and ends when 

the fractures start acting as a single unit and begin transitioning to radial flow. The 

reservoir boundary signature then comes into play, leading to a pseudo steady state or 

boundary dominated signature. When plotted as a material balance time plot (Figure 25), 

we see these same flow regimes but with the more easily identifiable slopes we would 

expect on the constant-rate plot. 



 

79 

 

 

Figure 24 – IAPF Constant BHP Simulation Diagnostic Plot (after Malone et al. 

(2019)). Copyright 2019, SPE. Reproduced with permission of SPE. Further 

reproduction prohibited without permission. 

 

 

 
Figure 25 - IAPF Constant BHP Simulation Diagnostic Plot (tmb) 
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Figure 26 - IAPF Constant BHP Simulation Diagnostic Plot (tmb) –  

Elliptical Flow Dip Signature (zoomed in) (after Malone et al. (2019)). Copyright 

2019, SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

 

 

Results Summary 

 The 8 analytic solutions were compared to the commercial simulator reference 

models, and the qualitative assessment of their approximation quality is shown in Table 

2. We prepared analytic solution diagnostic plots using the reservoir properties in Table 

1 and show them with their reference model results in this section. 

Half Slope 

Elliptical Flow “Dip” 
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Table 2 - Analytic Model Results Summary 

 

 

 While looking at the following plots, keep Figure 27, the well diagram for our 

test model, in mind. “Edge fractures” will refer to the fractures directly adjacent to the 

toe and heel of the well, fractures F1 and F20. “Central fractures” will refer to the two 

fractures nearest the very middle of the well’s horizontal section, fractures F10 and F11. 

“Inner fractures” will refer to all the fracture in between the edge fractures, fractures F2 

through F19.  Note that our analytic solutions do not account for any asymmetrical flow 

parameters such as friction along the wellbore, so fractures opposite each other relative 

to the horizontal section’s center will exhibit identical flow behavior. More specifically, 

fractures F1 and F20 will behave the same, F2 and F19 will behave the same, F3 and 

F18 will be have the same, and so on. On plots involving individual fractures, we plot 

only 10 curves (i.e. fractures 1 and 20 plot together as one curve), just to make the plots 

easier to follow. Equivalence within opposing fracture pairs has been confirmed for each 

case via independent plotting, so we are comfortable plotting individual fracture 

diagnostics this way. 
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Figure 27- Test Model Diagram - Fracture Numbering 

 

 

Case 1 – Variable Rate IALF (A0) - Results 

 Case 1’s analytic solution’s behavior nearly identically mirrored the reference 

model’s behavior (Figure 28). It exhibits early time linear flow shown by a half-slope on 

our diagnostic plot’s RNP’ curve. Next, we see a fracture interference period indicated 

by the nearly-unit slope at middle time. Finally, we see long-term linear flow caused by 

the 1-dimensional reservoir geometry. 

 Individual fracture behavior provides interesting insight into the nature of 

fracture interference and what exactly occurs during SRV drainage. Given the boundary 

conditions of Case 1, the individual fracture flowrates will vary relative to each other but 

their sum will remain equal to the total flowrate constraint of the well (0.1 bbl/day) 

(Figure 29). At early time when fractures act independently, each fracture contributes an 

equal portion of the whole well’s flow rate. As time progresses to fracture interference, 

we see the flowrates diverge. The center fractures see a decrease in flowrate as they 
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more fully drain their respective drainage volumes. The edge fractures see a growth in 

flowrate as they access the infinite reservoir volume available along the length of the 

reservoir.  

Individual fracture RNP (Figure 30) and RNP’ (Figure 31) behavior also provide 

information on what individual fractures see as their transients overlap. At early time we 

see all the fractures independently exhibit linear flow, shown by a half-slope on their 

RNP’ curves. As fracture interference begins and virtual no-flow boundaries form in 

between fractures, we see all the inner fractures exhibit pseudo-steady state flow, 

indicated by a unit slope. This continues to infinite time. We see a slight deflection in the 

RNP’ curve of the edge fractures, indicating interaction with the no-flow boundary 

formed between them and their neighbors (fractures 2 and 18 in this case). A linear half-

slope then reforms as the edge fractures drain the infinite linear reservoir.  

 Interpreting these plots together, we can see what causes the overall well 

behavior, and how different fractures influence the whole well diagnostic response. At 

early time, fractures act independently, and all exhibit linear flow, which is reflected in 

the early time whole-well behavior. As fracture interference begins and the inner 

fractures exhibit pseudo-steady state flow, the whole-well response reflects that trend. 

As time progresses, the edge fractures continue to see linear flow, and the inner fractures 

continue to see pseudo-steady state flow, but their proportional changes in rate adjust 

their respective influences on the whole-well behavior.  Immediately as fracture 

interference begins, individual fractures rates remain similar, so the whole-well response 

follows the majority fracture response – pseudo-steady state flow. However, the edge 
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fracture rates begin to climb, and inner fracture rates decay, so we see the edge fracture 

behavior dominate the whole-well behavior as we progress into very late time. 

 Asymptotic solution parameter 0A  is also shown on a by-fracture basis (Figure 

32). This plot primarily helps in evaluating the stability of our solution, and in multi-

term approximations it allows us to see which asymptotic terms dominate the solution. 

In this case we have only one term ( 0A ), and it shows a monotonic decrease through 

time. A divergence occurs between the edge and inner fractures as fracture interference 

begins, and we see all the non-central inner fracture 0A  terms eventually converge upon 

the same value as the central fracture 0A  terms. 

 

 

Figure 28 – Case 1 Diagnostic Plot Comparison with Reference Model 

Unit Slope 

Half Slope 
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Figure 29 - Case 1 - Individual Fracture Flowrates 

 

 

 

Figure 30 - Case 1 - Individual Fracture RNP 
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Figure 31 - Case 1 - Individual Fracture RNP' 

 

 

 

Figure 32 - Case 1 - Individual Fracture A0 Terms 
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Case 2 – Constant Rate IALF (A0 and A1) - Results 

 Case 2’s analytic solution’s behavior also nearly identically reflects the reference 

model’s behavior (Figure 33). As with the reference model, it progresses from early 

linear flow to fracture interference, or approximate pseudo-stead state flow, then back to 

late time linear flow.  

 Given that Case 2 is identical to Case 1 except in that it applies an additional 

asymptotic solution unknown function ( 1A ), its individual fracture diagnostics are nearly 

identical to Case 1’s with one exception. Case 2’s wellbore rate derivative constraint and 

additional unknown function drive all fractures to one of two solutions. The edge 

fractures (F1 and F20) see one response, and all the other fractures (F2-F19) see another. 

This is true of the rate response (Figure 34), the RNP response (Figure 35), and the 

RNP’ response (Figure 36). 

 We may interpret Case 2’s diagnostics similarly to how we interpret Case 1’s. At 

early time the fractures flow independently exhibiting linear flow which is reflected in 

the whole well response. Once fracture interference begins, the inner fractures encounter 

pseudo-steady state flow, and this response dominates the whole-well response until the 

inner fracture rates decay, and we see the edge fracture linear signature dominate into 

very late time. 

 In this case the solution is primarily driven by the first unknown function, 0A , 

which shows a constant decay for all fractures until interference begins, and then a 

separation in responses afterwards (Figure 37). The second unknown function, 1A , 
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comes into play only during fracture interference, and has a varying magnitude for each 

fracture (Figure 38). Its apparent effect is to decrease the flux to the edge fractures 

(shown by its negative value), allowing the inner fractures to take some additional flux 

during the interference period (which is why they are all equal through all time).  

 

 

Figure 33 - Case 2 Diagnostic Plot Comparison with Reference Model 
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Figure 34 - Case 2 - Individual Fractures Flowrates 

 

 

 
Figure 35 - Case 2 - Individual Fracture RNP 
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F2-F19  

F1 & F20  
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Figure 36 - Case 2 - Individual Fracture RNP' 

 

 

 
Figure 37 - Case 2 - Individual Fracture A0 Terms 
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Figure 38 - Case 2 - Individual Fracture A1 Terms 

 

 

Case 3 – Variable Rate IAPF (A0) - Results 

 The analytic construction for Case 3 managed to closely approximate the results 

from our 2-dimensional reference model. Early time linear flow, fracture interference, 

and the eventual transition to infinite-acting compound radial flow are all exhibited by 

the analytic model (Figure 39). After the onset of fracture interference, the solutions 

show some offset primarily because the “pillbox” geometry assumption does not exactly 

match the true progression of flow regimes for a single fracture. In reality, we see a brief 

period of pillbox flow followed by elliptical and then radial flow (Lee et al. 2003). In our 

approximation, there is no true elliptical flow, leading to the discrepancy we see between 

the reference model and our analytic solution after linear flow ends. Another late time 
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divergence at approximately 107 hours occurs because our reference model includes a 

reservoir boundary, but our analytic model assumes an infinite reservoir.  

 

 

Figure 39 - Case 3 Diagnostic Plot Comparison with Reference Model (after 

Malone et al. (2019)). Copyright 2019, SPE. Reproduced with permission of SPE. 

Further reproduction prohibited without permission. 

 

 

The reader is reminded that the 2-dimensional reference model shows a pre-

interference “dip” signature, where elliptical flow is shortly seen before the period of 

fracture interference begins. This pre-interference “dip” signature (Figure 21) is 

replicated by the analytic solution. It represents the growth of individual fracture 

drainage volumes to the point that flow to the fracture tips should no longer be 

considered negligible relative to flow perpendicular to the fracture face. In a case with 

Long-term 

Radial Flow Unit Slope 

Half Slope 
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more widely-spaced fractures, this dip will become more apparent, and could even 

evolve into full radial flow with a high enough fracture spacing. 

 

 

Figure 40 - Case 3 Diagnostic Plot - Elliptical "Dip" Signature (after Malone et al. 

(2019)). Copyright 2019, SPE. Reproduced with permission of SPE. Further 

reproduction prohibited without permission. 

 

 

 With our analytic model, we may also observe interesting results on an individual 

fracture basis. Again, fracture flowrates act independently of each other at early time, all 

contributing an equal proportion of the total wellbore flow constraint (Figure 41). Once 

fracture interference begins, flowrates diverge. With the greatest access to the infinite 

reservoir, the edge fractures’ flow contribution increases until reaching an upper limit, 

and evens out once late-time radial flow sets in. Inner fractures appear to drop in 
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flowrate after interference begins, and then flatline in the same way. As we move further 

towards the center of the horizontal section, this flatline flowrate value decreases, and 

the center fractures see the least amount of flow. 

Taking a look at our RNP and RNP’ plots (Figure 42 and Figure 43, 

respectively), we can make out the progression of flow regimes for each fracture. The 

edge fractures see the early period of linear flow, the pre-interference “dip”, and a 

boundary deflection caused by the virtual no-flow boundary imposed between the edge 

fractures and their neighbors. As we progress to late time, the edge fractures see a zero-

slope, indicating that their flow has evolved to full radial flow. The inner fractures also 

see the early-time linear flow period, and the pre-interference “dip”. Once interference 

sets in, they exhibit the approximate pseudo-steady state unit slope. Each inner fracture 

then eventually progresses to long-term radial flow. The closer a fracture is to the edge 

fractures, the earlier it begins to see radial flow. 

In Case 3 we use a single-term approximation ( 0A  only). 0A  shows a somewhat 

muted response in this case. It monotonically decreases, equally for each fracture, until 

fracture interference begins. At that point, the same monotonic decrease continues, but 

the slope decreases for inner fractures more quickly than for the edge fractures. 
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Figure 41 - Case 3 - Individual Fractures Flowrate (after Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 

 

 

 

Figure 42 - Case 3 - Individual Fracture RNP (after Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 
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Figure 43 - Case 3 - Individual Fracture RNP' (after Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 

 

 

 
Figure 44 - Case 3 - Individual Fracture A0 Terms (after Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 
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Case 4 – Constant Rate IAPF (A0 and A1) - Results 

Case 4’s results differ little from Case 3’s results. The main difference between 

Cases 3 and 4 comes in the solution – Case 4 includes the additional asymptotic 

unknown function, 1A , and the additional constraint imposed on the derivative of the 

wellbore flux. Case 4’s analytic solution shows good agreement with the reference 

model results, and encounters the same discrepancies seen between the reference model 

and Case 3. Initial linear flow seems to match the reference model identically. After 

fracture interference our analytic solution carries the same overall character but has a 

consistent slight negative offset from our reference model (Figure 45) and does not 

model the late-time pseudo-steady state behavior because of its infinite reservoir 

assumption. Case 4’s analytic solution also manages to capture the pre-interference 

“dip” signature seen in the reference model (Figure 46). 

Similarly, to what we see in Case 3, individual fractures contribute equal 

proportions of the total wellbore flux up until the time when fractures begin to interact 

(Figure 47). After that we see the edge fracture rates increase up to a maximum, and then 

the inner fracture flowrates decrease and flatline at some value that decreases as the 

fracture is closer to the center of the horizontal section. The character of the RNP curves 

shows very little character (Figure 48), but the RNP’ curves show a similar progression 

of flow regimes to what we saw in Case 3 (Figure 49). The fractures flow independently, 

exhibiting the linear flow half-slope up until the pre-interference “dip” and subsequent 

fracture interference. For this case, the dip appears more dramatic for the edge fractures. 
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After fracture interference ends, each fracture eventually stabilizes to a period of long-

term radial flow. 

Solutions are dominated by the 0A  terms which monotonically decrease through 

all time and show some “fanning” out during the period of fracture interference (Figure 

50). The 1A  terms appear to influence the solution only during the fracture interference 

period, and will decrease the flux to the edge fractures while increasing the flux to inner 

fractures (Figure 51). 

 

 

Figure 45 - Case 4 Diagnostic Plot Comparison with Reference Model (after 

 Malone et al. (2019)). Copyright 2019, SPE. Reproduced with permission of SPE. 

Further reproduction prohibited without permission. 
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Figure 46 - Case 4 - Elliptical Flow Dip Signature (after Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 

 

 

 

Figure 47 - Case 4 - Individual Fractures Flowrates 
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Figure 48 - Case 4 - Individual Fracture RNP 

 

 

 
Figure 49 - Case 4 - Individual Fracture RNP' 
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Figure 50 - Case 4 - Individual Fracture A0 Terms 

 

 

 
Figure 51 - Case 4 - Individual Fracture A1 Term 
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Case 5 – Constant BHP IALF (A1) - Results 

 Our constant-BHP formulations did not achieve the same levels of success we 

saw with our constant-rate models. Nonetheless, with this study we wanted to test and 

document the results of using the asymptotic approximation of the diffusivity equation in 

conjunction with the principle of superposition in space. Case 5’s analytic solution 

managed to do one thing correctly – it matched both the early time linear flow period 

and late time channel linear flow period of the reference model (Figure 52).  

 The analytic solution matches the reference model at early time (pre-

interference) because the fractures all act independently, and our whole-well response 

reflects the equally-shared proportions of flux to each fracture (Figure 53) which is seen 

as linear flow on a by-fracture basis (Figure 54, Figure 55). Once interference begins, the 

analytic model fails to match the reference model. The reference model’s interference 

signature when plotted against time shows a unique signature – a sharp rise in RNP and 

a non-monotonic increase in RNP’ that lasts approximately two decades. The analytic 

model fails to reproduce this non-monotonic signature and appears more like its 

constant-rate sibling shown in Figure 33. As we progress past the interference period, the 

rate allocation to the inner fractures continues to decrease much more quickly than the 

rate allocation to the edge fractures (Figure 53). The whole-well response begins to more 

closely reflect the edge fracture linear flow behavior as the fraction of flow to the edge 

fractures increases. 
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 As with any single-term approximation, the one term we use will dominate. In 

this case that will be the 1A  term. 1A  shows an equal monotonic decrease for all fractures 

until fracture interference begins, and then the 1A  terms separate (Figure 56).  

 

 

Figure 52 - Case 5 Diagnostic Plot Comparison with Reference Mode 
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Figure 53 - Case 5 - Individual Fractures Flowrates 

 

 

 
Figure 54 - Case 5 - Individual Fracture RNP 
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Figure 55 - Case 5 - Individual Fracture RNP' 

 

 

 
Figure 56 - Case 5 - Individual Fracture A1 Terms 
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Case 6 – Constant BHP IALF (A0 and A1) - Results 

 Case 6, the two-term IALF case, performed much better than its 1-term relative. 

It matched the early and late time linear flow periods and managed to approximate the 

fracture interference period behavior much more accurately but still fails to exactly 

match our reference solution (Figure 57).  

 As with previous cases, the early well flow behavior is driven by an equally-

distributed flux from all fractures that appears as linear flow on both the whole-well 

diagnostic plot and the individual fracture RNP and RNP’ curves (Figure 59 and Figure 

60). Fracture interference appears on the analytic model with a signature similar the 

reference model’s, but the analytic model response still holds fully monotonic, whereas 

the reference solution’s interference signature shows up as a non-monotonic RNP’ 

curve. 

 The unknown function, 1A , drives this solution, showing the same monotonic 

decrease through time for all fractures, with a split between the edge fracture and inner 

fracture responses when fracture interference begins (Figure 62). The 0A  term appears to 

influence only the fracture interference period, causing a decrease in the flux to both the 

inner and edge fractures, but more heavily affecting the inner fractures (Figure 61). 
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Figure 57 - Case 6 Diagnostic Plot Comparison with Reference Model 

 

 

 

Figure 58 - Case 6 - Individual Fractures Flowrates 
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Figure 59 - Case 6 - Individual Fracture RNP 

 

 

 
Figure 60 - Case 6 - Individual Fracture RNP' 



 

109 

 

 

Figure 61 - Case 6 - Individual Fracture A0 Terms 

 

 

 
Figure 62 - Case 6 - Individual Fracture A1 Terms 
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Case 7 – Constant BHP IAPF (A1) – Results 

 The results from Case 7 were similar in nature to those from Case 5. The analytic 

model matches the reference model during the early time linear flow period, and the late-

time transition to radial flow, but fails to match the fracture interference behavior 

(Figure 63). As with the 1-dimensional constant-BHP cases, the 2-dimensional reference 

model shows non-monotonicity in its RNP’ curve, and the analytic model is unable to 

match that.  

 Individual fracture flowrates (Figure 64) indicate that fractures act independently 

during early time linear flow, showing a constant rate decay until the onset of fracture 

interference. After interference begins, this decay accelerates for central fractures and 

remains mostly constant for the edge fractures. At late time, the rates for all fractures 

stabilize as they begin to flow collectively. 

 RNP and RNP’ behavior (Figure 65 and Figure 66) at the individual fracture 

level shows linear flow for all fracture during early time, and then a divergence upon the 

onset of fracture interference. Central fractures’ RNP’ curves indicate an apparent 

boundary, and the edge fractures seem relatively undisturbed. As time progresses, 

fractures progressively stabilize as they receive the pressure “signal” from all their 

neighbors. Eventually, collective radial flow develops as we see stabilization to a slope 

of zero for all fractures at very late time. 
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Figure 63 - Case 7 Diagnostic Plot Comparison with Reference Model 

 

 

 

Figure 64 - Case 7 - Individual Fractures Flowrates 
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Figure 65 - Case 7 - Individual Fracture RNP 

 

 

 

Figure 66 - Case 7 - Individual Fracture RNP' 
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Figure 67 - Case 7 - Individual Fracture A1 Terms 
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Case 8 – Constant BHP IAPF (A0 and A1) 

 Case 8’s analytic solution performed very well relative to the reference model, 

failing only to capture the non-monotonicity displayed by the reference model’s RNP’ 

curve during fracture interference (Figure 68). It successfully models early time linear 

flow, a fracture interference period, and a late-time transition to infinite-acting radial 

flow. 

 At the individual fracture level, we see fracture act independently at early time, 

before diverging after the onset of fracture interference (Figure 69). Central fractures see 

a greater decay in their rates than the edge fractures, but all fractures eventually stabilize 

at late time as they begin to act collectively. The RNP and RNP’ curves (Figure 70 and 

Figure 71) show all fractures operating independently under early linear flow until 

fracture interference. Once they begin communicating, all fractures see a boundary 

signature, but the signature is stronger for central fractures. As with rate, the diagnostics 

of individual fractures stabilize at late time, with all fractures eventually settling on a 

late-time collective radial flow behavior. 

 The 1A  term drives this solution (Figure 73), showing a monotonic decrease 

through all time, with a divergence between individual fracture terms after interference 

sets in. The 0A  term crops up during fracture interference (Figure 72) only, enabling the 

additional degree of freedom that makes this solution come so close to the reference. 
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Figure 68 - Case 8 Diagnostic Plot Comparison with Reference Model (after 

Malone et al. (2019)). Copyright 2019, SPE. Reproduced with permission of SPE. 

Further reproduction prohibited without permission. 
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Figure 69 - Case 8 - Individual Fractures Flowrates 

 

 

 
Figure 70 - Case 8 - Individual Fracture RNP 
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Figure 71 - Case 8 - Individual Fracture RNP' 

 

 

 

Figure 72 - Case 8 - Individual Fracture A0 Terms 
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Figure 73 - Case 8 - Individual Fracture A1 Terms 
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SRV Flow Mechanisms & Drainage Volumes 

One additional diagnostic that the asymptotic approximation enables is the 

calculation of transient drainage volume (Eq. (2.134)). With this we can compute the 

total reservoir volume accessed by any individual source or sink term in our solution. 

Applying this to our variable rate solutions, we can further illustrate the mechanisms of 

fracture interference from the perspective of a single fracture. 

 
( )
1 t

d e

c dRNP

V t t dt
=   (2.134) 

 We display this calculation for each fracture in Case 1 in Figure 74. The vertical 

dotted blue line displays the end of transient linear flow, which will be discussed in more 

detail in Chapter 3. The horizontal dotted purple line simply shows a rough estimation of 

the pore volume of the “stimulated reservoir volume” (SRV). This figure illustrates the 

evolution of drainage areas for individual fractures occurs as fracture interference 

begins. Recall that Case 1 is a 1-dimensional flow case, and that the reservoir is 

effectively infinite in the directions in which flow occurs. Up until fracture interference 

begins, the drainage volume for each fracture grows independently of its neighbors. 

After the onset of fracture interference, the transient drainage volume comes to a 

standstill for central fractures but continues to increase for edge fractures. This is the true 

source of the approximate pseudo steady state (or “pseudo pseudo steady state”) 

signature noted by Song et al. (2011). As time progresses, the central fractures are 

effectively jailed, and their drainage volumes can only decrease in size. The edge 
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fractures however, have an infinite reservoir volume to access, and continue to grow 

through all time. 

 

 

Figure 74 - Individual fracture drainage volumes - Case 1 

 

 

 In Figure 75 we show this plot for Case 3. The dotted blue and purple lines are 

the same as in Figure 74. Recall that Case 3 uses an infinite 2-dimensional flow 

assumption. Drainage volume evolution for this case is less constrained given that the 

available reservoir volume is much greater for a 2-dimensional case than it is for a 1-

dimensional case. At early time, all fractures act independently of their neighbors and 

their drainage volumes grow as they access more of the reservoir. At the onset of 

fracture interference, the drainage volume growth curves diverge. Central fractures don’t 

fully stagnate and decay as they do in the 1-dimensional case. They instead see a short 
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stagnation due to an apparent decrease in the available reservoir volume, but then 

continue to grow after reservoir volume located past the fracture tips is accessed. Edge 

fractures see no decrease in their drainage volumes growth until slightly after 

interference when the “pressure signal” from all the other fractures reaches them. 

Eventually, the drainage volume growth for all fractures stabilizes as collective long-

term infinite-acting radial flow begins. 

 

 

Figure 75 - Individual fracture drainage volumes - Case 3 (after Malone et al. 

(2019)). Copyright 2019, SPE. Reproduced with permission of SPE. Further 

reproduction prohibited without permission. 
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Conclusions 

Technology Development 

In this chapter we discussed the transient flow behavior of the MTFW geometry, 

and the diagnostic tools that may be used to interpret production data from MTFW’s 

completed in unconventional shale reservoirs with ultra-low permeability. We discussed 

the potential applications of work by previous authors in this field. We re-introduced the 

asymptotic approximation of the diffusivity equation and walked through the derivation 

of a series of analytic solutions for fluid flow to MTFW’s for 1-dimensional and 2-

dimensional reservoir geometries, as well as constant wellbore rate, constant bottom hole 

pressure, and variable rate inner boundary conditions. These solutions took advantage of 

the principle of superposition in space and achieved varying levels of success in testing 

against reference numerical models. 

 Our analytic solutions matched reference models very well under constant 

wellbore rate inner boundary conditions. Both 1-dimensional solutions matched our 

reference model very well and show promise as potential tools for quick modeling of 

MTFW’s where a 1-dimensional flow assumption might be valid. The 2-dimensional 

solutions matched our reference model closely, but because the pillbox flow model does 

not match true transient behavior for all time, it is not a panacea. 

 Our analytic solutions for constant-BHP flow also performed very well, though 

not as universally. The 1-term solutions provided an estimate of the reference model at 

best. Though they were able to accurately capture both early and late time behavior, they 

struggled to match the reference during middle-time fracture interference. The 2-term 
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solutions provided a significant improvement over the 1-term solutions, taking 

advantage of the additional degree of freedom offered by a second asymptotic expansion 

term. Though they failed to perfectly match the non-monotonicity of reference model 

RNP’ curves, they matched early and late time behavior perfectly while very closely 

approximating diagnostic curves during the period of fracture interference.  

 

Field Mechanisms 

The principle of superposition in space allowed us to match typical MTFW flow 

behavior on a full-well scale, while also solving for individual fracture flux. With this 

information and with RTA diagnostics, we showed the mechanisms of fluid flow during 

SRV drainage and described the proportionality of flow to different fractures during 

different flow periods, and the variations in influence that different fractures along a 

horizontal section will see both before and after fracture interference begins. 

Most notably, we showed that upon the onset of fracture interference, the 

drainage volumes seen by hydraulic fractures stagnate due to limited volume availability 

between the fractures. This results in the apparent pseudo-steady state signature seen on 

diagnostic plots. We showed definitively that the unit slope signature on diagnostic plots 

seen during fracture interference occurs not as a result of any real boundary or “SRV” 

edge, but rather as the result of superimposed pressure drops from fractures reaching 

their neighbors and causing an apparent pseudo steady state response for a limited period 

of time. 
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 Fluid flow in MTFW’s will follow a unique progression, depending upon which 

flow geometry is assumed. For the very simple 1-dimensional case, we can expect 

production to begin with a linear flow signature, where all fractures act independently of 

their neighbors, individually exhibiting linear flow. As their drainage areas begin to 

overlap, fracture interference begins, and we will see a period of approximate pseudo 

steady state flow occur as central fracture drainage areas become constrained. As time 

progresses, the flow contribution from central fractures will fall off, and the fully-

transient response of the edge fractures will begin to dominate as their drainage volumes 

are permitted to grow. 

  For a 2-dimensional case, we see fracture independently exhibit linear flow, 

resulting in a linear whole-well early response, that transitions to elliptical flow if 

fractures are spaced far enough apart. Once fracture drainage volumes begin to interact, 

fracture interference begins, and we see the same approximate pseudo steady state 

signature occur that is seen in the 1-dimensional case. However, the central fractures will 

see a short stagnation, followed by renewed drainage volume growth due to available 

reservoir volume beyond the fracture tips. Eventually, we see the fractures transition at 

very late time to a collective radial flow signature as their drainage volume growth 

stabilizes. 
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CHAPTER III  

INVESTIGATION OF THE END OF LINEAR FLOW* 

Background and Introduction 

 In Chapter 2 we briefly introduced the “end of linear flow” concept and pointed 

out that some ambiguity exists in its definition and usage. In this chapter, we will review 

the physical mechanisms of the end of linear flow and discuss its ramifications on 

MTFW production analysis. We will then review definitions and equations for the end of 

linear flow that prior authors provided and discuss the ambiguity that we cite. Finally, 

we will provide an alternative definition of the end of linear flow – one based on the 

principles of the asymptotic approximation of the diffusivity equation. We will 

demonstrate the advantages of this definition, the foremost being independence from 

inner boundary conditions and flow geometry. We will provide a field example from the 

Montney Shale that demonstrates our formulation’s accuracy and discuss the 

ramifications of our proposed definition of the end of linear flow. 

 

MTFW Flow Example 

 The MTFW geometry is complex, and a varying set of flow behaviors may 

present themselves during production from MTFW’s. Which flow regimes appear will 

depend upon reservoir parameters such as permeability, fluid viscosity, and porosity, as 

                                                 

* Reprinted with permission from “Characterization of Multiple Transverse Fractured Wells Using the 

Asymptotic Approximation of the Diffusivity Equation” by Andrew Malone, Michael J. King, and 

Zhenzhen Wang, 2019. SPE Europec featured at the 81st EAGE Conference and Exhibition, Copyright 

[2019] by the Society of Petroleum Engineers 
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well as completion parameters such as fracture spacing, fracture half-length, fracture 

conductivity, and fracture complexity. Here we present a generalized model to illustrate 

the progression of flow regimes encountered during production from an MTFW 

completed in an ultra-tight formation. 

Our example model consists of a bounded rectangular reservoir with a 10-

fracture MTFW placed in its center (Figure 76). This model includes a “stimulated 

reservoir volume” (SRV), or a rectangular zone of enhanced permeability that represents 

reservoir rock whose permeability increased as a result of hydraulic fracturing. Though 

the same progression of flow regimes occurs regardless of whether an SRV exists, the 

presence of an SRV extends the duration of the approximate pseudo steady state, or 

fracture interference, flow regime, enabling stronger visualization. Table 3 lists the 

model properties. For clarity, we define the dimensionless fracture conductivity 

(“Dimensionless Frac. Cond.” in Table 3) by the same definition as Lee et al. (2003) 

(Equation (3.1)). Note that since the fractures sit within the SRV region, the “k” 

parameter in (3.1) will refer to the SRV permeability. Because the contrast between the 

SRV permeability and fracture permeability is low, the fractures in this model have 

finite conductivity, allowing us to visualize early bilinear flow as well as early linear 

flow. 

 

 
( )2
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Table 3 - Example Model Properties 

 

 

 

Figure 76 - Example Model Diagram (from Malone et al. (2019)). Copyright 2019, 

SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

Permeability, k = 0.00002 md

Porosity, φ = 6%

Total Compressibility, ct  =   2*10-5 psi-1

Oil Viscosity, μ = 1 cp

Pay Height, h = 25 ft

Formation Volume Factor, B = 1 rb/stb

Diffusivity, α = 0.044 ft2/hr

SRV Permeability, kSRV = 0.0002 md

Fracture Half-Length, xf = 52.5 ft

Fracture Spacing, xs = 64.2 ft

Number of Fractures, Nf = 10 fractures

Fracture Permeability, kf = 100 md

Fracture Width, wf = 0.01 ft

Dimensionless Frac. Cond., Crd = 15.2 Finite Cond.

Example Model Properties
Rock & Fluid Properties

Model Fracture Properties

579wL ft=

2 105fx ft=

757 ft

675 ft

1550resw ft=

2093resL ft=

155SRVw ft=

692SRVL ft=
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 Applying a constant-BHP inner boundary condition to maintain a pressure 

drawdown of 2500 psi, we ran a flow simulation to the maximum allowable time in the 

commercial simulator, Eclipse. In Figure 77 we plot the rate-normalized pressure (RNP) 

and its derivative with respect to the natural logarithm of material balance time (RNP’) 

versus material balance time (tmb). Plotting RNP and RNP’ versus material balance time 

allows us to plot constant-BHP data as an equivalent constant-rate diagnostic plot, which 

is much easier to interpret. Figure 78 includes the same diagnostic plot, but with labels 

for each flow regime encountered. Figure 79 through Figure 84 include drainage area 

maps of the example model. In these maps, pink-shaded cells are those cells whose 

pressure has dropped below initial reservoir pressure, and blue cells are those cells 

whose pressure still equals their initial pressure. In short, these maps show the drainage 

volume of the well, and of each individual fracture, as pink areas. 

 mb

Q
t

q
=   (3.2) 

 
wfp

RNP
q


=   (3.3) 
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d t
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Early Time - Bilinear Flow 

 Flow to a hydraulic fracture will begin with either linear or bilinear flow, 

depending upon the fracture conductivity (Lee et al. 2003). The model presented here 
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includes finite conductivity fractures and first exhibits bilinear flow, indicated by a 

quarter slope on the RNP’ curve of Figure 77. During bilinear flow, the well drains both 

the volume of the fractures and the volume of the surrounding matrix rock (Figure 79). 

 

Early/Middle Time – Linear Flow 

 Eventually, the fractures become fully drained and bilinear flow ends. The 

fractures begin to act as plane sources and fluid flow towards the fractures, 

perpendicular to their planar orientation, dominates the wellbore diagnostic response 

(Figure 80). This shows up as a half-slope on the RNP’ curve on our diagnostic plot in 

Figure 77 and Figure 78. 

 

Middle Time – Fracture Interference (Approximate Pseudo Steady State) 

 As the fractures continue to drain the surrounding rock matrix, their drainage 

volumes eventually overlap (Figure 81). Fractures draw down upon each other and 

available undrained rock volume decreases, so we see an acceleration occur on the RNP 

curve (Figure 78). Stagnation lines form at the boundary between adjacent fractures’ 

drainage areas. Much in the same way that an image well can represent a nearby 

boundary, each fracture’s neighbors create virtual boundaries between them. This elicits 

an apparent pseudo steady state response – a unit slope – on the RNP’ curve. 

 The onset of this approximately pseudo steady state (APSS) signature coincides 

with the time at which fractures begin to interact and is the point in time that we refer to 

as the “end of linear flow”, or telf. Accurate detection of this time can yield an estimate of 



 

130 

 

the permeability of the rock between hydraulic fractures, and will be discussed in more 

detail in Section 3.4. 

 

Late Time – Pseudolinear Flow 

 Once the fractures drain the volume between them, they begin to act as a single 

unit and adopt a collective flow pattern. This begins as what Song et al. (2011) coined 

“pseudolinear flow”, where each fracture drains its own channel-shaped volume, parallel 

to its orientation plane. At the whole-well resolution, this appears as a single shared 

rectangular drainage area (Figure 82). This appears as a brief half-slope on the RNP’ 

curve (Figure 78) 

 

Late Time – Radial Transition 

 Next, we see the collective drainage volume continue to propagate outwards, 

forming an elliptical shape that transitions to a circular shape (Figure 83). This transition 

flattens the RNP’ curve as available reservoir volume increases again. 

 

Late Time – Pseudo Steady State (Boundary-Dominated) Flow 

 Finally, the well’s drainage volume reaches the reservoir’s outer boundary 

(Figure 84). The boundary could be an even less permeable rock but would more likely 

represent a stagnation line between adjacent wells. The well will continue to drain from 

more of the reservoir volume until we see flow from the entire reservoir and enter a true 

pseudo steady state (or boundary-dominated) flow period (Figure 85). 
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Figure 77 - Example MTFW Model Diagnostic Plot (after Malone et al. (2019)) 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 

 

 

 
Figure 78 - Example MTFW Model Diagnostic Plot (Flow Regimes Labelled) (after 

Malone et al. (2019)). Copyright 2019, SPE. Reproduced with permission of SPE. 

Further reproduction prohibited without permission.  
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Figure 79 – Early Time – Bilinear Flow (from Malone et al. (2019)). Copyright 

2019, SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

 

 

 
Figure 80 – Early/Middle Time – Linear Flow (from Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 
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Figure 81 – Middle Time – Fracture Interference & Apparent Pseudo Steady State 

(from Malone et al. (2019)). Copyright 2019, SPE. Reproduced with permission of 

SPE. Further reproduction prohibited without permission. 

 

 

 
Figure 82 - Late Time – Compound Linear Flow 

Stagnation Lines 



 

134 

 

 
Figure 83 - Late Time - Radial Flow 

 

 

 
Figure 84 - Late Time – Transition to Pseudo Steady State 

 1000 ft 
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Figure 85 - Late Time - True Pseudo Steady State 

 

 

Previous Definitions of the End of Linear Flow 

 Recall the transition between linear flow and fracture interference (APSS flow). 

As we demonstrated in Chapter 2, this APSS signature comes from the superposition of 

a series of pressure drawdowns induced on each fracture by its neighbors. In other 

words, approximate pseudo steady state flow begins when fractures’ pressure pulses 

become detectable by their neighbors. It stands to reason that if we can detect the onset 

of this flow regime, we can use pressure propagation relationships to quantify reservoir 

properties (most importantly permeability). A useful telf formulation should tell us when 

interference begins, but in a way that is detectable and relates to fluid flow fundamentals 

(Figure 86). 

The field of interference testing already uses this concept (Lee et al. 2003), and 

many authors discuss it within the context of linear flow. Various authors propose 

 1000 ft 
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different definitions of the end of linear flow (Lee and Spivey 2013; Song et al. 2011; 

Song and Ehlig-Economides 2011; Wattenbarger et al. 1998). Upon review it becomes 

clear that a great ambiguity exists in this space. For illustration of this ambiguity, see 

Figure 87 where we plot each of the cited telf equations against an MTFW diagnostic 

plot.  

 

 

 

Figure 86 - End of Linear Flow 
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Figure 87 - End of Linear Flow Equations (from Malone et al. (2019)). Copyright 

2019, SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

 

 

End of Linear Flow - Song et al. (2011) 

 Song et al. (2011) defines the end of linear flow by an equation provided in 

Ehlig-Economides (1992) (Equation (3.5)). This equation was originally developed as a 

depth of investigation equation for linear flow to a vertical well in a channel – not flow 

to a fracture (Ehlig-Economides 1992). Song et al. (2011) states that the end of linear 

flow occurs when the depth of investigation from equally-spaced fractures equals half 

the fracture spacing, or when it reaches the stagnation point between fractures. For later 

comparison with other equations, we show this equation in a reduced form in Eq. (3.6). 
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End of Linear Flow - Song and Ehlig-Economides (2011) 

 Song and Ehlig-Economides (2011) defines the end of linear flow by another 

equation provided in Ehlig-Economides (1992) (Equation (3.7)). Interestingly, this 

equation is another depth of investigation relationship. It was intended for what Ehlig-

Economides (1992) calls “pseudo-linear flow”,  which they define as linear flow to a 

fracture. Song and Ehlig-Economides (2011) states that the end of linear flow occurs 

when the depth of investigation from equally-spaced fractures equals half the fracture 

spacing, or when it reaches the stagnation point between fractures. We show this 

equation in simplified form in Eq. (3.8). 
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The only real difference between (3.7) and (3.5) is (3.7)’s omission of the factor of   

seen in (3.5). 
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End of Linear Flow - Wattenbarger et al. (1998) 

 Wattenbarger et al. (1998) introduced the well-known Wattenbarger Type Curve, 

which describes the behavior of a single planar source draining a rectangular region 

(Figure 88). They developed a type curve for both constant well rate (Equation (3.9)) 

and constant bottom hole pressure (Equation (3.10)) inner boundary conditions (IBC’s). 
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Figure 88 - Wattenbarger Type Curve Geometry (Modeled after Wattenbarger et 

al. (1998)) 
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The Wattenbarger type curve enables users to calculate the ratio 
f

e

x

y
 by fitting 

field data to the type curve presented in Figure 89. Wattenbarger et al. (1998) identified 

the beginning of boundary-dominated behavior on both curves in Figure 89 by visually 

picking the point in dimensionless time where each curve lifted from a half-slope. They 

name this time the “time, end of half slope” or “tehs”, and this value is analogous to our 

telf. They identified a different value for each inner boundary condition (IBC) in 

dimensionless time. For a constant-BHP IBC, they list Eq. (3.11), and for a constant-rate 

IBC, they list Eq. (3.12). 

 0.25ehst =   (3.11) 

 0.5ehst =   (3.12) 

 

Using the definition of dimensionless time listed in Wattenbarger et al. (1998) (Equation 

(3.13)), and considering that ye equals half xs (Eq. (3.14)), we can obtain an equivalent 

telf value in real time for each IBC (constant-rate in Eq. (3.15) and constant-BHP in Eq. 

(3.16)). 
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Listed in simplified terms, we have Eq. (3.17) and Eq. (3.18) for constant-rate and 

constant-BHP IBC’s, respectively. 
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Figure 89 - Wattenbarger Type Curve (Based on Wattenbarger et al. (1998)) 

 

 

End of Linear Flow - Lee and Spivey (2013) 
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 Though Lee and Spivey (2013) does not explicitly address the end of linear flow 

problem, they do provide a generalized depth of investigation (DOI) definition that we 

included in this study. Lee and Spivey (2013) defines the depth of investigation as the 

distance from a pressure sink where the peak pressure disturbance occurs. More 

specifically, they define the depth of investigation as the distance where 
dp

dt
 reaches its 

maximum value. For linear flow, this value is given in Equation (3.19). 
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 If we state that linear flow ends upon the onset of “strong interference” on a 

fracture by its nearest neighbor, we can say that the end of linear flow occurs when the 

DOI equals fracture spacing, xs. Re-arrange to a form similar to previous expressions, 

and we have Equation (3.20), and in simplified form we have Eq.  
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Motivation for a New telf Expression 

Refer again to Figure 87. We already have numerous expressions for the end of 

linear flow, all of which seem to fall somewhere near the onset of APSS flow. The 

motivation for a new expression may not be obvious. 
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Song et al. (2011) and Song and Ehlig-Economides (2011) both provided 

estimators for the end of linear flow, but show inconsistency between publications. They 

apply a depth of investigation concept in both publications but use the distance to a no-

flow boundary (half the fracture spacing) as the measured distance in their expressions. 

As we showed in Chapter 2, the onset of APSS flow occurs as the result of pressure 

disturbance on a fracture, caused by its nearest neighbors. This implies that our 

expression for the end of linear flow should use the distance between a fracture and its 

nearest neighbor, the fracture spacing, rather than the distance to the stagnation line 

between them. 

Wattenbarger et al. (1998) provided estimators for both relevant IBC’s but did 

not provide a mathematical basis for their estimators. They used an “eyeball” pick of the 

end of a half-slope on their derived type curve. 

The telf expression derived from Lee and Spivey (2013) has mathematical 

backing, but it indicates the onset of “strong interference”, not the very beginning of a 

flow regime. 

 

Transient Drainage Volumes 

 With Figure 90 we illustrate two nearby fractures (one as a blue vertical line and 

one as a red vertical line), with pillbox-shaped drainage areas that have grown large 

enough for each fracture to draw down on its neighbor. This is a simple representation of 

what the end of linear flow looks like. In Figure 91 and Figure 92 we show a profile 

view of the same pair of fractures, with a series of dotted lines to represent the 
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propagating pressure wave created by the blue fracture, to be detected by the red 

fracture. Figure 91 represents a constant wellbore rate case, and Figure 92 represents a 

constant wellbore bottom hole pressure case. Considering this system, we should define 

the end of linear flow as the point in time where the pressure wave from the blue fracture 

becomes detectable at its neighbor, the red fracture. 

 

 

 
Figure 90 - Hydraulic Fracture Drainage Areas 

 

 

In Chapter 2 we discussed how the asymptotic approximation of the diffusivity 

equation provides us with a root expression that can yield diffusivity relationships for 

nearly any flow geometry and inner boundary condition. With this in mind, we recall the 
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base expression from the asymptotic expansion (3.22) and the expression for transient 

drainage volume (3.23). 
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Figure 91 - Pressure propagation representation (constant rate) 
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Figure 92 - Pressure propagation representation (constant BHP) 

Rewrite (3.23) and we have a more descriptive expression, Eq. (3.24). The well’s 

transient drainage volume is actually an integral taken over a differential volume, 
pV  

(Wang et al. 2018). The diffusion kernel, 
2 4te − , provides the fraction of that differential 

volume which contributes to the transient drainage volume of the well. 
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Rewrite (3.22) and we have another helpful expression, Eq. (3.25). The derivative of 

pressure with respect to time will vary proportionally with the diffusion kernel, 
2 4te − . 

Obviously, the power term, 2 4t  (known as the Boltzmann Variable), will control this 

diffusion kernel. 

 
( )

( )
2 4

0

,
n t

t n

n

p t
c A t e

t





−

=

  
= − 

  
   (3.25) 

With this in mind, we can say that both the transient drainage volume and the pressure 

derivative of the well will vary proportionally with this diffusion kernel. Plotting the 
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diffusion kernel against the square root of the Boltzmann variable shows us a 

dimensionless representation of any pressure wave’s profile through both space and time 

(Figure 93). This curve illustrates where different solutions to the diffusivity equation 

are valid. From the wellbore ( 0 =  and 
2 4 1te − = ), out to the PSS limit ( 4 0.1t = , 

2 4 0.99te − = ), pseudo steady state solutions are valid. In this region, effectively all 

volume contributes to the well drainage volume (Wang et al. 2018). From the PSS limit 

to the limit of detectability ( 4 2t = , 
2 4 0.018te − = ) lies the transient region where 

transient solutions are valid. In the transient region, volume that is farther from the 

wellbore will contribute less to its drainage volume. Past that lies the initial region, 

where less than 1.8% of the reservoir pore volume contributes to the well’s drainage 

volume. 
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Figure 93 - Diffusion kernel spatial profile (from Malone et al. (2019)). Copyright 

2019, SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

 

 

 

 

 

 

 

 

Solution Diffusion Kernel Boltzmann Variable 

Pseudo Steady State (PSS) 
2 4 0.99te −   0.1

4t


  
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Transient 
2 40.99 0.018te −   0.1 2

4t


   

Limit of Detectability 
2 4 0.018te − =  2

4t


=  

Near Initial 
2 4 0.018te −   2

4t


  

 

Table 4 - Diffusion Kernel and Boltzmann Variable values for asymptotic 

approximation solution (from Malone et al. (2019)). Copyright 2019, SPE. 

Reproduced with permission of SPE. Further reproduction prohibited without 

permission. 

 

 

End of Linear Flow Based on the Limit of Detectability 

Theory 

 The limit of detectability mentioned in Section 3.3 corresponds to the beginning 

of the transient drainage region as defined by the asymptotic approximation of the 

diffusivity equation. It represents the point in both space and time where the pressure 

derivative with respect to time reaches 1.8% (approximately 1%) of its maximum value. 

This occurs where 4 2t = . Using the value of   for homogeneous reservoir 

solutions (Equation (3.26)), we can state exactly where and when the onset of transient 

pressure influence begins for a single pressure sink (3.27). 
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 As we mentioned in Chapter 2, fracture interference begins when the pressure 

pulse from one fracture becomes detectable by its nearest neighbors. Defining 

“detectable” as the beginning of a transient influence of one fracture on another, we can 

use the limit of detectability to define the onset of fracture interference and approximate 

pseudo steady state flow. Setting sr x= , and 
elft t=  we have Eq. (3.28). In dimensional 

form, we have Eq. (3.29). 
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Given the generalized nature of the limit of detectability, it does not depend upon flow 

geometry or boundary conditions, making it extremely versatile. Coincidentally, the 

limit of detectability is identical to Wattenbarger et al. (1998)’s end of linear flow for 

constant-BHP IBC’s. 

 

Validation – Synthetic Case 

 Taking our 2-dimensional model from Chapter 2 (reservoir properties listed in 

Table 5), we can compute the end of linear flow for our synthetic case. Plot this against 

the diagnostic plot from our constant-rate numerical simulation and we see the end of 

linear flow fall just before the onset of fracture interference (Figure 94). 
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Table 5 - Synthetic Model Properties (from Malone et al. (2019)). Copyright 2019, 

SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

 

Figure 94 - End of Linear Flow - Limit of Detectability (Constant Rate Case) 

Permeability, k = 0.0002 md

Porosity, φ = 6%

Total Compressibility, ct  =   2*10-5 psi-1

Oil Viscosity, μ = 1 cp

Pay Height, h = 30 ft

Formation Volume Factor, B = 1 rb/stb

Diffusivity, α = 0.044 ft2/hr

Fracture Half-Length, xf = 50 ft

Fracture Spacing, xs = 50 ft

Number of Fractures, Nf = 20 fractures

Fracture Permeability, kf = 1000 md

Fracture Width, wf = 0.05 ft

Dimensionless Frac. Cond., Crd = 1600 (infinite Cond.)

Model Fracture Properties

Rock & Fluid Properties

Reference Model Properties
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 We also plot our computed value of telf against the diagnostic plot from our 

constant-BHP numerical simulation (Figure 95). Again, telf falls just before fracture 

interference begins. We also have the end of linear flow in material balance time. Since 

we know material balance time as a function of real time, we plot the two against each 

other and obtain an equivalent end of linear flow in material balance time (Figure 97, Eq. 

(3.31)) 

 
, 6554elf mbt hrs=   (3.31) 

 

 

 

Figure 95 - End of Linear Flow - Limit of Detectability (Constant BHP Case) 
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Figure 96 - End of Linear Flow - Limit of Detectability (Constant BHP Case) 

 

Figure 97 – End of Linear Flow conversion from real time to material balance time 

 

Validation & Application – Montney Field Case 
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 A previous study (Wang et al. 2018) discussed the estimation of permeability for 

a well in the Montney Field in Canada. Reservoir and well properties are listed in Table 

6 and gas rate and pressure data are plotted in Figure 98. Wang et al. (2018) proposed a 

robust methodology for estimating permeability from production data based upon 

analysis of drainage volume and ( )w   curves computed through optimization. Their 

smoothed drainage volume and ( )w   curves work to robustly visualize fracture 

interference, which appears as a stagnation, or flattening, on the drainage volume curve, 

and as a sharp dive on its derivative, ( )w   (Figure 98). This methodology yielded a 

proven permeability estimate of 3.7 μD through inversion of the buildup period 

highlighted in green in Figure 98.   
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Table 6 - Montney Field Case Well & Reservoir Properties (From Wang et al. 

(2018))  

 

 

 

Figure 98 - Montney Field Case Production Data (From Wang et al. (2018))  
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Figure 99 - Montney field case optimized drainage volume (left) and w(t) (right) 

curves (From Wang et al. (2018)) 

 

 

Figure 100 - Montney field case diagnostic plot (left) and specialized plot (right) 

(From Wang et al. (2018)) 

 

In Figure 100 we plot the diagnostic plot (RNP & RNP’ vs. material balance 

time, te) and a specialized plot of the Montney field case production data. Picking the 

end of linear flow is easiest on a cartesian plot, and for this we use the specialized plot. 
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However, picking the “break” from a half-slope is very difficult with field data (shown 

as points in Figure 100), so we also plot synthetic RNP and RNP’ curves calculated 

through ( )w   inversion (described in Wang et al. (2018)). The blue RNP’ curve’s break 

from a straight-line trend on both plots indicates the end of linear flow (telf) occurs at 

, 17e elft hr= , or 
, 289e elft hr= . Convert this to regular time as in the synthetic 

example with the plot in Figure 101, and we have 331et hr=  in real time. 

 

 

Figure 101 - Time conversion plot (after Malone et al. (2019)). Copyright 2019, 

SPE. Reproduced with permission of SPE. Further reproduction prohibited 

without permission. 

 

 

Wang et al. (2018) also calculated permeability using the end of linear flow expression 

provided in Song and Ehlig-Economides (2011). In Table 7 we compare this value to 
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what we compute using the limit of detectability and what we compute with every other 

equation listed in Section 3.2. Of all the reviewed expressions for the end of linear flow, 

the limit of detectability comes closest to matching the permeability estimate of the 

aforementioned ( )w   inversion-based methodology. 

 

 

Table 7 - Permeability Estimation Comparison (from Malone et al. (2019)). 

Copyright 2019, SPE. Reproduced with permission of SPE. Further reproduction 

prohibited without permission. 
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Conclusions 

 In this chapter we discussed existing ambiguity in the definition of the end of 

transient linear flow in the context of MTFW’s completed in ultra-low permeability 

unconventional reservoirs. We reviewed existing expressions that define the end of 

linear flow and explained where each method falls short. We reviewed the implications 

of the asymptotic approximation of the diffusivity equation and its representation of 

wellbore drainage volumes, and how it can relate to the definition of a pressure wave in 

the reservoir. 

 The limit of detectability, a concept that defines the front of a pressure wave as 

the point where it first becomes detectable, provides a robust expression that we may use 

to define the end of linear flow in MTFW’s without dependence on boundary conditions 

or flow geometry. We validated our expression against a synthetic model and showed 

how it can be used to simply estimate the permeability of the rock matrix between 

fractures. Using the limit of detectability improved upon other estimations in the 

Montney field case and came closest to our robust ( )w   based estimation. 

 One obvious issue remains – picking the end of linear flow on a diagnostic plot 

or a specialized plot for the purposes of permeability estimation can be very difficult 

with noisy field data. In our Montney field case, we used smoothed data generated with 

the inversion algorithm described in Wang et al. (2018). In the absence of smooth field 

data (which is highly likely), either the same methodology or a similar methodology is 

recommended to obtain a recognizable “pickup” from a straight-line trend on a 

specialized plot. 
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CHAPTER IV  

SUMMARY AND CONCLUSIONS 

In this document we began by presenting a framework for shale oil and gas 

reservoir evaluation, providing a review of recent literature in the fields of 

unconventional reservoir geology, petrophysics, and engineering. We focused on 

parameters that evaluators might find important during shale reservoir development and 

contextualized those parameters as they pertained to the Eagle Ford shale. 

From there we took one piece of that framework – fluid flow to a multiple 

transverse fracture well (MTFW) and described a unique way to represent the flow to 

MTFW’s that utilizes the principle of superposition in conjunction with the asymptotic 

approximation of the diffusivity equation to model the interactions between fractures 

during drainage. We showed through validation against a commercial simulator 

reference model that our method holds valid for both constant-rate applications and 

constant-BHP applications. Our model showed that the approximate pseudo steady state 

response seen in MTFW’s during fracture interference is the signature of superimposed 

pressure drawdowns on individual fractures induced by their neighbors. 

Finally, we investigated the end of transient linear flow in MTFW’s and 

reviewed the level of ambiguity that exists in current literature. We introduced the limit 

of detectability, a concept founded upon the drainage volume formulation behind the 

asymptotic approximation of the diffusivity equation and showed how it can be used to 

define the end of linear flow in MTFW’s. We validated our usage of the limit of 

detectability against both a commercial simulator reference model and a Montney shale 
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field case that was presented in previous literature by Wang et al. (2018), but for which 

we provide an alternate interpretation. 

Future Work 

We recommend the following future work to expand upon the work done in this study: 

1. Testing of a 3-term analytic MTFW solution – Use of a 3-term analytic 

MTFW solution for constant-BHP inner boundary conditions might allow the 

solution to achieve the non-monotonicity of the reference model. 

2. Inclusion of analytic models in inversion – Inclusion of our analytic models in 

a production diagnostic inversion algorithm could provide a strong future project. 

Inversion algorithms that rely on analytic models in lieu of 3-D reservoir models 

see a dramatic improvement in computation speed (Moinfar et al. 2016). 

3. Development of 3-dimensional analytic solutions - The solutions presented 

here extend only to 2-dimensional solutions. Many unconventional reservoirs 

have pay heights in excess of 100’s of feet and thus likely violate the “full 

completion” assumption and would benefit from 3-dimensional modeling. 

4. Development of gas and multiphase solutions – These solutions were 

developed with a single-phase, oil-only fluid assumption. Many unconventional 

reservoirs are gas reservoirs, and many unconventional reservoirs see multiphase 

flow. All unconventional reservoirs produce some water. Development of 

solutions that can handle these parameters would make excellent next steps. 
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