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ABSTRACT

Mixed least-squares finite element models with spectral/hp approximations were developed

for steady, incompressible, isothermal and non-isothermal flows of generalized-Newtonian flu-

ids obeying the Carreau–Yasuda viscosity model. The finite element model for isothermal flows

consists of velocity, pressure, and stress fields as independent variables, and the model for non-

isothermal flows consists of temperature and heat flux in addition to the three fields. (hence, called

a mixed model). Least-squares models offer an alternative variational setting to the conventional

weak-form Galerkin models for the Navier–Stokes equations, and no compatibility conditions on

the approximation spaces are necessary when the polynomial order (p) used is sufficiently high

(say, p > 3, as determined numerically). Also, the use of the high-order spectral/hp elements

in conjunction with a least-squares formulation alleviates various forms of locking which often

appear in low-order least-squares finite element models for incompressible viscous fluids, and ac-

curate results can be obtained with exponential convergence. To verify and validate the present

model, various benchmark problems of two- and three-dimensional flows are solved. In addition,

the effect of different parameters of the Carreau–Yasuda constitutive model on the flow character-

istics are studied parametrically.
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1. INTRODUCTION ∗

1.1 Background

It is well known that the finite element method (FEM) is a general and powerful numerical

procedure to analyze practical problems where complicate geometries, boundary conditions, non-

linearities, and/or coupled phenomena arise [3, 4]. Among the various types of finite element

models, the weak-form Galerkin approach has been proven to be successful in the field of solid

and structural mechanics, mainly due to its ideal setting for the finite element approximation which

often referred to as variational setting. When the weak forms of governing differential equations

are equivalent to the minimization of a quadratic functional, the finite element solutions are an

orthogonal projection of the exact solution onto the trial space of a finite element discretization.

The resulting numerical solution represents the best possible approximation of the exact solution

as measured with the energy norm of the functional. Restrictive compatibility conditions between

approximation spaces are not required and the linear algebraic system of finite element equations

is symmetric positive-definite. Such a setting is called a variational setting and is ideal for finite

element approximation [4, 5]. However, weak-form Galerkin finite element models often depart

from this ideal setting when applied to the problems whose weak forms cannot be obtained through

the minimization of a quadratic functional. In order to recover the favorable features of the varia-

tional setting for such problems, there has been a considerable amount of works for the modified

Galerkin procedures such as SUPG [6, 7], penalty [8, 9], Galerkin least-squares [10], and so on.

However, when these modified Galerkin approaches are applied to the governing equations hav-

ing non-self-adjoint operators such as the Navier–Stokes equations, they are generally not the best

approximation and do not lead to symmetric positive-definite coefficient matrices [5].

Another way to recover most of the features of variational setting is the least-squares based for-

∗Reprinted with permission from "A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids,"
by Namhee Kim and J. N. Reddy, 2016. International Journal for Numerical Methods in Fluids, Vol. 82, pp. 541–
566. Copyright 2016 by John Wiley & Sons, Ltd. and from "3-D least-squares finite element analysis of flows of
generalized Newtonian fluids," by Namhee Kim and J. N. Reddy, 2019. Journal of Non-Newtonian Fluid Mechanics,
Vol. 266, pp. 143–159. Copyright 2019 by Elsevier, B.V.
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mulation. In a least-square formulation, the sum of the squared norms of the residuals of governing

equations are minimized. The finite element model obtained from least-squares formulation for any

boundary-value problem is in a setting of unconstrained functional minimization, which is the vari-

ational setting [5]. Due to this, the finite element method based on least-squares formulation has

been actively studied since the early 1970’s and is known as an alternative way to the conventional

weak-form Glaerkin finite element models especially in the analysis of non-self-adjoint problems

as in fluid mechanics [11]. For the Navier–Stokes equations, least-squares finite element models

offer theoretical and computational advantages over the conventional weak-form Galerkin finite

element models. A least-squares finite element model (LSFEM) provides a variational framework

for the Navier–Stokes equations, which have no underlying extremum variational principles, lead-

ing to a minimization problem. Since the formulation does not lead to the saddle-point structure

of a problem, no compatibility conditions (known as inf-sup or Ladyzhenskaya–Babuska–Brezzi

(LBB) condition), which force the use of different order approximation functions for different

types of variables, are required. Therefore, the same but high-order interpolation functions can be

used so that different variables have the possibility to adjust their respective orders to satisfy the

interrelationship between them. On the contrary, the weak-form Galerkin finite element approach

for the solution of the Navier–Stokes equations has a saddle-point behavior and the velocity and

pressure approximations, especially lower order, are required, in general, to satisfy inf-sup con-

dition. In other words, if one applies equal but lower-order approximations to all variables, the

differential relationship between the variables is naturally violated, which may cause oscillations

in the numerical solutions. These oscillations can be alleviated if high-order interpolation func-

tions for all variables are used so that the differential relationship is satisfied. In addition, LSFEM

does not require numerical diffusion (e.g., through the use of upwind schemes) which weak-form

Galerkin formulations often need when applied to the Navier–Stokes equations. For linear partial

differential equations, LSFEM always leads to symmetric positive-definite (SPD) coefficient ma-

trices, regardless of symmetry in the governing equations. This makes it possible to use efficient

iterative or direct solvers. Due to this feature, many researchers linearize their governing equations
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prior to the minimization of the least-squares functional. [9, 12–14].

LSFEMs also have some deficiencies. Many engineering problems are governed by at least

second-order spatial differential equations. Least-squares finite element models for such problems

require higher regularity of the approximate solution than the weak-form Galerkin finite element

models do, which negatively affects the conditioning of the coefficient matrix and the number

of iterations for convergence of an iterative solution. This higher regularity can be avoided by

recasting the governing equations into an equivalent lower-order system by introducing auxiliary

variables. For the Navier–Stokes equations which are the second-order differential equations, we

can reduce the order of the differentiability of the approximation functions in the least-squares

finite element model by re-writing them as a set of equivalent first-order equations though the use

of auxiliary variables such as vorticity, stresses, dilatation, or velocity gradient. By doing this,

there is no need to use C1-continuous functions for the velocity field which could be perceived

as a practical disadvantage [4, 5, 15–34]. Although the size of the global system of equations is

increased, this formulation is advantageous in that auxiliary variables often represent important

physical quantities such as stress and vorticity [4, 13]. Other deficiency of least-squares models is

that it is weak in local mass conservation for both steady and unsteady flow problems and poor in

coupling between the velocity and pressure for unsteady flow problems [4, 5, 35, 36]. For transient

flow problems, the poor coupling of velocity and pressure weakens the local mass conservations

and causes instability in the finite element simulations [24]. Several works have been carried out

to enhance the local mass conservation and the coupling of velocity and pressure. Deang and

Gunzburger [37] weighted the residual of the continuity equation in the least-squares functional

and Chang and Nelson [35] combined the Lagrange multipliers with the least-squares method in

order to exactly enforce element-level mass conservation. Also, Pontaza [24] showed that higher

polynomial order of approximation functions promises better mass conservation. Pontaza [38]

demonstrated that a regularized form of the continuity equation in the least-squares formulation

brings strong velocity-pressure coupling and as a result enhances the local mass conservation. Heys

et al. [39] reformulated a least-squares functional based on a new first-order system of the Navier-
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Stokes equations, where the mass conservation is improved by increasing the pressure-velocity

coupling. The iterative penalty least-squares formulations proposed by Prabhakar and Reddy [30]

and Prabhakar, Pontaza, and Reddy [31] and the modified unconstrained least-squares formulation

equipped with normalized volumetric flow imbalance by Payette [5] also showed improvement in

both mass conservation and velocity-pressure coupling.

For the least-squares formulations which are not H1 (Ω)-norm equivalent in terms of the rel-

evant a priori estimate [13, 14, 40] (where H1 (Ω) is a Sobolev space of order 1 on a domain Ω),

least-squares finite element models with low-order approximations tend to lock when the coeffi-

cient matrices are evaluated using full integration. Jiang and coworkers [15, 16, 20] demonstrated

that such problems may be averted for Navier–Stokes equations using selective reduced integra-

tion methods. In a different manner, the appropriate minimization of the least-square functional

can be carried out by applying high-order approximations. Jiang and Sonnad [18], Bell and Surana

[41, 42], Surana and Sandhu [43], Proot and Gerritsma [21, 22, 28], Pontaza and Reddy [23, 24],

Pontaza, et al. [25], Prabhakar and Reddy [27, 30], Prabhakar, Pontaza, and Reddy [31], Payette

and Reddy [32], Vallala, Sadr, and Reddy [34], and Kim and Reddy [44] showed numerically that

hp-least-squares finite element models are able to give accurate results even when the least-squares

functional is not H1-norm equivalent in terms of the relevant a priori estimate [13, 14, 40].

The traditional high-order Lagrange interpolation functions (with equally-spaced nodes) tend

to suffer from more oscillations, known as Runge’s phenomenon, near the end points of the inter-

val as the polynomial order goes beyond 4. For example, Figure 1.1 shows the one-dimensional

C0 Lagrange basis with equally-spaced nodes and spectral nodal basis (which is the Lagrange

interpolation function with unequally-spaced nodes) having the common node at ξ = 0. As the

polynomial order p of the traditional Lagrange interpolation functions is increased, they show more

oscillations near the edges of the interval−1 ≤ ξ ≤ 1, which results in inaccurate solutions. On the

other hand, the finite element models with spectral nodal interpolation functions are known to be

accurate and exhibit exponential convergence [45–47]. The spectral interpolation functions are free

of the Runge’s phenomenon, as depicted in Figure 1.1. Thus, the finite element coefficient matrices
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formulated with spectral basis functions are better conditioned, which makes them yield accurate

results [5, 33]. Pontaza and Reddy [23, 24], Prabhakar and Reddy [27, 30], Payette and Reddy

[32], Vallala, Sadr, and Reddy [34] and Kim and Reddy [44] employed spectral/hp approximations

in the least-squares finite element models for the Navier–Stokes equations and demonstrated ex-

ponential decay (spectral convergence) of the L2 least-squares functionals as the polynomial order

of approximation functions increases, using the Kovasznay flow solution, a manufactured closed-

form solution to the unsteady Navier–Stokes equations, and using other benchmark problems.
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Figure 1.1: One-dimensional C0 Lagrange interpolation functions ψi of p = 4, 6, and 8, with equal
and unequal nodal spacing having the common node at ξi = 0. The index i of ψi is equal to 3, 4,
and 5 for p = 4, 6, 8, respectively.

1.2 Motivation and scope of the present study

As discussed previously, for the Navier–Stokes equations the least-squares finite element mod-

els with sufficiently high-order spectral/hp approximations have advantages over the conventional

weak-form Galerkin finite element models in that they do not require compatibility restrictions

between the approximation spaces, can avoid any type of locking, and yield accurate results with

spectral convergence. Encouraged by these attractive features of the high-order spectral/hp least-
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squares finite element models for the Navier–Stokes equations and by the previous works, the

object of the current study is to develop least-squares finite element models with spectral/hp ap-

proximations for steady isothermal and non-isothermal flows of non-Newtonian fluids. In order

to lower the order of differentiability of the approximation functions for the finite element mod-

els, the governing equations are re-written into the equivalent first-order system of equations by

introducing the viscous stress and heat flux as auxiliary variables. Fluids can be classified into

Newtonian and non-Newtonian fluids in terms of constitutive behavior. Newtonian fluids have lin-

ear relationship between shear stress and shear rate, that is, constant viscosity at given temperature

and pressure such as air and water. Non-Newtonian fluids have non-linear relationship between

shear stress and shear rate. Most fluids in our lives are non-Newtonian fluids and they can be cat-

egorized into generalized Newtonian fluids and viscoelastic fluids. Generalized Newtonian fluids,

also called inelastic fluids, exhibit a shear rate dependent viscosity, while the motion of viscoelastic

fluids depends on the deformation history of fluids in addition to the present stress state [9]. We

studied generalized Newtonian fluids in the present research. Generalized Newtonian fluids can be

subdivided into three types in terms of the relation between shear stress and shear rate [1]. The

slope of a shear stress curve with respect to shear rate is called viscosity. For shear-thinning fluids,

the viscosity decreases with increasing shear rate. Shear-thickening fluids have increasing viscos-

ity as shear rate increases. Viscoplastic fluids have yield stress. When applied stress is below the

yield stress no motion occurs, but when the stress exceeds the yield stress they flow either as New-

tonian or as shear-thinning fluids. Among the three types, shear-thinning fluid is considered for

this study. Common viscosity models for shear-thinning fluids include the Power-law model, Cross

model, Carreau–Yasuda model and so on. Carreau–Yasuda model has more general form with five

fitting parameters which are determined by experiment. The model is widely used to simulate the

flows of polymer melts [48–54] and blood [55–59]. Due to its applicability and generalized form,

Carreau–Yasuda model is used for our viscosity model. Although we chose the specific viscosity

model, our finite element code is generic in that it is able to simulate other kinds of generalized

Newtonian fluids having different viscosity models with slight modification of the code.
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The contribution of the current study is novel and significant in the following four respects:

1. Mixed least-squares finite element models for three-dimensional, steady, isothermal and non-

isothermal flows of Carreau–Yasuda fluids are developed (since the finite element models

consist of field variables of different kinds of units, they are often termed as “mixed" formu-

lations).

2. Spectral approximation functions are used to avoid locking.

3. Verification and validation results are included.

4. Two-dimensional and three-dimensional numerical studies are presented to bring out the

parametric effects of the various parameters in the Carreau–Yasuda constitutive model.

The dissertation is organized as follows. From Section 2 to 4, we describe the steps involved

in developing the least-squares finite element models with spectral/hp approximations for isother-

mal and non-isothermal flows of Carreau–Yasuda fluids (the governing equations in Section 2,

the least-squares formulations in Section 3, and the finite element models in Section 4). In Sec-

tion 5, we present the two-dimensional and three-dimensional numerical examples using several

benchmark problems. For two-dimensional problems, Kovasznay flow, Jeffery-Hamel flow in a

diverging channel, flow over a backward-facing step, flow in a lid-driven square cavity, flow past

an unconfined circular cylinder, and fully-developed flow between parallel plates are considered.

For three-dimensional problems, flow in a lid-driven cubic cavity, flow over a backward-facing

step, and buoyancy-driven flow in a cubic cavity are considered. The numerical results of the

present study are compared with the analytical, experimental, and numerical results of previous

works available in literature. In addition, the parametric studies of the Carreua–Yasuda model are

performed. In Section 6, we give concluding remarks.

7



2. GOVERNING EQUATIONS∗

2.1 Isothermal generalized Newtonian flows

We consider steady, incompressible, isothermal flow of generalized Newtonian fluids in this

section, and non-isothermal case in Section 2.2. A steady, incompressible, and isothermal flow of

generalized Newtonian fluids is governed by Eq. (2.2) which are obtained by non-dimensionalizing

the equations for conservation of mass and momentum using the following dimensionless variables

[13, 60–63]:

x =
x̂

L0

, v =
v̂

v0

, p =
p̂

ρ0v0
2
, (2.1)

where x, v and p are the dimensionless coordinates, velocity vector and pressure, respectively, and

the hat symbol denotes their physical counterparts. L0, v0, and ρ0 are the reference length, velocity,

and density, respectively.

∇ · v = 0 in Ω (2.2a)

v ·∇v + ∇p−∇ ·
[
µ(I2)

(
∇v + ∇vT)] = f in Ω (2.2b)

The Navier–Stokes equations (Eq. (2.2b)) can be recast into the equivalent first-order form, Eq.

(2.3b)–(2.3c), by introducing the viscous stress tensor τ as an auxiliary variable. This allows us to

∗Reprinted with permission from "A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids,"
by Namhee Kim and J. N. Reddy, 2016. International Journal for Numerical Methods in Fluids, Vol. 82, pp. 541–566.
Copyright 2016 by John Wiley & Sons, Ltd.
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use C0 basis functions in the numerical implementation (see Reddy [4, 64]):

∇ · v = 0 in Ω (2.3a)

v ·∇v + ∇p−∇ · τ = f in Ω (2.3b)

τ = µ(I2)
(
∇v + ∇vT) in Ω (2.3c)

v = vs on Γv (2.3d)

n̂ · σ = ts on Γt, (2.3e)

where ∇ is the vector differential operator, v is the velocity vector, p is the pressure, τ is the

viscous stress tensor, f is the body force vector, µ(I2) is the shear-rate dependent viscosity, σ is

the total stress tensor, and n̂ is the outward unit normal vector. vs and ts are the specified velocity

on the boundary Γv and the specified traction on the boundary Γt, respectively. Γ is the total

boundary enclosing the fluid domain Ω satisfying Γ = Γv ∪ Γt and ∅ = Γv ∩ Γt. For a generalized

Newtonian fluid, the constitutive equation takes the form of Eq. (2.4)

σ = −pI + τ = −pI + µ(I2)
(
∇v + ∇vT) . (2.4)

We choose the Carreau–Yasuda model as the viscosity model which describes the fluid rheology

as (in a dimensionless form)

µ(I2) =
1

Re

[
µ∞ + (µ0 − µ∞)

{
1 +

(
λCY I2

1
2

)a}n−1
a

]
. (2.5)

Here, I2 is the second invariant of the tensor A which is equal to twice the rate-of-strain tensor

D = 1
2

(∇v + ∇vT).

I2 =
1

2
tr
(
A2
)

=
1

2

∑
i

∑
j

AijAji, A = 2D = ∇v + ∇vT, (2.6)
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where tr denotes the trace. I2
1/2 appearing in Eq. (2.5) is called the shear rate

I2

1
2 =

√
1

2

∑
i

∑
j

AijAji. (2.7)

So, it is said that generalized Newtonian fluids have shear-rate dependent viscosity. The Carreau–

Yasuda model, Eq. (2.5), is an empirical viscosity model having five parameters, (namely, µ0,

µ∞, λCY , a, and n) which are fitted to experimental data. Equation (2.5) does not yield analytical

solutions [65]. Figure 2.1 shows how these parameters affect the viscosity curve with respect to

shear rate. µ0 and µ∞ are the dimensionless viscosities at zero and infinite shear rate, respectively

(µ0 = µ̂0/η0, µ∞ = µ̂∞/η0, where η0 is the reference dynamic viscosity). λCY is the dimension-

less time constant which determines the shear rate at which the transition from the zero-shear-rate

plateau to the power-law region arises. It also governs the location of transition from the power-

law region to the infinite-shear-rate plateau. a, the shape parameter, defines the shape of transition

region between the zero-shear-rate plateau and the power-law region. n is the power-law index

describing the slope of the power-law region of the viscosity curve with respect to shear rate [48–

51, 66]. The dimensionless time constant λCY which is called the Carreau number and Reynolds

number, Re, are defined as [61]:

λCY =
λv0

L0

, Re =
ρ0v0L0

η0

(2.8)

where λ is the time constant and the quantities with subscript zero are the reference quantities

whose meanings are mentioned before.

2.2 Non-isothermal generalized Newtonian flows

Two types of non-isothermal flows are considered. The first type (Type A) includes the viscous

dissipation term in the energy balance equation and the second one (Type B) includes the buoyancy

force term in the linear momentum balance equation. The two types are described separately,

because they are non-dimensionalized with different reference quantities.
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Figure 2.1: Typical viscosity curve for the Carreau–Yasuda model.

2.2.1 Type A: with viscous dissipation

For the first type, we consider a steady, incompressible, and non-isothermal flow of generalized

Newtonian fluids, where viscous dissipation arises. The problem is governed by Eq. (2.10) which

are obtained by non-dimensionalizing the equations for conservation of mass, momentum, and

energy using the following dimensionless variables [13, 60, 62, 67–69]:

x =
x̂

L0

, v =
v̂

v0

, p =
p̂

ρ0v0
2
, θ =

T̂ − T0

T1 − T0

, (2.9)

where x, v, p and θ are the dimensionless coordinates, velocity vector, pressure and temperature,

respectively, and the hat symbol denotes their physical counterparts. L0, v0, and ρ0 are the reference

length, velocity, and density, respectively. T0 and T1 are the reference wall temperature and bulk

fluid temperature, respectively.
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∇ · v = 0 in Ω (2.10a)

v ·∇v + ∇p−∇ ·
[
µ(I2)

(
∇v + ∇vT)] = 0 in Ω (2.10b)

v ·∇θ − 1

Pe
∆θ − 1

2

Br
Pr
µ(I2)

(
∇v + ∇vT) :

(
∇v + ∇vT) = 0 in Ω (2.10c)

By introducing the viscous stress tensor τ and the heat flux vector q as auxiliary variables, the

Navier–Stokes equations (Eq. (2.10b)) and the energy equation (Eq. (2.10c)) can be re-written

into the equivalent first-order forms, Eq. (2.11b)–(2.11c) and Eq. (2.11d)–(2.11e), respectively.

This makes it possible to use C0 basis functions in the numerical implementation [4]:

∇ · v = 0 in Ω (2.11a)

v ·∇v + ∇p−∇ · τ = 0 in Ω (2.11b)

τ = µ(I2)
(
∇v + ∇vT) in Ω (2.11c)

v ·∇θ + ∇ · q− 1

2

Br
Pr

τ :
(
∇v + ∇vT) = 0 in Ω (2.11d)

q = − 1

Pe
∇θ in Ω (2.11e)

v = vs on Γv (2.11f)

n̂ · σ = ts on Γt (2.11g)

θ = θs on Γθ (2.11h)

n̂ · q = qs on Γq (2.11i)

where ∇ is the vector differential operator, v is the velocity vector, p is the pressure, τ is the

viscous stress tensor, θ is the temperature, µ(I2) is the shear-rate dependent viscosity, q is the heat

flux vector, σ is the total stress tensor, and n̂ is the outward unit normal vector. The last term of
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Eq. (2.11d) is called viscous dissipation, Φ,

Φ = τ : D = τ :
1

2

(
∇v + ∇vT) . (2.12)

which is the amount of mechanical energy dissipated as heat due to the deformation caused by

viscosity [60]. Equations (2.11f)–(2.11i) are the boundary conditions, where vs, ts, θs and qs are

the specified velocity on the boundary Γv, the specified traction on the boundary Γt, the specified

temperature on the boundary Γθ and the specified heat flux on the boundary Γq, respectively. Γ is

the total boundary enclosing the fluid domain Ω satisfying Γ = Γv ∪ Γt, ∅ = Γv ∩ Γt, Γ = Γθ ∪ Γq

and ∅ = Γθ ∩ Γq.

The dimensionless numbers appeared in Eq. (2.5) and (2.11) are defined as:

Reynolds number: Re =
ρ0v0L0

η0

,
inertial force
viscous force

(2.13a)

Prandtle number: Pr =
ν0

α
,

momentum diffusivity
thermal diffusivity

(2.13b)

Brinkman number: Br =
η0v

2
0

k (T1 − T0)
,

heat produced by viscous dissipation
heat produced by molecular conduction

(2.13c)

Peclet number: Pe = Pr Re =
v0L0

α
,

advection of heat
diffusion of heat

, (2.13d)

where the meanings of ρ0, v0, L0, T0 and T1 are described under the Eq. (2.9). η0 and ν0 (= η0/ρ0)

are the reference dynamic viscosity and kinematic viscosity, respectively. k is the thermal conduc-

tivity and α (= k/ρ0cp,where cp is the specific heat capacity) is the thermal diffusivity. As in the

isothermal case, the constitutive equation for generalized Newtonian fluids is:

σ = −pI + τ = −pI + µ(I2)
(
∇v + ∇vT) . (2.14)

In this study, we assume that the viscosity does not depend on temperature, so the same Carreau–

Yasuda model with the isothermal case given in Eq. (2.5) is considered.
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2.2.2 Type B: with buoyancy force

The second type is for a steady, incompressible, and non-isothermal flow of generalized New-

tonian fluids, where buoyancy force is included. The problem is governed by Eq. (2.16) which are

obtained by non-dimensionalizing the equations for conservation of mass, momentum, and energy

using the following dimensionless variables [13, 70]:

x =
x̂

L0

, v =
v̂

v0

, p =
p̂

ρ0v0
2
, θ =

T̂ − T0

T1 − T0

, (2.15)

where x, v, p and θ are the dimensionless coordinates, velocity vector, pressure and temperature,

respectively, and the hat symbol denotes their physical counterparts. L0, v0 =
√
gβ(T1 − T0)L0,

and ρ0 are reference length, buoyant speed (as reference velocity), and reference density, respec-

tively. T0 and T1 are reference temperatures.

∇ · v = 0 in Ω (2.16a)

v ·∇v + ∇p−∇ ·
[
µ(I2)

(
∇v + ∇vT)]+

g

|g|
θ = 0 in Ω (2.16b)

v ·∇θ − 1

Pe
∆θ = 0 in Ω (2.16c)

The Boussinesq approximation is used to include buoyancy force which is caused by temperature

dependence of density and equal to ρ0gβ(T1 − T0) in dimensional form. In this approximation,

the density variation is neglected except for the term with gravitational acceleration, g [71]. By

introducing the viscous stress tensor τ and the heat flux vector q as auxiliary variables, the Navier–

Stokes equations (Eq. (2.16b)) and the energy equation (Eq. (2.16c)) can be recast into the equiv-

alent first-order forms, Eq. (2.17b)–(2.17c) and Eq. (2.17d)–(2.17e), respectively. This makes it
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possible to use C0 basis functions in the numerical implementation [4]:

∇ · v = 0 in Ω (2.17a)

v ·∇v + ∇p−∇ · τ +
g

|g|
θ = 0 in Ω (2.17b)

τ = µ(I2)
(
∇v + ∇vT) in Ω (2.17c)

v ·∇θ + ∇ · q = 0 in Ω (2.17d)

q = − 1

Pe
∇θ in Ω (2.17e)

v = vs on Γv (2.17f)

n̂ · σ = ts on Γt (2.17g)

θ = θs on Γθ (2.17h)

n̂ · q = qs on Γq (2.17i)

where ∇ is vector differential operator, v is velocity vector, p is pressure, τ is viscous stress tensor,

θ is temperature, g is gravitational acceleration vector, µ(I2) is shear-rate dependent viscosity,

q is heat flux vector, σ is total stress tensor, and n̂ is outward unit normal vector. Equations

(2.17f)–(2.17i) are the boundary conditions, where vs, ts, θs and qs are the specified velocity on the

boundary Γv, the specified traction on the boundary Γt, the specified temperature on the boundary

Γθ and the specified heat flux on the boundary Γq, respectively. Γ is the total boundary enclosing

the fluid domain Ω satisfying Γ = Γv ∪ Γt, ∅ = Γv ∩ Γt, Γ = Γθ ∪ Γq and ∅ = Γθ ∩ Γq.
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The dimensionless numbers used in Eq. (2.5) and (2.17) are defined as:

Reynolds number: Re = (Ra/Pr)1/2 (2.18a)

Peclet number: Pe = (Ra Pr)1/2 (2.18b)

Prandtle number: Pr =
ν0

α
,

momentum diffusivity
thermal diffusivity

(2.18c)

Grashof number: Gr =
βgL3

0(T1 − T0)

ν2
0

,
buoyancy force
viscous force

(2.18d)

Rayleigh number: Ra = Gr Pr =
βgL3

0(T1 − T0)

α ν0

, (2.18e)

where the meanings of ρ0, v0, L0, T0 and T1 are described under the Eq. (2.9). η0 and ν0 (= η0/ρ0)

are the reference dynamic viscosity and kinematic viscosity, respectively. k is the thermal con-

ductivity and α (= k/ρ0cp,where cp is the specific heat capacity) is the thermal diffusivity. β is

the volumetric thermal expansion coefficient and g is the gravitational acceleration. As in the

isothermal case, the constitutive equation for generalized Newtonian fluids is:

σ = −pI + τ = −pI + µ(I2)
(
∇v + ∇vT) . (2.19)

We assume that the viscosity does not depend on temperature, so the same Carreau–Yasuda model

with the isothermal case given in Eq. (2.5) is considered.
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3. LEAST-SQUARES FORMULATION ∗

The least-squares formulations for the governing equations of isothermal flows (Eq. (2.3)) and

of non-isothermal ones (Eq. (2.11) and (2.17)) are described in the separate sections. We use the

standard notation for the Sobolev (or Hilbert) space of order m ≥ 0, Hm (Ω), in the domain Ω.

‖ · ‖Ω,m denotes the corresponding norm and Hm (Ω) = [Hm (Ω)]n denotes the product spaces,

where n is the number of dependent variables [4, 32].

3.1 Isothermal generalized Newtonian flows

The standard L2-norm least-squares functional associated with the velocity–pressure–stress

(v− p−τ ) first-order system can be constructed by taking the sum of the squares of the L2-norms

of the residuals in the governing equations, Eq. (2.3a)–(2.3c):

J (p,v, τ ; f) =
1

2

(
‖R1‖2

Ω,0 + ‖R2‖2
Ω,0 + ‖R3‖2

Ω,0

)
(3.1a)

R1 = ∇ · v (3.1b)

R2 = v ·∇v + ∇p−∇ · τ − f (3.1c)

R3 = τ − µ(I2)
(
∇v + ∇vT) . (3.1d)

The residuals
(
R1,R2,R3

)
are obtained after choosing and substituting the suitable finite element

approximations for (p,v, τ ) (described in Section 4.1). The minimization problem, δJ = 0, is to

find u = (p,v, τ ) ∈ V such that for all δu = (δp, δv, δτ ) ∈ V the following equation holds:

B (u, δu) = F (δu) , (3.2)

∗Reprinted with permission from "A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids,"
by Namhee Kim and J. N. Reddy, 2016. International Journal for Numerical Methods in Fluids, Vol. 82, pp. 541–
566. Copyright 2016 by John Wiley & Sons, Ltd. and from "3-D least-squares finite element analysis of flows of
generalized Newtonian fluids," by Namhee Kim and J. N. Reddy, 2019. Journal of Non-Newtonian Fluid Mechanics,
Vol. 266, pp. 143–159. Copyright 2019 by Elsevier, B.V.
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where (δp, δv, δτ ) represent the corresponding weights for the set of variables (p,v, τ ) and V is an

appropriate function space. We employed the Newton’s method as a linearization scheme before

minimizing the least-squares functional, J , and the resulting bilinear form (B(·, ·)) and linear form

(F(·, ·)) are given as

B (u, δu) =

∫
Ω

[
(∇ · δv) (∇ · v) + (δv ·∇v0 + v0 ·∇δv + ∇δp−∇ · δτ ) ·

(v ·∇v0 + v0 ·∇v + ∇p−∇ · τ )

+
{
δτ − v0∇µ0 · δv

(
∇v0 + ∇vT

0

)
− µ0

(
∇δv + ∇δvT)} :{

τ − v0∇µ0 · v
(
∇v0 + ∇vT

0

)
− µ0

(
∇v + ∇vT)} ]dΩ (3.3)

F (δu) =

∫
Ω

[
(δv ·∇v0 + v0 ·∇δv + ∇δp−∇ · δτ ) · (v0 ·∇v0 + f)

−
{
δτ − v0∇µ0 · δv

(
∇v0 + ∇vT

0

)
− µ0

(
∇δv + ∇δvT)} :

v0∇µ0 · v0

(
∇v0 + ∇vT

0

) ]
dΩ. (3.4)

v0, p0, and µ0 are characteristic states where the solutions are linearized and they are known quan-

tities from the previous iteration in the numerical implementation. In Eq. (3.3)–(3.4), v0∇ is the

gradient operator acting with respect to v0.

3.2 Non-isothermal generalized Newtonian flows

3.2.1 Type A: with viscous dissipation

For non-isothermal flows with viscous dissipation, the standard L2-norm least-squares func-

tional associated with the velocity–pressure–stress–temperature–heat flux (v − p − τ − θ − q)

first-order system can be constructed by taking the sum of the squares of the L2-norms of the
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residuals in the governing equations, Eq. (2.11a)–(2.11e):

J (p,v, τ , θ,q) =
1

2

(
‖R1‖2

Ω,0 + ‖R2‖2
Ω,0 + ‖R3‖2

Ω,0 + ‖R4‖2
Ω,0 + ‖R5‖2

Ω,0

)
(3.5a)

R1 = ∇ · v (3.5b)

R2 = v ·∇v + ∇p−∇ · τ (3.5c)

R3 = τ − µ(I2)
(
∇v + ∇vT) (3.5d)

R4 = v ·∇θ + ∇ · q− 1

2

Br
Pr

τ :
(
∇v + ∇vT) (3.5e)

R5 = q +
1

Pe
∇θ. (3.5f)

The residuals
(
R1,R2,R3, R4,R5

)
are obtained after choosing and substituting the suitable finite

element approximations for (p,v, τ , θ,q) (described in Section 4.2). The minimization problem,

δJ = 0, is to find u = (p,v, τ , θ,q) ∈ V such that for all δu = (δp, δv, δτ , δθ, δq) ∈ V the

following equation holds:

B (u, δu) = F (δu) , (3.6)

where (δp, δv, δτ , δθ, δq) represent the corresponding weights for the set of variables (p,v, τ , θ,q)

and V is an appropriate function space. We employed the Newton’s method as a linearization

scheme before minimizing the least-squares functional, J , and the resulting bilinear form (B(·, ·))

and linear form (F(·, ·)) are given as
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B (u, δu)

=

∫
Ω

[
(∇ · δv) (∇ · v) + (δv ·∇v0 + v0 ·∇δv + ∇δp−∇ · δτ ) ·

(v ·∇v0 + v0 ·∇v + ∇p−∇ · τ )

+

{
δτ −

(
v0∇µ0 · δv +

∂µ0

∂θ0

δθ

)(
∇v0 + ∇vT

0

)
− µ0

(
∇δv + ∇δvT)} :{

τ −
(

v0∇µ0 · v +
∂µ0

∂θ0

θ

)(
∇v0 + ∇vT

0

)
− µ0

(
∇v + ∇vT)}

+

{
δv ·∇θ0 + v0 ·∇δθ + ∇ · δq− 1

2

Br
Pr
[
δτ :

(
∇v0 + ∇vT

0

)
+ τ 0 :

(
∇δv + ∇δvT)]}{v ·∇θ0 + v0 ·∇θ + ∇ · q

−1

2

Br
Pr
[
τ :
(
∇v0 + ∇vT

0

)
+ τ 0 :

(
∇v + ∇vT)]}

+

(
δq +

1

Pe
∇δθ

)
·
(
q +

1

Pe
∇θ

)]
dΩ (3.7)

F (δu)

=

∫
Ω

[
(δv ·∇v0 + v0 ·∇δv + ∇δp−∇ · δτ ) · (v0 ·∇v0)

−
{
δτ −

(
v0∇µ0 · δv +

∂µ0

∂θ0

δθ

)(
∇v0 + ∇vT

0

)
− µ0

(
∇δv + ∇δvT)} :(

v0∇µ0 · v0 +
∂µ0

∂θ0

θ0

)(
∇v0 + ∇vT

0

)
+

{
δv ·∇θ0 + v0 ·∇δθ + ∇ · δq− 1

2

Br
Pr
[
δτ :

(
∇v0 + ∇vT

0

)
+ τ 0 :

(
∇δv + ∇δvT)]}{v0 ·∇θ0 −

1

2

Br
Pr
δτ 0 :

(
∇v0 + ∇vT

0

)}]
dΩ (3.8)

where v0, p0, τ 0, θ0, q0 and µ0 are characteristic states where the solutions are linearized and

they are known quantities from the previous iteration in the numerical implementation. In Eq.

(3.7)–(3.8), v0∇ denotes the gradient operator acting with respect to v0.
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3.2.2 Type B: with buoyancy force

For non-isothermal flows with buoyancy force, the standard L2-norm least-squares functional

associated with the velocity–pressure–stress–temperature–heat flux (v− p− τ − θ−q) first-order

system can be constructed by taking the sum of the squares of the L2-norms of the residuals in the

governing equations, Eq. (2.17a)–(2.17e):

J (p,v, τ , θ,q) =
1

2

(
‖R1‖2

Ω,0 + ‖R2‖2
Ω,0 + ‖R3‖2

Ω,0 + ‖R4‖2
Ω,0 + ‖R5‖2

Ω,0

)
(3.9a)

R1 = ∇ · v (3.9b)

R2 = v ·∇v + ∇p−∇ · τ +
g

|g|
θ (3.9c)

R3 = τ − µ(I2)
(
∇v + ∇vT) (3.9d)

R4 = v ·∇θ + ∇ · q (3.9e)

R5 = q +
1

Pe
∇θ. (3.9f)

The residuals
(
R1,R2,R3, R4,R5

)
are obtained after choosing and substituting the suitable finite

element approximations for (p,v, τ , θ,q) (described in Section 4.2). The minimization problem,

δJ = 0, is to find u = (p,v, τ , θ,q) ∈ V such that for all δu = (δp, δv, δτ , δθ, δq) ∈ V the

following equation holds:

B (u, δu) = F (δu) , (3.10)

where (δp, δv, δτ , δθ, δq) represent the corresponding weights for the set of variables (p,v, τ , θ,q)

and V is an appropriate function space. We employed the Newton’s method as a linearization

scheme before minimizing the least-squares functional, J , and the resulting bilinear form (B(·, ·))

and linear form (F(·, ·)) are given as
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B (u, δu)

=

∫
Ω

[
(∇ · δv) (∇ · v) +

(
δv ·∇v0 + v0 ·∇δv + ∇δp−∇ · δτ +

g

|g|
δθ

)
·(

v ·∇v0 + v0 ·∇v + ∇p−∇ · τ +
g

|g|
θ

)
+

{
δτ −

(
v0∇µ0 · δv +

∂µ0

∂θ0

δθ

)(
∇v0 + ∇vT

0

)
− µ0

(
∇δv + ∇δvT)} :{

τ −
(

v0∇µ0 · v +
∂µ0

∂θ0

θ

)(
∇v0 + ∇vT

0

)
− µ0

(
∇v + ∇vT)}

+ {δv ·∇θ0 + v0 ·∇δθ + ∇ · δq} {v ·∇θ0 + v0 ·∇θ + ∇ · q}

+

(
δq +

1

Pe
∇δθ

)
·
(
q +

1

Pe
∇θ

)]
dΩ (3.11)

F (δu)

=

∫
Ω

[
(δv ·∇v0 + v0 ·∇δv + ∇δp−∇ · δτ ) · (v0 ·∇v0)

−
{
δτ −

(
v0∇µ0 · δv +

∂µ0

∂θ0

δθ

)(
∇v0 + ∇vT

0

)
− µ0

(
∇δv + ∇δvT)} :(

v0∇µ0 · v0 +
∂µ0

∂θ0

θ0

)(
∇v0 + ∇vT

0

)
+ {δv ·∇θ0 + v0 ·∇δθ + ∇ · δq} (v0 ·∇θ0)

]
dΩ (3.12)

where v0, p0, τ 0, θ0, q0 and µ0 are characteristic states where the solutions are linearized and

they are known quantities from the previous iteration in the numerical implementation. In Eq.

(3.11)–(3.12), v0∇ denotes the gradient operator acting with respect to v0.
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4. FINITE ELEMENT MODEL ∗

4.1 Isothermal generalized Newtonian flows

To develop the least-squares finite element model for isothermal generalized Newtonian flows

described in Section 2.1, we define the least-squares functional of Eq. (3.1) over a typical element

Ωe in place of the total domain Ω. Ω is supposed to be divided into a set of non-overlapping sub-

domains (that is, finite elements), Ωe. The isoparametric bijective mapping from the master ele-

ment Ω̂e to the physical element Ωe is used. Since the three-dimensional model includes all the vari-

ables of the two-dimensional model, we describe the three-dimensional model here. For a three-

dimensional, steady, isothermal flow, we have ten field variables (p, vx, vy, vz, τxx, τxy, τxz, τyy, τyz,

τzz) and each variable is approximated by the expansion of the form:

u (x, y, z) =
n∑
i=1

uiψi (x, y, z) (4.1)

where u represents any typical field variable from the list of ten variables and ui are the nodal values

of corresponding field variable; ψi denotes nodal interpolation functions. Since the minimum

polynomial degree requirement on the approximation functions for the variables in Eq. (3.3)–(3.4)

is linear, C0 nodal basis functions can be used. Also, we can use the same basis functions of

sufficiently higher order for all field variables of the formulation, as a high-order LSFEM is free

of compatibility restrictions (that is, inf-sup or LBB condition) placed between the approximation

spaces used. The C0 spectral nodal interpolation functions, which were originally developed by

∗Reprinted with permission from "A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids,"
by Namhee Kim and J. N. Reddy, 2016. International Journal for Numerical Methods in Fluids, Vol. 82, pp. 541–
566. Copyright 2016 by John Wiley & Sons, Ltd. and from "3-D least-squares finite element analysis of flows of
generalized Newtonian fluids," by Namhee Kim and J. N. Reddy, 2019. Journal of Non-Newtonian Fluid Mechanics,
Vol. 266, pp. 143–159. Copyright 2019 by Elsevier, B.V.

23



Patera [45], are used for ψi. One-dimensional C0 spectral nodal basis is given by [46, 47]:

ψ̂i(ξ) =


1, if ξ = ξi

(ξ−1)(ξ+1)L′p(ξ)

p(p+1)Lp(ξi)(ξ−ξi) , otherwise,
(4.2)

where −1 ≤ ξ ≤ 1 and Lp(ξ) is the Legendre polynomials of order, p:

Lp(ξ) =
(−1)p

2pp!

dp

dxp [(1− ξ)p(1 + ξ)p] . (4.3)

The one-dimensional spectral interpolations functions in Eq. (4.2) of pth degree (i.e., there are

p+1 nodes in the 1-D element) can regarded as the standard Lagrange interpolation functions with

unevenly-spaced nodes, ξi, given by the roots of the following equation:

(ξ − 1) (ξ + 1)L′p (ξ) = 0. (4.4)

These points are known as the Gauss–Lobatto–Legendre (GLL) points. By taking tensor product

of the one-dimensional spectral bases of Eq. (4.2), we obtain three-dimensional spectral bases as

Eq. (4.5) which is used for ψi in Eq. (4.1).

ψi(ξ, η, ζ) = ψ̂j(ξ)ψ̂k(η)ψ̂l(ζ), −1 ≤ (ξ, η, ζ) ≤ 1, (4.5)

where i = j + [k − 1 + (l − 1)(p + 1)] (p + 1) and j, k, l = 1, ...,p + 1. The finite element

equations are generated by substituting the finite element approximation (Eq. (4.1)) into the mini-

mization problem (Eq. (3.3)–(3.4)) defined over an element Ωe in place of the total domain Ω and
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can be expressed in the matrix form as:



[K11] [K12] . . . [K1,10]

[K21] [K22] . . . [K2,10]

...
... . . . ...

[K10,1] [K10,2] . . . [K10,10]





{p}

{vx}
...

{τzz}


=



{F 1}

{F 2}
...

{F 10}


(4.6)

Equation (4.6) is often termed as a mixed model because velocities are mixed with stresses in de-

veloping the finite element model [4]. The Gauss-Legendre quadrature rules are applied in the

numerical integrations of the element coefficient matrices and force vectors in Eq. (4.6), and we

used full integration to evaluate the integrals. At each Newton step, we build the element coeffi-

cient matrices and force vectors and perform element-level static node condensation to implicitly

eliminate interior degrees of freedom. Then the global system of equations which is constructed

from the assembly of the condensed finite element equations is solved utilizing the direct solver

library called UMFPACK that has a set of subroutines to solve sparse linear systems directly using

the unsymmetric-pattern multi-frontal method [5, 33, 72–75].

4.2 Non-isothermal generalized Newtonian flows

The steps for developing the least-squares finite element model for non-isothermal generalized

Newtonian flows are the same with those for isothermal flows which are described in Section 4.1.

We first define the least-squares functional, Eq. (3.5) or Eq. (3.9), over a typical element Ωe in

place of the total domain Ω. Ω is supposed to be divided into a set of non-overlapping sub-domains,

that is, finite elements Ωe. The isoparametric bijective mapping from the master element Ω̂e to

the physical element Ωe is used. For a three-dimensional, steady, non-isothermal flow, we have

fourteen field variables (p, vx, vy, vz, τxx, τxy, τxz, τyy, τyz, τzz, θ, qx, qy, qz) and each field variable

is approximated by the expansion of the form:

u (x, y, z) =
n∑
i=1

uiψi (x, y, z) (4.7)
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where u and ui denote each field variable and the nodal values of corresponding field variable,

respectively. Since the minimum regularity requirement on the approximation functions for the

variables in Eq. (3.7)–(3.8) or in Eq. (3.11)–(3.12) is C0-continuity, C0 nodal basis can be applied.

Also, we can use the same basis functions of sufficiently higher order for all field variables of the

formulation, as a high-order LSFEM are free of compatibility restrictions (that is, inf-sup or LBB

condition) placed between the approximation spaces used. ψi are the three-dimensionalC0 spectral

nodal interpolation functions defined in Eq. (4.5).

The finite element equations are generated by substituting the finite element approximation

(Eq. (4.7)) into the minimization problem (Eq. (3.7)–(3.8) or Eq. (3.11)–(3.12)) defined over an

element Ωe in place of the total domain Ω and can be expressed in the matrix form as:



[K11] [K12] . . . [K1,14]

[K21] [K22] . . . [K2,14]

...
... . . . ...

[K14,1] [K14,2] . . . [K14,14]





{p}

{vx}
...

{qz}


=



{F 1}

{F 2}
...

{F 14}


(4.8)

Equation (4.8) is often termed as a mixed model, since velocities are mixed with stresses and tem-

perature is mixed with heat-fluxes in developing the finite element model [4]. The Gauss-Legendre

quadrature rules are applied in the numerical integrations of the element coefficient matrices and

force vectors in Eq. (4.8), and we used full integration to evaluate the integrals. At each Newton

step, we build the element coefficient matrices and force vectors and perform element-level static

node condensation to implicitly eliminate interior degrees of freedom. Then the global system

of equations which is constructed from the assembly of the condensed finite element equations is

solved utilizing the direct solver library called UMFPACK that has a set of subroutines to solve

sparse linear systems directly using the unsymmetric-pattern multi-frontal method [5, 33, 72–75].
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5. NUMERICAL EXAMPLES ∗

Here, we present the numerical results for six separate two-dimensional steady flow problems,

(Kovasznay flow, Jeffery-Hamel flow in a diverging channel, flow over a backward-facing step,

flow in a lid-driven square cavity, flow past an unconfined circular cylinder, and fully-developed

flow between parallel plates) and four separate three-dimensional steady flow problems (method

of manufactured solutions, flow in a lid-driven cubic cavity, flow over a backward-facing step, and

buoyancy-driven flow in a cubic cavity) using the developed least-squares finite element model.

Using the analytical solution of Kovasznay flow problem (2-D) for isothermal Newtonian flu-

ids, the exponential convergence of the developed LSFEM was verified and the convergence was

compared with the other LSFEM which employs conventional Lagrange interpolation functions.

Jeffery-Hamel flow (2-D) in a diverging channel which also possesses analytical solutions for

Newtonian fluids is solved and the exponential convergence of the developed LSFEM was demon-

strated. Also, the method of manufactured solutions for a 3-D flow was used to demonstrated

exponential decay of the solution errors and least-squares functionals as the polynomial order in-

creases. The other seven benchmark problems (i.e., 2-D and 3-D flow over a backward-facing

step, 2-D flow in a lid-driven square cavity, 3-D flow in a lid-driven cubic cavity, 2-D flow past an

unconfined circular cylinder, 2-D fully-developed flow between parallel plates, and 3-D buoyancy-

driven flow in a cubic cavity) are used to verify and validate the present finite element models for

isothermal and non-isothermal flows by comparing with the existing numerical, analytical and ex-

perimental studies available in the literature. In addition, a parametric study of the Carreau–Yasuda

constitutive model for these problems is performed to examine the effect of change in parameters

on the flow behaviors.
∗Reprinted with permission from "A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids,"

by Namhee Kim and J. N. Reddy, 2016. International Journal for Numerical Methods in Fluids, Vol. 82, pp. 541–566.
Copyright 2016 by John Wiley & Sons, Ltd., from "Least-squares finite element analysis of flow of a generalized
Newtonian fluid past a circular cylinder," by Namhee Kim and J. N. Reddy, 2018. Mechanics of Advanced Materials
and Structures, Vol. 25, pp. 1186–1196. Copyright 2018 by Taylor & Francis, LLC and from "3-D least-squares
finite element analysis of flows of generalized Newtonian fluids," by Namhee Kim and J. N. Reddy, 2019. Journal of
Non-Newtonian Fluid Mechanics, Vol. 266, pp. 143–159. Copyright 2019 by Elsevier, B.V.
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5.1 Kovasznay flow

We consider a two-dimensional steady incompressible flow with a periodicity in one direction

on a square region of Ω̄ = [−0.5, 1.5]×[−0.5, 1.5] which may represent the wake behind a periodic

array of cylinders (see Figure 5.1). The analytical solution of Kovasznay [76] is given by

vx = 1− eλxcos(2πy), vy =
λ

2π
eλxsin(2πy), p = pref −

1

2
e2λx. (5.1)

The parameter λ is defined as λ = Re
2
−
(

Re2
4

+ 4π2
)1/2

and pref is a reference pressure which is

set to zero in this study. The computational domain is discretized into a uniform 4 × 4 mesh of

rectangular elements as in Figure 5.1. The velocity boundary conditions are specified along the

whole boundary using the exact solutions for velocity components (vx, vy) given by Eq. (5.1). The

pressure is prescribed at the single point x = (0.5,−0.5). The convergence was declared when

the relative Euclidean norm of the difference between two consecutive iteration solutions is less

than 10−4. The numerical solution of horizontal velocity (vx) contour for Re = 40 is shown in

Figure 5.2, where the polynomial order of 11 is used. In Figure 5.3, we present how the square

root of the L2 least-squares functional (Eq. (3.1)) and L2 norm of the difference between the exact

solution and numerical solution for each field variable (velocity, pressure, and stress) decay as

the polynomial order, p, is increased (not to be confused with pressure p, different font style is

used for the polynomial order). Each variable with superscript hp in Figure 5.3 denotes numerical

solutions. We can observe that the present least-squares finite element model of stress-based first-

order system can achieve spectral convergence even though the least-squares functional is not

H1-norm equivalent according to the relevant a priori estimate. Also, to confirm the conservations

of mass and momentum, we plot the least-squares functionals for the continuity equation (Jmass),

for the momentum equation (Jmom), for the stress equation (Jstress), and for all equations (J of
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Eq. (3.1)) with increasing polynomial order in Figure 5.4, where

Jmass =
1

2
‖∇ · v‖2

Ω,0 (5.2a)

Jmom =
1

2
‖v ·∇v + ∇p−∇ · τ‖2

Ω,0 (5.2b)

Jstress =
1

2
‖τ − µ

(
∇v + ∇vT) ‖2

Ω,0 . (5.2c)

All the least-squares functionals are decayed exponentially under p-refinement, which shows that

higher p-level can improve mass and momentum conservation.

x

y

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

Figure 5.1: Mesh for the problem and numerical result of the streamlines for Re=40.
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Figure 5.2: Numerical result of horizontal velocity (vx) contour for Re=40.
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Figure 5.3: Convergence of velocity, pressure, and stress field to the exact solution of Kovasznay
flow for Re=40.
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Figure 5.4: Decay of the square root of least-squares functionals for continuity (Jmass), momentum
(Jmom), stress (Jstress), and all equations (J).

Using the Kovasznay solution with the same mesh of Figure 5.1, we compared the present

stress-based LSFEM having spectral basis with that having traditional Lagrange basis (of equally-

spaced nodes). Figure 5.5 presents the L2 norm of the difference between the analytical solution

and numerical solution for all field variables, ‖∆−∆hp‖, as a function of polynomial order, p,

where
‖∆−∆hp‖ =

(
|vx − vhpx |2 + |vy − vhpy |2 + |p− php|2+

|τxx − τhpxx |2 + |τxy − τhpxy |2 + |τyy − τhpyy |2
)1/2

.

(5.3)

The finite element model with spectral basis shows exponential decay under p-refinement. How-

ever, for the finite element model with Lagrange basis, the error grows when p is larger than 8,

which is related to the increasing interpolation error of higher p-level. Thus, we can see that the

LSFEM with spectral basis can yield more accurate results compared to that with Lagrange basis

for higher polynomial orders.
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Figure 5.5: Convergence of the field variables to the exact solution of Kovasznay flow for Re=40.

5.2 Jeffery-Hamel flow in a diverging channel

We studied another example having an analytical solution. The flow of a viscous incompress-

ible fluid between nonparallel plane walls possesses exact solution which Jeffery [77] and Hamel

[78] found independently, and it is called Jeffery-Hamel flow. For the flow between asymmetric

curved walls, exact solutions was found by Schobeiri [79, 80]. Jeffery-Hamel flow has two types

of flow; the flow in a diverging channel and the one in a converging channel. The diverging flow

is assumed to have a line source at the intersection of walls and the converging flow is assumed to

have a line sink at the intersection of walls [81]. The flow is purely radial and the velocity profile

is self-similar at all radii when normalized with respect to the centerline velocity at a given radius

[82, 83]. We considered a flow in a diverging channel as shown in Figure 5.6. The divergence

α = 5◦ is the angle between the centerline and wall. Reynolds number of 684 is used for which the

velocity profile is symmetric about the centerline and thus only half of the domain is considered as

shown in Figure 5.7.
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Figure 5.6: Schematic of Jeffery-Hamel flow in a diverging channel.
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Figure 5.7: Boundary conditions and mesh for the problem.

For the boundary conditions in Figure 5.7, the analytical solution given by Eq. (5.4) was imposed

across both inlet and outlet of the channel [81, 84].

u(r, θ) =
F (θ)

Fo

1

αr
,

F (θ)

Fo
= 1− 6m2k2sn2(mθ, k)

6m2k2sn2(mα, k)
, (5.4)

where m =
(

1+Re/2
1+k2

)1/2

, Re = u0r
ν

with u0 being the centerline velocity and ν kinematic

viscosity. sn denotes a Jacobian elliptic function and k is an elliptic modulus which is a solution
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of transcendental equation given by

sn2(mα, k) =
1 + k2

3k2 (1 + 2/Re)
. (5.5)

The detailed procedure of obtaining the analytical solution of the problem is well described in

[81]. No-slip condition (vx = vy = 0) was applied to the wall. On the centerline, vertical velocity

(vy) and viscous shear stress (τxy) are set to zero. Pressure is specified (p = 0) at one point

which is located at the intersection of the wall and outlet. The computational domain is discretized

into non-uniform 126 elements as in Figure 5.7. The convergence was declared when the relative

Euclidean norm of the difference between two consecutive iteration solutions is less than 10−3.

The numerical result for velocity of Re = 684 is presented in Figure 5.8, where the polynomial

order of 7 is used. The numerical result shows very good agreement with the exact solution. To

examine the conservations of mass and momentum, we plot the least-squares functionals for the

continuity equation (Jmass), for the momentum equation (Jmom), for the stress equation (Jstress),

and for all equations (J of Eq. (3.1)) with increasing polynomial order in Figure 5.9. All the least-

squares functionals are decayed exponentially under p-refinement, which tells that higher p-level

can improve mass and momentum conservation.
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Figure 5.8: Velocity profile at r = 1 for Re=684.
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Figure 5.9: Decay of the square root of least-squares functionals for continuity (Jmass), momentum
(Jmom), stress (Jstress), and all equations (J).
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5.3 Method of manufactured solutions

The method of manufactured solutions (MMS) was used to verify exponential convergence of

the present LSFEM for Newtonian fluid flows. In MMS, one manufactures a solution, which is

smooth, and applies it to a partial differential equation or a set of partial differential equations

to find the source terms [85]. We consider the following manufactured solution of 3-D steady

incompressible flow.

vx(x, y, z) = u0

[
sin
(
x2 + 2y2 + 3z2

)
+ ε
]

vy(x, y, z) = v0

[
cos
(
x2 + 2y2 + 3z2

)
+ ε
]

vz(x, y, z) = w0

[
cos
(
3x2 + y2 + 2z2

)
+ ε
]

p(x, y, z) = p0

[
sin
(
3x2 + y2 + 2z2

)
+ 2.0

]
,

(5.6)

where the constants used are u0 = 1.0, v0 = 1.0, w0 = 1.0, p0 = 1.0, and ε = 0.001. The

solution given in Eq. (5.6) is a similar form with 2-D manufactured solutions of Salari and Patrick

[85]. Since the manufactured solution does not satisfy the conservation of mass and momentum,

substituting Eq. (5.6) into the governing equations of Eq. (2.3) (with f = 0) leads to residual

terms, which are treated as source terms. The source terms for the continuity equation (Smass) and

for the momentum equation (Smom) are generated using Maple, which is a symbolic manipulation

tool. Then, we implement these source terms within the finite element code and seek the finite

element solutions of Eq. (2.3) added with the source terms. Then the difference between the

numerical solution and the manufactured solution is evaluated. The computational domain of Ω̄ =

[−0.1, 0.7]× [0.2, 0.8]× [0.0, 0.4] is used to avoid symmetry in the solution. Ω̄ is discretized into a

uniform 4×3×2 mesh of rectangular elements as in Figure 5.10. The Dirichlet boundary condition

is imposed along the whole boundary and the values are computed from the manufactured solution,

Eq. (5.6). The convergence was declared when the relative Euclidean norm of the difference

between two consecutive iteration solutions, γ, is less than 10−4.

γ =
‖∆(k) −∆(k−1)‖
‖∆(k)‖

, (5.7)
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where ‖ · ‖ denotes the Euclidean norm, ∆(k) is the current solution, and ∆(k−1) is the solution

known from the previous iteration.

Figure 5.10: Mesh for the problem.

In Figure 5.11, we present the L2 norm of the difference between the manufactured solution

and the numerical solution for each and all field variables, ‖∆−∆hp‖, with respect to polynomial

order, p (not to be confused with pressure p, different font style is used for the polynomial order),

where
‖∆−∆hp‖ =

(
|vx − vhpx |2 + |vy − vhpy |2 + |vz − vhpz |2 + |p− php|2+

|τxx − τhpxx |2 + |τxy − τhpxy |2 + |τxz − τhpxz |2

|τyy − τhpyy |2 + |τyz − τhpyz |2 + |τzz − τhpzz |2
)1/2

.

(5.8)

Each variable with superscript hp in (5.8) denotes numerical solutions. Figure 5.11 shows that

the present 3-D LSFEM of stress-based first-order system can achieve exponential convergence.

Figure 5.12 presents the least-squares functionals for the continuity equation (Jmass), for the mo-

mentum equation (Jmom), for the stress equation (Jstress), and for all equations J with increasing
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polynomial order, where

J = Jmass + Jmom + Jstress (5.9a)

Jmass =
1

2
‖∇ · v − Smass‖2

Ω,0 (5.9b)

Jmom =
1

2
‖v ·∇v + ∇p−∇ · τ − Smom‖2

Ω,0 (5.9c)

Jstress =
1

2
‖τ − µ

(
∇v + ∇vT) ‖2

Ω,0 . (5.9d)

Smass and Smom are the source terms generated by substituting the manufactured solution into

the mass and momentum equations, respectively. We can see that the least-squares functionals

decay exponentially under p-refinement, which shows that higher p-level can improve mass and

momentum conservation. Figure 5.12 also shows that the values of
√
J and L2 error of Eq. (5.8)

are similar and they decay at the same rate. A least-squares functional can be used as a measure of

error to the true solution. In terms of the a priori estimate relevant to least-squares models, which

are well described in Bochev and Gunzburger [40], Jiang [13], and Bochev and Gunzburger [14],

the least-squares functional given in Eq. (3.1) is not H1-norm equivalent regardless of the choice

of boundary conditions. However, the exponential convergence of the present model (Figure 5.12)

demonstrates that the optimality of a model cannot be de termined a priori using the standard

elliptic theory. Pontaza and Reddy [23] reported the similar observations using the LSFEM based

on velocity-pressure-vorticity formulation.
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Figure 5.11: Convergence of velocity, pressure, and stress fields to the manufactured solution.
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Figure 5.12: Decay of the square root of least-squares functionals for continuity (Jmass), momen-
tum (Jmom), stress (Jstress), all equations (J), and L2 norm of Eq. (5.8).
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5.4 Lid-driven cavity flow

5.4.1 Problem description

The lid-driven cavity flow problem is one of the most studied benchmark problems for fluid

mechanics because of its simple geometry but with complex flow phenomena of recirculation [86–

88]. We present here two- and three-dimensional flows in a lid-driven cavity.

5.4.1.1 Two-dimensional simulation

The geometry of the computational domain and the boundary conditions for 2-D lid-driven

cavity flow are shown in Figure 5.13. The square cavity is bounded by three fixed walls, where the

velocity components in x- and y-directions are taken to be zero, and the top boundary (i.e., lid) is

assumed to move with the horizontal velocity vx = u(x) (vy = 0) described by

u (x) =


tanh (50x) , if 0 ≤ x ≤ 0.5

−tanh (50x− 50) , if 0.5 ≤ x ≤ 1.0 .

(5.10)

This hyperbolic tangent approximation makes the velocity profile smooth from zero to unity at

the top corners of the cavity where the lid and walls meet, as shown in Figure 5.15. By applying

this boundary condition to the lid, we can avoid singularities in the solution to which high-order

models are sensitive [5, 33]. In this problem, the characteristic quantities for the Reynolds number

and Carreau number of Eq. (2.8) are v0 = 1.0 and L0 = L = 1.0, where v0 is the lid velocity of Eq.

(5.11) when it reaches unity and a is the horizontal dimension of the cavity. The computational

domain is discretized into a non-uniform 10×10 mesh of rectangular elements, as shown in Figure

5.14. The mesh is graded such that the boundary layer thickness is resolved. Nonlinear conver-

gence is declared when the Euclidean norm of the difference between two consecutive iteration

solutions is less than 10−3.
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Figure 5.13: Schematic for the problem of lid-driven square cavity flow (L = 1.0).
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Figure 5.14: Mesh for the problem of lid-driven square cavity flow (L = 1.0).
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Figure 5.15: Horizontal velocity profile at y = 1.0 approximated by hyperbolic tangent.

5.4.1.2 Three-dimensional simulation

The schematic for the problem of 3-D lid-driven cavity flow is shown in Figure 5.16. Fluid is

in a cubic cavity, [−0.5, 0.5] × [−0.5, 0.5] × [−0.5, 0.5], and the flow is driven by a moving lid at

the top. Since the flow is symmetric about the mid-xy-plane (whose edges are red in Figure 5.16)),

only half of the domain is considered as shown in Figure 5.17. At the symmetry plane (z = 0.0),

vz and shear stresses (τxz and τyz) are zero. The top boundary (i.e., lid) is assumed to move with

the horizontal velocity vx = u(x, z) (with vy = vz = 0) described by

u (x, z) = U0

{
1−

(x
h

)18
}2{

1−
(z
h

)18
}2

, (5.11)

where the moving lid is at y = h = 0.5 and U0 = 1.0 is the maximum lid velocity [89]. This

polynomial approximation makes the velocity profile smooth from zero to unity at the top corners

of the cavity where the lid and walls meet. By applying this boundary condition to the lid, we

can avoid singularities in the solution to which high-order models are sensitive [5, 33]. Other

remaining walls have no-slip condition and pressure is specified at one point. In this problem, the
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characteristic quantities for the Reynolds number and Carreau number of Eq. (2.8) are v0 = U0 =

1.0 and L0 = 2h = 1.0, where v0 is the maximum lid velocity and L0 is the horizontal dimension

of the cavity. The computational domain is discretized into a non-uniform 10 × 10 × 5 mesh of

rectangular parallelepiped elements (see Figure 5.17). The mesh is graded such that the flow near

the boundaries is resolved. Nonlinear convergence is declared when the Euclidean norm of the

difference between two consecutive iteration solutions is less than 10−3.

1 Introduction 2  Governing equation 3 Least-squares formulation 4  Finite element model 5  Numerical examples 6  Future works

1

Problem description

Figure 5.16: Schematic for the problem of lid-driven cubic cavity flow ([−0.5, 0.5]× [−0.5, 0.5]×
[−0.5, 0.5]).
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Fig. 13: Boundary conditions and mesh 10 10 5 for the problem.
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Figure 5.17: Boundary conditions for the problem of lid-driven cubic cavity flow ([−0.5, 0.5] ×
[−0.5, 0.5]× [−0.5, 0.0]).

5.4.2 Verification and validation tests

5.4.2.1 Two-dimensional simulation

To verify the present solution for 2-D flow, we compared our results with the previous numer-

ical study of Ghia, Ghia, and Shin [90] for Newtonian fluids first and then compare with Surana

and coworkers [61] for non-Newtonian (generalized Newtonian) fluids. By comparing with the

work of Ghia, Ghia, and Shin [90] who used a finite difference approximation, we demonstrate the

dependency of numerical solutions on polynomial order p. Since it is for Newtonian fluids, we

set n = 1 in Eq. (2.5), which makes the viscosity constant (µ = µ0). Figure 5.18–5.23 show the

the horizontal and vertical velocity profiles along the line at x = 0.5 and y = 0.5 of the cavity,

respectively, for several Reynolds numbers (Re = 100, 400, and 1000). For Re = 100 and 400,

all velocity profiles are independent of p-levels considered, and are well agreement with the re-

sults of Ghia, Ghia, and Shin [90]. For Re = 1000, the velocity curves approach p-independence

when p is larger than 5; the velocity curves of p = 5 are slightly different from others around the
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lowest values of vx and around the highest and lowest values of vy. The converged curves of p =

6, 7, and 8 show good agreement with [90]. Based on these tests, polynomial order of 7 is used

for the comparison with the work of Surana and coworkers [61] and for the parameter study of

Carreau–Yasuda fluids in the following section. In Figure 5.24–5.25, we plotted the horizontal and

vertical velocity curves of present study with those of Surana and coworkers [61] who developed

a k-version LSFEM for generalized Newtonian fluids. The parameters applied in Eq. (2.5) are

n = 0.756, a = 2.0, λCY = 1.85, µ0 = 0.45 and µ∞ = 0 which are used in [61]. The plots show

that the present results are virtually the same as those in [61].
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Figure 5.18: Horizontal velocity vx along the line x = 0.5 of the cavity at Re = 100 for Newtonian
fluid (n = 1).
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Figure 5.19: Vertical velocity vy along the line y = 0.5 of the cavity at Re = 100 for Newtonian
fluid (n = 1).
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Figure 5.20: Horizontal velocity vx along the line x = 0.5 of the cavity at Re = 400 for Newtonian
fluid (n = 1).
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Figure 5.21: Vertical velocity vy along the line y = 0.5 of the cavity at Re = 400 for Newtonian
fluid (n = 1).
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Figure 5.22: Horizontal velocity vx along the line x = 0.5 of the cavity at Re = 1000 for Newtonian
fluid (n = 1).
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Figure 5.23: Vertical velocity vy along the line y = 0.5 of the cavity at Re = 1000 for Newtonian
fluid (n = 1).
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Figure 5.24: Horizontal velocity vx along the line x = 0.5 of the cavity at Re = 100 for non-
Newtonian fluid (n = 0.756, a = 2.0, λCY = 1.85, µ0 = 0.45, µ∞ = 0).
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Figure 5.25: Vertical velocity vy along the line y = 0.5 of the cavity at Re = 100 for non-Newtonian
fluid (n = 0.756, a = 2.0, λCY = 1.85, µ0 = 0.45, µ∞ = 0).

5.4.2.2 Three-dimensional simulation

We compared our results with the previous numerical study of Jiang, Lin, and Povinelli [17]

for Newtonian fluids. By comparing with the work of Jiang, Lin, and Povinelli [17] who developed

a LSFEM based on velocity-pressure-vorticity formulation with 50 × 52 × 50 trilinear elements,

we demonstrate the dependency of numerical solutions on polynomial order p. Since it is for

Newtonian fluids, we set n = 1 in Eq. (2.5), which makes the viscosity constant (µ = µ0). Figures

5.26–5.27 show that the horizontal velocity profiles along the line at x = 0.0 on the symmetric

plane (z = 0.0) of the cavity, for two different Reynolds numbers (Re = 100, 400). For Re = 100,

all velocity profiles are independent of p-levels considered, and are well agreement with the results

of Jiang, Lin, and Povinelli [17]. For Re = 400, the velocity curves approach p-independence when

p is larger than 3; the velocity curves of p = 3 are slightly different from others around the lowest

values of vx. The converged curves of p = 4 and 5 show good agreement with [17]. Figures 5.28–

5.30 show streamlines on different planes for Re = 100 and 400. p = 5 was used for these results.
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In each figure, the red arrow shows the moving direction of the lid. On the planes z = 0 (Figure

5.28) and x = 0 (Figure 5.29), the main vortices of Re = 400 are located in the lower part than

those of Re = 100, and Re = 400 case has the larger secondary vortices at corners (right bottom

corner of plane z = 0 and right top corer of plane x = 0). On the plane y = 0 (Figure 5.30), we

cannot see any vortex for Re = 100 while there is a vortex near the right upper corner of the plane

for Re = 400.
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Figure 5.26: Horizontal velocity vx along the line x = 0 on the symmetric plane (z = 0) of the
cavity at Re = 100 for Newtonian fluid (n = 1).
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Figure 5.27: Horizontal velocity vx along the line x = 0 on the symmetric plane of the cavity
(z = 0) at Re = 400 for Newtonian fluid (n = 1).
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Figure 5.28: Streamlines on plane z = 0 at Re = 100 and Re = 400 for Newtonian fluid (with p =
5).
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Fig. 17: Streamlines on plane x = 0 for Newtonian fluid.
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Figure 5.29: Streamlines on plane x = 0 at Re = 100 and Re = 400 for Newtonian fluid (with p =
5).

Fig. 18: Streamlines on plane y = 0 for Newtonian fluid.
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Figure 5.30: Streamlines on plane y = 0 at Re = 100 and Re = 400 for Newtonian fluid (with p =
5).
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5.4.3 Parametric study of Carreau–Yasuda fluids

In this section, the effects of the three parameters (a, n, λCY) in the Carreau-Yasuda model,

Eq. (2.5), on the flow behavior in a lid-driven square cavity are presented. Since the flow behavior

on the symmetry plane of 3-D cavity is similar with that of 2-D cavity, we performed 2-D analysis

for parametric study. We focus on the change of horizontal and vertical velocity profiles at the

vertical and horizontal mid-lines of the cavity, respectively, by variation of these parameters. The

limiting viscosities in Eq. (2.5) are set as µ0 = 100µ∞. Figures 5.31–5.32, 5.35–5.36, and 5.39–

5.40 show that how the cavity flows are affected by the change of a, n, and λCY, respectively. In

Figs. 5.33–5.34, 5.37–5.38, and 5.41–5.42, the viscosity curves are plotted as a function of shear

rate for various a, n, and λCY, respectively, and the viscosities at lines x = 0.5 and y = 0.5 are

highlighted by thickening the curves. In Figs. 5.31–5.32, the rate of change in the shapes of the

horizontal and vertical velocity profiles, vx and vy, grows as a decreases. The reason for this can be

explained using Figs. 5.33–5.34, where the rate of change in the shape of viscosity curves at each

mid-line (x = 0.5, y = 0.5) becomes greater with decrease in a, and it causes the flow behavior to

be varied accordingly as shown in Figs. 5.31–5.32. Figures 5.35–5.36 present that as n decreases,

vx and vy deviate more from the Newtonian fluid (n = 1) since the slope of power-law region (see

Figure 2.1) in viscosity curves for smaller n is more different from that for n = 1 (see Figs. 5.37

and 5.38). For the Carreau number (λCY), increase in λCY shifts the transition region (transition

from the zero-shear-rate plateau to power-law region; see Figure 2.1) of a viscosity curve to lower

shear rate, I2
1/2. This results in the variation of the horizontal and vertical velocities (see Figure

5.39 and 5.40).

Next, let us consider the near-lid-region (y ∼ 1) at line x = 0.5, where the applied horizontal

velocity is constant as 1.0 and shear rate is relatively very high. Instead of the lid moving in positive

x-direction, we can think conversely that the fluid moves in negative x-direction with the constant

velocity beneath the fixed lid where a boundary layer forms. A boundary layer thickness is affected

by fluid viscosity; it is reduced as the viscosity decreases. Then, the viscosity at the highest shear

rate of each thickened curve (which denotes the viscosity near the lid) in Figs. 5.33, 5.37, and 5.41
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can explain the reason of the change in boundary layer thickness due to variation of the parameters

a, n, and λCY. In Figure 5.33, the viscosity of a = 0.2 at the highest shear rate is smaller than the

others which are relatively close to each other. This leads to the smaller boundary layer thickness

near y = 1 for a = 0.2 than those for 0.5 ≤ a ≤ 10.0 whose boundary layer thicknesses near

y = 1 are almost the same with each other as in Figure 5.31. For the parameter n, the viscosity

at the highest shear rate in Figure 5.37 becomes less with decrease in n and, consequently, the

boundary layer thickness near y = 1 reduces as n decreases (see Figure 5.35). For the Carreau

number (λCY), the viscosity at the highest shear rate in Figure 5.41 is smaller for larger λCY, which

results in the decrease of the boundary layer thickness near y = 1 with increasing λCY (see Figure

5.39).
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Figure 5.31: Effect of the parameter a on the horizontal velocity vx at line x = 0.5 of the cavity
(n = 0.5, Re = 100, λCY = 1.0).
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Figure 5.32: Effect of the parameter a on the vertical velocity vy at line y = 0.5 of the cavity
(n = 0.5, Re = 100, λCY = 1.0).
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Figure 5.33: Effect of the parameter a on the viscosity at line x = 0.5 (n = 0.5, Re = 100,
λCY = 1.0).
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Figure 5.34: Effect of the parameter a on the viscosity at line y = 0.5 (n = 0.5, Re = 100,
λCY = 1.0).
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Figure 5.35: Effect of the parameter n on the horizontal velocity vx at line x = 0.5 of the cavity
(a = 2.0, Re = 100, λCY = 1.0).
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Figure 5.36: Effect of the parameter n on the vertical velocity vy at line y = 0.5 of the cavity
(a = 2.0, Re = 100, λCY = 1.0).
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Figure 5.37: Effect of the parameter n on the viscosity at line x = 0.5 (a = 2.0, Re = 100,
λCY = 1.0).
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Figure 5.38: Effect of the parameter n on the viscosity at line y = 0.5 (a = 2.0, Re = 100,
λCY = 1.0).
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Figure 5.39: Effect of the parameter λCY on the horizontal velocity vx at line x = 0.5 of the cavity
(a = 2.0, n = 0.5, Re = 100).
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Figure 5.40: Effect of the parameter λCY on the vertical velocity vy at line y = 0.5 of the cavity
(a = 2.0, n = 0.5, Re = 100).
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Figure 5.41: Effect of the Carreau number λCY on the viscosity at line x = 0.5 (a = 2.0, n = 0.5,
Re = 100).
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Figure 5.42: Effect of the Carreau number λCY on the viscosity at line y = 0.5 (a = 2.0, n = 0.5,
Re = 100).

5.5 Flow over a backward-facing step

5.5.1 Problem description

The problem of flow over a backward-facing step has been studied by many authors since it is

one of the excellent benchmark problems for the accuracy and stability of numerical methods for

fluid dynamics. The feature of the problem is that the existence of a backward-facing step induces

a recirculation zone downstream of the step and the size of the recirculation zone depends on the

Reynolds number [91–94]. We studied two- and three-dimensional flows for this problem.

5.5.1.1 Two-dimensional simulation

The geometry of the computational domain and the boundary conditions for 2-D flows of the

problem are taken from the work of Gartling [95] and are shown in Figure 5.43. h and S denote

the height of the inlet channel and that of the step, respectively. When comparing with the work of

Gartling [95], we set S = h and have the expansion ratio of (S + h) /h = 2. When comparing with

the work of Armaly et al. [96], we set S = 0.9423h and have the expansion ratio of (S + h) /h =
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1.9423. The downstream channel length is taken to be L = 60h. The fluid entering the inlet

channel (h ≤ y ≤ S + h) is assumed as a parallel flow with a horizontal velocity of vx = u (y)

(with vy = 0) given by

u (y) =


b0 + b1y + b2y

2, if S ≤ y ≤ S + h

0, if 0 ≤ y ≤ S.

(5.12)

When comparing the present numerical results with the experimental data (vx for Re=100) of

Armaly et al. [96], the coefficients (b0, b1, b2) of Eq. (5.12) were obtained by fitting the ex-

perimental data. Otherwise, we assumed that v̄x (y) = 24 (y − 0.5) (1− y) with (b0, b1, b2) =

(−12, 36, −24) as in the work of Gartling [95]. The x- and y-components of velocity are taken

to be zero along the top and bottom walls by the no-slip condition. The outflow was assumed

to be parallel and to have zero total stress normal to the boundary by taking vy = 0 and σxx =

−p + τxx = 0. Since ∂vx/∂x is negligible at the outflow station (i.e., fully developed flow), we

take τxx = 0 and p = 0 so that σxx = 0. At the top and bottom corners of the outflow station,

we set vx = vy = 0. In this problem, the characteristic quantities for the Reynolds number and

the Carreau number of Eq. (2.8) are v0 = vb and L0 = DH = 2h, where vb is the bulk velocity

of the inlet flow, which is equal to two-thirds of the maximum inlet velocity for the laminar flow.

DH is the hydraulic diameter of the inlet channel (h ≤ y ≤ 2h), which is equal to two times the

height of inlet channel (DH = 2h), if we assume that the inlet channel has the rectangular cross

section with w � h, w being the width of the channel into the plane of the page. The fluid domain

is discretized into a non-uniform 20 × 2 mesh of rectangular elements as shown in Figure 5.44.

The majority of the elements are positioned within 30h units of the channel to ensure the accurate

resolution of recirculation zone downstream of the step [5, 33]. The convergence is declared when

the Euclidean norm of the difference between two consecutive iteration solutions is less than 10−3.
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Figure 5.43: Schematic for the problem of backward-facing step flow.
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Figure 5.44: Mesh for the problem of backward-facing step flow.

5.5.1.2 Three-dimensional simulation

The schematic for the 3-D flows over the backward-facing step is depicted in Figure 5.45. h

and S denote the height of the inlet channel and that of the step, respectively. To compare with the

work of Armaly et al. [96], we set S = 0.9423h and so the expansion ratio is (S + h) /h = 1.9423.

The downstream channel length is L = 60h and the width of the channel is W = 35h. Since the

flow is symmetric about mid-xy-plane (whose edges are red in Figure 5.45), the half of domain is

considered as in Figure 5.46. For the boundary conditions (Figure 5.46), the fluid entering the inlet

channel (h ≤ y ≤ S + h) is assumed as a parallel flow with a horizontal velocity of vx = u (y, z)

(with vy = vz = 0) given by

u (y, z) =


b0 (y − S) {y − (S + h)} tanh (βz) , if S ≤ y ≤ S + h

0, if 0 ≤ y ≤ S.

(5.13)
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We have β = 4, which was obtained by fitting the experimental data for Re=648 in [96]. Since the

inlet velocity profile with respect to z-direction was available only at Re=648, we used the fitted

value of β = 4 for the range of Reynolds number (100 ≤ Re ≤ 800) in the test. Likewise, the inlet

velocity profiles with respect to y-direction were not available for all Re values considered, we used

b0 = −6/h2 as in the work of Gartling [95] for the range of Reynolds number (100 ≤ Re ≤ 800).

All velocity components are taken to be zero along the top, bottom, and side walls by the no-

slip condition. The outflow is assumed to be parallel and to have zero total stress normal to the

boundary with vy = vz = 0 and σxx = −p + τxx = 0. Since ∂vx/∂x is negligible at the outflow

station (i.e., fully developed flow), we take τxx = 0 and p = 0 so that σxx = 0. At the top

and bottom corners of the outflow station, we set vx = vy = vz = 0. On the symmetry plane

(z = 8.575), vz = 0 and τxz = τyz = 0 are imposed. In this problem, the characteristic quantities

for the Reynolds number and the Carreau number of Eq. (2.8) are v0 = vb and L0 = DH = 2h,

where vb is the bulk velocity of the inlet flow, which is equal to two-thirds of the maximum inlet

velocity for the laminar flow. DH is the hydraulic diameter of the inlet channel (h ≤ y ≤ 2h),

which is equal to two times the height of inlet channel (DH = 2h), assuming thatW (= 35h)� h.

The fluid domain is discretized into a non-uniform 16× 2× 4 mesh of rectangular parallelepiped

elements (see Figure 5.47). The majority of the elements are positioned within left half of the

channel to ensure the accurate resolution of recirculation zone downstream of the step [5, 33].

The convergence is declared when the Euclidean norm of the difference between two consecutive

iteration solutions is less than 10−3.
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Figure 5.45: Schematic for the problem of 3-D backward-facing step flow.
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Figure 5.46: Boundary conditions for the problem of 3-D backward-facing step flow.
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Fig. 35b: Mesh (16 2 4) for the problem of 3-D backward-facing step flow.
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4.3  Flow over a backward‐facing step – cont.

Figure 5.47: Mesh for the problem of 3-D backward-facing step flow.

5.5.2 Verification and validation tests

In order to verify and validate the present code, the results for Newtonian fluids are compared

with the numerical results of Gartling [95] first and then with the experimental results of Armaly

et al. [96]. Comparing with the work of Gartling [95] who employed a weak-form Galerkin

finite element model involving velocities and pressure as variables, we showed the dependency of

numerical solutions on the polynomial order, p. Figures 5.48–5.51 present the comparison of the

horizontal and vertical velocity curves (vx and vy) for Re = 800 at x = 7 and x = 15 with various

p-levels. We can observe that the velocity profiles of the present study are independent of the

polynomial order when p is greater than 10, and the converged velocity profiles of p = 11 and 12

demonstrate good agreement with the results of Gartling [95]. For both vx and vy, the numerical

results at x = 7 are more sensitive to p-level than the results at x = 15 where the flow is almost

fully developed.
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Figure 5.48: Dependency of horizontal velocity at x = 7 on p-level (Re=800).
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Figure 5.49: Dependency of horizontal velocity at x = 15 on on p-level (Re=800).
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Figure 5.50: Dependency of vertical velocity at x = 7 on p-level (Re=800).
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Figure 5.51: Dependency of vertical velocity at x = 15 on p-level (Re=800).

67



To compare with the experimental work of Armaly et al. [96], we set S = 0.49 and h = 0.52.

Figure 5.52 shows the comparison for the horizontal velocity profiles vx at several axial positions

downstream of the step for Re = 100; x/S denotes the dimensionless axial position downstream of

the step. In order to obtain solutions near the axial positions given in Armaly et al. [96], we used

a more refined mesh, namely, 80 × 8 mesh of rectangular elements with polynomial order of 8.

For the 80× 8 mesh, the results show independence of p-level when p is larger than 5. Difference

between each axial position of [96] and that of the present study are less than 1%. The numerical

solutions demonstrate good agreement with the experimental data.
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Figure 5.52: Horizontal velocity vx at several axial positions x/S downstream of the step for Re =
100.

We also tested for reattachment lengths (or, length of the recirculation zone) at the lower wall

which is caused by the existence of a backward-facing step and compared them with the data
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of [96]. The recirculation zone and reattachment length at lower wall are also called primary

recirculation zone (or, separation zone) and primary reattachment length, respectively, because it

is the main recirculation zone. The streamlines of backward-facing step flow (Re = 800) for the part

of the domain are shown in Figure 5.53, where the reattachment length denoted by xR is depicted.

A reattachment point is assumed to be the point of zero wall shear stress which is located by

interpolating between the shear stress values at the lower wall [95]. Armaly et al. [96] investigated

that the flow downstream (near the step) was three-dimensional when Re > 400. Hence, both 2-D

and 3-D flows were solved to see the effect of three-dimensionality of flow on xR. We performed

convergence test of increasing p-level for xR using 2-D simulations. The 2-D fluid domain is

discretized into a non-uniform 16 × 2 mesh of rectangular elements, such that it corresponds to

3-D fluid domain which is discretized into a non-uniform 16×2×4 mesh of rectangular elements.

It was found that the results of 16 × 2 mesh and those of 20 × 2 mesh which is used for previous

tests are similar. Table 5.1 shows that xR/S for Re = 800 approaches p-independence when p is

greater than 9. Due to the memory restriction of the cluster where the code was executed, we used

p= 8 for 3-D simulation. However, considering that xR/S of p= 8 has small difference (2.2%)

from the converged value of xR/S, solutions of p= 8 is not far from the converged solutions.

xR x

Figure 5.53: Streamlines of backward-facing step flow at Re = 800 (xR denotes a reattachment
length).
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xR/S

p=7 p=8 p=9 p=10 p=11

13.6 12.9 12.7 12.6 12.6

Table 5.1: Dimensionless reattachment length (xR/S) for Re = 800 with various polynomial order
(p).

In Figures 5.54–5.55, we plot the dimensionless reattachment length, xR/S, with respect to

the Reynolds number for 2-D and 3-D simulations. When comparing between the fit curves of

the experimental data and numerical results, the 3-D simulation shows better agreement. The

difference between the present results and the experimental results is less than 10% for the 3-D

simulation, while the difference for the 2-D simulation is greater than 10% when Re < 140 and

Re > 790 and less than 10% in other range of Re. Considering that the reattachment length

approaches smaller value as p increases (see Table 5.1), the difference between the experiment

data and the 3-D numerical results would be smaller if p greater than 8 is used. The 3-D result

becomes different from the 2-D result when Re > 300 and the discrepancy becomes larger as Re

increases. In other words, the side wall (z = 0) affect the flow structure when Re is above 300 and

this side-wall effect increases with Re. Figure 5.56 shows the spiral particle paths from the side

wall (z = 0) to the symmetry plane (z = 8.575). This swirling flow is known to be the reason for

the variation of primary reattachment length in z-direction [91, 97]. A wall jet in x-direction at

the side wall interacts with recirculation zones at the upper and lower parts of the side wall, which

leads to 3-D vortices near the side wall. These vortices move across the main flow stream with

spiral motion and join the recirculation zones at the symmetry plane, as mentioned in Williams

and Baker’s work [97]. Also, they addressed that the reason for longer reattachment length of the

3-D simulation than that of the 2-D simulation is due to the size of upper separation region. In the

2-D simulation, the upper separation region is thicker than in the 3-D simulation and this thicker

blockage prevents the primary reattachment length to grow. The comparison between upper/lower
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separation regions of the 2-D and 3-D results (see Figure 5.57) confirms this.
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Figure 5.54: Reattachment length (2-D simulation) with respect to the Reynolds number.
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Figure 5.55: Reattachment length (3-D simulation) with respect to the Reynolds number.
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vx

Figure 5.56: Spiral motion from the side wall to the symmetry plane (Re = 800).
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x
Figure 5.57: Comparison between 2-D and 3-D simulations for primary and secondary recircula-
tion zones (Re = 800).

5.5.3 Parametric study of Carreau–Yasuda fluids

The effects of the three parameters (a, n, λCY ) of the Carreau–Yasuda model, Eq. (2.5), on

the flow over a backward-facing step were studied. Since the flow behavior on the symmetry plane

of 3-D backward-facing step problem is similar with that of the 2-D problem, we performed 2-D

analysis for parametric study. 20×2 mesh of Figure 5.44 and polynomial order of 12 were used for
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parametric study. We focused on how the reattachment length xR is affected by these parameters.

Here, the limiting viscosities in Eq. (2.5) are set as µ0 = 100µ∞ and the Reynolds number (Re) is

100. In Figures 5.58, 5.61, and 5.64, the relation of a, n, λCY and the dimensionless reattachment

length xR/S are shown, respectively, and Figures 5.59, 5.62, and 5.65 present the viscosity curves

with respect to shear rate in the fluid domain for various values of a, n and λCY , respectively.

Figures 5.60, 5.63, and 5.66 present effect of a, n, λCY on the horizontal velocity (vx) contour.

From Figure 5.58, we see that when the parameter a increases with other parameters fixed (n =

0.5, λCY = 1.0), the reattachment length xR reduces. Also, the rate of change of xR diminishes

from a = 0.2 to a = 2.0 and is close to zero rate for 2.0 ≤ a ≤ 10.0. The reason of this relation

can be explained by Figure 5.59, where decrease in a makes the viscosity lower with changing

the curve shape. Since the fluid with less viscosity has larger recirculation zone downstream the

step, the reattachment length becomes longer with decreasing a. Also, in Figure 5.59, the rate of

change in the shape of the viscosity curves decreases as a increases. This causes the rate of change

in reattachment length to reduce as a grows for 0.2 ≤ a ≤ 10.0. From the horizontal velocity

contours (see Figure 5.60), we can also see the variation of reattachment length with resect to

a. Blue part indicates region with backflow (having negative value of vx) and the length of this

region is similar to xR. The fluid with smaller a has longer backflow zone (that is, longer xR), and

especially when a = 0.2, backflow zone appears at both top and bottom walls. Figure 5.61 shows

that the reattachment length is shortened with increasing power index n for 0.25 ≤ n ≤ 1 while

the other parameters are constant (a = 2.0, λCY = 1.0). Since decrease in n makes the viscosity

less with changing the curve slope in the power-law region (see Figure 5.62; for power-law region,

see Figure 2.1), fluid with smaller n has longer reattachment length downstream the step. The

horizontal velocity contours in Figure 5.63 also tells that the reattachment length becomes smaller

as n decreases. In Figure 5.64, the reattachment length grows with the Carreau number λCY for

0.01 ≤ λCY ≤ 1.0 (a = 2.0, n = 0.5). Increase in λCY causes the viscosity to reduce with

shifting the transition region (transition from the zero-shear-rate plateau to power-law region; see

Figure 2.1) of the curve as in Figure 5.65, which means that fluid with greater λCY has larger
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recirculation zone. In the horizontal velocity contours (Figure 5.66), the fluid with larger λCY has

longer backflow region (or longer xR).
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Figure 5.58: Effect of the parameter a on reattachment length xR (n = 0.5, λCY = 1.0).
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Figure 5.59: Effect of the parameter a on viscosity (n = 0.5, λCY = 1.0).

Fig. ?: Streamline and horizontal velocity contour over a backward-facing step 
(Re = 100, n = 0.5, λCY = 1, a = 0.2/0.5/1/2/10).
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Figure 5.60: Effect of the parameter a on vx-contour (n = 0.5, λCY = 1.0).
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Figure 5.61: Effect of the parameter n on reattachment length xR (a = 2.0, λCY = 1.0).
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Figure 5.62: Effect of the parameter n on viscosity (a = 2.0, λCY = 1.0).
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Fig. ?: Streamline and horizontal velocity contour over a backward-facing step 
(Re = 100, n = 0.25/0.5/0.75/1, λCY = 1, a = 2).
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Figure 5.63: Effect of the parameter n on vx-contour (a = 2.0, λCY = 1.0).
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Figure 5.64: Effect of the Carreau number λCY on reattachment length xR (a = 2.0, n = 0.5).
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Figure 5.65: Effect of the Carreau number λCY on viscosity (a = 2.0, n = 0.5).

Fig. ?: Streamline and horizontal velocity contour over a backward-facing step
(Re = 100, n = 0.5, λCY = 0.01/0.1/0.2/0.5/1, a = 2).
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Figure 5.66: Effect of the parameter λCY on vx-contour (a = 2.0, n = 0.5).
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5.6 Flow past an unconfined circular cylinder

5.6.1 Problem description

The flow past a circular cylinder has been extensively studied experimentally and numerically.

It is well-known that the pattern of laminar flow depends on the Reynolds number (Re) [98]. When

Re is less than 40, the flow is steady. For Re < 5, no flow separation occurs. For 5 < Re < 40,

the flow separates from the rear of the cylinder and a symmetric pair of standing vortices (steady

separation bubble) appears. The length of the vortices is proportional to Re. When Re is further

increased (45 < Re < 150), the wake becomes unstable and vortices are shed periodically, one

from the top and the other from the bottom of cylinder. This oscillating wake is known as Kármán

vortex street which is transient. Here we consider steady flow where a steady separation bubble

appears. The geometry of the computational domain and the boundary conditions for the problem

are shown in Figure 5.67. The center of a circular cylinder of unit diameter is located at (x, y) =

(0, 0) in the rectangular region [−15.5, 25.5] × [−40.5, 40.5]. The large computational domain is

considered so that free-stream boundary conditions at the top and bottom of the domain can be

applied without noticeably affecting the numerical solution. The free-stream boundary conditions

(vx = v∞ = 1.0, vy = 0) are applied to the inflow boundary (x = −15.5), top, and bottom

of the domain. The traction-free boundary condition is imposed at the outflow in a weak sense

through the least-squares functional. This traction-free boundary condition is different from what

is used for the example of flow over a backward-facing step in Section 5.4, where the outflow

condition is strongly imposed by taking vy = 0 and σxx = −p + τxx = 0. Due to the traction-

free boundary condition applied through least-squares functional, the least-squares formulation is

slightly different from what we describe in Section 3. One should add the following L2-norm of

residual to the original least-squares functional in Eq. (3.1).

‖R4‖2
Γt,0 = n̂ · {−pI + µ(I2)∇v} − t̃s, (5.14)
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where t̃s denotes the specified pseudo-traction on the boundary Γt [99]. At the cylinder surface,

the velocity components are set to zero due to the no-slip condition. The domain is discretized into

788 non-uniform finite elements as in Fig. 5.67. The close-up view around the cylinder is shown

in Fig. 5.68, for example, when the polynomial order (p) is 3. p = 7 is used in this study and

the reason of choosing it will be explained in the following section. The mesh near the cylinder

is more refined than other parts to ensure adequate resolution of the vortices at rear side of the

cylinder. Nonlinear convergence is declared when the Euclidean norm of the difference between

two consecutive iteration solutions is less than 10−3. In this problem, the characteristic velocity

and length for the Reynolds number and Carreau number of Eq. (2.8) are the free-stream velocity

(v0 = v∞ = 1.0) and diameter of the cylinder (L0 = D = 1.0), respectively.
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Figure 5.67: Computational domain and mesh for the problem.
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Figure 5.68: Close-up view of the mesh around the cylinder.

5.6.2 Verification test

To verify the present model, we first compared our results with the previous numerical study

of Lashgari et al. [100] who used a second-order finite difference method to analyze the flows of

Carreau–Yasuda fluids. When comparing with their work, we demonstrate the dependency of our

numerical solutions (drag coefficient) on the polynomial order, p. The pressure and drag forces

acting on the cylinder are given by

Fp =

∮
pn̂ ds, Fv = −

∮
τ · n̂ ds = −

∮
µ
(
∇v + ∇vT) · n̂ ds. (5.15)

For this problem, the corresponding force coefficients are the x-components of the pressure force

and viscous force, each normalized by the dynamic pressure, 1
2
ρ0v

2
∞.

CDp =
Fp,x

1
2
ρ0v2
∞D

, CDv =
Fv,x

1
2
ρ0v2
∞D

, (5.16)
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where CDp is called pressure drag coefficient and CDv is called viscous drag coefficient. F·,x

denotes the x-component of each force. The overall drag coefficient (or drag coefficient), CD, is

the sum of the two:

CD = CDp + CDv. (5.17)

Table 5.2 show the drag coefficient (CD) of the cylinder for different polynomial orders, where

Re = 10 and Carreau–Yasuda parameters of Eq. (2.5) are given by n = 0.4, a = 2.0, λCY = 10,

and µ0 = 1000µ∞. It shows that CD approaches p-independence when p is greater than 5, and

the converged CD value of the present study is in good agreement with the result of Lashgari et al.

[100] whose CD is 1.24. Based on this, we choose the polynomial order of 7 when comparing with

other existing works in the literature and conducting a parameter study of Carreau–Yasuda fluids.

CD

p=5 p=6 p=7 p=8

1.238 1.236 1.236 1.236

Table 5.2: Drag coefficient (CD) with various polynomial order (p).

In Fig. 5.69, we plotted the pressure coefficient along the cylinder surface with the experimental

results of Grove, Shair, and Petersen [101] for Newtonian fluids (n = 1.0) with Re = 40. The

pressure coefficient is the dimensionless pressure difference defined as:

Cp =
p− p0

1
2
ρ0v2
∞
, (5.18)

where p0 is the reference pressure which is set to zero. The angle θ starts from the front stagnation

point of the cylinder as depicted in Fig. 5.69. The numerical result is in good agreement with their

experimental result. Figure 5.70 shows the pressure contours and streamlines around the cylinder

for Newtonian fluids and Re = 40. The wake length L is equal to 4.56 cylinder radii, which

83



shows good agreement with the numerical results of Kawaguti and Jain [102] whose wake length

is 4.5 cylinder radii. In the verification and validation tests, the L2 least-squares functionals are

1.89× 10−6 for Carreau–Yasuda fluid and 3.01× 10−7 for Newtonian fluid.

θ
0⁰ 180⁰

Figure 5.69: Pressure coefficient along the cylinder surface.
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Figure 5.70: Pressure contour and streamlines around the cylinder.

5.6.3 Parametric study of Carreau–Yasuda fluids

The effects of the three parameters (a, n, λCY ) of the Carreau–Yasuda model, Eq. (2.5), on the

flow past a circular cylinder are analyzed. We focused on how the pressure coefficient, wake length,

and pressure/viscous drag coefficients are affected by these parameters. The limiting viscosities in

Eq. (2.5) are set as µ0 = 100µ∞.

First, we test for the shape parameter a. In Figure 5.71, the viscosity curves for various values

of a are plotted with respect to shear rate. As a increases, the viscosity becomes higher with

changing the curve shape. Figure 5.72 shows the pressure coefficient, Cp, along the cylinder

surface for the same a values. Cp at the front stagnation point (θ = 0◦) increases with a and

the region of positive pressure gradient starts at larger θ as a is increased. For example, when

a = 0.1, the positive pressure gradient begins around θ = 90◦, while it begins around θ = 105◦ for

a = 0.3. When the positive pressure gradient is strong enough, the flow separates and a wake is

formed. Comparing Figure 5.73 and Figure 5.74, we can see that the start point of positive pressure

gradient affects the size of wake. The wake length with respect to a is shown in Figure 5.75, where
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the wake length reduces as a increases. As a result, Figures 5.71–5.75 demonstrate that the fluid

with higher viscosity gives higher pressure at the front stagnation point on the cylinder and makes

the flow separate at more rear side of the cylinder which leads to the smaller wake region. We

also plot the drag coefficient (Eq. (5.17)) with respect to a in Figure 5.76, where overall drag

coefficient (CD) is the sum of pressure drag coefficient (CDp) and viscous drag coefficient (CDv).

CDp increases with a, since the fluid with larger a gives higher pressure along the cylinder surface

as can be seen in Figure 5.72. CDv also increases with a, because the fluid with larger a has higher

viscosity (Figure 5.71) and thus exerts more viscous force on the cylinder. In Figure 5.76, CDp has

larger portion than CDv. This is due to the shape of a circular cylinder. When overall drag mainly

comes from pressure drag, as in the circular cylinder case, the body is described as bluff. When

overall drag is dominated by viscous drag, the body is considered streamlined [63].

Secondly, the effect of the power index n is studied. Figure 5.77 shows the viscosity curves

with respect to shear rate for various values of n. The viscosity increases with n with changing

the curve slope in the power-law region. When n = 1, the fluid exhibits constant viscosity, that

is, Newtonian fluid. We plot the pressure coefficients, Cp, along the cylinder surface for the same

n values in Figure 5.78. Cp at the front stagnation point (θ = 0◦) grows larger as n increases and

the positive pressure gradient begins at higher θ with increasing n. The wake length is plotted

with respect to n in Figure 5.79, where the wake length becomes shorter as n is increased. When

the fluid is Newtonian (n = 1), the wake length is 0 which means there is no flow separation.

Therefore, Figures 5.77–5.79 lead to the same explanation with the test for a; the fluid with higher

viscosity exerts higher pressure at the front stagnation point on the cylinder and causes the flow

to separate at more rear side of the cylinder which makes the wake smaller. Figure 5.80 presents

the coefficients of overall drag (CD), pressure drag (CDp) and viscous drag (CDv) with respect to

n. CDp grows as n increases, since the fluid with larger n exerts more pressure along the cylinder

surface as can be seen in Figure 5.78. CDv increases with n, because the fluid with larger n has

higher viscosity (Figure 5.77) and thus gives larger viscous force on the cylinder. Consequently,

the overall drag, CD (= CDp + CDv), increases with n.
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Finally, we test the effect of the dimensionless time constant λCY . The viscosity curves with

respect to shear rate for various values of λCY are shown in Figure 5.81. The viscosity increases

as λCY decreases with shifting the transition region (transition from the power-law region to the

infinite-shear-rate plateau) of the curve. Figure 5.82 presents the pressure coefficients, Cp, along

the cylinder surface for the same λCY values. Cp at the front stagnation point (θ = 0◦) becomes

higher as λCY decreases and the positive pressure gradient starts at higher θ with decreasing λCY .

The plot of the wake length with respect to λCY in Figure 5.83 demonstrates that the wake length

grows longer as λCY is increased. Likewise, Figures 5.81–5.83 tells us that the fluid with higher

viscosity gives higher pressure at the front stagnation point on the cylinder and causes the flow

separation at more rear side of the cylinder which leads to the smaller wake. In Figure 5.84, the

coefficients of overall drag (CD), pressure drag (CDp) and viscous drag (CDv) are shown for various

λCY . CDp decreases as λCY decreases, because the fluid with larger λCY gives lower pressure along

the cylinder surface as can be seen in Figure 5.82. CDv also becomes lower with increasing λCY ,

since the fluid with larger λCY has lower viscosity (Figure 5.81) and hence exerts smaller viscous

force on the cylinder. Therefore, the overall drag coefficient decreases as λCY increases.
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Figure 5.71: Viscosity curves for various a.
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Figure 5.72: Effect of the parameter a on Cp.
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Figure 5.73: Pressure contour and streamlines around the cylinder when a = 0.1.

Figure 5.74: Pressure contour and streamlines around the cylinder when a = 0.3.

89



0.1 0.2 0.3 0.4 0.5
0.0

0.4

0.8

1.2

1.6

2.0

 

 

W
ak

e 
le

ng
th

a

Figure 5.75: Effect of the parameter a on the wake length L.
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Figure 5.76: Effect of the parameter a on the drag coefficient.
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Figure 5.77: Viscosity curves for various n.
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Figure 5.78: Effect of the parameter n on Cp.
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Figure 5.79: Effect of the parameter n on the wake length L.
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Figure 5.80: Effect of the parameter n on the drag coefficient.
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Figure 5.81: Viscosity curves for various λCY .
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Figure 5.82: Effect of the parameter λCY on Cp.
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Figure 5.83: Effect of the parameter λCY on the wake length L.
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Figure 5.84: Effect of the parameter λCY on the drag coefficient.
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In summary, we have investigated that the variation in the three Carreau–Yasuda parameters

(a, n, λCY ) makes the viscosity change in different ways, which affects the pressure coefficient

along the cylinder surface, wake length, and pressure and viscous drag coefficients. The pressure

drag is larger than viscous drag in all test cases because of the shape of a circular cylinder. The L2

least-squares functionals in all cases of the parameter study are order of 10−7.

5.7 Fully developed flow between parallel plates

5.7.1 Problem description

We consider a two-dimensional non-isothermal fully developed flow between parallel plates

where the flow is driven by pressure difference. The viscosity is assumed to be independent of

temperature and Eq. (2.5) was used. The temperature field in this problem is purely due to vis-

cous dissipation. The geometry of the computational domain and the boundary conditions for the

problems are depicted in Figure 5.85. 2H and L denote, respectively, the distance between the

plates and the length of the plates. Due to the symmetry about x-axis, only the upper half of the

flow domain is considered. Along the top plate, the velocity components are taken to be zero ac-

cording to the no-slip condition and temperature is fixed to zero. Pressure is specified as zero at

the left boundary and pout(> 0) at the right boundary, so that the flow is driven by the pressure

difference in the positive x-direction. Since it is fully developed flow (so, the flow does not change

in x-direction), y-component of velocity and x-component of heat flux are taken to be zero at the

right and left boundaries. The bottom boundary has the symmetry conditions of vy = 0, τxy = 0,

and qy = 0. At the top left and top right corners, the boundary conditions are (vx = 0, vy = 0,

θ = 0, p = 0) and (vx = 0, vy = 0, θ = 0, p = pout), respectively. The characteristic quantities for

the Reynolds number and Carreau number of Eq. (2.8) are v0 = 1.0 and L0 = DH = 4H , where

DH is the hydraulic diameter which is equal to two times the distance between the parallel plates

(DH = 4H), if we assume that the width (into the plane of the page) of the plates is much larger

than the distance between the plates (w � 2H). The computational domain is discretized into a

uniform 2×4 mesh of rectangular elements as shown in Figure 5.85. The polynomial order of p=4
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is chosen for this problem, since the numerical results (which are presented below) do not show

dependence on p-level when it is larger than 3 for the mesh. Nonlinear convergence is declared

when the Euclidean norm of the difference between two consecutive iteration solutions is less than

10−3.

5.7.2 Verification and validation tests

To verify the present LSFEM code for non-isothermal flows with viscous dissipation, the nu-

merical results of present study are compared with analytical solutions for Newtonian fluids and

with numerical results of previous study for generalized Newtonian fluids. For Newtonian flu-

ids, the analytical solutions of the horizontal velocity (vx) and temperature field (θ) are given by

[61, 69]

vx = −H
2

2µ

∂p

∂x

(
1− y2

H2

)
(5.19a)

θ = θH +
Re Br
12µ

(
∂p

∂x

)2

H4

(
1− y4

H4

)
, (5.19b)

where the viscosity µ is equal to Eq. (2.5) with n = 1 and θH denotes the temperature at y = H

(θH = 0). The dimensionless numbers used are Re = 55.61, Pr = 1.49, Pe = 82.85 and Br = 0.63

(the definitions of these dimensionless numbers are in Eq. (2.13). Fig. 5.86 and Fig. 5.87 show

the comparison between the analytical solutions (Eq. (5.19)) and the present numerical results of

horizontal velocity and temperature, respectively for two values of ∂p/∂x. The numerical results

of x-velocity and temperature profiles for both values of ∂p/∂x demonstrate good agreement with

the analytical solutions. Here, ∂p/∂x = (pin − pout) /L = −pout (see Fig. 5.85). The higher

pressure derivative with respect to x gives faster horizontal velocity and higher temperature, as the

analytical solutions of Eq. (5.19) indicate.

For generalized Newtonian fluids, we compared the present results with the numerical results

of Surana et al. [61]. The parameters of Carreau–Yasuda viscosity model (Eq. (2.5)) are µ0 = 0.18,

mu∞ = 0, n = 0.729, a = 2.0 and λCY = 4.8. The same dimensionless numbers with those for

Newtonian fluids are used (i.e., Re = 55.61, Pr = 1.49, Pe = 82.85, Br = 0.63). As shown in Fig.
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5.88 and 5.89, the present numerical results of x-velocity and temperature profiles for both values

of ∂p/∂x are in good agreement with the results of Surana et al. [61]. Similar with the Newtonian

fluids, the results for Carreau–Yasuda fluids also exhibit that increasing the pressure derivative with

respect to x leads to faster horizontal velocity and higher temperature.
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Figure 5.85: Schematic for the problem of fully developed flow between parallel plates (H = 1,
L = 1).
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Figure 5.86: Horizontal velocity profiles of Newtonian fluids (Re = 55.6, n = 1).
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Figure 5.87: Temperature profiles of Newtonian fluids (Re = 55.6, n = 1).
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Figure 5.88: Horizontal velocity profiles of Carreau–Yasuda fluids (Re = 55.6, n = 0.729, a = 2.0,
λCY = 4.8).
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Figure 5.89: Temperature profiles of Carreau–Yasuda fluids (Re = 55.6, n = 0.729, a = 2.0,
λCY = 4.8).
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5.7.3 Parametric study of Carreau–Yasuda fluids

The effects of the three parameters (a, n, λCY ) of the Carreau–Yasuda model, Eq. (2.5), on the

flow between parallel plates were studied. We used ∂p/∂x = −0.02 and the same dimensionless

numbers (Re = 55.61, Pr = 1.49, Pe = 82.85, Br = 0.63) as in the verification tests. The upper

and lower limiting viscosities of Eq. (2.5) are set to µ0 = 0.18 and mu∞ = 0, respectively. In

Figures 5.90–5.91, 5.94–5.95 and 5.98–5.99 the influence of change in a, n, λCY on the velocity

and temperature profiles are shown, Figures 5.92, 5.96 and 5.100 present the viscosity curves with

respect to shear rate in the fluid domain, and Figures 5.93, 5.97 and 5.101 viscous dissipation

for various values of a, n and λCY . As the shape parameter a decreases, the viscosity decreases

(Figure 5.92) and the velocity profile (Figure 5.90) shows that the fluid with lower a (that is, lower

viscosity) moves faster with higher velocity gradient at wall. Temperature is also increased with

decreasing a (Figure 5.91), because viscous dissipation which causes fluid temperature to rise

increases as a decreases (Figures 5.93). Although the viscosity is decreased with decreasing a,

velocity gradient at wall as shown in Figure 5.90 becomes much higher for smaller a such that

the viscous dissipation (see Eq. (2.12)) increases as a decreases. For the power index n, viscosity

decreases as n decreases (Figure 5.96) and thus the fluid with lower n moves faster with higher

velocity gradient at wall as in Figure 5.94. As viscous dissipation increases with decrease in n

(Figures 5.97), temperature rises with decreasing n (Figure 5.95). Increase in time constant λCY

makes viscosity lower (Figure 5.100) and thus the fluid with higher λCY moves faster with higher

velocity gradient at wall as in Figure 5.98. Viscous dissipation increases with λCY as shown in

Figures 5.101, which leads to rise in temperature with increasing λCY (Figure 5.99).
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Figure 5.90: Effect of the parameter a on velocity profile (n = 0.5, λCY = 1.0).
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Figure 5.91: Effect of the parameter a on temperature profile (n = 0.5, λCY = 1.0).
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Figure 5.92: Effect of the parameter a on viscosity (n = 0.5, λCY = 1.0).
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Figure 5.93: Effect of the parameter a on viscous dissipation (n = 0.5, λCY = 1.0).
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Figure 5.94: Effect of the parameter n on velocity profile (a = 2.0, λCY = 1.0).
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Figure 5.95: Effect of the parameter n on temperature profile (a = 2.0, λCY = 1.0).
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Figure 5.96: Effect of the parameter n on viscosity (a = 2.0, λCY = 1.0).
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Figure 5.97: Effect of the parameter n on viscous dissipation (a = 2.0, λCY = 1.0).
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Figure 5.98: Effect of the parameter λCY on velocity profile (a = 2.0, n = 0.5).
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Figure 5.99: Effect of the parameter λCY on temperature profile (a = 2.0, n = 0.5).
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Figure 5.100: Effect of the parameter λCY on viscosity (a = 2.0, n = 0.5).
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Figure 5.101: Effect of the parameter λCY on viscous dissipation (a = 2.0, n = 0.5).
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5.8 Buoyancy-driven flow in a cubic cavity

5.8.1 Problem description

Three-dimensional, steady, buoyancy-driven flow in a cubic cavity is considered. Fluid is in a

unit cavity, [0, 1]× [0, 1]× [0, 1], where two vertical walls are heated differently as shown in Figure

5.102. Temperature at right side is hotter than left side wall (TH > TC). And remaining four

walls are insulated. This temperature difference causes buoyancy force which makes fluid rotate

in counter-clock-wise direction (see Figure 5.103). The flow is symmetric about the xy-plane at

the center (z = 0.5), so only half of the domain ([0, 1] × [0, 1] × [0, 0.5]) was considered. Figure

5.105 presents the boundary conditions for the problem. Except the symmetry plane (z = 0.5),

all velocity components are zero at five walls (vx = vy = vz = 0). Right and left vertical walls

have specified temperatures (θ = θH ,θ = θC) and top, bottom and rear walls are insulated (qy = 0,

qz = 0). At the symmetry plane, z-component of velocity (vz), shear stresses (τxz, τyz) and z-

component of heat flux (qz) are zero. The computational domain is discretized into a non-uniform

8× 8× 4 mesh of rectangular parallelepiped elements. The mesh is graded such that the boundary

layer thickness is resolved. Nonlinear convergence is declared when the Euclidean norm of the

difference between two consecutive iteration solutions is less than 10−3.
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1

Problem description

Fig. 4: Schematic of the problem 
( TH > TC, dimension: 1 1 1).

Fig. 5: Temperature field and streamlines 
at the symmetry plane (z = 0.5).

Figure 5.102: Schematic for the problem of 3-D buoyancy-driven cavity flow ([0, 1]×[0, 1]×[0, 1]).
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1

Problem description

Fig. 4: Schematic of the problem 
( TH > TC, dimension: 1 1 1).

Fig. 5: Temperature field and streamlines 
at the symmetry plane (z = 0.5).

Figure 5.103: Temperature field of half domain ([0, 1] × [0, 1] × [0, 0.5]) and streamlines at the
symmetry plane (z = 0.5).
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Figure 5.104: Boundary conditions for the problem of 3-D buoyancy-driven cavity flow.
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5.8.2 Verification and validation tests

We compared our results for Newtonian fluids with the previous numerical results by Fusegi et

al. [103] and experimental results by Krane and Jessee [2] to verify and validate the current least-

squares finite element model for 3-D non-isothermal flow with buoyancy effect. By comparing

with the work of Fusegi et al. [103] who used 3rd-order finite difference method with 643 gird

points, we showed the dependency of numerical solutions on polynomial order, p. Since it is for

Newtonian fluids, we set n = 1 in Eq. (2.5), which makes the viscosity constant (µ = µ0). Figure

5.105 and 5.106 show the vertical velocity profiles along the line at y = 0.5 and horizontal velocity

profiles along the line at x = 0.5 on the symmetric plane (z = 0.5) of the cavity, respectively, when

Ra = 105 and Pr = 0.71. In Figure 5.107 and 5.108, temperature profiles along the line at y = 0.5

and the line at x = 0.5, respectively, on the symmetric plane are shown with the same values of Ra

and Pr. The numerical results for both velocity and temperature approaches p-independence when

p> 3 and we used p= 4 therefore for the following tests. The converged solutions are in good

agreement with [103].
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Figure 5.105: Vertical velocity vy along the line y = 0.5 on the symmetric plane (z = 0.5) of the
cavity for Newtonian fluid (Ra = 105, Pr = 0.71)).
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Figure 5.106: Horizontal velocity vx along the line x = 0.5 on the symmetric plane (z = 0.5) of
the cavity for Newtonian fluid (Ra = 105, Pr = 0.71)).

110



0.0 0.2 0.4 0.6 0.8 1.0
0.950

0.975

1.000

1.025

1.050

T 
( y

 =
 0

.5
, z

 =
 0

.5
 )

x

  T , p=2        T , p=3
  T , p=4        T , p=5
  T  (Fusegi et al., 1991)

Figure 5.107: Temperature along the line y = 0.5 on the symmetric plane (z = 0.5) of the cavity
for Newtonian fluid (Ra = 105, Pr = 0.71).
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Figure 5.108: Temperature along the line x = 0.5 on the symmetric plane (z = 0.5) of the cavity
for Newtonian fluid (Ra = 105, Pr = 0.71).
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Another important quantity is Nusselt number, Nu, which is a dimensionless heat transfer rate

or has a meaning of the ratio of convective to conductive heat transfer across the surface. Figure

5.109 shows a x-component of heat flux (qx) at the heated surface (x = 1). Using qx, we can

compute local Nu (Eq. (5.20a)) on the surface. The overall Nu on this surface is then computed

by integrating local Nu over the surface as in Eq. (5.20b). The computed Nuoverall is 4.332 and it

shows good agreement with the result of [103] who had Nuoverall = 4.361.
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† Fusegi, T., J. M. Hyun, K. Kuwahara, and B. Farouk. "A numerical study of three-dimensional natural convection in a 
differentially heated cubical enclosure." International Journal of Heat and Mass Transfer 34, no. 6 (1991): 1543-1557.
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Figure 5.109: qx contour of the heated surface (x = 1) of the cavity.

Nulocal(y, z)x=1 =

[
∂θ

∂x

]
x=1

(5.20a)

Nuoverall =

∫ 1

0

∫ 1

0

Nulocal(y, z)x=1 dydz = −
∫ 1

0

∫ 1

0

(Pe qx)x=1 dydz (5.20b)

We also compare our numerical results with the experimental results of Krane and Jessee [2].

They used air as fluid in the cavity where the two vertical walls were heated differently with
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TC = 0.95 and TH = 1.05 (see Figure 5.102) and the remaining walls were insulated. The

dimensionless numbers for their experiment are Ra = 1.89 × 105 and Pr = 0.71. Although

air is a compressible fluid, this buoyancy-driven flow problem can also be simulated well by the

governing equations for incompressible flow with Boussinesq approximation. They wanted to have

top and bottom wall insulated, but perfect insulation could not be realized in their experiments as

in Figure 5.110. The Figure 5.110 shows their experimental temperature profile along the line

at y = 0.5 and we can see that the slope at top/bottom walls are not zero, that is, they are not

insulated. So, to compare with their results, we imposed constant heat flux in y-direction at top

(qy(y = 1) = 0.00435) and bottom (qy(y = 1) = 0.0045) walls using their experiment data. Figure

5.111 and 5.112 present the vertical velocity along the line at y = 0.5 and horizontal velocity along

the line at x = 0.5 on the symmetric plane (z = 0.5) of the cavity, respectively, and Figure 5.113

and 5.114 shows temperature along the line at y = 0.5 and the line at x = 0.5, respectively,

on the symmetric plane. Both velocity and temperature profiles are in good agreement with the

experimental data of [2].

1 Introduction 2  Governing equation 3 Least-squares formulation 4  Finite element model 5  Numerical examples 6  Future works

1

Code validation by experimental results of Krane & Jessee (1983)†

† Krane, R. J and J. Jessee. "Some detailed field measurements for a natural convection flow in a vertical square enclosure." In 
Proceedings of the First ASME-JSME Thermal Engineering Joint Conference, 1983, vol. 1, pp. 323-329. 1983.
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Figure 5.110: Experimental temperature data [2] along the line x = 0.5 on the symmetric plane
(z = 0.5) of the cavity (Ra = 1.89× 105, Pr = 0.71).
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Figure 5.111: Vertical velocity vy along the line y = 0.5 on the symmetric plane (z = 0.5) of the
cavity (Ra = 1.89× 105, Pr = 0.71).
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Figure 5.112: Horizontal velocity vx along the line x = 0.5 on the symmetric plane (z = 0.5) of
the cavity (Ra = 1.89× 105, Pr = 0.71).
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Figure 5.113: Temperature along the line y = 0.5 on the symmetric plane (z = 0.5) of the cavity
(Ra = 1.89× 105, Pr = 0.71).
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Figure 5.114: Temperature along the line x = 0.5 on the symmetric plane (z = 0.5) of the cavity
(Ra = 1.89× 105, Pr = 0.71).
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5.8.3 Parametric study of Carreau–Yasuda fluids

After verifying and validating the current model for Newtonian fluids, we examine how the

change in parameters (a, n, λCY ) of the Carreau–Yasuda model, Eq. (2.5), affects the buoyancy-

driven flow in the differently heated cavity (Figure 5.105). We focus on vertical velocity and

temperature profiles along the line y = 0.5 at the symmetry plane z = 0.5 and overall Nusselt

number (Nuoverall) of the heated surface x = 1.0. Dimensionless numbers used are Ra = 104

and Pr = 1.0. Figures 5.115, 5.119 and 5.123 show the effect of change in a, n, λCY on vertical

velocity vy along the line y = 0.5 on the symmetric plane (z = 0.5) of cavity, respectively. Figures

5.116, 5.120 and 5.124 show the viscosity curves with respect to shear rate in the fluid domain

for various values of a, n and λCY . Effect of change in a, n, λCY on temperature θ along the line

y = 0.5 on the symmetric plane (z = 0.5) of cavity are plotted in Figures 5.117, 5.121 and 5.125,

respectively. Figures 5.116, 5.120 and 5.124 present the overall Nusselt number of heated surface

x = 1.0 with respect to a, n, λCY , respectively. In Figure 5.116, decreasing the shape parameter

a (with n = 0.5, λCY = 1.0) makes the viscosity decreased with changing the curve shape. Since

fluid with lower viscosity is less resistant to the applied buoyancy force, it becomes more attached

to the wall as a decreases (Figure 5.115). The variation in a also affects the heat transfer rate.

For the temperature profiles at the line at y = 0.5 on the symmetry plane (z = 0.5) of Figure

5.117, temperature gradient at the surfaces x = 0.0 and x = 1.0 increases with decreasing a and

so the heat flux at the surface increase as a decreases. The overall Nusselt number (Nuoverall) of the

heated surface x = 1.0 in Figure 5.118 also tells that heat transfer rate becomes higher for lower

a. The Nuoverall of the surface x = 0.0 has the same value with that of the surface x = 1.0. As the

power index n decreases (with a = 2.0, λCY = 1.0), viscosity decreases with changing its slope

(see Figure 5.120). Because fluid with lower viscosity is less resistant to the applied buoyancy

force, fluid with lower n is more attached to the wall as shown in Figure 5.119. By decreasing n,

temperature profile at the line y = 0.5 at the symmetry plane has higher temperature gradient at the

surfaces (x = 0.0 and x = 1.0) as in Figure 5.121. Thus the heat flux at the surface increases with

decreasing n, as the plot of Nuoverall with respect to n shows (Figure 5.122). As λCY increases (with
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a = 2.0, n = 0.5), viscosity decreases with shifting the curves (Figure 5.124). So, the fluid with

higher λCY is more attached to the wall as shown in Figure 5.123. In Figure 5.125, temperature

gradient at the surfaces increases with increasing λCY , and thus higher λCY makes the heat flux at

the surface increased as Nuoverall changed by λCY shows (Figure 5.126).
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Figure 5.115: Effect of the parameter a on vertical velocity vy along the line y = 0.5 on the
symmetric plane (z = 0.5) of the cavity (Ra = 104, Pr = 1.0, n = 0.5, λCY = 1.0).
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Figure 5.116: Effect of the parameter a on viscosity (Ra = 104, Pr = 1.0, n = 0.5, λCY = 1.0).
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Figure 5.117: Effect of the parameter a on temperature θ along the line y = 0.5 on the symmetric
plane (z = 0.5) of the cavity (Ra = 104, Pr = 1.0, n = 0.5, λCY = 1.0).
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Figure 5.118: Effect of the parameter a on overall Nusselt number of heated surface x = 1.0
(Ra = 104, Pr = 1.0, n = 0.5, λCY = 1.0).
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Figure 5.119: Effect of the parameter n on vertical velocity vy along the line y = 0.5 on the
symmetric plane (z = 0.5) of the cavity (Ra = 104, Pr = 1.0, a = 2.0, λCY = 1.0).
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Figure 5.120: Effect of the parameter n on viscosity (Ra = 104, Pr = 1.0, a = 2.0, λCY = 1.0).
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Figure 5.121: Effect of the parameter n on temperature θ along the line y = 0.5 on the symmetric
plane (z = 0.5) of the cavity (Ra = 104, Pr = 1.0, a = 2.0, λCY = 1.0).
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Figure 5.122: Effect of the parameter n on overall Nusselt number of heated surface x = 1.0
(Ra = 104, Pr = 1.0, a = 2.0, λCY = 1.0).
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Figure 5.123: Effect of the parameter λCY on vertical velocity vy along the line y = 0.5 on the
symmetric plane (z = 0.5) of the cavity (Ra = 104, Pr = 1.0, a = 2.0, n = 0.5).
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Figure 5.124: Effect of the parameter λCY on viscosity (Ra = 104, Pr = 1.0, a = 2.0, n = 0.5).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 CY = 0.1
 CY = 0.5
 CY = 1.0
 CY = 2.0

T

x

Figure 5.125: Effect of the parameter λCY on temperature θ along the line y = 0.5 on the symmet-
ric plane (z = 0.5) of the cavity (Ra = 104, Pr = 1.0, a = 2.0, n = 0.5).
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Figure 5.126: Effect of the parameter λCY on overall Nusselt number of heated surface x = 1.0
(Ra = 104, Pr = 1.0, a = 2.0, n = 0.5).

123



6. CONCLUSIONS ∗

The least-squares finite element model with high-order spectral/hp approximations has advan-

tages over conventional weak-form Galerkin model in eliminating any type of locking (which

often occurs in low-order LSFEMs of incompressible viscous fluids) and yielding accurate re-

sults with exponential convergence. In addition, since the least-squares formulation provides a

variational setting for the Navier–Stokes equations, there are no compatibility restrictions placed

between approximation spaces when the polynomial order used is sufficiently high (say, p > 3, as

determined numerically). We present the formulation of mixed least-squares finite element mod-

els using high-order spectral/hp approximation functions to analyze two- and three-dimensional,

steady, isothermal and non-isothermal flows of generalized-Newtonian fluids where the viscosity

obeys the Carreau–Yasuda constitutive model. The governing equations are recast into the equiv-

alent first-order system of equations, using the viscous stress and heat flux as auxiliary variables.

The method of manufactured solutions and several benchmark problems, namely, Kovasznay flow,

Jeffery-Hamel flow in a diverging channel, flow over a backward-facing step, lid-driven cavity

flow, flow past an unconfined circular cylinder, fully developed flow between parallel plates, and

buoyancy-driven flow in a cavity, are considered and the results are compared with the previously

known analytical, experimental and computational results. The results showed good agreement

with them, thus verifying and validating the present model. The effects of the three parameters

(a, n, λCY ) of the Carreau–Yasuda model on the kinematics of isothermal and non-isothermal

flows were also investigated. Also, we presented how the variation of each parameter (a, n, λCY )

affects the flow behaviors which are linked to viscosity change with respect to shear rate.

The Carreau–Yasuda viscosity model is used to study blood flows [55–59] and polymeric flows

[48–54], as mentioned earlier. For simulating blood flows, the viscosity which is independent of

∗Reprinted with permission from "A spectral/hp least-squares finite element analysis of the Carreau–Yasuda fluids,"
by Namhee Kim and J. N. Reddy, 2016. International Journal for Numerical Methods in Fluids, Vol. 82, pp. 541–
566. Copyright 2016 by John Wiley & Sons, Ltd. and from "3-D least-squares finite element analysis of flows of
generalized Newtonian fluids," by Namhee Kim and J. N. Reddy, 2019. Journal of Non-Newtonian Fluid Mechanics,
Vol. 266, pp. 143–159. Copyright 2019 by Elsevier, B.V.
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temperature as in Eq. (2.5) is used, while for simulating polymeric flows, temperature-dependency

is included in the viscosity model, since high temperature is required for polymer melt processing.

We are interested in solving these application examples for blood and polymer melts as future

works.

125



REFERENCES

[1] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of polymeric liquids. Vol. 1: Fluid

mechanics. John Wiley & Sons, New York, NY, 1987.

[2] R. J. Krane and J. Jessee, “Some detailed field measurements for a natural convection flow in

a vertical square enclosure,” in Proceedings of the First ASME-JSME Thermal Engineering

Joint Conference, 1983, vol. 1, pp. 323–329, 1983.

[3] J. N. Reddy, An Introduction to the Finite Element Method. McGraw-Hill New York, 4th ed.,

2019.

[4] J. N. Reddy, An Introduction to Nonlinear Finite Element Analysis: with applications to heat

transfer, fluid mechanics, and solid mechanics. Oxford University Press, 2nd ed., 2015.

[5] G. S. Payette, Spectral/hp finite element models for fluids and structures. Ph.D. Dissertation,

Texas A&M University, 2012.

[6] T. J. R. Hughes and A. Brooks, “A multidimensional upwind scheme with no crosswind

diffusion,” Finite Element Methods for Convection Dominated Flows, vol. 34, pp. 19–35,

1979.

[7] A. N. Brooks and T. J. R. Hughes, “Streamline upwind/Petrov-Galerkin formulations for

convection dominated flows with particular emphasis on the incompressible Navier-Stokes

equations,” Computer Methods in Applied Mechanics and Engineering, vol. 32, no. 1,

pp. 199–259, 1982.

[8] J. N. Reddy, “Penalty-finite-element analysis of 3-D Navier-Stokes equations,” Computer

Methods in Applied Mechanics and Engineering, vol. 35, no. 1, pp. 87–106, 1982.

[9] J. N. Reddy and D. K. Gartling, The Finite Element Method in Heat Transfer and Fluid

Dynamics. CRC press, 3rd ed., 2010.

[10] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, “A new finite element formulation for com-

putational fluid dynamics: Viii. the Galerkin/least-squares method for advective-diffusive

equations,” Computer Methods in Applied Mechanics and Engineering, vol. 73, no. 2,

126



pp. 173–189, 1989.

[11] J. H. Bramble and A. H. Schatz, “Least squares methods for 2mth order elliptic boundary-

value problems,” Mathematics of Computation, vol. 25, no. 113, pp. 1–32, 1971.

[12] E. D. Eason, “A review of least-squares methods for solving partial differential equations,”

International Journal for Numerical Methods in Engineering, vol. 10, no. 5, pp. 1021–1046,

1976.

[13] B. N. Jiang, The Least-squares Finite Element Method: theory and applications in compu-

tational fluid dynamics and electromagnetics. Springer Science & Business Media, 1998.

[14] P. B. Bochev and M. D. Gunzburger, Least-squares Finite Element Methods, vol. 166.

Springer Science & Business Media, 2009.

[15] B. N. Jiang and C. L. Chang, “Least-squares finite elements for the Stokes problem,” Com-

puter Methods in Applied Mechanics and Engineering, vol. 78, no. 3, pp. 297–311, 1990.

[16] B. N. Jiang and L. A. Povinelli, “Least-squares finite element method for fluid dynamics,”

Computer Methods in Applied Mechanics and Engineering, vol. 81, no. 1, pp. 13–37, 1990.

[17] B. N. Jiang, T. L. Lin, and L. A. Povinelli, “Large-scale computation of incompressible vis-

cous flow by least-squares finite element method,” Computer Methods in Applied Mechanics

and Engineering, vol. 114, no. 3, pp. 213–231, 1994.

[18] B. N. Jiang and V. Sonnad, “Least-squares solution of incompressible Navier-Stokes equa-

tions with the p-version of finite elements,” Computational Mechanics, vol. 15, no. 2,

pp. 129–136, 1994.

[19] P. B. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, “Analysis of velocity-flux

first-order system least-squares principles for the Navier-Stokes equations: Part i,” SIAM

Journal on Numerical Analysis, vol. 35, no. 3, pp. 990–1009, 1998.

[20] B. N. Jiang, “On the least-squares method,” Computer Methods in Applied Mechanics and

Engineering, vol. 152, no. 1, pp. 239–257, 1998.

[21] M. M. J. Proot and M. I. Gerritsma, “A least-squares spectral element formulation for the

Stokes problem,” Journal of Scientific Computing, vol. 17, no. 1-4, pp. 285–296, 2002.

127



[22] M. M. J. Proot and M. I. Gerritsma, “Least-squares spectral elements applied to the Stokes

problem,” Journal of Computational Physics, vol. 181, no. 2, pp. 454–477, 2002.

[23] J. P. Pontaza and J. N. Reddy, “Spectral/hp least-squares finite element formulation for the

Navier–Stokes equations,” Journal of Computational Physics, vol. 190, no. 2, pp. 523–549,

2003.

[24] J. P. Pontaza and J. N. Reddy, “Space–time coupled spectral/hp least-squares finite element

formulation for the incompressible Navier–Stokes equations,” Journal of Computational

Physics, vol. 197, no. 2, pp. 418–459, 2004.

[25] J. P. Pontaza, X. Diao, J. N. Reddy, and K. S. Surana, “Least-squares finite element models

of two-dimensional compressible flows,” Finite Elements in Analysis and Design, vol. 40,

no. 5, pp. 629–644, 2004.

[26] J. P. Pontaza, “Least-squares variational principles and the finite element method: theory,

formulations, and models for solid and fluid mechanics,” Finite Elements in Analysis and

Design, vol. 41, no. 7, pp. 703–728, 2005.

[27] V. Prabhakar and J. N. Reddy, “Spectral/hp penalty least-squares finite element formulation

for the steady incompressible Navier–Stokes equations,” Journal of Computational Physics,

vol. 215, no. 1, pp. 274–297, 2006.

[28] M. I. Gerritsma, “Direct minimization of the discontinuous least-squares spectral element

method for viscoelastic fluids,” Journal of Scientific Computing, vol. 27, no. 1-3, pp. 245–

256, 2006.

[29] V. Prabhakar and J. N. Reddy, “A stress-based least-squares finite-element model for incom-

pressible Navier–Stokes equations,” International Journal for Numerical Methods in Fluids,

vol. 54, no. 11, pp. 1369–1385, 2007.

[30] V. Prabhakar and J. N. Reddy, “Spectral/hp penalty least-squares finite element formulation

for unsteady incompressible flows,” International Journal for Numerical Methods in Fluids,

vol. 58, no. 3, pp. 287–306, 2008.

[31] V. Prabhakar, J. P. Pontaza, and J. N. Reddy, “A collocation penalty least-squares finite

128



element formulation for incompressible flows,” Computer Methods in Applied Mechanics

and Engineering, vol. 197, no. 6, pp. 449–463, 2008.

[32] G. S. Payette and J. N. Reddy, “On the roles of minimization and linearization in least-

squares finite element models of nonlinear boundary-value problems,” Journal of Computa-

tional Physics, vol. 230, no. 9, pp. 3589–3613, 2011.

[33] V. P. Vallala, Higher-Order Spectral/HP Finite Element Technology for Structures and Fluid

Flows. Texas A&M University, 2013.

[34] V. P. Vallala, R. Sadr, and J. N. Reddy, “Higher order spectral/hp finite element models

of the Navier–Stokes equations,” International Journal of Computational Fluid Dynamics,

vol. 28, no. 1-2, pp. 16–30, 2014.

[35] C. L. Chang and J. J. Nelson, “Least-squares finite element method for the Stokes problem

with zero residual of mass conservation,” SIAM Journal on Numerical Analysis, vol. 34,

no. 2, pp. 480–489, 1997.

[36] M. M. J. Proot and M. I. Gerritsma, “Mass-and momentum conservation of the least-squares

spectral element method for the stokes problem,” Journal of Scientific Computing, vol. 27,

no. 1-3, pp. 389–401, 2006.

[37] J. M. Deang and M. D. Gunzburger, “Issues related to least-squares finite element methods

for the stokes equations,” SIAM Journal on Scientific Computing, vol. 20, no. 3, pp. 878–

906, 1998.

[38] J. P. Pontaza, “A least-squares finite element formulation for unsteady incompressible flows

with improved velocity–pressure coupling,” Journal of Computational Physics, vol. 217,

no. 2, pp. 563–588, 2006.

[39] J. J. Heys, E. Lee, T. A. Manteuffel, and S. F. McCormick, “An alternative least-squares

formulation of the Navier-Stokes equations with improved mass conservation,” Journal of

Computational Physics, vol. 226, no. 1, pp. 994–1006, 2007.

[40] P. B. Bochev and M. D. Gunzburger, “Finite element methods of least-squares type,” SIAM

review, vol. 40, no. 4, pp. 789–837, 1998.

129



[41] B. C. Bell and K. S. Surana, “A space–time coupled p-version least-squares finite element

formulation for unsteady fluid dynamics problems,” International Journal for Numerical

Methods in Engineering, vol. 37, no. 20, pp. 3545–3569, 1994.

[42] B. C. Bell and K. S. Surana, “A space-time coupled p-version least squares finite element

formulation for unsteady two-dimensional Navier-Stokes equations,” International Journal

for Numerical Methods in Engineering, vol. 39, no. 15, pp. 2593–2618, 1996.

[43] K. S. Surana and J. S. Sandhu, “Investigation of diffusion in p-version LSFE and STLSF

formulations,” Computational Mechanics, vol. 16, no. 3, pp. 151–169, 1995.

[44] N. Kim and J. N. Reddy, “A spectral/hp least-squares finite element analysis of the Carreau–

Yasuda fluids,” International Journal for Numerical Methods in Fluids, vol. 82, no. 9,

pp. 541–566, 2016.

[45] A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel

expansion,” Journal of Computational Physics, vol. 54, no. 3, pp. 468–488, 1984.

[46] G. E. Karniadakis and S. J. Sherwin, Spectral/hp element methods for computational fluid

dynamics. Oxford University Press, 2nd ed., 2013.

[47] M. O. Deville, P. F. Fischer, and E. H. Mund, High-order methods for incompressible fluid

flow, vol. 9. Cambridge University Press, 2002.

[48] J. Aho and S. Syrjälä, “On the measurement and modeling of viscosity of polymers at low

temperatures,” Polymer Testing, vol. 27, no. 1, pp. 35–40, 2008.

[49] J. Aho, “Rheological characterization of polymer melts in shear and extension: measure-

ment reliability and data for practical processing,” Tampereen teknillinen yliopisto. Julkaisu-

Tampere University of Technology. Publication; 964, 2011.

[50] T. A. L. Harris, Design methodology, science, and technology to manufacture high temper-

ature polymer electrolyte membranes for fuel cells. ProQuest, 2006.

[51] T. A. L. Harris and D. Walczyk, “A study of the rheological behavior of high-temperature

polymer electrolyte membrane solutions,” Journal of Applied Polymer Science, vol. 111,

no. 3, pp. 1286–1292, 2009.

130



[52] T. Ishikawa, S. Kihara, and K. Funatsu, “3-d non-isothermal flow field analysis and mixing

performance evaluation of kneading blocks in a co-rotating twin srew extruder,” Polymer

Engineering & Science, vol. 41, no. 5, pp. 840–849, 2001.

[53] X. M. Zhang, L. F. Feng, W. X. Chen, and G. H. Hu, “Numerical simulation and experimen-

tal validation of mixing performance of kneading discs in a twin screw extruder,” Polymer

Engineering & Science, vol. 49, no. 9, pp. 1772–1783, 2009.

[54] H. Sobhani, P. D. Anderson, H. H. E. Meijer, M. H. R. Ghoreishy, and M. Razavi-Nouri,

“Non-isothermal modeling of a non-newtonian fluid flow in a twin screw extruder using

the fictitious domain method,” Macromolecular Theory and Simulations, vol. 22, no. 9,

pp. 462–474, 2013.

[55] F. J. H. Gijsen, F. N. van de Vosse, and J. D. Janssen, “The influence of the non-newtonian

properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model,”

Journal of Biomechanics, vol. 32, no. 6, pp. 601–608, 1999.

[56] F. J. H. Gijsen, E. Allanic, F. N. Van de Vosse, and J. D. Janssen, “The influence of the non-

newtonian properties of blood on the flow in large arteries: unsteady flow in a 90 curved

tube,” Journal of Biomechanics, vol. 32, no. 7, pp. 705–713, 1999.

[57] J. Boyd, J. M. Buick, and S. Green, “Analysis of the Casson and Carreau-Yasuda non-

Newtonian blood models in steady and oscillatory flows using the lattice Boltzmann

method,” Physics of Fluids, vol. 19, no. 9, p. 093103, 2007.

[58] D. Wang and J. Bernsdorf, “Lattice boltzmann simulation of steady non-newtonian blood

flow in a 3d generic stenosis case,” Computers & Mathematics with Applications, vol. 58,

no. 5, pp. 1030–1034, 2009.

[59] J. Biasetti, F. Hussain, and T. C. Gasser, “Blood flow and coherent vortices in the normal

and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation,”

Journal of The Royal Society Interface, p. rsif20110041, 2011.

[60] M. T. Schobeiri, Fluid Mechanics for Engineers: A Graduate Textbook. Springer Science

& Business Media, 2010.

131



[61] K. S. Surana, M. K. Engelkemier, J. N. Reddy, and P. W. Tenpas, “k-version least squares

finite element processes for 2-D generalized Newtonian fluid flows,” International Journal

for Computational Methods in Engineering Science and Mechanics, vol. 8, no. 4, pp. 243–

261, 2007.

[62] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena. 2002.

[63] A. J. Smits, A Physical Introduction to Fluid Mechanics. Wiley, 2000.

[64] J. N. Reddy, An Introduction to Continuum Mechanics. Cambridge University Press,

2nd ed., 2013.

[65] T. E. Twardowski, Introduction to nanocomposite materials: properties, processing, char-

acterization. DEStech publications, Inc, 2007.

[66] F. A. Morrison, Understanding Rheology. Oxford University Press, 2001.

[67] H. S. Dalimunthe and K. S. Surana, “p-version least squares finite element formulation for

three-dimensional, incompressible, non-isothermal, non-Newtonian fluid flow,” Computers

& Structures, vol. 58, no. 1, pp. 85–105, 1996.

[68] X. Han and X. Li, “An iterative stabilized CNBS–CG scheme for incompressible non-

isothermal non-Newtonian fluid flow,” International Journal of Heat and Mass Transfer,

vol. 50, no. 5, pp. 847–856, 2007.

[69] J. C. Han, Analytical Heat Transfer. CRC Press, 2012.

[70] V. Prabhakar, Least squares based finite element formulations and their applications in fluid

mechanics. PhD thesis, 2009.

[71] D. J. Tritton, Physical fluid dynamics. Springer Science & Business Media, 2012.

[72] T. A. Davis, “Algorithm 832: Umfpack v4.3—an unsymmetric-pattern multifrontal

method,” ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 2, pp. 196–

199, 2004.

[73] T. A. Davis, “A column pre-ordering strategy for the unsymmetric-pattern multifrontal

method,” ACM Transactions on Mathematical Software (TOMS), vol. 30, no. 2, pp. 165–

195, 2004.

132



[74] T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method for sparse lu fac-

torization,” SIAM Journal on Matrix Analysis and Applications, vol. 18, no. 1, pp. 140–158,

1997.

[75] T. A. Davis and I. S. Duff, “A combined unifrontal/multifrontal method for unsymmetric

sparse matrices,” ACM Transactions on Mathematical Software (TOMS), vol. 25, no. 1,

pp. 1–20, 1999.

[76] L. I. G. Kovasznay, “Laminar flow behind a two-dimensional grid,” in Mathematical Pro-

ceedings of the Cambridge Philosophical Society, vol. 44, pp. 58–62, Cambridge Univ

Press, 1948.

[77] G. B. Jeffery, “L. the two-dimensional steady motion of a viscous fluid,” The London, Ed-

inburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 29, no. 172,

pp. 455–465, 1915.

[78] G. Hamel, “Spiralförmige bewegungen zäher flüssigkeiten.,” Jahresbericht der deutschen

mathematiker-vereinigung, vol. 25, pp. 34–60, 1917.

[79] M. T. Schobeiri, “Geschwindigkeits-und temperaturverteilung in hamelscher spiralströ-

mung,” ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte

Mathematik und Mechanik, vol. 60, no. 4, pp. 195–200, 1980.

[80] M. T. Schobeiri, “The influence of curvature and pressure gradient on the flow temperature

and velocity distribution,” International Journal of Mechanical Sciences, vol. 32, no. 10,

pp. 851–861, 1990.

[81] K. Millsaps and K. Pohlhausen, “Thermal distributions in jeffery-hamel flows between non-

parallel plane walls,” J. Aeronaut. Sci, vol. 20, no. 3, pp. 187–196, 1953.

[82] J. C. Heinrich and R. S. Marshall, “Viscous incompressible flow by a penalty function finite

element method,” Computers & Fluids, vol. 9, no. 1, pp. 73–83, 1981.

[83] D. K. Gartling, R. E. Nickell, and R. I. Tanner, “A finite element convergence study for

accelerating flow problems,” International Journal for Numerical Methods in Engineering,

vol. 11, no. 7, pp. 1155–1174, 1977.

133



[84] P. E. Haines, R. E. Hewitt, and A. L. Hazel, “The jeffery–hamel similarity solution and its

relation to flow in a diverging channel,” Journal of Fluid Mechanics, vol. 687, pp. 404–430,

2011.

[85] K. Salari and P. Knupp, “Code verification by the method of manufactured solutions,” tech.

rep., Sandia National Labs., Albuquerque, NM (US); Sandia National Labs., Livermore, CA

(US), 2000.

[86] P. N. Shankar and M. D. Deshpande, “Fluid mechanics in the driven cavity,” Annual Review

of Fluid Mechanics, vol. 32, no. 1, pp. 93–136, 2000.

[87] A. Shamekhi and K. Sadeghy, “Cavity flow simulation of Carreau–Yasuda non-Newtonian

fluids using PIM meshfree method,” Applied Mathematical Modelling, vol. 33, no. 11,

pp. 4131–4145, 2009.

[88] S. Haque, I. Lashgari, F. Giannetti, and L. Brandt, “Stability of fluids with shear-dependent

viscosity in the lid-driven cavity,” Journal of Non-Newtonian Fluid Mechanics, vol. 173,

pp. 49–61, 2012.

[89] E. Leriche and S. Gavrilakis, “Direct numerical simulation of the flow in a lid-driven cubical

cavity,” Physics of Fluids, vol. 12, no. 6, pp. 1363–1376, 2000.

[90] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re solutions for incompressible flow using

the Navier-Stokes equations and a multigrid method,” Journal of Computational Physics,

vol. 48, no. 3, pp. 387–411, 1982.

[91] G. Biswas, M. Breuer, and F. Durst, “Backward-facing step flows for various expansion

ratios at low and moderate Reynolds numbers,” Journal of Fluids Engineering, vol. 126,

no. 3, pp. 362–374, 2004.

[92] H. W. Choi and A. I. Barakat, “Numerical study of the impact of non-Newtonian blood

behavior on flow over a two-dimensional backward facing step,” Biorheology, vol. 42, no. 6,

pp. 493–509, 2005.

[93] J. Kim and P. Moin, “Application of a fractional-step method to incompressible Navier-

Stokes equations,” Journal of Computational Physics, vol. 59, no. 2, pp. 308–323, 1985.

134



[94] A. Shamekhi, K. Sadeghy, M. Nik-Khah Bahrami, and N. Hasan, “Using mesh free method

for numerical simulation of non-Newtonian fluid flow over a step,” Journal of the Society of

Rheology, Japan, vol. 36, no. 1, pp. 19–27, 2008.

[95] D. K. Gartling, “A test problem for outflow boundary conditions–flow over a backward-

facing step,” International Journal for Numerical Methods in Fluids, vol. 11, no. 7, pp. 953–

967, 1990.

[96] B. F. Armaly, F. Durst, J. C. F. Pereira, and B. Schönung, “Experimental and theoretical

investigation of backward-facing step flow,” Journal of Fluid Mechanics, vol. 127, pp. 473–

496, 1983.

[97] P. T. Williams and A. J. Baker, “Incompressible computational fluid dynamics and the con-

tinuity constraint method for the three-dimensional Navier-Stokes equations,” Numerical

Heat Transfer, vol. 29, no. 2, pp. 137–273, 1996.

[98] R. D. Blevins, Flow-induced vibration. New York, NY, Van Nostrand Reinhold Co., Inc.,

1977.

[99] N. Kim and J. N. Reddy, “Least-squares finite element analysis of flow of a generalized

Newtonian fluid past a circular cylinder,” Mechanics of Advanced Materials and Structures,

vol. 25, no. 14, pp. 1186–1196, 2018.

[100] I. Lashgari, J. O. Pralits, F. Giannetti, and L. Brandt, “First instability of the flow of shear-

thinning and shear-thickening fluids past a circular cylinder,” Journal of Fluid Mechanics,

vol. 701, pp. 201–227, 2012.

[101] A. S. Grove, F. H. Shair, and E. E. Petersen, “An experimental investigation of the steady

separated flow past a circular cylinder,” Journal of Fluid Mechanics, vol. 19, no. 01, pp. 60–

80, 1964.

[102] M. Kawaguti and P. Jain, “Numerical study of a viscous fluid flow past a circular cylinder,”

Journal of the Physical Society of Japan, vol. 21, no. 10, pp. 2055–2062, 1966.

[103] T. Fusegi, J. M. Hyun, K. Kuwahara, and B. Farouk, “A numerical study of three-

dimensional natural convection in a differentially heated cubical enclosure,” International

135



Journal of Heat and Mass Transfer, vol. 34, no. 6, pp. 1543–1557, 1991.

136


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background
	Motivation and scope of the present study

	Governing equations
	Isothermal generalized Newtonian flows
	Non-isothermal generalized Newtonian flows
	Type A: with viscous dissipation
	Type B: with buoyancy force


	Least-squares formulation
	Isothermal generalized Newtonian flows
	Non-isothermal generalized Newtonian flows
	Type A: with viscous dissipation
	Type B: with buoyancy force


	Finite element model
	Isothermal generalized Newtonian flows
	Non-isothermal generalized Newtonian flows

	Numerical examples
	Kovasznay flow
	Jeffery-Hamel flow in a diverging channel
	Method of manufactured solutions
	Lid-driven cavity flow
	Problem description
	Two-dimensional simulation
	Three-dimensional simulation

	Verification and validation tests
	Two-dimensional simulation
	Three-dimensional simulation

	Parametric study of Carreau–Yasuda fluids

	Flow over a backward-facing step
	Problem description
	Two-dimensional simulation
	Three-dimensional simulation

	Verification and validation tests
	Parametric study of Carreau–Yasuda fluids

	Flow past an unconfined circular cylinder
	Problem description
	Verification test
	Parametric study of Carreau–Yasuda fluids

	Fully developed flow between parallel plates
	Problem description
	Verification and validation tests
	Parametric study of Carreau–Yasuda fluids

	Buoyancy-driven flow in a cubic cavity
	Problem description
	Verification and validation tests
	Parametric study of Carreau–Yasuda fluids


	Conclusions
	REFERENCES

