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ABSTRACT 

 

The Cascadia subduction zone hosts quasi-periodic, large-scale slow slip events which 

have been shown to be precursors to large, tsunamigenic earthquakes at other active subduction 

zone margins. Detection of these events in Cascadia utilizes continuous GPS measurements and 

high-resolution seismic stations to capture geodetic reversals and spatially correlated tremor, 

respectively, associated with slow slip. Borehole pore pressure data have been shown to record 

signals related to slow slip and may provide an alternate means of detection for these events, 

potentially in near real-time. We evaluate this hypothesis by developing and testing anomalous 

signal detection methods for these data, specifically using evaluations of STA/LTA and a Holt-

Winter’s predictive model. We also perform Bayesian statistical analysis on these detections to 

determine the posterior probability of a slow slip event given an anomalous pore pressure 

detection. Our results show that a Holt-Winter’s model readily detects strongly correlated 

anomalous activity across multiple boreholes at known times of slow-slip, and the posterior 

probability of slow slip given a detection ranges from 50-100%. We conclude that borehole pore 

pressure data do record anomalous signals associated with slow slip, and we speculate that groups 

of multiple, closely located boreholes may perform as a real-time detection network for slow slip 

events. 
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NOMENCLATURE 
 

HPa Hectopascals 

Hz Hertz 

LTA Long-term average 

Pa Pascals 

PBO Plate Boundary Observatory 

p(Pd) Probability of a pressure detection 

p(Pd|SS) Probability of a pressure detection during slow-slip 

p(SS) Probability of slow-slip 

p(SS|Pd) Probability of slow-slip during a pressure detection 

SSE Slow-slip event 

STA Short-term average 
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1. INTRODUCTION

The Cascadia subduction zone along the coast of the Pacific Northwest of the United States 

and Vancouver Island exhibits a range of earthquake activity including large-scale slow-slip events 

(SSEs). SSEs are nearly silent, large-scale earthquakes with very slow durations compared to that 

of regular earthquakes. SSEs have been observed at multiple subduction zone margins at depths 

ranging from above to below regular earthquake nucleation [e.g. Dragert et al. 2001; Obara et al. 

2004; Davis et al. 2011].  Cascadia SSEs have magnitudes of Mw = ~6 – 7, last anywhere from a 

few days to upwards of 2 months, and occur regularly every 12-16 months. Previous studies have 

shown that SSEs can be precursors to large tsunamigenic earthquakes [Kato et al. 2012; Bouchon 

et al. 2013; Ito et al. 2013(1), Ito et al. 2013 (2)]. Thus, it is important to develop methods to 

efficiently recognize the occurrence of SSEs in near-real-time.  

SSEs are commonly recognized by geodetic signals from continuous GPS monitoring 

stations that suggest large-scale transient slip on the subduction zone plate boundary fault [e.g. 

Rogers and Dragert, 2003; Wallace et al. 2010; Crowell et al. 2016]. Eight-day to two-month long 

episodes of very low amplitude, spatially correlated seismic signals, otherwise known as tremor, 

are sometimes observed on high-resolution seismograms during SSEs and are often used as a proxy 

indicator of ongoing slow-slip [Wech and Bartlow 2014]. In Cascadia, the spatio-temporal nature 

of SSEs is commonly identified by tremor observations first and then later confirmed and clarified 

with GPS observations [Schwartz and Rokosky, 2007; Peng and Gomberg, 2010]. These geodetic 

transients occur as 8-20 day westward reversals in the otherwise easting component of continuous 

GPS station data [Dragert et al. 2001]. 

 As a means of SSE detection, GPS data are noisy, and it can be difficult to resolve or 

recognize SSEs within these data until considerable time has elapsed during an event. 

Alternatively, tremor has better temporal resolution, but is not always present during SSEs 
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[Schwartz and Rokosky, 2007; Wech and Bartlow, 2014]. Here, we investigate the potential for 

detecting on-going SSEs through the use of borehole pore pressure data and their response to 

volumetric strains associated with fault slip during SSEs.  

We hypothesize that existing and ongoing onshore measurements of borehole pore pressure 

in Cascadia may respond to SSEs such that it can help detect SSEs in near real-time. Volumetric 

strains caused by static stress changes from fault slip have long been recognized to influence pore 

pressure and well water levels [e.g. Roeloffs 1996; Segall 2010; Wang and Manga 2010]. 

Poroelastic responses from slow slip have also been previously been recognized within pore 

pressure observatories offshore the Nankai and Costa Rican subduction zones and onshore along 

the San Andreas Fault [e.g. Roeloffs 1989; Davis et al. 2015; Araki et al., 2017].  

More recently, the offshore observatories’ pore pressure data have been shown to respond 

to SSEs at the Nankai subduction zone in Japan, both as precursors to large earthquakes and as 

statically triggered events [Araki et al. 2017]. These observations from offshore observatory wells 

reveal signatures of slow slip, sometimes several days before they are otherwise recognized 

seismically, and in some scenarios when they were otherwise missed by seismic detection 

methods. With a possibility of similar pore pressure responses to SSEs in Cascadia, we develop 

and assess a variety of detection methods to capture variations in pore pressure that are potentially 

related to SSEs in onshore measurements.  

This study aims to detect anomalous behavior potentially associated with SSEs by 

implementing a variety of signal processing techniques, including filtering, short-term averages 

divided by long-term averages (STA/LTA), and predictive modeling / machine learning. To assess 

each method’s detection ability, we compare detections drawn from existing data to known 

instances of slow slip constrained by tremor, GPS transients, strainmeter responses, and SSE 

catalogs. We apply Bayesian statistical analysis to determine the efficacy of each method in 
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detecting SSEs by assessing the probability that an observed anomaly within pore pressure data is 

related to an SSE.  
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2. THE DATA AND PRELIMINARY ANALYSIS

To evaluate whether or not pore pressure can be used to detect SSEs in Cascadia, we 

analyze pore pressure data from nine borehole observatories that comprise a portion of the Pacific 

Northwest Borehole Array component of NSF Earthscope’s Plate Boundary Observatory (PBO) 

network. These observatories are specifically designed to be sensitive to strains associated with 

both seismic and aseismic tectonic activity [Roeloffs 2010]. Each borehole station actively records 

pore pressure, strain, and atmospheric data. For each station, continuous GPS stations are either 

co-located or close by. Each station has been operating and recording data for ~11 years, and all 

datasets analyzed start in April 2007 and end in July 2018. Pore pressure recorded from 2007 to 

mid-November 2009 is sampled at 1/300 Hz. Sampling rates shift to 1 Hz from mid-November 

2009 to July 2018. Strainmeter, atmospheric, and GPS data are recorded at 1/300 Hz, 1/86400 Hz, 

and 1/86400 Hz respectively. Before analysis, all data are processed to account for shifts in 

sampling rate and for data gaps. 

Figure 1 shows the locations of the observatories in the Cascadia region and their position 

relative to some known occurrences of SSE-related tremor. Figures 2 shows examples of raw pore 

pressure and GPS time series. Pore pressure responds to various natural phenomena, including 

tidal loading, short term meteorological events, and seasonal changes. Even in the raw data, 

anomalous pore pressure signals are apparent at the time of some SSEs, which provides some 

initial indication for the potential validity of our hypothesis. The behavior of these anomalies 

varies, with some occurring as dilatational or contractional steps, contractional spikes, or 

dilatational spikes lasting anywhere 8 to 15 days.  

We apply a 2nd order 6-60 day causal bandpass filter on the data to remove most tidal 

signals, signals from short-term meteorological events, and long-term seasonal trends. This 

bandpass however, should preserve signals with periods comparable to the commonly observed 
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duration of Cascadia SSEs. The pore pressure anomalies observed in the raw data are still clearly 

visible in the filtered data and coincide with GPS and strainmeter transients at known times of 

SSEs. Visual inspection of both filtered and raw data at the time of known SSEs finds anomalous 

pore pressure signals in at least one observatory borehole for about 60% of cataloged SSEs. The 

durations of these anomalies in filtered data ranges between 8 and 15 days. Figures 2a and 2b show 

examples of these anomalies within pore pressure data for a few borehole sites at two different 

time periods, 2013 and 2015-2016.  Note that these anomalies do not persist through the entire 

SSE, marked in orange. These anomalies primarily coincide with tremor swarms as they migrate 

into the area near the PBO borehole site. 
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3. DETECTION METHODS

To develop an objective and effective means of detecting potential signatures of slow slip, 

we implement a variety of techniques, including STA/LTA and a Holt-Winter’s predictive model, 

and test their effectiveness through Bayesian analysis. Each technique returns detections from 

input data as a function of time and each can potentially be updated in a machine-learning sense 

as new data are recorded at the PBO boreholes observatories. 

3.1 STA/LTA 

We first evaluate the ratio of short-term over long-term averages (STA/LTA), a common 

detection method used in seismology for detecting earthquakes in seismograms [Murdock and 

Hutt, 1983; Allen, 1978]. For the pore pressure data here, the short-term average (STA) is a 

measure of the average behavior of high-frequency signals similar in duration to the STA, such as 

earth tides and short-term meteorological events.  The long-term average (LTA) is a measure of 

the average behavior for low-frequency signals within the data, such as those related to seasonal 

weather patterns or other background behaviors. An STA/LTA ratio that surpasses a set trigger 

threshold indicates that anomalous high-frequency signals are being recorded.  

 We are interested in detecting anomalous signals with durations similar to that of SSEs. 

As such, we use an 8-day STA over an 80-data LTA, which will encompass signals with lengths 

comparable to the typical durations of SSEs in Cascadia. The averages are calculated using causal 

moving windows. Detections are defined as when the ratio STA/LTA exceeds an arbitrary 

threshold. We evaluate detections from four different variants of processed input data: 1) the 

absolute value of raw, demeaned data, 2) the square of raw, demeaned data, 3) the absolute value 

of bandpass filtered data, and 4) the square of bandpass filtered data. Figure 3 shows examples of 

these processed data. Taking the square or absolute value of the data takes only the amplitude of 

the signal into account when searching for anomalous transients, with the former amplifying larger 
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signals and dampening weaker signals. The applied bandpass filter of 6-60 days removes high 

frequency signals related to earth tides, short-term meteorological effects, and long-term seasonal 

changes. 

 We apply a range of ratio thresholds for each borehole site and determine the thresholds 

that best detect anomalous behavior compared to a catalog of known SSEs. The range is set to 

include thresholds that constantly detect anomalous activity to thresholds that detect very few 

anomalies. The ideal threshold is one that detects anomalous activity caused by SSEs. As such, we 

chose the best threshold as the one that detects anomalous activity during known times of SSEs 

and little anomalous activity at other times (see Table 1 for a list of applied STA/LTA parameters 

and tested thresholds). Figure 4 shows an example of this detection method, with anomaly 

detections marked within the STA/LTA plot. Detections, or STA/LTA ratios that surpass the 

threshold, are converted into a time series plot where a value of “1” is assigned to data point of 

anomalous activity and a value of “0” indicates no anomalous activity, shown by the stem plot in 

Figure 4. 

3.2 Predictive Model Anomaly Detection 

As another means of detection, we use anomaly detection via a Holt-Winter’s forecasting 

model. This forecasting algorithm is designed to model short-term trends and long-term 

seasonality within data and is often used to detect outliers from otherwise cyclic data [Holt, 1957; 

Winters, 1960; e.g. Barford et al., 2002; Szmit and Adamus, 2012].   

Holt-Winter’s forecasting, also known as triple-exponential smoothing, allows for 

forecasting of future data based on input data’s cyclicity (or seasonality), trends, and point-to-point 

behavior, without the need for removal of components by filtering. Triple exponential smoothing 

follows [from Szmit and Adamus, 2012]: 

𝑦"#$% = I# + mB# + S#,-$.$(0,.)023- 
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with 

										𝑦"#$% = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑	𝑣𝑎𝑙𝑢𝑒	𝑎𝑡	𝑥 + 𝑚,𝑤𝑖𝑡ℎ	𝑚	𝑎𝑛	𝑖𝑛𝑡𝑒𝑔𝑒𝑟 

																																										I# = 	𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡, 𝑜𝑟	𝑙𝑖𝑛𝑒𝑎𝑟	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

																																											B# = 	𝑡𝑟𝑒𝑛𝑑	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

																																											S#,-$.$(0,.)023- = 𝑐𝑦𝑐𝑙𝑖𝑐𝑖𝑡𝑦	(𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙)	𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 

Each component is defined by: 

I# = α(y# − S#,L	) + (1 − α)(I#,. + B#,.) 

B# = β(I# − I#,.) + (1 − β)B#,. 

	S# = γ(	y# −	 I#) + (1 − γ)S#,L 

where a, b, and g are smoothing parameters for their respective components, L is the 

number of measurements associated with one season, m is the number of predicted data points 

beyond data point x, and (m-1)modL being the modulus after division of (m-1) and L. These 

smoothing parameters, also known as “forgetting factors,” weight the influence of previous 

seasonal, trend, and data point components on the current value of the model. Generally, the 

smoothing factors are taken as those that minimize the sum of squared errors of prediction. Note 

each component requires initial values, each of which are calculated from the time series from a 

“training period” of desired length for the algorithm. 

The Holt-Winter’s model acts as a smoothing function that requires initial values to 

calculate the seasonality, trend, and data variation. These initial values are calculated from a set 

amount of data that “trains” the model. The more data included in the calculation of these initial 

values, the more sensitive the model becomes to deviations from “normal” behavior. The output 

is an exponentially smoothed version of the input data plus a set amount of predicted data points 

for a forecast of desired length.  
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Here, data that deviate from the forecast model are marked as anomalous transients. These 

transients are data that exceed Brutlag confidence bands calculated from the model, which define 

the upper and lower thresholds of expected behavior [Brutlag, 2000]. The algorithm takes high-

frequency changes, short-term trends, and seasonality into account when calculating the model, 

but the input pore pressure data are demeaned for optional filtering. We iteratively train the model 

with additional seasonal cycles and trends by adding a year’s worth of data for each iteration, 

beginning with two years and ending at eleven years. 

The three smoothing parameters are chosen by iteratively running the Holt-Winter’s model 

until the values minimize the sum of squared errors of prediction. Initial values must be chosen 

before the iterative error reduction. This is done qualitatively by determining, by eye, the 

sensitivity of a PBO site’s entire pore pressure dataset to seasonal and short-term influences. The 

more readily seasonal activity, trends, or high frequency signals are observed to stand out, the 

lower the initial forgetting factors for each are set. After the error reduction returns updated 

smoothing parameters, manual minor adjustments refine the final parameters, so the model is more 

sensitive to anomalous activity during SSEs. This is done through trial and error, in which the 

smoothing parameters are varied slightly until the model consistently detects anomalous activity 

during SSEs with few detections outside of these events. We then select the most effective training 

period and smoothing parameters for detecting SSEs by analyzing the marked data. Should data 

marked as anomalous primarily fall during times of SSEs, the selected parameters are likely 

effective. We test the model on the final three years of data, from 2014 to 2017, to find detections. 
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4. BAYESIAN ANALYSIS

Once detections are returned by each method, we utilize Bayesian statistical analysis to 

assess each method’s efficacy in detecting SSEs. Bayesian statistics determines the probability of 

an event or phenomenon, A, given the occurrence of a different, related event or phenomenon, B. 

We are interested if anomalous pore pressure detections can be used to detect SSEs without a priori 

knowledge of their occurrence. We know the probability of a pore pressure detection given the 

occurrence of slow-slip, aforementioned at roughly 60%, but we want to calculate the probability 

of slow-slip given the detection of a pore pressure anomaly so as to not rely on any more a priori 

information than what is already catalogued. 

This quantity, formally known as the posterior probability, can be calculated using Bayes’ 

theorem, which in terms applicable here follows [Stone 2013]: 

𝑝(𝑆𝑆|𝑃𝑑) = 𝑝(𝑃𝑑|𝑆𝑆) ∗
𝑝(𝑆𝑆)
𝑝(𝑃𝑑)

where p(SS|Pd) is the posterior probability of an SSE (SS) given the detection of pore pressure 

anomalies (Pd).  p(Pd|SS) is the known prior probability of a detected pore-pressure anomaly 

occurring during known times of SSEs. p(SS) is the known likelihood of an SSE within the data, 

and p(Pd) is the probability of a pore pressure detection occurring within the data, regardless of 

cause, from a specific detection method.  

Qualitatively, p(SS) is the ratio of a priori known slow slip duration within the region to 

the total duration of a particular pore pressure time series. p(Pd) is the ratio of total anomalous 

pressure activity from an applied detection method to the total duration of the pore pressure time 

series. p(Pd|SS) is the ratio of anomalous pressure detections during slow slip to the total number 

of measurements taken during slow slip.  If a data gap occurs in the pore pressure time series, the 

amount of missing time is accounted for in the total duration when calculating p(Pd) by removing 

it from the total slow slip duration used when calculating p(SS) and p(Pd|SS).  
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We calculate a suite of posterior probabilities: for each of the nine PBO stations, for each 

applied detection method (STA/LTA and the Holt-Winter’s model), for each threshold or training 

period used for each method, respectively. Each of these single-station probabilities are used to 

ascertain each method’s ability to detect Cascadia SSEs. 
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5. JOINT PROBABILITY

To potentially improve the efficiency of detections, we calculate posterior probabilities 

that take multiple stations’ detections into account. Large-scale regional phenomena, such as 

SSEs, are expected to induce observable pore pressure anomalies, at multiple locations, within a 

short temporal window. By computing joint probabilities, we preserve and enhance those 

detections that are spatiotemporally correlated and minimize detections related to local, site-

specific disturbances. These joint-posterior probabilities are more robust than their site-specific 

counterparts given that SSEs are spatially large scale in nature, and it is expected that multiple 

borehole observatories should detect the same event.  

To account for the spatiotemporal variation of SSEs, and thus potential delays in response 

between stations, we use one to four-day causal moving windows when temporally-correlating 

multiple stations’ detections. If a detection is found within the window, the data within that 

window are marked as anomalous and a single detection is set at the end of the temporal 

window. Figure 5 shows an example of this procedure. 

 We calculate the joint-posterior probabilities for each pair of borehole sites for the most 

effective STA/LTA method and for the Holt-Winter’s model. p(Pd) is now calculated by taking 

the ratio of the total number of detections and the total number of temporal windows.  p(Pd|SS) 

is now calculated using the total number of detections divided by the total number of time 

windows that fall during SSEs. Time windows that partially fall during known SSEs are included 

within the calculations. From these values, we then determine the best groups of wells for joint-

detections: well groups that have high amounts of temporally correlated detections are more 

likely to be used in tandem in the form of an SSE detection network.  We then calculate the joint-

posterior probabilities for these well groups and for all nine stations together, for each detection 

method, to determine if a full network-wide application is possible. 
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6. RESULTS

6.1 STA/LTA, Unfiltered Data 

Figure 4 shows examples of the processed pore pressure data, STA over LTA, and 

detections found with the applied threshold for the unfiltered data. The detections are shown in 

the lowermost stem plots within Figure 4. The processed data, either the absolute value (Figure 

4a) or the square of the data (Figure 4b), appear noisy and return fairly similar STA/LTA values 

for all datasets. The unvarying STA/LTA ratio leads to a widely spread, large number of 

detections for lower STA/LTA thresholds (3rd plots in Figures 4a/4b) or very few detections at 

higher STA/LTA thresholds (4th plots in figures 4a/4b). This is consistent across all wells for this 

application. Lower thresholds return a wide spread of detections throughout the dataset, with 

many occurring during and outside times of known SSEs. Higher thresholds return significantly 

fewer detections, but very few occur during more than one SSE.  

Examples of the resultant posterior probabilities for the two variants of unfiltered data are 

shown in Table 2. The probabilities are low, ranging from 9-18% when the detection thresholds 

are set low (STA/LTA=1.25 or 1.75 for the absolute value and square data, respectively). These 

probabilities either drop to 0%, or increase to 22-52%, when the detection thresholds are 

increased slightly (to above STA/LTA=1.5 or 2, for the absolute value and square data, 

respectively).  The increase in posterior probability corresponds with a decrease in the number of 

detections overall rather than an increase in the number of detections during slow slip.  See 

Supplemental Materials for all calculated probabilities for this application of STA/LTA. 

6.2 STA/LTA, Filtered Data 

Figure 4 also shows examples of the filtered pore pressure data, STA over LTA, and 

detections found with the applied threshold for the absolute value of the filtered data. The 

absolute value of these filtered data (Figure 4c) appear noisy and return fairly constant STA/LTA 
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values for all datasets, similar to that of the unfiltered data. The occurrence of detections for the 

absolute value of the filtered data are also similar to that of the unfiltered data. The square of the 

data (Figure 4d), has a more variable STA/LTA ratio for all datasets and returns significantly 

fewer detections at both low and high thresholds (lowermost two plots in Figure 4d). At lower 

thresholds (STA/LTA=1.75-2), multiple detections occur both during and outside of times of 

known slow-slip. At higher thresholds (STA/LTA>2.75) the number of detections both in and 

outside of known times of SSEs drops, with few retained during times of SSEs. Detections that 

are retained during SSEs are done so only during one or two events. This method does not 

readily detect anomalous behavior for all SSEs. 

Table 3 shows examples of the posterior probabilities from the absolute value and square 

value of the filtered data. The probabilities for the absolute value of the filtered data are similar 

to that of the unfiltered data- consistently low for lower thresholds which rapidly increase or 

drop to 0% with increasing threshold. At lower thresholds (STA/LTA=1.75, the posterior 

probabilities ranges from 8-16%. A slightly higher threshold (STA/LTA=2) increases this range 

to 9-21%. Higher thresholds still (STA/LTA=2.5) increase this range further to 0-30%. This is 

again due to a low number of detections made at higher thresholds, with few, if any, occurring 

during one or two SSEs. The posterior probabilities from the square of the filtered data are less 

sensitive to changes in STA/LTA threshold. At lower thresholds (STA/LTA=1.75), the 

probabilities range from 9-16%. At the highest threshold (STA/LTA=3.5), these probabilities 

range from 9-22%. These values correspond with the fairly constant number of detections 

beyond a threshold of STA/LTA=2.5. Some detections for the squared data coincide with 4 or 

more SSEs at higher thresholds (between 2.75 and 3.25) rather than 1 or 2 like the other 

processed datasets. Very few of the detections from these processed data are temporally 

correlated. 
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6.3 Joint Detections- STA/LTA, Filtered Data 

Table 4 shows the posterior probabilities for the joint station detections. We omit results 

for the unfiltered data and the absolute value of the filtered data, as few to no detections are 

temporally correlated and return values for the joint-detection probabilities. The joint-

probabilities for sites located near each other retained values near or above the single-station 

probabilities (such as sites B001 and B011). Some sites that are not located near each other also 

shared detections, such as sites B004 and B022. The northernmost wells, B010, B011, and B012, 

had the most correlated detections during SSEs. Sites B001, B003, B004, and B005 formed 

another group of wells with multiple temporally correlated detections during SSEs, though 

detections from these sites often coincided with those from the northern group. Sites B022 and 

B028, both being located far away from each other and all other sites, had variable correlation 

between other sites and to each other. In general for STA/LTA, the joint probabilities retained 

low values similar to that of the single-station probabilities, typically ranging from 13-30%. The 

strongly correlated groups contained the highest of these probabilities, and often retained 

detections during 3 or more SSEs. However, many other temporally correlated detections 

occurred outside of known times of SSEs for these groups. Network-wide probabilities remained 

below 10%, as very few temporally correlated detections were made across all wells during 

known SSEs. 

6.4 The Holt-Winter’s Model and Resultant Probabilities 

Figure 6 shows the raw pore pressure data, Holt-Winter’s model confidence bands, and 

resultant detections for a single borehole, Site B010. The detections are show in the lowermost 

stem plot of Figure 6. The model’s detections primarily fall within times of known SSEs, with 

few detections occurring outside of these events. The model, across all wells, appears to reliably 

detect anomalous activity primarily during times of known SSEs, here shown in Figure 7. Some 
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detections occur outside of known times of SSEs, primarily for Site B012. When correlated, 

however, many of these outside detections are not retained.  Group 1 comprised of sites B001, 

B004, and B005, Group 2 comprised of sites B010, B011, and B012, and Group 3 comprised of 

sites B022 and B028 had the strongest correlation amongst each other in that each group retained 

high numbers of detections during times of SSEs and very few elsewhere, shown in Figure 8. 

The final stem plot in Figure 8 shows the correlated detections across the full borehole network, 

which further affirms the increasing strength of correlated detections found during SSEs.  Some 

detections across multiple wells are preserved but do not fall during times of known slow slip, 

such as the event in the Fall of 2016.  

The posterior probabilities support the model’s ability to detect SSEs. Table 5 lists the 

single-station posterior probabilities for the Holt-Winter’s predictive model, which vary from a 

minimum of 35% to a maximum of 99% for sites B005 and B011, respectively. Table 6 lists the 

joint probabilities from each group of wells from the model using a four-day average window. 

The probabilities found using detections found across all stations within a particular group are 

greater than single-station values, ranging from 50% to 100%. Table 7 lists the joint probabilities 

for the entire network of eight wells from the model using a four-day window, which remain at 

100% when at detections found across at least four stations are used. See Supplemental Materials 

for plots of all applications of the model for all nine borehole sites. A single application of the 

model is used, one for each site, resulting in nine sets of smoothing parameters and their 

respective detections. See Table 8 for the smoothing parameters applied for each site. 

The Holt-Winter’s model starts detecting anomalous activity after about eight years of 

training, and the most effective training period for the model is the entire dataset of 11 years. For 

most borehole sites, very few detections are made before this eight-year limit. Generally, a 

majority of detections fall during known times of slow slip.  The model consistently detects 
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anomalous activity during the 2015-2016 and 2017 SSEs for all 8 borehole sites used.  Site B003 

is omitted for large data gaps, leading to insufficient data. For a few other borehole sites, the 

model detects anomalous activity for the 2014 event (see Figure 7). A lack of detections during 

SSEs from 2014 to 2017 is primarily caused by data gaps. When the data is intact, the model 

reliably picks out anomalous behavior for SSEs in 2014 and beyond.  

Some detections do fall outside of known times of slow-slip but very few are 

uncorrelated between multiple well locations. Most of the correlated detections between the sites 

occur during SSEs. Some joint detections for the Holt-Winter’s model suffer from the same 

drawback as the STA/LTA method in that only one or two detections are preserved, returning 

some anomalously high posterior probabilities for some well pairs. The model performs the best, 

in terms of detecting anomalous activity during SSEs, when a temporal window of four-days is 

used to find joint detections.  
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7. DISCUSSION

To assess the effectiveness of an SSE detection method using pore pressure data, we 

analyze the single-station and joint-station posterior probabilities and the detections they are 

based on. An effective method returns a higher the posterior probability, while an ineffective 

method returns lower posterior probabilities. The values of the probabilities alone, however, are 

not enough to determine a method’s efficacy, so we also consider where and how many 

detections are made. If detections are scattered, or if their positions change with slight changes in 

the applied method, or if they are not well correlated between borehole sites, it is likely that the 

method is not effective even if the final posterior probability is relatively high.  

In general, STA/LTA proves ineffective in detecting SSEs within these data. The 

unfiltered pore pressure retains all recorded signals, and the absolute value of the filtered pore 

pressure retains many signals within the bandwidth of the filter. The resultant unvarying 

STA/LTA ratio from these processed data makes it difficult to resolve signals that are similar in 

duration to that of SSEs, including those potentially related to SSEs. The fairly unvarying 

STA/LTA ratios also suggests that this application of STA/LTA is insensitive to anomalous 

transients in these three variants of processed data we evaluated. Figures 3 and Figure 4 

exemplify these characteristics, in which many signals of similar magnitude persist within the 

processed data, resulting in an unvarying STA/LTA. This inability to detect SSEs is supported by 

fairly low posterior probabilities, ranging from 0-20%. Higher STA/LTA thresholds return 

probabilities greater than 50% for the absolute value of the unfiltered data, however these values 

are erroneously high due to the overall low number of pore pressure detections. Any detections 

that fall during an SSE do so for only one or two events, with very few others outside of known 

times of SSEs. This ultimately results in a low p(Pd) and a much higher p(Pd|SS). The events 
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that contain signals also change from site to site, resulting in very low joint-probabilities for 

these processed data, about less than 10%.  

For the square value of the filtered data at higher STA/LTA thresholds, some of the 

resultant single-station posterior probabilities are higher, over 30%. However, the coincidence of 

the few detections made from these processed data again only lies with one or two SSEs from the 

group of 10 possible events. This can be easily labeled as happenstance rather than causal, as 

many other detections still persist outside of known times of slow-slip (see Figure 4d). This is 

supported by the very low probability of a pore pressure detection occurring during an SSE 

(p(Pd|SS)) and an overall low probability of a pressure detection occurring at any time (p(Pd)) 

for all wells (see Tables 2 and 3). The joint-station probabilities for these data are nearly 

identical to that of the single-station probabilities for lower STA/LTA thresholds, as the large 

number of widely spread detections persists (Table 4). Higher STA/LTA threshold ratios return 

fewer correlated detections, however few occur during an SSE, and those that do only do so for a 

single event and again return misleadingly high posterior probabilities as a result. 

 Any signals potentially related to SSEs are likely masked and irresolvable utilizing filtering and 

STA/LTA applications. The anomalies found from the initial by-eye analysis of the raw data 

occur as relatively low-amplitude decreases or increases in pore pressure over a long-term 

period, and STA/LTA appears more sensitive to the short-term, high amplitude changes within 

these data. The deviation of these observed anomalies from background behaviors during SSEs 

cannot be detected by STA/LTA. Any detections made from STA/LTA applications are either 

too large in number and widely spread throughout the dataset or are too few in number such that 

any detections made during an SSE appear coincidental. This results in either very low or 

erroneously high posterior probabilities, respectively. As such, we deem STA/LTA as ineffective 

for reliably detecting SSEs in these pore pressure data.  
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The Holt-Winter’s model proves much more promising. Anomaly detections made at 

each station consistently fall during times of known SSEs, with fewer detections occurring 

outside of these times in comparison to the STA/LTA. Single station posterior probabilities are 

consistently high for all wells, typically above 35% (Table 5). In terms of detecting SSEs, the 

most effective method appears to involve the correlation of multiple wells’ detections from the 

Holt-Winter’s model, specifically the wells that comprise Groups 1 through 3. These return high 

joint-station posterior probabilities, ranging from 50-100%, as multiple detections across 2 or 3 

SSEs are retained with even fewer detections remaining outside of the SSEs (See Figure 8, Table 

6).   Specifically, detections that are found during SSEs that are correlated amongst all of the 

wells within an individual group return the highest probabilities. For network-wide correlations, 

detections that are found on at least four stations return the highest posterior probabilities, again 

confirming that the use of multiple stations detections prove the most effective in detecting SSEs 

(see Table 7). 

Longer temporal windows perform better when finding joint-station SSE detections, 

specifically a four-day window, as it adjusts for different response times to the same event. 

Given the migratory nature of slow-slip throughout a single SSE, this result was expected. The 

model is mostly sensitive to low-frequency, high amplitude signals in the data that deviate from 

the defined seasonality, such as the step-like or spike phenomena that are observed in both the 

raw and filtered data at known times of slow slip (see Figure 2). The model readily detects these 

and other long-term signals that coincide with SSEs. Given that the correlated detections occur 

for all recorded SSEs beyond the training period limit, and that very few occur outside of known 

times of SSEs, the Holt-Winter’s model appears to reliably detect SSE related signals in these 

pore pressure data. 
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We find that the model readily detects all three SSEs beyond the minimum eight-year 

training period: the 2014, 2015-2016, and 2017 events.  To determine if the observed detections 

coincide with the initially observed anomalous transients in the raw pore pressure data, and if the 

event in the Fall of 2016 coincides with an undetected SSE, we compare the network detections 

found across at least 4 or more wells to the raw and filtered pore pressure data, raw strainmeter 

data, and GPS data at a few borehole sites. Figures 9, 10, and 11 show examples of this. We find 

that the detections made from the model coincide with the strong anomalous signals from the 

initial analysis, as well as the strainmeter and GPS transients related to SSEs (Figures 9 and 10). 

For some locations, an anomaly is not readily recognizable by eye within the raw or filtered pore 

pressure data (Figure 11), but detections are still made and are correlated with other locations. 

However, some strongly correlated detections do fall outside of known times of slow slip. 

Specifically, a group of strongly correlated detections occurs in the Fall of 2016 (Figure 8- 

lowermost plot), which we believe to be related to an uncatalogued SSE. Hawthorne and Bartlow 

[2018] note the occurrence of smaller slow-slip subevents that may comprise larger SSEs, of 

which this detection may be related. 

To investigate further, we plot all raw pore pressure data during each SSE and for the 

event of Fall 2016 and compare the data with the single-station detections, joint station 

detections, and GPS data (Figures 12 through 15).  Figure 13 exemplifies how the model detects 

step-like anomalies within the data, specifically for sites B004, B005, and B010 for the event of 

2015-2016. Other detections, such as those during the 2014 and 2017 SSEs, are found during 

long-term, non-step like decreases in pore-pressure (Figures 12 and 14). A similar signal is found 

with the other detections made for the uncatalogued event in the winter of 2016 (Figure 15). For 

the three catalogued SSEs, the detections coincide with the GPS transients associated with SSEs 

(see Figures 12 through 14 for examples). We speculate that these types of responses within pore 
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pressure data may be specific indicators of slow-slip, examples of which are shown in Figure 16. 

These signals generally occur as long-term dilatations followed by brief recovery to normal pore-

pressure levels, however some of these signals occur as contractional steps (for example, site 

B010 in Figure 13). These dilatation-contraction differences are likely related to the position of 

the borehole sites relative to the portions of the slipping plate boundary, a behavior shown in 

pore pressure data from Araki et al. [2017]. For the uncatalogued event, no noticeable transient 

within GPS data appears, however a when plotted against strainmeter data, a strong transient 

occurs alongside the anomalous pore pressure detections (see Figure 15). This indicates that 

some phenomenon is occurring, and it may be related to the aforementioned slow-slip subevents. 

In general, the Holt-Winter’s model readily detects SSEs within these pore pressure data 

alongside a few other events that require further investigation. 

As more data become available, the efficacy of the Holt-Winter’s model can be further 

improved, and the applications further refined to detect SSEs. Given the archive of previous data, 

this model can potentially update in real-time with new data. Expansion of the catalogue of 

meteorological phenomena may omit some strongly correlated detections: training the model to 

ignore weather related signals based on their behavior and temporal occurrence could refine 

future SSE detections. The model may also be improved by considering the non-stationarity of 

the data, for which other acceptable statistical approaches can be implemented, such as SARIMA 

(Seasonal Autoregression Moving Average) models.   
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8. CONCLUSIONS

Our analysis of borehole pore pressure data from NSF Earthscope’s PBO Network in 

Cascadia supports our hypothesis in that these data can record detectable signals potentially related 

to SSEs. Our results find that a Holt-Winter’s predictive model trained with at least eight years of 

these pore pressure data readily detects anomalous pore pressure behavior at known times of SSEs. 

These anomalous detections coincide with GPS and strainmeter transients associated with 

Cascadia SSEs. Cross correlation of these detections between borehole sites found that multiple 

locations record anomalous pore pressure activity at similar times during SSEs. We performed 

Bayesian statistical analysis on these correlated detections and found that the probability of slow-

slip given a joint-station detection ranges from 50-100%, and we determine that groups of multiple, 

closely located sites may readily perform as a real-time detection network for Cascadia SSEs. 

Some strongly correlated detections outside of known times of slow-slip are also found, and we 

speculate that they may be related to uncatalogued slow-slip subevents.  

Analysis of pore pressure data by-eye revealed anomalous activity during times of known 

slow-slip, and many are detected by the Holt-Winter’s model. We find a specific signal that may 

be a common type of response to SSEs within pore pressure data. Slight contractional or 

dilatational variations of this common signal may be explained by the position of borehole stations 

relative to the contractional or dilatational portions of the slipping plate boundary. A common 

signal occurs as a strong deviation from seasonal behavior within pore pressure data, typically as 

a long period of dilatation followed by a brief contraction back to normal levels. Filtering of data 

reveals some of these anomalous signals, however many remain masked by other recorded signals 

within the data. Further refinement of analysis techniques, and the use of other predictive models 

that account for more complex dataset behaviors, may improve the detection of this potentially 

SSE related activity with borehole pore pressure data. 
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APPENDIX A 

FIGURES AND TABLES 

Figure 1. Spatial Extent of Several Cascadia SSEs- Different SSEs are marked by the colored 
patches. The locations of continuous GPS stations and PBO boreholes are marked by the red and 
blue dots, respectively. SSEs are primarily constrained to the northwest portion of the region, 
however some events, like the 2009 event, propagate further south within the Southern 
Washington-Oregon area [Bathymetry reprinted from Ryan et al. 2009] 
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Figure 2A. Pore Pressure Anomalies at Sites B004 and B005, 2013- The top plot shows the 
easting GPS data for the concurrent GPS site ALBH near borehole B004. The second two plots 
show the raw and filtered pore pressure data for Site B004 for the year of 2013. The lowermost 
two plots show the same data for site B005. The SSE that occurred during 2013 is marked in 
orange. Note the strong step-like transient in both the raw and filtered data that coincides with 
the GPS transient associated with the SSE for 2013.  
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Figure 2B. Pore Pressure Anomalies at Sites B010 and B011, 2015-2016- The top plot displays 
the GPS data for the concurrent GPS station PGC5 for borehole sites B010 and B011. The second 
and third plots show the raw and filtered pore pressure data for Site B010. The lower two plots 
show the same data for site B011. The SSE for 2015-2016 is marked by the orange rectangle. Note 
the step-like transients that are resolved by the filtered data that coincide with the GPS transient 
associated with the SSE for 2015-2016.  
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Figure 3. Processed Pore Pressure Data, Site B012- The top plot shows the raw data. The second 
plot shows the filtered data. The third plot shows the absolute value of the filtered data. The fourth 
plot shows the square value of the filtered data. Filtering parameters are a 2nd order bandpass, 6-
60 day band. Orange rectangles mark known occurrences of slow slip. Interpolation from data gaps 
is removed.  
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Figure 4A. STA/LTA Results, Site B004, Absolute Value of Unfiltered Data- The top plot 
shows the absolute value of the unfiltered pore pressure data. The second and fourth plots shows 
the STA/LTA for the data at two different thresholds, denoted in the figured. Data that surpasses 
the threshold, marked by the dashed lines, are marked in purple. The stem plot shows the marked 
data as detections beneath their respective STA/LTA plots. Note that detections occur, for this site, 
during 5 events, with other detections occurring outside of these events. 
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Figure 4B. STA/LTA Results, Site B004, Square Value of Unfiltered Data- This figure is 
identical to figure 4a, except the processed data in the top plot are now the square value of the 
unfiltered data. The number and spread of detections are similar to that of the absolute value of the 
filtered data, in that many detections are made both during at outside of known times of slow slip. 
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Figure 4C. STA/LTA Results, Site B004, Absolute Value of Filtered Data- This figure is 
identical to figure 4b, except the processed data in the top plot are now the absolute value of the 
filtered data. Note that detections occur, for this site, during only one event for the higher threshold, 
with few others occurring outside of the SSEs. 
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Figure 4D. STA/LTA Results, Site B004, Square Value of Filtered Data- This figure is 
identical to figure 4C, except the processed data in the top plot are now the absolute value of the 
filtered data. The higher threshold returns some detections during 5 SSEs, but note that many 
detections occur outside of these events. 
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Figure 5. Example of Joint Detection Procedure, Sites B004 and B005- The top two plots 
show the detections found for sites B004 and B005. The lowermost plot shows the detections 
that are temporally correlated. The correlated detections are shown by the blue dots, and the 
uncorrelated detections are show by the purple dots. A four-day average window is used for 
these detections. Note that the correlation removes most of the detections that occur outside of 
the SSEs. 
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Figure 6. Holt-Winter’s Model for Site B010- The top plot shows the raw pore pressure data 
with anomalous data marked in purple. The second plot shows these data with the Brutlag 
confidence bands (in purple) calculated from the predictive model. The lowermost plot shows the 
data that surpass the confidence bands as detections. All SSEs are marked in orange. Data gaps 
during the SSE of 2017 omit any possible detections for the 2017 event. No temporal windows are 
used in the detections.  
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Figure 7. Holt-Winter’s Model Detections- Each plot shows the pore pressure detections found 
for all borehole sites from 2014 forward. Known times of slow slip are marked by the orange 
rectangles. Purple dots mark the detections. Grey color bars indicate when the borehole station is 
online, white marks when the station is offline. Two-day windows are used in detections for this 
plot. Note that very few of these detections outside of SSEs are correlated between wells.  
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Figure 8. Holt-Winter’s Model Group Detections- The first three stem plots show the correlated 
detections for Group 1, 2, and 3 respectively. The lowermost plot shows correlated detections 
across the entire network. The height of the stems shows the number of stations that share that 
specific detection. The grey color bars indicate how many wells are online. White means offline, 
increasing downwards.  Known SSEs are marked by orange rectangles. A three-day moving 
window is used for cross correlating detections. A four-day moving window returns identical 
results. 
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Figure 9. Example Site Response, SSE of 2014- The first two plots show the raw and filtered 
pore pressure data, respectively, from site B005. The third and fourth plots show the GPS data 
from station P435 and strainmeter data from B005. The lowermost plot shows the site detections 
from the Holt-Winter’s model. The SSE for this year, 2014, is marked by the orange rectangle. 
Note that the detections coincide with the strainmeter, GPS, and pore pressure transients.  
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Figure 10. Example Site Response, SSE of 2015-2016- This figure is identical to Figure 9, except 
these data are from 2015-2016. Station data is from site B010. GPS data are from station PCG5. 
Note the step-like transient in pore pressure that coincides with the GPS and strainmeter transients, 
as well as the detections made within the network. 
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Figure 11. Example Site Response, SSE of 2017- This figure is identical to Figures 9 and 10, 
except these data are from 2017. Station data is from site B004. GPS data are from station NEAH. 
No readily discernable transient is within the pore pressure data, however detections are still made 
within the network (and at this location) that are correlated with the GPS and strainmeter transients 
during the SSE. 
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Figure 12. Pore Pressure Data with Detections, SSE of 2014- The top five plots show the raw 
pore pressure data (downsampled to 1/300 Hz) with anomalous data from the Holt-Winter’s model 
marked in purple. Each plot has black stems that indicate the individual site detections found from 
the Holt-Winters model. The last stem plot contains the joint detections that were found to be 
correlated across at least 4 stations. Only stations containing detections are shown. The lowermost 
plot contains the strongest GPS signal for this SSE, at site UCLU. The joint detections are found 
using a four-day window average. The SSE duration for 2014 is marked in orange. Note the 
concurrence of the detections, marked data, and the GPS transient. 
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Figure 13. Pore Pressure Data with Detections, SSE of 2015-2016- This figure is identical to 
Figure 12, here the top seven plots show the raw pore pressure data for each site containing 
detections. GPS data are from site NEAH, exhibiting the strongest response to the SSE. Note the 
two groups of detections, which correlate with the event pausing in late 2015 and beginning again 
in early 2016. 
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Figure 14. Pore Pressure Data with Detections, SSE of 2017- This figure is identical to Figures 
12 and 13, here the top seven plots show the raw pore pressure data for each site containing 
detections. GPS data are from site NEAH, which exhibits the strongest GPS response to the SSE. 
Note the data gaps, which prevent full correlation between all sites, and the strong correlation of 
detections during the GPS transient. 
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Figure 15. Pore Pressure Data with Detections, Uncatalogued Event of Fall 2016- This figure 
is identical to Figure 12, 13, and 14, here the top three plots show the raw pore pressure data for 
each site containing detections. The dark purple bars mark the time of interest in which detections 
occur at sites B001, B005, and B012 alongside an anomalous step in pore pressure, here marked 
in purple. Strainmeter data are included in the lowermost plot. Note the strain transient that 
coincides with the detections in pore pressure data. 
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Figure 16. Speculated Pore Pressure Responses to SSEs, SSE of 2014- Data are shown for the 
entire SSE of 2014. The blue rectangles mark when tremor occurs within the vicinity of each site. 
The black data show the indicative pore pressure signal speculated to be related to the SSE, which 
is also found at other sites for other SSEs. Individual site detections are shown by the purple stem 
plots.  
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Table 1. List of Applied STA/LTA Parameters 
  

Detection Method Data Treatment Detection Qualifier Details 
STA/LTA    Must Surpass:   
8- day STA, 80- day 
LTA 

Demeaned, Abs-
Value 

STA/LTA Ratio 
Threshold 

Threshold Range: 
1.25-2.25* 

8- day STA, 80- day 
LTA Demeaned, Squared 

STA/LTA Ratio 
Threshold 

Threshold Range: 
1.25-2.25* 

8- day STA, 80- day 
LTA 

 Bandpass Filter, 
Abs-Value 

STA/LTA Ratio 
Threshold 

Threshold Range: 2-
3.5* 

8- day STA, 80- day 
LTA 

Bandpass Filter, 
Squared 

STA/LTA Ratio 
Threshold 

Threshold Range: 2-
3.5* 

  

**Widens or 
narrows 
confidence bands 

*Thresholds are 
incremented by 0.25 

    



 

48 
 
 

 

 
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold Value 
B004 11.75% 23.20% 30.51% 15.45% 1.25 Absolute 
B005 11.75% 12.20% 9.53% 9.18% 1.25 Absolute 
B012 11.75% 16.26% 15.68% 11.33% 1.25 Absolute 
B022 11.75% 12.72% 19.70% 18.20% 1.25 Absolute 
       
B004 11.75% 2.49% 8.26% 39.00% 1.75 Absolute 
B005 11.75% 0.57% 0.00% 0.00% 1.75 Absolute 
B012 11.75% 1.24% 1.48% 14.00% 1.75 Absolute 
B022 11.75% 0.37% 0.00% 0.00% 1.75 Absolute 
       
B004 11.75% 28.33% 32.84% 13.62% 1.25 Squared 
B005 11.75% 17.77% 12.08% 7.98% 1.25 Squared 
B012 11.75% 26.06% 25.00% 11.27% 1.25 Squared 
B022 11.75% 19.64% 28.39% 16.98% 1.25 Squared 
       
B004 11.75% 4.03% 8.69% 25.31% 2.25 Squared 
B005 11.75% 0.87% 0.00% 0.00% 2.25 Squared 
B012 11.75% 1.94% 2.33% 14.10% 2.25 Squared 
B022 11.75% 0.95% 0.00% 0.00% 2.25 Squared 

Table 2. Posterior Probabilities for Absolute Valued and Squared-Unfiltered Data- Lower 
STA/LTA threshold values are marked in grey, higher threshold values are marked in blue. 
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Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold Value 
B004 11.75% 7.42% 7.63% 12.08% 1.75 Absolute 
B005 11.75% 7.64% 6.99% 10.75% 1.75 Absolute 
B012 11.75% 6.82% 11.44% 19.71% 1.75 Absolute 
B022 11.75% 10.06% 6.99% 8.17% 1.75 Absolute 
       
B004 11.75% 0.35% 0.42% 14.29% 2.75 Absolute 
B005 11.75% 0.17% 0.85% 57.14% 2.75 Absolute 
B012 11.75% 0.37% 1.27% 40.00% 2.75 Absolute 
B022 11.75% 0.95% 0.42% 5.26% 2.75 Absolute 
       
B004 11.75% 15.83% 17.80% 13.21% 1.75 Squared 
B005 11.75% 16.06% 15.89% 11.63% 1.75 Squared 
B012 11.75% 16.80% 23.09% 16.15% 1.75 Squared 
B022 11.75% 14.74% 12.29% 9.80% 1.75 Squared 
       
B004 11.75% 3.39% 3.81% 13.24% 3 Squared 
B005 11.75% 3.49% 4.03% 13.57% 3 Squared 
B012 11.75% 3.34% 5.72% 20.15% 3 Squared 
B022 11.75% 3.96% 2.75% 8.18% 3 Squared 

Table 3. Posterior probabilities for Absolute Valued and Squared-Filtered Data- Lower 
STA/LTA threshold values are marked in grey, higher threshold values are marked in blue. 
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Well-Pair p(SS) p(Pd) p(Pd|SS) p(SS|Pd) Detections 

B001-B010 14.41% 0.87% 2.07% 34.29% 35 

B001-B011 14.41% 0.77% 1.38% 25.81% 31 

B001-B012 14.41% 0.60% 0.69% 16.67% 24 

B003-B004 14.41% 0.67% 1.21% 25.93% 27 

B003-B005 14.41% 0.87% 1.04% 17.14% 35 

B004-B011 14.41% 0.45% 0.69% 22.22% 18 

B004-B012 14.41% 0.77% 1.90% 35.48% 31 

B005-B011 14.41% 0.55% 0.86% 22.73% 22 

B005-B012 14.41% 1.19% 1.55% 18.75% 48 

B010-B011 14.41% 1.37% 1.73% 18.18% 55 

B010-B012 14.41% 0.55% 0.52% 13.64% 22 

B010-B022 14.41% 0.22% 1.21% 77.78% 9 

Table 4. Joint Probabilities, Square Value of the Filtered Data- Joint detections are found using 
a four-day temporal window, from which these probabilities are calculated. The STA/LTA 
threshold used for detecting anomalies is set to 3.25 
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Well p(ss) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections 
B001 14.10% 11.38% 34.24% 42.44% 25 
B004 14.10% 10.47% 32.20% 43.38% 29 
B005 14.10% 12.43% 31.19% 35.38% 27 
B010 14.10% 4.59% 20.34% 62.50% 11 
B011 14.10% 4.30% 30.17% 98.89% 9 
B012 14.10% 23.80% 67.46% 39.96% 55 
B022 14.10% 8.46% 26.44% 44.07% 17 
B028 14.10% 1.72% 8.14% 66.67% 6 

Table 5. Holt-Winter’s Probabilities, Single Station- The probabilities are calculated using the 
four-day averages of the individual site detections. 
 
 
 
 
 
 
 
 
 
 

Responsive 
Wells 

Group p(ss) p(Pd) p(Pd|SS) p(SS|Pd) Detections 

1 B001-B004-B005 14.06% 14.87% 37.97% 35.90% 312 
2 B001-B004-B005 14.06% 3.38% 13.56% 56.34% 71 
3 B001-B004-B005 14.06% 0.43% 3.05% 100.00% 9 
1 B010-B011-B012 14.06% 16.83% 56.27% 47.03% 353 
2 B010-B011-B012 14.06% 2.14% 12.54% 82.22% 45 
3 B010-B011-B012 14.06% 0.19% 2.37% 100.00% 4 
1 B022-B028 14.06% 4.86% 16.27% 47.06% 102 
2 B022-B028 14.06% 0.57% 2.03% 50.00% 12 

Table 6. Holt-Winter’s Joint Probabilities - “Responsive wells” indicates the number of wells 
in which detections are correlated across within the group. Detections: how many detections are 
found to be correlated between the sites based on the responsive well limit. Joint detections are 
found using a four-day window averages. 
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Responsive Wells p(ss) p(Pd) p(Pd|SS) p(SS|Pd) Detections 
1 14.10% 37.33% 88.14% 33.29% 781 
2 14.10% 20.27% 64.07% 44.58% 424 
3 14.10% 12.52% 48.14% 54.20% 262 
4 14.10% 3.97% 28.14% 100.00% 83 
5 14.10% 2.25% 15.93% 100.00% 47 
6 14.10% 0.72% 5.08% 100.00% 15 
7 14.10% 0.10% 0.68% 100.00% 2 
8 0.00% 0.00% 0.00% 0.00% 0 

Table 7. Holt-Winter’s Network Probabilities- Responsive wells indicate only correlated 
detections found on this number of sites within the full network of eight wells. These are used in 
the posterior probability calculation. Detections define how many detections are found to be 
correlated between the sites based on the responsive well limit. Joint detections are found using a 
four-day window averages. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Table 8. Predictive Model Smoothing Parameters 

 

 

Well a b g 
B001 0.2 0.001 0.4 
B004 0.001 0.001 0.35 
B005 0.3 0.001 0.25 
B010 0.3 0.001 0.24 
B011 0.19 0.01 0.3 
B012 0.0012 0.001 0.5 
B022 0.2 0.00001 0.4 
B028 0.001 0.001 0.3 
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 This appendix contains supplemental data tables for all applied detections methods. Tables 

Supp. 1 through Supp. 5 show single and joint-station posterior probabilities for all applied 

STA/LTA parameters. Tables Supp. 6 through Supp. 16 show all posterior single sand joint 

station probabilities for all applied Holt-Winter’s predictive model parameters. 
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Table Supp. 1. Posterior Probabilities, STA/LTA, Absolute Value of the Unfiltered Data 

Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75 37.94 36.65 11.35 1 
B003 11.75 44.49 49.58 13.09 1 
B004 11.75 46.88 43.22 10.83 1 
B005 11.75 47.92 37.29 9.14 1 
B010 11.75 51.23 61.02 13.99 1 
B011 11.75 58.08 57.84 11.70 1 
B012 11.75 49.91 44.92 10.57 1 
B022 11.75 45.33 57.20 14.83 1 
B028 11.75 51.74 54.68 12.08 1 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 6.45% 6.57% 11.97% 1.25 
B003 11.75% 278.82% 2.97% 12.50% 1.25 
B004 11.75% 23.20% 30.51% 15.45% 1.25 
B005 11.75% 12.20% 9.53% 9.18% 1.25 
B010 11.75% 5.73% 5.51% 11.30% 1.25 
B011 11.75% 3.44% 0.85% 2.90% 1.25 
B012 11.75% 16.26% 15.68% 11.33% 1.25 
B022 11.75% 12.72% 19.70% 18.20% 1.25 
B028 11.75% 15.37% 14.33% 10.65% 1.25 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 1.22% 1.27% 12.24% 1.5 
B003 11.75% 0.77% 1.48% 22.58% 1.5 
B004 11.75% 7.57% 14.83% 23.03% 1.5 
B005 11.75% 1.94% 2.12% 12.82% 1.5 
B010 11.75% 1.15% 0.00% 0.00% 1.5 
B011 11.75% 0.22% 0.00% 0.00% 1.5 
B012 11.75% 2.76% 2.97% 12.61% 1.5 
B022 11.75% 2.04% 2.12% 12.20% 1.5 
B028 11.43% 4.75% 1.17% 2.82% 1.5 
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Table Supp. 1 Continued 

Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 0.67% 0.00% 0.00% 1.75 
B003 11.75% 0.37% 1.27% 40.00% 1.75 
B004 11.75% 2.49% 8.26% 39.00% 1.75 
B005 11.75% 0.57% 0.00% 0.00% 1.75 
B010 11.75% 0.40% 0.00% 0.00% 1.75 
B011 11.75% 0.15% 0.00% 0.00% 1.75 
B012 11.75% 1.24% 1.48% 14.00% 1.75 
B022 11.75% 0.37% 0.00% 0.00% 1.75 
B028 11.43% 2.27% 0.00% 0.00% 1.75 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 0.27% 0.00% 0.00% 2 
B003 11.75% 0.17% 0.85% 57.14% 2 
B004 11.75% 0.80% 2.97% 43.75% 2 
B005 11.75% 0.15% 0.00% 0.00% 2 
B010 11.75% 0.00% 0.00% 0.00% 2 
B011 11.75% 0.10% 0.00% 0.00% 2 
B012 11.75% 0.30% 0.85% 33.33% 2 
B022 11.75% 0.00% 0.00% 0.00% 2 
B028 11.43% 1.07% 0.00% 0.00% 2 
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Table Supp. 2. Posterior Probabilities, STA/LTA, Square Value of the Unfiltered Data 
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 10.13% 12.08% 14.00% 1.25 
B003 11.75% 5.50% 5.08% 10.86% 1.25 
B004 11.75% 28.33% 32.84% 13.62% 1.25 
B005 11.75% 17.77% 12.08% 7.98% 1.25 
B010 11.75% 15.09% 22.03% 17.16% 1.25 
B011 11.75% 7.69% 5.51% 8.41% 1.25 
B012 11.75% 26.06% 25.00% 11.27% 1.25 
B022 11.75% 19.64% 28.39% 16.98% 1.25 
B028 11.75% 21.99% 21.35% 11.09% 1.25 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 3.76% 4.87% 15.23% 1.5 
B003 11.75% 2.54% 2.97% 13.73% 1.5 
B004 11.75% 17.67% 23.73% 15.77% 1.5 
B005 11.75% 8.51% 5.08% 7.02% 1.5 
B010 11.75% 3.09% 1.91% 7.26% 1.5 
B011 11.75% 1.99% 0.00% 0.00% 1.5 
B012 11.75% 13.57% 14.19% 12.29% 1.5 
B022 11.75% 9.19% 14.41% 18.43% 1.5 
B028 11.75% 11.16% 11.70% 11.27% 1.5 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 2.46% 2.12% 10.10% 1.75 
B003 11.75% 1.44% 2.12% 17.24% 1.75 
B004 11.75% 10.95% 18.22% 19.55% 1.75 
B005 11.75% 3.66% 3.18% 10.20% 1.75 
B010 11.75% 1.67% 0.00% 0.00% 1.75 
B011 11.75% 0.67% 0.00% 0.00% 1.75 
B012 11.75% 6.62% 6.99% 12.41% 1.75 
B022 11.75% 3.96% 5.30% 15.72% 1.75 
B028 11.43% 7.85% 7.02% 10.21% 1.75 
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Table Supp. 2 Continued 
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 1.24% 0.85% 8.00% 2 
B003 11.75% 0.80% 1.91% 28.13% 2 
B004 11.75% 6.97% 13.77% 23.21% 2 
B005 11.75% 1.82% 1.69% 10.96% 2 
B010 11.75% 0.87% 0.00% 0.00% 2 
B011 11.75% 0.22% 0.00% 0.00% 2 
B012 11.75% 3.53% 4.03% 13.38% 2 
B022 11.75% 2.12% 1.48% 8.24% 2 
B028 11.43% 4.58% 0.88% 2.19% 2 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 0.62% 0.00% 0.00% 2.25 
B003 11.75% 0.47% 1.91% 47.37% 2.25 
B004 11.75% 4.03% 8.69% 25.31% 2.25 
B005 11.75% 0.87% 0.00% 0.00% 2.25 
B010 11.75% 0.52% 0.00% 0.00% 2.25 
B011 11.75% 0.17% 0.00% 0.00% 2.25 
B012 11.75% 1.94% 2.33% 14.10% 2.25 
B022 11.75% 0.95% 0.00% 0.00% 2.25 
B028 11.43% 2.97% 0.00% 0.00% 2.25 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 0.47% 0.00% 0.00% 2.5 
B003 11.75% 0.42% 1.91% 52.94% 2.5 
B004 11.75% 2.07% 6.99% 39.76% 2.5 
B005 11.75% 0.55% 0.00% 0.00% 2.5 
B010 11.75% 0.05% 0.00% 0.00% 2.5 
B011 11.75% 0.15% 0.00% 0.00% 2.5 
B012 11.75% 1.27% 1.48% 13.73% 2.5 
B022 11.75% 0.40% 0.00% 0.00% 2.5 
B028 11.43% 2.14% 0.00% 0.00% 2.5 
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Table Supp. 3. Posterior Probabilities, STA/LTA, Absolute Value of the Filtered Data- 
Filtering parameters follow those described in the main text. 

Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 8.07% 8.05% 11.73% 1.75 
B003 11.75% 6.10% 5.72% 11.02% 1.75 
B004 11.75% 7.42% 7.63% 12.08% 1.75 
B005 11.75% 7.64% 6.99% 10.75% 1.75 
B010 11.75% 10.43% 13.56% 15.27% 1.75 
B011 11.75% 8.99% 11.02% 14.40% 1.75 
B012 11.75% 6.82% 11.44% 19.71% 1.75 
B022 11.75% 10.06% 6.99% 8.17% 1.75 
B028 11.43% 6.72% 7.02% 11.94% 1.75 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 5.18% 5.08% 11.54% 2 
B003 11.75% 2.71% 2.12% 9.17% 2 
B004 11.75% 3.68% 3.60% 11.49% 2 
B005 11.75% 3.16% 3.60% 13.39% 2 
B010 11.75% 6.00% 8.26% 16.18% 2 
B011 11.75% 4.73% 6.78% 16.84% 2 
B012 11.75% 3.19% 5.72% 21.09% 2 
B022 11.75% 5.50% 4.66% 9.95% 2 
B028 11.43% 3.51% 4.09% 13.33% 2 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 3.04% 3.39% 13.11% 2.25 
B003 11.75% 1.32% 1.27% 11.32% 2.25 
B004 11.75% 1.72% 1.48% 10.14% 2.25 
B005 11.75% 1.29% 1.48% 13.46% 2.25 
B010 11.75% 2.79% 3.81% 16.07% 2.25 
B011 11.75% 2.54% 4.66% 21.57% 2.25 
B012 11.75% 1.44% 2.12% 17.24% 2.25 
B022 11.75% 2.89% 2.75% 11.21% 2.25 
B028 11.43% 1.84% 2.63% 16.36% 2.25 
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Table Supp. 3 Continued 
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 1.77% 2.54% 16.90% 2.5 
B003 11.75% 0.42% 0.85% 23.53% 2.5 
B004 11.75% 0.65% 1.27% 23.08% 2.5 
B005 11.75% 0.50% 1.27% 30.00% 2.5 
B010 11.75% 1.52% 0.85% 6.56% 2.5 
B011 11.75% 1.17% 1.69% 17.02% 2.5 
B012 11.75% 0.70% 1.91% 32.14% 2.5 
B022 11.75% 1.64% 0.85% 6.06% 2.5 
B028 11.43% 0.74% 0.00% 0.00% 2.5 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 0.75% 0.85% 13.33% 2.75 
B003 11.75% 0.07% 0.64% 100.00% 2.75 
B004 11.75% 0.35% 0.42% 14.29% 2.75 
B005 11.75% 0.17% 0.85% 57.14% 2.75 
B010 11.75% 0.72% 0.00% 0.00% 2.75 
B011 11.75% 0.60% 0.00% 0.00% 2.75 
B012 11.75% 0.37% 1.27% 40.00% 2.75 
B022 11.75% 0.95% 0.42% 5.26% 2.75 
B028 11.43% 0.33% 0.00% 0.00% 2.75 
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Table Supp. 4. Posterior Probabilities, STA/LTA, Square Value of the Filtered Data 
 

Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 12.50% 12.08% 11.35% 1.75 
B003 11.75% 13.59% 14.19% 12.27% 1.75 
B004 11.75% 15.83% 17.80% 13.21% 1.75 
B005 11.75% 16.06% 15.89% 11.63% 1.75 
B010 11.75% 16.83% 18.43% 12.87% 1.75 
B011 11.75% 17.25% 16.53% 11.26% 1.75 
B012 11.75% 16.80% 23.09% 16.15% 1.75 
B022 11.75% 14.74% 12.29% 9.80% 1.75 
B028 11.43% 16.31% 17.84% 12.50% 1.75 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 9.58% 9.75% 11.95% 2 
B003 11.75% 10.11% 10.81% 12.56% 2 
B004 11.75% 11.55% 12.08% 12.28% 2 
B005 11.75% 12.80% 12.92% 11.87% 2 
B010 11.75% 13.57% 15.89% 13.76% 2 
B011 11.75% 12.70% 14.19% 13.14% 2 
B012 11.75% 12.27% 17.80% 17.04% 2 
B022 11.75% 11.75% 9.11% 9.11% 2 
B028 11.43% 12.10% 12.87% 12.15% 2 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 8.07% 8.47% 12.35% 2.25 
B003 11.75% 7.62% 7.42% 11.44% 2.25 
B004 11.75% 8.86% 8.05% 10.67% 2.25 
B005 11.75% 9.41% 9.11% 11.38% 2.25 
B010 11.75% 10.90% 14.19% 15.30% 2.25 
B011 11.75% 10.08% 11.44% 13.33% 2.25 
B012 11.75% 8.61% 12.71% 17.34% 2.25 
B022 11.75% 9.71% 7.42% 8.97% 2.25 
B028 11.43% 8.89% 10.53% 13.53% 2.25 
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Table Supp. 4 Continued 
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 6.72% 7.42% 12.96% 2.5 
B003 11.75% 5.58% 5.08% 10.71% 2.5 
B004 11.75% 6.62% 5.30% 9.40% 2.5 
B005 11.75% 6.85% 7.20% 12.36% 2.5 
B010 11.75% 8.81% 11.44% 15.25% 2.5 
B011 11.75% 7.89% 10.38% 15.46% 2.5 
B012 11.75% 6.25% 11.02% 20.72% 2.5 
B022 11.75% 7.39% 5.30% 8.42% 2.5 
B028 11.43% 6.55% 8.48% 14.80% 2.5 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 5.78% 6.14% 12.50% 2.75 
B003 11.75% 4.08% 4.03% 11.59% 2.75 
B004 11.75% 4.73% 4.24% 10.53% 2.75 
B005 11.75% 4.75% 5.51% 13.61% 2.75 
B010 11.75% 6.82% 9.11% 15.69% 2.75 
B011 11.75% 6.27% 9.53% 17.86% 2.75 
B012 11.75% 4.43% 7.20% 19.10% 2.75 
B022 11.75% 5.63% 4.24% 8.85% 2.75 
B028 11.43% 4.85% 6.14% 14.48% 2.75 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 4.80% 5.51% 13.47% 3 
B003 11.75% 2.96% 2.97% 11.76% 3 
B004 11.75% 3.39% 3.81% 13.24% 3 
B005 11.75% 3.49% 4.03% 13.57% 3 
B010 11.75% 4.90% 6.36% 15.23% 3 
B011 11.75% 4.41% 7.63% 20.34% 3 
B012 11.75% 3.34% 5.72% 20.15% 3 
B022 11.75% 3.96% 2.75% 8.18% 3 
B028 11.43% 3.54% 4.68% 15.09% 3 
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Table Supp. 4 Continued 
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 3.98% 4.24% 12.50% 3.25 
B003 11.75% 2.27% 2.54% 13.19% 3.25 
B004 11.75% 2.59% 2.97% 13.46% 3.25 
B005 11.75% 2.36% 2.97% 14.74% 3.25 
B010 11.75% 3.81% 4.66% 14.38% 3.25 
B011 11.75% 3.34% 6.57% 23.13% 3.25 
B012 11.75% 2.61% 4.24% 19.05% 3.25 
B022 11.75% 3.04% 2.33% 9.02% 3.25 
B028 11.43% 2.37% 3.51% 16.90% 3.25 

      
Borehole p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Threshold 
B001 11.75% 3.21% 3.81% 13.95% 3.5 
B003 11.75% 1.77% 2.12% 14.08% 3.5 
B004 11.75% 1.97% 2.75% 16.46% 3.5 
B005 11.75% 1.67% 2.97% 20.90% 3.5 
B010 11.75% 2.69% 2.75% 12.04% 3.5 
B011 11.75% 2.61% 4.87% 21.90% 3.5 
B012 11.75% 2.04% 2.33% 13.41% 3.5 
B022 11.75% 2.36% 1.69% 8.42% 3.5 
B028 11.43% 1.70% 3.22% 21.57% 3.5 
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Table Supp. 5. Joint-Station Probabilities, STA/LTA, Square of the Filtered Data- Shading 
separates well pairs by the first well used in the correlation. The number of shared detections is 
shown in the 5th column. 

Well Pair p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections Threshold 
B001-B003 14.41% 3.06% 3.28% 15.45% 123 1.75 
B001-B004 14.41% 2.96% 6.22% 30.25% 119 1.75 
B001-B005 14.41% 3.19% 3.80% 17.19% 128 1.75 
B001-B010 14.41% 4.41% 5.01% 16.38% 177 1.75 
B001-B011 14.41% 4.16% 5.01% 17.37% 167 1.75 
B001-B012 14.41% 3.93% 6.56% 24.05% 158 1.75 
B001-B022 14.41% 2.19% 2.76% 18.18% 88 1.75 
B001-B028 14.04% 2.04% 2.86% 19.67% 61 1.75 
B003-B004 14.41% 5.75% 4.66% 11.69% 231 1.75 
B003-B005 14.41% 8.02% 5.18% 9.32% 322 1.75 
B003-B010 14.41% 4.66% 5.70% 17.65% 187 1.75 
B003-B011 14.41% 5.95% 3.11% 7.53% 239 1.75 
B003-B012 14.41% 9.21% 9.15% 14.32% 370 1.75 
B003-B022 14.41% 3.16% 2.76% 12.60% 127 1.75 
B003-B028 14.04% 1.67% 1.67% 14.00% 50 1.75 
B004-B005 14.41% 7.62% 7.43% 14.05% 306 1.75 
B004-B010 14.41% 4.95% 7.43% 21.61% 199 1.75 
B004-B011 14.41% 4.93% 6.04% 17.68% 198 1.75 
B004-B012 14.41% 7.32% 10.54% 20.75% 294 1.75 
B004-B022 14.41% 5.23% 5.35% 14.76% 210 1.75 
B004-B028 14.04% 1.54% 2.62% 23.91% 46 1.75 
B005-B010 14.41% 5.00% 5.01% 14.43% 201 1.75 
B005-B011 14.41% 5.55% 3.80% 9.87% 223 1.75 
B005-B012 14.41% 8.86% 7.25% 11.80% 356 1.75 
B005-B022 14.41% 4.41% 2.76% 9.04% 177 1.75 
B005-B028 14.04% 1.44% 2.38% 23.26% 43 1.75 
B010-B011 14.41% 9.41% 8.29% 12.70% 378 1.75 
B010-B012 14.41% 5.43% 9.84% 26.15% 218 1.75 
B010-B022 14.41% 3.86% 4.15% 15.48% 155 1.75 
B010-B028 14.04% 2.84% 1.67% 8.24% 85 1.75 
B011-B012 14.41% 7.42% 8.64% 16.78% 298 1.75 
B011-B022 14.41% 3.09% 3.63% 16.94% 124 1.75 
B011-B028 14.04% 2.97% 2.62% 12.36% 89 1.75 
B012-B022 14.41% 3.73% 4.32% 16.67% 150 1.75 
B012-B028 14.04% 2.54% 3.57% 19.74% 76 1.75 
B022-B028 14.04% 1.87% 0.71% 5.36% 56 1.75 
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Table Supp. 5 Continued 
Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections Threshold 

B001-B003 14.41% 1.99% 1.38% 10.00% 80 2 
B001-B004 14.41% 1.92% 3.45% 25.97% 77 2 
B001-B005 14.41% 1.94% 1.38% 10.26% 78 2 
B001-B010 14.41% 3.26% 4.32% 19.08% 131 2 
B001-B011 14.41% 3.19% 4.32% 19.53% 128 2 
B001-B012 14.41% 2.96% 5.18% 25.21% 119 2 
B001-B022 14.41% 1.34% 1.04% 11.11% 54 2 
B001-B028 14.04% 0.90% 1.90% 29.63% 27 2 
B003-B004 14.41% 3.78% 3.28% 12.50% 152 2 
B003-B005 14.41% 6.20% 4.32% 10.04% 249 2 
B003-B010 14.41% 3.19% 3.63% 16.41% 128 2 
B003-B011 14.41% 4.08% 2.07% 7.32% 164 2 
B003-B012 14.41% 6.60% 6.22% 13.58% 265 2 
B003-B022 14.41% 2.22% 2.07% 13.48% 89 2 
B003-B028 14.04% 0.60% 0.71% 16.67% 18 2 
B004-B005 14.41% 5.20% 5.18% 14.35% 209 2 
B004-B010 14.41% 2.96% 4.66% 22.69% 119 2 
B004-B011 14.41% 3.09% 3.97% 18.55% 124 2 
B004-B012 14.41% 4.75% 7.77% 23.56% 191 2 
B004-B022 14.41% 2.96% 1.73% 8.40% 119 2 
B004-B028 14.04% 0.74% 2.14% 40.91% 22 2 
B005-B010 14.41% 3.46% 3.63% 15.11% 139 2 
B005-B011 14.41% 3.83% 2.76% 10.39% 154 2 
B005-B012 14.41% 6.22% 5.01% 11.60% 250 2 
B005-B022 14.41% 2.99% 1.21% 5.83% 120 2 
B005-B028 14.04% 0.84% 1.43% 24.00% 25 2 
B010-B011 14.41% 6.77% 6.39% 13.60% 272 2 
B010-B012 14.41% 4.08% 7.25% 25.61% 164 2 
B010-B022 14.41% 2.49% 1.73% 10.00% 100 2 
B010-B028 14.04% 1.80% 1.19% 9.26% 54 2 
B011-B012 14.41% 5.50% 6.74% 17.65% 221 2 
B011-B022 14.41% 1.87% 1.38% 10.67% 75 2 
B011-B028 14.04% 1.24% 1.67% 18.92% 37 2 
B012-B022 14.41% 2.07% 1.04% 7.23% 83 2 
B012-B028 14.04% 1.27% 1.67% 18.42% 38 2 
B022-B028 14.04% 1.00% 0.00% 0.00% 30 2 
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Table Supp. 5 Continued 
Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections Threshold 

B001-B003 14.41% 1.67% 0.86% 7.46% 67 2.25 
B001-B004 14.41% 1.57% 2.25% 20.63% 63 2.25 
B001-B005 14.41% 1.42% 0.86% 8.77% 57 2.25 
B001-B010 14.41% 2.49% 3.11% 18.00% 100 2.25 
B001-B011 14.41% 2.56% 3.80% 21.36% 103 2.25 
B001-B012 14.41% 2.14% 3.63% 24.42% 86 2.25 
B001-B022 14.41% 1.00% 0.69% 10.00% 40 2.25 
B001-B028 14.04% 0.33% 1.43% 60.00% 10 2.25 
B003-B004 14.41% 2.79% 2.42% 12.50% 112 2.25 
B003-B005 14.41% 4.28% 2.76% 9.30% 172 2.25 
B003-B010 14.41% 2.17% 2.07% 13.79% 87 2.25 
B003-B011 14.41% 3.14% 1.55% 7.14% 126 2.25 
B003-B012 14.41% 4.61% 3.97% 12.43% 185 2.25 
B003-B022 14.41% 1.54% 1.73% 16.13% 62 2.25 
B003-B028 14.04% 0.33% 0.24% 10.00% 10 2.25 
B004-B005 14.41% 3.86% 3.63% 13.55% 155 2.25 
B004-B010 14.41% 1.84% 2.59% 20.27% 74 2.25 
B004-B011 14.41% 2.27% 3.63% 23.08% 91 2.25 
B004-B012 14.41% 2.94% 5.35% 26.27% 118 2.25 
B004-B022 14.41% 1.62% 0.00% 0.00% 65 2.25 
B004-B028 14.04% 0.57% 1.90% 47.06% 17 2.25 
B005-B010 14.41% 2.46% 2.59% 15.15% 99 2.25 
B005-B011 14.41% 2.61% 1.90% 10.48% 105 2.25 
B005-B012 14.41% 4.36% 3.80% 12.57% 175 2.25 
B005-B022 14.41% 1.89% 0.17% 1.32% 76 2.25 
B005-B028 14.04% 0.30% 0.24% 11.11% 9 2.25 
B010-B011 14.41% 5.13% 4.84% 13.59% 206 2.25 
B010-B012 14.41% 2.51% 3.97% 22.77% 101 2.25 
B010-B022 14.41% 1.57% 1.55% 14.29% 63 2.25 
B010-B028 14.04% 1.27% 0.95% 10.53% 38 2.25 
B011-B012 14.41% 3.53% 4.15% 16.90% 142 2.25 
B011-B022 14.41% 1.17% 0.86% 10.64% 47 2.25 
B011-B028 14.04% 0.64% 0.95% 21.05% 19 2.25 
B012-B022 14.41% 1.12% 0.17% 2.22% 45 2.25 
B012-B028 14.04% 0.64% 0.24% 5.26% 19 2.25 
B022-B028 0.00% 0.00% 0.00% 0.00% 0 2.25 
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Table Supp. 5 Continued 
Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections Threshold 

B001-B003 14.41% 1.12% 0.69% 8.89% 45 2.5 
B001-B004 14.41% 1.22% 1.21% 14.29% 49 2.5 
B001-B005 14.41% 0.95% 0.35% 5.26% 38 2.5 
B001-B010 14.41% 1.82% 2.76% 21.92% 73 2.5 
B001-B011 14.41% 1.99% 3.28% 23.75% 80 2.5 
B001-B012 14.41% 1.49% 3.28% 31.67% 60 2.5 
B001-B022 14.41% 0.60% 0.35% 8.33% 24 2.5 
B001-B028 14.04% 0.13% 0.48% 50.00% 4 2.5 
B003-B004 14.41% 1.94% 2.07% 15.38% 78 2.5 
B003-B005 14.41% 2.74% 2.42% 12.73% 110 2.5 
B003-B010 14.41% 1.62% 0.86% 7.69% 65 2.5 
B003-B011 14.41% 2.54% 1.55% 8.82% 102 2.5 
B003-B012 14.41% 2.86% 3.11% 15.65% 115 2.5 
B003-B022 14.41% 0.77% 0.86% 16.13% 31 2.5 
B003-B028 0.00% 0.00% 0.00% 0.00% 0 2.5 
B004-B005 14.41% 2.74% 2.25% 11.82% 110 2.5 
B004-B010 14.41% 1.39% 1.73% 17.86% 56 2.5 
B004-B011 14.41% 1.64% 2.07% 18.18% 66 2.5 
B004-B012 14.41% 1.92% 3.97% 29.87% 77 2.5 
B004-B022 0.00% 0.00% 0.00% 0.00% 0 2.5 
B004-B028 14.04% 0.27% 0.71% 37.50% 8 2.5 
B005-B010 14.41% 1.72% 2.07% 17.39% 69 2.5 
B005-B011 14.41% 1.69% 1.38% 11.76% 68 2.5 
B005-B012 14.41% 2.84% 2.94% 14.91% 114 2.5 
B005-B022 0.00% 0.00% 0.00% 0.00% 0 2.5 
B005-B028 0.00% 0.00% 0.00% 0.00% 0 2.5 
B010-B011 14.41% 3.68% 4.32% 16.89% 148 2.5 
B010-B012 14.41% 1.62% 2.94% 26.15% 65 2.5 
B010-B022 14.41% 1.10% 1.55% 20.45% 44 2.5 
B010-B028 0.00% 0.00% 0.00% 0.00% 0 2.5 
B011-B012 14.41% 2.39% 3.63% 21.88% 96 2.5 
B011-B022 14.41% 0.60% 0.69% 16.67% 24 2.5 
B011-B028 14.04% 0.33% 0.95% 40.00% 10 2.5 
B012-B022 0.00% 0.00% 0.00% 0.00% 0 2.5 
B012-B028 0.00% 0.00% 0.00% 0.00% 0 2.5 
B022-B028 0.00% 0.00% 0.00% 0.00% 0 2.5 
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Table Supp. 5 Continued 
Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections Threshold 

B001-B003 14.41% 0.80% 0.52% 9.38% 32 2.75 
B001-B004 14.41% 0.97% 0.86% 12.82% 39 2.75 
B001-B005 14.41% 0.75% 0.17% 3.33% 30 2.75 
B001-B010 14.41% 1.32% 2.76% 30.19% 53 2.75 
B001-B011 14.41% 1.47% 2.42% 23.73% 59 2.75 
B001-B012 14.41% 1.15% 2.25% 28.26% 46 2.75 
B001-B022 14.41% 0.40% 0.17% 6.25% 16 2.75 
B001-B028 14.04% 0.07% 0.48% 100.00% 2 2.75 
B003-B004 14.41% 1.32% 1.73% 18.87% 53 2.75 
B003-B005 14.41% 1.39% 1.38% 14.29% 56 2.75 
B003-B010 14.41% 0.97% 0.35% 5.13% 39 2.75 
B003-B011 14.41% 1.74% 1.55% 12.86% 70 2.75 
B003-B012 14.41% 1.99% 2.59% 18.75% 80 2.75 
B003-B022 14.41% 0.35% 0.52% 21.43% 14 2.75 
B003-B028 0.00% 0.00% 0.00% 0.00% 0 2.75 
B004-B005 14.41% 1.69% 1.90% 16.18% 68 2.75 
B004-B010 14.41% 0.95% 1.21% 18.42% 38 2.75 
B004-B011 14.41% 1.15% 1.55% 19.57% 46 2.75 
B004-B012 14.41% 1.42% 3.11% 31.58% 57 2.75 
B004-B022 0.00% 0.00% 0.00% 0.00% 0 2.75 
B004-B028 0.00% 0.00% 0.00% 0.00% 0 2.75 
B005-B010 14.41% 0.92% 1.04% 16.22% 37 2.75 
B005-B011 14.41% 1.02% 1.04% 14.63% 41 2.75 
B005-B012 14.41% 2.07% 2.07% 14.46% 83 2.75 
B005-B022 0.00% 0.00% 0.00% 0.00% 0 2.75 
B005-B028 0.00% 0.00% 0.00% 0.00% 0 2.75 
B010-B011 14.41% 2.79% 3.63% 18.75% 112 2.75 
B010-B012 14.41% 0.92% 1.73% 27.03% 237 2.75 
B010-B022 14.41% 0.77% 1.21% 22.58% 31 2.75 
B010-B028 0.00% 0.00% 0.00% 0.00% 0 2.75 
B011-B012 14.41% 1.64% 2.94% 25.76% 66 2.75 
B011-B022 14.41% 0.45% 0.69% 22.22% 18 2.75 
B011-B028 14.04% 0.20% 0.95% 66.67% 6 2.75 
B012-B022 0.00% 0.00% 0.00% 0.00% 0 2.75 
B012-B028 0.00% 0.00% 0.00% 0.00% 0 2.75 
B022-B028 0.00% 0.00% 0.00% 0.00% 0 2.75 
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Table Supp. 5 Continued 

Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections Threshold 
B001-B003 0.00% 0.00% 0.00% 0.00% 0 3 
B001-B004 14.41% 0.57% 0.52% 13.04% 23 3 
B001-B005 0.00% 0.00% 0.00% 0.00% 0 3 
B001-B010 14.41% 1.02% 2.42% 34.15% 41 3 
B001-B011 14.41% 1.05% 2.07% 28.57% 42 3 
B001-B012 14.41% 0.87% 1.73% 28.57% 35 3 
B001-B022 0.00% 0.00% 0.00% 0.00% 0 3 
B001-B028 0.00% 0.00% 0.00% 0.00% 0 3 
B003-B004 14.41% 0.92% 1.55% 24.32% 37 3 
B003-B005 14.41% 1.10% 1.04% 13.64% 44 3 
B003-B010 0.00% 0.00% 0.00% 0.00% 0 3 
B003-B011 14.41% 1.19% 1.38% 16.67% 48 3 
B003-B012 14.41% 1.34% 1.90% 20.37% 54 3 
B003-B022 0.00% 0.00% 0.00% 0.00% 0 3 
B003-B028 0.00% 0.00% 0.00% 0.00% 0 3 
B004-B005 14.41% 1.12% 1.38% 17.78% 45 3 
B004-B010 14.41% 0.60% 0.52% 12.50% 24 3 
B004-B011 14.41% 0.72% 1.21% 24.14% 29 3 
B004-B012 14.41% 1.12% 2.59% 33.33% 45 3 
B004-B022 0.00% 0.00% 0.00% 0.00% 0 3 
B004-B028 0.00% 0.00% 0.00% 0.00% 0 3 
B005-B010 0.00% 0.00% 0.00% 0.00% 0 3 
B005-B011 14.41% 0.60% 0.86% 20.83% 24 3 
B005-B012 14.41% 1.59% 1.55% 14.06% 64 3 
B005-B022 0.00% 0.00% 0.00% 0.00% 0 3 
B005-B028 0.00% 0.00% 0.00% 0.00% 0 3 
B010-B011 14.41% 1.74% 2.42% 20.00% 70 3 
B010-B012 14.41% 0.70% 1.21% 25.00% 28 3 
B010-B022 14.41% 0.45% 1.21% 38.89% 18 3 
B010-B028 0.00% 0.00% 0.00% 0.00% 0 3 
B011-B012 14.41% 0.95% 2.07% 31.58% 38 3 
B011-B022 0.00% 0.00% 0.00% 0.00% 0 3 
B011-B028 0.00% 0.00% 0.00% 0.00% 0 3 
B012-B022 0.00% 0.00% 0.00% 0.00% 0 3 
B012-B028 0.00% 0.00% 0.00% 0.00% 0 3 
B022-B028 0.00% 0.00% 0.00% 0.00% 0 3 
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Table Supp. 5 Continued 
Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) Detections Threshold 

B001-B003 0.00% 0.00% 0.00% 0.00% 0 3.25 
B001-B004 0.00% 0.00% 0.00% 0.00% 0 3.25 
B001-B005 0.00% 0.00% 0.00% 0.00% 0 3.25 
B001-B010 14.41% 0.87% 2.07% 34.29% 35 3.25 
B001-B011 14.41% 0.77% 1.38% 25.81% 31 3.25 
B001-B012 14.41% 0.60% 0.69% 16.67% 24 3.25 
B001-B022 0.00% 0.00% 0.00% 0.00% 0 3.25 
B001-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
B003-B004 14.41% 0.67% 1.21% 25.93% 27 3.25 
B003-B005 14.41% 0.87% 1.04% 17.14% 35 3.25 
B003-B010 0.00% 0.00% 0.00% 0.00% 0 3.25 
B003-B011 14.41% 1.05% 1.38% 19.05% 42 3.25 
B003-B012 14.41% 1.12% 1.55% 20.00% 45 3.25 
B003-B022 0.00% 0.00% 0.00% 0.00% 0 3.25 
B003-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
B004-B005 14.41% 0.82% 1.38% 24.24% 33 3.25 
B004-B010 0.00% 0.00% 0.00% 0.00% 0 3.25 
B004-B011 14.41% 0.45% 0.69% 22.22% 18 3.25 
B004-B012 14.41% 0.77% 1.90% 35.48% 31 3.25 
B004-B022 0.00% 0.00% 0.00% 0.00% 0 3.25 
B004-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
B005-B010 0.00% 0.00% 0.00% 0.00% 0 3.25 
B005-B011 14.41% 0.55% 0.86% 22.73% 22 3.25 
B005-B012 14.41% 1.19% 1.55% 18.75% 48 3.25 
B005-B022 0.00% 0.00% 0.00% 0.00% 0 3.25 
B005-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
B010-B011 14.41% 1.37% 1.73% 18.18% 55 3.25 
B010-B012 14.41% 0.55% 0.52% 13.64% 22 3.25 
B010-B022 14.41% 0.22% 1.21% 77.78% 9 3.25 
B010-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
B011-B012 14.41% 0.75% 1.55% 30.00% 30 3.25 
B011-B022 0.00% 0.00% 0.00% 0.00% 0 3.25 
B011-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
B012-B022 0.00% 0.00% 0.00% 0.00% 0 3.25 
B012-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
B022-B028 0.00% 0.00% 0.00% 0.00% 0 3.25 
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Table Supp. 6: Single Station Posterior Probabilities, Holt-Winter’s Model- A temporal 
window one day in length is used for these detections. 

Well p(SS) p(Pd) p(Pd|SS) p(SS|Pd) 
B001 14.04% 3.33% 10.51% 44.29% 
B004 14.04% 2.81% 8.81% 44.07% 
B005 14.04% 3.62% 10.85% 42.11% 
B010 14.04% 1.57% 6.10% 54.55% 
B011 14.04% 1.24% 8.81% 100.00% 
B012 14.04% 7.62% 24.07% 44.38% 
B022 14.06% 4.58% 14.24% 43.75% 
B028 14.04% 0.43% 2.03% 66.67% 

 
Table Supp. 7. Single Station Posterior Probabilities, Holt-Winter’s Model- A temporal 
window two days in length is used for these detections. 

Well p(SS) p(Pd) p(Pd|SS) p(SS|Pd) 
B001 14.06% 6.34% 19.32% 42.86% 
B004 14.06% 5.43% 16.27% 42.11% 
B005 14.06% 6.91% 18.98% 38.62% 
B010 14.06% 2.72% 11.19% 57.89% 
B011 14.06% 2.38% 16.95% 100.00% 
B012 14.06% 14.06% 43.05% 43.05% 
B022 14.06% 4.58% 14.24% 43.75% 
B028 14.06% 0.86% 4.07% 66.67% 

 
Table Supp. 8. Single Station Posterior Probabilities, Holt-Winter’s Model- A temporal 
window three days in length is used for these detections. 

Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) 
B001 14.08% 8.97% 26.44% 41.49% 
B004 14.08% 8.02% 24.07% 42.26% 
B005 14.06% 6.91% 18.98% 38.62% 
B010 14.08% 3.72% 16.27% 61.54% 
B011 14.08% 3.39% 24.07% 100.00% 
B012 14.08% 19.33% 56.61% 41.23% 
B022 14.08% 6.68% 21.02% 44.29% 
B028 14.08% 1.29% 6.10% 66.67% 
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Table Supp. 9. Single Station Posterior Probabilities, Holt-Winter’s Model- A temporal 
window three days in length is used for these detections. 

Well p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd) 
B001 14.10% 11.38% 34.24% 42.44% 
B004 14.10% 10.47% 32.20% 43.38% 
B005 14.10% 12.43% 31.19% 35.38% 
B010 14.10% 4.59% 20.34% 62.50% 
B011 14.10% 4.30% 30.17% 98.89% 
B012 14.10% 23.80% 67.46% 39.96% 
B022 14.10% 8.46% 26.44% 44.07% 
B028 14.10% 1.72% 8.14% 66.67% 

 
Table Supp. 10. Joint Station Probabilities, Holt-Winter’s Model, Well Group 1, consisting 
of sites B001, B004, and B005- Colors indicate the size of temporal window used for the cross 
correlation of detections, noted in column 7. “Responsive wells” indicates the number of wells in 
which detections are correlated across within the group. 

Responsive Wells p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd)  Detections Window 
1 14.10% 25.33% 58.98% 32.83% 530 four days 
2 14.10% 7.31% 27.80% 53.59% 153 four days 
3 14.10% 1.63% 11.53% 100.00% 34 four days 

       
1 14.08% 20.53% 48.81% 33.49% 430 three days 
2 14.08% 5.44% 20.68% 53.51% 114 three days 
3 14.08% 0.91% 6.44% 100.00% 19 three days 

       
1 14.06% 14.87% 37.97% 35.90% 312 two days 
2 14.06% 3.38% 13.56% 56.34% 71 two days 
3 14.06% 0.43% 3.05% 100.00% 9 two days 

       
1 14.04% 8.19% 23.73% 40.70% 172 one day 
2 14.04% 1.52% 6.10% 56.25% 32 one day 
3 14.04% 0.05% 0.34% 100.00% 1 one day 
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Table Supp. 11. Joint Station Probabilities, Holt-Winter’s Model, Well Group 2, consisting 
of sites B010, B011, and B012-This table is similar to Table Supp. 10.  
 

Responsive Wells p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd)  Detections Window 
1 14.10% 26.58% 78.64% 41.73% 556 four days 
2 14.10% 5.45% 31.53% 81.58% 114 four days 
3 14.10% 0.67% 7.46% 100.00% 14 four days 

       
1 14.08% 22.24% 69.83% 44.21% 466 three days 
2 14.08% 3.82% 22.37% 82.50% 80 three days 
3 14.08% 0.38% 4.75% 100.00% 8 three days 

       
1 14.06% 16.83% 56.27% 47.03% 353 two days 
2 14.06% 2.14% 12.54% 82.22% 45 two days 
3 14.06% 0.19% 2.37% 100.00% 4 two days 

       
1 14.04% 9.57% 33.56% 49.25% 201 one day 
2 14.04% 0.86% 5.42% 88.89% 18 one day 
3 14.04% 0.00% 0.00% 0.00% 0 one day 

 
Table Supp. 12. Joint Station Probabilities, Holt-Winter’s Model, Well Group 3, consisting 
of sites B022 and B028- This table is similar to Table Supp. 10. 

Responsive Wells p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd)  Detections Xcorr win 
1 14.10% 8.94% 29.49% 46.52% 187 four days 
2 14.10% 1.24% 4.75% 53.85% 26 four days 

       
1 14.08% 7.11% 24.07% 47.65% 149 three days 
2 14.08% 0.86% 3.05% 50.00% 18 three days 

       
1 14.06% 4.86% 16.27% 47.06% 102 two days 
2 14.06% 0.57% 2.03% 50.00% 12 two days 

       
1 14.04% 2.48% 8.14% 46.15% 52 one day 
2 14.04% 0.29% 1.02% 50.00% 6 one day 
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Table Supp. 13. Network-Wide Joint Probabilities, Holt-Winter’s Model, Four Day 
Temporal Window- “Responsive wells” indicates the number of wells in which detections are 
correlated across within the group.  

Responsive Wells p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd)  Detections 
1 14.10% 37.33% 88.14% 33.29% 781 
2 14.10% 20.27% 64.07% 44.58% 424 
3 14.10% 12.52% 48.14% 54.20% 262 
4 14.10% 3.97% 28.14% 100.00% 83 
5 14.10% 2.25% 15.93% 100.00% 47 
6 14.10% 0.72% 5.08% 100.00% 15 
7 14.10% 0.10% 0.68% 100.00% 2 
8 0.00% 0.00% 0.00% 0.00% 0 

 
Table Supp. 14. Network-Wide Joint Probabilities, Holt-Winter’s Model, Three Day 
Temporal Window- This table is similar to Table Supp. 13. 

Responsive Wells p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd)  Detections 
1 14.08% 31.60% 79.32% 35.35% 662 
2 14.08% 15.99% 53.22% 46.87% 335 
3 14.08% 9.26% 35.93% 54.64% 194 
4 14.08% 2.82% 20.00% 100.00% 59 
5 14.08% 1.34% 9.49% 100.00% 28 
6 14.08% 0.29% 2.03% 100.00% 6 
7 0.00% 0.00% 0.00% 0.00% 0 
8 0.00% 0.00% 0.00% 0.00% 0 

 
Table Supp. 15. Network-Wide Joint Probabilities, Holt-Winter’s Model, Two Day 
Temporal Window- This table is similar to Table. Supp. 13 

Responsive Wells p(SS) p(Pd)  p(Pd|SS)  p(SS|Pd)  Detections 
1 14.06% 24.26% 66.44% 38.51% 509 
2 14.06% 11.11% 39.66% 50.21% 233 
3 14.06% 5.67% 22.03% 54.62% 119 
4 14.06% 1.67% 11.86% 100.00% 35 
5 14.06% 0.48% 3.39% 100.00% 10 
6 14.06% 0.10% 0.68% 100.00% 2 
7 0.00% 0.00% 0.00% 0.00% 0 
8 0.00% 0.00% 0.00% 0.00% 0 
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Table Supp. 16. Network-Wide Joint Probabilities, Holt-Winter’s Model, One Day Temporal 
Window-This table is similar to Table Supp.13. 

Responsive Wells p(ss) p(Pd)  p(Pd|SS)  p(SS|Pd)  Detections 
1 14.04% 14.61% 44.07% 42.35% 307 
2 14.04% 5.24% 20.00% 53.64% 110 
3 14.04% 2.43% 9.49% 54.90% 51 
4 14.04% 0.67% 4.75% 100.00% 14 
5 0.00% 0.00% 0.00% 0.00% 0 
6 0.00% 0.00% 0.00% 0.00% 0 
7 0.00% 0.00% 0.00% 0.00% 0 
8 0.00% 0.00% 0.00% 0.00% 0 
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APPENDIX C 

SUPPLEMENTAL FIGURES 

This appendix contains supplemental figures that depict the results from the Holt-Winter’s 

predictive model. Figures Supp. 1-Supp. 8 depict the individual site data and detections. Figures 

Supp. 9- Supp. 10 depict joint-detections for varying temporal windows.  Figures Supp. 11-Supp. 

12 depict single site detections for varying temporal windows. Figures Supp. 13- Supp. 16 are 

similar to Figures 12-15 in the main text but include the data from the borehole sites that contain 

no anomalous activity found by the Holt-Winter’s model. Figures Supp. 17 and Supp. 18 show the 

amount of correlated data points between pairs of stations for the Holt-Winter’s model. 
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Figure Supp. 1. Holt-Winter’s Predictive Model for Site B001- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated.  
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Figure Supp. 2. Holt-Winter’s Predictive Model for Site B004- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated. 
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Figure Supp. 3. Holt-Winter’s Predictive Model for Site B005- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated. 
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Figure Supp. 4. Holt-Winter’s Predictive Model for Site B010- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated. 
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Figure Supp. 5. Holt-Winter’s Predictive Model for Site B011- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated. 
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Figure Supp. 6. Holt-Winter’s Predictive Model for Site B012- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated. 
  



 

82 
 
 

 

Figure Supp. 7. Holt-Winter’s Predictive Model for Site B022- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated. 
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Figure Supp. 8. Holt-Winter’s Predictive Model for Site B028- The top panel shows the raw 
pore pressure data downsampled to 1/300 Hz, with anomalous data marked in purple. The second 
panel shows these data again plotted with the Brutlag confidence bands from the predictive model. 
The third panel shows the detections from the predictive model as a stem plot. Known times of 
SSEs are marked with orange rectangles. Data gaps are not interpolated. 
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Figure Supp. 9. Holt-Winter’s Model Group Detections, One Day Window- The first three 
stem plots show the correlated detections for Group 1, 2, and 3 respectively. The lowermost plot 
shows correlated detections across the entire network. The height of the stems shows the number 
of stations that share that specific detection. The grey color bars indicate how many wells are 
online. White means offline, increasing downwards.  Known SSEs are marked by orange 
rectangles. A one-day moving window is used for cross correlating detections. 
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Figure Supp. 10. Holt-Winter’s Model Group Detections, Two Day Window- The first three 
stem plots show the correlated detections for Group 1, 2, and 3 respectively. The lowermost plot 
shows correlated detections across the entire network. The height of the stems shows the number 
of stations that share that specific detection. The grey color bars indicate how many wells are 
online. White means offline, increasing downwards.  Known SSEs are marked by orange 
rectangles. A two-day moving window is used for cross correlating detections. Note the increase 
in the number of detections and wells in which they are correlated across. 
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Figure Supp. 11. Holt-Winter’s Model Detections, Three-Day Window- Each plot shows the 
pore pressure detections found for all borehole sites from 2014 forward. Known times of slow slip 
are marked by the orange rectangles. Purple dots mark the detections. Grey color bars indicate 
when the borehole station is online, white marks when the station is offline. Three-day moving 
windows are used in detections for this plot.  
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Figure Supp. 12. Holt-Winter’s Model Detections, Four-Day Window- Each plot shows the 
pore pressure detections found for all borehole sites from 2014 forward. Known times of slow slip 
are marked by the orange rectangles. Purple dots mark the detections. Grey color bars indicate 
when the borehole station is online, white marks when the station is offline. Four-day moving 
windows are used in detections for this plot.  
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Figure Supp. 13. Pore Pressure Data with Detections, All Sites, SSE of 2014- The top eight 
plots show the raw pore pressure data (downsampled to 1/300 Hz) with anomalous data from the 
Holt-Winter’s model marked in purple. Each plot has black stems that indicate the individual site 
detections found from the Holt-Winters model. The last stem plot contains the joint detections that 
were found to be correlated across at least 4 stations. Only stations containing detections are 
shown. The joint detections are found using a four-day window average. The SSE duration for 
2014 is marked in orange.  
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Figure Supp. 14. Pore Pressure Data with Detections, All Sites, SSE of 2015-2016- The top 
eight plots show the raw pore pressure data (downsampled to 1/300 Hz) with anomalous data from 
the Holt-Winter’s model marked in purple. Each plot has black stems that indicate the individual 
site detections found from the Holt-Winters model. The last stem plot contains the joint detections 
that were found to be correlated across at least 4 stations. Only stations containing detections are 
shown. The joint detections are found using a four-day window average. The SSE duration for 
2015-2016 is marked in orange. 
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Figure Supp. 15. Pore Pressure Data with Detections, All Sites, SSE of 2017- The top eight 
plots show the raw pore pressure data (downsampled to 1/300 Hz with anomalous data from the 
Holt-Winter’s model marked in purple. Each plot has black stems that indicate the individual site 
detections found from the Holt-Winters model. The last stem plot contains the joint detections that 
were found to be correlated across at least 4 stations. Only stations containing detections are 
shown. The joint detections are found using a four-day window average. The SSE duration for 
2017 is marked in orange. 
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Figure Supp. 16. Pore Pressure Data with Detections, All Sites, Uncatalogued even of Fall 
2016- Here, the top eight plots show the raw pore pressure data for each site containing detections. 
The dark purple bars mark the time of interest in which detections occur at sites B001, B005, and 
B012 alongside an anomalous step in pore pressure, here marked in purple.  
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Figure Supp. 17. Number of Holt-Winter’s Model Detections- The chart shows the number of 
anomalous pore pressure detections found with the Holt-Winter’s predictive model for each 
individual site. No moving window is used for these detections. 
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Figure Supp. 18. Number of Joint Station Holt-Winter’s Model Detections- The chart shows 
the number of correlated anomalous pore pressure detections found with the Holt-Winter’s 
predictive model for each pair of borehole sites. Grayed out pairs contain no correlated detections. 
No moving window is used for these detections. 
 




