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ABSTRACT 

The people and assets endangered by flood risks due to sea level rise and coastal 

population increase are increasing. Complex and unpredictable future circumstances 

necessitates a better scenario-based planning; helping to make better decisions through 

examining plausible future probabilities. Though it has value in urban planning, scenario 

planning has been limited to a single preferred plan and impact evaluation. To advance 

scenario planning for uncertain future urban growth and climate change, this research 

exemplifies scenario making and impact evaluation using the city of Tampa as a case 

site. It answers “How prepared are U.S. coastal cities for future urban growth and flood 

risks?”  

In scenario making, this research creates flood risk and future urban growth 

scenarios in lieu of sea level rise using the Land Transformation Model, a GIS-based 

Artificial Neural Network land use prediction model. For impact analyses, first, three 

different urban growth scenarios are evaluated by comparing urban flood exposure at a 

city and neighborhood level. Second, plan policies are examined with predicted urban 

growth and flood risks in eight highly clustered future urban neighborhoods.  

The findings show that the growth as land use plan scenario places less urban 

areas exposed to flood risks than the growth as business as usual, but much larger urban 

flood exposure than the resilient growth scenario at the city level. Even at the 

neighborhood level, more amounts of neighborhoods in the planned growth scenario are 

vulnerable to flood risks than in the business as usual scenario. In plan preparation, the 
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findings show that Tampa’s policies do not do enough to prepare for future climate 

change since the policies are based on the current climate pattern, and some policies are 

assigned in wrong locations. The scenario matrix (urban growth and flood risk scenarios) 

enables the ability to examine planning problems at multiple scales. The results of the 

impact analyses confirm dilemmas in urban planning: a regional solution can be worse in 

a neighborhood, and a good policy in the wrong place can work negatively. 
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1. INTRODUCTION

1.1. Background 

As environment, society, and technology rapidly change, the future becomes 

more complex and unpredictable (Lincoln Institute, 2017). High uncertainty in climate 

change and urban growth make forecasting difficult to plan with a traditional “predict-

and-plan” approach (Van der Heijden, 2011; Quay, 2010). Observed temperature 

increase and sea level rise since 1950 are unprecedented due to climate change (Pachauri 

et al., 2014). The National Oceanic and Atmospheric Administration (NOAA) reports 

future sea level rise scenarios that the global mean sea level will rise between 0.2 meters 

and 2.0 meters by 2100 (Parris et al., 2012). The United Nations (2017a) reports that 2.2 

billion global population will increase between 2017 and 2050, which is 29% more of 

the population in 2017 (7.6 billion). 

Currently, in the globe, more than 600 million people live in coastal regions, 

lower than 10 meters above sea level, and almost 2.4 billion people live within 100km of 

the coastline (United Nations, 2017b). In the U.S.  254 counties (8%) out of 3,142 are 

located on the coast. However, 39% (123.3 million people) of the total population live in 

coastal counties, and 52 % (163.8 million people) live in coastal watershed counties 

(Wilson & Fischetti, 2010). The shoreline counties’ population has grown steadily since 

1970 and is projected to grow in the future (Crossett et al., 2013). Sea level rise due to 

climate change make coastal population more susceptible to flood risks, and urban 

expansion due to population growth can worsen climate conditions and enlarge hazard 
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zones: when open space land uses are converted to urban land uses, flood risk can 

increase due to increased floodplain areas and impervious surfaces. If we do not prepare 

properly for the future urban growth and climate change, more people will be at flood 

risk. 

Land change modeling (LCM) is a planning support system to supply future land 

prediction to land use planning process (Berke & Kaiser, 2006). Land use change is the 

result of interaction between human activity and natural resources (Agarwal et al., 2002). 

Understanding historic land development processes in order to better predict future 

circumstances helps support urban planning for potential future flood risk mitigation. 

Over the past few decades, urban LCM has been developed significantly, addressing 

urbanization issues and its impacts in many fields (Verburg et al., 2015; Güneralp, 

2011). It creates the opportunity to mold an uncertain future into determined conditions 

via scenario planning. 

This research seeks to advance scenario planning for future urban growth and 

climate change in scenario making and scenario analysis. It uses the Land 

Transformation Model (LTM), a popular and accurate land change model, to predict 

potential future urban growth of a study area. In most land change prediction studies, 

there is a lack of explanation of driving factors, scenario types, and scenario analysis. To 

fill this gap, this research identifies driving factors of urban growth from previous 

prediction and empirical studies. In developing scenarios, this research adopts a land use 

plan and a local comprehensive plan in both scenario making and analysis to assess how 

a local comprehensive plan prepares for future growth scenarios. 
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1.2. Research Purpose 

The overall aim of this dissertation is to examine future urbanization using 

prediction modeling coupled with scenario planning. It exemplifies a scenario planning 

process for climate change adaptation; examines multiple urban growth and sea-level 

risk scenarios and evaluates the impact of urban scenarios including local comprehensive 

plans at city and community scales. The main purposes of this research are; 1) to 

determine driving factors of urban growth in Tampa, Florida; 2) to validate future urban 

growth projection; 3) to examine the current land use plan with other growth scenarios; 

and 4) to assess a local comprehensive plan for future urban growth and flood risk. 

1.3. Research Justification 

The values of this research can be justified by three key points; scenario 

planning, a local comprehensive plan, and LCM/LTM models. 

First, uncertainty in urban growth and climate condition calls for better scenario 

planning approaches. Scenario planning is a decision making process and identifies 

various future options helping stakeholders make a better decision for possible future 

conditions by comparing and assessing plausible stories (Lincoln Institute, 2017; 

FHWA, 2011). The future becomes more complex and unpredictable and such changes 

make less reliable to practical experience and conventional judgement as a guide to 

policy making (APA, 2017; Kahn & Wiener, 1967). Scenario Planning has been used in 

urban planning since 1960. However, many plans stay in the initial planning stage, 

predict-and-plan (Quay, 2010). They ignore uncertainty and deal with only a single 
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preferred scenario (Chakraborty et al., 2011, Hopkins & Zapata, 2007), and fail to 

provide a detailed process of scenarios development and the future impact of scenarios 

(Woodruff, 2016).  

Second, though natural disasters cannot be prevented, proactive actions can 

reduce their impact (Godschalk et al., 1998). A local comprehensive plan is a good tool 

to reduce damage from natural disaster by controlling future development areas based on 

current and forecasted hazard areas (Berke et al., 2015; Burby et al., 1999). Local 

governments are given the authority to control development and plan from the Growth 

Management Act of 1985 and the 2011 Community Planning Act (Hillsborough County, 

2016). Especially in Florida, each community prepares for legally binding local 

comprehensive plans, and the plans provide city’s land use and management decision 

(Brody, 2001). A local comprehensive plan guides a city or community’s desirable 

future land use and development (Kang, 2009). Examining a local plan’s preparedness 

based on potential future growth scenarios and flood risk will help to make more 

sustainable and resilient communities. 

Third, LCM is a good tool to create future urban growth scenarios, but it 

produces limited types of scenarios, and its subsequent impact assessment is also limited 

such as total damage area calculation. Many prediction tools typically produce similar 

scenarios such as business as usual (same growth pattern as previous pattern), 

environmental growth (development outside environmental preservation areas), and 

sprawl/smart growth (development density control). In the case of the LTM, no study 

has applied scenario making. Land use planning and planning policies are influential 
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determinants for future land change, but few studies have considered scenario making. 

Moreover, impact analysis in disaster related scenarios is limited to the total damage 

areas.  

1.4. Research Process 

Chapter 2 reviews several literature references to form an understanding of land 

change modeling and scenario planning and to lay the foundation for a conceptual 

framework for scenario making and analysis. The first part reviews 144 prediction 

articles to identify driving factors of urban growth, subsequent topics, and scenario 

making with land change models. The second portion reviews a specific land change 

model, the Land Transformation Model. The final section reviews the literatures 

associated with scenario planning in urban planning. 

Chapter 3 addresses the research design, methods, and variables. The first section 

explains the overall conceptual framework in scenario making and impact analysis. The 

second section illustrates spatial frame and data. The variable selection section explains 

driving factors of urban growth from existing empirical studies, detects each variable 

influence using drop-one experiment of LTM in prediction capabilities of the study area, 

and finalizes variables. 

Chapter 4 presents the results of scenario making and impact analysis. The first 

subsection detects each variable influence using drop-one experiment of LTM in 

prediction capabilities of the study area, and finalizes variable selection for urban growth 

prediction. Then, three urban growth scenarios are created with validation. The second 
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subsection illustrates future flood risk scenarios based on NOAA’s SLR estimation. The 

third subsection compares each forecasted urban flood exposure by future flood risks at a 

city and neighborhood level. The final analyses show how plans prepare for future urban 

growth and flood vulnerability.  

Chapter 5 summarizes the key findings of the dissertation, and concludes with 

study limitation and future research. 

1.5. Research Question 

Primary: 

The overarching research question for this study is “How prepared are U.S. 

coastal cities for future urban growth and flood risks?” This research question consists of 

the following sub-questions.  

Subsidiary: 

• “How well-suited is the LTM in predicting future urban growth related to flood

risk?”

• “How effective is the current comprehensive plan in adapting urban growth to

climate change?”

• “How well-suited are neighborhoods to absorbing predicted growth based on

current policy and vulnerability?”

The first sub-question will be answered with variable selection for the study area, 

Tampa, Florida, and four accuracy assessment measures (e.g. PCM, kappa, OA, AUC) 

will justify the LTM prediction capability. The result, the urban growth prediction 
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scenarios will be a basis for the second and third sub-questions. The second sub-question 

examines the current land use plan, growth as planned, with other growth scenarios such 

as business as usual and resilient growth. To show the effectiveness of the current land 

use plan, future urban areas exposed to flood risks will be compared at a city and 

community scales. The last question will be answered by specifying policy preparation 

of the Tampa Comprehensive Plan 2040 based on current physical/social vulnerability 

evaluation for highly clustered future urban neighborhoods. Finally, the sub-questions 

will answer the primary question, the preparedness of a coastal city for future urban 

growth and flood risks. 
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2. LITERATURE REVIEW1

This section outlines and reviews the critical areas of research literature 

necessary to build an understanding of land change modeling and scenario planning. The 

first part of this section covers a 144-prediction article review assessing the driving 

factors of urban growth, prediction models, disciplines, location, sub-sequent topics, and 

scenario application. The second part reviews the Land Transformation Model (LTM) 

and its origin, process, and application. Scenario planning and its application in urban 

planning are reviewed in the third part. A summary of the research findings and 

limitations conclude this section. 

2.1. Driving Factors of Urban Growth 

To uncover the driving factors of urban growth and urban land-change modeling, 

a searched was conducted for land use prediction articles with land cover changes in an 

electronic database with backward and forward searches (Xiao & Watson, 2017). 

SCOPUS was used as a main search database on September 21, 2017. The search 

keywords were "future urban growth" or "future land use," "land use prediction," and 

"future urban expansion." The search covered the years from 1945 to 2017, and subject 

areas were environmental science, agriculture and biological science, social science, 

earth and planetary sciences, computer science, economics, econometrics and finance, 

1 Part of this chapter is reprinted with permission from “Climate Change Preparedness: Comparing Future 

Urban Growth and Flood Risk in Amsterdam and Houston” by Kim, Y. and Newman, G., 2019, 

Sustainability, 11(4), 1048, Copyright 2019 by the authors. 
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and neuroscience. Document types were limited to peer reviewed articles, reviews, and 

book chapters written in English. In the first round, 11,231 articles were searched, and 

after reviewing titles and abstracts, the second round resulted in 1,970 articles. After 

reviewing full texts, the selected land cover prediction related articles totaled 116. 

Through backward and forward search during the full-text review, 28 additional articles 

were found so the total number of articles to review for land use prediction model was 

144 containing land change predictions, prediction models, and driving factors of urban 

growth. 

The questions for this literature review are: What kind of prediction models have 

been used? What/how many times have driving forces have been applied to urban 

growth? What disciplines focus on land-change studies? Where the locations are for 

prediction studies? and What are the purposes of prediction studies? 

2.1.1. Prediction Models 

Figure 2.1. Number of articles by year that contain urban prediction models. 
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As seen in Figure 1, since 1974, urban prediction began with the Markov model 

(Bell, 1974). Many prediction models were introduced in the 1990s and early 2000s: 

CUF (Landis, 1994), Cellular Automaton (Clarke et al., 1997), Land Use Scanner 

(Hilferink & Rietveld, 1999), What IF (Klosterman, 1999), CLUE (Verburg et al., 1999), 

LTM (Pijanowski et al., 2002), SLEUTH (Silva & Clarke, 2002), and Urban Sim 

(Waddell, 2002). After the introduction of the various prediction models, performance 

and calibration methods were developed for each model, and, in 2010, many hybrid tools 

were created by combining various techniques: statistical regression, machine learning, 

cellular automata, exogenous quantity, and pure pixels (Pontius et al., 2008). 

Land change models studies have been actively applied since 1999, and recently, 

from 2010 to the present, the study numbers have increased. In the last three years, 

2015-2017, almost 20 papers were published each year. The four most popular 

prediction models as found in the 144 reviewed articles are SLEUTH (26), ANN (20), 

Markov (20), and CLUE (12). 

The SLEUTH model (the former Clarke Urban Growth model), named from the 

first letters of the input layers (Slope, Land use, Exclusion, Urban extent, Transportation 

and Hillshade), uses a cellular automaton procedure on a gridded map (Clarke et al., 

1997). The procedure is controlled by diffusion, breed, spread, slope, and road 

coefficients, and four types of urban growth patterns are revealed: spontaneous, 

diffusive, organic, and road-influenced (Silva & Clarke, 2002). The Land 

Transformation Model (LTM) is a representative artificial neural network (ANN) based 

land change prediction model using GIS (Pijanowski et al., 2002). Due to the ANN’s 
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capability in a non-linear model, it can be applied for natural, social, economic, and 

political factors. However, a primary limitation is that the model does not show causality 

for each factor’s relationship to urban growth (Brown et al., 2013). The Markov-CA 

modeling is a hybrid model of Markov chains and Cellular Automaton. The Markov 

model uses a stochastic process (Bell, 1974) to describe the probability of change from 

non-urban to urban land within a given time (Shafizadeh-Moghadam & Helbich, 2013), 

following continual historic trends (Brown et al., 2013). A transition matrix summarizes 

the probability results, and the Cellular Automaton simulates the matrix into a spatial 

map. The Conversion of Land Use and its Effects (CLUE) predicts land use change 

based on the empirical relationships between land use and driving factors. The model 

consists of a non-spatial demand module that calculates the area of land use change area 

and a spatial allocation module that translates the demand into land use changes 

(Verburg, 2010). CLUE was initially developed for national scale land use predictions 

(Verburg et al., 1999), and CLUE-S (at small regional extent) was developed for land 

change at small scales such as watersheds and provinces (Verburg et al., 2002). Dyna-

CLUE (dynamic) and CLUE-Scanner are advanced versions of the CLUE model. 
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2.1.2. Driving Factors of Urban Growth 

Table 2.1. List of predictor variables and their usage in 144 reviewed articles. 

Driving Factor No. of Use Driving Factor No. of Use 

Topography 

slope 93 
Service 

distance to hospital 2 

elevation 41 sewer service 7 

aspect 10 

Amenity 

distance to water 49 

hill shade 26 distance to lake 6 

soil type 23 distance to green space 8 

Transportation 

distance to road 122 distance to recreational 8 

distance to highway 24 distance to sea 10 

distance to highway exits 4 distance to natural scenery / view 2 

distance to railway 13 
Preservation 

environmental preservation 16 

distance to railway station 5 forest density 3 

distance to airport 9 

Economic 

GDP 11 

distance to tollgate 2 Income 4 

distance to bus transit system 3 poverty rate 1 

distance to metro (subway) 5 property value 11 

Land Use 

distance to built-up  area 73 
Population 

population 10 

distance to residential 13 population density 30 

land use 46 
Climate 

temperature 8 

distance to forest 9 precipitation 10 

distance to agriculture 8 
Disaster Risk 

flood risk 9 

JOB 

distance to cities 18 seismicity 3 

distance to urban center (CBD) 41 

Others 

policies and legislation 6 

distance to district / town center 18 race (white population) 1 

employment 7 neighborhood quality 1 

distance to industrial 8 crime 1 

Service 
distance to commercial 16 northing parameter (coordination) 8 

distance to institutional / school 9 easting parameter (coordination) 5 

Figure 2.2. List of predictor variables and their usage in 144 reviewed articles. 
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Among the 144 reviewed articles, two studies (Bell, 1974; Conway, 2005) use 

only 1 factor, land use, to predict future urban changes. Variable amounts vary from 1 to 

17, with an average of 7.3 per article. While general LCMs use infinite variables, the 

SLUETH model uses six fixed variables: slope, land use, exclusion, urban extend, 

distance to road, and hillshade.  

As illustrated in Figure 2, natural and built-environmental variables have been 

popularly applied as major driving factors in urban growth. Distance to a road, slope, 

distance to existing urban, and distance to water are the most popularly used variables. 

Natural variables are slope, distance to a waterbody, elevation, hillshade, environmental 

preservation, aspect, distance to the sea, etc. Built-environmental variables consist of 

distance to a road, existing urban, urban center, highway, land use, etc. The popular 

variables in the socio-economic sector are population density, gross domestic product 

(GDP), property value, employment, and income. Some studies consider disaster 

impacts as land change determinants; floodplain (Bright, 1992; Conway, 2005; Munshi 

et al., 2014; Nourqolipour et al., 2015; Nourqolipour et al., 2016; Pettit & Pullar, 2004; 

Te Linde et al., 2011), tsunami (Achmad et al., 2015), and seismicity (Landis, 1994; 

Terzi, 2015). Northing and easting coordinates have also been used as growth driving 

factors in several studies (Al-sharif & Pradhan, 2015; Hao et al., 2015; Hu & Lo, 2007; 

Jafari et al., 2016; Shafizadeh-Moghadam et al., 2017) maybe due to indicating tendency 

of urban growth location. 

Compared to natural and built-environmental variables, few studies consider 

socio-economic variables (Agarwal et al., 2002). This can be because of data stationarity 
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and availability. Natural and built environments do not change as quickly as socio-

economic factors and their static status may make it easier to use them as prediction 

variables. Data availability can be another issue. Most cities or regions have a full set of 

environmental data which is convenient for people to use. 

2.1.3. First Author’s Department 

To answer the question about what disciplines focus on land change studies, the 

first author’s discipline was examined. As Figure 3 shows, 77% of the departments are 

from the natural and environmental sciences, 17% are from socio-economic sciences 

(e.g. urban planning, architecture, landscape, economics and management, and real 

estate), and 6% are from engineering. Environmental science and geography are ranked 

as the first two disciplines, and the third is urban planning with 19 articles. 

When assessing driving factors by first author’s discipline, natural and built 

environmental factors have been used across disciplines. Environmental science and 

geography are the disciplines that mainly use socio-economic factors for predictions, as 

shown in Figure 4, and are the same ranking order as seen in the total articles. 

Population density has been used widely in natural science (Zare et al., 2017), remote 

sensing (Losiri et al., 2016), geography (Han et al., 2015; Ku, 2016), civil engineering 

(Al-sharif & Pradhan, 2015), environmental science (Wu et al., 2015), real estate (Zheng 

et al., 2015) and economics (Liu et al., 2015). GDP has been a focus in environmental 

science in forestry (Liu et al., 2011), geo-science (Samie et al., 2017), natural science 

(Zhen et al., 2014) and geography (Han et al., 2015). Population was used in forestry 
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(Liu et al., 2011), urban planning (Hansen, 2010, 2011; Waddell, 2002), and 

environmental science (De Moel et al., 2011). Employment is a primary factor in urban 

planning (Landis & Zhang, 1998; Waddell, 2002) transportation (Amano et al., 1988), 

and geography (Kocabas & Dragicevic, 2007). Property value has also been used in 

urban planning (Munshi et al., 2014), environmental science (Fuglsang et al., 2013), and 

real estate (Zheng et al., 2015). 

Figure 2.3. First author’s department in 144 reviewed articles. 

Figure 2.4. Major socio-economic variables by disciplines. 
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2.1.4. Study Location and Scale 

Figure 2.5. 38 countries, 1 continent, and 2 global studies in 144 reviewed articles. 
(7 multi-country studies counted each country separately) 

With regards to study location, the U.S. (33), China (29), and Iran (17) are the 

ones used the most with more than half of the total prediction articles located in these 

three countries. The Netherlands is the most popular location in Europe since the CLUE 

family prediction models were developed at Vrije University (Verburg et al., 1999). 
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Most studies deal with a single study area within a country: in total 38 countries 

have been studied. There are 17 multi-locational studies (e.g. cities, counties, regions) 

within a country (Amato et al., 2016; Mathioulakis & Photis, 2017; Qiang & Lam, 2016; 

Shafizadeh-Moghadam et al., 2017; Yuan, 2010), three multi-national studies (Nor et al., 

2017; Pijanowski et al., 2005; Seto et al., 2012), one African continent scale (Linard et 

al., 2013) and two global scale studies (Güneralp & Seto, 2013; X. Li et al., 2017). The 

reasons there are few large scale (e.g. multi-national, continental, global) studies may be 

because of data availability and processing capability.  

Figure 2.6. Study scales. 

Depending on the research purpose, study boundaries are classified into two 

categories: watershed and administrative. The watershed scale is applied to calculate 

hydrologic impacts such as surface run-off change (Wu et al., 2015) and flood risk (Te 

Linde et al., 2011). Administrative boundaries vary from district (Samardžić-Petrović et 

al., 2016), city (Zare et al., 2017), province (Samie et al., 2017), to global scales 
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(Güneralp & Seto, 2013). The city scale boundary is the most popular administrative unit 

for various purposes: an urban growth scenario (Kocabas & Dragicevic, 2007), policy 

applications (Sakieh et al., 2015), and ecological impacts (Lu et al., 2016). 

Depending on the study area and in pursuit of an accurate level, the use of pixel 

sizes vary from 25m to 5km. A 30×30m pixel size is generally applied in district, city, 

county and regional studies, 1×1km for the national level (Hasan et al., 2017), and 5×5 

km for the global level (Güneralp & Seto, 2013). Because of data availability and 

processing capability, the larger the numbers of pixels, the longer the processing time. 

Also, pixel size influences prediction accuracy, the smaller the pixel size, the more 

accurate the prediction. 

2.1.5. Topic and Scenario 

The primary topics of urban prediction studies are to introduce a model, to 

forecast future urban growth, and to examine urban growth-related impacts. In the early 

2000s, various prediction models (e.g. CA, CUF, CLUE, LTM) were introduced. The 

calibration methods developed for the models have been scrutinized, but they are used to 

compare performance (prediction accuracy) among different models. Pontius et al. 

(2008) compared the input, output, and accuracy of different prediction models across 

different locations, finding that the influence of raw data resolution on prediction 

accuracy is a highly significant factor in a model’s accuracy. Camacho et al. (2015) 

assessed calibration methods of land change for prediction accuracy, finding that the 

Land Change Model and the Cellular Automata-Markov were exemplary in regard to 
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quantity and allocation, compared to other existing models. Lin et al. (2011) justified 

prediction model performance and examined previously unknown relationships between 

driving factors and land use change by testing the model performances among logistic 

regression, auto-logistic regression, and neural networks. New hybrid models, 

combining prediction tools and calibration methods, are still being developing to find a 

best-fit model. 

Figure 2.7. Topics and scenario use classification in the reviewed articles. 

Other topics combine future urban growth with other subsequent impacts (e.g. 

ecologic, hydrologic, flood inundation, food production, and soil erosion). Lu et al. 

(2016) evaluated landscape ecological security using different spatial scenarios in 

Huangshan City, China. Wu et al. (2015) tested hydrologic impacts from potential land 

changes with the Soil and Water Assessment Tool in the Heihe River Basin, China. Lin 

et al. (2007) assessed the impact of land cover change on surface run-off in the Wu-Tu 

watershed in Taiwan. Zare et al. (2017) and Hansen (2011) delineated future urban flood 
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risks based on the SLR in coastal areas. Zare et al. (2017) estimated a soil loss rate under 

future climate and land change conditions with a Revised Universal Soil Loss Equation 

in the Kasilian watershed in Iran. Each of these aforementioned research articles exposed 

the negative results of future urban expansion in ecology, flood risk, and soil loss. 

Among the subsequent impact studies, there are seven articles that estimated 

climate change/sea-level rise (SLR) impacts. When examining flood risk, most studies 

used SLR scenarios in 2030, 2080 or 2100; some have also examined future river-flood 

probabilities (Te Linde et al., 2011) or existing flood maps as measures for flood risk 

increase (De Moel et al., 2011). Zhao et al. (2017) examined future urban growth with 

the SLR scenarios, (low/medium/high) in 2030 and 2080. Song et al. (2017) assessed 

total growth damage area in different urban growth locations and density scenarios. 

These scenarios targeted areas impacted by hurricane and accounted for SLR by 2030 

and 2080, storm surge, and the 500-year floodplain. Te Linde et al. (2011) predicted 

economic growth scenarios for the Rhine River’s flood probability by 2050. De Moel et 

al. (2011) used the existing maximum flood inundation capability as a measure for future 

flood risk because of the Netherlands’ strong dike protection systems against 

current/future SLR. For analyses, all of the above articles used total flood damage areas 

as a measure for increased flood risk examining a single location; two articles used a 

monetary calculation for the impacts based on the damage areas identified by the 

prediction models. 

In the urban growth scenario of land change prediction, 55 of the reviewed 

articles, or 38%, presented forecasted urban growth scenarios to identify an optimal 
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future growth direction. Many of the studies used future growth options such as business 

as usual, compact development, and environmental protection. The main categories of 

urban growth scenarios are urban density (Song et al., 2017; Terzi, 2015), ecology 

(Goodarzi et al., 2017; Shi et al., 2017), economic growth (Hoymann, 2010; Te Linde et 

al., 2011), and planning (Liu et al., 2011; Xi et al., 2010). The methods that make 

scenarios different depend on prediction models and purposes, but there are three general 

differences: pixel number control for density (compact or loosen), location control by 

exclusionary layers, and driving factor influence control by using different driving 

factors or weighing driving factors. In the scenario for making using plans, six studies 

consider plans for managed/planned growth scenarios in China. Five articles use future 

development areas in regional development plans, and one article uses a local land use 

plan for a district-level study in China (Hua et al., 2014). 

2.1.6. Prediction Assessment 

In the review, 56 out of 144 articles did not present validation of prediction; most 

of them were performed before 2010. Afterward, many studies began to justify 

prediction accuracy with one or more measures. Popular accuracy measures are kappa 

coefficient with 45 times, area under curve (AUC) of receiver operating characteristic 

(ROC) with 31, and quantity disagreement & allocation disagreement (OA) with 12. 

Those are the most common methods for assessing the models’ prediction performance 

quantitatively through an error matrix (see details in Section 2.2.3). A few studies used 

percent correct metric (PCM) and root mean squared error. 
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2.2. Artificial Neural Networks and the Land Transformation Model 

The Land Transformation Model (LTM) is one of the most used land change 

prediction tools due to its accurate prediction performance. It is an artificial neural 

networks (ANN) based model. This section will explain ANNs’ algorithms, history, and 

applications of the LTM, and its related accuracy assessment measures. 

2.2.1.  Artificial Neural Networks 

Artificial Intelligence  

Since the invention of the computer, artificial intelligence (AI) was developed by 

computer science to create software which tries to imitate human brain activity such as 

learning, reasoning, self-correcting, and problem solving in terms of methods, tools and 

systems (Agatonovic-Kustrin & Beresford, 2000; Boers & Kuiper, 1992). There are two 

categories in designing intelligent systems. The first is a traditional rule-based approach 

to simulate human experience and to draw conclusions based on rules and logical 

sequences. Due to limited knowledge in experience, these programs can only usually 

function in a few expert systems in narrow areas. The ANN approach is to model 

processing principles of the human brain, a method based on the ability to learn and 

generalize from experience (Agatonovic-Kustrin & Beresford, 2000; Boers & Kuiper, 

1992; Zhang et al., 1998).  

Brain research and modeling have been studied in psychology, biology, and 

computer science. The development of the ANNs started with the neural activity study 

by McCulloch and Pitts (1943). Rosenblatt (1958) scrutinized neurodynamics theory and 
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how the human brain perceived and memorized information, and Minsky and Papert 

(1969) examined computing perception with a simple layer and its limitations. After 

introducing the multilayer perception by Werbos (1974) and the computation of neuron 

networks by Hopfield (1982), Rumelhart et al. (1985) developed a multilayer perception 

with feedforward networks (Jain et al., 1996). 

Artificial Neural Networks 

ANNs are digitized models which mimic the way biological neurons process 

information (Pijanowski et al., 2001; Wang, 2003); and they are simplified reproductions 

of the complex natural brain. Among many of neural network paradigms, the multi-layer 

perception (MLP) is one of the most popularly used neural nets in ANNs (Boers & 

Kuiper, 1992; Pijanowski et al., 2001; Pijanowski et al., 2009). In a way different from 

simple two-layer networks from input layer to output layer, ANNs use additional layers, 

hidden layers which create internal representation in the input patterns (Rumelhart et al., 

1985). Neural nets consist of stratified layers with linked nodes. Each node, each 

artificial neuron, in a lower layer is connected to higher layer nodes with different 

weights, and the latter node must receive input from previous nodes (Pijanowski et al., 

2005). As seen in Figure 8, the MLP consists of at least three layers: an input, hidden, 

and output layer. ANN algorithms calculate weights through feedforward networks and 

backpropagation for input, hidden, and output layer nodes (Rumelhart et al., 1985; 

Pijanowski et al., 2009). Feedforward networks create and modify weights for each node 

through layers. Backpropagation algorithms find errors (Basheer & Hajmeer, 2000) and 
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adjust weights using the summarized mean squared error of each node between the given 

output and predicted output (Pijanowski et al., 2002; Rumelhart et al., 1985). Applying 

the adjusted weights, a new cycle starts with repeating feedforward and 

backpropagation. ANNs run thousands of cycles to minimize errors and to develop the 

best-fit result between expected output and actual output (Pijanowski et al., 2001).  

Figure 2.8. A typical multi-layer perception neural network: Feedforward and 

backpropagation.  
Source: modified from Rumelhart et al. (1985), Pijanowski et al. (2009), and Newman et al. (2016). 

Pros & Cons 

ANNs are capable to recognize and classify complex behavior and patterns from 

examples (Pijanowski et al., 2002) so many studies use them to forecast tasks because of 
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their distinct characteristics (Zhang et al., 1998). First, ANNs can calculate nonlinear 

solutions with little background knowledge. Neural networks can learn and generate 

rules based on examples though there is limited knowledge. Due to real world 

complexity, there are limitations in explaining and forecasting with linear statistics. 

ANNs use nonlinear data-driven approaches with little underlying assumptions 

(Pijanowski et al., 2001; Zhang et al., 1998). Second, ANNs can generalize results. They 

have an ability to achieve fault tolerance, though it includes noisy or damaged data 

(Swingler, 1996), with feedforward networks in hidden layers (Séquin & Clay, 1990). A 

model learned from a previous experiment can be applied for a new unlearned 

experiment when both the input and the output patterns have the same parameterization 

(Basheer & Hajmeer, 2000; Pijanowski et al., 2001). Third, ANNs can create various 

approximate results. Using known and unknown relationships, they create many options 

with desired accuracy. This is different from statistical approaches which usually follow 

direct relationships. Such features of ANNs produce more accurate better-fit results. 

However, the drawback of ANNs, in a machine learning approach compared to 

statistical approaches is that it is hard for them to interpret internal analysis structure and 

variable relationships between dependent variables and independent variables. This is 

why they are sometimes referred to as a “black box” approach (Brown et al., 2013).  

Application of ANNs 

The characteristics of ANNs (their classification and forecasting capability) make 

them alternatives to statistical approaches, especially when there are nonlinear processes 
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with limited data (Moody & Utans, 1994; Sharda, 1994). This is why ANNs have been 

popularly utilized for complicated and practical tasks in many fields: medicine, business, 

climatology, ecology, geography, etc. 

In clinical medicine (medical science), clinical diagnoses have actively used 

ANNs in classification (image analysis, drug design, biochemical analysis, diagnosis), 

and prediction (Amato et al., 2013; Baxt, 1995). Lo et al. (1995) examined ANNs in 

detection of chest radiographs, and Cheng et al. (1996) developed medical image 

segmentation and prediction with a new type of neural networks called a competitive 

Hopfield neural network. ANNs are used to design drug compounding chemical 

elements for treatment of diabetes (Patra & Chua, 2011). Baxt (1995) applied ANNs to 

diagnose on myocardial infarction. It has a low incidence but a high price for 

misdiagnosis. Ellenius et al. (1997) used the LTM for biochemical monitoring for 

myocardial infarctions. Grigsby et al. (1994) used a prediction for functional outcomes, 

costs, and stay length. In the review of a cancer related studies using neural networks, 

Lisboa and Taktak (2006) reported the increasing numbers of research with ANNs on 

diagnosis, prognosis, and therapeutic guidance for cancer between 1994 and 2003.  

In business, predictions of corporate failure and price change are important issues 

sustaining business (Alfaro et al., 2008). Odom and Sharda (1990) suggested a 

bankruptcy forecasting model and examined it with historic bankrupt firm data 

indicating 65 failures among 129 companies. Grudnitski and Osburn (1993) forecasted 

price changes in the Standard & Poor’s (S&P) Stock Index and gold with historic price 

and interest change. Moody and Utans (1994) predicted corporate S&P bond ratings. 
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Chen et al. (2003) forecasted the direction of a price movement, for profit yield in the 

Taiwanese stock market. 

In Atmospheric Science, forecasting climate, precipitation, and river-flow are 

major neural network applications. Dawson and Wilby (1998) applied ANNs to flood-

forecasting with historic rainfall, runoff, river flow, and catchment area because of their 

nonlinear function and generalizing capability. Knutti et al. (2003) used ANNs for more 

accurate climate change projection on surface warming and ocean heat uptake related to 

radiative forcing components such as greenhouse gases, stratospheric water, and others. 

Hydrological changes in streams (Poff et al., 1996), heat island intensity (Mihalakakou 

et al., 2002), and many climate related researches have been conducted with ANNs. 

Ecologists, geographers, urban planners and other scientists have applied ANNs 

to identify patterns and forecast future developments. Manel et al. (1999) predicted 

Himalayan river bird distributions in India and Nepal. Park et al. (2003) used ANNs to 

predict aquatic insects’ patterns and richness. Xia Li and Yeh (2002) used neural 

networks to predict future (2005) land use based on historical land covers in 1998 and 

1993, and Liu and Lathrop (2002) used them for accurate land cover detection from 

satellite images. 

2.2.2. Land Transformation Model 

LTM and Application 

The Land Transformation Model (LTM) is a tool to predict land use examining 

relationship between spatial driving factors and land use changes with the Geographic 
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Information System (GIS) and a machine learning process, artificial neural networks 

(ANNs) (Pijanowski et al., 1997). The LTM has a similar process to other regression 

based prediction tools to observe the relationships, however, it uses a machine learning 

approach with neural networks to calculate complex patterns (Pijanowski et al., 2002). 

Compared to other prediction models (e.g. logistic regression, SLEUTH, CLUE, etc.), 

the LTM performs with a higher prediction accuracy (Lin et al., 2011; Pontius et al., 

2008).  

Pijanowski et al. (1997) at Michigan State University (now at Purdue University) 

first introduced the LTM to simulate land cover change with ANNs. The LTM model 

forecasts increases and decreases in urban, forest, and agricultural land. It can couple to 

subsequent models to examine climate, hydrology, and natural habitats and the 

significant impacts of land use change on the environment (Pijanowski et al., 2002).  

Pijanowski et al. (2001) tested the LTM in Michigan’s Grand Traverse Bay 

Watershed (GTBW) with growth driving factors: transportation, landscape features, and 

urban services. Based on 1980 and 1990 land covers as base maps, the study produced 

future predictions for 2020 and 2040. The prediction results were combined with the 

USGS’s Modular Hydrologic Model (MODFLOW) to calculate groundwater conditions 

and ground/surface water interactions. Then Pijanowski et al. (2002) examined the future 

eastern Lake Michigan watershed for urban sprawl impacts on the environment: the 

hydrological budget, exported nitrogen, and deforestation. Later, its calibration tools 

were developed (Pijanowski et al., 2005), and they enhanced the performance of 

application with national scale data (Pijanowski et al., 2014). 
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The model has been popularly applied in different locations and scales for 

forecasting urbanization, vacancy, deforestation (Mas et al., 2004; Müller & Mburu, 

2009), and loss of agriculture (Li et al., 2012); a city scale in San Pablo City, the 

Philippines (Quintal et al., 2018), Chicago, the U.S. (Lee & Newman, 2017), and Fort 

Worth, the U.S. (Newman et al., 2016), a regional metropolitan scale in Beijing-Tianjin-

Tangshan metropolitan, China (Kuang, 2011), Tehran metropolitan, Iran (Pijanowski et 

al., 2009), and a nation scale in the U.S (Pijanowski et al., 2014). 

The forecasted results, sequential effects from urbanization, have been linked to 

other models: climate (Moore et al., 2012; Wiley et al., 2010), water quantity and 

pollution (Li & Merchant, 2013; Ray et al., 2010; Rizeei et al., 2018; Tang et al., 2005; 

Yan & Edwards, 2012), and soil erosion (Rizeei et al., 2016), etc. 

Process 

Figure 2.9. LTM process diagram. 
Source: modified from Almeida et al. (2008). 
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As Figure 8 illustrates, the model follows four steps: 1) data processing – input layers, 

base maps and driving factors are processed with GIS, 2) spatial transition rules – coded 

grid cells represent predictors in binary or continuous variables transformed with 

density, patch size, site specific characteristics, and distance, 3) neural network 

processing – ANNs examine input layers matching with desired output through 

feedforward and backpropagation, and integrate predicted cell change, and 4) scaling 

future predictions – the amount of cell transition to decide how future predictions will be 

applied to the highest changing potential pattern (Newman et al., 2016; Pijanowski et al., 

2002). 

2.2.3. Prediction Accuracy Measures 

Showing the goodness of fit with appropriate accuracy measures is important in a 

spatial prediction model since no best measure exists, and each measure represents 

different ways (Stehman, 1997). This research uses four most common types of spatial 

statistical measures to validate spatial patterns; percent correct metric (PCM), kappa 

coefficient, quantity disagreement & allocation disagreement, and area under curve 

(AUC) of receiver operating characteristic (ROC).  

PCM is the percentage of the cells correctly predicted to change divided by the 

total cells actually changed during the study period (Newman et al., 2016; Pijanowski et 

al., 2002).  

PCM =
(Cells Correctly Predicted to Change)

(Cells Actually Changed)
×  100 
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Kappa is a widely used index in accuracy assessment, and it is the proportion of 

agreement removing expected chance agreement (Cohen, 1960; Pontius, 2000). It is the 

value of observed proportion correct divided by perfect agreement with no change 

agreement. Kappa varies from 1 (when observed agreement matches perfectly with 

perfect agreement) to 0 (when observed agreement is expected agreement) (Pontius, 

2002). In the evaluation of performance results, the agreements of the PCM and Kappa 

coefficient at 0.4-0.6 are fair, at 0.6-0.8 are good, and at more than 0.8 is excellent 

between prediction and real change data (Lee & Newman, 2017; Pijanowski et al., 2006; 

Pontius, 2002).  

Kappa =
(Observed Agreement − Expected Agreement)

(Perfect Agreement (1)  − Expected Agreement )

To claim a geographical limitation of the Kappa index, Pontius & Millones 

(2011) introduced quantity and allocation disagreement. Quantity disagreement is the 

difference in changed cell numbers without considering location, and allocation 

disagreement is the spatial difference in transition (Lee & Newman, 2017). Overall 

agreement can be drawn by removing the quantity disagreement and allocation 

disagreement. An overall agreement (OA) of more than 85% will be considered good 

(Lee & Newman, 2017).  

Overall Agreement (%) = 100 − (Quantity Disgreement + Allocation Disagreement) 
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Receiver operating characteristics (ROC) is a two-dimensional graph, plotting 

the true positive rate (sensitivity) on the Y axis and the false positive rate on the X axis, 

with 1 – the true negative rate (specificity), and it explains relative tradeoffs (Fawcett, 

2006; Streiner & Cairney, 2007). The Area Under the ROC Curve (AUC) shows overall 

fit which ranges from 0 to 1.0, where 0.5 is a chance performance and 1.0 is a perfect fit 

(Lee & Newman, 2017; Osborne et al., 2001). The Area under the ROC varies from 0.5 

with random assignment to 1.0 with perfect probability (Alsharif & Pradhan, 2014). The 

AUC accuracy value means: 0.5-0.6 are weak, 0.6-0.7 are average, 0.7-0.8 are good, 0.8-

0.9 are very good, and 0.9-1.0 are excellent (Zare et al., 2017). 

Sensitivity (True Positive Rate) =
(True Positive)

(True Positive + False Negative)

Specificity (True Negative Rate) =
(True Negative)

(True Negative + False Positive )
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Figure 2.10. Error Matrix of real change and predicted change. 
Source: modified from Lee et al. (2017) and Fawcett (2006). 

2.3. Scenario Planning 

The first and second subsections looked at LCM and LTM. LCM enables to 

predict future land changes with different scenarios. This sub-section will focus on 

scenario planning; definition, importance, and application in urban planning. 

 “It is not simply what you know that matters, but how you react what you do not 

know. The advantage of scenario thinking is not only a greater understanding and 

insight into present, and hence future, situations; it is also, and most decisively, a 

capacity to manage the unknown challenges of the future”.  

- Van der Heijden et al. (2002), p.277
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2.3.1. Introduction of Scenario Planning 

Why is Scenario Planning important? 

As environment, society, and technology rapidly change, the future becomes 

more complex and unpredictable (Lincoln Institute, 2017). Such changes make practical 

experience and conventional judgement less reliable as guides to policy making (Kahn & 

Wiener, 1967). Policy choices made based on unreliable information may cause an 

undesirable future so policy/decision makers should navigate wide ranges of future 

challenges to try to alleviate the bad in advance (Kahn & Wiener, 1967). 

Scenario planning is a decision making process and identifies various future 

options (Lincoln Institute, 2017). It helps stakeholders (e.g. agencies, local officials, 

developers, land owners, general public) to make a better decision for possible future 

conditions by comparing and assessing different and plausible stories (FHWA, 2011). 

Ringland and Schwartz (1998, p.2) define scenario planning as that “part of 

strategic planning which relates to the tools and technologies for managing the 

uncertainties of the future.” Van der Heijden (2011) defines scenario as external and 

internal: an external scenario is from mental models from the external world, internally 

consistent but challenging in the external world. An internal scenario is a personal 

anticipation of the future states of the interactional world. An internal scenario is an 

individual thinking process for everyday-life, and it tends to be normative with a 

preferred outcome. However, the external scenario is out of control, and it tends to be 

explorative to allow us to see the world from different perspectives beyond our 

experiences (Van der Heijden, 2011).  
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History of Scenario Planning 

Scenario planning started from military war games that the RAND Corporation 

and the Hudson Institute developed during and after the Second World War (Van der 

Heijden, 2011). Then, similar game theory and decision analysis was adopted by the 

corporate fields (e.g. British Airways, Cable & Wireless, Shell, United Distillers, etc.) 

(Ringland & Schwartz, 1998). Shell Oil Company has had employed scenario planning 

for creating business strategies since the 1960s. The company successfully responded to 

the oil shock in 1973 with an oil crisis scenario and government’s environmental policies 

in 1989 by shifting strategies according to pre-considered scenarios. Those scenarios 

were unpredictable based on the trends of the period. Scenario thinking is a supportive 

decision-making process at Shell (Bentham, 2014; Van der Heijden, 2011). 

2.3.2. Scenario Planning in Urban Planning 

“The beginning of scenario analysis originates from the common “predict-and-

control” approach to plan with a single most likely prediction” (Van der Heijden, 2011, 

p.15). Similarly, Quay’s (2010) “predict and plan” in urban planning is to predict future

population or employment trends and calculate necessary infrastructure for future (Quay, 

2010). In land use planning and transportation planning, a single preferable future state 

or future trend (e.g. population estimation) has been used as a standard to create future 

cities, and this approach works well when society and the environment are stable and 

predictable (Chakraborty et al., 2011; Quay, 2010). However, high uncertainty and 

complexity make forecasting difficult, and today’s society requires a different planning 
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approach, scenario planning relying on “qualitative causal thinking, not on probability” 

(Van der Heijden, 2011).  

Though scenario planning has been used in urban planning, the planning practice 

is still in the initial stages. Quay (2010) noted that planning often fails to create/explore 

possible futures, to develop proper strategies by scenarios, and to achieve consensus. 

Chakraborty et al. (2011) and Hopkins and Zapata (2007) argued that many 

Metropolitan-scale plans ignore uncertainty and deal with only a single preferred 

scenario. Bartholomew (2007) suggested that a lack of public participation in plan 

making and lack of scenario assessment techniques in transportation scenario planning. 

Couclelis (2005) posited that there is a gap between current land-use planning methods 

and technical capability. Woodruff (2016) discovered that climate change adaptation 

plans in the U.S. fail to provide a detailed process of scenarios development and future 

impcats of scenarios. 

Researchers have made an effort to improve the scenario development process, 

tools, planning process, and governance. Postma and Liebl (2005) specified a 

conventional scenario approach: identifying predeterminants and unknown and ranking 

levels of impacts and levels of uncertainties for unknowns (Van der Heijden et al., 

2002). Adding to that, they suggested methodological adaptations for scenario 

construction such as a recombinant scenario, a context scenario, and an inconsistent 

scenario by considering more uncertain factors. Couclelis (2005) suggests a planning 

support system to create synergies with computer techniques in land-use models for 

scenario planning. Several land-change models and land-use forecasting tools have been 
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created and developed since the 1970s: Markov (Bell, 1974), Land Transformation 

Model (Pijanowski et al., 1997), Land Use Scanner (Hilferink & Rietveld, 1999), 

SLEUTH (Silva and Clarke, 2002), CLUE (Verburg et al., 1999), and others. Hopkins 

and Zapata (2007) delineated two requests for proposals (RFP) for planning a three-

county metripolitan area: current practice RFP (RFPCP) and engaging the future RFP 

(RFPETF). RFPCP follows a conventional planning approach by selecting a single prefered 

alternative and implementing policies. RFPETF includes contingent scenarios, a 

compendium of plans, and sustainable forecasting tools. Quay (2010) suggested a new 

planning model, anticipatory governance where anticipation and future analysis refer to 

exploring a range of possible scenarios, flexible adaptation strategies are meant to create 

flexible actions as the defined range of anticipated future, and monitoring and action are 

to implement anticipated strategies according to the scenario changes. Chakraborty et al. 

(2011) showed large-scale scenario analysis through adopting internal and external 

forces, applying prediction models, and identifying robust and contingent decisions. 

Internal options are controllable decisions, and external forces are uncertain factors. 

Robust plans cover future scenarios, and contingent plans support specific futures. Berke 

and Lyles (2013) presented new models integrating collaborative governance with 

Quay’s (2010) anticipatory governance. “Collaborative governance is to bring diverse 

private and public stakeholders together in a consensus-oriented forum for decision 

making” (Berke & Lyles, 2013, p.191; Innes & Booher, 2010). The collaborative 

planning process enables educating citizens, tapping preference, to improving 

relationship, solving problems, and expanding partnerships among stakeholders (Berke 
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& Kaiser, 2006; Berke & Lyles, 2013). The suggested stages for anticipatory governance 

are to develop scenarios with plausible futures and impacts, to adopt flexible policies, 

and to create action programs for implementation and monitoring. Chakraborty and 

McMillan (2015) proposed the scenario planning typology, a framework that helps to 

make systematic decisions. The nine components of a scenario typology are 

organizational structure, scope, scenario type, outcome, stakeholder engagement, 

participation extension, engagement medium, scenario construction and analysis tools, 

and resources (Chakraborty et al. 2015). 

Scenario planning is a valuable planning method that allows communities and 

decision-makers to understand the present (Van der Heijden et al., 2002) and plan for a 

complex and uncertain future (Holway et al., 2012). It assumes “if decision makers 

consider multiple plausible futures, they are more likely to make better decisions” 

(Chakraborty et al., 2011, p.252). Scenario planning can also be a tool for public 

engagement to rebuild public trust through a transparent planning process and decision 

making (Holway et al., 2012). 

Despite the strength of scenario planning, in the Lincoln Institute and Sonoran 

Institute workshops, the participants identified obstacles in scenario planning, lack of 

trust in the process and tools (Holway et al., 2012). The distrust is due to the 

government’s transparency, and deficient understanding of the planning process and 

planning tools (Holway et al., 2012). For the scenario tools, in general, tool license fee, 

technical staff capacity, data gathering, and a lack of interoperability between software 

and application to other sites are barriers. Open source data, software, and tools can be a 
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solution, but are not yet established. In the planning process, exploring diverse and 

plausible scenarios, creating flexible strategies, and reaching consensus among 

stakeholders are other challenges. 

2.4. Literature Gaps 

Land use change is the result of interactions between human activity and natural 

resources (Agarwal et al., 2002), and land change modeling is a good planning support 

system (Berke & Kaiser, 2006) to assess the simulated scenarios during the planning 

process. Over the past few decades, urban LCMs have been developed significantly, 

addressing the challenges of urbanization by simulating future development and its 

impact assessment (Verburg et al., 2015; Güneralp, 2011). However, there are still 

opportunities to integrate land change models and scenario planning. 

First, while if there have been many attempts to predict future urban growth with 

various driving factors, most of the prediction studies do not explain the relationships 

between urban growth and its factors. The numbers of driving factors of urban growth 

vary from one to seventeen depending on prediction models and study areas. Prediction 

articles focus more on the calibration and prediction results, but not on causal 

relationships. In addition, few socio-economic variables have been employed compared 

to natural and built environmental factors. 

 Second, many prediction articles have created urban growth scenarios to 

examine sub-sequent impacts in terms of environment, economy, disaster, and others. 

However, scenarios are limited, mainly in business as usual, environmental growth, and 
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high/low density growth. Few studies have been conducted with plans to make 

managed/planned scenarios, but they also use the plans to define development areas 

from regional plans (Liu et al., 2011; Xi et al., 2010). A local comprehensive plan is the 

result of a community prepared plan for their future (Brody, 2001), and land use 

planning and policies are direct methods for growth management to control urban 

development where growth is proper and protecting areas where preservation is a 

concern for natural resources, the environment, and open space (Bengston et al., 2004; 

Wilmer, 2006).  

Third, impact analyses of urban growth scenarios in climate-related studies are 

limited to the total areas exposed to flood risks. Total impact calculations such as a 

whole city is one important result for physical flood impacts, but impact assessment can 

use different scales and other evaluations. Multiple stakeholders are involved in urban 

issues and plans with different interests. Depending on a stakeholder’s or an asset 

location/situation, a single regional solution cannot satisfy all the different individuals; 

the best regional solution can make local problems. Thus, scenario assessment in 

multiple scales would be necessary. Content-wise, as stated above, a local 

comprehensive plan can be an assessment tool for scenario planning or an assessment 

subject to examine possible future scenarios to determine whether a plan is robust or 

contingent (Chakraborty et al., 2011).  

Fourth, though many LCM studies have used urban growth scenarios, the 

scenarios are typically about ecology, density, and economy related to urban growth. 

Prediction models repeatedly create similar scenarios such as same growth pattern as 
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previous development referred as business as usual, new development outside 

environmental/preservation areas referred as environmental growth (Goodarzi et al., 

2017; Shi et al., 2017), controlling size and location of development areas referred as 

sprawl/smart (Song et al., 2017; Terzi, 2015), low/high growth, (Price et al., 2015), or 

rapid economic growth (Hansen, 2011; Samie et al., 2017). Few studies have considered 

regional plans to create scenarios (Hua et al., 2014; Liu et al., 2011). In addition, no 

LTM studies have been conducted with scenarios. The capabilities of ANNs in non-

linear modeling shows a high prediction performance with limited knowledge or data 

(Kocabas & Dragicevic, 2007; Li & Yeh, 2002). The existing literature on the LTM 

focuses on prediction accuracy and its results. Like other prediction tools, the LTM also 

has a potential to make scenarios by controlling pixel numbers, locations, and variables. 

Last, though urban planning has used scenario planning since 1960, many plans 

ignore uncertainty and deal with only a single preferred scenario (Chakraborty et al., 

2011, Hopkins & Zapata, 2007), and they fail to provide a detailed process of scenarios 

development and future impact of scenarios (Woodruff, 2016). The future become more 

complex and unpredictable and such changes make practical experience and 

conventional judgement less reliable as guides to policy making (Kahn & Wiener, 1967; 

Lincoln Institute, 2017). Thus, it is clear that scenario planning is a valuable planning 

method for communities and decision-makers to understand the present (Van der 

Heijden et al., 2002) and plan for a complex and uncertain future (Holway et al., 2012) 

dealing with such things as urban growth and changing climate conditions. 
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3. METHODS

3.1. Conceptual Framework 

Based on the literature review, I constructed a conceptual framework for a 

scenario planning process for analyzing the impact of future urban growth and climate 

change. As Figure 11 illustrates, I divided the process into two parts: scenario making 

and impact analysis. Scenario making comprises urban growth scenarios, climate change 

scenarios, and a scenario matrix. The impact analysis is divided into two sections: the 

areas of urban growth of the scenarios exposed to flood risks at a city and neighborhood 

levels, and plan preparation for highly clustered future urban neighborhoods considering 

flood risks, social and physical vulnerabilities, and plan policies. 

Figure 3.1. Conceptual framework for scenario planning. 
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3.1.1. Creating Scenarios 

The urban growth scenarios in this research employ three comparable forecasts to 

examine future land; business as usual, growth as planned, and resilient growth. The 

future urban growth in scenario 1 (S1), business as usual, is natural growth without 

development regulations if a new development occurs according to the previous 

development pattern. The scenario 2 (S2), growth plan follows a land use plan reflecting 

how a city government and communities want to develop. Scenario 3 (S3), resilient 

growth, is an extreme scenario where no development occurs within future flood risk 

areas. 

The method of creating urban growth scenarios using the LTM is to develop 

different exclusionary layers. It is one way to create different scenarios for controlling 

land development areas. An exclusionary layer intentionally includes areas where no 

development would occur. The S1, business as usual, uses minimum elements (e.g. 

existing urban area, water surfaces) as an exclusionary layer. The S2, growth as planned 

follows a land use plan, adding parks and environmentally sensitive areas based on the 

S1’s exclusionary elements. The S3, resilient growth, includes flood risks (e.g. sea-level 

rise 2040 High, floodplains) based on the S2 growth plan. 

For the sea-level scenarios, the National Oceanic and Atmospheric 

Administration (NOAA) provides future potential sea levels with relative sea level 

(RSL) projections and different heights of the sea surfaces depending on time and 

location, based on the historic sea level changes (Parris et al., 2012). The scenarios vary 

from low to high with a 90 % confidence. The low scenario is the linear estimation based 
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on the historical sea-level rise (SLR) tide records since 1900; 1.7 mm increase per year 

on average. The intermediate low scenario is a standard for experts to consider as a 

primary risk due to ocean warming. The highest scenario calculates the maximum 

glacier and ice sheet loss and is a design standard for highly vulnerable facilities such as 

a power plant. The extreme scenario combines extreme weather and climate (Parris et 

al., 2012). 

In this research, the RSL records in St. Petersburg, Florida were used. The 

NOAA’s projection shows that the sea-level rise in 2040 in St. Petersburg varies from 

0.18 meters (low) to 0.62 meters (extreme). As Table 1 shows, I use the intermediate low 

scenario (+0.22 meters) as a primary risk and the high (+0.54 meters) and the extreme 

(+0.62 meter) as potential highest risks in the SLR scenarios.  

Table 3.1. NOAA 2017 sea-level rise scenarios in St. Petersburg. 

Year Low Int-Low Intermediate Int-High High Extreme 

2000 0.00 0.00 0.00 0.00 0.00 0.00 

2020 0.09 0.11 0.15 0.19 0.22 0.23 

2040 0.18 0.22 0.33 0.43 0.54 0.62 

2060 0.28 0.35 0.57 0.80 1.06 1.25 

2080 0.37 0.47 0.86 1.28 1.74 2.11 

2100 0.44 0.58 1.19 1.88 2.59 3.21 

Source: reprinted from USACE (2017). 

I developed sea-level rise scenarios based on the National Flood Insurance 

Program’s 100-year floodplain from the Flood Insurance Rate Map. The 100-year 
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floodplain signifies a 1% chance of flood in any given year (FEMA, 2018); it has been 

used as a planning standard. SLR scenarios were delineated by using a modified bathtub 

method, considering sea level height and hydrologic connectivity (NOAA, 2017a), as 

seen in Berke et al.’s (2015) hazard mapping. 

As Figure 11 and Table 2 show, the urban growth scenarios and SLR scenarios 

combines to make the scenario matrix with nine potential future options. The BU and IL 

indicates urban growth with no regulation and flood risk in 2040 (intermediate low and 

floodplain). The GP and HI is future urban areas following a land use plan with SLR 

2040 high flood risks. The RG and EX is no future development under flood risk with an 

extreme SLR 2040 scenario. 

Table 3.2. Scenario matrix. 

Sea-Level Rise 
(External / Uncontrollable Force) 

IL 
(Int-Low SLR) 

HI 
(High SLR) 

EX 
(Extreme SLR) 

Urban Growth 
Direction 
(Internal / 

Controllable 
Option) 

BU 
(Business as Usual) 

BU & IL BU & HI BU & EX 

GL 
(Growth as Plan) 

GP & IL GP & HI GP & EX 

RG 
(Resilient Growth) 

RG & IL RG & HI RG & EX 

3.1.2. Impact Analysis 

Impact analyses are flood exposure calculation and policy preparations. 

The flood exposure calculation compares the existing urban area and the 

predicted future urban area through urban growth scenarios at a city and neighborhood 
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levels. The results will show how each urban growth scenario differently influences 

various flood risk scenarios and scales at a city and neighborhood levels. 

Plan preparation examines the area of future flood risks, physical and social 

vulnerabilities, and plan policies focusing on highly clustered future urban 

neighborhoods. It will use the projected SLR 2040 high scenario as a fixed future flood 

risk. To select highly clustered future developing neighborhoods, I used the optimized 

hot spot analysis method incorporating future growth pixels in S1, S2, and S3. The hot 

spot analysis identifies the statistical significance of spatial clusters with high/low values 

(hot/cold spots) using the Getis-Ord Gi statistic, providing positive/negative z-scores 

(ESRI, 2018). For physical vulnerability, I used 2010 tax data from the Hillsborough 

Appraisal District and calculated the sum of the vulnerable structure values under the 

current floodplain at a tract level (Berke et al., 2015). For social vulnerability, NOAA’s 

Social Vulnerability Index 2010 was used at the tract level. The index indicates social 

vulnerabilities for environmental hazards for coastal counties (NOAA, 2017b). Then, I 

identified and analyzed the applied policies for the neighborhoods using the resilient 

scorecard method (Berke et al., 2015). 

3.2. Case Study Design 

3.2.1. Spatial Frame 

To select a case study, I used three screening filters: a planned, growing, and 

coastal flood-vulnerable city. Like other cities in the state of Florida, the city of Tampa 

has a strong community prepared local comprehensive plan (Brody, 2001). As illustrated 
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in Figure 12, it is located on the Florida west coast in Hillsborough County, and the 

South Tampa region is enclosed by three Bays; Tampa Bay, Old Tampa Bay and 

Hillsborough Bay (Hillsborough County, 2016). The climate is humid subtropical with a 

large amount of summer rainfall and hot temperatures because of the oceanic location. 

Due to its climate and geographic location, Tampa is ranked the most vulnerable U.S. 

city to hurricanes (Climate Central, 2012). The area is 170 square miles (440 square 

kilometers) and the land elevations vary from sea level along the coastline to 55 feet 

(16.7 meters). It is the third largest city in Florida with a population of 304,200 people in 

2000, and 336,800 people in 2010 (Hillsborough County, 2016). The city’s population 

has grown steadily, and is projected to grow in the future to 481,128 in 2040 

(Hillsborough County, 2016). Due to the shallow Tampa Bay and the city’s flat land, 

SLR will make more residents susceptible to flood risks. 
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Figure 3.2. Location of Tampa, Florida. 
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3.2.2. Expected Data Sets and Data Source 

This research requires spatiotemporal GIS datasets. The time span of the analysis 

is 10 years from 2001 to 2011. As Table 3 shows, the U.S. Geological Survey provides 

historic land cover data in raster images (30×30m pixels). I collected the 16 causal 

variables related to urban growth from the Tampa Geo Hub, the U.S. Census Bureau, 

and the Hillsborough Appraisal District. The Plan Hillsborough provides the Tampa 

Comprehensive Plan 2040 with future land use data in GIS shapefile format. To 

delineate future flood risk zones, the 100-year floodplain map from the Flood Insurance 

Rate Map (FEMA) and future sea-level rise projection data from NOAA (USACE, 2017) 

were used. 

Table 3.3. Data sources and expected datasets. 

Expected Data Data Source Operation 

NLCD 2001 & 2011 Land Cover 
Existing urban 

U.S. Geological Survey 
Base map 
Driving factors 

Slope 
Proximity to highway 
Proximity to river & lake 
Proximity to waterfront 
Proximity to park 
Proximity to residence 
Proximity to commercial 
Proximity to CBD 
Proximity to public school 

Tampa Geo Hub Driving factors 

Land Value Hillsborough Appraisal District Driving factors 

Population density 
Population increase 
Poverty 
Employment 
Race 

U.S. Census Bureau Driving factors 

Land Use Inventory 
Future Land Use Plan 

Plan Hillsborough Scenario making 

Tampa 2040 Comprehensive Plan Plan Hillsborough Plan evaluation 

Sea Level Risk 
NOAA (Sea Level Rise Inundation) 
US Army Corps of Engineers 
FEMA (Federal Emergency Management Agency) 

Sea-level rise 
projection 
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3.3. Driving Factors 

Sixteen growth driving factors were selected which consider Tampa’s geographic 

location, based on the reviewed prediction literature. The determinants, as described in 

Table 4, to predict urban growth include proximity variables (e.g. waterfront, rivers, 

open space, highway, residence, commercial, CBD, existing urban areas, and public 

schools) and density variables (e.g. slope, population density, population increase, race, 

employee numbers, poverty, and land value).  

Though Tampa is located on flat land, slope is a key driving factor in selection of 

development location so it is calculated with digital elevation model data in percentage 

value. Related to commuting time and cost, distance to highway (including major roads) 

and central business district (CBD) are calculated with Euclidean distance tool in 

ArcMap, and employee number is used in zip code level. Considering natural amenity 

regarding buyers’ preference, each proximity to waterfront, water surface, and park and 

open space is calculated with Euclidean distance tool. Related to infrastructure and 

facilities, each proximity to residence, commercial, existing urban, and public schools is 

calculated with Euclidean distance tool. Due to the importance of land value in selecting 

development location, land value, population density, population increase, and poverty 

have been used. Considering white population moving from central to suburban areas, 

race variable (white population ratio) is used in a block group level. 
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Table 3.4. Driving factors for land change prediction model. 

Type 
Input 

Factors 
Definition Data level Data Processing Reference for Input Factors 

Natural 
Environm
ent 

Slope Percentage of slope Raster 
Density 
(DEM) 

Dadashpoor et. al. (2017), Menesis et. al. (2017), Samie 
et. al. (2017), Shi et. al. (2017), Zare et. al. (2017a), 
Zhao et. al. (2017a), Chakraborty et. al. (2016), Gao et. 
al. (2016), Gallardo et. al. (2016), Liu et. al. (2016),  

Water 
Surface 

Proximity to rivers and lakes Polygon 
Proximity 

(Euclidean Distance) 

Yirsaw et. al. (2017), Zare et. al. (2017a), Zhao et. al. 
(2017a), Zhao et. al. (2017b), Gallardo et. al. (2016), Liu 
et. al. (2016), Losiri et. al. (2016), Castillo et. al. (2014), 
Long et. al. (2012), Pijanowskia et. al. (2002) 

Waterfront Proximity to waterfront Polygon 
Proximity 

(Euclidean Distance) 

Al-sharif et. al. (2016), Al-sharif et. al. (2015), Zheng et. 
al. (2015), Mokrech et. al. (2012), Wu et. al. (2010), 
Pijanowskia et. al. (2002) 

Park & 
Open space 

Proximity to parks Polygon 
Proximity 

(Euclidean Distance) 

Nor et. al. (2017), Shafizadeh-Moghadam et. al. (2017), 
Losiri et. al. (2016), Samard zic´-Petrovic et. al. (2016), 
Achmad et. al. (2015), Zheng et. al. (2015), Tayyebi et. 
al. (2011), Pijanowskia et. al. (2009 & 2002) 

Built 
Environm
ent 

Highway Proximity to highways Line 
Proximity 

(Euclidean Distance) 

Yirsaw et. al. (2017), Zhao et. al. (2017a), Zhao et. al. 
(2017b), Liu et. al. (2016), Castillo et. al. (2014), Ray et. 
al. (2010a), Pijanowskia et. al. (2002) 

Residence Proximity to residential areas Polygon 
Proximity 

(Euclidean Distance) 
Zhao et. al. (2017a), Munshi et. al. (2014), Long et. al. 
(2012) 

Commercial 
Proximity to commercial 
areas 

Polygon 
Proximity 

(Euclidean Distance) 
Zhao et. al. (2017a), Munshi et. al. (2014), Pijanowskia 
et. al. (2009) 

Central 
Business 

Dist. 

Proximity to central business 
district 

Polygon 
Proximity 

(Euclidean Distance) 
Gao et. al. (2016), Losiri et. al. (2016), Linard et. al. 
(2013)  

Existing 
Urban 

Proximity to existing urban Raster 
Proximity 

(Euclidean Distance) 
Ku et al. (2016), Ray et. al. (2010), Li et. al. (2002), Zare 
et al. (2017)  

Public 
School 

Proximity to schools Point 
Proximity 

(Euclidean Distance) 

Al-sharif et. al. (2015), Zheng et. al. (2015), Munshi et. 
al. (2014), Carreno et. al. (2011), McCloskey et. al. 
(2011) 

Socio-
Economic 

Population 
Density 

Population density in 2000 Block group Density, Census 

Menesis et. al. (2017), Samie et. al. (2017), Zare et. al. 
(2017a), Zhao et. al. (2017b), Losiri et. al. (2016), 
Castillo et. al. (2014), Munshi et. al. (2014), Mundia et. 
al. (2013) 

Population 
Increase 

Population increase ratio 
from 1995 to 2000 

Block group Density, Census Samard zic´-Petrovic et. al. (2016), Losiri et. al. (2016) 

Race White population rate Block group Density, Census - 

Employees Employee no. Block group Density, Census 
Mitsova (2014), Kocabas et. al. (2007), Hu et. al. (2007), 
Waddell (2002) 

Poverty Poverty rate below 1.0 Block group Density, Census Hu et. al. (2007) 

Land Value Land value per square meter Parcel 
Density, Land value in 

2003 appraisal 
Wilson (2011), Hansen (2010), Waddell (2002) 

Commuting Time and Cost 

Commuting time and cost to workplaces are key factors in deciding residential 

location. In the initial stage of city development, the Central Business District (CBD), 

where jobs are concentrated and its adjacent areas are developed first, and then 
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development spreads out to the suburbs accompanying the infrastructure such as 

transportation and the power plant. As the urban area expands, residences and 

workforces move outward, new employment also decentralize, moving farther from the 

CBD (Mieszkowski & Mills, 1993). As highway construction leads the car-based 

commuting time and cost decreases, more people who can afford a car use a private car 

rather than public transportation because of a better environment. Finally, providing 

highway and road networks makes huge suburban areas accessible to metropolitan 

regions, and fringe development keeps expanding to keep up with population growth 

(Daniels, 1999).  Instead of driving a car, if there are cost-efficient commuting 

alternatives (e.g. railways, metro, buses), the distance to public transportation will be 

another determinant of residence location (Mieszkowski & Mills, 1993).  

Slope 

Slope, the inclination of the landscape, is a fundamental rule to select a potential 

development area: flat and gentle-slope land are easy to develop with less cost (Landis, 

1994). Optimum slope level is different for each land use, and, in general land with a 

slope of less than 25% (Berke & Kaiser, 2006) is regarded as developable as stable 

house sites because of soil erosion and run-off (Steiner et al., 2000). 

Basic Infrastructure and Public Facilities 

Infrastructure development (e.g. roadways, sewage, water lines, etc.) is a key 

implication for a future development (Daniels, 1999). Carruthers (2003) showed the 
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relationship between public roadway and sewage investment and development patterns 

for counties where populations were growing, central city counties, and suburban 

counties in the 14 states of the U.S. where per capita spending on roadways is significant 

and negative to fringe development in central city counties, but not significant in 

suburban counties. Reducing traffic congestion helps to reduce spread development only 

in urbanized areas; causing people settle within the city limits. Sewage investment 

heavily leads to sprawl development for both counties. When developers manage 

development including infrastructure, the raised product cost (e.g. rent, sales) by infra 

construction will be a challenge for both developers and consumers (Ewing, 2008).  

Public facilities providing community service and value become attractive for 

development and redevelopment (Berke & Kaiser, 2006). Accessibility to public 

facilities and institutions have been used as determinants for development (Mieszkowski 

& Mills, 1993; Wang et al., 2013; Zheng et al., 2015). Mieszkowski and Mills (1993) 

explained that high quality schools reflected the quality of neighborhoods, and they 

attract other households.  

Buyer’s Preference and Housing Price 

People prefer to live close to nature and are more likely to pay additional money 

for the land purchase. In the real estate perspective, the land values close to waterfronts, 

rivers, lakes, and open spaces is higher than the value of land more distant to the 

amenities. (Correll et al., 1978; Darling, 1973; Ewing, 2008; Hammer et al., 1974; 

Hendon, 1971; McLeod, 1984). McLeod (1984) confirmed that proximity to rivers and 
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parks were related to housing price, and a river view was a high-value determinant of 

housing price. Hammer et al. (1974) showed that property values close to parks were 

higher than the values of property at farther away. Correll et al. (1978) identified the 

negative relationship between housing price and greenbelt distance: the further from a 

greenbelt, the lower the housing price. 

Land Value 

Land value is a major determinant of land use (Park et al., 1967; Pendall, 1999), 

and it has similar aspects: both high and low value land have development potential. 

Land value is related to a site situation: “the sum of the money values of the situation 

advantages of a site” (Alonso, 1964; Marshall, 1961). In land use conversion from 

agricultural to urban, users (e.g. real estate developers, consumers) and landowners make 

bids for site values for situational advantages (Alonso, 1964). When a developer 

considers transitioned land value, if land is worth more as urban than as farmland, the 

land use is decided through a bidding process based on the economist’s market logic, the 

“invisible hand” (Brueckner, 2000). Density and agricultural productivity influence land 

value: denser areas and more productive agriculture have a higher value. Density and 

land value are positively related to one another (Alonso, 1964; Carruthers, 2002). 

Farmland quality and productivity are positively related to land value. High-priced 

farmland is less likely to be developed into urban so the value as agricultural land works 

as a determinant of the urban spatial extension (Brueckner, 2000; Brueckner & Fansler, 

1983; Pendall, 1999). Highly populated and high-value areas are where developers 



55 

would like to develop (Carruthers, 2002) due to their current and future site advantages. 

High-value areas providing a denser population and more jobs draw more compact 

development. 

On the other hand, lower land values attract more development, especially in 

areas of sprawl, when all other conditions are the same (Pendall, 1999). People prefer to 

develop inexpensive and less congested land (Ewing, 1997). Low-value land, if 

agricultural land has a high potential value when it changes into other uses, is more 

likely to be developed. Carruthers (2002) explained that urban development occurred in 

less dense and low property value land for the growing 283 counties in 14 states, the 

U.S. between 1982 and 1992. With development patterns conforming and 

nonconforming to land use planning in Florida, Brody et al. (2006) acknowledged that 

high land values in a planned area, conforming development, and low land values in 

sprawl development, nonconforming development, are more likely to be developed.  

Race and Income 

As urban areas expand due to the growing population with rising income and 

shortened commuting time and costs (Alonso, 1964; Brueckner, 2000), one major 

phenomenon is racial segregation: “chocolate city with vanilla suburbs” (Farley et al., 

1978). Higher income people have more of a choice to live in a low density and rural 

environment (Carruthers, 2003). Paradoxically, white and higher-income people move to 

cheap city-fringe areas, and low-income people stay in the high-valued city areas 

(Alonso, 1964; Daniels et al., 2015) because rich people use private vehicles in the 
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suburbs and poor people mainly rely on public transportation in cities (Glaeser et al., 

2008). The process, called “white flight” (Massey & Denton, 1993), affects urban 

development patterns (Carruthers, 2003).  

Land Use Planning and Policies 

Land use planning and policies are direct methods for growth management to 

control urban development where growth is proper and protecting areas where 

preservation of natural resources, the environment, and open spaces in a concern 

(Bengston et al., 2004; Wilmer, 2006). Management methods include building permits, 

development rights, zoning, urban growth boundaries, tax incentives, and impact fees 

(Mattson, 2002; Pendall, 1999). Though a plan does not reflect future land changes 

perfectly, as in the Florida study comparing wetland development permits with future 

land use plans in the city comprehensive plan between 1993 and 2002, overall average 

development conformity is 79% (Brody & Highfield, 2005; Brody et al., 2006).  

3.4. LTM Process 

As Figure 13 shows, the LTM was ran to create scenario 1; 16 variables were 

used and performance results were checked. Rasterized predictor variables linked to a 

geographical location such as proximity and density data referred to as driving factors, 

and historic land covers for two different time frames, 2001 and 2011, are referred to as 

base maps. In the LTM process, the recommended training cycles are 250,000, and the 

minimum cycles are 4,000 to stabilize the error level. Larger cycles over 250,000 do not 
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show much greater prediction accuracy, and the training process is time-consuming (Lee 

et al., 2017; Pijanowski et al., 2005). Thus, this study used the result up to 250,000 

training cycles. After running the output of expected change between 2001 and 2011, I 

checked the validation with kappa, PCM, overall agreement, and AUC by comparing it 

to the real land use change, referred to as output scenario 1. As this stage, I identified 

each driver’s prediction capability with the drop-one test, explained in the next sub-

section. The same processes were conducted with only positively contributing input 

drivers. The performance was checked and each driver’s prediction capability was 

confirmed. If every driver enhances the prediction capability, the selection of variables 

can be finalized and the future population growth forecast for scenario 1 can be created, 

referred to as forecasting.  

Figure 3.3. The LTM process with 16 driving factors. 
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4. RESULTS

This section describes scenario planning processes, scenario making, and impact 

analysis for Tampa. The first sub-section describes the urban growth prediction process 

with LTM, variable selection, urban growth prediction and validation, and urban growth 

scenarios for Tampa. The second sub-section delineates future flood zones considering 

the SLR scenarios. The third sub-section evaluates the efficacy of a land use plan 

comparing the growth as a planned scenario with other urban growth scenarios (business 

as usual and resilient growth) at city and neighborhood levels. The last shows how 

Tampa prepares for future urban growth and flood risks by examining plan policies and 

vulnerability for the highly clustered future urban neighborhoods. The first two sub-

sections belong to the scenario making (urban growth and flood risk scenarios) in the 

research frame, and the last two sub-sections examine the impact analyses (scenario 

evaluation and neighborhood scaled policy analyses). 

4.1. Urban Growth Scenarios 

4.1.1. Driving Factors for a Tampa Urban Growth Prediction 

This research employs an analytical method to identify variable relationships 

between driving factors for land use change called drop-one experiment (Brown et al., 

2013; Pijanowski et al., 2002). It is a way to check the relative contribution of each 

variable in machine learning models by dropping one variable and comparing each 

prediction accuracy with the accuracy of the full model (Brown et al., 2013). To detect 
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variables for the Tampa study, I first ran the LTM with 16 variables and calibrated the 

model. Then, I checked the influence of each variable with the drop-one test and 

excluded variables that reduced the total prediction capability. By selecting the variables 

that increased the prediction capability, I finalized the driving factors for the Tampa 

prediction model and created other urban growth scenarios with different exclusionary 

layers. 

Table 4.1. Drop-one-test with 16 variables. 

Excluded input factors 
Highest training 

probability 
PCM 

Kappa 
coefficient 

Model 
influence 

Race 200,000 th 52.19 0.48 

Central Business District 50,000 th 52.17 0.48 

Population Density 200,000 th 51.92 0.48 

Distance to Park 80,000 th 51.71 0.48 

Distance to Commercial 250,000 th 51.53 0.48 

Distance to Public School 150,000 th 51.37 0.47 

Distance to Residence 80,000 th 51.06 0.47 

Distance to Roads 60,000 th 50.93 0.47 

Poverty 150,000 th 50.89 0.47 

Population Increase 250,000 th 50.87 0.47 

Distance to Water Surface 200,000 th 50.39 0.46 

Distance to Waterfront (sea) 250,000 th 50.23 0.46 

Employment No. 30,000 th 49.98 0.46 

Distance to Existing Urban 80,000 th 49.89 0.46 

Land Value 50,000 th 49.84 0.46 

Slope 80,000 th 49.70 0.46 

Full Model (16) 50,000th 52.14 0.48 - 

The results with the 16 input factors, as illustrated in Table 4.1, show that race 

and distance to the central business district (CBD) variables decreased the total 

Least 

Most 



60 

prediction capacity. The full model with 16 variables has 52.14 in PCM value and 0.48 

in the kappa coefficient, but the PCM values after dropping race at 52.19 and CBD at 

52.17 exceeded the full model capability. Thus, those variables decrease prediction 

capability.  

Table 4.2. Drop-one-test with 15 variables without the race variable. 

Excluded input factors 
Highest training 

probability 
PCM 

Kappa 
coefficient 

Model 
influence 

Population Density 200,000 th 51.50 0.48 

Land Value 90,000 th 51.28 0.47 

Population Increase 250,000 th 50.43 0.46 

Distance to Waterfront (sea) 100,000 th 50.30 0.46 

Central Business District 80,000 th 50.26 0.46 

Poverty 200,000 th 49.73 0.46 

Distance to Water Surface 80,000 th 49.69 0.46 

Slope 30,000 th 49.48 0.45 

Employment No. 200,000 th 49.25 0.45 

Distance to Existing Urban 100,000 th 49.12 0.45 

Distance to Residence 150,000 th 48.95 0.45 

Distance to Public School 250,000 th 48.58 0.44 

Distance to Commercial 250,000 th 48.49 0.44 

Distance to Park 90,000 th 48.13 0.44 

Distance to Roads 90,000 th 47.92 0.44 

Full Model (15) 200,000 th 52.19 0.48 - 

In the 15 variable when model excluding the race variable, as Table 4.2 shows, 

every variable positively contributes to the prediction capability including the distance to 

the CBD variable. The PCM values of each drop-one test are below 52.19, the PCM 

Most 

Least 
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value of the full 15 variable model. For the accuracy result of the 15 variable model, the 

PCM is 52.19, the kappa coefficient is 0.48, the overall agreement is 92.85%, and the 

AUC is 0.74. All values are within acceptable and good ranges in prediction, justifying 

this as a proper model. The results show that distance to roads, parks, and commercial 

areas are the most influential factors, with population density, land value, and population 

increase variables the least. Then, I completed a variable selection with the 15 variables 

excluding race for the Tampa prediction and created other future urban growth scenarios. 

4.1.2. Variable Influence 

To identify the influence of each driving factor, the LTM’s drop-one test is used 

where one variable at a time is left out and each accuracy measure (e.g. PCM and 

Kappa) is compared with the prediction accuracy of the full model (Brown et al., 2013). 

In the result of the drop-one test with the 16 variable model, as Table 4.1 shows, 

the performances of two factors, race and distance to CBD, exceed the prediction 

accuracy of the full 16 factor model. When excluding the race factor, as shown in Table 

4.2, the prediction results of the full model with 15 variables show that all factors 

including distance to CBD contribute to the land change prediction: each drop-one 

model produces a lower PCM and Kappa value than the full model. This suggests that 

the race variable may not have been influential in the land change of Tampa between 

2001 and 2011. Literature illustrates that white and higher income people have more of a 

choice of living in a low density or rural environment (Carruthers, 2003) and move to 

cheap city fringe areas (Alonso, 1964; Daniels et al., 2015) commuting in private 
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vehicles (Glaeser et al., 2008). However, in Tampa, high white population rated 

neighborhoods (with a more than 84% white population in the 2010 Census tracts) are 

concentrated in the South Tampa region near the waterfront, and the white population 

locations range from medium low (54%) to medium high (77%) in the city fringe areas 

in the North Tampa region. 

In Table 4.2, the drop-one results with the 15 variable model show that the 

highest training cycle of each model varies from the 30,000th to 250,000th cycle, and 

each factor’s influence is indicated with PCM and Kappa values. The distance to roads 

and distance to parks are the most influential determinants in changing land cover. The 

next strongest factors are distance to existing land use, commercial, public schools, and 

residential. Though population density and land value have prediction capability, they 

are less influential than other determinants in this land change. 

4.1.3.  Urban Growth Scenarios in Tampa, Florida, in 2040 

With the finalized 15 driving factors, Tampa’s future urban growth scenarios can 

be forecast. As Table 4.3 shows, forecasted model accuracy outputs are measured to 

validate the accuracy of the prediction model: scenario 1 (S1) has a PCM of 52%, a 

Kappa of 48%, an OA of 93%, and an AUC of 74%; scenario 2 (S2) has a PCM of 55%, 

a Kappa of 50%, an OA of 91%, and an AUC of 75%; and scenario 3 (S3) has a PCM of 

68%, a Kappa of 63%, an OA of 91%, and an AUC of 82%. All measures in three 

scenarios show an acceptable or good level of prediction. In comparing the prediction 

accuracy values of each scenario, the results show that S3 is the most accurate, and S2 is 
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more accurate than S1. In the fixed variable prediction, the total pixel numbers would 

influence the prediction performance: the more pixels, the less accurate, but, again, all 

are acceptable models. 

Table 4.3. Prediction accuracy for urban growth scenarios. 

PCM Kappa OA AUC 

Scenario 1 
in the 200,000th cycle 

52.19 0.48 92.85 0.74 

Scenario 2 
in the 40,000th cycle 

55.04 0.50 90.93 0.75 

Scenario 3 
in the 150,000th cycle 

67.63 0.63 91.24 0.82 

PCM = percent correct metric, Kappa = kappa coefficient, OA = overall agreement, and 

AUC = area under the ROC curve. 

Following the previous land change ratio, there was a change of 8,917 pixels 

between 2001 and 2011 indicating a change of 32,600 people. The future urban growth 

scenarios project a change of 48,395 pixels corresponding to a 176,928 population 

change between 2001 and 2040. The forecasted pixel numbers are the same for all 

scenarios, but the locations of the pixels are different based on different exclusionary 

layers in each scenario. S1 excludes existing urban, rivers and lakes, highways, airports, 

and parks from future development areas. S2 uses environmentally sensitive areas from 

the future land use plan (Hillsborough County, 2016) added to S1’s exclusionary layer. 

S3 adds future flood risk zones (2040 SLR High and 100-year floodplain) based on S2’s 

exclusionary layer. As illustrated in Figure 4.1, the total existing urban (light gray color) 

in 2011 was 172.8 km2 (57% of the total Tampa area), the increased urban area (black 

color) between 2011 and 2040 is 35.6 km2 (12%), and the rest of the area (white color) 
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within the Tampa boundary is 96.3 km2 (31%) used for agriculture, wetlands, forests, 

water, and other uses. 

The prediction result shows a different development pattern in each scenario. The 

future urban growth in S1 would mainly be in the north/New Tampa region and some 

development in the south and middle regions of Tampa. The urban growth in S2 would 

involve all the Tampa regions, the north, middle, and south. The urban growth in S3 

would focus on the middle and north Tampa regions.  

Figure 4.1. Urban growth scenarios in Tampa, 2040. 

4.2. Future Flood Risk Scenarios 

Future flood risks in 2040 are determined by NOAA’s relative sea-level rise 

(SLR) scenarios (intermediate-low, high, and extreme) added to the current 100-year 

floodplain. In the SLR delineation, the upper Hillsborough Riverine areas are excluded 

due to the existing dam (Hillsborough River Dam) that controls the river water level. 
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As Figure 4.2 illustrates, the current 100-year floodplain covers 90.9 km2, or 

30% of Tampa areas. The 0.22m SLR intermediate-low scenario would enlarge the 

floodplain to 108.5 km2 (36%), 17.6 km2 more than the current floodplain. The 0.54m 

SLR (high scenario) and the 0.62m SLR (extreme scenario) would expand the floodplain 

to 113.4 km2 (37%) and 114.4 km2 (38%), respectively, which is 22.5 km2 and 23.5 km2 

more than the current floodplain. 

Figure 4.2. Future flood risk in 2040 (100-year floodplain and sea-level rise). 

The SLR scenarios would enlarge the floodplain of the coastal South Tampa 

regions and downstream of the Hillsborough River. In the inter-low SLR, 6.0 km2 or 2% 

of the South Tampa areas would be permanently under sea level, and the area increases 

as the SLR goes up: 9.7 km2 (3%) in the high SLR and 10.7km2 (4%) in the extreme 

SLR. 
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4.3. Scenario Evaluation 

4.3.1. Scenario Evaluation at a City Level 

Urban flood exposure is calculated by overlapping existing urban and projected 

future urban scenarios with the delineated future flood risk zones. In the existing urban 

exposure to future flood risk scenarios, illustrated in Figure 4.3, as the sea level rises 

more urban areas would be vulnerable to flood risk. In the inter-low SLR scenario at 

47.4 km2, 27% of the total existing urban area would be susceptible to flood risk. In the 

high and extreme SLR scenarios at 51.0 km2 and 51.79 km2 of existing urban areas 

would be vulnerable to future flood risks. 

Figure 4.3. Flood exposure of existing urban areas. 

Figure 4.4 shows three urban growth scenarios under different future floodplain 

scenarios, int-low, high, and extreme SLRs. As mentioned in 3.1.1, the intermediate low 

scenario is a primary SLR risk standard due to ocean warming, and the high scenario 
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considers the maximum glacier loss with a 90% confidence. The extreme scenario 

combines extreme weather and climate (Parris et al., 2012). Under the int-low (+0.22m) 

SLR scenario, 11.9 km2 of S1 and 9.48 km2 of S2 would be endangered by flood risk, 

and S3 would be free from flooding due to its development setting, new development 

outside the floodplain. Under the high (+0.54m) and extreme (+0.62m) SLR scenarios, 

areas vulnerable to flooding would increase 12.4 km2 and 12.51 km2 in S1, and 10.0 km2 

and 10.1 km2 in S2. In the extreme SLR case, some future urban areas would be 

permanently under sea level in 2040; 0.56km2 in S1 and 0.34 km2 in S2. In all SLR 

scenarios, the resilient urban growth scenario, S3 is safe from future flood risk. Similar 

to the existing urban case, the higher the sea level rises, the more future urban areas are 

exposed to flood risk except S3. 



68 

Figure 4.4. Flood exposure of future urban growth scenarios. 
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Table 4.4. Urban areas exposed to current/future flood risks at a city level. 

FP 
(Current 
100-Year 

Floodplain) 

Sea-Level Rise Scenarios 

IL 
(Int.-Low SLR +0.22m) 

HI 
(High SLR +0.54m) 

EX 
(Extreme SLR +0.62m) 

Existing Urban 

EU & FP EU & IL EU & HI EU & EX 

36.5 km2 (21%) 47.4 km2 (27%) 51.0 km2 (30%) 51.8 km2 (30%) 

Future 
Urban 

Growth 
Scenarios 

Scenario 1: BU 
(Business as Usual) 

BU & FP BU & IL BU & HI BU & EX 

10.7 km2 (30%) 11.9 km2 (34%) 12.4 km2 (35%) 12.5 km2 (35%) 

Scenario 2: GP 
(Growth as Planned) 

GP & FP GP & IL GP & HI GP & EX 

7.9 km2 (22%) 9.5 km2 (27%) 10.0 km2 (28%) 10.1 km2 (29%) 

Scenario 3: RG 
(Resilient Growth) 

RG & FP RG & IL RG & IL RG & EX 

0.00 km2 (0%) 0.00 km2 (0%) 0.00 km2 (0%) 0.00 km2 (0%) 

Value = urban area in flood zones km2 (percentage of flood vulnerable areas by total existing/future urban 

areas) 

The result of urban flood exposure at the city level, as described in Table 4.4, 

shows that a large number of urban areas are under the current 100-year floodplain. 

More than 20% of existing urban areas are under the current floodplain, and future urban 

development would occur in the current flood zone, 30% of future urban development in 

S1 and 22% in S2.  

As the sea level rises, the areas vulnerable to future floods increase in both 

existing and future urban areas (except S3). Since Tampa’s geography ranges from 0 to 

55 feet above sea level (Hillsborough County, 2016), a small change in the SLR affects 

large areas. Existing urban areas would be impacted from 47.4 km2 in the int-low SLR to 

51.8 km2 in the extreme. S1’s flood vulnerable urban area would be enlarged from 11.9 

km2 in the int-low SLR to 12.5 km2 in the extreme SLR. S2’s would be relatively 
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smaller, 9.5 km2 in the int-low SLR and 10.1 km2 in the extreme SLR. S3, the resilient 

urban growth scenario, is safe from all the SLR impacts. In the result between the high 

and extreme SLR scenarios, the number of urban areas exposed to flood risks are not 

much different because the gap in the sea levels is small (+0.08m) between these 

scenarios. 

Overall, considering future urban areas under flood risks, the urban growth 

scenario as land use plan (S2) would be better than growth as business as usual (S1), but 

much worse than the resilient growth (S3). The number of flood vulnerable areas in S2 is 

less than those of S1 in all flood risk scenarios. However, the gap between the areas in 

S1 and S2 is not as obvious compared to that of S2 and S3 (resilient growth) in all SLR 

scenarios.  

4.3.2. Scenario Evaluation at a Neighborhood Level 

In addition to the city level analysis and comparing the total urban flood 

exposure among future urban growth and flood risk scenarios, this sub-section analyzes 

a neighborhood level urban flood exposure. It examines how many future urban areas in 

each neighborhood would be under future flood risks by comparing S1 and S2. Due to 

S3’s flood free design, it is excluded from the comparison. For a flood risk, this sub-

section uses a fixed high SLR scenario to compare urban flood exposure in two urban 

growth scenarios, business as usual (S1) and growth as planned (S2). As mentioned in 

3.1.1, NOAA’s high SLR scenario covers a 90% confidence interval considering the 
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maximum glacier and ice sheet loss, and it is used as a design standard for critical 

facilities (Parris et al., 2012). 

Table 4.5 shows potential flood impacted urban areas by neighborhood in 

existing urban and future urban growth scenarios 1 and 2. The results indicate that 71 out 

of 127 neighborhoods in existing urban areas, 55 in S1, and 58 in S2, would be 

vulnerable to future flood risks. In the existing urban areas, neighborhoods 103 and 86 

are the most vulnerable with the largest impacted areas, 7.6 km2 in 103 and 6.3 km2 in 

86. In S1, future flood risks would impact more than 1 km2 of new development in

neighborhoods 13, 40, 68, and 113. In S2, future flood risks would impact more than 0.6 

km2 in neighborhoods 28, 68, and 113. Neighborhood 68 would be most vulnerable to 

floods in both existing and future urban scenarios.  
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Table 4.5. Existing and future urban flood exposure under the future floodplain. 
NH 
No. 

Existing Urban 
Flood Exposure 

S1 Urban 
Flood Exposure 

S2 Urban 
Flood Exposure 

NH 
No. 

Existing Urban 
Flood Exposure 

S1 Urban 
Flood Exposure 

S2 Urban 
Flood Exposure 

1 0.000 0.000 0.000 65 0.000 0.000 0.000 

2 0.000 0.000 0.000 66 1.256 0.000 0.000 

3 0.000 0.000 0.000 67 1.803 0.478 0.513 

4 0.000 0.000 0.000 68 6.273 1.128 0.867 

5 0.000 0.000 0.000 69 0.292 0.002 0.107 

6 0.002 0.000 0.000 70 0.000 0.000 0.000 

7 0.122 0.000 0.002 71 0.026 0.663 0.002 

8 0.000 0.000 0.000 72 0.000 0.000 0.000 

9 0.000 0.000 0.000 73 0.000 0.000 0.000 

10 0.129 0.120 0.075 74 0.000 0.000 0.000 

11 0.181 0.015 0.018 75 0.000 0.000 0.000 

12 0.000 0.000 0.000 76 0.000 0.000 0.000 

13 0.122 1.290 0.162 77 0.130 0.000 0.000 

14 0.000 0.000 0.000 78 0.000 0.000 0.000 

15 0.008 0.000 0.024 79 0.000 0.000 0.000 

16 0.072 0.000 0.000 80 0.000 0.000 0.000 

17 0.000 0.000 0.000 81 0.723 0.053 0.053 

18 0.215 0.004 0.001 82 0.301 0.003 0.223 

19 0.274 0.018 0.059 83 0.484 0.042 0.055 

20 0.000 0.000 0.000 84 1.404 0.134 0.175 

21 0.000 0.000 0.000 85 0.000 0.000 0.000 

22 0.048 0.001 0.022 86 0.000 0.000 0.000 

23 0.050 0.000 0.000 87 0.970 0.215 0.247 

24 0.000 0.000 0.000 88 0.139 0.322 0.011 

25 0.209 0.000 0.134 89 0.070 0.077 0.378 

26 0.066 0.000 0.000 90 0.610 0.011 0.081 

27 0.000 0.000 0.000 91 0.000 0.000 0.000 

28 2.038 0.862 0.632 92 0.775 0.069 0.091 

29 0.000 0.000 0.000 93 0.000 0.000 0.000 

30 0.000 0.000 0.000 94 0.606 0.002 0.002 

31 0.000 0.000 0.000 95 2.155 0.106 0.463 

32 0.120 0.001 0.015 96 0.326 0.061 0.030 

33 0.023 0.000 0.004 97 0.892 0.534 0.516 

34 0.009 0.001 0.000 98 0.497 0.027 0.247 

35 0.000 0.000 0.000 99 0.286 0.019 0.007 

36 0.000 0.000 0.000 100 0.785 0.230 0.227 

37 0.000 0.000 0.000 101 1.176 0.014 0.231 

38 0.080 0.152 0.103 102 0.440 0.035 0.035 

39 0.226 0.021 0.150 103 7.642 0.004 0.006 

40 0.244 1.231 0.432 104 2.536 0.247 0.205 

41 0.000 0.000 0.000 105 1.456 0.194 0.313 

42 0.000 0.000 0.000 106 0.026 0.007 0.000 

43 0.000 0.000 0.000 107 1.564 0.177 0.361 

44 0.042 0.000 0.005 108 2.131 0.236 0.348 

45 0.000 0.000 0.000 109 1.116 0.252 0.176 

46 0.162 0.085 0.016 110 0.850 0.399 0.351 

47 0.000 0.000 0.000 111 1.903 0.075 0.206 

48 0.000 0.000 0.000 112 0.100 0.158 0.135 

49 0.000 0.000 0.000 113 0.492 1.640 0.641 

50 0.058 0.002 0.087 114 0.096 0.098 0.016 

51 0.006 0.000 0.000 115 0.210 0.039 0.109 

52 0.000 0.000 0.000 116 0.000 0.000 0.000 

53 0.060 0.100 0.017 117 0.033 0.000 0.039 

54 0.043 0.118 0.041 118 0.000 0.000 0.000 

55 0.000 0.000 0.000 119 0.000 0.000 0.000 

56 0.000 0.000 0.000 120 0.000 0.000 0.000 

57 0.232 0.045 0.000 121 1.494 0.570 0.506 

58 0.344 0.024 0.020 122 0.000 0.000 0.000 

59 0.000 0.000 0.000 123 0.012 0.000 0.000 

60 0.000 0.000 0.000 124 0.000 0.000 0.000 

61 0.000 0.000 0.000 125 0.000 0.000 0.000 

62 0.000 0.000 0.000 126 1.161 0.000 0.000 

63 0.000 0.000 0.000 127 0.309 0.000 0.000 

64 0.180 0.001 0.001 Total 51.0 12.4 10.0 

NH: Neighborhood, Unit: km2. 

a neighborhood where urban flood exposure in S1 is larger than in S2. 

a neighborhood where urban flood exposure in S2 is larger than in S1. 
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In the urban flood exposure comparison between S1 and S2, as Figure 4.5 

illustrates, 27 neighborhoods in S1 have a larger number of urban areas exposed to 

floods than does S2. However, 30 neighborhoods in S2 have a larger number of urban 

areas exposed to floods than does S1. This suggests that when future urban development 

follows a land use plan (S2), the 30 neighborhoods (see the right map in Figure 4.5) 

would have a larger amount of area under flood risk zones than urban development 

without a plan (S1).  

Figure 4.5. Future urban flood exposure under the future high SLR in scenarios 1 

and 2. 
The choropleth maps indicate urban areas exposed to flood risks in S1 (left) and S2 (right). On the maps, 

tracts with numbers show where urban flood exposure in S1 is larger than in S2 (left), and where S2 is 

larger than in S1 (right). 
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4.3.3. Findings: Scenario Evaluation at a City and Neighborhood Level 

In the city level analysis, as the sea level rises, more urban areas in both existing 

and future urban areas would be endangered by future flood risks, except scenario 3. A 

large number of existing urban areas are under the current 100-year floodplain, 36.5km2, 

or 21% of the existing urban areas. It would be enlarged by up to 51.8 km2, or 30% in 

the extreme flood zones. Out of total future urban development, 35.6 km2 in 2040, 10.7 

km2 (30% of future urban areas) in S1 and 7.9 km2 (22%) in S2 are projected to be 

developed in the current floodplain, and 12.5km2 (35%) in S1 and 10.1 km2 (29%) in S2 

under the future extreme SLR flood risk. In the comparison of total urban flood 

exposure, existing urban areas are problematic, and urban growth as business as usual 

(S1) would cause more floodplain development than growth as planned. When 

examining the results of the city level analysis, S2 is better than S1 in all the SLR 

scenarios: the total urban area exposed to flood risks in S2 is less than in S1. However, 

the gap of urban flood exposure between S1 and S2 is relatively small compared with 

that between S2 and S3.  

The neighborhood level analysis shows different results. There are 71 

neighborhoods in existing urban areas, and more than 50 neighborhoods in future urban 

areas (55 in S1 and 58 in S2) would be impacted by future high SLR risk. More 

neighborhoods in S2 would be vulnerable to floods than in S1 due to floodplain 

development. Furthermore, in the comparison between S1 and S2, more numbers of 

neighborhoods in S2 would have larger areas vulnerable to flood than in S1: the 30 
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neighborhoods in S2 have larger developments in the flood zones than in S1, but the 27 

in S1 have larger urban areas exposed to flood risks than in S2. 

Thus, the findings conclude that planned urban growth in Tampa would be better 

to minimize potential flood damage at a city level than a growth with no plan, but it 

could be worse for some neighborhoods. 

4.4. Neighborhood Scaled Analyses 

Sub-section 4.3 examined scenario evaluation by looking at city and 

neighborhood levels of urban flood exposure to explain the efficacy of a land use plan 

compared with other urban growth scenarios. However, the result is a likely possibility 

of flood exposure in different urban area growth and SLR scenarios. Depending on 

preparation for flood risks, the damage can be eliminated or minimized. Thus, this sub-

section examines how prepared neighborhoods are for future urban growth and flood 

risk. Using Berke et al.’s (2015) resilient scorecard, future urban growth scenarios, 

social/physical vulnerability, and policy scores for eight highly clustered future 

development neighborhoods are compared (Berke et al., 2018; Berke et al. 2015). The 

scorecard tool enables identification of specific policies that reduce or increase flood 

vulnerabilities in each neighborhood.  

The processes are 1) to detect highly clustered future urban neighborhoods with 

urban growth prediction (based on scenarios), 2) to review the characteristics of the 

neighborhoods, and 3) to identify neighborhood-scaled plan policies using the scorecard 

tool. Step 1 uses the Optimized Hot Spot Analysis with ArcGIS to find where new 
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developments in the predicted urban growth scenarios are highly clustered. Step 2 

uncovers the characteristics (e.g. current physical and social vulnerability and flood risk) 

of the selected neighborhoods in Step 1. Step 3 employs the resilient scorecard method 

to identify specific policies from plans related to urban development. 

4.4.1. Highly Clustered Future Urban Neighborhoods 

Based on the predicted urban growth scenarios in sub-section 4.1, eight 

neighborhoods were selected as highly clustered future urban growth neighborhoods 

using Hot Spot Analysis with ArcGIS. Hot spot analysis detects statistically significant 

geospatial clusters with high and low values (hot and cold spots) using the Getis-Ord Gi 

statistic. The Gi statistic produces each feature with a group of z-scores; a high z-score 

shows an intense clustering group of high values (hot spot), and vice versa (ArcGIS, 

2018). The hotspot analysis has been used in spatial cluster analyses; identifying historic 

spatial development pattern in China (Wang et al., 2016), and analyzing potential transit 

oriented development location in the Arnhem and Nijmegen region, the Netherlands 

(Singh et al., 2014). 

The results in Figure 4.6 present a different development pattern for each urban 

growth scenario. The growth as business as usual (S1) would mainly focus on the north 

Tampa areas (neighborhoods 13, 40, 41, 89, 112, 113, and 114). Some clustered 

development would occur in the central Tampa (4 and 28) and the south Tampa (97) 

neighborhoods. The planned urban growth (S2) would be distributed broadly to north, 

central, and south Tampa. The major difference between S1 and S2 is that S2 focuses on 
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the central Tampa neighborhoods (3, 4, 44, 60, 61, 62, 75, and 91) and the south (82, and 

5). The resilient growth pattern (S3) shows more focused development in two regions: 

north and central Tampa neighborhoods. 

All the three scenarios commonly show a growth pattern to north Tampa, which 

the City Comprehensive Plan identifies as a new growth region called New Tampa 

(Hillsborough County, 2016). This is because of highly saturated existing urban areas in 

south and central Tampa and new sub-urban development in the north. The growth 

pattern of S1 focuses on the north, and S3’s on the north and central. S2 shows a more 

distributed growth pattern in the whole Tampa region. 

Figure 4.6. Hot/cold spot analysis for highly clustered future urban development. 

4.4.2. Flood Vulnerability 

“Vulnerability has a commonplace meaning: being prone to or susceptible to 

damage or injury … in relation to natural hazards… vulnerability means the 

characteristics of a person or group and their situation that influence their capacity to 
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anticipate, cope with, resist and recover from the impact of a natural hazard (an extreme 

natural event or process). It involves a combination of factors that determine the degree 

to which someone’s life, livelihood, property and other assets are put at risk by a discrete 

and identifiable event in nature and in society” (Wisner et al., 2004, p.11). The risk-

hazard model illustrated in Figure 4.7 delineates the impact of a hazard event as 

exposure and dose-response (sensitivity and adaptive capacity) of the exposed item or 

individual (Turner et al., 2003). Vulnerability is based on an asset’s exposure, 

sensitivity, and adaptive capacity to a hazard event (Cutter, 1996). If an exposed asset is 

highly sensitive to the harmful impacts of a hazard event, with a low adaptive capacity, 

the asset is considered vulnerable (Marin County, 2017). 

Figure 4.7. Risk-hazard framework: Chain sequence from hazard to impacts. 
Source: reprinted from Turner et al. (2003). * Dose response means “range of doses over which response 

occurs, doses lower than the threshold produce no response while those in excess of the threshold exert no 

additional response,” reprinted from Mosby’s Medical Dictionary (2009).  

For the identified highly clustered urban neighborhoods from the three urban 

growth scenarios, this section looks at the hazard framework of each neighborhood, 

future flood risk, and physical and social vulnerabilities. Future flood risk uses areas in 

the high SLR scenario within a neighborhood. Using a quantile method to identify the 

areas, 127 neighborhoods in Tampa are classified into five categories (high, medium 

*
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high, medium, medium low, and low). Following the method of economic exposure to 

flood risk (Berke et al., 2015; Patterson & Doyle, 2009), physical vulnerability 

aggregates a building’s value below the base flood elevation based determined by the 

2010 building footprint and tax value from the Hillsborough County Property Appraiser 

(2011). The sum of the value of vulnerable buildings in each neighborhood is classified 

into five categories using a quantile method. Social vulnerability, the characteristics of 

certain populations in response to hazards, is obtained from NOAA’s (2017b) social 

vulnerability index at the tract level, 2010. The social vulnerability index to 

environmental hazards was originally developed by Cutter et al.’s (2000, 2003) 

influential factors: personal wealth, age, density of built environment, employment, 

mobile home, race & ethnicity, occupation, and infrastructure dependence. 

Figure 4.8. Characteristics of the highly clustered neighborhoods. 

As illustrated in Figure 4.8, most coastal neighborhoods in south Tampa and 

riverine neighborhoods below the Hillsborough River Dam in central Tampa are 
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influenced by an enlarged floodplain due to SLR. North Tampa is impacted only by the 

current 100-year floodplain. In respect to physical vulnerability, similar to the future 

flood risk, most coastal and north Tampa neighborhoods are physically vulnerable to 

current flood risk, meaning that there is a high number of existing buildings within the 

floodplain. In contrast to physical vulnerability, socially vulnerable neighborhoods are 

distributed mostly in central Tampa areas. 

Table 4.6. 35 Clustered neighborhoods and their characteristics. 
Neighborhood 

No. 

Highly Clustered Future Urban Development Future Flood 
Risk 

Vulnerability 

S1 S2 S3 Physical Vulnerability Social Vulnerability 

3 √ √ Low Low High 

4 √ √ √ Low Low Medium 

5 √ Low Low Low 

10 √ Low Medium Low High 

13 √ High Medium High Low 

15 √ Low Medium Low Medium 

16 √ Medium Low Medium Low High 

19 √ Medium Medium High High 

23 √ Medium Low Medium Medium 

24 √ Low Low Low 

28 √ √ High High Medium 

32 √ Medium Low Medium High 

33 √ Medium Medium Low High 

34 √ Medium Low Medium Low Medium 

38 √ Medium Medium Low Low 

39 √ Medium Medium Low 

40 √ √ √ High Medium High Low 

41 √ √ √ Low Low Low 

44 √ Low Medium Low Medium High 

51 √ Medium Medium Low Medium 

52 √ Low Low Medium 

60 √ Low Low Medium 

61 √ Low Low High 

62 √ Low Low High 

75 √ Low Low High 

82 √ √ Medium Medium High Low 

89 √ √ √ High Medium Low 

91 √ Low Low High 

97 √ √ Medium High High Medium 

110 √ Medium High Medium High Medium 

112 √ √ √ Medium Medium High Low 

113 √ √ √ High Medium High Low 

114 √ √ √ Medium High Medium Medium 

117 √ Low Medium Low Medium 

118 √ Low Low Medium 

NH: Neighborhood. 

a neighborhood where two urban growth scenarios have highly clustered urban areas. 

a neighborhood where all three urban growth scenarios have highly clustered urban areas. 
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There are 35 neighborhoods where single or multiple highly clustered new 

development(s) would be found in one of the three urban growth scenarios. Twenty four 

neighborhoods have a highly clustered new development in one urban growth scenario, 

four neighborhoods have two highly clustered new developments in S1, S2, or S3, and 

seven neighborhoods are expected to be developed in all three scenarios.  

In the 11 neighborhoods where future urban development would appear in more 

than two urban growth scenarios (the light or dark gray colored neighborhoods in Table 

4.6), three neighborhoods (3, 4, and 41) are low in future flood risk, and the other eight 

neighborhoods are in the range of medium low to high. Neighborhoods 3, 4, and 41 are 

located inland so they are free from the current and future floodplain. Neighborhoods 28, 

82, and 97 would be impacted by an increased floodplain due to SLR, and they range 

from medium to high in future flood risk depending on their coastal location. Similar to 

future flood risk, the physical vulnerability (building damage from the current 100-year 

floodplain) of eight neighborhoods range from medium to high, and three neighborhoods 

(3, 4, and 41) have a low physical vulnerability. Most of the neighborhoods have a 

medium to low social vulnerability, except neighborhood 3, which has a high social 

vulnerability. This means that few highly social vulnerable neighborhoods are likely to 

be developed in Tampa. Almost all highly clustered new development would be located 

in physically vulnerable neighborhoods, but not in socially vulnerable neighborhoods. 



82 

4.4.3. Plan Evaluation 

To answer how prepared Tampa is for future urban growth and flood risks, this 

section examines specific plan policies for the eight highly clustered future urban 

neighborhoods. Among the 11 multiple highly clustered neighborhoods highlighted in 

Table 4.6, three neighborhoods, 3, 4, and 41, are excluded from this in-depth following 

analysis due to their lack of flood risk.  

Evaluation Method 

To evaluate the city’s plan preparation at a neighborhood scale, this study uses 

Berke et al.’s (2015) “resilient scorecard,” to examine the networks of plans with a 

policy score for each planning district (neighborhood). The evaluation method assigns a 

score for each policy in each plan for a hazard zone in a designated neighborhood, 

scoring +1 when each policy decreases physical or social vulnerability or scoring -1 for 

increased vulnerability (Berke et al., 2015). Then, as specified in Table 4.7, it divides the 

types of policies into seven categories “influencing the type, location, and amount of 

development” (Berke et al., 2015, p.294). The resilient scorecard has been applied in a 

few studies to assess plan preparation for flood vulnerability and multiple plans’ 

alignment (e.g. local comprehensive plan, hazard mitigation plan, and open space plan). 

Berke et al. (2015) created the scorecard and demonstrated with the case of Washington, 

NC, and Berke et al. (2018) assessed six cities’ policy preparation for flood vulnerability 

(Washington, NC, League City, TX, Fort Lauderdale, FL, Boston, MA, Tampa, FL, 

Asbury Park, NJ). Malacha et al. (2018) applied the scorecard in Feijenoord district, 
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Rotterdam, the Netherlands, and Woodruff (2018) identified policy conflicts in Chester, 

PA.   

Table 4.7. Land use policy categories. 

Policy Categories Sub Categories 

Development Regulations 
Permitted Land Use, Density of Land Use, Subdivision Regulations, 
Zoning Overlays, Setbacks or Buffer Zones, Cluster Development 

Land Acquisition 
Acquire Land & Property, Open Space or Easement 
Requirement/Purchase 

Density Transfer Provisions Transfer/Purchase of Development Rights 

Financial Incentives and 
Penalties 

Density Bonuses 

Land Use Analysis and 
Permitting Process 

Site Review, Design/Construction Guidelines/Requirements 

Public Facilities Siting 

Capital Improvements 
Infrastructure "Hardening" or Weatherproofing, Drainage Improvements or 
Flood Control, Slope/Dune/Bank Stabilization, Ecosystem Enhancement 

The land use policy categories were developed based on those by Berke et al. (2015) due to Tampa’s 

policies in plans, adding density transfer provisions and capital improvements. 

Tampa’s plan analysis examines four urban plans to determine the preparation 

for urban development and flood hazard; Imagine 2040: Tampa Comprehensive Plan, 

Hillsborough County Local Mitigation Strategy, Changing Tampa's Economic DNA 

(Consolidated Plan for Housing), and Hillsborough Long Range Transportation Plan.  

The Tampa Comprehensive Plan (TCP) is a community prepared legally binding 

plan designing the city’s future. It identifies goals, objectives, and policies based on the 

vision of Tampa’s future urban growth, “creating an attractive and safe city that evokes 

pride, passion and a sense of belonging – a city where everybody cares about quality of 
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life” (Hillsborough County, 2016, p.7). The Hillsborough County Local Mitigation 

Strategy (HCLMS) develops mitigation techniques and preparedness to reduce life and 

asset loss from potential disasters for entire communities. It assesses community 

vulnerabilities to hazards, identifies disaster protection plans and projects, and prioritizes 

the implementation (Hillsborough County, 2015). The Changing Tampa’s Economic 

DNA (CTEDNA) is a five-year strategic plan for low and moderate income residents. It 

includes the city’s demography, economy, and housing/job needs (City of Tampa, 2012). 

The Hillsborough Long Range Transportation Plan (HLRTP) aims to solve 

transportation issues, and is updated with the Comprehensive Plans of Hillsborough 

County and three major cities. It identifies goals, objectives, and policies framing 

transportation projects, priorities, and financing (Hillsborough County, 2014).  

Neighborhood Characteristics 

Among the eight study neighborhoods, five (neighborhoods 4, 89, 112, 113, 114) 

are located in north Tampa, one (28) in the central area, and two (82, 97) in the south. 

Each neighborhood’s characteristics are defined by its geographic location and land use 

plan as seen in Figure 4.9. Looking at flood risk, due to proximity to the sea, SLR would 

impact three neighborhoods (28, 82, 97), and the other five neighborhoods would be 

influenced by SLR, but would only be endangered in the 100-year floodplain. Most areas 

in neighborhood 97 would be endangered by future flood risk, and neighborhood 28, 

even with its inland location, would be impacted by SLR. The main land use 

characteristics in north Tampa neighborhoods are defined by environmentally sensitive 

areas and mixed-use zones with suburban housing developments. As stated in the Tampa 
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Comprehensive Plan, state and local governments emphasize “areas of critical state 

concern” and define environmentally sensitive areas (ESA) for wetland and wildlife 

habitat preservation (Hillsborough County, 2016, p.1). The primary land use in south 

Tampa (82, 97), and neighborhood 28 is designated for heavy/light industrial, 

commercial, and residential uses. Particularly, the city of Tampa plans to provide a 

better transportation system with Transit Oriented Development (TOD), high-density, 

and mixed-use development. The Tampa Comprehensive Plan identifies transit stations 

and transit corridors for TOD zones in neighborhoods 28, 89, 112, and 114. 
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Figure 4.9. Flood risk and land use plans of study neighborhoods. 
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Policy Evaluation 

Table 4.8. Policy scores for the eight highly clustered neighborhoods. 

NH No. 
Policy Preparation Score 

TCP HCLMS CTEDNA HLRTP Total 

28 
+49

40 
+2

2 
+1

1 
+2

1 
+54

44 
-9 - - -1 -10

40 
+32

32 
- 

0 
- 

0 
+2

2 
+34

34 
- - - - - 

82 
+5

4 
- 

0 
- 

0 
- 

0 
+5

4 
-1 - - - -1 

89 
+33

27 
- 

0 
- 

0 
+2

1 
+35

28 
-6 - - -1 -7

97 
+46

40 
+3

3 
- 

0 
+2

2 
+51

45 
-6 - - - -6 

112 
+33

28 
- 

0 
- 

0 
+2

1 
+35

29 
-5 - - -1 -6

113 
+33

33 
- 

0 
- 

0 
+2

2 
+35

35 
- - - - - 

114 
+31

26 
- 

0 
- 

0 
+2

1 
+33

27 
-5 - - -1 -6

TCP: Tampa Comprehensive Plan, HCLMS: Hillsborough County Local Mitigation Strategy, CTEDNA: 

Changing Tampa's Economic DNA: Consolidated Plan (Housing), HLRTP: Hillsborough Long Range 

Transportation Plan. 

Policy numbers decreasing vulnerability “+1” Sum of policy scores decreasing and increasing 

vulnerability in a neighborhood Policy numbers increasing vulnerability “-1” 

As the policy scores of the four plans for each neighborhood indicate in Table 

4.8, TCP is the major plan influencing floodplain development for all study 

neighborhoods. HCLMS policies apply to two neighborhoods, CTEDNA to one, and 

HLRTP to seven. The two neighborhoods, 28 and 112, are positively scored by flood 

protection projects in HCLMS. Neighborhood 28, covered by the CTEDNA policy, is 
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the only low income neighborhood and will be funded for housing development projects. 

The County Transportation Plan, HLRTP has positive and negative scored policies; 

negative in development incentives related to TOD development (Policy 5.3C), and 

positive in creating a transportation infrastructure that considers environmentally 

sensitive areas, water resources, and historic site conditions (Policies 3.1A and 3.1B). 

The total scores for each plan/neighborhood are positive, and the average total 

score is 30.8. The total scores range from 4 to 45 points: the lowest is neighborhood 82 

with 4 points, and the neighborhood with the highest score is 97 with 45 points. When 

interpreting the total scores, positive or higher score does not mean safe or safer from 

flood risk. Due to scoring system of each positive/negative policy with the same scale of 

±1, the total sum means the offset amount of positive and negative policies without 

considering each policy’s effectiveness. Thus, to know how policies work in each 

neighborhood, each positive/negative policy should be analyzed individually. In total, 64 

policies are assigned to neighborhood 28 due to its coastal and transit locations, and 

environmentally sensitive areas; 54 positive policies and 10 negative policies. The 

neighborhood that has the fewest policy applications is 82, which is assigned six policies 

due to its inland location; two floodplain, three coastal planning (storm water and 

plantation), and one rental housing related policies. In neighborhoods 40 and 113, only 

positive policies are applied, meaning that those neighborhoods have no conflicting 

policies between decreasing and increasing vulnerability. 
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Policies by Land Use Categories in Each Plan 

In the policies by land use categories for TCP, as indicated in Table 4.9, policies 

in the Development Regulations category is the most influential on development in a 

floodplain for most neighborhoods, more than 20 policies in the category are assigned in 

seven neighborhoods except neighborhood 82. The Development Regulations category 

is about permitted land use, density, subdivision regulations, zoning, setbacks or buffer 

zones, and cluster development (Berke et al., 2015). The next influential categories are 

Land Use Analysis and Permitting Process, Capital Improvements, and Land 

Acquisition. The least influential category is Financial Incentives and Penalties. 

Compared to the TCP, other plans have few policies influencing development in 

floodplains. In HCLMS, five flood mitigation projects in Capital Improvements decrease 

flood vulnerability in coastal neighborhoods, two projects in neighborhood 28, and three 

projects in neighborhood 97. In CTEDNA, one policy in Capital Improvements is 

assigned in neighborhood 28 due to the plan’s funding support for low/moderate income 

districts. In HLRTP, one policy in the Penalties category and two policies in Capital 

Improvements and Financial Incentives are assigned. A density bonus for major 

development projects implementing the TOD concept (Policy 5.3C) influences 

negatively (increasing vulnerability). Two policies related to new road construction 

considering environmentally sensitive areas, parks, and water resources (Policies 3.1A 

and 3.1B) are scored positively (decreasing vulnerability) for most neighborhoods. 
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Table 4.9. Policy scores by land use categories in four plans. 

Tampa Comprehensive Plan 
28 40 82 89 97 112 113 114 

Development 
Regulations 

+21
13 

+20
20 

+1
0 

+20
15 

+21
16 

+20
16 

+22
22 

+19
15 

-8 - -1 -5 -5 -4 - -4 

Land Acquisition 
+6

6 
+2

2 
+1

1 
+2

2 
+7

7 
+2

2 
+2

2 
+2

2 
- - - - - - - - 

Density Transfer 
Provisions 

+4
4 

+3
3 

- 
- 

+3
3 

+4
4 

+3
3 

+3
3 

+3
3 

- - - - - - - - 

Financial Incentives 
and Penalties 

- 
-1 

- 
0 

- 
- 

- 
-1 

- 
0 

- 
-1 

- 
- 

- 
-1 

-1 - - -1 - -1 - -1 

Land Use Analysis & 
Permitting Process 

+7
7 

+4
4 

+1
1 

+4
4 

+6
6 

+4
4 

+4
4 

+4
4 

- - - - - - - - 

Public Facilities (incl. 
Public Housing) 

+3
3 

+1
1 

- 
- 

+1
1 

+3
2 

+1
1 

+1
1 

+1
1 

- - - - -1 - - - 

Capital Improvements 
+8

8 
+2

2 
+2

2 
+3

3 
+5

5 
+3

3 
+1

1 
+2

2 
- - - - - - - - 

Total (all policies) 
+49

40 
+32

32 
+5

4 
+33

27 
+46

40 
+33

28 
+33

33 
+31

26 
-9 - -1 -6 -6 -5 - -5 

Hillsborough County Local Mitigation Strategy 
28 40 82 89 97 112 113 114 

Development Regulations - - - - - - - - 

Land Acquisition - - - - - - - - 

Density Transfer Provisions - - - - - - - - 

Financial Inc. and Penalties - - - - - - - - 

LU. Anal. and Permit Proc. - - - - - - - - 

Public Facilities - - - - - - - - 

Capital Improvements +2 - - - +3 - - - 

Total (all policies) 2 0 0 0 3 0 0 0 

Changing Tampa's Economic DNA 
28 40 82 89 97 112 113 114 

Development Regulations - - - - - - - - 

Land Acquisition - - - - - - - - 

Density Transfer Provisions - - - - - - - - 

Financial Inc. and Penalties - - - - - - - - 

LU. Anal. and Permit Proc. - - - - - - - - 

Public Facilities - - - - - - - - 

Capital Improvements +1 - - - - - - - 

Total (all policies) 1 0 0 0 0 0 0 0 

Imagine 2040: Hillsborough Long Range Transportation Plan 
28 40 82 89 97 112 113 114 

Development Regulations - - - - - - - - 

Land Acquisition - - - - - - - - 

Density Transfer Provisions - - - - - - - - 

Financial Inc. and Penalties -1 - - -1 - -1 - -1 

LU. Anal. and Permit Proc. - - - - - - - - 

Public Facilities - - - - - - - - 

Capital Improvements +2 +2 - +2 +2 +2 +2 +2 

Total (all policies) 1 2 0 1 2 1 2 1 
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Major Policy Themes in the Tampa Comprehensive Plan 

Concerning “balancing land development and protecting natural assets” 

(Hillsborough County, 2016, p.1), the Tampa Comprehensive Plan has prominent policy 

themes concerning ecology and sustainable development that increase or decrease 

vulnerability. The City Comprehensive Plan defines environmentally sensitive areas and 

coastal planning areas for natural and wildlife habitats and wetland protection. The other 

concern is the TOD concept, encouraging denser and mixed-use development on transit 

stations and corridors to provide a better transportation system and pedestrian 

environment (Hillsborough County, 2016). 

Table 4.10. Major policy themes and assigned neighborhoods in the Tampa 

Comprehensive Plan. 

Major Policy Theme Numbers of Policy Assigned Neighborhood 

‘+’ Policy Categories 

Environmentally Sensitive Areas 24 28, 40, 89, 112, 113, 114 

Coastal Planning / High Hazard 
Areas 

13 28, 97 (82) 

Floodplain 3 All 

‘-’ Policy Categories Transit Oriented Development 8 28, 89, 112, 114 

The numbers of policy by theme in Table 4.10 show how much the City of 

Tampa cares about environmentally sensitive areas (wetland, wildlife habitats) and 

coastal development. Policies related to ESA, coastal high hazard areas, and floodplain 

limited new development, scored positively on the scorecard. Policies related to the 

TOD that enhance new development with additional density incentives, scored 

negatively. In the positively scored policy category, three floodplain policies are 

assigned to all eight study neighborhoods, and 24 ESA related policies are assigned to 
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six neighborhoods. Thirteen coastal planning related policies are primarily assigned to 

two coastal neighborhoods. In the negative policy category, eight policies related to the 

TOD are assigned to four neighborhoods where transit stations and corridors are 

planned. 

Among the 64 total applied policies from the Tampa Comprehensive Plan, 

several policies help to decrease vulnerability for new floodplain development, ESA 

(24), Coastal Planning (13), and Floodplain (3). Due to Tampa’s protection efforts for 

wildlife habitats and wetlands, as Figure 4.10 shows, land use policies curtail new 

development in environmentally sensitive areas by restricting development (ENV Policy 

1.2.1), infrastructure maintenance (ENV Policy 1.2.8), and transferring development 

rights (ENV Policy 1.2.5). In the coastal high hazard areas, there are restrictions on 

building healthcare related facilities (CM Policy 1.1.7). Land acquisition (CM Policy 

1.3.3) and stormwater treatment improvement (ENV Policy 1.21.7) help to reduce flood 

vulnerability in coastal planning areas. Floodplain development is basically allowed 

conditionally with development regulations and building codes (ENV Policy 2.1.3 and 

CM Policy 1.3.4), but floodplain development within an ESA is strictly prohibited (ENV 

Policy 1.9.5).  

On the other hand, the TOD related policies would increase vulnerability for new 

floodplain development. They encourage new development with density incentives 

within the TOD zones to provide a better pedestrian friendly environment (LU Policy 

7.2.6). However, denser and more development within the floodplain could put more 

people and assets in danger of flood risk.  
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ENV: Environmental, CM: Construction Management, LU: Land Use. 

Figure 4.10. Key policy statement in the Tampa Comprehensive Plan. 
Source: reprinted from Hillsborough County (2016). 

Positive Scored Policies (decreasing vulnerability) 

- Environmentally Sensitive Areas

• ENV Policy 1.2.1: Environmentally sensitive areas shall be protected.

• ENV Policy 1.3.7: Protect and conserve significant wildlife habitat, and shall prevent any further net

loss of essential wildlife habitat in the City.

• ENV Policy 1.2.8: The City may require the maintenance of higher levels of service for public

infrastructure (e.g., roadways) as a means of reducing densities and clustering development intensity away

from environmentally sensitive areas.

• ENV Policy 1.2.5: Use techniques, which may include clustering and transfer of development rights, to

protect environmentally sensitive areas.

- Coastal High Hazard Area

• CM Policy 1.1.7: Prohibit the location of new “special needs” facilities in the Coastal High Hazard Area,

including adult congregate living facilities, hospitals, nursing homes, homes for the aged and total care

facilities.

• CM Policy 1.3.3: Give priority to acquiring land in the Coastal High Hazard Area to increase open space,

recreation opportunities, public access, and to reduce the risk of property damage from potential

disasters.

• ENV Policy 1.21.7: Require that existing developments planned for expansion, modification or replacement in

the coastal [planning] area provide or support stormwater treatment improvements within the affected

drainage basin where treatment facilities are lacking. Require retrofitting of stormwater treatment facilities in

coastal areas lacking such facilities.

• ENV Policy 1.22.1: Limit use of beaches and shorelines to appropriate ocean-oriented recreational and

educational functions, and natural resource preservation.

- Floodplain

• ENV Policy 1.9.5: Through the land planning and development review processes, restrict net encroachment

into the 100-year floodplain of significant wetland and riverine systems in accordance with the

provisions of the Environmental Resource Permit Rules, administered by the Southwest Florida Water

Management District and the Florida Department of Environmental Protection.

• ENV Policy 2.1.3: All development within the 100-year floodplain shall be in strict conformance with

applicable development regulations.

• CM Policy 1.3.4: Any structure within the 100-Year Floodplain that is damaged in excess of the limits

established by FEMA’s definition of substantial damage (50% rule) shall be rebuilt to meet or exceed

all current building code requirements, including those enacted since the construction of the structure.

Negative Scored Policies (increasing vulnerability) 

- Transit Oriented Development

• LU Policy 7.2.6: In order to achieve additional development potential (“TOD bonus”), parcels within the

TOD Overlay must provide transit-oriented amenities in accordance with Table TOD-4 and the methodology

set forth in the City’s Land Development Code. This TOD bonus provision will ensure that new development

provides transit-oriented amenities that enhance the quality of life in order to achieve the desired density and

intensity needed for successful Transit Oriented Development…
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4.4.4. Urban Growth Scenarios and Policy Preparation 

As stated in Chapter 3 (3.1.1), the future urban growth in scenario 1 (S1), 

business as usual, is natural growth without development regulations and occurs 

according to the previous development pattern. Scenario 2 (S2), growth as planned, 

follows a land use plan where new development occurs outside the designated 

environmentally sensitive areas (ESA) and open spaces. Scenario 3 (S3), resilient 

growth, has a strong development regulation assumption, no development occurs within 

future flood risk areas (SLR High 2040) adding to the exclusionary areas in S2. S2 

would be the most likely future urban area in Tampa, S1 would be if new development 

does not follow the land use regulations, and S3 would be the future of if strong 

floodplain policies (no floodplain development) are created and assigned. 

The result of urban flood exposure as shown in Table 4.11 and Figure 4.11 

illustrates that predicted urban areas in S1 and S2 in all neighborhoods are exposed to 

flood risks except neighborhood 82 in S1. Urban flood exposure in S1 is larger than in 

S2 in six neighborhoods, and two neighborhoods have less urban flood exposure in S1 

than in S2. For S3 (resilient growth) in all neighborhoods, all urban development would 

be free from current and future flood risk due to its prediction intention, restricting 

floodplain development. 
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Table 4.11. Existing and future urban exposure to flood hazards. 

NH 
Existing 
Urban 

Future Urban Growth 
Scenarios 

S1 S2 S3 

NH 28 

Area (km2) 9.20 6.86 1.70 1.39 0.72 

Area under the current floodplain 
(km2) 

2.35 1.34 0.68 0.53 0.00 

Area under future floodplain (km2) 3.26 2.04 0.86 0.63 0.00 

NH 40 

Area 12.94 1.93 4.96 2.69 4.90 

Area under the current floodplain 2.34 0.24 1.23 0.43 0.00 

Area under future floodplain - - - - - 

NH 82 

Area 2.99 2.18 0.12 0.62 0.54 

Area under the current floodplain 0.14 0.06 0.00 0.08 0.00 

Area under future floodplain 0.54 0.30 0.00 0.22 0.00 

NH 89 

Area 15.36 3.34 1.36 2.19 2.59 

Area under the current floodplain 6.03 0.07 0.08 0.38 0.00 

Area under future floodplain - - - - - 

NH 97 

Area 1.71 0.94 0.54 0.52 0.01 

Area under the current floodplain 1.30 0.64 0.47 0.46 0.00 

Area under future floodplain 1.65 0.89 0.53 0.52 0.00 

NH 112 

Area 3.60 1.50 1.42 0.70 0.68 

Area under the current floodplain 0.56 0.10 0.16 0.13 0.00 

Area under future floodplain - - - - - 

NH 113 

Area 7.37 2.77 3.68 1.69 1.59 

Area under the current floodplain 2.36 0.49 1.64 0.64 0.00 

Area under future floodplain - - - - - 

NH 114 

Area 2.16 0.44 0.41 0.10 0.32 

Area under the current floodplain 1.10 0.10 0.10 0.02 0.00 

Area under future floodplain - - - - - 

Neighborhood (NH) 40, 89, 112, 113, and 114 would not be impacted by a SLR so only the area under the 

current floodplain is used for calculations. 
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Figure 4.11. Existing and future urban exposure to future hazards. 
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Figure 4.11. Continued. 

To assess at policy preparation on urban growth in detail, I focus on three 

representative neighborhoods: NH 113 impacted by the current floodplain and 

designated as an ESA, NH 82 located inland but impacted by SLR, and NH 28 assigned 

as a TOD and receiving funding for low income policies.  

• Neighborhood 113 is located in north Tampa. Land use is designated for sub-

urban housing development, defined mixed-use, and ESA. Due to the long

distance from the coastline, this neighborhood is not impacted by SLR so the

100-year floodplain is the flood risk. The neighborhood’s physical vulnerability

is medium high, and social vulnerability is low with a high median income 

($101,557). The predicted future urban area in scenario 2, as shown in Figure 

4.12, is 1.69km2 and 0.64km2 would be developed within the floodplain. The 

total policy score is 35 with no negative policies. The floodplain policy related 
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to ESA (ENV 1.9.5) helps to decrease floodplain development because much of 

the ESA overlaps with floodplain zones.  

Basically floodplain development is allowed by following building codes and 

controlling base flood elevation (BFE) based on the 100-year floodplain 

elevation (Development Regulation Ch.5 Building Code, 5-111). However, due 

to changing climate pattern and increasing impervious surfaces due to new 

development, the BFE standard may not guarantee its safety, and the false sense 

of security from flood risk (Tobin, 1995) would encourage more development 

in the floodplain. 

• Neighborhood 82 is located inland in south Tampa. Though it is located

inland, due to its proximity to the coastline (approximately 1 km), the

neighborhood is impacted by the current and an increased floodplain due to

SLR. Land use is designated for mainly residential, mixed use, and (semi)

public uses. Its physical vulnerability is medium high, and social vulnerability

is low with a high median household income ($69,239). The predicted urban

area in S2 is 0.62 km2, and 0.08 km2 would be impacted by the 100-year

floodplain and 0.22 km2 by the future floodplain increased by SLR. Its inland

location causes fewer policies to be assigned, mainly floodplain and coastal

planning policies. The total policy score is the lowest at four and a total of six

policies are assigned (five positive and one negative).
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A critical issue for this neighborhood lies in the development between the 

current 100-year floodplain and future floodplain, because no SLR related 

policy exists in the Tampa Comprehensive Plan. Thus, the development 

between the flood zones would not be assigned any floodplain policies so it is 

not required to follow the floodplain building code and would be built without 

preparation for potential future flood risks. Scenario 2 (flood exposure) in 

Figure 4.13 indicates the area and location in the north part of neighborhood 82 

where 0.14 km2 would be developed within the future floodplain but outside the 

current floodplain where new development is not assigned floodplain policies. 

• Neighborhood 28 is located on the eastside of central Tampa and is a coastline

neighborhood, meeting McKay Bay. As Figure 4.14 shows, the main land use is

heavy/light industry, transportation, residential, commercial, mixed use, and

ESA. The TCP designates the neighborhood as a Transit Envelope Area

including transit corridors and stations. Due to its coastal location, physical

vulnerability is high, and it will be impacted by an increased future floodplain

due to SLR. Social vulnerability is medium, and its median household income

is low ($31,932). Due to its diverse characteristics (coastal location, industrial

and ESA land use, TOD zone, and low-income status), this neighborhood is

assigned the highest number (64) of policies; 58 policies in TCP, two in

HCLMS, one in CTEDNA, and three in HLRTP. The total score is the second

highest at 44. The predicted urban area in S2 is 1.39 km2 where 0.53 km2 would
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be impacted by the 100-year floodplain and 0.63 km2 by the future floodplain 

increased by SLR. Much of the existing heavy industry is currently under flood 

risk, and predicted future industry and mixed use development would be located 

within the flood zones.  

In contrast to other neighborhoods, its low income status and transit corridors 

give the neighborhood development benefits in funding and density incentives. 

However, the development support can work differently depending on its 

location, positively for development outside the floodplain and negatively for 

floodplain development. For example, both the development of the northern 

part of the residential block (located outside the floodplain) and the southern 

part mixed-use block (within the floodplain) can earn financial support (HSG 

Policy 1.1.3) and a TOD bonus in new developments (LU Policy 7.2.6).  The 

difference is that the mixed-use development in the south will be assigned an 

additional floodplain policy with a building code (ENV Policy 2.1.3), which is 

not an enough preparation for the uncertain climate conditions. Finally, the 

incentives for the floodplain development would encourage denser 

development in a flood risk area. Though the funding support for the low 

income neighborhood and the TOD bonus would decrease social vulnerability 

in general, it could put more socially vulnerable people and assets in danger by 

floodplain development. 
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Figure 4.12. Neighborhood 113 land use, urban areas, and urban flood exposure. 
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Figure 4.13. Neighborhood 82 land use, urban areas, and urban flood exposure. 
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Figure 4.14. Neighborhood 28 land use, urban areas, and urban flood exposure. 
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4.4.5. Findings 

This sub-section examines Tampa’s preparation for future urban growth using 

the resilient scorecard and predicted urban growth at a neighborhood scale. The 

scorecard method enables identification of conflicting policies in each neighborhood. 

The urban growth prediction illustrates potential future growth areas with specific 

locations in each neighborhood.  

The scorecard result shows that the total plan scores in each neighborhood are all 

positive, ranging from 4 to 45. The average score is 30.6, meaning that each 

neighborhood is assigned 30 more positive policies on average than negative policies. 

Most scores are driven by the Tampa Comprehensive Plan. The score shows that the city 

prepares for urban growth and flood development with several policies related to ESA, 

coastal planning, floodplain, and TOD. However, a positive total score does not mean 

that they are totally safe from flood risks, since the resilient scorecard scores equally 

with a positive or negative “1” for each policy, and the total score stands for the sum of 

the positive and negative policies in each neighborhood. Thus, this research investigates 

the resilient scorecard focusing on each assigned policy in each neighborhood from the 

perspective of the urban growth scenarios, and there are several findings in the policies 

relating to flood vulnerability. 

Physical Vulnerability would increase both floodplain expansion due to SLR and 

current TOD policies. Totally three floodplain policies are assigned positively 

(decreasing vulnerability) for all neighborhoods. Floodplain development is currently 

allowed by controlling the base floor elevation with consideration of the 100-year 
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floodplain. In the previous climate (rainfall) pattern, the floodplain policy may have 

worked well with the building code regulations based on the floodplain. However, in 

today’s climate changing pattern with heavy rainfall and increased surface runoff due to 

urban expansion, the same policy can work negatively, increasing flood vulnerability. 

Allowing floodplain development can give people a false sense of security (Tobin, 

1995), encourage increased development in flood-prone areas, and put more people at 

risk. Moreover, no SLR related policy exists in any of the city’s related plan.  

SLR will enlarge current floodplains, but the current floodplain policies in 

Tampa are based on the 100-year floodplain without considering the impact of an SLR. 

As an example, neighborhood 82 (applicable to all coastline neighborhoods including 

NH 28 and NH 47), new development within the future increased floodplain due to SLR 

(but outside the current 100-year floodplain) is not assigned any floodplain policies, 

which will impact all coastal neighborhoods without preparing for flood protection 

resulting in extensive damage. 

TOD is intended to develop a transit system to create a better livable 

environment by enhancing the use of public transportation (Hillsborough County, 2016), 

but it may encourage more development in flood risk areas. TOD zones (e.g. transit 

stations and transit corridors) are designated in neighborhoods 28, 89, 112, and 114. 

New development within the TOD zones will earn density bonuses. However, for 

floodplain development within TOD zones, the incentive would put more life and assets 

at risk, especially a socially vulnerable population as in neighborhood 28. 
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Compared with the policies dealing with physical conditions, few policies are 

related to social status and they focus on development. Two policies are in TCP and one 

is in CTEDNA: funding for new multi-family housing (HSG Policy 1.1.3), and 

restricting critical infrastructure in the coastal areas (CM Policy 1.1.7) in TCP, and 

funding for public infrastructure in CTEDNA. In general, these policies are beneficial in 

providing a better pedestrian and living environment for low income people, and 

improve their social and physical conditions. However, in the case of neighborhood 28, 

funding for new development would encourage more floodplain development and 

increase the flood risk for socially vulnerable people. Encouraging floodplain 

development with funding and density bonuses that ends up with more damage would do 

them a greater detriment. 

The aforementioned policies in floodplains, TOD, and funding for low income 

people have positive intentions in each purpose. However, depending on how or where a 

policy is applied, a good policy in the wrong place can work negatively. Thus, a more 

careful and conservative approach is necessary for future floodplain development. 

4.4.6. Policy Implications 

Though Tampa is making an effort to prepare for sustainable future urban 

growth, some policies should be updated to make a community more resilient. Based on 

the policy review related to physical and social vulnerability, future urban growth, and 

flood risks, my suggestions are: 
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• The best way to minimize flood damage is to restrict floodplain development

with land use and policies. As a strong flood mitigation tool, land use can guide

future development locations outside current and future flood risk areas (Berke

et al., 2015; Burdy et al., 1999). Floodplain policies should be strengthened

with active techniques such as development restrictions, land acquisition, and

transfer of development rights. ESA policies and its land use in TCP strongly

restrict development within the zone. No current development has occurred

within the ESA, and the restriction even helps to reduce floodplain

development due to its overlap with the 100-year floodplain. Through a

consensus between planners and stakeholders, as in the ESA case, floodplain

development could be restricted.

• Adding to reinforcing floodplain policies, regulations for building on

floodplains should be updated due to climate change and urban expansion.

Changing climate patterns with severe rainfall and additional surface run off

because of more impervious surfaces in future urban areas will increase

floodplain areas and base flood elevations. Building codes, controlling

construction BFE above the current 100-year floodplain elevation are not

enough to guarantee safety from uncertain or obvious future flood risks. Also,

allowing floodplain development will give citizens a false sense of safety

(Tobin, 1995) and promote more development in flood hazard areas.

• Furthermore, TCP should consider the SLR impacts on floodplains, currently

no SLR policy exists. TCP only indicates the current 100-year floodplain and
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the Coastal High Hazard Zones, but not SLR zones, the increased floodplain 

areas due to SLR. Neighborhoods 28, 82, and 97 will be directly impacted by 

the increased floodplain, but, under the current policies, new development 

within the zone but outside the 100-year floodplain will not be protected by 

proper building regulations. Finally, the development would be impacted 

without any preparation for future flood risks. Thus, updated flood risks and 

construction standards considering SLR should be considered for floodplain 

development. 

• TCP should re-designate TOD zones to achieve its sustainable development

goal considering flood hazard zones, otherwise unexpected results could occur,

placing more people at risk. TOD, encouraging development with density

incentives, may cause more and denser floodplain development as in

neighborhood 82, a denser mixed-use development in a floodplain.

More policies should address socially vulnerable communities since people in 

these communities have less adaptive capacity, are easily impacted by natural disasters 

(Zahran et al., 2008), and take more time to recover than higher income people due to 

limited financial sources (Peacock et al., 2014). In the Tampa Comprehensive Plan, most 

policies deal with physical vulnerability, and only three social policies exist focusing on 

development incentives. Policies on low income population should be prepared based on 

their needs. 

• Funding for new housing in low income neighborhoods (HSG Policy 1.1.3 in

TCP) should exclude floodplain development or support for a flood preparation
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(e.g. mounding, base elevation). Misused incentives, especially in a low income 

neighborhood, would exacerbate physical as well as social conditions, in the 

same way as in the TOD policy case. 

• Green Infrastructure (GI) and Low Impact Development (LID) related policy

should be prepared for existing and future urban development. Prioritized

funding in GI/LID for low-income neighborhoods can help to decrease their

social vulnerability. GI (e.g. parkland, forests, and floodways) helps to slow

runoff, filter water, and cool urban heats effects, and is also beneficial to raise

land value, quality of life, and public health (Foster et al., 2011). LID is a lot-

level stormwater management and land design strategy by mimicking a natural

hydrologic system, and it minimizes development impact to hydrology and

natural resources (Ahiablame et al., 2012; Coffman & France, 2002). It also

saves more natural areas and reduces infrastructure cost in stromwater

management and roadway (Coffman & France, 2002).

• Adding to the mitigating policies in the development stage, adaptation

strategies for during or post-disaster should be prepared. For example, among

various strategies, establishing neighborhood warning system and early

warning in multiple languages will help individuals with less English

proficiency and old population (Yuen et al., 2017). Also, quick financial

support in recovery stage can help low-income people to bounce back their

normal life quickly (Peacock et al., 2014).
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 “Low-income populations and communities of color often have less access to 

transportation, health infrastructure, or information. Equity is about fairness, ensuring 

that people have access to the same opportunities and have what they need to thrive and 

succeed” (Yuen et al., 2017, p.16). To be more effective policies, social vulnerability 

should be addressed based on their needs, and should be reflected on plan policies. 

NOAA’s Social Vulnerability Index (NOAA, 2017b) and equity checklist (Resilient 

Communities Initiative, 2015) can help planners/funders to identify socially vulnerable 

population during planning making processes.
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5. CONCLUSIONS AND LIMITATIONS

5.1. Research Question Assessment 

This research examined future urbanization using prediction modeling coupled 

with scenario planning to advance conditions for uncertain future climate change. It used 

the city of Tampa as an example to demonstrate a scenario matrix using urban growth 

and flood risk with SLR scenarios and impact analysis with scenario evaluation and 

policy analyses. Scenarios were made using the LTM for urban growth prediction and 

GIS for delineating future flood risks. The impact analysis used scenario evaluations and 

neighborhood scaled policy analyses. Scenario evaluations compared the urban flood 

exposure of each urban growth and SLR scenarios at city and neighborhood levels. 

Policy analyses investigated each policy and flood vulnerability with an urban growth 

prediction in each highly clustered neighborhood.  

The LTM is a planning support tool to illustrate potential future urban growth. 

The forecasted urban growth and flood risks determined with the plan evaluation enable 

people to understand how prepared Tampa is for future urban growth and flood risks. 

Tampa plans (e.g. land use and plan policies) help to achieve the city’s vision, an 

attractive and safe city with sustainable growth (Hillsborough County, 2016). However, 

land use and policies should be updated to enable Tampa to become a more resilient city 

by taking into consideration potential urban growth and uncertain climate change. 

This scenario planning process is one application of the growth prediction model 

and SLR scenarios, and it can be applied to make/update/evaluate a city plan with 
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planners and stakeholders by providing locations for tangible future urban areas at a 

neighborhood level. It will finally help to develop robust and contingent strategies to 

prepare for future uncertain climate change. 

5.1.1. Subsidiary Research Questions 

The overarching research question for this study is “How prepared are U.S. 

coastal cities for future urban growth and flood risk?” This main research question 

consists of the following sub-questions.  

(Subsidiary Question 1) “How well-suited is the LTM in predicting future urban growth 

related to flood risk?”  

The LTM is a capable model for creating future urban growth scenarios to 

examine flood risk. This research identified driving factors through a review of 144 

prediction articles, and selected 15 variables with which to perform a drop-one test to 

determine Tampa’s future urban growth. The test result showed that all 15 variables 

contributed to the prediction capability. The three urban growth scenarios that were 

created were validated through four measures; all results proved fair/high prediction 

accuracy. Each urban growth scenario showed a different pattern of urban growth. 

However, the drop-one test is limited to show the relationship between driving factors 

and urban land change, and the performance results are relatively low. 

(Subsidiary Question 2) “How effective is the current comprehensive plan in 

adapting urban growth to climate change?” 
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The current future land use plan for Tampa may not be the best plan, in terms of 

urban flood exposure. The city scale comparison of urban flood exposure, the future 

urban area developed with a land use plan (S2) would have fewer impacted urban areas 

by all future risk scenarios than the growth without development regulations (S1), but 

much more urban flood exposure than the scenario with strong floodplain regulation 

(S3). Moreover, in the neighborhood level analysis, the number of neighborhoods 

exposed to flood risk in planned growth (S2) is larger than in growth as business as usual 

(S1), and more neighborhoods have larger urban areas of flood vulnerability in S2 than 

in S1. Thus, the current land use plan (S2) is not well-prepared enough to achieve 

resilient communities by comparing other urban growth simulations; the growth without 

development regulation (S1) and the resilient growth (S3). It underscores the idea that 

one regional solution can be worse at a local scale, “planning as a wicked problem” 

(Rittel & Webber, 1973). 

(Subsidiary Question 3) “How well-suited are neighborhoods to absorbing 

predicted growth based on current policy and vulnerability?” 

Tampa is a well-prepared city in land use and plan policies under the previous 

climate conditions. Policies related to ESA, coastal planning, floodplains, and TOD 

policies help to accomplish its sustainable growth. However, most policies consider 

physical condition, but not citizens’ social status. Among the policies considering 

physical vulnerability, floodplain policies and floodplain development regulations have 

to be updated based on the changing climate patterns (e.g. heavy rainfall and SLR) and 

the increase in impervious surfaces. Moreover, the TOD and development funding for 
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low-income populations should re-designate their locations considering hydrologic 

impacts. The incentives would make the social condition worse by encouraging more 

development in flood risk zones, and placing more people in danger: a good policy in an 

improper location can cause unexpected results. To accomplish the city’s vision, “a city 

where everybody cares about quality of life” (Hillsborough County, 2016, p.7), more 

policies for socially vulnerable families need to be created based on their needs such as 

funding for recovery, buy outs, etc. Under the current floodplain and development 

incentive related policies, floodplain development will be encouraged without proper 

preparation, and physical/social vulnerability will be increased. 

In sum, this research showed a scenario planning process with an application in 

urban planning, scenario making with urban growth and flood risk scenarios and impact 

analyses in scenario evaluation and neighborhood scale policy analysis. The results of 

the impact analyses confirm dilemmas in urban planning: a regional solution can be 

worse in a neighborhood, and a good policy in the wrong place can work negatively. 

When making/updating plans, planners and stakeholders together can make a better 

decision by examining plausible scenarios and identifying their impacts through scenario 

planning as a planning support tool. 

5.2. Study Limitations and Future Research 

5.2.1. Study Limitations 

While this study contributes to developing a scenario planning process for urban 

growth and climate change through scenario making and impact analyses, it is only a 
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first step. There are some limitations in prediction accuracy in urban growth and flood 

risks that can be improved upon in future studies and advancements in prediction 

capabilities/technologies. 

First, the prediction accuracy is relative low with 52.19 of PCM value; fairly 

acceptable range. This study used a one time-frame between 2001 and 2011 with 15 

variables for an urban growth prediction. To evaluate prediction accuracy, four measures 

were employed for each prediction resulting in a validated forecast. While it might be 

impossible to predict the future perfectly, to raise prediction performance, a multi-

timeline analysis and a proper driver selection would enable the creation of a better 

confiding and highly accurate future urban forecast. 

Second, variable influence is limited in explaining its relationship to land change, 

and is hard to generalize. The LTM’s drop-one test showed the relative influence of each 

variable in the urban growth model, but failed to explain the relationships and 

significance between driving factors and land change. The result could be only applied 

to Tampa between 2001 and 2011 or for a city of similar geographic, social, and urban 

development status. 

Third, density was not considered in the urban growth prediction since the LTM 

is not designed for predicting density control. This study created three urban growth 

scenarios by controlling for future development locations with the same development 

areas and the same number of pixels for all development scenarios. With location, 

density can change the results, the development patterns, and create a new development 

scenario, being a more realistic prediction. The SLEUTH model is capable to create 
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density scenarios by controlling its parameters (e.g. dispersion, spread, and road gravity) 

(Song et al., 2017). 

Fourth, future flood risks were limitedly represented with SLR scenarios adding 

to the current 100-year floodplain. To be a more plausible risk scenario, it should 

consider the increase in impervious surfaces impacting hydrology and a new floodplain 

considering future run-off and peak flows (Gori et al., 2019; Muñoz et al., 2018). 

Moreover, as climate is changing, rainfall patterns become severe, exceeding a 100-year 

rainfall. It would be necessary to consider other flood risk standards such as the 500-year 

floodplain.  

5.2.2. Future Research 

To further advance LCM and scenario planning, future research needs to improve 

prediction accuracy in urban growth and flood risk, to provide a convenient prediction 

tool for future forecasts, and to integrate scenario planning into the plan making process. 

First, prediction accuracy matters. Variable inventory on urban growth and 

hydrologic modeling for future floodplains enable the representation of a more realistic 

future condition. Though LCM has advanced in the last few decades, growth driving 

factors are still unclear. This study reviewed driving factors from 144 prediction articles, 

but the reviewed result explained variable types and accumulated numbers of each 

variable application in the study. Among the total 52 variables in the review, the most 

prominent driving factors, which are applicable to all prediction models, need to be 

identified. Future studies can focus on standardizing variables by examining multiple 
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cities or regions with variable relationships using regression models (Bishop, 1995; Chu 

& Chang, 2009; Pijanowski et al., 2002). In future floodplain estimations, as mentioned 

in 5.2.1, extreme climate conditions and a new floodplain modeling based on future 

increases in impervious surfaces should be considered. 

Second, researchers and engineers need to provide a more convenient prediction 

tool. Though people agreed on the efficacy of scenario planning, its complexity in 

prediction tools, data collection, calibration, and scenario making and assessment causes 

fewer people to use it (Holway et al., 2012). While planners popularly use the 

CommunityViz program due to its ease of use (Lincoln Institute, 2017), the modeling 

approach and accuracy are unknown and it is a commercial product. To more actively 

apply scenario planning to real world planning, an easy-to-use and accurate prediction 

model needs to be developed. 

Last, integrating scenario planning into the planning process needs to be done to 

create better decision making among planners and diverse stakeholders. “Collaborative 

governance is to bring diverse private/public stakeholders together in a consensus-

oriented forum for decision making” (Berke & Lyles, 2013, p.191; Innes & Booher, 

2010), and the process enables educating citizens, tapping preference, improving 

relationship, and solving problems among stakeholders (Berke & Kaiser, 2006; Berke & 

Lyles, 2013). Figure 5.1 illustrates the general planning process (Governor's Office of 

Planning and Research, 2017) integrated with the collaborative planning process (Berke 

& Kaiser, 2006) and scenario planning process (Bood & Postma, 1997; Postma & Liebl, 

2005; Ringland & Schwartz, 1998). To utilize scenario planning in the plan making 
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process, researchers need to develop scenario analysis (scenario decision, making, and 

evaluation) and efficient communication methods. 

Figure 5.1. Anticipatory and collaborative planning process in a general local 

planning process.  

Source: modified and adapted from the Governor's Office of Planning and Research (2017), Chakraborty 

et al. (2011), Berke & Kaiser (2006), Postma & Liebl (2005), Ringland & Schwartz (1998), and Bood & 

Postma (1997). 
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APPENDIX A 

RASTER DATA FOR URBAN GROWTH PREDICTION 

Figure A.1. Driving factors, base maps, and exclusionary layers for urban growth 

prediction. 
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APPENDIX B 

NEIGHBORHOOD LAND USE, URBAN AREAS, AND FLOOD EXPOSURE 

Figure B.1. Neighborhood 40 land use, urban areas, and urban flood exposure. 
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Figure B.2. Neighborhood 89 land use, urban areas, and urban flood exposure. 
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Figure B.3. Neighborhood 97 land use, urban areas, and urban flood exposure. 



140 

Figure B.4. Neighborhood 112 land use, urban areas, and urban flood exposure. 
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Figure B.5. Neighborhood 114 land use, urban areas, and urban flood exposure. 




