
MACHINE LEARNING GUIDED DISCOVERY AND DESIGN FOR INERTIAL

CONFINEMENT FUSION

A Dissertation

by

KELLI DENISE HUMBIRD

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Ryan G. McClarren
Committee Members, Jayson L. Peterson

Marvin L. Adams
Bani K. Mallick
Jim E. Morel

Head of Department, Yassin Hassan

May 2019

Major Subject: Nuclear Engineering

Copyright 2019 Kelli Denise Humbird

ABSTRACT

Inertial confinement fusion (ICF) experiments at the National Ignition Facility

(NIF) and their corresponding computer simulations produce an immense amount of

rich data. However, quantitatively interpreting that data remains a grand challenge.

Design spaces are vast, data volumes are large, and the relationship between models

and experiments may be uncertain.

We propose using machine learning to aid in the design and understanding of ICF

implosions by integrating simulation and experimental data into a common frame-

work. We begin by illustrating an early success of this data-driven design approach

which resulted in the discovery of a new class of high performing ovoid-shaped implo-

sion simulations. The ovoids achieve robust performance from the generation of zonal

flows within the hotspot, revealing physics that had not previously been observed in

ICF capsules.

The ovoid discovery also revealed deficiencies in common machine learning al-

gorithms for modeling ICF data. To overcome these inadequacies, we developed

a novel algorithm, deep jointly-informed neural networks (DJINN), which enables

non-data scientists to quickly train neural networks on their own datasets. DJINN

is routinely used for modeling data ICF data and for a variety of other applications

(uncertainty quantification; climate, nuclear, and atomic physics data). We demon-

strate how DJINN is used to perform parameter inference tasks for NIF data, and

how transfer learning with DJINN enables us to create predictive models of direct

drive experiments at the Omega laser facility.

Much of this work focuses on scalar or modest-size vector data, however many ICF

diagnostics produce a variety of images, spectra, and sequential data. We end with

ii

a brief exploration of sequence-to-sequence models for emulating time-dependent

multiphysics systems of varying complexity. This is a first step toward incorporating

multimodal time-dependent data into our analyses to better constrain our predictive

models.

iii

DEDICATION

“I do not see the logic of rejecting data just because they seem incredible.”

- Fred Hoyle

This work is dedicated to those who made it possible. Thank you.

iv

ACKNOWLEDGEMENTS

Words are a completely inadequate form for expressing my immense gratitude

toward those in my life that made this work possible. Just a few years ago I was

tempted to end my scientific career altogether, and had it not been for the support

system around me, I never would have found what very much feels like my calling.

Thank you first and foremost to my family. My parents have been endlessly

patient with my terminal student status. Their assistance, both emotionally and

financially, in my move from Texas to California was vital; I am not sure I would have

made the decision to return to Livermore if they had not been so enthusiastic about

the opportunity. Thank you to my sister, who has been a best friend and someone

with whom I can have deep discussions about the future of artificial intelligence and

the source of human consciousness while be-dazzling wine glasses and watching Harry

Potter. Thank you to my brother, for keeping me humble and helping shape me into

a tough woman who is not afraid to handle things on her own. Thank you to my

brother’s family, who have been such a big source of happiness for everyone; the best

part of being a sister is getting to be an aunt.

Thank you to my advisor, Ryan McClarren, who willingly accepted me as a

graduate student when I suddenly decided to return to Texas A&M after a brief

stint at another university. Dr. McClarren was instrumental in getting me on the

career path I have found, and I am so glad to have had the opportunity to learn from

and work with him.

Thank you to those who have made my years at Lawrence Livermore National

Laboratory (LLNL) endlessly enjoyable and productive. Thank you to the Livermore

Graduate Scholars Program, for awarding me the opportunity to perform my doctoral

v

research at LLNL. Thank you to the Design Physics and ICF programs for financial

support, which allowed me to attend many conferences during my time as a scholar.

Thank you to Brian Spears and the entire ICF ensembles team, who have treated

me as part of the group and given me a voice since the day I first stepped on site.

The team has done wonders to increase my confidence and competence as a scientist,

and have helped me develop research and communication skills I never would have

gained had I not moved to LLNL. The team has been a vital source of inspiration,

motivation, and friendship during my PhD; it is hard to imagine I will ever find such

an amazing group of coworkers elsewhere. Thank you Michael, for going on long

coffee breaks with me and letting me vent about science and about life. Thank you

John, for always piquing my intellectual curiosity; conversations with you remind

me of why I love science: there is so much waiting to be known! And a huge thank

you to Luc Peterson, who has gone above and beyond any reasonable expectations

a graduate student should have for their advisor. It is challenging to summarize the

impact Luc has had on my career in just a few sentences, but never have I woken

up bright-eyed and eager for 14+ hour work days, as often as I have since I started

working with him. Beyond being a constant source of intellectual excitement, he

has been an outstanding friend, who has had my back and fought for me, even in

the most ridiculous siutations. It is no exaggeration at all to say none of this would

have happened had our paths not crossed. I can’t wait to see what more we can

accomplish together in the future!

Thank you to my partner, Arnulfo, for being endlessly supportive of every decision

I have made. From transfering universities, to attempting to bail on science to get an

MBA, to packing up my life and moving to California without a guaranteed source of

funding; he went along with every idea I had and helped write so many application

essays. He has seen me through some of my highest highs, and lowest lows; I do

vi

not think there is anyone quite as strong as him for sticking with me through it all.

He continues to lift me up and cheer me on, even when it means nights apart and

countless frequent flier miles. Thank you, Arnulfo, for loving me and for believing in

me fiercely and for being my biggest fan.

Thank you to all of the friends I have made over the years, both two- and four-

legged, who have kept me sane throughout this entire journey. I am so grateful I

found the horse community early in life, because I have found an instant group of

friends in every city I have lived in since; friends who will pick you up from the ground

after your horse bucked you off (but not before they caught your horse because they

understand priorities), who will stay at the barn overnight helping you tend to a

sick horse, and who will, without hesitation, drive 100 miles with you to get to an

emergency clinic. “The barn” has been a source of stability, humility, and love that I

have needed to make it through the past several years. And thank you to the equines

themselves, who have taught me the most important lesson of all: every problem in

life looks infinitely smaller when viewed from the back of a good horse.

vii

NOMENCLATURE

AE Autoencoder

AI Artificial Intelligence

BART Bayesian Additive Regression Trees

B-DJINN Bayesian Deep Jointly-Informed Neural Network

CPU Central Processing Unit

DJINN Deep Jointly-Informed Neural Network

DNN Deep Neural Network

DSR Down Scatter Ratio

EV Explained Variance

GP Gaussian Process

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HDC High Density Carbon

HED High Energy Density

HL Hidden Layer

HEDP High Energy Density Physics

IAE Integrated Absolute Error

ICF Inertial Confinement Fusion

ITF Ignition Threshold Factor

ITFX Experimental Ignition Threshold Factor

KNN K-Nearest Neighbors

LANL Los Alamos National Laboratory

LEH Laser Entrance Hole

LLE Laboratory for Laser Energetics

viii

LLNL Lawrence Livermore National Laboratory

LPI Laser-Plasma Interactions

LSTM Long Short Term Memory

MAE Mean Absolute Error

MARS Multivariate Adaptive Regression Splines

MC Monte Carlo

MCMC Markov Chain Monte Carlo

MSE Mean Squared Error

NIF National Ignition Facility

NN Neural Network

NSAE Normalized Sum of Absolute Errors

QOI Quantity of Interest

RBF Radial Basis Function

RF Random Forest

RHGD Radiation Hydrodynamics with Gray Diffusion

RM Richtmeyer-Meshkov

RMS Root-Mean-Square

RNN Recurrent Neural Network

RT Rayleigh-Taylor

Seq2seq Sequence-to-Sequence

SD Standard Deviation

SSD Smoothing by Spectral Dispersion

SVM Support Vector Machine

TF TensorFlow

UQ Uncertainty Quantification

ix

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of Professor

McClarren as the academic advisor, Dr. Peterson as the research advisor at Lawrence

Livermore National Laboratory (LLNL), Professors Adams and Morel of the Depart-

ment of Nuclear Engineering, and Professor Mallick of the Department of Statistics.

Many of the ICF simulation databases discussed in this work were generated by

the ICF Ensembles Simulations team at LLNL. Team members include Brian Spears,

Luc Peterson, John Field, Ryan Nora, Jim Gaffney, Michael Kruse, Scott Brandon,

and Paul Springer. Experimental data for NIF ICF implosions was made available

by the ICF and NIF programs at LLNL.

HYDRA simulations and the corresponding figures for the ovoid implosion in

Chapter 2 were produced by Luc Peterson.

The LILAC database and experimental data from the Omega laser facility was

provided by R. Betti, V. Gopalaswamy, and J. Knauer at the University of Rochester

Laboratory for Laser Energetics (LLE).

The ICF simulation database in Chapter 7 was produced with the Merlin work-

flow, developed by the Machine Learning Strategic Initiative team at LLNL. The

ICF simulation code, JAG, was developed by Jim Gaffney.

I also wish to thank several researchers at LLNL for fruitful discussions over the

past few years: D. Callahan, N. Meezan, C. Young, R. Ward, J. Salmonson, and F.

Graziani.

All other work conducted for the dissertation was completed by the student. The

simulations and analyses were conducted on resources made available by LLNL and

x

Los Alamos National Laboratory (LANL).

Funding Sources

This work was funded by the Livermore Graduate Scholars Program and the

Design Physics division at LLNL. Additional financial assistance came from the

Philosophic Education Organization’s Scholar Award, for which I am inexpressibly

grateful.

Some of the content in this dissertation is reproduced with permission from the

following journal articles:

• c© 2017 AIP Publishing. Reprinted, with permission, from J. L. Peterson,

K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer, R. C. Nora, B.

K. Spears, and P. T. Springer, “Zonal flow generation in inertial confinement

fusion implosions”, Physics of Plasmas 24, 032702 (2017).

• c© 2018 IEEE. Reprinted, with permission, from K. D. Humbird, J. L. Pe-

terson, R. G. McClarren, “Deep Neural Network Initialization With Decision

Trees”, IEEE Transactions of Neural Networks and Learning Systems (October

2018).

Some of the content in this dissertation is available via preprint access on arxiv.org:

• K. D. Humbird, J. L. Peterson, R. G. McClarren, “Predicting the time-evolution

of multi-physics systems with sequence-to-sequence models”, (2018).

• K. D. Humbird, J. L. Peterson, R. G. McClarren, “Transfer learning to model

inertial confinement fusion experiments”, (2018).

This work was performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Released as LLNL-TH-769065.

xi

This document was prepared as an account of work sponsored by an agency of

the United States government. Neither the United States government nor Lawrence

Livermore National Security, LLC, nor any of their employees makes any warranty,

expressed or implied, or assumes any legal liability or responsibility for the accu-

racy, completeness, or usefulness of any information, apparatus, product, or pro-

cess disclosed, or represents that its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise does not necessarily constitute or im-

ply its endorsement, recommendation, or favoring by the United States government

or Lawrence Livermore National Security, LLC. The views and opinions of authors

expressed herein do not necessarily state or reflect those of the United States gov-

ernment or Lawrence Livermore National Security, LLC, and shall not be used for

advertising or product endorsement purposes.

xii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

NOMENCLATURE . viii

CONTRIBUTORS AND FUNDING SOURCES x

TABLE OF CONTENTS . xiii

LIST OF FIGURES . xvi

LIST OF TABLES . xxiv

1. INTRODUCTION . 1

1.1 Brief overview of inertial confinement fusion 2
1.1.1 Indirect drive ICF . 5
1.1.2 Direct drive ICF . 7

1.2 Designing and interpreting ICF experiments 8
1.3 Contributions of this work . 10

2. MACHINE LEARNING-GUIDED DESIGN OPTIMIZATION 14

2.1 Surrogate models of ICF simulation data 15
2.2 Surrogate optimization to search for robust, high-yield implosions . . 17
2.3 HYDRA simulations of the optimal implosion 22
2.4 Conclusions . 30

3. DEEP JOINTLY-INFORMED NEURAL NETWORKS 32

3.1 Introduction . 32
3.2 Deep Jointly-Informed Neural Networks 35

3.2.1 Decision tree construction . 35
3.2.2 Mapping decision trees to deep neural networks 36
3.2.3 Optimizing the neural networks 37

xiii

3.2.4 Examples mapping from trees to DJINN models 37
3.3 DJINN Performance . 43

3.3.1 DJINN as an ensemble method 44
3.3.2 Comparison to shallow tree-initialized neural networks 47
3.3.3 DJINN as a warm-start for neural network training 49

3.4 Comparison of DJINN to hyper-parameter optimization 55
3.5 Conclusions . 59

4. BAYESIAN ANALYSIS WITH DEEP JOINTLY-INFORMED NEURAL
NETWORKS . 60

4.1 Deep jointly-informed neural networks with dropout 61
4.2 Inverse models with B-DJINN . 66
4.3 Conclusions . 69

5. AUGMENTING POST-SHOT ANALYSIS WITH DEEP NEURAL NET-
WORKS . 71

5.1 Inverse model inference of unknown inputs in NIF experiments 72
5.2 Neural network-based post-shot analysis of ICF experiments 74

5.2.1 Autoencoders . 79
5.2.2 Augmenting post-shot analyses with autoencoders and DJINN 81

5.3 Post-shot analyses of HED experiments 86
5.4 Conclusions . 89

6. TRANSFER LEARNING TO MODEL INERTIAL CONFINEMENT FU-
SION EXPERIMENTS . 91

6.1 Hierarchical transfer learning . 97
6.2 Transfer learning for ICF model calibration 104

6.2.1 Low fidelity simulation-based DJINN models 105
6.2.2 Hierarchical transfer learning with the Omega dataset 105

6.3 Exploring discrepancies between simulations and Omega experiments
with transfer learning . 112

6.4 Conclusions . 115

7. PREDICTING THE TIME-EVOLUTION OF MULTI-PHYSICS SYSTEMS
WITH SEQUENCE-TO-SEQUENCE MODELS 118

7.1 Predicting the time evolution of multi-physics systems 122
7.1.1 Databases . 122

7.2 Comparison of seq2seq and state transition models for multi-physics
systems . 125

7.3 Using seq2seq models to improve physics simulations 128

xiv

7.4 Conclusions . 130

8. CONCLUSIONS . 134

REFERENCES . 138

xv

LIST OF FIGURES

FIGURE Page

1.1 Illustration of a typical ICF fuel capsule. The outer ablator material
surrounds a DT ice layer, with DT gas at the center. 3

1.2 Illustration of a hohlraum with a fuel capsule in the center. The laser
beams enter the hohlraum through laser entrance holes at the top and
bottom of the cylinder. A filltube on the right of the figure is used
to fill the fuel cpasule with DT. Thin capsule support tents hold the
capsule in place in the hohlraum. 6

2.1 Comparison of several machine learning algorithms for fitting the yield
data. The random forest (RF) shows significantly higher performance
than the other algorithms– support vector machine (SVM), Gaussian
process (GP), k-nearest neighbord regressor (kNN), and multivariate
adaptive regression splines (MARS). 18

2.2 Comparison of the baseline and optimal radiation drives and surrogate-
predicted bang time fuel shapes. Reproduced with permission from
[106]. 20

2.3 The surrogate prediction for yield under changing peak drive, as rep-
resented by the total normalized drive fluence

∫
T 4
r dt/(

∫
T 4
r dt)baseline

for the baseline (round) and optimal ovoid (optm) cases. The optimal
ignites with a relative fluence of slightly greater than 1.0, even under
an applied P4 perturbation. The baseline requires a relative fluence
of more than 1.10 to ignite under an applied P4. The multiple lines
for each implosion represent variations in performance due to varying
the relative amplitude of the drive during the trough, rise, and peak
of the pulse, while ensuring that the drive integrates to the indicated
relative fluence. 21

xvi

2.4 Contours of the surrogate prediction for the yield for varying P2 on
the rise to peak power (PR

2) and at the end of the peak radiation drive
(PP

2) without (left) and with (right) an applied P1 perturbation. The
orange point indicates the optimal implosion. High yield implosions lie
along a ridge of compensating P2 drives (negative on the rise, positive
at the peak), with the ridge shifting to require more extreme drives
to reduce the effects of an applied P1. Overlaying contour lines for
the P2 moment of the fuel at bang time illustrate that the P2 drive
that maximizes yield does not result in a round implosion, but an
ovoid with positive P2. The polar plot on the right illustrates the
shape of the fuel shell at stagnation for the implosions indicated by
the corresponding colored dots in the contour plot, confirming the
implosions along the ridge of high yield are ovoids. Reproduced with
permission from [106]. 23

2.5 Generation of zonal flows within the capsule as a result of the time-
dependent asymmetric radiation drive. During the rise to peak power,
the negative P2 drive compresses the capsule along the equator, form-
ing axial gets as the gas meets on axis (left). At peak power, the
positive P2 drive squeezes the capsule on the poles, preventing the
jets from escaping (center) and causes the flow to circle in on itself,
forming coaxial, counter-propagating vortex rings (right). 24

2.6 Burn-off ovoid implosion at the time of peak energy production. The
arrows indicate the velocity field, illustrating the formation of counter-
propagating coaxial vortex rings within the fuel shell. The colored
contours indicate the ion temperature on the left, and the pressure on
the right. The density of the fuel shell is shown in black; the shell is
thicker near the equator, where fuel accretes into the hotspot, burns,
and leaves via the poles. Reproduced with permission from [106]. . . 25

2.7 Density and velocity fields in the upper part of the stagnating shell for
an ovoid burn-off HYDRA simulation perturbed with ice layer rough-
ness and capsule support tent membrane. The background flows set
up a high-velocity shear layer (thick arrows) that mitigates the effects
of the perturbations during stagnation. Reproduced with permission
from [106]. 26

2.8 The local shearing rate of the eddy in Fig. 2.7 is larger than both
the deceleration Rayleigh-Taylor growth rate (Eq. 2.2) or the shell
breakup rate (Eq. 2.3). Reproduced with permission from [106]. . . . 27

xvii

2.9 Contours of yield for the round and ovoid implosions under a com-
bination of P4 drive asymmetry and tent perturbations. Reproduced
with permission from [106]. 29

3.1 Illustration of the DJINN mapping for a simple decision tree. Gray
neurons are initially unconnected; if biases are randomly initialized to
negative values, the neurons cannot learn and are thus not included
in the final DJINN architecture. 39

3.2 Truth tables, decision trees, and DJINN-initialized neural networks
for logical operations IF(x), OR, and XOR. Decision paths in the
tree are mapped to paths through the neural network, indicated by
color. Gray neurons are initially unconnected; if biases are randomly
initialized to negative values, the neurons cannot learn and are thus
not included in the final DJINN architecture. 42

3.3 MSE (normalized by the MSE of one tree) as a function of the num-
ber of trees included in the DJINN ensemble for various regression
datasets. The performance of the model improves as the number of
trees is increased. 45

3.4 Cost (MSE for data scaled to [0,1]) as a function of training epoch
for regression datasets. DJINN weights are observed to start at, and
often converge to, a lower cost than the shallow network, or networks
with DJINN architecture and other weight initialization techniques. 53

3.5 Cost (cross entropy with logits) as a function of training epoch for
classification datasets. 54

4.1 Predicted values of the logistic function with added noise plotted
against the true values. The error bars indicate the 25th and 75th
percentiles, the colored points indicates the 50th percentile. B-DJINN
(right) is more accurate and precise than the Gaussian process (left),
particularly at the boundaries of the data. 66

4.2 Forward (left) and inverse (right) deep neural network models. The
forward model maps from simulation and experimental inputs to ob-
servables; the inverse model maps from observables to inputs. 67

xviii

4.3 Parameter inference with inverse models and MCMC sampling for-
ward models. Left: B-DJINN, Gaussian process (GP), and an inverse
model are used to infer k given values of x, f(x, k). Right: Inverse
model estimates accelerate the convergence of a Markov chain by ini-
tializing the search near the true value. The shaded region indicates
the 25th and 75th percentile from the distribution of inferred values
of k, and the solid line indicates the median value. 69

5.1 Distributions of simulation outputs from a simulation-only inference
test. Blue distributions indicate the true values, red distributions are
those found by first using the inverse model to map the blue distribu-
tions to simulation inputs, then using the forward model to map back
to simulation outputs; error in the inverse model leads to broadening
of the output distributions. 75

5.2 Distributions of simulation inputs. Red distributions are those found
via the inverse model, blue distributions are those found by MC sam-
pling the forward model, and accepting simulations whose outputs fall
within the black dashed lines in Fig.5.1. The bold black line indicates
the true value of the input. 76

5.3 Distributions of observables for N170109. Blue distributions indicate
the experimental values, red distributions are those found by first
using the inverse model to map the blue distributions to simulation
inputs, then using the forward model to map back to simulation out-
puts; error in the inverse model leads to broadening of the output
distributions. 77

5.4 Distributions of simulation inputs consistent with observables for N170109.
Red distributions are those found via the inverse model, blue distri-
butions are those found by MCMC sampling the forward model. The
limits on the x axes indicate the boundaries of the simulation data
upon which the models were trained; values outside of these limits are
extrapolations and thus are not considered reliable. 78

5.5 Example autoencoder architecture. The top half of the network, the
encoder, compresses the observables into a lower-dimensional latent
space. The second half of the network, the decoder, decompresses the
latent space to get back the original vector of observables. 80

xix

5.6 Workflow for performing neural network-augmented post-shot analy-
sis. Experimental observables are mapped into the latent space using
the encoder network. An inverse DJINN model maps from the latent
space representation to the simulation inputs, producing the set of
inputs that are consistent with the experimental observations. The
inputs can then be passed through the forward DJINN model and de-
coded via the decoder to give back the set of simulation observables
that are most consistent with the experimental observations. 82

5.7 Autoencoder-based post-shot analysis (left) and simple inverse model
post-shot analysis (right). 83

5.8 Distributions of simulation outputs from a simulation-only inference
test. Blue distributions indicate the true values, red distributions are
those found by first using the latent space inverse model to map the
blue distributions to simulation inputs, then using the forward model
to map back to the latent space, which is decoded to produce simula-
tion outputs. The latent space post-shot analysis locates simulations
which agree well with experimental observations, without requiring
expensive MCMC sampling. 84

5.9 Distributions of simulation inputs. Red distributions are those found
via the inverse model which maps from the latent space (composed of
45 observables compressed to 10 latent parameters) to the simulation
input space. The bold black line indicates the true value of the in-
put. The latent space post-shot analysis results in better-constrained
and more accurate values for the simulation inputs which are consis-
tent with experimental observations, and does not require expensive
MCMC sampling of the forward model. 85

5.10 A few examples of the true Ge emission spectra (solid black) and the
reconstructed spectra (dashed red) after passing through a 10D latent
space autoencoder. 87

xx

5.11 Example set of inferred inputs given the emission spectrum in the top
left of Figure 5.10. N and T are the densities and temperatures in
three distinct regions of the fuel, mhot is the mass of the hotspot, mix
is the amount of mix in the region outside of the hotspot, mixhot is the
mix in the hotspot, theta is the size of a filltube perturbation, mCH is
the mass of the ablator, and Rmax is the outer radius. The red dots
indicate the boundaries of the 10D space that the Cretin database
spans, the true values of the parameters are indicated in black, and
the blue distributions are the inferred values from the DJINN inverse
model. 88

6.1 To transfer learn from simulations to experiments, the first three layers
of the simulation-based network are frozen, and the remaining two
layers are available for retraining with the experimental data. 95

6.2 “High fidelity” prediction quality as the number of high fidelity data
points used for transfer learning from low fidelity data is increased.
30-40 high fidelity data points with transfer learning produce a model
that is comparable in quality to one trained exclusively on 100 high
fidelity simulations. 101

6.3 Experimental prediction accuracy as the number of experimental data
points is increased in hierarchical transfer learning. Models are first
trained on 100 low fidelity simulations, calibrated to high fidelity with
30 high fidelity data points, then subsequently calibrated to the ex-
periments. The model quality converges with about 25 experiments,
and is comparable to the performance of a model trained on 100 ex-
periments alone. 102

6.4 Hierarchical transfer learning work flow for the Omega data. DJINN
models are trained on the low fidelity simulation database. They are
next calibrated to the high fidelity post-shot simulations via trans-
fer learning and are subsequently calibrated to the experiments. This
approach is compared to direct transfer learning from low-fidelity sim-
ulations to experiments, to evaluate the advantages high-fidelity sim-
ulations might offer. 106

6.5 Prediction error (with the post-shot as the ground truth) for calibrated
and uncalibrated DJINN models. The low fidelity model predicts post-
shot observables with significant error, as the models contain different
physics. The models calibrated to post-shot data are able to predict
all 19 post-shot observables with high accuracy. 109

xxi

6.6 Prediction error (with the experiment as the ground truth) for low fi-
delity DJINN models, DJINN models calibrated to the post-shot data,
and DJINN models calibrated to the experimental data. The experi-
mentally calibrated models predict the five experimental observables
with high accuracy. 110

6.7 Actual experimental observations plotted against the three DJINN
models predictions. The blue and red points indicate the low and
high fidelity model predictions, respectively; both of which have high
prediction error. Predictions of the four most recent experiments
are shown in yellow circled in bold black, after transfer learning us-
ing previous experimental data (uncircled yellow). The experiment-
calibrated model is able to accurately predict future experiments with
significantly higher accuracy than the simulation-based models. . . . 111

6.8 Designs which optimize ITFX according to the low fidelity, post-shot,
and experiment DJINN models. The three designs are distinct due
to the lack of accurate physics models, asymmetries, and other ex-
perimental sources of performance degradation not included in the
simulations. 113

7.1 Unrolled seq2seq architecture. The blue and red cells represent stacks
of recurrent cells (such as GRUs) that make up the encoder and de-
coder, respectively. The input image time series is compressed into a
latent vector via the encoder, which is then decoded to make a pre-
diction for the output image time series. 121

7.2 Example prediction from the radiation hydrodynamics dataset. Color
maps on all panels are scaled between [0,1]. The true evolution of
the system is illustrated on the left, followed by the predictions from
the seq2seq (middle) and state transition DJINN model (right). The
seq2seq model produces a smoother and more accurate evolution than
the state transition model. 131

7.3 Example prediction from the ICF database. The first row is the
seq2seq model’s predictions evolution of the X-ray image, given the
first image in the row as the input to the model. The second row
illustrates the absolute error in the model’s predictions multiplied by
a factor of 10 for visibility. The regions of highest error occur near
gradients in the X-ray intensity. 132

xxii

7.4 Median IAE for the test dataset as a function of the input sequence
length. The model predicts the evolution with lower error per time
step as the length of the input sequence increases. At an input se-
quence length of 50, the rate of the error reduction slows, suggesting
the model only needs to observe half of the evolution before it can
predict the remainder of the trajectory with minimal error. 132

7.5 Left: Normalized total concentration for the 1D diffusion problem
with a diffusion coefficient of 1.34. The black line shows the analytic
solution, the blue is the numerical solution with dx=7×10−4, and the
red line is the prediction of the seq2seq model with dx=0. Right:
Error of the finite element solution as dx is decreased is shown in
black; the red stars indicates the seq2seq prediction error (compared
to the analytic solution) as dx is decreased toward zero. 133

xxiii

LIST OF TABLES

TABLE Page

3.1 Neural network hyper-parameters used for each dataset. 47

3.2 Model performances for regression tasks. The mean and standard
deviation of five-fold cross-validation metrics are reported for each
model. The p-value is computed with a Student’s t-test between the
test MSE values for DJINN and the other models. Bold blue values
highlight comparisons in which DJINN has a lower error than the
other method with p<0.05; bold red values highlight when DJINN
has higher error than the other method with p<0.05. 48

3.3 Model performances on classification tasks. The mean and standard
deviation of five-fold cross-validation metrics are reported for each
model. The p-value is computed with a Student’s t-test between the
test accuracy values for DJINN and the other models. Bold blue
values highlight comparisons in which DJINN has a lower error than
the other method with p<0.05; bold red values highlight when DJINN
has higher error than the other method with p<0.05. 49

3.4 Hidden layer widths from DJINN and a Bayesian optimizer for each
dataset. The width of the input layer reflects the number of features
in each dataset. The output layer has a single neuron for regression
tasks, and one neuron per class for classification tasks. 58

4.1 Hyperparameter for B-DJINN models. 64

4.2 Performance metrics for B-DJINN and several Bayesian regression
models for four data sets. The MSE, MAE, and EV are computed
using the mean predictions for the test data sets. Bold values indicate
the best value of each metric. B-DJINN shows similar performance to
the other Bayesian surrogates. 65

6.1 Hyper-parameters for original model and transfer learning for the Tay-
lor expansion example. 99

6.2 Comparison of hierarchical and one-step transfer learning to direct
modeling of experiments. 99

xxiv

6.3 Hyper-parameters for original model and transfer learning for the
Omega dataset. 105

6.4 Mean explained variance scores on the test datasets for five DJINN
models trained on random 80% subsets of the 30k low-fidelity LILAC
simulations. 106

6.5 Architectures of DJINN models trained on the Omega databases.
There are nine inputs and nineteen outputs for the baseline, low fi-
delity models. 108

6.6 Explained variance scores for models calibrated from low fidelity to
post-shot simulations to experimental data, and for models calibrated
directly from low fidelity simulations to experiments. The post-shot
simulations are not an accurate picture of reality, and thus there are
no significant benefits of first calibrating to the post-shot data for this
particular dataset. 110

6.7 Predictions of the low fidelity, high fidelity, and experiment DJINN
models at the point of optimal Yield(ρR)2 according to each of the
three models. 114

7.1 Model hyper-parameters and performance metrics. The state tran-
sition model, DJINN, is a fully connected neural network with the
neurons per layer specified in the architecture column (this includes
input and output layers). The seq2seq models are composed of two
stacked GRU cells with the number of hidden units per cell specified
in the architecture column. The batch size is specified in units of tran-
sitions (trans) for the state transition model, and sequences (seq) for
the seq2seq model. 127

xxv

1. INTRODUCTION

Nuclear fusion is the process of combining two light nuclei in order to form a

heavier nucleus. This process releases immense amounts of energy as a result of the

change in mass when two nuclei are fused to form a new, single nucleus. As an

example, consider the reaction:

D + T −→ He4 + n + Q, (1.1)

in which deuterium (D) and tritium (T) are fused together to form an alpha particle

(He4) and a neutron, and releases energy Q. The released energy is the difference in

binding energies (B) between the final and initial products in Eq. 1.1. The binding

energy is the energy required to divide a nucleus into its component neutrons and

protons:

B = c2(Zmp + (A− Z)mn −m), (1.2)

where A and Z are the mass and atomic numbers, respectively, and mp and mn are

the proton and neutron masses, respectively, and m is the mass of the nucleus. For

the DT reaction, the difference in binding energies yields about 17.6 MeV of energy

that is carried by the alpha particle (3.5 MeV) and the neutron (14.1 MeV). This is

far more energy per unit mass than is released by nuclear fission, making fusion is

an attractive alternative for clean and efficient energy production. However, achiev-

ing fusion energy production in a controlled, sustainable environment is extremely

challenging.

There are currently two major approaches to achieving nuclear fusion in a lab-

1

oratory setting — magnetic and inertial confinement. In this work, we will focus

exclusively on inertial confinement fusion, which relies on the inertia of the fuel mass

to provide confinement to the burning fuel. We will discuss two current approaches

to ICF throughout the dissertation: direct and indirect drive. In section 1.1, we will

discuss these two apporachs in more detail. In section 1.2, we present challenges

associated with designing and understanding ICF experiments, followed in section

1.3 by an outline of our efforts to improve how we analyze ICF data, which will be

detailed throughout the remainder of this work.

1.1 Brief overview of inertial confinement fusion

The goal of ICF is to compress fusion fuel to extreme temperature, density, and

pressure, such that the fuel begins to fuse and thus produces immense amounts of

thermonuclear energy. Most fusion experiments use deutrium (D) and tritium (T)

fuel, as DT fusion reactions have a higher cross section (σ), which can be thought of as

the probability of the reaction occuring, across the range of temperatures achievable

in fusion experiments. A typical ICF fuel capsule is illustrated on the left side of

Fig. 1.1. The capsule is a spherical shell composed of an ablator on the outermost

layer, with a shell of DT ice inside of the ablator, followed by DT gas fill in the

center. The capsules are about 2 mm in diameter, with typical ablator and DT ice

thicknesses of about 70 microns.

To initiate fusion reactions, the fuel capsule is compressed with a driver – a laser

in the case of direct drive, or an X-ray bath created in a hohlraum for indirect drive.

The driver ablates the outer layer of the fuel capsule and as the ablator material

blows off, a rocket-like force acts on the inner region of the fuel shell, compressing

the capsule radially inward [79, 135]. Often, the driver used to compress the fuel is

varied in time to launch multiple shocks through the shell which are often designed

2

Figure 1.1: Illustration of a typical ICF fuel capsule. The outer ablator material
surrounds a DT ice layer, with DT gas at the center.

to merge in the ice layer, and a single shock propagates through the interior gas

fill. The laser is then turned off, and the capsule coasts inward at constant velocity

until the shock reaches the center of the capsule, reflects, and begins propgating

outward. When this shock hits the inner surface of the shell, the shell decelerates

and a subsequent shock reflected off the shell propgates back toward the center of

the capsule. The hotspot develops a unfiorm pressure profile as the reflected shocks

diminish and the shell “stagnates”. Under ideal stagnation conditions, the gas at the

center of the capsule is heated substantially, creating a region of low density plasma

where conditions are ideal for fusion to occur. The alpha particles produced in the

fusion reactions deposit much of their energy into the central hotspot, further heating

the gas. Thermal conduction from the hotspot and the desposition of alpha particle

energy into the inner shell surface combine to create a thermonuclear burnwave that

rapdily propagates through the cold shell, burning the fuel and producing immense

amounts of fusion energy. Eventually, the shell begins to expand outward, cooling

the hotspot and ending thermonuclear burn.

3

“Ignition” is typically defined as the development of a central hotspot that ignites

a fusion burnwave, consuming the DT fuel and producing more energy than was

required to initiate the process [79]. There are several metrics that attempt to define

the requirements for ignition, such as Lawson criteria [75, 149, 16], which sets limits

on the minimum density and confinement time required for ignition:

nτ >
12kBT

〈σv〉Q
, (1.3)

where n is the density of DT (assuming the fuel is half deuterium, half tritium),

τ is the confinement time, kB is the Boltzmann constant, T is the temperature of

the burning plasma, 〈σv〉 is the DT reactivity, and Q is 17.6 MeV for DT fusion

reactions. For temperatures on the order of 5-10 keV, the Lawson criteria becomes:

nτ > 1014 − 1015s/cm3. (1.4)

Inertial confinement fusion aims to meet the Lawson criteria by reaching ex-

tremely high densities for a short period of time, in contrast to magnetic fusion

which aims to contain low density plasmas for longer times [125]. Since the confine-

ment time and density are difficult to measure in an experiment, alternative ignition

metrics based on quantities that can be measured have also been proposed, such as

the ignition threshold factor [123]. In general, the conditions for ICF ignition require

confinement times on the order of picoseconds (ps) and densities of 1000x the liq-

uid density in order to meet the Lawson criteria; temperatures of many keV where

the reactivity of DT is highest; and areal densities above 0.3 g/cm2 to stop alpha

particles in the shell, resulting in heating and burning of the cold fuel.

Achieving the necessary conditions for ignition is challenging in practice; the fuel

must be compressed symmetrically– even small deviations from spherical compression

4

can lead to large losses in performance [51, 22, 72, 48]. Furthermore, any small defects

or perturbations on the fuel shell amplify significantly during compression, which can

lead to holes in the fuel shell or contamination in the central hotspot; this places

challenging engineering tolerances on the fabrication of the capsules, the membranes

(“tents”) that hold the capsule in place within a hohlraum, and the filltube used to

insert the DT fuel into the capsule [110, 134].

Two approaches to achieving laser-driven ICF ignition are currently being tested

in laboratory settings: direct drive, in which lasers impinge directly upon the fuel

capsule, and indirect drive, in which lasers heat up a hohlraum to create an X-

ray bath, which impinges upon the fuel capsule. Each approach has its own set of

advantages and challenges; in subsections 1.1.1 and 1.1.2 we will briefly overview

indirect and direct drive experiments currently being carried out at the National

Ignition Facility [93] and Omega laser facility [66], respectively.

1.1.1 Indirect drive ICF

The NIF currently carries out indirect drive ICF experiments [49]. In these

experiments, 192 laser beams (totaling in approximately 2 MJ of energy) are focused

into a small cylindrical hohlraum (approximately 6 mm in diameter, 10mm tall);

the setup is illustrated in Fig. 1.2. The laser beams heat the hohlraum, which is

typically made of gold or depleted uranium for high X-ray conversion efficiency [130].

The heated hohlraum produces a bath of X-rays that impinge upon the fuel capsule,

which is held in place in the center of the hohlraum by thin membranes called capsule

support tents. The X-rays ablate the outer shell of the fuel capsule – the ablator

– which is often made of high density carbon (HDC), plastic (CH), or berylium

(Be). As the outer shell material is ablated away, it creates an inwardly-directed

force which compresses the inner portion of the fuel capsule shell as described in the

5

Figure 1.2: Illustration of a hohlraum with a fuel capsule in the center. The laser
beams enter the hohlraum through laser entrance holes at the top and bottom of the
cylinder. A filltube on the right of the figure is used to fill the fuel cpasule with DT.
Thin capsule support tents hold the capsule in place in the hohlraum.

previous section.

There are many challenges that prevent indirect drive experiments from perform-

ing ideally. In particular, there are several sources of asymmetry in the system which

make spherical compression difficult. The fuel is placed in a cylindrical hohlraum,

and the lasers enter the hohlraum through laser entrance holes (LEH) at the top

and bottom of the cylinder and illuminate discrete regions of the hohlraum walls.

This setup is inherently asymmetric, and thus many efforts at NIF have been focused

6

on adjusting the laser pulse to offset the physical asymmetries in the hohlraum to

irradiate the shell as uniformally as possible [72, 138].

Engineering features such as the capsule support tent, surface roughness of the

ablator or DT ice layer, and the gas fill tube that is attached to the capsule also

distort shell compression. Many efforts have been made to minimize the impact of

these features, by testing alternative capsule support systems [95], putting limits on

surface roughness [50], and reducing the size of the filltube [28]. These engineering

features impart small perturbations which get amplified as the capsule is compressed.

Shocks can cause Richtmyer-Meshkov (RM) [89, 112, 105] growth of these small-scale

imperfections, which can be amplified by the Rayleigh-Taylor (RT) instability [110,

134] during the main capsule acceleration. The combined effects of asymmetric

radiation drives and engineering features can lead to a distorted asymmetric shell at

stagnation, which has been shown to adversely affect performance [51, 22, 72, 48].

1.1.2 Direct drive ICF

In direct drive, laser beams are arranged in a nearly-spherical configuration

around the target, and the lasers directly ablate the outer surface of the fuel capsule.

Many direct drive experiments are carried out at the Omega laser facility at the

Laboratory for Laser Energetics (LLE), a laser system with 60 beams totaling in 30

kJ of energy.

Direct drive ICF experiments suffer from many of the same challenges as indirect

drive. The capsule stalk and ice roughness lead to RM and RT instabilities, and

symmetric compression is made challenging by the finite number of laser beams which

create discrete regions of focused light upon the capsule surface rather than smooth,

spherical irradiation. Many developments have been made to reduce irradiation non-

uniformities, including smoothing by spectral dispersion (SSD) [118, 117, 113], beam

7

overlap, and polarization smoothing with distributed phase plates [69, 78]. These

technological developments have improved irradiation uniformity at Omega to less

than 1% RMS (root mean square) fluctuations averaged over 300 ps of irradiation

time, which is thought to have a minimal effect on implosion performance. The

major advantage of direct drive is the ability to couple the full energy of the laser

to the capsule – there are no losses of energy due to the X-ray conversion eficiency

of a hohlraum. However, achieving smooth irradiation and mitigating laser-plasma

interactions while scaling the system up to a laser the size of NIF remains a challenge.

1.2 Designing and interpreting ICF experiments

In direct and indirect drive, a central focus of ICF research is dedicated to miti-

gating and minimizing sources of asymmetries and performance degradation. Over-

coming these challenges is particularly difficult given the time and monetary ex-

pense of experiments. Researchers therefore rely heavily on computer simulations

to search for promising experimental designs – from changing the shape of the laser

pulse to modifying the power balance between laser beams to adjusting the amount

of dopant in the ablator. The codes used to simulate ICF experiments are com-

plex, integrating radiation hydrodynamics with atomic physics, nuclear burn, laser

and plasma physics, magentic field effects, and more [86]. At the extreme condi-

tions reached in ICF experiments, accurately modeling all of the physical processes

in high-dimensional integrated simulations is extremely expensive. Often simplifica-

tions must be made due to limitations in computational resources, and the simplified

models are not always well-validated.

Determining the accuracy of ICF codes is made even more challenging by the fact

that many of the initial conditions are not necesarily known a priori, or even measur-

able in experiments for post-shot modeling. For example, high-fideilty 3D integrated

8

hohlraum simulations for indirect drive experiments are prohibitively expensive, and

thus one often runs low-resolution hohlraums in 2D that place symmerty constraints

on the system, however these simulations are often too low resolution to accurately

model the capsule as it is compressed by a factor of 20-30 in radius. Capsule-only

simulations, which can model the dynamics at high resolution with moderate com-

putational expense, are often used for detailed post-shot modeling. Capsule-only

simulations take the radiation drive that is generated by the hohlraum simulation,

and translate that to the imposed radiation field on the capsule. There is a loss

of information when mapping the drive generated in the hohlraum simulation into

a radiation drivefor the capsule simulation, and there is a risk that the hohlraum-

generated drive is not an accurate depiction of what happened in the experimnent.

Therefore, drive multipliers are often introduced – parameters that vary the ampli-

tude or the asymmetries of the drive as a function of time. These multipliers are

not known nor can they be measured, but they can be inferred by using the avail-

able experimental observables. Not knowing the correct simulation inputs required

to model an experiment is an important challenge addressed throughout this work

– it complicates the ability to decide if a simulation does not match an experiment

because the physics modeled in the code is incorrect, or if it is simply due to the

fact that the simulation inputs used were incorrect. Direct drive experiments do not

suffer as greatly from such complications, as they do not use hohlraums and thus the

simulation inputs for capsule-only simulations are directly comparable to the inputs

used in an experiment.

The process of inferring simulation inputs which are consistent with experimental

observations is often referred to as a “post-shot” analysis. Finding the simulation

that is most consistent with the experimental data is an important step in under-

standing the details of the experiment. Due to the extreme scales of the experiments,

9

many of the diagnostics in ICF experiments can only record a limited amount of

information at a small number of time points throughout the implosion. Post-shot

simulations provide detailed information about the implosion that cannot be directly

measured, such as the pressure in the hotspot, residual kinetic energy, and entropy.

However, current post-shot analyses often do not take into account the full set of

experimental measurements. The simulation input space is prohbitively large, and

finding a simulation that is consistent with all of the experimental measurements is

a daunting task. Often, researchers explore a small number of unknown simulation

inputs, varying them a few at a time until the simulations match a few important

measurements within the experimental error bars. This process often misses a dis-

tribution of other potential simulation input settings that could result in a similar

quality match to experiment; thus there is a real possibility that interpretations of

such post-shot analyses could be biased, incomplete, or incorrect.

In this work, the overall goal is to develop techniques that will improve how we

design and understand ICF experiments. We take a data-driven approach, leveraging

modern machine learning algorithms and developing new methods when necessary

to bridge the gap between simulations and experiments. In the following section, I

outline my specific contributions to this effort that are discussed in detail throughout

the subsequent chapters.

1.3 Contributions of this work

The traditional process for designing an ICF experiment begins with a compu-

tational model of the implosion. Design parameters are hand-tuned to optimize the

implosion to achieve the outcome desired in the experiment. However, the experi-

mental observations often differ from the predictions, and the design is iterated upon

in light of the experimental observations. There are many processes in the design

10

loop which can be made more efficient using modern data analysis techniques. For

example, simulation-based design optimization is readily automated with machine

learning and high-dimensional optimization algorithms, and machine learning tools

can aid in quantifying the disagreement between simulation predictions and experi-

mental observations. Throughout this dissertation, we demonstrate several ways in

which machine learning tools are improving the way we design and understand ICF

experiments.

We begin by demonstrating how machine learning models, or “surrogates” en-

able rapid simulation-based design optimization. In Chapter 2, we show that machine

learning models trained on one of the largest ICF simulation databases ever created

led to discovery of a new family of high performing, ovoid-shaped implosions. The

existence of such implosions challenges decades of ICF research suggesting asymme-

tries degrade implosion performance, and demonstrates the powerful capabilities of

simple machine learning models for improving experimental design.

While traditional machine learning models, like those used in the ovoid discov-

ery, are powerful for making point predictions for moderately complicated datasets,

these models are not accurate enough to quantitatively compare simulations and

experiments; such work requires surrogates that are extremely accurate and can

scale well to high-dimensional, high volume datasets. Furthermore, quantifying and

propagating uncertainties is a vital component for predicting the outcome of future

experiments, thus the surrogates should also account for the uncertainty in their own

predictions.

“Deep jointly-informed neural networks” (DJINN) was developed to address these

needs [61]. DJINN is a novel algorithm for designing robustly accurate deep neural

networks for arbitrary datasets without requiring manual tuning of the network or

expensive hyper-parameter optimization techniques. DJINN has enabled non-data

11

science experts to easily train accurate deep neural networks with minimal effort,

and has been a vital component in our analyses of ICF data. Chapter 3 presents the

algorithm in detail, and demonstrates that DJINN often outperforms other methods

for designing and initializing deep neural networks.

An advantage of using deep neural network surrogates, like DJINN, is that they

are readily cast into an approximate Bayesian framework. In Chapter 4, we compare

the Bayesian formulation of DJINN to other Bayesian models for a variety of datasets.

We demonstrate the ability to perform parameter inference with DJINN via Markov

Chain Monte Carlo (MCMC) and inverse modeling, and compare the performance

of these techniques to standard MCMC inference.

In Chapter 5, we expand the use of DJINN for parameter inference to ICF

databases. DJINN is combined with autoencoder neural networks, designed for unsu-

pervised dimensionality reduction, to perform advanced post-shot analyses for NIF

ICF experiments. Rather than manually searching for a single set of simulation

inputs that are consistent with a few experimental observables, the neural network-

based post-shot searches for all of simulations inputs that are consistent with a large

number of experimental measurements. This technology is readily applied to other

high energy density physics experiments; for example, the technique is also used to

infer material properties from atomic emission spectra [122].

Parameter inference is an important problem for indirect drive experiments at

NIF, as values of many simulation inputs are unknown and cannot be measured.

The inferred values of inputs changes from one experiment to the next, thus inferring

inputs based on experimental observables only aids in understanding previous exper-

iments; it does not necessarily help create predictive models for future experiments.

Researchers are working on advanced Bayesian methods [33] for model calibration,

which use a collection of experiments to adjust a simulation-based surrogate model’s

12

predictions to be more consistent with the experimental data.

As an alternative to Bayesian model calibration, we explore a machine learning

technique called “transfer learning” to calibrate simulation-based surrogate models

to experimental data. Transfer learning uses a neural network trained on a large set

of inexpensive data, freezes many of the layers of the neural network, then retrains

the last layers on a smaller, but related dataset to achieve a specific task. In ICF

we have large databases of simulations, but limited quantities of experimental data.

In Chapter 6, we demonstrate the ability to use transfer learning with DJINN to

calibrate neural networks trained on low fidelity simulations to high fidelity simula-

tions, then to experiments. This calibration technique is illustrated on a database

of direct drive simulations and a collection of experiments performed at the Omega

facility. We then use the experimentally-calibrated models to perform rapid design

optimization, and discuss how this approach compares to physics-guided iterative

design optimization.

We end with a chapter on time series data, which we see as the next big challenge

for incorpating the full suite of diagnostic information from our experiments into our

predictive models. Toward this end, we explore the use of sequence-to-sequence

models to predict the evolution of complex multi-physics systems in Chapter 7.

In Chapter 8, we summarize the major contributions of this work, and propose

future paths of exploration for applying machine learning to ICF data.

13

2. MACHINE LEARNING-GUIDED DESIGN OPTIMIZATION 1

Inertial confinement fusion is the process by which a hollow deuterium-tritium

(DT) fuel capsule is heated and compressed to extreme conditions to ignite a fusion

reaction [79, 135]. Ablator material on the outer surface of the capsule is heated

via impinging X-rays generated within a surrounding hohlraum (indirect drive), cre-

ating a rocket-like force that compresses the DT shell. Under ideal conditions, the

gas at the center of the capsule ignites a fusion burn wave that propagates outward,

consuming the fuel and releasing immense amounts of fusion energy. However, im-

plosion performance is sensitive to a variety of instabilities and asymmetries, making

ignition difficult to achieve experimentally [89, 112, 105, 110, 134].

Several processes that can lead to an asymmetric shell at stagnation are expected

to negatively impact performance [22, 72, 48, 51], thus one of the major goals of ICF

research is to produce a nearly spherical implosion. One way to accomplish this is

via the minimization of the sources of asymmetric stagnation, for example by placing

engineering tolerances on the capsule surfaces [50], reducing the effects of engineering

features [95, 28], and ensuring a uniform radiation drive [72, 138].

In this chapter we use a machine learning model trained on the largest ICF

simulation database ever created to search a vast design space for high-performing

implosions that are resilient to laser drive perturbations [106]. The “optimal” design

that the machine learning model finds reveals a nonlinear stabilization process for

ICF implosions that addresses drive and shell distortions via intentionally-generated

large scale flows within the hotspot. These flows, which are set up by driving the

1“Partially Reproduced with permission from “Zonal flow generation in inertial confinement
fusion implosions”, J. L. Peterson, K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer, R. C.
Nora, B. K. Spears, and P. T. Springer, Physics of Plasmas 24, 032702 (2017), with the permission
of AIP Publishing.”

14

capsule asymmetrically, shear off small scale instabilities and large scale asymmetries,

making the implosions robust to a variety of performance degradation sources. A

consequence of the asymmetric drive is an ovoid-shaped fuel shell at stagnation;

the high performance of such implosions challenges the notion that spherical shells

universally have the largest ignition margins.

We discuss the dataset, the learning algorithm, and how it predicted the existence

of the ovoid in the sections 2.1 and 2.2. In section 2.3, we confirm the machine

learning model’s prediction with a set of new simulations, and show that the ovoid

implosions are more resilient to drive and engineering feature perturbtations than

implosions which are driven symmetrically.

2.1 Surrogate models of ICF simulation data

Previous work illustrates the important role machine learning models, or “surro-

gates”, have played in improving the understanding of ICF implosions. For example,

the ignition threshold factor (ITF) and its experimental counterpart (ITFX) are sur-

rogate models fit to simulation and experimental data that quantify the margin of

ignition for an implosion [123, 51]. Several studies have used ensembles of simula-

tions to train surrogates for studying the effects of laser drive asymmetries [72], and

capsule fabrication imperfections [22] on implosion performance. These models have

provided valuable insight into the conditions for ignition, however they are restricted

to exploring low-dimensional design spaces due to computational limitations.

Advancements in supercomputer architecture and a novel on-the-fly data man-

agement technique [106] have been used to create what was then the largest collection

of two-dimensional ICF simulations using the code HYDRA [86]. Creating the en-

semble of simulations consumed roughly 39 million CPU-hours of computer resources

during the Open Science Phase I of the Trinity Supercomputer at Los Alamos Na-

15

tional Laboratory and generated 5 petabytes of raw data that were processed using

a novel in-transit data analysis technique [74].

The dataset constitutes a nine-dimensional parameter scan of time-varying drive

magnitudes, drive asymmetries (described by Legendre modes P1, P2, P4), and cap-

sule gas fill densities. The baseline simulation is an axisymmetric variant of a high

density carbon (HDC) [57] NIF [91] implosion design, meant to ignite in 1D, with a

20 µm dopant layer of 3% Si embedded in the 75 µm-thick shell of 1108 µm outer

radius. Both the DT and the HDC use tabular equations of state (LEOS 1018 and

64 respectively [68, 126]) and opacities. The ice layer is 55 µm thick and the central

gas has a baseline density of 5 × 10−4 g/cm3. The initially Arbitrary-Lagrangian-

Eulerian mesh with 513 angular zones and 321 impedance matched radial zones

remaps to an entirely Eulerian elliptic mesh near stagnation. The nine-dimensional

study constitutes Latin hypercube sampling of a space around the baseline implo-

sion, with linearly varying drive magnitude A and asymmetry perturbations between

three time points (the end of the first shock “trough,” the end of the “rise” to peak

laser power and the end of “peak” radiation drive). All time-dependent perturba-

tions ramp up from time zero and down from the end of peak power. P1 and P4

have the same value at the three time points, but P2 and A can vary (see Fig. 2.2a

for an example). The data points are sampled linearly between ± [2, 10, 5, 25]%

for [P1, P2, P4, A]. The capsule gas fill density is sampled logarithmically between

0.2× and 5×, for a total of 9 independent variables.

Machine learning models are trained on the data to create a surrogate model

which emulates HYDRA in the 9D design space. The surrogates enable rapid explo-

ration throughout design space to search for an implosion that robustly ignites, even

under adverse conditions.

16

2.2 Surrogate optimization to search for robust, high-yield implosions

Surrogate models learn to emulate computationally expensive simulations by in-

terpolating between the available simulation data points. Several machine learning

algorithms are considered for the ICF surrogates, but due to the high volume of data

and the presence of many cliff- and peak-like features that are not well resolved, most

algorithms are unable to accurately fit the data. The random forest algorithm [13],

which consists of an ensemble of decision trees trained on bootstrapped samples

of the dataset, displays the best performance for a variety of quantities of interest

(QOI), as shown in Fig. 2.1. The random forest surrogate for the logarithm of the

total energy yield (log10 Y) achieves a ten-fold cross-validated mean prediction error

of 8%. (Explicitly, the surrogate model is trained on ten random subsets 80% of the

data and is tested on the remaining 20%: the mean error on the prediction for the

20% random hold-out points is 8%). We can also build surrogates for other physical

QOI in the database, such as DT fuel areal density (ρR), the first Legendre moments

of the DT shell (P0−8) and an ignition threshold factor metric [121] ITFX
.
= Y(ρR)2

at the time of peak energy production (“bang time”).

Once trained, the surrogate models can estimate QOI anywhere within the de-

sign space, allowing implosions that are not in the original dataset to be studied

without running additional, expensive simulations. The surrogates are particularly

well-suited for scanning the vast design space of simulation inputs to search for high

performing implosions. For example, due to the difficulty of controlling laser drive

symmetry in experiments, it is of great interest to locate a high yield “plateau” in

design space – a region of igniting implosions that are robust to variations in drive

and thus might be realistic candidates for experiments.

The yield surrogate lets us define a metric for quantifying robustness to drive

17

Figure 2.1: Comparison of several machine learning algorithms for fitting the yield
data. The random forest (RF) shows significantly higher performance than the other
algorithms– support vector machine (SVM), Gaussian process (GP), k-nearest neigh-
bord regressor (kNN), and multivariate adaptive regression splines (MARS).

18

asymmetries that can locate such plateaus. For this measure, we pick a point in

parameter space and with the surrogate make 1000 random input variations within

a Latin hypercube centered at that location with side length ∆ of 10% of the total

sample space. The number of surrogate evaluations that achieve Y > 1 MJ within

this volume serves as a local estimate of the probability of achieving high yield under

variable conditions: P(Y > 1|∆ = 0.1). This function serves as a smoothing operator

on the yield, filtering out narrow “peaks” of high performance in favor of more broad

“plateaus”.

To locate a robust, high quality implosion, we define a performance metric for

multi-dimensional optimization:

C = 10P + ITFX. (2.1)

The first term in Eq. 2.1 finds broad areas of parameter space that ignite, and

the second term finds locations that are high up the ignition cliff. We weight the first

term higher (which has a maximum value of unity) to make it of similar order as the

second term (which crosses the ignition threshold at 1, but can be over 10 for robustly

burning designs). Furthermore, since our operational space is nine-dimensional and

a single evaluation of P requires 1000 surrogate evaluations, we opt for a simplex

based optimization algorithm [98] to avoid gradient evaluations in the search for a

robust design.

The implosion which optimizes Eq. 2.1 is predicted to have fusion energy yield

and ITFX of 15.23 MJ and 23.1 MJ·(g/cm2)2, respectively, which can be compared

to the baseline implosion of 15.08 MJ in yield and an ITFX of 16.9 MJ·(g/cm2)2.

The drive that produces the optimal implosion is shown in Fig. 2.2a (additionally,

the optimal point has a 0.5× gas fill multiplier). Notably, this optimal point, which

19

0 2 4 6 8 10 12

Time [ns]

0

50

100

150

200

250

300

350
R

a
d
ia

ti
o
n
 T

e
m

p
e
ra

tu
re

 [
e
V

]

Baseline

Optimal

6

4

2

0

2

4

6

A
p
p
lie

d
 A

sy
m

m
e
tr

y
 [

%
]

P1

P2

P4

(a) Capsule radiation drives

0°

45°

90°

135°

180°

225°

270°

315°

10
20

30
40

50
60

70

Baseline
Optimal

(b) Bang time fuel shapes (µm)

Figure 2.2: Comparison of the baseline and optimal radiation drives and surrogate-
predicted bang time fuel shapes. Reproduced with permission from [106].

is predicted to robustly achieve high yield, has a time-varying P2 applied drive asym-

metry. Figure 2.2b compares the DT bang-time fuel shapes as predicted by the Pn

surrogate models for both the baseline and optimal drives. Due to the time-varying

asymmetry, the optimal drive’s stagnated shape is predicted not to be a sphere, but

an ovoid.

The surrogates also predict that the optimal ovoid implosion is more resistant

than the symmetrically driven baseline to other perturbations. Figure 2.3 shows

surrogate outputs for yield as the relative drive fluence
∫
T 4
r dt (normalized to the

baseline) is varied. To eliminate the effects of the remaining input parameters, the

optimal and symmetric implosions are compared with the same gas fill, P1, and P4

perturbations such that the change in performance is due to the P2 drive alone. Both

designs fall off in yield as the drive is reduced. However, while adding a −2.5% P4 to

the baseline design requires a relative fluence of 1.1 for ignition, the optimal design

20

Figure 2.3: The surrogate prediction for yield under changing peak drive, as repre-
sented by the total normalized drive fluence

∫
T 4
r dt/(

∫
T 4
r dt)baseline for the baseline

(round) and optimal ovoid (optm) cases. The optimal ignites with a relative fluence
of slightly greater than 1.0, even under an applied P4 perturbation. The baseline
requires a relative fluence of more than 1.10 to ignite under an applied P4. The
multiple lines for each implosion represent variations in performance due to varying
the relative amplitude of the drive during the trough, rise, and peak of the pulse,
while ensuring that the drive integrates to the indicated relative fluence.

21

ignites with a relative fluence of around 1.01.

To investigate the movement of the ignition cliff further, yield contours predicted

by the surrogates are shown in Fig. 2.4 for varying P2 drives on the rise to peak

power (PP
2) and at the end of the peak radiation drive (PP

2). The overlaying white

contour lines correspond to the surrogate-predicted P2 moment of the fuel radius

at bang time, and the black point indicates the location of the optimal implosion.

There is a broad, high yield ridge along a line compensating PR
2 and PP

2 drives, with

higher yields favoring a negative PR
2 and positive PP

2 . This compensating drive does

not result in a round implosion, but an ovoid with positive P2, as shown by the

bang time fuel P2 contours. Under the addition of a P1 perturbation, the high yield

ridge contracts toward more extreme compensating drives which results in P2 of up

to 40%. The optimal implosion remains within the cliff boundaries while the round

implosion falls to low yield. The high yield ridge appears to extend beyond the

boundaries of the design space, suggesting that there may exist an implosion with

higher performance than the optimal point if more extreme compensating P2 drive

perturbations are considered.

2.3 HYDRA simulations of the optimal implosion

To confirm the surrogate predictions of a robust ovoid implosion at a location

not explicitly in the original simulation database, a series of 2D HYDRA simulations

are performed for the optimal point and for a symmetric simulation with the same

drive amplitude and gas fill, so that any differences are due solely to the time-varying

drive asymmetry. To isolate alpha-particle bootstrapping from hydrodynamic effects,

“burn-off” simulations with a reduced fusion cross-section are also performed.

Figure 2.5 illustrates how the ovoid shape arises from the applied time-dependent

P2 drive asymmetry. First, asymmetric shock bounce seeds vorticity in the gas.

22

Figure 2.4: Contours of the surrogate prediction for the yield for varying P2 on the
rise to peak power (PR

2) and at the end of the peak radiation drive (PP
2) without (left)

and with (right) an applied P1 perturbation. The orange point indicates the optimal
implosion. High yield implosions lie along a ridge of compensating P2 drives (negative
on the rise, positive at the peak), with the ridge shifting to require more extreme
drives to reduce the effects of an applied P1. Overlaying contour lines for the P2

moment of the fuel at bang time illustrate that the P2 drive that maximizes yield does
not result in a round implosion, but an ovoid with positive P2. The polar plot on the
right illustrates the shape of the fuel shell at stagnation for the implosions indicated
by the corresponding colored dots in the contour plot, confirming the implosions
along the ridge of high yield are ovoids. Reproduced with permission from [106].

23

Figure 2.5: Generation of zonal flows within the capsule as a result of the time-
dependent asymmetric radiation drive. During the rise to peak power, the negative
P2 drive compresses the capsule along the equator, forming axial gets as the gas
meets on axis (left). At peak power, the positive P2 drive squeezes the capsule on
the poles, preventing the jets from escaping (center) and causes the flow to circle in
on itself, forming coaxial, counter-propagating vortex rings (right).

Then the negative P2 drive on the rise to peak power squeezes the capsule along the

equator; as the compressed gas meets on axis, it forms axial jets (left of Fig. 2.5).

At peak power, the positive P2 drive squeezes the poles of the capsule, preventing

the jets from escaping (center of Fig. 2.5). The flow circles on itself, forming two

co-axial counter-propagating vortex rings (right of Fig. 2.5). Figure 2.6 illustrates

the ovoid implsoion at stagnation. The exterior shell conforms to the vortex rings,

forming an ovoid, and the central gas is trapped in a vorticity quadrupole. The

hotspot is elongated, and does not align with the high-pressure central core. Strong

coherent flows exist throughout the hotspot, so that the cold dense shell on the

equator accretes into the central high-pressure region, burns, and exhausts via the

poles.

The flows appear to nonlinearly suppress the growth of hydrodynamic instabili-

ties. Figure 2.7 shows the upper right section of the stagnating shell for a burn-off

24

R [µm]

Z
[µ

m
]

20 0 20 404060 60

0

20

40

60

-20

-40

-60

Burn-Off Configuration at Peak Energy Production

Figure 2.6: Burn-off ovoid implosion at the time of peak energy production. The
arrows indicate the velocity field, illustrating the formation of counter-propagating
coaxial vortex rings within the fuel shell. The colored contours indicate the ion
temperature on the left, and the pressure on the right. The density of the fuel shell
is shown in black; the shell is thicker near the equator, where fuel accretes into the
hotspot, burns, and leaves via the poles. Reproduced with permission from [106].

25

Ice Jet

Tent
Scar

Shear Layer

R [µm]

Z
[µ

m
]

35

30

25

20

15

0 5 10 15 20

View

Figure 2.7: Density and velocity fields in the upper part of the stagnating shell
for an ovoid burn-off HYDRA simulation perturbed with ice layer roughness and
capsule support tent membrane. The background flows set up a high-velocity shear
layer (thick arrows) that mitigates the effects of the perturbations during stagnation.
Reproduced with permission from [106].

26

Figure 2.8: The local shearing rate of the eddy in Fig. 2.7 is larger than both the
deceleration Rayleigh-Taylor growth rate (Eq. 2.2) or the shell breakup rate (Eq. 2.3).
Reproduced with permission from [106].

ovoid implosion with added performance degradation sources: ice surface roughness

(at NIF ignition specifications [51]) and a capsule support tent (calibrated to a 100

nm tent on an HDC capsule [143]). The roughness on the inner ice surface seeds a

large on-axis jet directed down toward the central hotspot, while the capsule support

tent creates a visible low-density “scar” on the shell. The background flows meets

the axis jet head-on, forming a high velocity (> 300 km/s) shearing layer that directs

the jet away from the hotspot. The same shear layer directs the flow field tangential

to the tent scar, reducing convective loss through the hole.

The shearing in Fig. 2.7 appears strong enough to compete with shell distortions

that occur during deceleration. The local shear rate can be estimated as the ratio of

the local velocity to the eddy size. The eddy in Fig. 2.7 is roughly 5 µm across with an

average velocity of 225 µm/ns, which gives a shearing rate of 45 ns−1. Perturbations

on the shell evolve at a characteristic rate that can be estimated as either the RT

27

growth rate or the inverse of the shell breakup time τ [62]. The RT growth rate is

given by Eq. 2.2:

γRT = α

√
kg

1 + kLm

− βkva, , (2.2)

where k is the wavenumber of the perturbation on the inner surface of the shell

with characteristic density scale length Lm, va is the local ablation velocity, g is the

deceleration, and α ' 0.9 and β ' 1.4. The shell breakup time is estimated by:

τ =

√
2πR (ρR)shell

lPstag

, (2.3)

for some mode number l = kR on a shell with areal density (ρR)shell stagnating

against a hotspot with pressure Pstag. Figure 2.8 shows that the eddy shear rate

is larger than both rates predicted by Eqs. 2.2 and 2.3, suggesting that the shear

flows present in the ovoid are potentially strong enough to impact the growth of shell

perturbations during capsule deceleration.

Figure 2.9 shows contours of yield > 1 MJ for the round and ovoid implosions with

varying levels of applied P4 asymmetry and tent amplitude. The performance of both

implosions falls off with increasing perturbation strength, but the ovoid implosion

maintains high yield for a larger parameter range. For instance, the ovoid produces

> 9 MJ with a 300 nm tent and +3% P4, where the round implosion fails to ignite.

In all, these new simulations confirm the surrogate predictions of an asymmetric

ovoid implosion that is more resilient to perturbations than symmetrically driven

one-dimensional designs. The resilency of the ovoid implosions is attributable to

the generation of large scale zonal flows at stagnation, that protect the hotspot

from engineering and asymmetry perturbations that are observed to degrade the

performance of spherical implosions.

28

0 1 2 3 4 5

Tent Amplitude
[x 100 nm]

4

2

0

2

4

P
4

 A
m

p
lit

u
d
e
 [

%
]

Round

0 1 2 3 4 5

Tent Amplitude
[x 100 nm]

Ovoid

1 3 5 7 9 11 13 15

Yield [MJ]

Yield with Varying P4 and Tent

Figure 2.9: Contours of yield for the round and ovoid implosions under a combination
of P4 drive asymmetry and tent perturbations. Reproduced with permission from
[106].

29

2.4 Conclusions

A machine learning algorithm trained on the largest ensemble of ICF implosion

simulations led to the discovery of a new class of robustly igniting implosions. These

implosions are ovoid in shape, challenging the well-accepted notion that spherical im-

plosions uniformly outperform aspherical ones. The ovoids are intentionally driven

by strong time-varying drive asymmetries, which serve to set up large-scale zonal

flows at stagnation, making them more robust than spherical implosions to pertur-

bations from the laser drive and shell imperfections, due to locally strong shearing

rates induced by the flows.

Additional work must be completed to evaluate the possibility of achieving an

ovoid implosion in experiments. The simulations in this study were 2D capsule-only

simulations, subject to axisymmetric constraints; exploring the stability of the flow

configurations in 3D capsule simulations is a priority. If the ovoids are robustly

stable in 3D capsule simulations, we will move toward integrated hohlraum simula-

tions to aid in determining the experimental requirements necessary for achieving

the desired time-varying P2 radiation drive asymmetry. It may be possible to exper-

imentally create these implosions with current capabilities at the NIF. Near-vacuum

hohlraums (NVH) [9], which are designed to counter a late-time polar drive with

early time equatorial drive, may already operate near this regime (indeed similar

flow patterns have been observed in some integrated NVH simulations of current

NIF designs [8]). Mapping out the experimental signatures of zonal flow dominated

hotspots is therefore another priority.

The ovoid implosions challenge decades of research that suggest drive asymmetries

are detrimental to implosion performance, and present a new approach to achieving

ignition in experiments. The machine-learning guided discovery and characterization

30

of the ovoids suggests a new paradigm for understanding and exploring complex

systems via modern data analysis techniques.

31

3. DEEP JOINTLY-INFORMED NEURAL NETWORKS 1

The machine learning-guided discovery of the ovoid implosion is an illustrative

example of the benefits of augmenting physics studies with modern data analysis.

While the random forest machine learning algorithm produces models that are ac-

curate enough for tasks such as design optimization, this project illustrated several

shortfalls of black-box machine learning methods. In particular, the random forests

struggled to accurately model high gradient features in the response surfaces, such as

the “ignition cliff” in which the yield rapidly changes by several orders of magnitude.

The applications in which we wish to use surrogate models (post-shot modeling of

experiments, Bayesian calibration, and more) require the models to accurately cap-

ture the ignition cliff. Furthermore, we are interested in propagating and quantifying

uncertainties, and it is thus important to consider surrogate models which estimate

prediction uncertaintity due to the sparsity of training data. We turn our attention

to deep neural networks: models that are flexible enough to capture highly complex

response surfaces, and which can be readily extended into an approximate Bayesian

framework via the recent advancements with dropout and other regularization tech-

niques [34].

3.1 Introduction

Deep neural networks are quickly becoming one of the most popular tools in

machine learning due to their success at solving a wide range of problems– from

language translation [145, 2], to image recognition [116, 46, 77], to playing Atari [83,

36]. Neural networks trained via supervised learning are capable of discovering subtle

1Reproduced from “Deep Neural Network Initialization With Decision Trees’, K. D. Humbird,
J. L. Peterson. R. G. McClarren, IEEE TNNLS 10.1109/TNNLS.2018.2869694 (2018), with the
permission of IEEE.

32

relationships between variables that make them well-suited for creating “surrogate”

models for complex physical systems. Surrogate models approximate complicated

response surfaces by interpolating between a set of sparse data that is typically

expensive to acquire. The models provide a method for studying a continuum of

designs rapidly, without resorting to costly computer simulations or experiments.

Many machine learning algorithms can be used to create surrogates, but neural

networks offer several distinct advantages: they are scalable to large volumes of high

dimensional data, have low memory demands, and can be readily updated as new

data becomes available.

Despite the flexibility of neural networks, the application of deep learning to study

physics-based problems has been slow to increase in popularity. In part, the limited

use of neural networks by non-experts is due to the difficulty of training an accurate

model. There are an infinite number of design options, including the activation

function, learning rate, regularization methods, and the network architecture: the

number of hidden layers and the number of neurons in each layer. Often, changes in

these settings can yield wildly different results. Datasets of interest for physics-based

systems are often from high dimensional design spaces that are under-sampled and

represent complex, nonlinear processes. The choice of neural network architecture

for such data can significantly impact the training efficiency and accuracy of the

model, and there exist few guidelines for determining appropriate settings that are

robust across a multitude of problems.

In many cases, simple machine learning algorithms can produce reasonably ac-

curate surrogate models with minimal effort from the user. For example, decision

tree-based algorithms, such as random forests or extremely randomized trees, have

been successful at modeling a variety of physics-based datasets [13, 17, 38]. Tree-

based models are robustly accurate and have few hyper-parameters that need to be

33

tuned, making them convenient “black box” algorithms. However, traditional trees

are confined to on-axis splits, limiting the accuracy of the model, and the memory

demands for storing an ensemble of trees is high for complex data.

To create a black box neural network, the user-friendly features of tree-based

models can be combined with the accuracy, flexibility, and scalability of deep neural

networks. Several studies have explored the possibility of mapping decision trees and

random forests to neural networks [115, 136, 6, 11, 142]. One particularly successful

approach maps trees to equivalent two hidden layer neural networks, with the number

of neurons in each layer related to the number of leaves in the decision tree [115, 11].

The mapping “warm starts” the neural network training process by initializing the

network in a state that performs similarly to the decision tree; after additional train-

ing, the neural network achieves higher accuracy than the original tree-based model.

Although the two hidden layer models perform well for moderately-sized datasets,

the networks can become quite wide for high-dimensional nonlinear regression prob-

lems with complex decision trees, making subsequent training difficult for limited-size

datasets.

While it is possible to fit any function with a sufficiently wide, shallow neural

network [59], studies suggest that deep networks often perform better than wide

networks with a similar number of neurons [43]. Including more hidden layers allows

for higher levels of interaction between parameters, thus deep networks can discover

nonlinear relationships not discernible with only two hidden layers. Based on this

observation, we propose a novel mapping from decision trees to deep neural networks.

The mapping produces a network with a specific number of hidden layers, neurons per

hidden layer, and a set of initial weights that reflect the decision tree structure. The

neural network is subsequently trained using back-propagation to optimize predictive

performance. The algorithm is called “deep jointly-informed neural networks”, or

34

DJINN, as the final neural network is informed by an underlying decision tree model

and the standard training method of back-propagation.

In the following sections, DJINN is described in detail and compared to a variety

of other neural network models for regression and classification datasets. In section

3.2, the algorithm for mapping from trees to initialized neural networks is presented

and illustrated with a few examples. In section 3.3, DJINN is presented as a “warm

start” method for training deep neural networks and is compared to other warm

start and weight initialization techniques. Section 3.4 compares DJINN, which de-

termines the neural network architecture based on the structure of a decision tree,

to a Bayesian hyper-parameter optimization method for selecting an appropriate ar-

chitecture. Although DJINN does not attempt to optimize the architecture of the

neural network, it displays comparable performance to optimized architectures at

a significantly lower computational cost. Overall, DJINN is observed to be a ro-

bustly accurate and user-friendly method for creating deep neural networks to solve

a variety of classification and regression tasks.

3.2 Deep Jointly-Informed Neural Networks

The DJINN algorithm determines an appropriate deep neural network architec-

ture and weight initialization that utilizes the dependency structure of a decision

tree trained on the data. The algorithm can be broken into 3 steps: constructing the

ensemble of decision trees, mapping from trees to neural networks, and fine-tuning

the neural networks via back-propagation. In the following sections, each step is

presented in detail and the mapping is illustrated with a few simple examples.

3.2.1 Decision tree construction

The first step of the DJINN algorithm is the construction of the decision tree-

based model. This can be a single decision tree that will result in a single neural

35

network, or an ensemble of trees, such as random forests [13], that will produce an

ensemble of neural networks. The depth of the trees is often limited to avoid the

creation of excessively large neural networks; the maximum tree depth is a hyper-

parameter that should be tuned for each dataset.

3.2.2 Mapping decision trees to deep neural networks

The DJINN algorithm chooses a deep neural network architecture and a set of

initial weights based on the structure of a decision tree. The mapping is not intended

to reproduce the decision tree, but instead takes the decision paths as guidance for

the network architecture and weight initialization.

While neural networks are initialized layer by layer, decision trees are typically

stored by decision path. The paths begin at the top branch of the tree, and follow the

left, and then the right, side of every decision until a leaf (prediction) is reached. The

manner in which trees are stored makes them difficult to navigate according to depth,

but simple to traverse recursively. When mapping from tree to neural network, it is

easiest if the structure of the tree is known before initializing neural network weights,

thus the decision paths are recursed through twice: first to determine the structure,

then to initialize the weights.

The primary branch of the tree is defined as the l = 0 level. The levels then

increase from l = [1, Dt] where Dt is the maximum tree depth, often specified by the

user. The maximum branch depth is defined as Db = Dt − 1, as the last level of a

decision tree contains only leaves. The mapped neural network has Dt total layers: an

input layer at l = 0, Db hidden layers, and an output layer. The output layer contains

one neuron per label for multi-label classification, or one neuron for single-output

regression problems. Multi-output regression is accommodated by performing the

mapping on multi-output decision trees [104], and including one neuron per target

36

variable in the output layer.

Algorithm 1 outlines the process of initializing the DJINN network for a single

tree. If an ensemble method is desired, a random forest or extremely randomized tree

model can be used, and the mapping is repeated for each tree to create an ensemble

of neural networks.

The variance of the normal distribution used to initialize nonzero DJINN weights

is 3/(nprev + ncur), where nprev and ncur are the numbers of neurons in the previous

and current hidden layers, respectively. Biases for each neuron are randomly sampled

from the same distribution. This is a variant of the popular Xavier initializer [41, 133].

The variance of the distribution is designed to keep the scale of the gradients roughly

the same in all layers of a deep neural network. Weights that are used to pass input

variables or leaf values through the hidden layers are initialized to unity in order to

preserve their value.

3.2.3 Optimizing the neural networks

Once the trees have been mapped into initialized neural networks, subsequent

tuning of the weights is carried out using back-propagation. For the examples pre-

sented in the following sections, the neural networks are trained using Google’s deep

learning software Tensorflow [1]. The activation function used at each hidden layer

is the rectified linear unit (ReLu), which generally performs well for deep neural net-

works [97, 23] and can exactly retain the values of neurons in previous hidden layers.

The Adam optimizer [70] is used to minimize the cost function, which is mean squared

error (MSE) for regression, and cross-entropy with logits for classification [24].

3.2.4 Examples mapping from trees to DJINN models

Figure 3.1 shows a simple example of a decision tree and the initialized DJINN

neural network. Following the steps outlined in the algorithm, the mapping is per-

37

Algorithm 1 DJINN Tree to Neural Network Mapping

1: Recurse through paths of the decision tree:
· Determine max branch depth (Db)
· Count number of branches at each level Nb(l)
· Record max depth each input occurs as a branch:
Lmax
i

. For a max branch depth Db, there will be Db hidden layers, an input layer with
Nin neurons, and an output layer with Nout (regression) or Nclass (classification)
neurons in the neural network. Each hidden layer will have n(l) neurons, where

n(l) = n(l − 1) +Nb(l) (3.1)

This “copies” the previous hidden layer and adds “new” neurons for each branch
in the current level of the tree.

2: Create arrays W l of dimension n(l) x n(l − 1), l=1,...,Db, and WDb+1 with di-
mension n(Db) x Nout (or Nclass) to store initial weights. Initialize arrays to
0.

3: For each input i=0,1,...,Nin-1:
· Set W l

i,i = 1 for l < Lmax
i

. This ensures input values are passed through hidden layers until the decision
tree no longer splits on them.

4: Recurse through decision paths of the tree:
For levels l=1,...,Db:

For each node c in level l:
·Define p as the neuron created by the
parent branch
If c = branch:

. According to Eq. 3.1, a new
neuron has been added to layer l
· Initialize W l

new,p∼ N (0, σ2),
connecting branch p and new neuron
· Initialize W l

new,c∼ N (0, σ2),
connecting branch c and new neuron

If c = leaf:
· Initialize W l

p,p ∼ N (0, σ2), l=l+1 ...Db-1

· Initialize WDb
p,out ∼ N (0, σ2)

. Classification: out = neuron for the class

. Regression: out = output neurons

38

A

A B A B

x1≤t1

x2≤t2

x1≤t3 x3≤t4

l=0

l=1

l=3

l=2

x1

x2

x3

A

B

l=0 l=3l=2l=1

4

2

2

21

3 4 5

5

1 1

1

2

2

4

4

4

3

2

Figure 3.1: Illustration of the DJINN mapping for a simple decision tree. Gray neu-
rons are initially unconnected; if biases are randomly initialized to negative values,
the neurons cannot learn and are thus not included in the final DJINN architecture.

formed as follows:

1. • The maximum tree depth is Dt = 3, as indicated by the numbers l =

0, ..., 3.

• There are (1, 1, 2, 0) branches in each level of the tree

• The maximum depth at which each input occurs as a branch is given by:

Lmax
i = (2, 1, 2) for x1, x2, and x3.

2. The neural network architecture is shown in Fig. 3.1; initially all weights are

set to zero.

3. Set W l
i,i = 1 for l < Lmax

i ; this “retains” the input values through the hidden

layers until they are no longer used as branches. In the figure, this step is

39

represented by the horizontal red (labeled 1) and blue (2) connections for x1

and x3, respectively.

4. • Start with leftmost branch (red, 1). This node is a leaf, which uses x1 to

determine if the output is class A. The horizontal red connections propa-

gate the value of the parent, x1, through the hidden layers to the output

layer, then connect to class A.

• Consider the yellow path (2) in the tree:

– For l=1 the node is a branch splitting on x2, with parent x1. One

of the “new” neurons in l=1 of the neural network represents this

decision. Connect x1 and x2 to this neuron (yellow, 2).

– For l=2 there is a branch splitting on x1; connect the parent (new

neuron in l=1) and x1 to a new neuron in l=2 (yellow, 2).

– For l=3 there are two leaves, connect the parent (new neuron in l=2)

to class A (yellow, 2) and B (green, 3).

• Move to the rightmost path of the tree:

– The l=1 layer, which created a new neuron that accepts x1 and x2 in

l=1 of the network, has already been mapped.

– For l=2 there is a branch splitting on x3; connect the parent (new

neuron in l=1 of the neural network) and x3 to a new neuron in l=2

(blue, 4).

– For l=3 there are two leaves; connect the parent (new neuron in l=2)

to class A (blue, 4) or B (purple, 5).

In step 4, all “connections” are non-zero weights initialized from the Xavier nor-

mal distribution as described previously, unless already initialized to unity. Qual-

40

itatively, the algorithm maps decision paths in the tree to decision paths through

the network. Neurons which are not initially connected are randomly included in

the final architecture; all biases are randomly initialized from a normal distribution,

thus neurons with positive biases can be trained. The inclusion of extra degrees of

freedom allows for the neural network to correct for inaccuracies in the decision tree

during training.

As decision trees are sequences of logical operations, further insight into the

mapping can be gained by considering how DJINN initializes networks to solve simple

logic problems. Figure 3.2 illustrates the decision tree and DJINN mapping for three

logic operations that have unique decision tree structures: the IF, OR, and XOR

statements. The connections in the initialized DJINN networks indicate nonzero

weights and all biases are random. Gray neurons represent those that are not initially

connected, but could be included in training if randomly assigned a positive bias.

For the IF x statement, the tree contains a single decision based on the value

of x. DJINN reproduces this decision path by connecting the input x to either 0

or 1; knowing the value of x alone is enough to solve the problem. Two decisions

are needed to solve the OR problem: if x≥0 the answer is 1, otherwise it needs to

also consider the value of y. If x<0 and y≥0 the answer is 1, otherwise the answer

is 0. In the DJINN mapping of this tree, the value of x is passed directly to the

output class 1, as shown by the red connections; mimicking the left side of the tree.

To mimic the right side of the tree, both the values of x and y are passed to the

last neuron in the hidden layer, which is then connected to classes 0 and 1. The

XOR operation requires knowledge of x and y to determine the correct class. The

DJINN initialization has two hidden neurons that receive both x and y, which then

connect to the output layer. For the OR and XOR problems, the gray neurons that

are randomly included can correct for errors in the decision tree. For simple logic

41

Figure 3.2: Truth tables, decision trees, and DJINN-initialized neural networks for
logical operations IF(x), OR, and XOR. Decision paths in the tree are mapped to
paths through the neural network, indicated by color. Gray neurons are initially
unconnected; if biases are randomly initialized to negative values, the neurons cannot
learn and are thus not included in the final DJINN architecture.

42

operations, the presence of additional neurons is not necessary, but for complicated

problems the decision tree is often too simple to accurately model the data.

Since decision trees are a series of logical operations, DJINN initialization can

also be viewed as such. When a branch splits into two additional branches, there is

an XOR-like decision; when a branch splits into a branch and a leaf there is an OR-

like decision, and when a branch splits into two leaves, there is an IF-like decision.

This is illustrated in Fig. 3.1: the first decision is OR-like– the red and yellow

connections in the neural network from Fig. 3.1 match those in Fig. 3.2. The next

decision is XOR-like– the yellow and blue connections between l=1 and l=2 in Fig.

3.1 match those from the XOR in Fig. 3.2. Finally, there are two IF-like decisions,

which connect the neurons from the final hidden layer to the outputs as shown by

the blue/purple and yellow/green connections in Fig. 3.1.

Currently, the thresholds of the logical operations are tuned during training; a

potential path for improving the algorithm is to encode the decision tree thresholds

into the neural network initialization procedure.

3.3 DJINN Performance

The ease of use of the DJINN algorithm makes it an attractive method for general

researchers to create neural network-based surrogate models for complex datasets.

Unlike hyper-parameter optimization algorithms used to design neural networks

[111, 150], DJINN does not require expensive searches through high-dimensional

parameter spaces in order to determine a suitable neural network architecture and

weight initialization.

In the following sections, the performance of DJINN is compared to alternative

methods for neural network design and initialization for a variety of regression and

classification datasets. In section III A, the benefits of using DJINN as an ensemble

43

method are explored, followed by a comparison to shallow neural networks initialized

from decision trees in section III B. In section III C, the importance of the initial

topology of the DJINN weights is illustrated by comparing DJINN to other initial-

izations: densely connected topologies, and sparsely-connected initial weights that

do not leverage the dependency structure of the data learned by a decision tree. The

DJINN initialization is shown to provide a warm-start to the training process for

a variety of datasets, allowing the models to achieve higher predictive performance

than non-informative initialization techniques in a fixed amount of training time.

3.3.1 DJINN as an ensemble method

The DJINN algorithm maps a decision tree to a deep neural network with an

architecture and initial weights that reflect the dependency structure of the data

learned by the tree. In practice, ensembles of decision trees, such as random forests

[13] or extra-trees models [38] often exhibit significantly higher performance than

individual decision trees. In the ensemble approach, each tree is trained on a ran-

dom subset of the data and gains complementary knowledge about the relationship

between the input and target variables. Each tree makes its own prediction for the

target variables, and the model reports the mean prediction of the ensemble. In-

creasing the number of trees in the ensemble improves predictive performance up to

some maximum number of trees, at which point the model begins to over-fit to the

training data.

Similar to the random forest from which DJINN is mapped, the performance of

DJINN improves as the number of trees included in the ensemble increases. Figure 3.3

plots the predictive performance of DJINN as the number of tree-initialized neural

networks increases; the mean squared error (MSE) is normalized by the MSE of

the single-tree model. The bold line shows the mean value from a five-fold cross-

44

Figure 3.3: MSE (normalized by the MSE of one tree) as a function of the num-
ber of trees included in the DJINN ensemble for various regression datasets. The
performance of the model improves as the number of trees is increased.

validation score, and the error bars represent the standard deviation of the score.

The cross-validation is performed by randomly splitting the data into training (80%)

and testing (20%) groups with a fixed random seed, such that each model sees the

five same permutations of training and testing data.

Included in Figure 3.3 are three standard regression datasets: California housing

prices [102], Boston housing prices [52], and diabetes disease progression [29]. DJINN

is also tested on a novel database of inertial confinement nuclear fusion (ICF) implo-

sion simulations [74] from Chapter 2. The ICF dataset consists of 46,416 points Latin

45

hypercube sampled from a nine-dimensional input space. The output of interest is

the yield: the thermonuclear energy produced in the implosion. The yield response

surface has proved challenging to fit with common machine learning algorithms [106],

as there are many nonlinear cliff- and peak-like features that are not well resolved by

the data. A 300-tree random forest regressor [13], mentioned in Chapter 2, proved

to be the most successful model, with a mean prediction error of approximately 10%

and an explained variance score of 0.92.

The models are trained with fixed hyper-parameter settings, summarized in Table

4.1. Features in each dataset are scaled between [0,1] prior to training, but perfor-

mance metrics such as MSE and mean absolute error (MAE) are reported in unscaled

units, unless otherwise noted.

For each of the regression datasets, the error of the DJINN model decreases with

the number of trees included in the model; this behavior is characteristic of the

random forest from which DJINN is mapped. In tree-based ensemble methods, there

is typically a minimum number of trees that achieves low prediction error; adding

more trees yields diminishing improvements in performance, and eventually leads to

over-fitting. In the following sections, DJINN is always evaluated as an ensemble

method with ten trees per model.

Ensemble methods are becoming popular for various neural network applica-

tions; in particular, recent work has shown that attention models exhibit improved

performance when treated as ensembles. Attention models are popular for exploit-

ing dependencies between variables, particularly for time series and sequence data

[5, 140, 82]. Rather than using a single attention model, it has been observed that

using an ensemble of models, in which each model is initialized with a different

structure to extract complementary information from the data, often leads to supe-

rior performance [120]. This is analogous to the improvements seen in DJINN, in

46

Table 3.1: Neural network hyper-parameters used for each dataset.

Dataset # Epochs
Learn.
Rate

Batch
Size

Max. Tree
Depth

Boston housing 300 0.006 21 5
CA housing 200 0.006 826 5

Diabetes 50 0.0001 1 5
ICF Yield 300 0.008 1857 5

Iris 100 0.006 6 3
Digits 300 0.003 72 3
Wine 50 0.004 8 3

Breast cancer 100 0.006 7 4

which each neural network is initialized with a different dependency structure learned

by the trees in the random forest. The importance of this dependency structure will

be emphasized in the next sections.

3.3.2 Comparison to shallow tree-initialized neural networks

Other algorithms for mapping decision trees to two-hidden layer neural networks

are observed to act as “warm-starts” to neural network training [115, 11]. In the

first two rows of Table 3.2, DJINN is compared to two-hidden layer networks for the

regression datasets presented in Figure 3.3. The first two rows of Table 3.3 show the

performance of the models for four standard classification datasets: the iris flower

[31], digits [64], wine [32], and breast cancer [127]. DJINN and the two-hidden layer

model (abbreviated 2HL) are evaluated as ensemble methods; the trees are mapped

from ten-tree random forests, and the ensemble prediction is the mean of the ten

individual predictions. The networks are trained with the hyper-parameters summa-

rized in Table 4.1 on five fixed permutations of training and testing data to produce

cross-validation scores. The performance metrics include MSE, mean absolute error

(MAE) and explained variance (EV) for regression, and recall, precision, and accu-

racy for classification. Student’s t-tests between the MSE values for DJINN and the

47

Table 3.2: Model performances for regression tasks. The mean and standard devia-
tion of five-fold cross-validation metrics are reported for each model. The p-value is
computed with a Student’s t-test between the test MSE values for DJINN and the
other models. Bold blue values highlight comparisons in which DJINN has a lower
error than the other method with p<0.05; bold red values highlight when DJINN
has higher error than the other method with p<0.05.

Boston CA Housing
Model MSE MAE EV p MSE MAE EV p
DJINN 7.289±1.541 1.840±0.105 0.915±0.014 0.233±0.011 0.318±0.006 0.826±0.010
2HL 8.393±4.568 1.965±0.346 0.903±0.059 0.622 0.307±0.009 0.381±0.008 0.766±0.007 3.110E-06
Random-Dense 8.440±1.897 1.906±0.101 0.901±0.020 0.323 0.247±0.011 0.327±0.007 0.816±0.009 0.004
Random-Sparse 7.326±0.707 1.898±0.062 0.914±0.009 0.962 0.270±0.006 0.347±0.009 0.798±0.006 2.009E-4
Bayesian Opt. 7.556±0.815 2.034±0.068 0.910±0.007 0.740 0.305±0.011 0.377±0.012 0.772±0.006 8.470E-06

Diabetes Yield
Model MSE MAE EV p MSE MAE EV p
DJINN 3154±339.9 43.391±2.006 0.455±0.100 0.018±0.002 0.063±0.003 0.990±0.001
2HL 3108±153.3 43.456±1.381 0.421±0.043 0.787 0.031±0.005 0.088±0.012 0.983±0.003 8.380E-4
Random-Dense 3414±266.5 44.704±1.716 0.383±0.055 0.215 0.021±0.001 0.067±0.003 0.989±0.001 0.045
Random-Sparse 3045±188.5 43.783±1.268 0.461±0.061 0.547 0.049±0.007 0.111±0.011 0.973±0.003 9.880E-06
Bayesian Opt. 2376±107.1 38.895±1.519 0.584±0.044 0.001 0.023±0.003 0.081±0.008 0.988±0.001 0.020

2HL model give the p-value listed in the final column for each dataset.

DJINN has consistently higher predictive performance than the two hidden layer

model for the regression datasets; the p-values indicate the improvements of DJINN

are statistically significant for two of the four datasets. DJINN often achieves slightly

higher predictive accuracy for classification tasks, but the improvements over the 2HL

model are not statistically significant.

In general, the performance of DJINN is comparable to existing methods for

mapping trees to initialized neural networks for simple datasets, but has higher

predictive accuracy for regression tasks. As the complexity of the data increases, it

is expected that the deep structure of DJINN will have advantages over the wide,

shallow networks, which tend to require more data and time to train [43].

48

Table 3.3: Model performances on classification tasks. The mean and standard
deviation of five-fold cross-validation metrics are reported for each model. The p-
value is computed with a Student’s t-test between the test accuracy values for DJINN
and the other models. Bold blue values highlight comparisons in which DJINN has
a lower error than the other method with p<0.05; bold red values highlight when
DJINN has higher error than the other method with p<0.05.

Iris Digits
Model Recall Precision Accuracy p Recall Precision Accuracy p
DJINN 0.987±0.020 0.980±0.029 0.983±0.025 0.973±0.010 0.977±0.008 0.976±0.009
2HL 0.950±0.052 0.959±0.045 0.959±0.045 0.144 0.971±0.015 0.971±0.015 0.972±0.015 0.549
Random-Dense 0.982±0.019 0.975±0.027 0.978±0.023 0.289 0.976±0.011 0.979±0.009 0.978±0.010 0.667
Random-Sparse 0.988±0.011 0.979±0.019 0.983±0.015 0.289 0.971±0.005 0.972±0.004 0.972±0.004 0.303
Bayesian Opt. 0.980±0.015 0.980±0.014 0.978±0.016 0.147 0.964±0.021 0.965±0.021 0.965±0.020 0.240

Breast Cancer Wine
Model Recall Precision Accuracy p Recall Precision Accuracy p
DJINN 0.960±0.012 0.954±0.019 0.960±0.013 0.982±0.019 0.975±0.027 0.978±0.023
2HL 0.965±0.016 0.961±0.027 0.972±0.021 0.291 0.981±0.020 0.977±0.027 0.978±0.023 1.000
Random-Dense 0.959±0.014 0.958±0.018 0.960±0.016 1.000 0.982±0.019 0.975±0.027 0.978±0.023 1.000
Random-Sparse 0.958±0.009 0.954±0.021 0.958±0.011 0.829 0.990±0.014 0.987±0.019 0.989±0.015 0.397
Bayesian Opt. 0.982±0.005 0.983±0.004 0.985±0.003 0.003 0.989±0.016 0.992±0.011 0.989±0.015 0.397

3.3.3 DJINN as a warm-start for neural network training

Many graph-based models, including decision trees and neural networks, are

trained to learn dependency structures in the data. In unsupervised applications,

relationships between features are used to find lower-dimensional representations of

data [63]; in supervised learning, dependency structures relate the input data to out-

put quantities of interest via a series of latent representations formed in the hidden

layers of the network [73]. If an informative structure is initially imposed on the

graph, the training process can be accelerated as the imposed relationships act as

a warm-start. A common method to warm-start neural networks is the use of a

previously trained model to initialize a new model that will be trained on similar, or

additional, data. This type of warm-start is often used in transfer learning; it lever-

ages previously-discovered relationships between the inputs, latent representations

of the data, and the outputs to accelerate the training process [100].

49

The DJINN and 2HL algorithms leverage the dependency structure learned by

a decision tree, which has been trained on the data, to warm-start the training of

a neural network. By beginning the training process in a state that is primed with

dependency information between the input and output data, the tree-based models

often converge to a minimum cost in fewer training epochs than randomly initialized

networks with the same architecture.

To illustrate the importance of the DJINN weight initialization, the algorithm

is compared to other weight initialization schemes. There are two main aspects of

DJINN’s initial weight topology: the sparsity of the nonzero weights, and where the

nonzero weights are placed. To evaluate the importance of the dependency structure

imposed by the DJINN weights, the algorithm is compared to neural networks that

have no imposed dependency structure: networks with the same architecture, but

densely-connected Xavier-initialized weights. To demonstrate that it is not just the

sparsity of nonzero weights that is important, but the placement of these weights,

DJINN is compared to a network with the same architecture, but with a random,

sparse dependency structure imposed on the initial weights. The sparse-random

initialization has the same number of nonzero weights per layer that the DJINN

initialization utilizes, but with those weights placed randomly within the layer. The

initialization guarantees that every neuron has at least one nonzero incoming and

outgoing weight; this prevents the initialization from inadvertently changing the

architecture by creating neurons that are unable to learn. Like DJINN, the non-zero

weights are pulled from the Xavier normal distribution described in section II B.

The middle sections of Tables 3.2 and 3.3 show the performance of the random-

dense and random-sparse initialization schemes for the four regression and classifi-

cation datasets, respectively. Similar to the comparison between DJINN and the

2HL model, the random initializations are treated as ensemble models: each model

50

contains ten individual neural networks (for DJINN, this corresponds to ten trees,

for random initializations this corresponds to ten random seeds used to initialize and

place the weights). The prediction from the ensemble is the average of the ten in-

dividual predictions. The process of training and evaluating the performance of the

random-dense and random-sparse initializations is repeated five times, with the same

training and testing datasets used in the comparison between DJINN and the 2HL

model. The randomly-initialized networks use the same architectures as DJINN, and

are trained with the same hyper-parameters summarized in Table 4.1.

Figure 3.4 shows the training cost as a function of epoch for the regression tasks;

DJINN acts as a warm-start to the training process by consistently starting at a lower

cost than other initialization methods. Furthermore, DJINN often converges to the

lowest cost, suggesting the network is initialized near a lower local minimum than

random initializations can reach in a limited number of training epochs. The warm-

start provided by the decision tree structure leads to higher predictive performance

for DJINN in three of the four regression tasks. The improvements of DJINN over

the other initialization schemes are statistically significant for the CA housing and

yield datasets; the advantages of DJINN are less significant for Boston housing due

to the noise in the training cost versus epoch, and the differences in initialization

schemes are not significantly different for the diabetes progression data.

While DJINN achieves good predictive accuracy in classification tasks, the advan-

tages of the DJINN weight initialization are less significant. The classification tasks

considered are simpler than the regression datasets, thus the performance of various

models is less sensitive to the choice of initial weights and hyper-parameter settings.

Furthermore, the decision trees are kept shallow due to the size and dimensionality

of the datasets; this limits the amount of information mapped from the decision tree

into the initialized DJINN model.

51

The effects of limiting the depth of the decision tree for datasets with a large

number of inputs are illustrated by the digit classification task. Each digit is 64-

pixel image that are inputs for the decision tree. The decision tree will split first

on the pixel that best separates the digits, however, it is unlikely that a single pixel

can provide a significant amount of information about the class to which the image

belongs. The decision tree needs to grow deep enough to consider dozens of pixel

values before it can accurately classify the image as digit. For DJINN, the width of

the hidden layers reflects the width of the input layer; with 64 input values, the depth

of the neural network must be limited, otherwise there will not be enough data to

train the model without a severe risk of over-fitting. Table 6.5 lists example DJINN

architectures for each dataset; indeed, the hidden layers in the digit classification

model are wide compared to models with fewer input parameters.

With a limited tree depth and a large number of input parameters, the decision

paths in the tree are unlikely to contain a significant amount of information to provide

a good warm-start for the neural network training procedure. This is illustrated in

Fig. 3.5, where DJINN starts at a cost comparable to the other models for digit

classification. In contrast, the iris dataset has four input parameters and three

classes; thus the first few splits in the decision tree are able to provide valuable

information for separating the classes, and DJINN starts at a slightly lower cost

than the other models.

To handle datasets with a large number of inputs, it would be best to first send

the data through convolutional filters or an autoencoder to compress the features

into a low-dimensional, meaningful latent space. The latent variables can then be

used as inputs to DJINN to build a predictive model; this idea is explored further in

Chapter 5.

To summarize, the benefits of DJINN are most obvious when the trees are suf-

52

Figure 3.4: Cost (MSE for data scaled to [0,1]) as a function of training epoch for
regression datasets. DJINN weights are observed to start at, and often converge to,
a lower cost than the shallow network, or networks with DJINN architecture and
other weight initialization techniques.

53

Figure 3.5: Cost (cross entropy with logits) as a function of training epoch for
classification datasets.

54

ficiently deep, and the number of nodes in the tree exceeds the number of input

parameters; this results in a meaningful dependency structure in the tree that is

mapped to initial weights. These conditions are often met for regression tasks, where

the warm-start provided by the decision tree allows DJINN to achieve higher pre-

dictive performance than non-informative initial weights. Although DJINN does not

provide as significant of a warm-start for classification tasks, Table 3.3 shows that

DJINN achieves good predictive performance and has the advantage of not requiring

the user to hand-tune the architectures for each dataset.

3.4 Comparison of DJINN to hyper-parameter optimization

The utility of DJINN is its ability to be applied as a black box algorithm for

efficiently creating accurate deep neural networks for arbitrary datasets. Recently,

researchers have started developing a variety of hyper-parameter optimization tech-

niques for designing deep neural networks [151, 150, 111, 4]. These algorithms elimi-

nate the need to hand-tune architectures by searching through various combinations

of hidden layers and neurons per layer to find the best architecture for a given dataset.

Although effective, high-dimensional hyper-parameter searches can be prohibitively

expensive. For each proposed architecture, the neural network must be trained to

determine the quality of model, and unless the architecture space is restricted to a

fixed number of layers or has a constraint on the number of neurons per layer, finding

the optimal architecture can require training hundreds of candidate neural networks.

DJINN does not attempt to find the “optimal” architecture for a given dataset, it

uses an architecture determined by the structure of a decision tree. This architecture,

combined with the weight-initialization that leverages the dependency structure from

the tree, is observed to produce accurate models for a variety of datasets.

Although DJINN does not solve the same problem a hyper-parameter optimiza-

55

tion method seeks to solve, both methods attempt to improve the usability of neural

networks by reducing the number of hyper-parameters that must be specified to train

a neural network. It is interesting to see how DJINN, which only requires training a

decision tree to propose a suitable architecture, compares to a network designed via

architecture optimization.

The final sections of Tables 3.2 and 3.3 show the performance of neural networks

designed via Bayesian hyper-parameter optimization [119]. To constrain the search

space, the optimizer is restricted to neural networks with the same number of layers

used in the DJINN models, and searches for the optimal number of neurons for each

hidden layer. Table 3.4 lists five of the architectures (resulting from the five-fold

cross-validation) found via Bayesian optimization, and an example architecture from

DJINN for each of the cross-validation steps. The candidate neural networks are

trained with the same hyper-parameters summarized in Table 4.1 and are initialized

with Xavier weights. The optimizer is stopped after it has evaluated 100 architec-

tures, and the best model is used to compute the integrated performance metrics.

Consistent with the other comparisons, the Bayesian optimizer is run for the five per-

mutations of training/testing datasets to compute cross-validation scores recorded

in Tables 3.2 and 3.3.

DJINN has a higher predictive performance than the Bayesian optimizer for three

of the four regression tasks. The p-values indicate that the improvement of DJINN

over the Bayesian optimizer is statistically significant for the CA housing and yield

datasets, but the Bayesian optimizer performance is significantly better than DJINN

for the diabetes progression data. For classification tasks, the Bayesian optimizer

and DJINN perform similarly. Table 6.5 indicates that the optimization algorithm

prefers smaller networks than DJINN for classification tasks; the inclusion of too

many degrees of freedom in DJINN could explain its lower performance for the breast

56

cancer and wine classification tasks, consistent with previous discussions.

Computational efficiency is important to consider when employing hyper-parameter

optimization procedures. For the examples presented above, the hyper-parameter op-

timization algorithm evaluates 100 neural networks; this requires approximately 10x

the training time of DJINN when the ten network ensemble is trained serially, or

100x the training time of DJINN if the ten networks are trained in parallel. For the

moderate-sized datasets, hyper-parameter optimization is feasible. However, for high

volume, high dimensional datasets, hyper-parameter searches become prohibitively

expensive. DJINN remains comparatively inexpensive as the complexity of the data

increases, requiring only the construction of a small ensemble of decision trees, which

are often trained in seconds, to determine an appropriate architecture and weight

initialization. Subsequent training of the individual neural networks in a DJINN

ensemble can then be carried out in parallel, offering significant advantages over

sequential hyper-parameter optimization methods.

Overall, there is compelling empirical evidence to suggest DJINN is a robust black

box algorithm for creating accurate neural networks for a wide variety of datasets.

The advantages of DJINN are most evident in complex regression problems, where

the choice of architecture and initialization can greatly impact the predictive perfor-

mance of the model. For simple classification problems, the performance of DJINN is

comparable to other network design and weight initialization techniques. Although

DJINN is not attempting to find an optimal architecture, when compared against

hyper-parameter optimization for designing neural networks, DJINN displays com-

petitive performance while requiring significantly lower computational costs. DJINN

successfully combines the usability of decision tree models with the flexibility of deep

neural networks to produce accurate predictive models for a variety of problems.

57

Table 3.4: Hidden layer widths from DJINN and a Bayesian optimizer for each
dataset. The width of the input layer reflects the number of features in each dataset.
The output layer has a single neuron for regression tasks, and one neuron per class
for classification tasks.

Dataset DJINN Bayesian Opt.

Boston
(15,17,20,18), (15,17,20,18),
(13,15,22,27), (15,18,24,18),
(14,18,22,26)

(7,10,9,14), (7,10,8,14),
(13,14,10,7), (7,11,7,15),
(12,9,8,11)

CA Housing
(10,12,19,23), (10,11,16,25),
(10,11,19,25), (10,11,17,26),
(10,14,19,21)

(12,20,5,6), (4,17,14,16),
(5,13,16,5), (12,14,8,5),
(20,5,20,8)

Diabetes
(12,15,19,28), (12,14,19,28),
(11,15,19,28), (12,15,22,23),
(11,14,20,22)

(4,1,4,7,9), (9,9,19,7),
(18,9,10,4), (11,16,13,18),
(13,15,16,18)

Yield
(11,15,18,23), (11,14,19,21),
(10,15,22,25), (10,15,21,25),
(10,13,21,23)

(5,5,30,30), (20,12,15,5),
(22,10,23,19), (5,5,16,5),
(14,18,11,14)

Iris (5,4), (5,7), (5,5), (5,7), (4,5)
(14,6), (11,7), (13,7),
(10,8), (11,4)

Digits
(65,48), (64,33), (63,33),
(63,66), (64,23)

(17,32), (13,31), (5,49),
(5,28), (13,31)

Wine
(14,15), (15,11), (15,9),
(15,11), (13,9)

(4,11), (12,14), (7,12),
(10,12), (12,5)

Breast Cancer
(32,33,19), (32,30,18),
(32,33,23), (32,30,24),
(30,31,19)

(5,3,6), (6,5,5), (2,5,6),
(6,4,2), (5,6,4)

58

3.5 Conclusions

The flexibility and powerful predictive capabilities of neural networks are com-

bined with user-friendly decision tree models to create scalable and accurate “deep

jointly-informed neural networks” (DJINN). The DJINN algorithm maps an ensem-

ble of decision trees trained on a dataset into an ensemble of initialized neural net-

works that are subsequently trained via back-propagation. The information mapped

from the decision trees into initial weights provides a warm-start to the neural net-

work training process; thus DJINN is often observed to start at, and converge to, a

lower cost than other neural network initialization methods.

DJINN reduces the number of user-specified hyper-parameters needed to create

a deep neural network by using the decision tree structure to determine the network

architecture. When compared to hyper-parameter optimization methods for selecting

an appropriate architecture, DJINN displays competitive performance at a fraction of

the computational cost, demonstrating that an optimal architecture is not necessary

if the weight initialization is sufficiently informative.

Although formulated for fully-connected feed-forward neural networks, DJINN

could also be applied to networks that use feed-forward neural networks as part of a

more complex system. For example, DJINN could be used for image analysis tasks

after convolutional layers extract the important features. By combining the ease of

use of decision trees with the predictive power of deep neural networks, DJINN is an

attractive method for easily creating surrogate models of complex systems.

59

4. BAYESIAN ANALYSIS WITH DEEP JOINTLY-INFORMED NEURAL

NETWORKS

Like most machine learning models, “deep jointly informed neural networks”

(DJINN), presented in Chapter 3, produces point estimates for quantities of interest;

standard neural networks do not automatically provide estimates of the prediction

variance [43, 104]. In many situations we would prefer to have estimates of prediction

uncertainty– for example in safety and risk analysis, or to aid in decision-making.

When uncertainty estimates are necessary, we often turn to Bayesian surrogate

models, such as Bayesian additive regression trees [19], Gausssian processes [109], or

Bayesian multivariate adaptive regression splines [27]. Obtaining surrogate uncer-

tainty estimates using such algorithms comes at a cost— there are several challenges

associated with training Bayesian surrogates which limit their usability. Rather

than training a single model with optimal hyper-parameters, Bayesian surrogates

often involve training a distribution of models whose hyper-parameters are found via

Markov chain Monte Carlo (MCMC) sampling [40], which limits the speed at which

the model can be trained. Furthermore, as Bayesian surrogates are distributions of

models rather than single models, they can be expensive to store for later use.

There have been many research efforts dedicated to improving the usability of

Bayesian surrogates by eliminating the need for MCMC sampling; common meth-

ods include variational inference [7] and expectation propagation [92]. In this work,

an approximation to variational inference is applied to deep neural network models

to produce fast, accurate, and scalable surrogates that provide prediction uncer-

tainty estimates. In the following sections, the algorithm for training approximate

Bayesian deep neural networks is introduced and applied to various prediction and

60

inference tasks. Section 4.1 summarizes the results of the previous chapter on “deep

jointly-informed neural networks” [61], and how the inclusion of dropout in DJINN

approximates variational inference of a deep Gaussian process. In section 4.2, the

utility of training inverse DJINN models for parameter inference is illustrated with

two examples: first with a simple one-parameter inference task, then in the next

chapter, with a complex dataset of ICF simulations in which eight simulation inputs

must be inferred simultaneously from experimental observations.

4.1 Deep jointly-informed neural networks with dropout

The simulations used to model ICF experiments are computationally expensive,

thus MCMC sampling a large parameter space using simulations alone is unfeasible.

To enable rapid evaluation of the simulator, “surrogate” models are trained on a fixed

data base of simulations which span the parameter space of interest. The surrogate

is essentially a model that interpolates between the available data, providing fast

estimates of the QOI anywhere in the parameter space. Simple examples of surrogate

models include linear regression or power law models, but as the data increases in

complexity and dimensionality, more sophisticated machine learning algorithms are

often required to accurately fit the data.

Deep neural networks have several properties that make them attractive surro-

gate models; they are accurate, flexible, scalable, and are easy to update as new data

becomes available. However, the predictive accuracy of deep neural networks is often

sensitive to the choice of the network architecture and training hyper-parameters.

There are few robust guidelines for designing and training neural networks for ar-

bitrary data sets, and hyper-parameter optimization techniques are prohibitively

expensive unless the range of hyper-parameter values is highly constrained. “Deep

jointly-informed neural networks” (DJINN), discussed in the previous chapter, is

61

an algorithm designed to overcome the challenges of determining an appropriate

deep neural network architecture and weight initialization for arbitrary data sets.

DJINN builds robustly accurate neural networks by mapping decision trees trained

on the data into initialized neural networks, which are subsequently tuned via back-

propagation [61]. DJINN is used in this work because it displays robustly accu-

rate performance for a variety of data sets, and does not require extensive hyper-

parameter tuning. DJINN is employed as an ensemble method, in which a random

forest [13] of decision trees is mapped into an ensemble of neural networks.

An advantage of using deep neural network surrogates, such as DJINN, is that

estimates on prediction uncertainties are readily obtained by employing a technique

called dropout. Dropout is a popular regularization technique for deep neural net-

work training; it requires randomly removing a small subset of neurons from the

network each training epoch, preventing the network from over-fitting to the training

data [124]. Gal et al. [36] recently demonstrated that sufficiently large neural net-

works with dropout approximate deep Gaussian processes [109, 35, 37]. The method

for extracting uncertainty information from the neural networks requires dropout

to be employed after each layer of the network during the training and evaluation

stages. Evaluating the network many times samples the neural network model space,

building up a distribution of predictions which approximates variational inference of

a deep Gaussian process. Since DJINN is often employed as an ensemble method,

the model space that gets sampled when using dropout with DJINN is larger than a

single neural network with dropout; recent work has shown that such ensemble meth-

ods, while not strictly Bayesian, yield prediction uncertainties that behave similarly

to Gaussian process methods[103].

To evaluate the efficacy of DJINN with dropout as an approximately Bayesian

model, the performance of Bayesian DJINN (B-DJINN) is compared to several

62

other Bayesian surrogate models: Bayesian multivariate adaptive regression splines

(BMARS) [27], Bayesian additive regression trees (BART) [19], and Gaussian pro-

cesses (GP) with radial basis function (RBF) kernels. The optimal length scale in

the RBF kernel in the GP is found by maximizing the log-marginal likelihood using

the L-BFGS-B algorithm [80]. The optimal length scales for each data set are: 0.215

for logistic, 0.138 for Boston housing, 0.152 for diabetes, and 0.223 for the yield data

set. Table 4.1 summarizes the hyperparameters for the B-DJINN models, includ-

ing a representative architecture from the ensemble of five neural networks, and the

training parameters. The dropout rate was set to 5% for all of the networks, and the

weight regularization coefficient is set to 10−6.

The models are compared on four regression tasks: the Boston housing [52] and

diabetes progression [29] data sets are common test problems for regression. The

logistic data set is generated by varying x and k in the logistic function and adding

Gaussian distributed noise to compute f(x, k):

f(x, k) =
1

1− exp(−kx)
+N(µ = 0, σ2 = 0.01). (4.1)

The data set contains 1000 randomly sampled points with x sampled between

(-1,1) and k sampled between (0,10). The yield data set is a set of 5000 Latin

hypercube sampled [87] ICF implosion simulations that span a 4D simulation input

space. The implosions are simulated with the multi-physics code HYDRA [86], and

the primary QOI in the database is the yield– the thermonuclear energy produced

in the implosion. Each data set is split into an 80% training set and 20% test set,

and the inputs are scaled between [0,1] prior to training.

To evaluate the accuracy of each model, the mean squared error (MSE), mean

absolute error (MAE), and explained variance ratio (EV) are computed using the

63

Table 4.1: Hyperparameter for B-DJINN models.
Architecture Learning rate Epochs Batch size

Logistic 4, 6, 13, 20 0.004 500 30
Boston 13, 12, 20, 23 0.004 600 10

Diabetes 10, 13, 18, 3 0.004 300 18
Yield 5, 7, 13, 23 0.002 1000 400

mean predictions for the test data set. These metrics do not take into account the

uncertainties in the predictions, thus to compare the overall accuracy and precision

of each model, the normalized sum of absolute errors is computed using the following

equation:

1

Ndata ·Npred

Ndata∑
i=1

Npred∑
j=1

|Yj(xi)− Ti|, (4.2)

where Ndata and Npred are the number of data points and predictions, respectively,

Yj(xi) is the jth prediction for the data point xi, and Ti is the true value at point

xi. This metric is large for models that are inaccurate and have wide distributions

of predictions, and small for accurate models with low uncertainties. Table 7.1

summarizes the performance metrics for each of the regression data sets.

B-DJINN with dropout displays similar performance to other Bayesian regres-

sion algorithms, both in terms of its average accuracy and according to integrated

metrics which take into account the uncertainty in the model predictions. B-DJINN

offers some distinct advantages over models such as BMARS and BART – it does

not required MCMC sampling and thus B-DJINN can be trained more efficiently,

and it is easier to save and evaluate at a later time as it does not require the full

distribution of models to be saved. To illustrate the quality of the B-DJINN model

fits, Fig. 4.1 compares the Gaussian process to B-DJINN for the logistic function

64

Table 4.2: Performance metrics for B-DJINN and several Bayesian regression models
for four data sets. The MSE, MAE, and EV are computed using the mean predictions
for the test data sets. Bold values indicate the best value of each metric. B-DJINN
shows similar performance to the other Bayesian surrogates.

Logistic Boston
MSE MAE EV NSAE MSE MAE EV NSAE

B-DJINN 3.171e-4 0.014 0.998 0.038 5.359 1.743 0.913 2.068
GP 9.023e-4 0.008 0.992 0.098 22.62 3.042 0.716 3.122
BART 1.292e-4 0.008 0.999 0.098 15.42 2.574 0.690 3.274
BMARS 2.495e-6 0.002 0.999 0.01 18.57 2.867 0.637 2.602

Diabetes Yield
MSE MAE EV NSAE MSE MAE EV NSAE

B-DJINN 2935 40.82 0.405 45.82 0.002 0.034 0.998 0.065
GP 5451 60.65 0.257 60.66 0.001 0.021 0.996 0.127
BART 3379 47.11 0.466 47.02 0.002 0.032 0.995 0.038
BMARS 2142 38.47 0.638 49.70 0.001 0.032 0.998 0.015

data set. B-DJINN fits the logistic data set with lower mean error than the Gaus-

sian process and displays lower levels of uncertainty, particularly at the boundaries

of the data set. Unlike many Bayesian surrogates that require MCMC sampling the

model space, Gaussian processes and B-DJINN are not limited by the scalability and

computational costs of MCMC, and are thus efficient to train and evaluate. However,

B-DJINN requires significantly less storage space (880 KB) than GP model (18 MB)

and scales well to large databases. Traditional Gaussian process models are often

limited to a few thousand training points, as the standard model requires a matrix

inversion that becomes prohibitively expensive for large data sets, though there have

been efforts to overcome this challenge [144, 55]. The speed, scalability, and accuracy

of B-DJINN makes it an attractive model for performing challenging parameter in-

ference tasks. In the next section, B-DJINN inverse models are compared to Monte

Carlo sampling of B-DJINN and Gaussian process forward models for inference tasks

65

Figure 4.1: Predicted values of the logistic function with added noise plotted against
the true values. The error bars indicate the 25th and 75th percentiles, the colored
points indicates the 50th percentile. B-DJINN (right) is more accurate and precise
than the Gaussian process (left), particularly at the boundaries of the data.

for inertial confinement fusion data.

4.2 Inverse models with B-DJINN

In complex experiments there are often input conditions to the system that are

not directly controlled or measured, and must be inferred with physical models that

relate the unobservable and observable quantities. Determining a set of unknown

inputs which correspond to a set of observed outputs is a common task in Bayesian

analysis; unknown parameters are typically inferred by MCMC sampling the “for-

ward” surrogate model– the model that maps from input to output space– to identify

sets of inputs that are consistent with observations.

Rather than MCMC sampling the forward model, B-DJINN models can be trained

to map directly from output to input space, this concept is illustrated in Figure 4.2.

The inverse mapping is often degenerate; this is reflected in the uncertainty of the

66

Figure 4.2: Forward (left) and inverse (right) deep neural network models. The
forward model maps from simulation and experimental inputs to observables; the
inverse model maps from observables to inputs.

B-DJINN predictions. The degeneracy of the inverse model can be reduced by in-

cluding a large number of observables in the output space– knowing more about the

experimental outcomes aids in constraining where the experiment is located in simu-

lation input space. Although the inverse models can suffer from large uncertainties,

they provide rapid estimates of the simulation inputs consistent with the observables,

which can then be confirmed by evaluating the forward surrogate.

To demonstrate the utility of training inverse models for inference tasks, MCMC

sampling the forward model is compared to the inverse model predictions for the

logistic function dataset. Given ten random values of x and the corresponding value

of f(x, k), the task is to infer the value of k. The forward B-DJINN and Gaussian

process models are MCMC sampled using the Metropolis-Hastings algorithm [53]

67

to find the values of k consistent with the observations of x, f(x, k); the resulting

distributions are shown in blue (B-DJINN) and green (GP) for various true values of k

in the left side of Fig. 4.3. These distributions can be compared to the inverse model

predictions of k that are generated by training a B-DJINN model to map directly

from (x, f(x, k)) to k, then evaluating the inverse model with the ten available

observations and collecting the predicted values of k into a distribution. The black

points on the plot indicate the true value of k.

The MCMC sampled DJINN model provides the most accurate and precise pre-

dictions for k. Although the inverse model displays high uncertainties, the mean

value of its prediction is close to the true value of k away from the boundaries of

the dataset. The inverse model prediction is acquired in a fraction of the time re-

quired for MCMC inference, and although uncertain, the mean prediction is accurate

enough to be used as a starting point for the MCMC sampling to accelerate conver-

gence. The right side of Fig. 4.3 demonstrates the utility of using the inverse model

prediction to warm-start sampling for k=9. The MCMC chain converges within 3000

MCMC samples when initializing the chain at the inverse model mean prediction for

k; randomly initializing the chain takes over 100,000 samples to converge.

Although this is a simple inference task in which only a single parameter is

unknown, the methodology is readily extended to high-dimensional inference tasks.

As the number of parameters that need to be inferred increases, the advantages

of using an inverse model to approximate the values of the unknown parameters

become significant. MCMC sampling in high-dimensional spaces can be prohibitively

expensive, and starting the chain near the true value can greatly reduce the time

spent searching the space.

68

Figure 4.3: Parameter inference with inverse models and MCMC sampling forward
models. Left: B-DJINN, Gaussian process (GP), and an inverse model are used
to infer k given values of x, f(x, k). Right: Inverse model estimates accelerate the
convergence of a Markov chain by initializing the search near the true value. The
shaded region indicates the 25th and 75th percentile from the distribution of inferred
values of k, and the solid line indicates the median value.

4.3 Conclusions

“Deep jointly-informed neural networks” is a novel algorithm for designing and

initializing neural networks by leveraging information contained in a decision tree

trained on the data. DJINN is readily cast into an approximate Bayesian framework

via the inclusion of dropout, which has been shown to approximate deep Gaus-

sian process models. The Bayesian formulation of DJINN displays competitive per-

formance with several standard Bayesian regression algorithms, but is significantly

faster to train, easier to store and reload for later use, and faster to evaluate than

traditional Bayesian models.

B-DJINN is used to train inverse models for efficient parameter inference, and

provides accurate mean estimates of inferred parametes without requiring expen-

sive MCMC sampling. In the next chapter, we apply this methodology to per-

69

form advanced post-shot analyses of ICF experiments. Post-shot analyses are high-

dimensional parameter inference tasks for which MCMC sampling is prohobitively

expensive; inverse models offer an efficient and accurate approach to parameter in-

ference for ICF data with low computational cost.

70

5. AUGMENTING POST-SHOT ANALYSIS WITH DEEP NEURAL

NETWORKS

In the previous chapter, DJINN with dropout is used for parameter inference

tasks for simple examples. Parameter inference is a common challenge for indirect

drive ICF, as many simulation inputs are not directly controlled or measured, and

thus must be inferred based on experimental observations. The process of inferring

the simulation inputs that are consistent with experiential measurements is often

referred to as a “post-shot” analysis for ICF experiments [60, 99].

Post-shot analyses are critical to understanding ICF implosions; many physical

quantities (such as hotspot pressure, or applied laser drive asymmetries) cannot be

explicitly measured, and thus must be inferred from post-shot simulations. However,

there are often multiple sets of simulation inputs that produce results that are com-

parable to experimental observations, and analyzing a single post-shot solution can

lead to incorrect conclusions about the experiment.

Traditionally, post-shot analyses are performed by varying a small number of

simulation inputs manually until the simulation outputs fall within the experimental

uncertainties for a few important quantities of interest. This is a slow procedure

and often only one set of simulation inputs is found, when in fact there could be

several combinations of simulation inputs that are consistent with the experimen-

tal measurements. Inverse models can improve the current approach to post-shot

analysis by finding the distribution of simulation inputs that are consistent with an

experiment. Inverse models trained on the appropriate database of ICF simulations–

one which encompasses the experimental observations– are easy to evaluate and can

include a large number of observables to better constrain the distributions of inferred

71

inputs.

In the following sections, deep neural network inverse models created with DJINN

are used to perform efficient post-shot analysis of NIF [93] experiments. In sec-

tion 5.1, we present a straightforward application of inverse models to infer eight

unknown input parameters of a specific experiment. In section 5.2, we introduce

deep neural network auto-encoders for dimensionality reduction and describe how

they can be used to improve inverse models for ICF data. We then present an exam-

ple post-shot analysis of a NIF experiment using auto-encoders coupled with DJINN

forward and inverse models, and conclude with avenues of future work analyzing

other data from other high energy density experiments in sections 5.3 and 5.4.

5.1 Inverse model inference of unknown inputs in NIF experiments

Post-shot analysis with B-DJINN is tested using a database of ICF implosion

simulations designed to encapsulate the NIF experiment N170109 [137, 14]. The

database used to train the B-DJINN models contains 60,000 HYDRA simulations

that are Latin hypercube sampled from an 8D input space. The inputs include several

engineering features that are present in the experiment: the amplitude and width of

a fill tube, a small tube used to fill the capsule with DT gas [85], and a tent– a thin

membrane that holds the capsule in place within the hohlraum [96]. The inputs also

include effects that could cause performance degradation in the implosion, including

carbon mix of the ablator into the DT fuel, and extra energy in the fuel prior to

the implosion (preheat). The final three inputs are characteristics of the experiment

that are controllable– the energy scale, which is a scale factor for the laser energy

and fuel capsule size, the peak multiplier, which describe the energy and power of

the laser, and the amount of dopant added to the ablator.

As a demonstration, four observables commonly matched in post-shot analyses

72

are used to infer the simulation inputs. The observables include: neutron yield

(log10(Neutrons)), which is the number of fusion neutrons produced during the im-

plosion, ion temperature (T ion), which is inferred using the width of the neutron

birth spectra [94], bang time, which is the time of peak neutron production, and the

down scatter ratio (DSR), which is the ratio of lower to higher energy neutrons in the

observed spectrum [54]. The observables are used to train inverse models that map

from the 4D output vector to the 8D simulation input vector. The mapping is degen-

erate, but it serves as an illustrative example as to how unconstrained the simulation

inputs are when only matching a small number of experimental observables.

The inverse models are tested on a simulation for which the true inputs and

outputs are known. The four observables are Gaussian distributed about the true

value with uncertainties typical for experiments; these distributions are shown in

blue in Fig. 5.1. The distributions of observables map into distributions of 8D input

vectors via the inverse B-DJINN model. Figure 5.2 illustrates the resulting simulation

inputs from the inverse model, shown in red; the black lines in the figure indicate

the true values of the simulation inputs. The inverse model has non-negligible error

in its predictions; it is therefore expected that some of the simulation inputs are

not actually consistent with the known outputs. The red input distributions are

passed through the forward model, resulting in the red output distributions shown

in Fig. 5.1. As expected, the red “inverse + forward” distributions are broader than

the true output distributions due to the error in the surrogate models.

An alternative approach to inverse modeling is MCMC sampling the forward

distribution to locate simulations whose outputs fall within the blue distributions

indicated in Fig. 5.1; the resulting set of inputs are shown in blue in Fig. 5.2. The

inputs are much more constrained in the inverse mapping predictions, which is at-

tributed to the error of the inverse surrogate. Due to the degeneracy of the problem,

73

it is challenging to train an accurate model to predict eight inputs given values of

four observables, and the model predictions trend toward the mean of the training

data when relationships between the inputs and outputs are not constrained. This is

shown clearly in the inference of the fill tube width, which is unconstrained according

to the MCMC result, but is predicted to be the mean value of the training data by

the neural network.

The same procedure can be used to infer simulation inputs most consistent with

observations from an actual ICF experiment, referred to as N170109 [14]. Figure 5.3

shows the distributions of the outputs, and Fig. 5.4 the corresponding simulation

inputs. As shown in Fig. 5.3, in order to find simulations that are consistent with

the observations, the range of acceptance was expanded to be within 2% of the

mean value for yield, and within 3 standard deviations of the mean for the ion

temperature– otherwise it is not possible to find simulations that match all four

observables simultaneously. The mean values of the inverse model predictions are

similar to the MC matches for many of the inputs, though the inverse models under-

estimate the uncertainties. The energy scale and dopant have known values of 1.0

and 0.0023 in the experiment; the inverse model predicts both quantities with low

error.

5.2 Neural network-based post-shot analysis of ICF experiments

In the previous example, eight simulation inputs are inferred using four scalar

observables from an experiment. The inverse problem is highly degenerate; four

observables are not sufficient to constrain the eight inputs, thus the inferred input

distributions are broad. To better constrain the input parameters, more observables

need to be included in the post-shot analysis. However, adding more inputs to a

neural network adds more degrees of freedom via the increased capacity of the input

74

Figure 5.1: Distributions of simulation outputs from a simulation-only inference test.
Blue distributions indicate the true values, red distributions are those found by first
using the inverse model to map the blue distributions to simulation inputs, then
using the forward model to map back to simulation outputs; error in the inverse
model leads to broadening of the output distributions.

75

Figure 5.2: Distributions of simulation inputs. Red distributions are those found via
the inverse model, blue distributions are those found by MC sampling the forward
model, and accepting simulations whose outputs fall within the black dashed lines
in Fig.5.1. The bold black line indicates the true value of the input.

layer, and therefore requires more training data that may not be available due to the

computational expense of ICF simulations.

Many observables available in ICF experiments contain redundant information;

X-ray images and neutron spectra are recorded from various lines of sight, temper-

atures and other QOI are measured using various diagnostics, etc. . We therefore

expect that the suite of several dozen observables can be compressed down to fewer

more fundamental numbers that efficiently summarize the experimental measure-

ments. There are many dimensional reduction algorithms that leverage correlations

in datasets to compress information into a low-dimensional representation. We con-

sider the use of autoencoders, a particular type of neural network, to compress a set

of experimental observables from ICF experiments into a low dimensional “latent

space”. The next subsection describes autoencoders in detail, followed by an exam-

76

Figure 5.3: Distributions of observables for N170109. Blue distributions indicate the
experimental values, red distributions are those found by first using the inverse model
to map the blue distributions to simulation inputs, then using the forward model to
map back to simulation outputs; error in the inverse model leads to broadening of
the output distributions.

77

Figure 5.4: Distributions of simulation inputs consistent with observables for
N170109. Red distributions are those found via the inverse model, blue distribu-
tions are those found by MCMC sampling the forward model. The limits on the
x axes indicate the boundaries of the simulation data upon which the models were
trained; values outside of these limits are extrapolations and thus are not considered
reliable.

78

ple of how autoencoders coupled with DJINN models can be used to improve neural

network post-shot analyses by reducing the degeneracy of the inverse models.

5.2.1 Autoencoders

An autoencoder is a neural network designed to nonlinearly compress data with

minimal information loss. Autoencoders are straightforward variations of traditional

neural networks that have a characteristic hourglass-like shape, illustrated in Fig.

5.5. For example, a simple autoencoder is a fully-connected feed forward neural

network that takes as an input a large vector of data, and nonlinearly compresses

the data through hidden layers with a decreasing number of neurons per layer until

a bottleneck layer is reached. This bottleneck layer is often referred to as the “latent

space”; it is a low-dimensional representation of the original vector of data that was

input to the network. The network from the input layer to the bottleneck layer is

the “encoder”; it encodes the large vector of data into the low-dimensional latent

space. The second half of the network is often a mirror image of the first half,

but with different weights; it decompresses the data one layer at a time until the

output layer, which is the same size as the input layer. This half of the network

is the “decoder”; it takes the latent space vector and decompresses it to get back

the original vector that was input to the encoder. The autoencoder is trained by

minimizing the reconstruction error between the input vector and the output vector,

while forcing the data to go through the low-dimensional latent space.

Autoencoders do not have to be fully-connected neural networks; often convolu-

tional layers are used to construct autoencoders for image data, and recurrent layers

for sequential data. We will explore the use of recurrent autoencoders for ICF time

series data in a later chapter, but for scalar ICF data we will focus on standard

fully-connected autoencoders like that illustrated in Fig. 5.5.

79

Figure 5.5: Example autoencoder architecture. The top half of the network, the
encoder, compresses the observables into a lower-dimensional latent space. The sec-
ond half of the network, the decoder, decompresses the latent space to get back the
original vector of observables.

80

5.2.2 Augmenting post-shot analyses with autoencoders and DJINN

Inverse models for post-shot analysis suffer from the degeneracy of the inverse

problem. To reduce degeneracy, many observables need to be included to constrain

the distributions of inferred input parameters. The challenge of including several

dozen observables is the amount of data required to train a neural network with

a large number of input parameters, and therefore a large number of degrees of

freedom. Autoencoders enable us to include many observables in the inverse models

without adding a significant number of inputs to the inverse DJINN model, keeping

the training data demand moderate.

We can combine autoencoders and DJINN models to perform neural network-

augmented post-shot analysis for NIF experiments. Figure 5.6 illustrates the work-

flow for performing post-shots. Experimental observables are passed through the en-

coder to compress the data into a low-dimensional latent space. An inverse DJINN

model is trained to map from the latent space (y) to the input space (x) to produce a

distribution of predictions for the simulation inputs that are consistent with the ex-

perimental observations. The mapping from experimental observations to simulation

inputs is the standard post-shot problem. Next, the simulation inputs are passed

through a forward DJINN model to get back a distribution of latent space vectors,

which can be decoded to produce distributions of simulation observables. Ideally, the

distribution of simulation observables would match the initial distributions of experi-

mental observables; however, in practice these distributions will be slightly different.

The DJINN models and autoencoder introduce error which will increase the vari-

ance of the observable distributions, in addition to error that reflects the fact that

the simulations and experiments are often inconsistent with one another. Although

it is not possible to decouple the error due to the neural networks and the error due

81

Figure 5.6: Workflow for performing neural network-augmented post-shot analysis.
Experimental observables are mapped into the latent space using the encoder net-
work. An inverse DJINN model maps from the latent space representation to the
simulation inputs, producing the set of inputs that are consistent with the exper-
imental observations. The inputs can then be passed through the forward DJINN
model and decoded via the decoder to give back the set of simulation observables
that are most consistent with the experimental observations.

to the simulations themselves, this workflow enables us to quantify the error between

our best-matching post-shot simulations and the experimental observations.

To illustrate the improvements including a large number of observables provides to

a post-shot analysis, we will compare the post-shot analysis using the above workflow

to a simple inverse model post-shot analysis with the four scalar observables included

in Figures 5.4, 5.3– the yield, ion temperature, bang time, and down scatter ratio.

The two workflows are summarized in Fig. 5.7.

To illustrate the improvements autoencoders offer for post-shot analysis, consider

the same test simulation from Figures 5.1-5.2. Rather than using inverse models to

82

Figure 5.7: Autoencoder-based post-shot analysis (left) and simple inverse model
post-shot analysis (right).

find post-shot simulations which are consistent with only four observables, inverse

models built with the autoencoder find simulations which are consistent with all 45

observables included in the latent space. Figure 5.8 shows the distributions of four of

the observables, and Fig. 5.9 shows the corresponding post-shot simulation inputs.

Requiring post-shot simulations to be consistent with a set of 45 observables

results in more accurate and precise predictions of the simulation inputs from the

inverse models, as shown in Fig. 5.9. Although there is still error accumulation from

the forward and inverse models, resulting in some post-shot simulations which have

observable values slightly outside the range of the true experimental uncertainties,

shown in Fig. 5.8, the error is significantly lower than that in Fig 5.1.

The inverse modeling approach to post-shot analysis performs best when a large

number of observables are used to constrain the simulation inputs; when matching

only a small number of observations the mapping is highly degenerate, and MCMC

sampling the forward model yields better results. Although including a large num-

83

Figure 5.8: Distributions of simulation outputs from a simulation-only inference test.
Blue distributions indicate the true values, red distributions are those found by first
using the latent space inverse model to map the blue distributions to simulation in-
puts, then using the forward model to map back to the latent space, which is decoded
to produce simulation outputs. The latent space post-shot analysis locates simula-
tions which agree well with experimental observations, without requiring expensive
MCMC sampling.

84

Figure 5.9: Distributions of simulation inputs. Red distributions are those found via
the inverse model which maps from the latent space (composed of 45 observables
compressed to 10 latent parameters) to the simulation input space. The bold black
line indicates the true value of the input. The latent space post-shot analysis results
in better-constrained and more accurate values for the simulation inputs which are
consistent with experimental observations, and does not require expensive MCMC
sampling of the forward model.

85

ber of observables in the inverse models does not remove all of the degeneracy, it

does improve the inverse model accuracy significantly. Furthermore, when matching

several dozen observables MCMC sampling can be prohibitively expensive, thus in-

verse models augmented with autoencoders offer a promising alternative to MCMC

sampling when searching high dimensional spaces for inverse solutions.

5.3 Post-shot analyses of HED experiments

The same methodology applied to post-shot analysis of indirect drive ICF ex-

periments can be extended to other experimental platforms which rely heavily on

computer simulations for design, such as high energy density experiments carried

out at the NIF. The autoencoder-based post-shot analysis is being applied to the

analysis of emission spectra from materials at extreme conditions to infer physical

quantities, such as temperature or density. This work is ongoing, and the results

presented are preliminary.

Autoencoders are used to compress emission spectra to low-dimensional latent

space representations, which can then be used to train a DJINN model which relates

the latent space to physical quantities of interest. Figure 5.10 illustrates an example

spectrum and its reconstruction from a database of simple ICF implosions with Ge

in the ablator, modeled with the multiphysics code Cretin [114]. Cretin uses detailed

atomic physics calculations to determine the expected emission spectra that would

be observed in an experiment with specified physical conditions. Thus far, we have

demonstrated the ability to train autoencoders and DJINN models using a database

of approximately 70,000 Cretin simulations which span a 10D input parameter space.

The autoencoders compress the 250-energy bin spectra into a 10D latent space with

less than 3% mean reconstruction error. The inverse DJINN models which map the

10D latent space to the 10D input space are not as accurate as necessary for mean-

86

Figure 5.10: A few examples of the true Ge emission spectra (solid black) and the
reconstructed spectra (dashed red) after passing through a 10D latent space autoen-
coder.

ingful applications to experimental data; however, recent improvements to the Cretin

code could improve the quality of these models in the future. Figure 5.11 illustrates

the quality of the inverse model predictions for the physics parameters given an input

spectrum. The true values of the physics parameters are shown in black, the blue

distributions are the DJINN predictions. DJINN is able to consistently predict many

of the physics parameters accurately (such as tempatures, and mix regions), but is

unable to predict features such as the filltube, or the outer radius of the fuel.

87

Figure 5.11: Example set of inferred inputs given the emission spectrum in the top
left of Figure 5.10. N and T are the densities and temperatures in three distinct
regions of the fuel, mhot is the mass of the hotspot, mix is the amount of mix in
the region outside of the hotspot, mixhot is the mix in the hotspot, theta is the
size of a filltube perturbation, mCH is the mass of the ablator, and Rmax is the
outer radius. The red dots indicate the boundaries of the 10D space that the Cretin
database spans, the true values of the parameters are indicated in black, and the
blue distributions are the inferred values from the DJINN inverse model.

88

5.4 Conclusions

Ensembles of deep neural networks with dropout are used as approximate Bayesian

models to perform post-shot analyses for inertial confinement fusion experiments.

Inverse models, which map directly from output to input space, are compared to tra-

ditional MCMC sampling of the forward model for post-shot analysis. The inverse

models suffer from large uncertainties when constrained by only a few outputs, but

the benefits of using inverse models become evident when searching for post-shot

simulations which match a large number of experimental outputs.

Autoencoder neural networks are used to compress a large number of observables

into a lower dimensional representation of the data, and inverse models are trained

to map from this low dimensional “latent” space to the simulation inputs directly.

Autoencoder augmented post-shot analyses enable the best post-shot simulations

to be found rapidly, by simply evaluating a neural network multiple times. This

approach is much more efficient than MCMC sampling a forward model, which can

be prohibitively expensive when searching high dimensional parameter spaces for

solutions that are consistent with several dozen experimental outputs.

Neural network-based post-shot analyses offer a promising approach to interpret-

ing ICF experiments, as they provide uncertainty estimates on the inferred simulation

inputs, and thus can be used to establish the relative likelihoods of certain hypothe-

ses explaining the experimental data. Furthermore, neural network-based inverse

modeling can be applied to a variety of problems beyond ICF; as an example we

have applied these technologies to other high energy density experimental platforms.

However, such analyses will not yield reliable results if the simulation database does

not properly encapsulate the experiments of interest. Advanced sampling techniques

that specifically search for regions of parameter space that are consistent with the

89

experimental data could improve the design of databases upon which the surrogate

models are trained for future post-shot analyses. Alternatively, it could be the case

that the simulator is incapable of producing results consistent with observations from

an experiment; in this case it might be more useful to pursue model calibration in

order to make more predictive models; this is explored in the next chapter.

90

6. TRANSFER LEARNING TO MODEL INERTIAL CONFINEMENT FUSION

EXPERIMENTS

In the previous chapter we presented neural network-based post-shot analysis of

ICF and other HED experiments performed at NIF. The goal of a post-shot analysis

is to find the simulation inputs that are most consistent with experimental measure-

ments, carried out after the experiment has been performed. Post-shot analyses are

often necessary for NIF experiments as most high fidelity simulations only model

the capsule, and inputs for these simulations are not controllable or directly mea-

surable in experiments. The primary unknown input for capsule-only simulations

is the radiation drive. Hohlraum simulations produce an approximate drive for the

capsule, but due to the expense of high resolution simulations, this drive is often

an approximation of what occurs in experiments, and must be adjusted by inferring

drive multipliers using post-shot techniques.

Post-shot analyses assume that the simulator is correct and capable of making

predictions consistent with the experiment, if the correct inputs can be determined.

This assumption does not always hold, and due to the vast number of inputs to

the simulation and the large uncertainties in some experimental measurements, it

is difficult to define what it means to find a set of inputs that are “consistent”

with experimental observations. It is possible that the simulator is incorrect, and

an exhaustive search for the best post-shot simulation will yield outputs that are

inconsistent with at least some of the experimental measurements. Currently, well-

tuned post-shot simulations often match on the order of 10 experimental scalars

within the experimental uncertainties [33]. Post-shots are useful for understanding

an experiment after the fact, but because simulation inputs are inferred on a shot-

91

by-shot basis and the inputs are not necessarily consistent across shots, they do not

always aid in predicting the outcome of future experiments.

If instead we assume the simulator has error, we can take an alternative ap-

proach to creating a more predictive model. This approach is often referred to as

model calibration – using experimental data to “calibrate” an inaccurate surrogate

to produce a model which is more consistent with reality. Model calibration is a

broadly-researched topic [139, 128, 12], with the most popular technique developed

by Kennedy and O’Hagan [67]. In this approach, the true model (Ytrue(x)) is assumed

to be an additive combination of a simulator (Ysim(x)) and an unknown discrepancy

term (δ(x)), as shown in Eq. 6.1, which must be determined with experimental data.

The form of this discrepancy term must be specified by the user, however, and the

complexity is limited by the amount of experimental data that is available.

Ytrue(x) = Ysim(x) + δ(x) (6.1)

Researchers have explored Bayesian calibration with discrepancy terms for ICF

data [33]; however, these techniques require the simulation and experiment share the

same inputs. In the case of NIF data, a subset of experimental observables are used

to infer the simulation inputs, while observables not included in this inference step

are calibrated with a discrepancy term. This method suffers from high degrees of

degeneracy, as the input parameter inference and discrepancy term calibration terms

can compensate for one another, increasing overall uncertainties in predictions. In

this work, we propose a non-parametric model calibration technique, referred to as

“transfer learning”, for calibrating ICF models.

Traditional machine learning models gain knowledge by observing large quantities

of labeled data. For example, if the task is to classify photos of animals, a model

92

will need to be exposed to millions of labeled images of all the animals it is expected

to classify, in a variety of different scenarios, colors, perspectives, etc, in order to

classify the animals correctly. Supervised learning tasks are straightforward to solve

when large quantities of data are available; however, many of these techniques break

down when limited to small sets of labeled data.

Transfer learning is an alternative learning technique that can help overcome

the challenge of training on small datasets. Transfer learning is a method for using

knowledge gained while solving one problem, and applying it to a different, but

related problem. This approach is most commonly used for image classification

tasks [58, 101, 147] , for which there are many large databases of labeled images [26,

30, 47]. There are several neural networks that have already been trained on such

datasets that are available for download, such as AlexNet [73] and Inception [132],

which can take several weeks on dozens of GPUs to train from scratch. These neural

networks have been studied extensively, and they appear to learn how to recognize

images in a logical series of steps as the hidden layers of the network are traversed.

First, the networks often search for edges in the images, then for simple geometric

patterns, and eventually they begin to recognize specific characterstics, such as eyes,

arms, ears, etc. In general, the deeper layers of the network focus on finer details

in the images. It is thus expected that neural networks trained on any large image

dataset are learning about features common to all images (edges, shapes, contrast) in

the early layers of the model. It thus seems reasonable to take the first few layers of

one of these pretrained neural networks, freezing them, and then retraining the last

few layers of the network on a new set of images for a distinct classification task. The

old frozen layers teach the network to “see”; the last few layers teach the network

to “recognize” specific types of images. Transfer learning is the process of taking a

network trained on a large dataset, freezing the first several layers of the network,

93

then retraining the last layers on a different, often smaller dataset. As an example

relevant to ICF, researchers in the NIF optics group have used transfer learning on

AlexNet and Inception to classify images of different types of damage that occur on

the optics at NIF. There are not enough labeled optics images to train a network

from scratch, but transfer learning on a network trained on ImageNet [26] has proved

to be a huge success. This methodology has enabled the group to automate their

damage inspection by letting the network process the images of optical componnets,

rather than having an optics expert inspect each image manually [65].

In ICF it is often the case that we do not have enough experimental measurements

to train a machine learning model on the experimental data alone. We are not

interested in image classification for our implosions, so traditional transfer learning

using a pre-trained open-source model is not appropriate. However, we do have the

ability to create massive databases of ICF simulations, which we suspect are a good

reflection of reality, but need to be tuned to be more consistent with experiments.

We therefore propose the use of transfer learning as a non-parametric approach for

calibrating a simulation-based neural network to experiments. The general approach

is illustrated in Figure 6.1: train a neural network on simulation data to relate

simulation inputs to observable outputs. Freeze many of the layers of the neural

network, but leave some open for re-training. Retrain these available weights using

the sparse set of experimental data for which the inputs and output observables are

known. Similar to how image-based neural networks learn to “see” in early layers

of the network, the first few layers on a network trained on ICF simulation data

might learn the low-order shape of the response surface. The last few layers would

then be minor perturbations to this surface, which can be adjusted to align with

experimental observables when experimental data is limited.

We will test the feasibility of using transfer learning to produce neural networks

94

Figure 6.1: To transfer learn from simulations to experiments, the first three layers of
the simulation-based network are frozen, and the remaining two layers are available
for retraining with the experimental data.

95

that accurately predict the outcomes of ICF experiments. This idea requires the

inputs and outputs be similar for both simulations and experiments, which makes

it challenging to apply this technique to NIF datasets. We often model NIF exper-

iments using capsule-only simulations, as they can be modeled with much higher

resolution than integrated hohlraum simulations. However, capsule-only simulations

have a set of inputs that are different from those specified in an experiment. In order

to test transfer learning on NIF data, we would need to run an ensemble of hohlraum

simulations which span the design space of multiple NIF experiments, however this

would require exploring a 5D or larger design space, meaning we would need to run

on the order of tens of thousands of hohlraum simulations. Since this would require

massive computational resources, we opt to study the efficacy of transfer learning for

ICF data using a dataset that is already available for analysis. This data is provided

by researchers at the Laboratory of Laser Energetics (LLE), where they perform

direct drive ICF experiments at the Omega laser facility [66]. In direct drive, the

capsule-only simulations and experiments have the same inputs and can produce the

same observable outputs, making calibration via transfer learning possible. Further-

more, the Omega facility has performed a large number of experiments [10] that

span a modest design space, making it feasible to create the simulation database

that spans the space of the experiments.

In section 6.1 we will introduce a proposed hierarchical approach to transfer

learning for numerical simulation data. In section 6.2, we will compare standard and

hierarchical transfer learning for the Omega dataset, and use the transfer learned

models to study the discrepancies between simulations and experiments in section

6.3.

96

6.1 Hierarchical transfer learning

Computer simulations of complex physical systems are often modeled at varying

levels of fidelity. Quick, low fidelity models are used to explore vast design spaces

for optimal settings, and expensive high fidelity models might be used in interesting

regions of design space to compute predictions of planned experiments. The high

fidelity simulations are often more accurate and reliable than the inexpensive, ap-

proximate models, but the expense of running the simulation often prevents their

use in large parameter scans. It might, however, be possible to create models that

emulate high fidelity simulations with reduced computational cost by using transfer

learning. For example, a model trained on a dense Latin hypercube sampled set of

1D simulations could be calibrated to a sparse Latin hypercube of 2D simulations

that fill the same design space. Rather than running a dense Latin hypercube of 2D

simulations to train a 2D surrogate model, one could obtain an accurate surrogate

by transfer learning from 1D to 2D with a relatively small number of 2D simula-

tions, saving substantial computational resources. Furthermore, this 2D-calibrated

model can be subsequently calibrated to experimental data. If the 2D model is a

better reflection of reality than the 1D model, the transfer learning step between 2D

and the experiment should be easier to train than jumping from 1D directly to the

experimental data. We refer to this technique of transfer learning from low to subse-

quently higher fidelity simulations to the experimental data as “hierarchical transfer

learning”.

To demonstrate the utility of hierarchical transfer learning, consider the simple

function:

f(a, x) = xeax, (6.2)

97

where x and a are random variables; x between [-1,1] and a between [0,1]. This

expression will be the “experiment” or true function. We also have a low and high

fidelity approximation of the experiment:

flow(a, x) = x, (6.3)

fhigh(a, x) = x+ ax2, (6.4)

where these are the first (low fidelity) and second (high fidelity) order Taylor ex-

pansions for the true function. This problem will be used to study the benefits of

hierarchical transfer learning; specifically we are interested in whether or not step-

ping through the hierarchy results in better models than calibrating directly from

low fidelity data to the experiments.

For this comparison, we begin with DJINN models with 3 hidden layers that take

(x, a) as inputs and predict f(x, a) or one of the approximations to f(x, a). First

we compute the average explained variance score (averaged over 5 random train-

ing/testing data splits of 80/20%) for DJINN models trained on experiments alone;

this is the standard to which we will compare various transfer learning techniques, as

we do not expect them to exceed the performance of a DJINN model trained purely

on experimental data. Next, we transfer learn from high fidelity simulations to exper-

iments, then from low fidelity simulations to experiments. Finally, we transfer learn

from low to high fidelity, and then to experiments to test the hierarchical approach.

The results are summarized in Table 6.2; the neural network hyperparameters are

noted in Table 6.1 and are kept the same for all of the models.

For this simple example, there is not a statistically significant difference between

a model trained exclusively on a large dataset of experiments, models that are trained

98

Table 6.1: Hyper-parameters for original model and transfer learning for the Taylor
expansion example.

Original Model Parameters
Number of models 5

Hidden layer widths
4-8-14; 4-7-15, 4-8-14;
4-7-15; 4-7-14

Learning rate 0.004
Batch size 50
Epochs 300

Transfer Learning Parameters
Retrained layers Last 2
Learning rate 0.0001
Batch size 1
Epochs 300

Table 6.2: Comparison of hierarchical and one-step transfer learning to direct mod-
eling of experiments.

Model
Mean±SD

Explained Variance
p-value

Train with 100 exp. 0.994 ± 0.004 -
Train with 100 high fid.;

TL with 25 exp.
0.994 ± 0.006 0.957

Train with 100 low fid.;
TL with 25 exp.

0.954 ± 0.041 0.016

Train with 100 low fid.;
TL with 50 high fid.
+ TL with 25 exp.

0.981 ± 0.025 0.279

99

on high fidelity simulations and calibrated to experiments, and models that are hi-

erarchically calibrated. However, these three models are statistically significantly

better than the model which is calibrated directly from low fidelity to the experi-

ment, illustrating that there is an advantage of informing the model of high fidelity

data prior to experimental calibration. In order to make an accurate emulator of

the experiments, the cost of each of these routes should be the determining factor in

which method to choose; however, it is expected in most cases that the hierarchical

method, which requires the least number of experiments and/or high fidelity simu-

lations, is cheapest. For this simple example the computational cost is negligible,

but for applications in which complex multi-physics systems are being modeled, the

computational cost difference between low and high fidelity simulations can be sub-

stantial. For such systems experiments are also often costly and limited in number.

In Table 6.2 only a single size dataset is considered for the hierarchical model. To

determine the minimum number of high fidelity simulations and experiments that is

needed to get a model that is not significantly different than the baseline (experiment

only) surrogate, we can compute the mean explained variance score as the dataset

sizes are varied. First, we determine the minimum number of high-fidelity points

that are required to produce a transfer-learned model that is of similar performance

to a model trained exclusively on 100 high fidelity simulations. Then, we determine

how many experiments are needed to recalibrate this model to be on par with the

experiment-only baseline model. As in the models from Table 6.2, the number of

points in the dataset includes training and testing data, which are split into 80/20%

sets. The transfer learning parameters are held constant as recorded in Table 6.1,

and each model starts with the same low fidelity surrogate trained on 80 data points

and validated on the remaining 20 points.

Figure 6.2 illustrates how the transfer learning quality improves as the number

100

Figure 6.2: “High fidelity” prediction quality as the number of high fidelity data
points used for transfer learning from low fidelity data is increased. 30-40 high
fidelity data points with transfer learning produce a model that is comparable in
quality to one trained exclusively on 100 high fidelity simulations.

101

Figure 6.3: Experimental prediction accuracy as the number of experimental data
points is increased in hierarchical transfer learning. Models are first trained on 100
low fidelity simulations, calibrated to high fidelity with 30 high fidelity data points,
then subsequently calibrated to the experiments. The model quality converges with
about 25 experiments, and is comparable to the performance of a model trained on
100 experiments alone.

102

of high fidelity data points is increased; the error bars reflect the variation in per-

formance when the testing/training datasets are shuffled. Around 30 high fidelity

samples, the transfer learned model begins to perform similarly to the model trained

only on 100 high fidelity simulations. We use 30 high fidelity simulations in the hier-

archical model, and next determine the minimum number of experiments necessary

to subsequently calibrate the model to experiments. A model trained on 100 experi-

mental values is taken as the baseline to which we are comparing the transfer learned

model. Figure 6.3 illustrates the quality of the transfer learned model predictions as

the number of experiments is varied. For this example, good performance is achieved

with 25 experiments, beyond this the improvement in model quality is minimal.

Whether or not it is beneficial to perform heirarchical transfer learning depends

on the relative expense of the varying levels of fidelity in simulations and the exper-

iments. If running 100 low fidelity and 30 high fidelity simulations is cheaper than

100 high fidelity simulations, it is worth taking the hierarchical approach for sub-

sequently calibrating to 25 experiments; however there may be situations in which

running a high fidelity database is preferred. There are many other factors that

could optimize performance of the hierarchical model, such as where the high fidelity

simulations and experiments are placed in the design space; future work will explore

how to optimize sampling for hierarchical transfer learning.

The previous results are for a very simple, low dimensional function that is fast

to evalaute. In the next sections, we apply the same techniques to a real-world

application: direct drive inertial confinement fusion experiments from the Omega

laser facility.

103

6.2 Transfer learning for ICF model calibration

The database we use to test hierarchical transfer learning for ICF data is com-

posed of 23 experiments from the Omega laser facility that roughly fall into a 9D de-

sign space. Researchers at Omega provided a database of 30k LILAC [25] simulations

Latin hypercube sampled [87] in the 9D input space encompassing the experiments.

The nine inputs include laser pulse parameters: the average drive, drive rise time,

energy on the target, the first picket power, foot power, foot width, and foot picket

width, and capsule geometry parameters: the ice thickness and the outer radius of

the capsule. The 30k simulations are low fidelity; they are 1D, do not account of

laser-plasma interactions (LPI), and use approximate equations of state. Each sim-

ulation takes about 10 wall-clock minutes to run. Each of the 23 experiments is

accompanied by their best post-shot simulation, which is a high-fidelity LILAC sim-

ulation with LPI, more accurate equations of state, and nonlocal electron transport;

these simulations require approximately 8-10 wall-clock hours to run. Both the low

and high fidelity simulations produce a large number of scalar outputs; 19 of which

are included in the following analysis. There are only 5 observables available for all

23 experiments that are common to the simulation database that will be used to test

transfer learning with experimental data.

In section 6.2.1, we train the low fidelity simulation-based neural networks using

DJINN. We will refer to the models trained only on the low fidelity LILAC simu-

lations as “low fidelity DJINN” models. In section 6.2.2, we use transfer learning

to calibrate from low fidelity to high fidelity (post-shot) simulations, and to experi-

ments.

104

Table 6.3: Hyper-parameters for original model and transfer learning for the Omega
dataset.

Original Model Parameters
Number of models 5

Hidden layer widths
11-13-22-16; 11-14-19-26; 11-14-24-16;
11-15-29-30; 11-14-22-29

Learning rate 0.004
Batch size 1500
Epochs 400

Transfer Learning Parameters
Retrained layers Last 2
Learning rate 0.0003
Batch size 1
Epochs 2300

6.2.1 Low fidelity simulation-based DJINN models

The low-fidelity simulation database is used to train an ensemble of five low-

fidelity DJINN models, which predict all 19 observables simultaneously and are in-

dividually cross-validated. The variance between DJINN models, each of which have

been trained on a different random 80% subset of the data, will provide uncertainty

estimates on the model predictions. The hyperparameters used to train the networks

are summarized in Table 6.3. The mean explained variance score for each output is

given in Table 6.4.

The same low fidelity DJINN models are used for standard (low fidelity simula-

tions to experiments) and hierarchical transfer learning (low to high fidelity simula-

tions to experiments).

6.2.2 Hierarchical transfer learning with the Omega dataset

For the Omega database, we compare the hierarchical approach, shown in Figure

6.4, to transfer learning directly from low fidelity simulations to experiments. We

105

Table 6.4: Mean explained variance scores on the test datasets for five DJINN models
trained on random 80% subsets of the 30k low-fidelity LILAC simulations.

AbsorptionFraction: 0.991 PeakKineticEnergy: 0.981 Tion DD: 0.959
Adiabat: 0.886 Pressure: 0.958 Vi: 0.971
BW: 0.869 R0: 0.962 Yield: 0.944
BangTime: 0.990 RhoR: 0.968 Yield DD: 0.949
ConvergenceInner: 0.964 ShockMass: 0.856 Rhomaxbt: 0.962
ConvergenceOuter: 0.962 Rhonave: 0.967
IFAR: 0.885 Tion: 0.956

Figure 6.4: Hierarchical transfer learning work flow for the Omega data. DJINN
models are trained on the low fidelity simulation database. They are next calibrated
to the high fidelity post-shot simulations via transfer learning and are subsequently
calibrated to the experiments. This approach is compared to direct transfer learning
from low-fidelity simulations to experiments, to evaluate the advantages high-fidelity
simulations might offer.

refer to the models transfer learned to post-shot simulations as “post-shot DJINN”

models, and those that are subsequently transfer learned to experiments as “experi-

ment DJINN” models. If the post-shots are more accurate depictions of reality than

the low fidelity simulations, priming the DJINN model with post-shot information

prior to calibrating to the experiments could improve the ability of the model to

adapt to the experimental data, as in the example of Section 6.1.

The low fidelity DJINN models described in the previous section are calibrated

106

independently, each on a different random subset of the post-shot or experimental

data. For each of the models, the first three layers of weights are frozen, and the

remaining two layers are available for retraining, as shown in the cartoon in Figure

6.1. Note that the architecture of the networks is not reflected in this cartoon; the

true architectures are given in Table 6.5 for the ensemble of five DJINN models.

The last two layers of weights are retrained to convergence for 2000 epochs with

a batch size of one, and a learning rate of 0.0003 in the Adam optimizer. Each

model is trained on a random 90% of the experimental data (20 points) and tested

on the remaining 10% (3 points). The low fidelity and post-shot simulations have

19 outputs, but the experiments only have 5 available observables. To calibrate to

the experiments, the cost function, which is the MSE of the 19 scaled outputs, is

modified such that the missing 14 outputs are not weighted. More explicitly, the

cost becomes a weighted MSE where the weights are zero for outputs not measured

in the experiment, and unity for those that are observed in the experiment. The

predictions for the remaining 14 observables are not constrained by the experimental

data and could change in non-physically motivated ways, thus we will focus only

on the 5 available observables. An equivalent approach to the weighted cost func-

tion would be to train the low fidelity and post-shot DJINN models with only the

5 outputs available in the experiment. We choose to retain all 19 outputs so we

can evaluate the accuracy of the post-shot calibration for all 19 observables in the

hierarchical modeling approach. Note that all input and output data is scaled [0,1],

using the parameter ranges set by the database of 30k simulations, prior to training.

This prevents the cost function from being biased toward outputs that are larger in

magnitude due to the choice of units.

First we consider transfer learning from the low fidelity simulations to the post-

shot simulations. Figure 6.5 illustrates the prediction error (calculated on training

107

Table 6.5: Architectures of DJINN models trained on the Omega databases. There
are nine inputs and nineteen outputs for the baseline, low fidelity models.

Architectures
(9, 10, 13, 20, 20, 19)
(9, 10, 11, 23, 21, 19)
(9, 11, 11, 13, 20, 19)
(9, 11, 12, 19, 25, 19)
(9, 10, 13, 22, 25, 19)

and testing data combined), computed as:

Error =
Prediction− Post shot

Post shot
, (6.5)

for all nineteen available outputs for the uncalibrated (low fidelity) and calibrated

(post-shot) DJINN models. The error bars reflect the standard deviation in predic-

tion errors from the ensemble of DJINN models; the points on Fig. 6.5 illustrate the

mean error.

The low fidelity and post-shot simulations differ significantly in their predictions

of the nineteen observables, shown by the error in the blue points of Figure 6.5. The

mean error of less than 5% in the red points indicates that the networks are able to

successfully learn the post-shot outputs via transfer learning.

The post-shot calibrated models are next calibrated to the experimental data,

again by transfer learning the last two layers of the network – the same layers that

were modified to calibrate to the post-shot data. The mean and standard deviation

of final prediction error is now computed using the experiment as the ground truth:

Error =
Prediction− Experiment

Experiment
. (6.6)

The prediction quality is illustrated in Fig. 6.6 for the low-fidelity, post-shot, and

108

Figure 6.5: Prediction error (with the post-shot as the ground truth) for calibrated
and uncalibrated DJINN models. The low fidelity model predicts post-shot observ-
ables with significant error, as the models contain different physics. The models
calibrated to post-shot data are able to predict all 19 post-shot observables with
high accuracy.

experiment DJINN models.

Figure 6.6 illustrates that the post-shot is not necessarily more predictive of

reality than the low fidelity simulations; however, transfer learning to experiments is

still successful. The largest error for transfer learning is in the yield, perhaps due to

the model needing to adjust its predictions by over an order of magnitude for most

experiments, however the mean prediction error for all observables is close to zero.

Since the post-shot models are no closer to the experiments than the low fidelity

models, hierarchical modeling does not offer significant benefits for this dataset; com-

parable results are achieved by transfer learning directly from low fidelity simulations

to the experiments. Table 6.6 records the average explained variance ratio for each

the experimental observables for the hierarchical models, and those that calibrated

directly from low fidelity to experiments. The explained variance ratios are computed

on the test dataset, and are averaged for the five models.

109

Figure 6.6: Prediction error (with the experiment as the ground truth) for low fidelity
DJINN models, DJINN models calibrated to the post-shot data, and DJINN models
calibrated to the experimental data. The experimentally calibrated models predict
the five experimental observables with high accuracy.

Table 6.6: Explained variance scores for models calibrated from low fidelity to post-
shot simulations to experimental data, and for models calibrated directly from low
fidelity simulations to experiments. The post-shot simulations are not an accurate
picture of reality, and thus there are no significant benefits of first calibrating to the
post-shot data for this particular dataset.

Explained Variance (Mean +/- Std)
Observable Hierarchical Low fid. - Exp. p-value
Burnwidth 0.975 ± 0.023 0.889 ± 0.079 0.139
Bangtime 0.987 ± 0.015 0.942 ± 0.092 0.364
ρR 0.874 ± 0.097 0.835 ± 0.179 0.712
Tion 0.988 ± 0.009 0.924 ± 0.094 0.211
Yield 0.818 ± 0.143 0.956 ± 0.034 0.096

110

Figure 6.7: Actual experimental observations plotted against the three DJINN mod-
els predictions. The blue and red points indicate the low and high fidelity model
predictions, respectively; both of which have high prediction error. Predictions of
the four most recent experiments are shown in yellow circled in bold black, after trans-
fer learning using previous experimental data (uncircled yellow). The experiment-
calibrated model is able to accurately predict future experiments with significantly
higher accuracy than the simulation-based models.

The previous analyses always involve randomly choosing the training and testing

data for model calibration. To illustrate how these models can be used to predict the

outcomes of future experiments, we take the models calibrated to the post-shot data

(which is just a high fidelity calculation at desired experimental locations in design

space) and calibrate this model to experiments using only the oldest 19 experiments

in the data set. We then test the models on the 4 most recent experiments; the

predictions are shown in Figure 6.7. Training on the old data and predicting the four

most recent experiments requires the model to extrapolate in input space, away from

the old experimental data. The model is able to successfully predict the outcomes of

the newest four experiments, demonstrating it does have the ability to successfully

extrapolate away from the training data.

111

6.3 Exploring discrepancies between simulations and Omega experiments with

transfer learning

A result of hierarchical transfer learning is that we now have models that emulate

low fidelity simulations, post-shot simulations, and experiments. We can use these

three models to explore the 9D design space and study the discrepancies between

the two types of simulations and the experiments.

A primary use of ICF implosion simulations is to find optimal design settings

for experiments. An interesting application of the three models is thus to search for

“optimal” designs using each fidelity surrogate and determine if the simulation-based

models suggest a similar “optimal” design as the experiment-informed model. For

this exercise, we define an optimal design as one that maximizes the experimental

ignition threshold factor (ITFX):

ITFX ∝ Yield · ρR2. (6.7)

where ρR is the areal density. The resulting optimal designs are illustrated in Fig. 6.8.

There are several important differences between the three optimal designs. First,

consider the differences between the low fidelity (blue) and post-shot (red) designs.

The low fidelity design prefers high compression of a thick capsule, and achieves

this by driving the capsule with a very high power. This differs from the high

fidelity design, which prefers a lower power and thinner shell in order to achieve a

similar implosion velocity and yield. The high fidelity design includes LPI effects,

so it is reasonable for this design to lower the peak power to avoid LPI [84]. Next

consider the experimental design: this design adjusts the picket and the foot of the

pulse. Lowering the foot of the pulse (around 0.75 ns) lowers the adiabat inside

the shell, allowing for higher compression and therefore higher areal density. To

112

Figure 6.8: Designs which optimize ITFX according to the low fidelity, post-shot,
and experiment DJINN models. The three designs are distinct due to the lack of ac-
curate physics models, asymmetries, and other experimental sources of performance
degradation not included in the simulations.

113

Table 6.7: Predictions of the low fidelity, high fidelity, and experiment DJINN models
at the point of optimal Yield(ρR)2 according to each of the three models.

log10(Yield(ρR)2) at: Low Fi. Optimal High Fi. Optimal Exp. Optimal
Low Fi. DJINN 19.764 19.586 19.570
High Fi. DJINN 19.421 19.598 19.273
Exp. DJINN 18.951 19.019 19.070

mitigate instabilities associated with higher compression, the picket of the pulse is

increased to increase the adiabat on the outer surface of the shell. The higher adibat

stabilizes hydrodynamic instbailites by increasing the ablation velocity [42, 71, 3].

The experimental capsule is thicker and is driven at an even lower power than the

post shot for a longer period of time; perhaps due to underestimation of the LPI

effects by the post-shot simulations.

It is interesting to compare the predictions for each fidelity of DJINN model for

the three optimal designs, given in Table 6.7. The low fidelity model optimal design

is expected to perform extremely well according to the low fidelity model, but the

experiment-calibrated model expects it to perform 24% worse than the experimental

optimal. Thus, relying on simulations alone to search for optimal designs leads to

incorrect conclusions about how to optimize the design.

The maximum ITFX design according to the experiment-calibrated model is con-

sistent with other analyses of this database [45, 44, 10]. The researchers at Omega

have been training power law-based models to relate simulation outputs and experi-

mental measurements; through this process they found that to optimize yield, they

should increase the thickness of the ice in the capsule. A series of shots confirmed

this prediction; they used the power law models to predict their next experiment,

each time increasing the thickness of the capsule by just a few percent, then using the

new experimental data to update their model before designing the next experiment.

114

In this process their goal was to maximize yield only, and a separate campaign was

developed to optimize areal density (ρR) independently, by modifying the picket and

foot of the pulse, which sets and shapes the adiabat of the implosion. After optimiz-

ing the areal density, they plan to use an iterative procedure to optimize yield and

areal density together– targeting yield through capsule geometry and ρR through

the laser pulse. This approach is largely physics-guided, and treats the pulse and

capsule independently to independently optimize yield and areal density seperately,

and will not explicitly account for interaction terms between the pulse and capsule

geometry.

The neural network-based optimization can consider nonlinear interactions be-

tween the inputs, unlike power laws, this optimization procedure tunes the pulse

and capsule simultaneously to maximize ITFX. However, the neural networks might

be inaccurate far from the experimental data, thus caution should be taken to make

small extrapolations from the data with this technique as well. However, the fact that

two independent and very distinct methods for combining simulation and experimen-

tal data leads to similar suggestions for optimizing performance is encouraging, and

shows that there is promise in using transfer learning to calibrate ICF simulations

to experiments.

6.4 Conclusions

Transfer learning with deep jointly-informed neural networks has enabled the

creation of surrogate models which emulate more expensive simulations and exper-

iments, without requiring massive quantities of expensive data. Transfer learning

uses low fidelity simulations to learn the approximate responses surfaces, then uses

a sparse collection of expensive high fidelity simulations or experimental data to

modify a limited number of weights in the network. The resulting networks accu-

115

rately emulate the expensive data, without requiring a large database of high fidelity

simulations or experiments to train the neural network from scratch. Hierarchical

transfer learning, the process of calibrating from low to high fidelity simulations

to experiments (or between levels of fidelity of simulations) enables the creation of

accurate emulators for the highest fidelity simulations or experiments, with lower

computational cost than creating a neural network on the highest fidelity data alone.

Transfer learning with DJINN enables the creation of neural network models that

are predictive of direct drive ICF experiments at the Omega laser facility, which are

used to design optimal implosions for future experiments.

Applying this methodology to indirect drive ICF experiments at NIF presents

additional challenges. In order to perform transfer learning with NIF data, ensembles

of hohlraum simulations are required, as the inputs for the hohlraum simulation

and the experiments are the same. Hohlraum simulations are significantly more

expensive than the capsule-only simulations used for the Omega simulations, and

thus only small parameter spaces (fewer than 5 parameters) can be mapped out

with a modest number of simulations (fewer than 50k). However, there are few NIF

experiments that span such a small dimensional parameter space; several parmeters

are changed from one experiment to the next, and there may only be a few (fewer

than 10) experiments that span a 5D design space. Thus to perform transfer learning

for NIF successfully, a series of (10 or more) experiments that span a 5D or fewer

space must be performed. Alternatively, constructing a model that maps from the

real experimental input space to capsule simulation inputs is being considered; this

mapping from experimental inputs to capsule inputs could be learned with hohlraum

simulations. The model that maps from experimental inputs to capsule inputs can

be joined with the model than maps from capsule inputs to observables, and the

combined model can be adjusted via transfer learning with experimental data. This

116

would still require an estimated ten or more experiments for a 5D or fewer space.

117

7. PREDICTING THE TIME-EVOLUTION OF MULTI-PHYSICS SYSTEMS

WITH SEQUENCE-TO-SEQUENCE MODELS

The previous chapters focus primarily on end-time scalar quantities of inter-

est from ICF simulations and experiments. However, much of the diagnostic data

collected in ICF experiments is time-dependent and comes in the form of images,

spectra, and scalars that are often measured from multiple angles. Incorporating

the large amount of multimodal data collected in experiments into predictive models

can better constrain the predictions to be more consistent with reality. The use of

autoencoders for spectral data analysis is explored in Chapter 5, and images can be

compressed and incorporated into feed forward neural networks in a similar fashion,

but time-series data has not been incorporated into these analyses. Much of the data

collected during ICF experiments are time-dependent; incorporating this information

into the models can better constrain their predictions.

Feed forward neural networks (FFNNs) are not formulated to take advantage of

correlations in sequential data, and they are only amenable to fixed-length vector

data. In many multi-physics simulations time series data or data from discretized

meshes often varies in size between simulations depending on the boundary condi-

tions. For example, in hydrodynamics codes, simulations with slightly different ini-

tial conditions can require a different number of time steps and spatial discretization

cells, as the resolution of the simulation can dynamically change to ensure physical

processes are modeled correctly [107, 90]. Furthermore, the number of time points

and the specific time at which data are collected in experiments is also often variable.

To incorporate such data into predictive models, we need networks which are able

to handle arbitrary length sequential data.

118

FFNNs have been successfully applied to sequential data by training the model

to learn the “state transition” for the quantities of interest from one time step to the

next [148]. The model can be iterated upon to predict the entire evolution of QOIs

by using the prediction from one time step as the input to the model for the next

time step. A trained state transition model can thus be given the initial conditions

of a system and predict the entire trajectory of the QOIs. Although this allows

for predictions of arbitrary sequence length, state transition models are incapable of

learning long-term relationships in the data.

Recurrent neural networks (RNNs) are simple generalizations of FFNNs that

allow the network to retain memory of its previous states, making them attractive

options for modeling sequential data [88]. In an RNN, a neuron is replaced with

a “cell”; long short-term memory (LSTM) cells [129, 39] and gated recurrent units

(GRU) [21, 20] are commonly used cell structures as they are particularly well-suited

for learning long-range dependencies in the data. RNNs are capable of mapping

arbitrary length input sequences to arbitrary length output sequences. These models

are applied to a wide range of problems, from image captioning to machine translation

[76, 146, 141]. In this work, we focus on sequence-to-sequence (seq2seq) architectures,

originally applied to machine translation [131, 81].

Standard RNN architectures can map input sequences to output sequences when

the alignment between inputs and outputs is known; however, it is unclear how to

handle situations in which the input and output sequences have lengths which differ

from one example to the next within the same set of training data, such as variable

time step simulation data. Seq2seq models handle variable sequence lengths by map-

ping an input sequence into a fixed-length “latent” vector via an “encoder” network.

The latent vector is then mapped into a variable length output sequence via a “de-

coder”. For example, in language translation the input sequence could be an English

119

phrase, which is encoded into a latent “thought vector” that captures the meaning

of the phrase, and is then decoded into the equivalent French phrase. For time series

data, the input sequence is the first several time steps in the evolution of a system,

which gets encoded into the fixed-dimensional latent space. The latent space repre-

sentation of the data is decoded to produce a series of predictions for the subsequent

evolution of the system. This technique has been applied to simple time series with

success (such as oscillating or monotonic functions or modest dimensionality), but

has not been documented for real world applications [18].

The architecture of a seq2seq model, unrolled to illustrate each step of the input

and output sequences, is shown in Fig. 7.1, where the blue and red cells represent a

stack of LSTM or GRU cells for the encoder and decoder, respectively. The observed

portion of the time series is input to the encoder (blue cells), and the cell state is

passed from one time step to the next until this information arrives at the latent

space– a fixed-dimensional vector that represents the entire input time series. The

latent vector is then decoded to produce the output prediction for the unobserved

portion of the time series. The decoder (red cells) predicts the output sequence one

unit at a time, using its prediction for the current values of the QOIs and the cell

state as inputs to predict the next value of the QOIs.

The ability of seq2seq models to handle arbitrary and variable length sequential

data makes them attractive for emulating dynamic multi-physics simulations that

evolve in a variable number of time steps within the same data set. Such simulations

can be computationally expensive, making emulators that can be evaluated rapidly

an attractive option for applications such as design optimization or hypothesis test-

ing.

We are also interested in using seq2seq models to efficiently explore the param-

eter space of computationally expensive multi-physics codes. In this application,

120

Figure 7.1: Unrolled seq2seq architecture. The blue and red cells represent stacks of
recurrent cells (such as GRUs) that make up the encoder and decoder, respectively.
The input image time series is compressed into a latent vector via the encoder, which
is then decoded to make a prediction for the output image time series.

a seq2seq model trained on a set of simulations that are scattered throughout the

parameter space is evaluated on-the-fly while running simulations at new locations.

If the seq2seq model predicts the time evolution of the QOIs in the new simulations

accurately, the predictable simulations are terminated in flight, and computational

resources are allocated to regions of parameter space that are less predictable; this

can result in significant computational savings for expensive simulations. This idea

has been explored with state transition models [15], in which the author efficiently

trained a state transition model by terminating simulations that were predictable,

and investing computer resources in areas of parameter space where the state tran-

sition model did not perform well.

In this work, we evaluate the ability of seq2seq models to accurately emulate

dynamic multi-physics simulations. We compare seq2seq models to state transition

models for datasets generated with multi-physics codes that vary in complexity, and

produce QOIs with dimensionality that spans several orders of magnitude. The

datasets are introduced in section 7.1, followed by the performance comparison in

121

section 7.2. The disadvantages of state transition models are highlighted, along with

the benefits seq2seq models offer for high-dimensional QOIs. Applications of seq2seq

models for physics simulation data are discussed in section 7.3, including the benefits

seq2seq models could offer for advanced sampling techniques, and how they can be

used for numerical convergence studies.

7.1 Predicting the time evolution of multi-physics systems

In the following sections, seq2seq models are compared to neural network state

transition models for three datasets generated with computer simulations of varying

complexity. The multi-physics codes and corresponding datasets are presented in

section 7.1.1, followed by the performance comparison in section 7.2.

7.1.1 Databases

Seq2seq models are compared to state transition models for three sets of simu-

lation data of increasing complexity. The databases are generated using a 1D time-

dependent diffusion code, a 1D Lagrangian radiation-hydrodynamics code, and a 3D

multi-physics code that simulates inertial confinement fusion implosions. Along with

the increasing complexity of the underlying physics models, the outputs generated in

each code also become more complicated. In the following subsections, each dataset

and the codes used to generate them are described in detail.

7.1.1.1 1D Diffusion

The diffusion database contains solutions to a simple 1D diffusion problem that

determines the spatially-integrated concentration in a system as a function of time.

The diffusion equation is given by Eq, 7.1:

∂

∂t
φ−∇D∇φ = Q, (7.1)

122

where D is the diffusion coefficient, φ is the concentration, and Q is a source.

The time evolution of the concentration is found by solving a discretized diffusion

equation, Eq 7.2, on a spatial grid of arbitrary resolution, dx, with time step dt. The

resolution of the grid has a significant impact on the accuracy of the solution; a

coarse grid will have high error, and as the grid is refined the solution will approach

the true answer at an asymptotic rate.

φn − φn−1

∆t
− D

∆x2
(φn

i+1 − 2φn
i + φn

i−1) = Qn
i , (7.2)

where i, n indicate the mesh indices for space and time, respectively.

To generate a database of diffusion solutions, the problem is set up as follows:

the spatially-integrated concentration as a function of time is solved for in a 1D slab

of unit length with a constant diffusion coefficient D. There is a source with value

unity at the left boundary, which is turned on at time t=0. This problem has an

analytic solution, given by Eq. 7.3:

y(t) = 1− 2
√
Dt/π · e1/(2

√
Dt)2 − erf

(
1

2
√
Dt

)
. (7.3)

An implicit finite difference solver (centered-difference in space, backward Euler

in time [108]) is used to compute the total concentration for varying values of the

diffusion coefficient (D, between 1.0 and 3.0) and the spatial discretization step

size (dx between 1.0e-3 and 1.0e-5). The spatially-integrated concentration as a

function of time is recorded for 1000 time steps (step size of 1.0e-6) for 1000 random

combinations of D and dx.

123

7.1.1.2 1D radiation hydrodynamics

The radiation hydrodynamics dataset tests the ability of the models to predict

high-dimensional time histories generated by a more expensive multi-physics code

with non-analytic solutions. In this task, the models are trained to predict the spatial

and temporal evolution of multiple QOIs for systems described by the radiation

hydrodynamics equations with grey diffusion (RHGD) [107], given by Eqs. 7.4-7.7:

∂ρ

∂t
+∇ · (ρ−→u) = 0, (7.4)

∂

∂t
(ρ−→u) +∇ · (ρ−→u ⊗−→u) +∇p = −1

3
∇ε, (7.5)

∂

∂t
(
1

2
ρu2 + ρe) +∇ · ((1

2
ρu2 + ρe+ p)−→u) = σac(ε− aT 4)− 1

3
∇ε · −→u (7.6)

∂ε

∂t
−∇ · c

3 〈σt〉
∇ε+

4

3
∇ · ε−→u = σac(aT

4 − ε) +
1

3
∇ε · −→u (7.7)

where ρ is the density, −→u is the velocity, p is the pressure, ε is the radiation energy

density, e is the specific internal energy, a is a constant, c is the speed of light, T is

the temperature, and σa, σt are the absorption and total opacities, respectively.

A Lagrangian RHGD code is used to generate solutions on a 1D grid of 100

spatial cells for 100 time steps. Three parameters are varied to generate 500 Latin

hypercube-sampled [87] data points: the initial temperature is varied between 1.0e-6

and 0.01, the initial density between 0.75 and 1.25, and the temperature of a source

on the left boundary of the slab between 0.1 and 0.6. The seq2seq models are trained

124

to predict the evolution of the temperature, pressure, and density as a function of

time and position on the grid, totaling 300 time-varying parameters.

7.1.1.3 3D inertial confinement fusion implosion simulations

The final dataset used to compare state transition and seq2seq models is gener-

ated with a semi-analytic ICF implosion code [135, 79]. Three parameters are varied

to create a database of 300 simulations. The parameters are applied shape asym-

metry multipliers expressed as spherical harmonic modes (Y m
l for l=2, m=[-1,0,1])

which vary in magnitude from [1.0,1.5], and degrade the implosion performance by

distorting the shell of the ICF fuel capsule. The code generates multiple outputs;

for this application the primary QOI is the X-ray emission image of the imploding

capsule as a function of time. The images are 64x64 pixels with one color channel,

and are recorded at 10 points in time throughout the implosion.

7.2 Comparison of seq2seq and state transition models for multi-physics systems

The three datasets are used to train state transition models and seq2seq models

to predict the time evolution of the QOIs given only the initial conditions. Seq2seq

models receive an “input” sequence that contains the initial condition only (the

simulation inputs and the QOIs at the first time step), and the “output” sequence is

the subsequent evolution of the QOIs (the simulation inputs, which are unchanged,

and the evolving QOIs for the remaining time steps). The state transition models

are trained using input vectors that include the simulation inputs and the QOIs at

a time step t, and the corresponding output vectors contain the QOIs at time step

t + 1. For evaluation, the state transition model is provided the simulation inputs

and the initial value of the QOIs to predict the state at the first time step, and this

solution is iterated upon to generate the complete time series.

The state transition model is a fully connected “deep jointly-informed neural net-

125

work” (DJINN) [61] from Chapter 3. The DJINN models are trained with optimized

hyper-parameters chosen by the software; these settings are summarized in Table

7.1. The seq2seq model architectures are similar for all three datasets. The encoder

and decoder share the same architecture, which is composed of two stacked GRU

cells with a fixed number of hidden units per cell. The learning rate, batch size,

and number of training epochs are chosen to optimize the performance on the test

dataset; these parameters are also summarized in Table 7.1.

Each of the three datasets is split into an 80% training set and 20% test set, the

latter is used to compare the performance of the two models. For the state transition

models, the full sequences are sectioned into two time step slices (transitions), with

time step t as an input, and t + 1 as the corresponding output. For the seq2seq

models, each sequence is a single training example with time step t = 0 as the input,

and time steps t = [1, tfinal] as the output sequence. Each time series is scaled

between [0,1] prior to training the networks.

To compare the performance of the two models, the integrated absolute error

(IAE) is computed, normalized by the sequence length, Ns:

IAE =
1

Ns

Ns∑
n=1

|Y true
n − Y pred

n |, (7.8)

where Y pred
n and Y true

n are the predicted and true values of the QOI at sequence step

n, respectively. Reported in Table 7.1 are the mean, median, and standard deviation

for test set IAE.

The seq2seq model consistently out-performs the state transition model, partic-

ularly as the dimensionality of the QOIs increases. To illustrate the quality of pre-

dictions from the seq2seq and state transition models, Figure 7.2 shows an example

126

Table 7.1: Model hyper-parameters and performance metrics. The state transition
model, DJINN, is a fully connected neural network with the neurons per layer speci-
fied in the architecture column (this includes input and output layers). The seq2seq
models are composed of two stacked GRU cells with the number of hidden units
per cell specified in the architecture column. The batch size is specified in units of
transitions (trans) for the state transition model, and sequences (seq) for the seq2seq
model.

Dataset Model Architecture Learn rate Batch size # Epochs Mean IAE Median IAE SD IAE

Diffusion
DJINN 3,4,8,13,1 0.006 4000 trans 400 0.0329 0.0327 0.0059
seq2seq 14 units 0.001 20 seq 3000 0.0257 0.0243 0.0086

Rad-hydro
DJINN 303,302,159,300 0.002 2000 trans 400 0.0632 0.0607 0.0155
seq2seq 26 units 0.001 10 seq 5500 0.0419 0.0391 0.0086

ICF
DJINN – – – – – – –
seq2seq 16 units 0.001 30 seq 1500 0.0046 0.0037 0.0020

from the radiation hydrodynamics dataset. The seq2seq model predicts a smoother

and more accurate evolution of the system than the DJINN state transition model,

which displays visible discontinuities between time steps. The recurrent connections

in the seq2seq decoder allow the model to process the entire output sequence simul-

taneously and leverage long and short-term correlations in the data, resulting in a

smooth prediction for the temporal and spatial evolution of the system.

The ICF X-ray emission image dataset includes the highest number of input di-

mensions (4096 pixels) and the training data is limited to only 240 complete time

series. The DJINN state transition model performs significantly worse than the

seq2seq model, as fully-connected networks are not well-suited for high-dimensional

image data unless preceded by convolutional layers or other dimensional reduction

techniques [56, 73, 116]. Fig. 7.3 shows an example seq2seq and DJINN prediction

for this dataset. The seq2seq model demonstrates low integrated error, but displays

regions of up to 20% prediction error near steep gradients in the pixel values; addi-

tional training data may be required to reduce the error further. The DJINN state

transition model also suffers near high gradients, and displays particularly high er-

127

ror in the final frames of the sequence. The first seven transitions in each sequence

show the X-ray emission region compressing, and only the final two frames illustrate

the subsequent expansion of the emission region. The state transition model, which

only learns the transition between frames, is therefore much better at predicting the

first several frames of the sequence, as the model has been exposed to significantly

more data that illustrates compression from one state to the next. The seq2seq

model, however, is able to predict the compression and expansion equally well, as

this model learns the full evolution of the sequence, and can thus recognize that the

X-ray emission region often expands toward the end of the sequence.

7.3 Using seq2seq models to improve physics simulations

Seq2seq models are attractive for multi-physics codes in which simulations can

produce data of variable sequence length within a single database, as they readily

handle variable length input and output sequences. As mentioned in the introduction,

this enables a trained seq2seq model to predict the evolution of a system at various

points in time as a simulation is progressing. For example, a simulation runs for 10

time steps, passes the data to a seq2seq model to predict the next 10 time steps,

and once the simulation reaches time step 20, the error in the model’s prediction is

evaluated. If the seq2seq model is accurately predicting the evolution of the system,

computational time can be saved by stopping the simulation early, and relying on the

seq2seq model to predict the remainder of the evolution. It is reasonable to expect

that there is a minimum number of time steps the simulation must complete, at which

point the seq2seq model can accurately predict the remainder of the evolution. This

idea is tested on the diffusion dataset. The 800 time histories from the training

dataset are split into random-length input and output sequences, both varying in

length from 10 to 90 time steps. The model is trained on the variable sequence length

128

data, and is evaluated on the test dataset, which has a fixed input sequence length.

To determine the optimal input sequence length required to accurately predict the

remainder of the diffusion solution, the fixed input sequence length for the test data

is varied from 10 to 90 time steps. The test error as a function of input sequence

length is shown in Fig. 7.4.

As expected, the average prediction error per time step decreases as the sequence

length of the prediction decreases. The rate of error reduction slows around an

input sequence length of 50 time steps, suggesting that it is sufficient to run half

of a new diffusion simulation, at which point the seq2seq model can predict the

remainder of the evolution with minimal error. In the case of the diffusion code

which can be evaluated quickly, the computational time savings gained by stopping

the simulation halfway through is small. However, for expensive multi-physics codes

that take several hours to run, the amount of computational time that can be saved

by training a seq2seq model might be significant. Future work will explore the

possibility of saving computational time required to create databases of complex

simulations by using a seq2seq model to complete trajectories of QOIs given only a

small fraction of the system’s evolution.

Another interesting application of the diffusion seq2seq model is its ability to

predict solutions for various values of the discretization resolution, dx, given only

the initial conditions of the system. Although it requires extrapolation, the model

can be evaluated with increasingly small dx and compared to the analytic solution.

In Figure 7.5, the predicted, analytic, and numerical solutions with a finite dx are

shown on the left for D=1.34. On the right, the black points indicate the error in

the numerical solution as a function of dx is computed for the same value of D,

which shows the expected convergence rate of dx2 for small dx. The stars indicate

the seq2seq model error as dx is decreased beyond the boundary of the training

129

data. The seq2seq model predictions for small dx do not follow the second order

convergence rate of the numerical solution, but the predictions have significantly

lower error than solutions from the training data, suggesting the model does have a

limited ability to extrapolate to smaller dx.

In this simple example, the diffusion equation can be solved quickly on a high

resolution grid to estimate the converged solution without relying on seq2seq mod-

els. However, for more complicated systems it might be necessary to run a set of

simulations with increasing levels of resolution to estimate the convergence rate of

the solution. The data generated in the convergence study can be used to train a

seq2seq model which can estimate converged solutions for systems which cannot be

solved analytically.

7.4 Conclusions

In this work, we have demonstrated the ability of seq2seq models to predict the

temporal evolution multi-physics simulations of varying complexity. The encoder-

decoder structure with recurrent connections offers many advantages over simple

state transition models; the seq2seq models can learn long-term dependencies in data,

can handle arbitrary sequence lengths, and can process high dimensional quantities

of interest effectively. By learning to accurately emulate multi-physics design codes,

seq2seq models enable rapid estimation of the time trajectory of quantities of interest

at a fraction of the cost of a full simulation. Accurately emulating the evolution of

ICF implosions with seq2seq models is the first step toward incorporating time-

dependent experimental data into a predictive framework; transfer learning with

seq2seq models is a logical next step in the progression of this work.

130

Figure 7.2: Example prediction from the radiation hydrodynamics dataset. Color
maps on all panels are scaled between [0,1]. The true evolution of the system is
illustrated on the left, followed by the predictions from the seq2seq (middle) and
state transition DJINN model (right). The seq2seq model produces a smoother and
more accurate evolution than the state transition model.

131

Figure 7.3: Example prediction from the ICF database. The first row is the seq2seq
model’s predictions evolution of the X-ray image, given the first image in the row as
the input to the model. The second row illustrates the absolute error in the model’s
predictions multiplied by a factor of 10 for visibility. The regions of highest error
occur near gradients in the X-ray intensity.

Figure 7.4: Median IAE for the test dataset as a function of the input sequence
length. The model predicts the evolution with lower error per time step as the
length of the input sequence increases. At an input sequence length of 50, the rate
of the error reduction slows, suggesting the model only needs to observe half of the
evolution before it can predict the remainder of the trajectory with minimal error.

132

Figure 7.5: Left: Normalized total concentration for the 1D diffusion problem with a
diffusion coefficient of 1.34. The black line shows the analytic solution, the blue is the
numerical solution with dx=7×10−4, and the red line is the prediction of the seq2seq
model with dx=0. Right: Error of the finite element solution as dx is decreased is
shown in black; the red stars indicates the seq2seq prediction error (compared to the
analytic solution) as dx is decreased toward zero.

133

8. CONCLUSIONS

Achieivng inertial fusion ignition in a laboratory setting remains an elusive goal,

and requires better use of the simulation capabilities, physics experiments, and diag-

nostic instruments available at facilities such as the NIF and Omega. In this thesis,

we have explored the use of machine learning to bridge the gap between simulations

and experiments for inertial confinement fusion.

We illustrate how machine learning models built on simulation databases are used

to rapidly optimize implosion designs; the application of this methodology to one of

the largest databases of 2D ICF simulations ever created results in the discovery

of an ovoid-shaped implosion, revealing rich physics that had never before been ob-

served in ICF capsules. The ovoid implosions are robust to a variety of performance

degradation sources common in ICF experiments; their robustness is attributable

to the generation of large scale zonal flows within the capsule, induced by a specific

applied radiation drive asymmetry. The existence of such high performing, asymmet-

ric implosions calls into questions decades of research that suggest deviations from

spherical compression degrade implosion performance. Not only does the discovery

of the ovoid point toward new physics and a potential path toward achieivng high

yield in experiments, but it serves as an illustrative example of the powerful role

machine learning can play in aiding experimental design.

The machine learning methods used to find the ovoid are simple, black-box al-

gorithms that work well for optimization, but are not accurate enough for compar-

ing simulation and experimental data. Furthermore, these models lack estimates

of prediction uncertainties, which play an important role when deciding which new

experiments to run, determining the value of improving particular diagnostics, and

134

inferring unknown quantities. To meet the need for an easy to use, highly accurate

machine learning model that is equipped with uncertainty estimates, we developed

“deep jointly-informed neural networks”, or DJINN. DJINN is inspired by our early

success with decision tree-based models for finding the ovoid; it uses decision trees

trained on the data to determine an appropriate deep neural network architecture

and set of initial weights. The algorithm overcomes many of the challenges of training

deep neural networks on arbitrary datasets by determining many of the hyperparam-

eters in an automated manner. Furthermore, we can leverage the work of other deep

learning researchers and employee techniques such as dropout in the DJINN models

to obtain prediction uncertainty estimates.

DJINN enables the efficient creation of surrogate models for a wide variety of

datasets, including ICF, atomic, and nuclear physics data, and climate data. As

an approximate Bayesian model that is quick to query, DJINN is easy to use for

parameter inference; either by constructing inverse models that map from output to

input space directly, or via Markov Chain Monte Carlo sampling. When coupled with

autoencoders– neural networks designed for unsupervised data compression– DJINN

is able to produce accurate and self-consistent forward and inverse models for ICF

simulation databases. The inverse model methodology is applied to other high energy

density science experiments, including the interpretation of atomic emission spectra

to infer physical properties, such as temperature and density.

DJINN is also used to demonstrate a promising path forward for creating predic-

tive, data-driven models of complex physics experiments. Unlike typical discrepancy

term calibration, we explore the use of transfer learning with DJINN for calibrating

low fidelity to high fidelity simulations, and calibrating from simulations to experi-

ments for Omega ICF data. The idea of transfer learning is that a neural network can

be trained on a task for which there are large amounts of data (such as simulations),

135

and then be partially retrained on a small set of typically expenssive data (such as

experiments) to shift its predictions to align better with the expensive data. Partial

retraining involves freezing many of the weights in the network, only allowing a small

number of weights to change when exposed to the small set of expensive data. We

introduce the idea of hierarchical transfer learning for numerical simulation and ex-

perimental data. In hierarchical transfer learning, a neural network is first trained on

a large database of low fidelity simulation data. Many of the weights of this network

are frozen, and then the model is updated with a smaller database of higher fidelity

simulations; if the higher fidelity simulations are a more accurate representation of

reality, this makes the final step – transfer learning to the sparse set of experimental

data – easier for the network to learn. The cost of low and high fidelity simulations

and the cost of experiments can be balanced to determine how to create a sufficiently

accurate predictive model with the lowest investment of computational and exper-

imental resources. We successfully create DJINN models that are transfer learned

to experimental ICF data for Omega experiments, and demonstrate that these mod-

els can be used to accurately predict the outcome of future experiments. We then

use these experimentally-informed models to optimize an Omega implosion design,

which results in a design that is consistent with experiments researchers have found

to perform best, via an iterative, physics-guided optimization procedure.

Finally, we extend our predictive modeling techniques to include time series data.

We are interested in exploring whether its possible to predict the evolution of a

simulation in-flight, and saving computational resources by terminating simulations

that can be predicted forward by a machine learning model with high confidence.

Furthermore, much of the data collected in ICF experiments is time dependent;

incorporating this information into our calibrated models can better constrain the

model predictions. To explore the feasibility of modeling time-dependent ICF data

136

with machine learning techniques, we use sequence-to-sequence models to predict the

evolution of multiphysics simulations. Seq2seq models are primarily used in natural

language processing tasks; we demonstrate the ability of such models to accurately

predict time series data generated with computer simulations of varying complexity.

There are dozens of diagnostics that collect vast quantities data in ICF exper-

iments; machine learning offers a promising approach for analyzing the full suite

of data to improve our understanding of ICF implosions. The work presented in

this dissertation is just a small glimpse at how machine learning can be used to

improve how we model and interpret ICF and other high energy density science ex-

periments. From simulation-only based design optimization, to parameter inference

and model calibration, to optimization of models constrained to be consistent with

experimental data, we have presented a variety of applications of machine learning

to improve the ICF modeling and design process. Some interesting areas for future

exploration include: hierarchical calibration for indirect drive experiments – moving

from hohlraum simulations to high resolution capsule simulations to experiments;

and calibrating time series predictions with mutlimodal, time-dependent experimen-

tal data.

137

REFERENCES

[1] M. Abadi and et al. TensorFlow: Large-scale machine learning on heteroge-

neous systems, 2015.

[2] R. Akmeliawati, M. P. L. Ooi, and Y. C. Kuang. Real-time Malaysian sign

language translation using colour segmentation and neural network. In 2007

IEEE Instrumentation Measurement Technology Conf., pages 1–6, May 2007.

[3] K. Anderson and R. Betti. Laser-induced adiabat shaping by relaxation in

inertial fusion implosions. Physics of Plasmas, 11(1):5–8, 2004.

[4] B. O. Ayinde and J. M. Zurada. Nonredundant sparse feature extraction using

autoencoders with receptive fields clustering. Neural Networks, 93:99 – 109,

2017.

[5] D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly

Learning to Align and Translate. ArXiv e-prints, September 2014.

[6] R. Balestriero. Neural Decision Trees. ArXiv e-prints, February 2017.

[7] M. J. Beal and et al. Variational algorithms for approximate Bayesian infer-

ence. University of London, 2003.

[8] L. F. Berzak Hopkins. Private communication, 2016.

[9] L. F. Berzak Hopkins, S. Le Pape, L. Divol, N. B. Meezan, A. J. Mackinnon,

D. D. Ho, O. S. Jones, S. Khan, J. L. Milovich, J. S. Ross, P. Amendt, D. Casey,

P. M. Celliers, A. Pak, J. L. Peterson, J. Ralph, and J. R. Rygg. Near-vacuum

hohlraums for driving fusion implosions with high density carbon ablators.

Physics of Plasmas, 22(5), 2015.

138

[10] R. Betti. The one-dimensional cryogenic implosion campaign on OMEGA:

Modeling, experiments, and a statistical approach to predict and understand

direct-drive implosions. In American Physical Society Division of Plasma

Physics Meeting. APS, 2017.

[11] G. Biau, E. Scornet, and J. Welbl. Neural Random Forests. ArXiv e-prints,

April 2016.

[12] A. T. Booth, R. Choudhary, and D. J. Spiegelhalter. A hierarchical Bayesian

framework for calibrating micro-level models with macro-level data. Journal

of Building Performance Simulation, 6(4):293–318, 2013.

[13] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, October 2001.

[14] D. T. Casey and et al. The high velocity, high adiabat, “Bigfoot” campaign

and tests of indirect-drive implosion scaling. Physics of Plasmas, 25(5):056308,

2018.

[15] V. Castillo. Enhancing experimental design and understanding with deep learn-

ing/AI. In GPU Technology Conference, 2018.

[16] P. Y. Chang, R. Betti, B. K. Spears, K. S. Anderson, J. Edwards, M. Fatene-

jad, J. D. Lindl, R. L. McCrory, R. Nora, and D. Shvarts. Generalized measur-

able ignition criterion for inertial confinement fusion. Physical Review Letters,

104(13):135002, 2010.

[17] X. Chen and H. Ishwaran. Random forests for genomic data analysis. Ge-

nomics, 99(6):323 – 329, 2012.

[18] Guillaume Chevalier. Sequence to sequence (seq2seq) recurrent neural network

(RNN) for time series prediction. github.com/guillaume-chevalier/seq2seq-

signal-prediction, 2016.

139

[19] H. A. Chipman, E. I. George, R. E. McCulloch, and et al. BART: Bayesian

additive regression trees. The Annals of Applied Statistics, 4(1):266–298, 2010.

[20] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Gated feedback recurrent neural

networks. In International Conference on Machine Learning, pages 2067–2075,

2015.

[21] J. Chung, C. Gulcehre, K. H. Cho, and Y. Bengio. Empirical evaluation

of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[22] D. S. Clark, S. W. Haan, and J. D. Salmonson. Robustness studies of ignition

targets for the National Ignition Facility in two dimensions. Physics of Plasmas,

15(5), 2008.

[23] G. E. Dahl, T. N. Sainath, and G. E. Hinton. Improving deep neural networks

for LVCSR using rectified linear units and dropout. In 2013 IEEE Intl. Conf.

on Acoustics, Speech and Signal Processing, pages 8609–8613, 2013.

[24] P.-T. de Boer, Dirk P. Kroese, Shie Mannor, and Reuven Y. Rubinstein. A tuto-

rial on the cross-entropy method. Annals of Operations Research, 134(1):19–67,

2005.

[25] J. Delettrez, R. Epstein, M. C. Richardson, P. A. Jaanimagi, and B. L. Henke.

Effect of laser illumination nonuniformity on the analysis of time-resolved x-

ray measurements in uv spherical transport experiments. Physical Review A,

36(8):3926, 1987.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09, 2009.

140

[27] D. G. T. Denison, B. K. Mallick, and A. F. M. Smith. Bayesian MARS.

Statistics and Computing, 8(4):337–346, 1998.

[28] T. R. Dittrich, O. A. Hurricane, L. F. Berzak-Hopkins, D. A. Callahan, D. T.

Casey, D. Clark, E. L. Dewald, T. Doeppner, S. W. Haan, B. A. Hammel, J. A.

Harte, D. E. Hinkel, B. J. Kozioziemski, A. L. Kritcher, T. Ma, A. Nikroo, A. E.

Pak, T. G. Parham, H.-S. Park, P. K. Patel, B. A. Remington, J. D. Salmonson,

P. T. Springer, C. R. Weber, G. B. Zimmerman, and J. L. Kline. Simulations

of fill tube effects on the implosion of high-foot NIF ignition capsules. Journal

of Physics: Conference Series, 717(1):012013, 2016.

[29] B. Efron and et al. Least angle regression. Annals of Statistics, pages 407–499,

2004.

[30] M. Everingham, S. Eslami, L. Van Gool, C. Williams, J. Winn, and A. Zisser-

man. The pascal visual object classes challenge: A retrospective. International

journal of computer vision, 111(1):98–136, 2015.

[31] R.A. Fisher. The use of multiple measurements in taxonomic problems. Annual

Eugenics, 7, Part II:179–188, 1936.

[32] M. Forina and et al. An Extendible Package for Data Exploration, Classi-

fication and Correlation. Institute of Pharmaceutical and Food Analysis and

Technologies, Via Brigata Salerno,16147 Genoa, Italy.

[33] J. A. Gaffney. Making ICF Models More Predictive: Combining Simulations,

Experiments and Expert Knowledge using Machine Learning and Bayesian

Statistics. APS Division of Plasma Physics Conference, 2018.

[34] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Insights

and applications. In Deep Learning Workshop, ICML, 2015.

141

[35] Y. Gal and Z. Ghahramani. Dropout as a Bayesian approximation: Insights

and applications. In Deep Learning Workshop, ICML, 2015.

[36] Y. Gal and Z. Ghahramani. Dropout as a Bayesian Approximation: Repre-

senting Model Uncertainty in Deep Learning. ArXiv e-prints, June 2015.

[37] Yarin Gal. Uncertainty in deep learning. University of Cambridge, 2016.

[38] S. Galelli and A. Castelletti. Assessing the predictive capability of randomized

tree-based ensembles in streamflow modeling. Hydrology and Earth System

Sciences, 17:2669–2684, 2013.

[39] F. A. Gers, D. Eck, and J. Schmidhuber. Applying LSTM to time series

predictable through time-window approaches. In Neural Nets WIRN Vietri-

01, pages 193–200. Springer, 2002.

[40] W. R. Gilks, S. Richardson, and D. Spiegelhalter. Markov chain Monte Carlo

in practice. CRC press, 1995.

[41] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-

forward neural networks. In Int. Conf. on Artificial Intelligence and Statistics,

2010.

[42] V. N. Goncharov, J. P. Knauer, P. W. McKenty, P. B. Radha, T. C. Sangster,

S. Skupsky, R. Betti, R. L. McCrory, and D. D. Meyerhofer. Improved perfor-

mance of direct-drive inertial confinement fusion target designs with adiabat

shaping using an intensity picket. Physics of Plasmas, 10(5):1906–1918, 2003.

[43] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[44] V. Gopalaswamy. Optimization of direct-drive inertial fusion implosions

through predictive statistical modeling. In American Physical Society Divi-

sion of Plasma Physics Meeting, 2018.

142

[45] V. Gopalaswamy, R. Betti, J. P. Knauer, N. Luciani, D. Patel, K. M. Woo,

A. Bose, I. V. Igumenshchev, E. M. Campbell, K. S. Anderson, and et al.

Tripled yield in direct-drive laser fusion through statistical modelling. Nature,

565(7741):581, 2019.

[46] K. Gregor, I. Danihelka, A. Graves, D. Jimenez Rezende, and D. Wierstra.

DRAW: A Recurrent Neural Network For Image Generation. ArXiv e-prints,

February 2015.

[47] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. 2007.

[48] J. Gu, Z. Dai, Z. Fan, S. Zou, W. Ye, W. Pei, and S. Zhu. A new metric of the

low-mode asymmetry for ignition target designs. Physics of Plasmas, 21(1),

2014.

[49] S. W. Haan, P. A. Amendt, T. R. Dittrich, B. A. Hammel, S. P. Hatchett,

M. C. Herrmann, O. A. Hurricane, O. S. Jones, J. D. Lindl, M. M. Marinak,

and et al. Design and simulations of indirect drive ignition targets for NIF.

Nuclear fusion, 44(12):S171, 2004.

[50] S. W. Haan, H. Huang, M. A. Johnson, M. Stadermann, S. Baxamusa, S. Bhan-

darkar, D. S. Clark, V. Smalyuk, and H. F. Robey. Instability growth seeded

by oxygen in CH shells on the National Ignition Facility. Physics of Plasmas,

22(3), 2015.

[51] S.W. Haan and et al. Point design targets, specifications, and requirements

for the 2010 ignition campaign on the National Ignition Facility. Physics of

Plasmas, 18, 2011.

[52] D. Harrison and D.L. Rubinfeld. Hedonic prices and the demand for clean air.

J. Environ. Economics & Management, 5:81–102, 1978.

143

[53] W. K. Hastings. Monte carlo sampling methods using markov chains and their

applications. Biometrika, 57(1):97–109, 1970.

[54] R. Hatarik, D. B. Sayre, J. A. Caggiano, T. Phillips, M. J. Eckart, E. J. Bond,

C. Cerjan, G. P. Grim, E. P. Hartouni, J. P. Knauer, J. M. Mcnaney, and D. H.

Munro. Analysis of the neutron time-of-flight spectra from inertial confinement

fusion experiments. Journal of Applied Physics, 118(18):184502, 2015.

[55] D. Hernández-Lobato and J. M. Hernández-Lobato. Scalable gaussian pro-

cess classification via expectation propagation. In Artificial Intelligence and

Statistics, pages 168–176, 2016.

[56] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, 2006.

[57] D. D.-M. Ho, S. W. Haan, J. D. Salmonson, D. S. Clark, J. D. Lindl, J. L.

Milovich, C. A. Thomas, L. F. Berzak Hopkins, and N. B. Meezan. Implosion

configurations for robust ignition using high- density carbon (diamond) ablator

for indirect-drive ICF at the National Ignition Facility. Journal of Physics:

Conference Series, 717(1):012023, 2016.

[58] S. Hoo-Chang, H. R. Roth, M. Gao, L. Lu, Z. Xu, I. Nogues, J. Yao, D. Mollura,

and R. M. Summers. Deep convolutional neural networks for computer-aided

detection: CNN architectures, dataset characteristics and transfer learning.

IEEE transactions on medical imaging, 35(5):1285, 2016.

[59] K. Hornik. Approximation capabilities of multilayer feedforward networks.

Neural Networks, 4(2):251 – 257, 1991.

[60] K. Humbird, L. Peterson, R. McClarren, J. Field, J. Gaffney, M. Kruse,

R. Nora, and B. Spears. Using deep neural networks to augment NIF post-shot

144

analysis. In APS Meeting Abstracts, page YO7.013, October 2017.

[61] K. D. Humbird, J. L. Peterson, and R. G. McClarren. Deep Neural Network

Initialization With Decision Trees. IEEE Transactions on Neural Networks

and Learning Systems, (10.1109/TNNLS.2018.2869694), 2018.

[62] O. A. Hurricane and J. Hammer. Pressure driven instability of a finite thick-

ness fluid layer. Technical Report UCRL-JRNL-203840, Lawrence Livermore

National Laboratory, 2004.

[63] A. Jalali and S. Sanghavi. Learning the Dependence Graph of Time Series with

Latent Factors. ArXiv e-prints, June 2011.

[64] C. Kaynak. Methods of combining multiple classifiers and their applications to

handwritten digit recognition. Master’s thesis, Institute of Graduate Studies

in Science and Engineering, Bogazici University, 1995.

[65] L Kegelmeyer. Image analysis and machine learning for NIF optics inspection.

Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA

(United States), 2018.

[66] J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E.

Kruschwitz, T. J. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory, and

et al. OMEGA EP: High-energy petawatt capability for the OMEGA laser

facility. In Journal de Physique IV (Proceedings), volume 133, pages 75–80.

EDP sciences, 2006.

[67] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology),

63(3):425–464, 2001.

145

[68] G. I. Kerley. Equations of state for hydrogen and deuterium. Technical Report

SAND 2003-3613, Sandia National Laboratories, 2004.

[69] T. J. Kessler. Phase conversion of lasers with low-loss distributed phase plates.

SPIE, 1870(95-104), 1993.

[70] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. ArXiv

e-prints, 2014.

[71] J. P. Knauer, K. Anderson, R. Betti, T. J. B. Collins, V. N. Goncharov, P. W.

McKenty, D. D. Meyerhofer, P. B. Radha, S. P. Regan, T. C. Sangster, V. A.

Smalyuk, J. A. Frenje, C. K. Li, R. D. Petrasso, and F. H. Séguin. Improved

target stability using picket pulses to increase and shape the ablator adiabat.

Physics of Plasmas, 12(5), 2005.

[72] A. L. Kritcher, R. Town, D. Bradley, D. Clark, B. Spears, O. Jones, S. Haan,

P. T. Springer, J. Lindl, R. H. H. Scott, D. Callahan, M. J. Edwards, and O. L.

Landen. Metrics for long wavelength asymmetries in inertial confinement fusion

implosions on the National Ignition Facility. Physics of Plasmas, 21(4):042708,

2014.

[73] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[74] S. H. Langer, B. K. Spears, J. L. Peterson, J. E. Field, R. Nora, and S. Brandon.

A HYDRA UQ workflow for NIF ignition experiments. In Proceedings of ISAV

2016: Second Workshop on In Situ Infrastructures for Enabling Extreme-scale

Analysis and Visualization. IEEE Computer Society, 2016.

146

[75] J. D. Lawson. Some criteria for a power producing thermonuclear reactor.

Proceedings of the Physical Society. Section B, 70(1):6, 1957.

[76] J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan. A persona-based neural

conversation model. CoRR, abs/1603.06155, 2016.

[77] M. Liang and X. Hu. Recurrent convolutional neural network for object recog-

nition. In The IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), June 2015.

[78] Y. Lin, T. J. Kessler, and G. N. Lawrence. Design of continuous surface-relief

phase plates by surface-based simulated annealing to achieve control of focal-

plane irradiance. Opt. Lett., 21(17031705), 1996.

[79] J. Lindl. Inertial Confinement Fusion: The Quest for Ignition and Energy

Gain Using Indirect Drive. AIP-Press, College Park, MD, 1998.

[80] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale

optimization. Mathematical programming, 45(1-3):503–528, 1989.

[81] M. T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser. Multi-task

sequence to sequence learning. arXiv preprint arXiv:1511.06114, 2015.

[82] M.-T. Luong, H. Pham, and C. D. Manning. Effective Approaches to Attention-

based Neural Machine Translation. ArXiv e-prints, August 2015.

[83] Volodymyr M. and et al. Human-level control through deep reinforcement

learning. Nature, 518:529 – 533, 2015.

[84] Brian J MacGowan, BB Afeyan, CA Back, RL Berger, G Bonnaud,

M Casanova, BI Cohen, DE Desenne, DF DuBois, AG Dulieu, et al. Laser–

plasma interactions in ignition-scale hohlraum plasmas. Physics of Plasmas,

3(5):2029–2040, 1996.

147

[85] A. G. MacPhee and et al. X-ray shadow imprint of hydrodynamic instabilities

on the surface of inertial confinement fusion capsules by the fuel fill tube. Phys.

Rev. E, 95:031204, Mar 2017.

[86] M. Marinak, G. Kerbel, N. Gentile, O. Jones, D. Munro, S. Pollaine, T. Dit-

trich, and S. Haan. Three-dimensional HYDRA simulations of national ignition

facility targets. Physics of Plasmas, 8(5):2275–2280, 2001.

[87] M. D. McKay, R. J. Beckman, and W. J. Conover. A Comparison of Three

Methods for Selecting Values of Input Variables in the Analysis of Output from

a Computer Code, volume 21. Springer, 1979.

[88] L. R. Medsker and L. C. Jain. Recurrent neural networks. Design and Appli-

cations, 5, 2001.

[89] E. E. Meshkov. Instability of the interface of two gases accelerated by a shock

wave. Fluid Dynamics, 4:101–104, 1969.

[90] D. Mihalas and B. W. Mihalas. Foundations of radiation hydrodynamics.

Courier Corporation, 2013.

[91] G. H. Miller, E. I. Moses, and C. R. Wuest. The National Ignition Facility:

enabling fusion ignition for the 21st century. Nuclear Fusion, 44(12), 2004.

[92] T. P. Minka. Expectation propagation for approximate Bayesian inference. In

Proceedings of the Seventeenth conference on Uncertainty in artificial intelli-

gence, pages 362–369. Morgan Kaufmann Publishers Inc., 2001.

[93] E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat.

The National Ignition Facility: Ushering in a new age for high energy density

science. Physics of Plasmas, 16(4):–, 2009.

148

[94] D. H. Munro. Interpreting inertial fusion neutron spectra. Nuclear Fusion,

56(3):036001, 2016.

[95] S. R. Nagel, S. W. Haan, J. R. Rygg, M. Barrios, L. R. Benedetti, D. K.

Bradley, J. E. Field, B. A. Hammel, N. Izumi, O. S. Jones, S. F. Khan, T. Ma,

A. E. Pak, R. Tommasini, and R. P. J. Town. Effect of the mounting membrane

on shape in inertial confinement fusion implosions. Physics of Plasmas, 22(2),

2015.

[96] S. R. Nagel, J. R. Rygg, L. R. Benedetti, T. Ma, M. A. Barrios, S. W. Haan,

B. A. Hammel, T. Doeppner, A. E. Pak, R. Tommasini, and et al. The impact

of capsule “tent” thickness on interpreting low mode shape. In APS Meeting

Abstracts, 2013.

[97] V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann

machines. In Thorsten Joachims, editor, Proceedings of the 27th Intl. Conf. on

Machine Learning (ICML-10), pages 807–814. Omnipress, 2010.

[98] J. A. Nelder and R. Mead. A simplex method for function minimization. The

Computer Journal, 7(4):308–313, 1965.

[99] R. Nora, J. Field, B. Spears, and C. Thomas. Using ensembles of simulations

to find high-fidelity post-shot models of inertial confinement implosions at the

National Ignition Facility. In APS Meeting Abstracts, October 2016.

[100] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-

level image representations using convolutional neural networks. In Computer

Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pages

1717–1724. IEEE, 2014.

149

[101] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring mid-

level image representations using convolutional neural networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 1717–

1724, 2014.

[102] R. K. Pace and R. Barry. Sparse spatial autoregressions. Statistics and Prob-

ability Letters, 33:291–297, 1997.

[103] Tim Pearce, Mohamed Zaki, Alexandra Brintrup, and Andy Neel. Uncertainty

in neural networks: Bayesian ensembling. arXiv preprint arXiv:1810.05546,

2018.

[104] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research, 12:2825–

2830, 2011.

[105] J. L. Peterson, D. S. Clark, L. P. Masse, and L. J. Suter. The effects of

early time laser drive on hydrodynamic instability growth in National Ignition

Facility implosions. Physics of Plasmas, 21(9):092710, 2014.

[106] J. L. Peterson, K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer,

R. C. Nora, B. K. Spears, and P. T. Springer. Zonal flow generation in inertial

confinement fusion implosions. Physics of Plasmas, 24(3):032702, 2017.

[107] Gerald C Pomraning. The equations of radiation hydrodynamics. Courier

Corporation, 1973.

[108] William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flan-

nery. Numerical recipes 3rd edition: The art of scientific computing. Cambridge

150

university press, 2007.

[109] C. E. Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

[110] Rayleigh. Investigation of the character of the equilibrium of an incompressible

heavy fluid of variable density. Proceedings of the London Mathematical Society,

s1-14(1):170–177, 1882.

[111] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le, and

A. Kurakin. Large-Scale Evolution of Image Classifiers. ArXiv e-prints, March

2017.

[112] R. D. Richtmyer. Taylor instability in shock acceleration of compressible fluids.

Communications on Pure and Applied Mathematics, 13(2):297–319, 1960.

[113] J. E. Rothenberg. Comparison of beam-smoothing methods for direct-drive

inertial confinement fusion. J. Opt. Soc. Am. B, 14(1664-1671), 1997.

[114] H. A. Scott. Cretin: radiative transfer capability for laboratory plasmas.

Journal of Quantitative Spectroscopy and Radiative Transfer, 71(2-6):689–701,

2001.

[115] R. Setiono and W.K. Leow. On mapping decision trees and neural networks.

Knowledge-Based Systems, 12(3):95 – 99, 1999.

[116] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition. ArXiv e-prints, 2014.

[117] S. Skupsky and R. S. Craxton. Irradiation uniformity for high-compression

laser fusion experiments. Physics of Plasmas, 6(21572163), 1999.

[118] S. Skupsky and et al. Improved laser-beam uniformity using the angular dis-

persion of frequency-modulated light. J. Appl. Phys., 66(34563462), 1989.

151

[119] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of

machine learning algorithms. In Proceedings of the 25th International Confer-

ence on Neural Information Processing Systems, pages 2951–2959, USA, 2012.

Curran Associates Inc.

[120] H. Song, D. Rajan, J. J. Thiagarajan, and A. Spanias. Attend and Diag-

nose: Clinical Time Series Analysis using Attention Models. ArXiv e-prints,

November 2017.

[121] B. K. Spears, S. Brandon, D. Clark, C. Cerjan, J. Edwards, O. Landen, J. Lindl,

S. Haan, S. Hatchett, J. Salmonson, P. Springer, S. V. Weber, and D. Wil-

son. Prediction of ignition implosion performance using measurements of low-

deuterium surrogates. Journal of Physics: Conference Series, 244(2):022014,

2010.

[122] B. K. Spears and et al. Deep learning: A guide for practitioners in the physical

sciences. Physics of Plasmas, 25(8):080901, 2018.

[123] B. K. Spears, S. Glenzer, M. J. Edwards, S. Brandon, D. Clark, R. Town,

C. Cerjan, R. Dylla-Spears, E. Mapoles, D. Munro, J. Salmonson, S. Sepke,

S. Weber, S. Hatchett, S. Haan, P. Springer, E. Moses, J. Kline, G. Kyrala,

and D. Wilson. Performance metrics for inertial confinement fusion implosions:

Aspects of the technical framework for measuring progress in the National

Ignition Campaign). Physics of Plasmas, 19(5), 2012.

[124] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. The

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[125] Weston M Stacey. Fusion: An introduction to the physics and technology of

magnetic confinement fusion. John Wiley & Sons, 2010.

152

[126] P. A. Sterne, L. X. Benedict, S. Hamel, A. A. Correa, J. L. Milovich, M. M.

Marinak, P. M. Celliers, and D. E. Fratanduono. Equations of state for ab-

lator materials in inertial confinement fusion simulations. Journal of Physics:

Conference Series, 717(1):012082, 2016.

[127] W. N. Street, W. H. Wolberg, and O. L. Mangasarian. Nuclear feature extrac-

tion for breast tumor diagnosis. volume 1905, pages 861–870, 1993.

[128] H. F. Stripling, R. G. McClarren, C. C. Kuranz, M. J. Grosskopf, E. Rutter,

and B. R. Torralva. A calibration and data assimilation method using the

Bayesian MARS emulator. Annals of Nuclear Energy, 52:103–112, 2013.

[129] M. Sundermeyer, R. Schlüter, and H. Ney. LSTM neural networks for lan-

guage modeling. In Thirteenth Annual Conference of the International Speech

communication Association, 2012.

[130] L. J. Suter, R. L. Kauffman, C. B. Darrow, A. A. Hauer, H. Kornblum, O. L.

Landen, T. J. Orzechowski, D. W. Phillion, J. L. Porter, L. V. Powers, and et al.

Radiation drive in laser-heated hohlraums. Physics of Plasmas, 3(5):2057–2062,

1996.

[131] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with

neural networks. In Advances in neural information processing systems, pages

3104–3112, 2014.

[132] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

pages 1–9, 2015.

153

[133] Y. Tang. TF Learn: TensorFlow’s high-level module for distributed machine

learning. arXiv preprint 1612.04251, 2016.

[134] R. Taylor. The instability of liquid surfaces when accelerated in a direction

perpendicular to their planes. Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences, 201(1065):192–196, 1950.

[135] J. Meyer ter Vehn and S. Atzeni. The Physics of Inertial Fusion. Oxford

University Press, Oxford, UK, 2009.

[136] G. Thimm and E. Fiesler. Neural network initialization, pages 535–542.

Springer Berlin Heidelberg, 1995.

[137] C. Thomas. BigFoot, a program to reduce risk for indirect drive laser fusion.

58th Annual Meeting of the APS Division of Plasma Physics, 61:18, 2016.

[138] R. P. J. Town, D. K. Bradley, A. Kritcher, O. S. Jones, J. R. Rygg, R. Tom-

masini, M. Barrios, L. R. Benedetti, L. F. Berzak Hopkins, P. M. Celliers,

T. Döppner, E. L. Dewald, D. C. Eder, J. E. Field, S. M. Glenn, N. Izumi,

S. W. Haan, S. F. Khan, J. L. Kline, G. A. Kyrala, T. Ma, J. L. Milovich,

J. D. Moody, S. R. Nagel, A. Pak, J. L. Peterson, H. F. Robey, J. S. Ross,

R. H. H. Scott, B. K. Spears, M. J. Edwards, J. D. Kilkenny, and O. L. Landen.

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on

the National Ignition Facility. Physics of Plasmas, 21:056313, 2014.

[139] M. Van Oijen, J. Rougier, and R. Smith. Bayesian calibration of process-based

forest models: bridging the gap between models and data. Tree Physiology,

25(7):915–927, 2005.

[140] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,

L. Kaiser, and I. Polosukhin. Attention Is All You Need. ArXiv e-prints, June

154

2017.

[141] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. Show and tell: A neural image

caption generator. In Computer Vision and Pattern Recognition (CVPR), 2015

IEEE Conference on, pages 3156–3164. IEEE, 2015.

[142] S. Wang, C. Aggarwal, and H. Liu. Using a random forest

to inspire a neural network and improving on it. Available at:

http://www.public.asu.edu/ swang187/publications/NNRF.pdf, 2017.

[143] C. R. Weber and B A Hammel. Private communication, 2016.

[144] A. Wilson and H. Nickisch. Kernel interpolation for scalable structured Gaus-

sian processes (KISS-GP). In International Conference on Machine Learning,

pages 1775–1784, 2015.

[145] Y. Wu and et al. Google’s Neural Machine Translation System: Bridging the

Gap between Human and Machine Translation. ArXiv e-prints, September

2016.

[146] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and

Y. Bengio. Show, attend and tell: Neural image caption generation with visual

attention. In International Conference on Machine Learning, pages 2048–2057,

2015.

[147] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are fea-

tures in deep neural networks? In Advances in neural information processing

systems, pages 3320–3328, 2014.

[148] D. Yuan, Z. Qian, and Y. Pei. State transition ANNs for hourly wind speed

forecasting. In 2017 Chinese Automation Congress (CAC), pages 6934–6938,

Oct 2017.

155

[149] C. D. Zhou and R. Betti. A measurable Lawson criterion and hydro-equivalent

curves for inertial confinement fusion. Physics of Plasmas, 15(10):102707, 2008.

[150] B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning.

2017.

[151] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learning Transferable Archi-

tectures for Scalable Image Recognition. ArXiv e-prints, July 2017.

156

	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	NOMENCLATURE
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Brief overview of inertial confinement fusion
	Indirect drive ICF
	Direct drive ICF

	Designing and interpreting ICF experiments
	Contributions of this work

	Machine learning-guided design optimization ``Partially Reproduced with permission from ``Zonal flow generation in inertial confinement fusion implosions'', J. L. Peterson, K. D. Humbird, J. E. Field, S. T. Brandon, S. H. Langer, R. C. Nora, B. K. Spears, and P. T. Springer, Physics of Plasmas 24, 032702 (2017), with the permission of AIP Publishing.''
	Surrogate models of ICF simulation data
	Surrogate optimization to search for robust, high-yield implosions
	HYDRA simulations of the optimal implosion
	Conclusions

	Deep Jointly-Informed Neural Networks â•œReproduced from ``Deep Neural Network Initialization With Decision Trees', K. D. Humbird, J. L. Peterson. R. G. McClarren, IEEE TNNLS 10.1109/TNNLS.2018.2869694 (2018), with the permission of IEEE.â•š
	Introduction
	Deep Jointly-Informed Neural Networks
	Decision tree construction
	Mapping decision trees to deep neural networks
	Optimizing the neural networks
	Examples mapping from trees to DJINN models

	DJINN Performance
	DJINN as an ensemble method
	Comparison to shallow tree-initialized neural networks
	DJINN as a warm-start for neural network training

	Comparison of DJINN to hyper-parameter optimization
	Conclusions

	Bayesian analysis with Deep Jointly-Informed Neural networks
	Deep jointly-informed neural networks with dropout
	Inverse models with B-DJINN
	Conclusions

	Augmenting post-shot analysis with deep neural networks
	Inverse model inference of unknown inputs in NIF experiments
	Neural network-based post-shot analysis of ICF experiments
	Autoencoders
	Augmenting post-shot analyses with autoencoders and DJINN

	Post-shot analyses of HED experiments
	Conclusions

	Transfer learning to model inertial confinement fusion experiments
	Hierarchical transfer learning
	Transfer learning for ICF model calibration
	Low fidelity simulation-based DJINN models
	Hierarchical transfer learning with the Omega dataset

	Exploring discrepancies between simulations and Omega experiments with transfer learning
	Conclusions

	Predicting the time-evolution of multi-physics systems with sequence-to-sequence models
	Predicting the time evolution of multi-physics systems
	Databases

	Comparison of seq2seq and state transition models for multi-physics systems
	Using seq2seq models to improve physics simulations
	Conclusions

	Conclusions
	REFERENCES

