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ABSTRACT 

 

In this research, we study a macroscopic traffic model, Payne-Whitham (PW) model, 

with an anticipation source term. The anticipation source describes how the traffic adjusts its 

speed based on the condition ahead. With the calibration of driver’s anticipation effect in PW 

model, this study 1) proposes a short-term freeway traffic prediction method, 2) validates the 

method with real world data from PeMS, 3) assesses the method by MAPE, VAPE and PPE, 4) 

compares the method in different traffic conditions and prediction periods, 5) provides a 

guideline in the range of driver’s anticipation parameter. The results indicate the average relative 

error of predicting speed in 5-min is 3.48% with a variance of 5.33%. The comparisons revealed 

the anticipation parameter increases with a decreasing in the size of predictable VDSs as the 

traffic becomes more congested. For a longer prediction period, the reduction in the size of 

predictable VDSs is higher. We recommend taking a value between 8 to 14 for the anticipation 

parameter when modelling the traffic with LOS from C to F; from 3 to 9 for traffic between LOS 

B and C; from 0 to 4 for traffic with LOS A. These recommended ranges could guide 

practitioners without knowing the shape of traveling wave when using PW model or PW 

prediction method. The traffic prediction method developed in this study differs from data-driven 

prediction methods. It is derived from the solutions of PW model; hence, it underlies flow 

studies and the process includes the concept of traffic dynamics. It reduces the size of predictable 

data points, because a perturbation method was assumed in solving the PW model. The results 

show under a congested traffic, there are about 77.6% of data points satisfied for a 5-min PW 

prediction, 63.6% of data points satisfied for a one-hour PW prediction. This indicates the 

limitation does not have large impact on the PW predictions in general. 
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NOMENCLATURE 

 

AADT Annual  Average Daily Traffic 

SMS Space Mean Speed 

TMS Time Mean Speed 

LOS Level of Service 

PW model Payne-Whitham model 

HCM Highway Capacity Manual 

ITS Intelligent Transportation Systems 

ATMS Advanced Traffic Management System 

BPNN Back Propagation Neural Network 

ARIMA Autoregressive Integrated Moving Average 

PDE Partial Differential Equation 

LWR model Lighthill–Whitham–Richards model 

FFS Free Flow Speed 

v/c ratio volume capacity ratio 

MAPE Mean Absolute Percentage Error 

VAPE Variance Absolute Percentage Error 

PPE Probability of Percentage Error 

GPS Global Positioning System 

Caltrans California Department of Transportation 

PeMS Caltrans Performance Measurement System 

VDS Vehicle Detector Station 



 

vi 

 

 

HOV High-Occupancy Vehicle 

SR 99/CA-SR 99 California State Route 99  

NB North Bound 

SL Speed Limit 

mph Mile per hour 

vpmpl vehicle per mile per lane 

vph vehicle per hour 
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1. INTRODUCTION  

 

This chapter introduces three traffic variables focused in this study, that is, flow, speed 

and density. Then it briefs the problem statement and why it is important to study.  

1.1 Traffic Variables 

Flow, speed and density are the fundamental variables to describe macroscopic traffic. 

There are various counting ways for the number of vehicles in an exposure. For instance, we 

have 15-min volume, 1-hour flow rate and annual average daily traffic (AADT). Flow usually 

addresses the number of vehicles per hour. Flow can be counted by humans with traffic counting 

equipment for small studies, or by loop detectors or other sensors in the field.  

Speed describes how fast an object moves. In the context of traffic, two types of speeds 

are widely studied:  space mean speed (SMS) and time mean speed (TMS). The SMS is the 

average speed of vehicles traveling on a segment of roadway during a specified time; the TMS is 

the arithmetic average speed of all vehicles passing a spot for a specified time. The TMS is 

possible to be calculated from spot speeds collected by devices such as a radar speed gun; the 

SMS is usually calculated with travel times, and can be estimated by TMS or approximated from 

the speed reported by dual-loop detectors. 

Lastly, density presents the compactness of vehicles in an exposure. Density is hard to 

measure directly by human or detectors. It is usually estimated by occupancy recorded in 

detector or a basic flow-speed-density relation. We use the flow-speed-density relation to 

estimate density. A detailed explanation of such relation is provided in section 3.1. Although it is 

difficult to measure, the value of density plays an important role in traffic evaluations on 

freeway. For example, the level of service (LOS) on freeway is based on density.  
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1.2 Problem Statement 

Freeway traffic in a near term can vary because of demand changes, existing events (i.e. 

crashes, lane closures), special geometrics (i.e. weaving areas, bottleneck sections), and 

associated shockwaves. These variations of traffic cause difficulties in predictions of traffic flow. 

It is because the variations of traffic depend on how drivers respond to these traffic changes. 

Hence, it is important to understand and model driver behavior. Driver behavior modelling is 

categorized into aggressiveness, familiarity, cooperation and anticipation. In this research, we 

study a macroscopic traffic model, Payne-Whitham (PW) model, with an anticipation source 

term. The anticipation source describes how the traffic adjusts its speed based on the condition 

ahead. For an instance, the speed of traffic flow decreases when the driver notices congestion 

ahead. The anticipation parameter of the source term is calibrated through this study. 

With the calibration of driver’s anticipation effect in PW model, this study 1) proposes a 

short-term freeway traffic prediction method, 2) validates the method with real world traffic data 

sets3) assess the method by statistical tests, 4) compare the method in different traffic conditions 

and prediction periods. The traffic prediction method developed in this study differs from data-

driven prediction methods. It is derived from the solutions of PW models; hence, it underlies 

flow studies and the process includes the concept of traffic dynamics. 
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2. BACKGROUND  

 

Short-term prediction of traffic variables, such as speed, density, and flow, is a trending 

research topic. With the rise of Intelligent Transportation Systems (ITS), short-term prediction 

becomes essential in control and management systems, such as Advanced Traffic Management 

System (ATMS). An accurate short-term prediction benefits the traffic control of both freeway 

and urban network under congested conditions. Previous literature and studies involve forecast 

or prediction of traffic through different methods. According to a study conducted by Van Lint 

[1] in 2007, the most common prediction models are back propagation neural network (BPNN) 

[2, 3], k-Nearest Neighbor [4], and Autoregressive Integrated Moving Average(ARIMA) [5-7]. 

Most of these prediction studies are based on data analysis (data-driven), i.e., the prediction 

method itself does not considers the theories and principles of traffic. The prediction method in 

this study will be developed from analytical solutions of a macroscopic traffic flow model, 

Payne-Whitham (PW) model. It is a famous 2nd order dynamic traffic model, introduced in the 

1970s by Payne [8] and Whitham [9]. In particular, we consider the effect of driver's behavior by 

calibrating the anticipation parameter in the PW model. Anticipation behavior can be seen as the 

driver’s awareness of conditions ahead, and it produces a diffusion, or smoothing of the basic 

traffic flow wave.  

The study will propose a prediction method for the speed and density in a short-term 

period considering driver’s anticipation effect. This method will be validated through real-world 

traffic data sets under various durations and different level of congestions. The strength and 

weakness of the method will also be addressed. 
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3. METHODOLOGY  

 

This chapter begins with a detailed introduction of Payne-Whitham Model (PW Model) 

in section 3.1. It discusses and explains the model in terms of its physical meanings and 

implementations in traffic. Then, a reduced PW Model along with the driver’s anticipation 

source term is formulated and converted into a homogeneous partial differential equation (PDE) 

system. This system is further decoupled by characteristic variables and solved analytically in 

section 3.2. The analytical solutions of speed and density are presented by characteristic 

variables, thus, in section 3.3, they are interpreted by the methods of perturbation and 

interpolation. Lastly, in section 3.4, some common statistical forecasting performance tests are 

introduced to evaluate the performances of our predictors. 

3.1 Payne-Whitham Model 

Speed (i.e. space mean), density and flow (also known as service flow rate or volume) are 

three significant traffic variables when considering traffic predictions and managements. These 

three hold a fundamental relation, 

 

𝑞 = 𝑣𝜌 (1) 

 

where, 𝑞 is the flow, 𝑣 is the space mean speed and 𝜌 is the density. There are many traffic 

models describing the traffic from difference scopes. The PW model is a macroscopic traffic 

model for space mean speed 𝑣 and density 𝜌 at location 𝑥 and time 𝑡, includes both conservation 

equation and momentum equation as below, 

 

𝜌𝑡 + (𝜌𝑣)𝑥 = 0 (2) 
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It was developed by H.J. Payne [8] and G.B. Whitham [9] in 1970s independently. The 

conservation equation, Equation (2), is from the Lighthill and Whitham [10] and Richards [11], 

or the LWR model. It is a scalar PDE. The conservation equation itself describes the traffic is in 

an equilibrium state, that is, the input of the traffic is equal to the output. It assumes the speed 

depends on density, meaning density is a function of speed, which sometime is not true in the 

reality. For instance, the speed of traffic under same density may slow down because of relative 

drivers’ reactions. The momentum equation of the PW model, Equation (3), links speed and 

density, so that the speed and density can be independent.  

The momentum equation is derived from the Navier-Stokes equation of motion for a 1-D 

compressible flow, but the source terms are modified. The first source term is the relaxation 

term, 
𝑉(𝜌)−𝑣

𝜏
; it describes the process in which the driver adjusts the vehicle speed to return the 

equilibrium traffic speed 𝑉(𝜌) (i.e. speed limit). The second source term is the anticipation term, 

−
𝐴(𝜌)𝑥

𝜌
; it adjusts the model by reducing the traffic flow when there is a traffic pressure ahead. 

The last source term is the viscosity term, 𝜇
𝑣𝑥𝑥

𝜌
; it gives a more realistic constitutive relationship 

between the average reaction time of drivers and the car density. 

Note that the anticipation source term describes how the traffic adjusts its speed based on 

the condition ahead. For instance, the speed of traffic flow decreases when the driver notices 

congestion ahead. Anticipation behavior can be seen as the driver's awareness of conditions 

ahead, and it produces a diffusion, or smoothing of the basic traffic flow wave. In the study of 

 

𝑣𝑡 + 𝑣𝑣𝑥 =
𝑉(𝜌) − 𝑣

𝜏
−
𝐴(𝜌)𝑥
𝜌

+ 𝜇
𝑣𝑥𝑥
𝜌
. 

(3) 
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PW model by Kachroo [12], the following expression for anticipation 𝐴(𝜌) fitted the traffic 

wave well, 

 

𝐴(𝜌) = 𝛽2𝜌. (4) 

 

Here, 𝛽 is the anticipation rate (units length/time). In traffic flow, the rate is a positive value, as 

Whitham argues that drivers decrease their speed to account for an increasing density ahead. If 

we insert Equation (4) into (3), the full PW model is also equivalent to, 

 

𝜌𝑡 + (𝜌𝑣)𝑥 = 0 

 

(5) 

(𝜌𝑣)𝑡 + (𝜌𝑣
2 + 𝛽2𝜌)𝑥 =

𝑉(𝜌) − 𝑣

𝜏
+ 𝜇

𝑣𝑥𝑥
𝜌
. 

(6) 

 

For this study, we assume the relaxation term and viscosity term are negligible, and focus on a 

reduced PW model with driver's anticipation effect as, 

 

𝜌𝑡 + (𝜌𝑣)𝑥 = 0 

 

(7) 

(𝜌𝑣)𝑡 + (𝜌𝑣
2 + 𝛽2𝜌)𝑥 = 0. (8) 

 

Although Daganzo [13] claimed the PW model and other 2nd order models are straightly 

following the isotropic fluid dynamics, which is against the anisotropic nature of traffic, as it is 

one of the earlier developed second-order continuum traffic model with considerations on 

driver's behavior, PW is indeed the best known and it is worth to be investigated. 
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3.2 Analytical Solution of PW Model 

Previously in section 3.1, we introduced the PW model and reduced it into a system of 

PDE shown in Equation (7) and (8). It is equivalent to its quasilinear vector form, 

 

𝒖𝒕 + 𝒇(𝒖)𝒖𝒙 = 𝟎 (9) 

 

where, 

 

𝒖 = (
𝜌

𝑣
) , 𝒇(𝒖) = (

0 1
𝛽2 − 𝑣2 2𝑣

) , 𝒖𝒙 = (
𝜌𝑥
(𝜌𝑣)𝑥

). 
(10) 

 

In order to obtain implicit solutions through characteristic variables, the system of PDEs 

in Equation (9), needs to be transferred into two decoupled scalar PDEs. A process of 

diagonalization is taken place for 𝒇(𝒖) by assigning 𝑨 = 𝒇(𝒖) and diagonalizing 𝑨 with 

𝑷−𝟏𝑨𝑷 = 𝚪. Here, 𝚪 is the diagonal matrix with eigenvalues as its diagonals, 𝑷 is a matrix 

composed of the eigenvectors of 𝑨, and 𝑷−𝟏 is the matrix inverse of 𝑷. Then, the scalar system 

of decoupled PDEs is, 

 

𝑹𝒕 + 𝚪𝑹𝒙 = 𝟎 (11) 

 

where, 

 

𝑹𝒊 ≡ 𝑷
−𝟏𝒖𝒊 = (

𝜌
2𝛽
(𝑣 + 𝛽(𝑙𝑛𝜌))

𝑖

−
𝜌
2𝛽
(𝑣 − 𝛽(𝑙𝑛𝜌))

𝑖

) , 𝑖 ≡ 𝑥, 𝑡; 𝚪 = (
𝑣 + 𝛽 0
0 𝑣 − 𝛽

). 

(12) 
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Kachroo [12] has solved this scalar PDEs implicitly using the method of characteristics. 

Let 𝑹 = (𝑟1, 𝑟2), the implicit solutions of 𝑣, 𝜌 for the reduced PW model with the driver's 

anticipation parameter is obtained as, 

 

(
𝑣

𝜌
) = (

1
2 (𝑟1 + 𝑟2)

exp⁡(
𝑟1 − 𝑟2
2𝛽

)
). 

(13) 

 

3.3 Proposed Prediction Method  

Although implicit solutions of 𝑣 and 𝜌 in Equation (13) are enough to provide an idea of 

the characteristic solution curve, they are still vague and cannot be applied as they are in terms of 

characteristic variables. Hence, in subsection 3.3.1, by introducing the perturbation method, 

explicit solutions are derived. The explicit solution of speed/density is taken as the proposed 

prediction method of speed/density. The prediction method is then further interpreted through a 

method of interpolation in subsection 3.3.2. In subsection 3.3.3, a calibration formula for the 

driver’s anticipation parameter is derived and it calibrates the parameter at each time step for the 

prediction. Lastly, subsection 3.3.4 discusses the benefits and limitations of the prediction 

methods. 

3.3.1 Interpretation of Solution 

The perturbation method (aka small disturbance method) is a common mathematical 

technique to linearize a system of PDEs by the assumption of a steady state with small 

perturbations departing from itself. The perturbation method is a branch in the family of 

perturbation expansion solutions to the wave study. The first famous discussion of the method 

was by Rayleigh [14] in the 1896, the it was further addressed in the work by Rice [15] and 

Mitzner [16] in the mid-1960s. Recall, we introduced two independent variables (i.e. speed and 
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density) in the PW model, and we assume disturbances 𝑣′(𝑥, 𝑡)⁡and⁡⁡𝜌′(𝑥, 𝑡) occurs around their 

steady states 𝑣̅(𝑥)⁡and⁡𝜌̅(𝑥), as well as the characteristic variables 𝑟1 and 𝑟2, 

 

𝑣(𝑥, 𝑡) = 𝑣̅(𝑥) + 𝑣′(𝑥, 𝑡), 𝜌(𝑥, 𝑡) = 𝜌̅(𝑥) + 𝜌′(𝑥, 𝑡), 
 

(14) 

𝑟1(𝑥, 𝑡) = 𝑟1̅(𝑥) + 𝑟1
′(𝑥, 𝑡), 𝑟2(𝑥, 𝑡) = 𝑟2̅(𝑥) + 𝑟2

′(𝑥, 𝑡). (15) 

 

Substituting Equation (15) into the scalar system in Equation (11), 𝑹𝒕 + 𝚪𝑹𝒙 = 𝟎, and 

linearizing for 𝑟1
′, 𝑟2

′ gives 

 

𝜕𝑟1
′

𝜕𝑡
+ (𝑣̅ + 𝛽)

𝜕𝑟1
′

𝜕𝑥
= 0, 

 

(16) 

𝜕𝑟2
′

𝜕𝑡
+ (𝑣̅ − 𝛽)

𝜕𝑟2
′

𝜕𝑥
= 0. 

(17) 

 

The Equations (16) and (17) are each one-way wave equation with a constant wave speed. The 

solution for each is a traveling wave solution in following form, 

 

𝑟1
′ = 𝑓(𝑥 − (𝑣̅ + 𝛽)𝑡), 

 

(18) 

𝑟2
′ = 𝑔(𝑥 − (𝑣̅ − 𝛽)𝑡). (19) 

 

where⁡𝑓, 𝑔 are arbitrary functions. Let 𝑥+
′ ∶= 𝑥 − (𝑣̅ + 𝛽)𝑡, 𝑥−

′ ∶= 𝑥 − (𝑣̅ + 𝛽)𝑡, Equation (18) 

and (19) can be written in arrow notations, 

 

𝑥
𝑓′

→ 𝑥+
′ 𝑥

𝑔′

→𝑥−
′

𝑣(𝑥, 𝑡)
𝑓′

→ 𝑣𝑓
′(𝑥+

′ , 𝑡) 𝑣(𝑥, 𝑡)
𝑔′

→ 𝑣𝑔
′(𝑥−

′ , 𝑡)

𝜌(𝑥, 𝑡)
𝑓′

→ 𝜌𝑓
′ (𝑥+

′ , 𝑡) 𝜌(𝑥, 𝑡)
𝑔′

→ 𝜌𝑔
′ (𝑥−

′ , 𝑡)

 

(20) 
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where, 𝑣𝑓
′ , 𝑣𝑔

′ ,⁡𝜌𝑓
′ ⁡and⁡𝜌𝑔

′  are the outputs of speeds and densities through the perturbations 𝑓′, 𝑔′ 

of arbitrary functions 𝑓, 𝑔.  

By substituting back into the implicit solutions in Equation (13), the explicit solutions 𝑣 

and 𝜌̂ for traffic speed (i.e. space mean speed) and traffic density are derived as, 

 

(
𝑣

𝜌̂
) =

(

 
𝑣̅ +

1
2 [𝑣𝑓

′(𝑥+
′ , 𝑡) + 𝑣𝑔

′(𝑥−
′ , 𝑡)]

𝜌̅ exp (
𝜌𝑓
′ (𝑥+

′ , 𝑡) − 𝜌𝑔′ (𝑥−′ , 𝑡)

2𝛽
)
)

 . 

(21) 

 

The explicit solutions can be considered as a prediction method for the traffic speed and density, 

as they take the steady state of speed/density and the solutions of traveling waves as inputs. The 

steady states can be approximated by taking an arithmetic mean on the historical speeds and 

densities respectively, while the solutions of traveling waves are relatively difficult to compute. 

In the next section, we will introduce a method of interpolation to interpret the solutions of 

traveling. 

3.3.2 Method of Interpolation 

In the previous section, a prediction method is proposed as a combination of the steady 

states and the solutions of traveling waves. Consider we have some space and time collections 

{𝑥𝑖, 𝑡𝑗}𝑖=1,⁡⁡⁡𝑗=−𝑀
𝑖=𝑁,⁡⁡⁡𝑗=1⁡⁡

 along with traffic speed and density {𝑣𝑖𝑗 , 𝜌𝑖𝑗}𝑖=1,⁡⁡⁡𝑗=−𝑀
𝑖=𝑁,⁡⁡⁡𝑗=1

 or 

{𝑣(𝑥𝑖 , 𝑡𝑗), 𝜌(𝑥𝑖, 𝑡𝑗)}𝑖=1,⁡⁡⁡𝑗=−𝑀
𝑖=𝑁,⁡⁡⁡𝑗=1

. The common examples of such collections are the speed and 

density from the loop detector stations on freeway. Here, the set {𝑣(𝑥𝑖 , 𝑡0), 𝜌(𝑥𝑖, 𝑡0)}𝑖=1⁡
𝑁 is treated 

as the initial/current data set at initial time 𝑡0, and the set {𝑣(𝑥𝑖 , 𝑡1), 𝜌(𝑥𝑖, 𝑡1)}𝑖=1⁡
𝑁 is considered as 

the data values for future time 𝑡1. The sets {𝑣𝑖𝑗, 𝜌𝑖𝑗}𝑖=1,⁡⁡⁡𝑗=−𝑀
𝑖=𝑁,⁡⁡⁡𝑗=−1

 with time 𝑡𝑗|𝑗∈{−𝑊,−𝑊+1,…,−1} is 
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counted as historical data sets. The index of time has a lower bound, because only those latest 

historical sets sharing the same steady state with the current sets are counted. Consider these 

collections are given under a frequency in space with a positive space gap 𝛿𝑥, that is 𝛿𝑥

∶= 𝑥𝑖+1 − 𝑥𝑖 > 0 for ∀𝑖 ∈ {1,2, … , 𝑁 − 1}. Such constant space gap is assumed to be consistent 

over time, since in the real world the locations of loop detectors are fixed over time. These 

collections are also considered with a frequency in time with a positive time period 𝛿𝑡, that is 𝛿𝑡

∶= 𝑡𝑗 − 𝑡𝑗−1 > 0 for ∀𝑗 ∈ {0,−1, −2,… ,−𝑀 + 1}. Notice, such time period is assumed to be a 

constant among historical data sets. Lastly, the prediction period between initial 𝑡0 and predict 

time 𝑡1 is defined as Δ𝑡, Δ𝑡 ∶= 𝑡1 − 𝑡0 > 0. It is not necessary to have Δ𝑡 equal to 𝛿𝑡, but it is 

bounded on the left by 𝛿𝑡, 𝛿𝑡 ≤ Δ𝑡, because 𝛿𝑡 is the smallest period in time. 

By applying the prediction method on these data sets, a predicted data set 

{𝑣(𝑥𝑖, 𝑡1), 𝜌̂(𝑥𝑖, 𝑡1)}𝑖=1⁡
𝑁 is expected. Recall in Equation (21), a predicted speed 𝑣(𝑥𝑖, 𝑡1) takes 

𝑣̅(𝑥𝑖), 𝑣𝑓
′(𝑥+

′
𝑖
, 𝑡0) and ⁡𝑣𝑔

′(𝑥−
′
𝑖
, 𝑡0) at each location 𝑖 as inputs; a predicted density 𝜌̂(𝑥𝑖, 𝑡1) takes 

𝜌̅(𝑥𝑖), 𝜌𝑓
′ (𝑥+

′
𝑖
, 𝑡0) and ⁡𝜌𝑔

′ (𝑥−
′ , 𝑡0) at each location 𝑖 as inputs. Hence, because inputs are 

computed under the same steps for both speed and density, a generalized variable 𝜙 will be used, 

such that 𝜙 ∈ {𝑣, 𝜌}. In the following paragraph, 𝜙̅(𝑥𝑖), 𝜙𝑓
′ (𝑥+

′
𝑖
, 𝑡0) and ⁡𝜙𝑔

′ (𝑥−
′
𝑖
, 𝑡0) will be 

determined.  

The steady state 𝜙̅(𝑥𝑖) is obtained by the approximation of the arithmetic mean on the 

historical and current data sets over time, 

 

𝜙̅(𝑥𝑖) =
1

𝑀 + 1
∑ 𝜙(𝑥𝑖, 𝑡𝑗)

𝑗=0

𝑗=−𝑊

⁡for⁡𝑖 = 1,2, . . , 𝑁. 

(22) 
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The 𝜙𝑓
′ (𝑥+

′
𝑖
, 𝑡0) and ⁡𝜙𝑔

′ (𝑥−
′
𝑖
, 𝑡0) are the outputs of the variable through the perturbations 𝑓′, 𝑔′ 

of arbitrary functions 𝑓, 𝑔 at a location 𝑖. That is, the functions are varies at different locations. 

Thus, it is necessary to compute a general mapping. If a solution of the traveling traffic wave is 

known, then an exact mapping can be derived. However, the solutions of the traffic wave are 

unknown. Hence, a method of interpolation is implemented to obtain 𝜙𝑓
′ (𝑥+

′
𝑖
, 𝑡0) and 

⁡𝜙𝑔
′ (𝑥−

′
𝑖
, 𝑡0) at a location 𝑖. Interpolation is a method in the field of numerical analysis. It 

estimates unknown values of data points using points with known values. A summary of 

interpolation is shown in Figure 1 below. 

 

 

 

 

Figure 1 Method of Interpolation with Exemplary Data 
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As illustrated in Figure 1 above, at the interpolation step, for every value of 𝜙𝑓
′ (𝑥+

′
𝑖
, 𝑡0) 

at a location 𝑖 ∈ {1,2, …𝑁} is estimated by 𝜙(𝑥𝑙+1, 𝑡0)⁡and⁡𝜙(𝑥𝑙, 𝑡0) at a location 𝑙. The location 

𝑙 with value 𝑥𝑙 is chosen by the following criterial for each given 𝑥+
′
𝑖
 at initial time 𝑡0, 

 

|𝑥+
′
𝑖
− 𝑥𝑙| = min(|𝑥+

′
𝑖
− {𝑥𝑘}𝑘=1

𝑁−1|) for⁡𝑖 = 1,2, . . , 𝑁.  (23) 

 

Such absolute difference above is defined as Δ𝑥 for each 𝑥+
′
𝑖
. Apparently, Δ𝑥 is not necessary to 

be 𝛿𝑥, which 𝛿𝑥⁡was defined as the difference between⁡𝑥𝑙+1⁡and⁡𝑥𝑙 ⁡in the earlier paragraph. 

Therefore, 𝜙𝑓
′ (𝑥+

′
𝑖
, 𝑡0) is approximated by interpolation as,   

 

𝜙𝑓
′ (𝑥+𝑖

′ , 𝑡0) ≅ 𝜙(𝑥𝑗 , 𝑡0) + (Δ𝑥)𝑓𝑖
⁡
𝜙(⁡𝑥𝑙+1⁡, 𝑡0) − 𝜙(𝑥𝑙, 𝑡0)

(𝛿𝑥)𝑙
⁡for⁡𝑖, 𝑙 = 1,2, . . , 𝑁 − 1. 

(24) 

 

Similarly, 𝜙𝑔
′ (𝑥−

′
𝑖
, 𝑡0) is interpolated as  

 

𝜙𝑔
′ (𝑥−

′
𝑖
, 𝑡0) ≅ 𝜙(𝑥𝑖, 𝑡0) + (Δ𝑥)𝑔𝑖

⁡
𝜙(𝑥𝑙+1, 𝑡0) − 𝜙(𝑥𝑙 , 𝑡0)

(𝛿𝑥)𝑙
⁡for⁡𝑖, 𝑙 = 1,2, . . , 𝑁 − 1. 

(25) 

 

Then, substituting interpolated variables and the approximated steady state to Equation (22), the 

predicted speed and density at each location 𝑖 is determined as, 

 

(
𝑣(𝑥𝑖, 𝑡1)

𝜌̂(𝑥𝑖 , 𝑡1)
) =

(

 
 
𝑣̅(𝑥𝑖) +

1
2 [𝑣𝑓

′(𝑥+𝑖
′ , 𝑡0) + 𝑣𝑔

′(𝑥−𝑖
′ , 𝑡0)]

𝜌̅(𝑥𝑖) exp (
𝜌𝑓
′ (𝑥+

′
𝑖
, 𝑡0) − 𝜌𝑔′ (𝑥−′ 𝑖, 𝑡0)

2𝛽
)

)

 
 
. 

(26) 
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As can be seen, Equation (26) is ready to implement except the unknown driver’s anticipation 

parameter 𝛽. The calibration process of it is documented in the next section. 

3.3.3 Calibration of Driver’s Anticipation Effect 

Previously in section 3.1, we introduced the anticipation source term 𝐴(𝜌) in the PW 

traffic model, along with its parameter 𝛽, as Kachroo [12] suggested the relation 𝐴(𝜌) = 𝛽2𝜌 to 

describe the anticipation source term. The anticipation source term describes how the traffic 

adjusts its speed based on the condition ahead. Correspondingly, driver’s anticipation parameter 

quantifies the representative driver’s behavior in the current traffic accounting for a density 

change downstream.  

In order to accurately predict the density, the anticipation parameter needs to be 

calibrated. We will again assume a small perturbed density⁡⁡𝜌′(𝑥, 𝑡) occurs around its steady 

state⁡𝜌̅(𝑥) and apply the perturbation assumption to the reduced PW model as formulated in 

Equation (7) and (8). Then a linearized system is found as below, 

 

𝜌′
𝑡
+ 𝜌′

𝑥
𝑣̅ + 𝜌̅𝑣′𝑥 = 0, 

 

(27) 

𝑣𝑡
′ + 𝑣̅⁡𝑣𝑥

′ +
𝛽2𝜌𝑥

′

𝜌̅
= 0.⁡ 

(28) 

 

Because the Equation (27) and (28) form a linear constant coefficient system, we could assume 

the solution of such linearized system is as following, 

 

[
𝜌′

𝑣′
] = [

𝜌0
𝑣0
] 𝑒𝑖𝑞𝑥+𝜎𝑡. 

(29) 

 

Inserting Equation (29) to the linear constant coefficient system, we obtain the following, 
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(𝜎 + 𝑣̅𝑖𝑞)𝜌0 + (𝑖𝑞𝜌̅)𝑣0 = 0, 
 

(30) 

(𝜎 + 𝑣̅𝑖𝑞)𝑣0 + (
𝛽2

𝜌̅
𝑖𝑞)𝜌0 = 0, 

(31) 

 

which is equivalent to the matrix form, 

[

𝜎 + 𝑣̅𝑖𝑞 𝑖𝑞𝜌̅

𝛽2

𝜌̅
𝑖𝑞 𝜎 + 𝑣̅𝑖𝑞

] [
𝜌0
𝑣0
] = 0. 

(32) 

 

Nontrivial solutions require the determinant to be zero, which gives a relation for the growth rate 

𝜎, 

 

(𝜎 + 𝑣̅𝑖𝑞)2 − (𝑖𝑞𝜌̅) ∗
𝛽2

𝜌̅
𝑖𝑞 = 0⁡ ⟹ 𝜎 = −𝑖𝑞(𝑣̅ ± 𝛽). 

(33) 

 

Then, disturbances of 𝑣, 𝜌 are solved as, 

 

[
𝜌′

𝑣′
] = [

𝜌0
𝑣0
] 𝑒𝑖𝑞(𝑥−(𝑣̅±𝛽)𝑡). 

(34) 

 

We observe that since 𝜎 is purely imaginary as shown in Equation (34), the disturbance is not 

unstable but corresponds to a traveling waves with speed 𝑣̅ ± 𝛽. The speed of traveling wave 𝑐 

and steady state of speed 𝑣̅ are implemented to calibrate anticipation parameter as, 

 

𝛽 = √(𝑣̅ − 𝑐)2, (35) 
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where, the speed of travelling wave 𝑐(𝜌) = (𝑣(𝜌) + 𝑣′(𝜌)𝜌) can be derived from the 

conservation equation, Equation (2).In traffic flow, the rate is assumed to be a positive value, as 

Whitham [9] argues that drivers decrease their speed to account for an increasing density ahead. 

Likewise, we consider data collections {𝑣(𝑥𝑖, 𝑡𝑗), 𝜌(𝑥𝑖 , 𝑡𝑗)}𝑖=1,⁡⁡⁡𝑗=−𝑀
𝑖=𝑁,⁡⁡⁡𝑗=1

 along some freeway 

segments and time durations. Assume a linear relation between 𝑣(𝜌) and 𝜌, we fit 𝑣(𝜌) with 

𝑚𝑖 ∗ 𝜌(𝑥𝑖, 𝑡𝑗) + 𝑏𝑖 at each location 𝑖 with a slope 𝑚𝑖 and an intercept 𝑏𝑖. This gives the derivate 

of 𝑣(𝜌) to be 𝑚𝑖 at each location 𝑖, 

 

𝛽 = √(
1

𝑊 + 1
( ∑ 𝑣(𝑥𝑖, 𝑡𝑗)

𝑗=0

𝑗=−𝑀

) − 𝑣(𝑥𝑖 , 𝑡𝑗) −𝑚𝑖 ⁡𝜌(𝑥𝑖 , 𝑡𝑗))

2

. 

(36) 

 

3.3.4 Limitations 

Recall, in order to interpret the implicit solutions of the PW model, a perturbation method 

was assumed. It assumes the traffic variable owns a small disturbance from its steady state. From 

a traffic operation point of view, this indicates that the traffic is within the same traffic state 

during the prediction period. The traditional way to classify traffic state on freeway is the level 

of service (LOS). LOS is a quantitative stratification of a traffic measurement that indicates the 

quality of service. The methods to define LOSs are different based on facility types. For instance, 

different criteria apply to waving segments than basic freeway segments. The standard of LOSs 

and their detailed calculations are documented in Highway Capacity Manual (HCM) 2010 [17]. 

Table 1 shows the threshold for each LOS (i.e. traffic state) on different traffic variables at each 

criterion listed in HCM 2010 [17] for a basic freeway segment with a 70⁡𝑚𝑝ℎ free flow speed 
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(FFS). The criteria comprise traffic density, along with traffic speed, volume-capacity ratio (aka 

v/c ratio) and service flow rate (commonly known as hourly volume). 

 

 

 

Table 1 LOS Criteria for Basic Freeway Segments 

 

Criteria 

(FFS = 70mph) 

LOS 

A B C D E 

Density (vpmpl) < 11 (11, 18] (18, 26] (26, 35] (35, 45] 
Speed (mph) > 70 > 70 > 68.2 > 61.5 > 53.3 

v/c ratio < 0.32 < 0.53 < 0.74 < 0.90 < 1.00 

Service flow rate (vph) < 770 < 1260 < 1770 2150 > 2400 

 

 

 

From the criteria for a basic freeway segment with a FFS at 70⁡𝑚𝑝ℎ, the range of speed 

𝑅𝑣𝐴⁡𝑡𝑜⁡𝐸 ,⁡varies from LOS A to F is about 17⁡𝑚𝑝ℎ;⁡ the maximum range for speed, max 𝑅𝑣,⁡within 

a LOS is about 10⁡𝑚𝑝ℎ. The range of speed limits the absolute different in speed (i.e. 𝑣𝑓 , 𝑣𝑔)⁡as, 

 

|𝑣𝑓 − 𝑣𝑔| < 𝑅𝑣𝐴⁡𝑡𝑜⁡𝐸 ,⁡ (37) 

 

And, the maximum range for speed within a LOS limits the perturbed speeds (i.e. 𝑣𝑓
′ , 𝑣𝑔

′) and the 

combination of perturbed speeds as, 

 

⁡|𝑣𝑓
′ + 𝑣𝑔

′ | < 2 ∗ (max⁡𝑅𝑣)⁡. (38) 

 

Likewise, the range of density 𝑅𝜌𝐴⁡𝑡𝑜⁡𝐸 ,⁡varies from LOS A to F is about 34⁡𝑝𝑐𝑝𝑚𝑝𝑙;⁡ the 

maximum range for density, max 𝜌,⁡within a LOS is about 10⁡𝑝𝑐𝑝𝑚𝑝𝑙. The range of density 

limits the absolute different in density (i.e. 𝜌𝑓 , 𝜌𝑔)⁡as, 
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|𝜌𝑓 − 𝜌𝑔| < 𝑅𝜌𝐴⁡𝑡𝑜⁡𝐸 ,⁡ (39) 

 

And, the maximum range for density within a LOS limits the perturbed densities (i.e. 𝜌𝑓
′ , 𝜌𝑔

′ )⁡and 

the combination of perturbed speeds as, 

 

|𝜌𝑓
′ − 𝜌𝑔

′ | < 𝑅𝜌. (40) 

 

3.4 Statistical Performance Tests 

As we interpreted the PW solutions into predictors of space mean speed 𝑣, density 𝜌 and 

flow 𝑞(indirectly using the general relation between flow density and speed), the following 

statistical errors and performance tests are introduced in this section to evaluate the goodness of 

these predictors:  

• Mean absolute percentage error (MAPE) 

• Variance absolute percentage error (VAPE) 

• Probability of percentage error (PPE) 

They are common performance tests to evaluate predictions and forecasts. 

The mean absolute percentage error (MAPE) is a statistical measure for the prediction 

accuracy of a forecasting method. The MAPE is implemented as a primary performance test by 

Xie [18] to evaluate the volume forecasting models using Kalman Filter with discrete wavelet 

decomposition. The MAPE calculates the average relative error between the predicted value and 

actual observed value as, 

 

𝑀𝐴𝑃𝐸⁡(%) = 100% ∗
1

𝑁
∑|

𝜙̂𝑘 − 𝜙𝑘
𝜙𝑘

|

𝑁

𝑘=1

. 
(41) 
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where, 𝜙 represents a generalized variable, that is, it can be 𝑣, 𝜌⁡and⁡𝑞; 𝜙̂ indicates the 

corresponding predicted variable. 

The variance of absolute percentage error (VAPE) is the sum of the deviations from the 

average performance in the forecasting period, as formulated below, 

 

𝑉𝐴𝑃𝐸(%) =
√𝑁∑ |

𝜙̂𝑘 − 𝜙𝑘
𝜙𝑘

|
2

− [∑ |
𝜙̂𝑘 − 𝜙𝑘
𝜙𝑘

|𝑁
𝑘=1 ]

2
𝑁
𝑘=1

𝑁(𝑁 − 1)
. 

(42) 

 

By definition, a small VAPE indicates the predictor is more stable than those with larger VAPE 

values. Zheng [19] listed VAPE along with MAPE as the performance test, when Zheng 

compared the flow prediction with the back propagation neural network, the radial basis function 

neural network and Bayesian combined neural network model.  

Lastly, we assess the predicted values using the probability of percentage error (PPE) by 

analyzing the percent cases with error greater than 𝑒%, 𝑒 ≥ 0. PPE is formatted as, 

 

𝑃𝑃𝐸⁡(%) = 𝑃 (|
𝜙̂𝑘 − 𝜙𝑘
𝜙𝑘

| > 𝑒). 
(43) 

 

It can further separate into underestimated 𝑃𝑃𝐸𝑈 and overestimated 𝑃𝑃𝐸𝑂 percent cases as,  

 

𝑃𝑃𝐸𝑈 ⁡(%) = 𝑃 (
𝜙̂𝑘 − 𝜙𝑘
𝜙𝑘

< −𝑒) 
(44) 

𝑃𝑃𝐸𝑂⁡(%) = 𝑃 (
𝜙̂𝑘 − 𝜙𝑘
𝜙𝑘

> 𝑒) 
(45) 
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Williams [20] applied the PPE as the primary evaluator when analyzing missing values and 

outliers for urban freeway traffic flow predictions.  

 These three performance measures (i.e. MAPE, VAPE, PPE) will be used in Chapter 5 

for the comparisons and discussion of results.   
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4. APPLICATION  

 

In this chapter, we first introduce the data source in section 4.1 and the data collection 

site and date in section 4.2. Then, we take one example data set to perform the PW prediction 

method in section 4.3 and assess the method using five tests and 4.4. 

4.1 Data Source 

In order to find the right data source, we first identify the criteria required by PW 

method: 

• Freeway traffic data - PW model is designed to predict highway traffic. 

• Well distributed detectors with GPS position – It is to ensure there are significant 

enough amount of data. The GPS position is needed for interpolation.  

• Performance measurements (i.e. flow, speed) recorded in each VDS 

• Small data collection period – Short term predictions are typically with a 

prediction period less than 1-hour. 

There are various traffic data platforms provided by cities or states, such as TranStar in 

Houston, Caltrans PeMS in California, WisTransPortal in Wisconsin. PeMS is the most well-

established open source data for freeway performance among those. PeMS was first developed as 

a freeway analysis tool, and now it is a centralized traffic data warehouse with real-time and 

historical data from nearly 40,000 individual detectors over the freeway system across all major 

metropolitan areas of the State of California. A detector measures the number of vehicles (flow 

or volume) passing, how long they remain over the detector (occupancy) and how fast vehicle 

passing through two consecutive detectors (speed). The detector reports data on a cycle of 30-

second to the controller (i.e. loop detector station), and PeMS aggregate them into a minimal of 
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5-min performance measurements. In this study, we use the measurements from vehicle detector 

station (VSD). Those measurements are aggregated data over a set of detectors covering all lanes 

in one direction of travel at one point (or small segment). VSD monitors facilities like on-ramp, 

off-ramp, mainline and high-occupancy lane (HOV). For this study, we only consider the VSD 

on the mainline with its position (i.e. absolute postmile) and 5-min aggregated measurements 

(i.e. speed and flow).   

4.2 Data Collection Site and Time 

We choose the northbound direction on California State Route 99 (CA-SR 99 NB) as the 

data collection site in this study. It is a 6-lane highway about 380-mile long with a speed limit of 

70 mph. The northbound starts from Interstate 5 near Wheeler Ridge to California State Route 36 

near Red Bluff. It connects cities including Bakersfield, Delano, Tulare, Visalia, Kingsburg, 

Selma, Fresno, Madera, Merced, Turlock, Modesto, Stockton, Sacramento, Yuba City and Chico. 

There is a total of 308 VSDs on the mainline of CA-SR 99 NB with 60% of the VSDs 

aggregated through 3 lanes, 33% aggregated through 2 lanes and 7% aggregated through 4 lanes. 

Among these VSDs, 95% of the stations is away from their upstream station no longer than 3-

mile. A lane configuration diagram generated by PeMS. Figure 2 shows how the mainline VDSs 

link on a highway segment.  

 

 

 

  
Figure 2 Lane Configuration Diagram for CA-SR 99 NB (Generated by PeMS) 
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The data collection date is Wednesday, January 16th, 2018. It is an ordinary weekday with 

a 62% observation rate from detectors. It is with a clearly identified AM Peak from 8:00 AM to 

9:00 AM with around 25% of vehicles experiencing a LOS D or worst; PM Peak from 4:00 PM 

to 5:00 PM with around 10% of vehicles experiencing a LOS D or worst in the time series 

contour of LOS, Figure 3. Figure 3 illustrates AM Peak lasted longer and heavier than PM Peak. 

Since it shows the Off-Peak period is from midnight to 4:00 AM at that day with almost 100% of 

vehicle experiencing a LOS A, we choose the Off-Peak period as from 2:00 AM to 3:00 AM.  

 

 

 

 
Figure 3 Time Series Contour for Level for Service (Generated by PeMS) 

 

 

 

To better understand the collection periods, we generate a speed profile along with 

bottlenecks in PeMS. PeMS identifies a bottleneck if travel speed is lower than 60 mph. As 

plotted in Figure 4, the major bottleneck locates at the 300-postmile. It is near the city of 
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Sacramento, the capital city of California. It is certainly one of the busiest cities on CA-SR 99, 

and reasonable to see bottlenecks there. 

 

 

 

 

Figure 4 Time Series Contour for 5-minute Speed (mph) (Generated by PeMS) 

 

 

 

4.3 Statistical Data Description  

As addressed in previous section, we collect speed and flow for AM Peak, PM Peak and 

Off-Peak periods along CA-SR 99 NB on January 16, 2018. The prediction based on each period 

are identical. In section 4.3 and 4.4, we illustrate the process using AM Peak as an example.  

Before performing predictions, we first summarize the 5-min aggregated speed 

measurements in Table 2. During the AM Peak, the mean speed for each 5-min interval across 

CA-SR 99 NB is about 60 mph. The standard deviations are about 11 mph, but with a largest 

difference in speed about 57 mph. This tells that there are a small portion of VDSs located at the 

bottlenecks with outputs varying extremely from others. It agrees with the general observation in 

the previous section.  
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Table 2 Summary Statistics of 5-min Aggregated Speed (SL 70 mph) 

 

Speed (mph), CA-SR 99 NB, AM Peak, January 16, 2018, 308 VDSs 

Initial Time Min Max Range Mean Standard 

Deviation 

8:00 AM 5.80 72.10 66.30 59.41 12.37 

8:05 AM 7.40 70.70 63.30 59.24 12.10 

8:10 AM 11.60 71.10 59.50 59.10 11.84 

8:15 AM 10.50 69.80 59.30 59.03 11.61 

8:20 AM 13.50 70.00 56.50 58.96 11.77 

8:25 AM 12.90 68.90 56.00 58.87 11.53 

8:30 AM 11.00 69.70 58.70 58.92 11.16 

8:35 AM 10.30 70.50 60.20 59.37 10.65 

8:40 AM 15.70 69.40 53.70 59.27 10.69 

8:45 AM 18.00 69.50 51.50 59.25 10.50 

8:50 AM 16.40 69.10 52.70 59.39 10.40 

8:55 AM 13.50 69.30 55.80 59.57 9.79 

 

 

 

Flow is another measurement that can be directly outputted from PeMS. Then we 

calculate density based on flow and speed. A statistical analysis for 5-min aggregated density is 

summarized in Table 3. During the AM Peak, the mean density for each 5-min interval across 

CA-SR 99 NB is about 17 vpmpl. This is at the cut-off edge between LOS of B and C. This 

agree with the time series contour of LOS in the previous section. The standard deviations are 

about 13 vpmpl, but with a largest difference about 86 vpmpl. This again tells that there are a 

small portion of VDSs located at the bottlenecks, experiencing extreme congestion than the rest.   

 

 

 

Table 3 Summary Statistics of 5-min Aggregated Density (SL 70 mph) 

 

Density (vpmpl), CA-SR 99 NB, AM Peak, January 16, 2018, 308 VDSs 

Initial Time Min Max Range Mean Standard 

Deviation 

8:00 AM 0.00 115.17 115.17 18.06 16.83 

8:05 AM 0.00 120.00 120.00 17.79 15.86 

8:10 AM 1.24 97.09 95.86 17.59 14.05 

8:15 AM 0.00 79.43 79.43 17.56 13.64 
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Table 3 Continued 

 

Initial Time Min Max Range Mean Standard 

Deviation 

8:20 AM 0.00 91.56 91.56 17.32 13.54 

8:25 AM 0.00 78.55 78.55 17.53 13.80 

8:30 AM 0.00 81.01 81.01 16.85 13.12 

8:35 AM 0.00 85.05 85.05 16.62 12.73 

8:40 AM 2.27 74.90 72.63 16.40 11.90 

8:45 AM 0.00 80.89 80.89 16.00 12.22 

8:50 AM 0.70 69.36 68.66 15.58 11.52 

8:55 AM 0.00 71.55 71.55 14.96 10.83 

 

 

 

4.4 Short-term Prediction Results  

After reviewing the 5-min aggregated speeds and densities, we perform predictions for 

AM Peak traffic. In this study, we perform short-term predictions, that is, 5-min, 10-min, 15-

min, 20-min, 30-min, 45-min and 60-min (1-hour) predictions. The processes for different 

prediction periods are identical. In this section (section 4.4), we provide the details of 5-min 

prediction from 8:00 AM as an example. 

Recall in section 3.3, we mentioned the limitation of PW method as it reduces predictable 

sites in the step of interpolation. That is, the number of predictable VDSs decreases by using PW 

method. For instance, it has 308 VDSs for speed and density on 8:00 AM, but 239 VDSs out of 

those are predictable in 5-min using PW methods. Some predictions from those VDSs are in 

Table 4. At each predictable VDS, a drivers’ anticipation parameter is estimated using the 

equation with historical average and the speed of traffic travelling wave, stated in the section 

3.3.3. Recall, the drivers’ anticipation parameter describes how drivers react to the traffic ahead.  

As visually demonstrated in Figure 5, the value of drivers’ anticipation parameter is 

related to the initial density. The drivers’ anticipation parameter is small when the downstream 

traffic is stable (i.e. a small density value); the parameter is large when the downstream traffic is 
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jammed (i.e. a large density value). The averaged anticipation parameter is computed as 12.0537 

for this 5-min predictions on speed and density from 8:00 AM. 

 

 

 

Table 4 5-min Speed and Density Predictions based on 8:00 AM, CA-SR 99 NB 

 

VDS ID # Distance 

(Postmile) 

Estimated 

Anticipation 

Parameter 

Predicted 

Speed (mph) 

Predicted 

Density 

(vpmpl) 

601376 0.8 3.2909 62.70 4.05 

601931 3.5 2.5407 62.20 4.17 

… … … … … 

316922 310.7 3.6110 62.52 5.46 

316932 313.1 1.6513 70.71 2.53 

318509 376.3 6.1408 67.65 11.11 

 

 

 

 

Figure 5 Density and Estimated Anticipation Parameter 

 

 

 

Further, we plot 5-min speed predictions (in green) with the initial speed (in black) and 

observed speed (in blue) in Figure 6. This visually presents that speeds are consistently well-

predicted by PW method along the CA-SR 99 NB. Moreover, five statistical performance tests 
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from section 3.4 are applied to assess the 5-min prediction in speed. The results show a 3.47% in 

MAPE and 5.15% in VAPE for 5-min speed prediction from 8:00 AM. These indicate the 

average relative error between the predicted speed and actual observed speed in 8:05 AM is 

3.47% with a variance of 5.15%. The PPE tests show that only 4.18% of the speed predictions 

being underestimated, and 5.44% of the speed predictions being overestimated in this example. 

 

 

 

 

Figure 6 5-minute Speed Predictions 

 

 

 

Moreover, we apply the 5-min prediction for all time intervals in AM Peak and assess the 

speed prediction using five statistical tests. The results are shown in Table 5. We also list the 

averaged anticipation parameters in Table 5 along with the size of the predictable VDSs. 
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Table 5 Statistical Performance Tests on 5-minute Speed Predictions 

 

 

 

 

Likewise, we plot 5-min density predictions (in green) with the initial speed (in black) 

and observed speed (in blue) in Figure 7. Similarly, five statistical performance tests from 

section 3.4 are applied to assess the 5-min prediction in density by PW method. The results show 

a 17.51% in MAPE and 19.71% in VAPE for 5-min density prediction from 8:00 AM. This gives 

a relatively large error comparing with the prediction on speed. One reasonable explanation is 

the initial density is not a direct output from the VDS. Initial density is computed under the 

assumption of a fundamental relation between flow and speed. 

 

CA-SR 99 NB, AM Peak, January 16, 2018 

Initial 

Time 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

8:00 AM 12.0537 239 3.47% 5.15% 4.18% 5.44% 9.62% 

8:05 AM 12.1137 233 4.09% 7.63% 3.86% 5.58% 9.44% 

8:10 AM 13.1126 233 3.11% 4.86% 3.43% 2.15% 5.58% 

8:15 AM 13.0858 238 3.87% 6.42% 4.20% 5.04% 9.24% 

8:20 AM 13.1048 235 3.26% 4.12% 2.55% 5.53% 8.09% 

8:25 AM 13.0421 243 3.13% 4.75% 2.47% 4.53% 7.00% 

8:30 AM 12.5894 235 3.39% 5.19% 3.40% 3.40% 6.81% 

8:35 AM 12.0565 250 3.68% 5.86% 4.00% 4.40% 8.40% 

8:40 AM 12.8492 244 3.12% 4.22% 2.87% 3.28% 6.15% 

8:45 AM 11.9975 249 3.59% 5.79% 3.61% 4.82% 8.43% 

8:50 AM 12.1997 250 3.17% 4.39% 4.00% 3.60% 7.60% 

8:55 AM 11.6111 248 3.85% 5.56% 4.44% 8.47% 12.90% 

Average 12.4847 241 3.48% 5.33% 3.59% 4.69% 8.27% 
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Figure 7 5-minute Density Predictions 

 

 

 

Furthermore, we apply the 5-min prediction for all time intervals in AM Peak and assess 

the speed prediction using the five statistical tests. The results for density predictions are shown 

in Table 6. We also tabulate the averaged anticipation parameters in Table 6 along with the size 

of the predictable VDSs. 

 

 

 

Table 6 Statistical Performance Tests on 5-minute Density Predictions 

 

CA-SR 99 NB, AM Peak, January 16, 2018 

Initial 

Time 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

8:00 AM 12.0537 239 17.51% 19.71% 17.65% 30.67% 48.32% 

8:05 AM 12.1137 233 20.46% 49.49% 24.03% 25.32% 49.36% 

8:10 AM 13.1126 233 16.50% 42.79% 20.26% 26.72% 46.98% 

8:15 AM 13.0858 238 14.46% 23.33% 19.41% 24.05% 43.46% 
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Table 6 Continued 

 

 

 

 

4.5 Summary 

In this chapter, we introduced PeMS from Caltrans as our data source in section 4.1. Then 

in section 4.2, we identified the data collection site as CA-SR 99 NB with January 16th, 2018 as 

collection date and stated the three traffic conditions and seven prediction periods for 

comparison studies in the next chapter. We took 5-min predictions in AM peak as an example in 

section 4.3 and 4.4 to perform the PW method and assess the method using five statistical tests. 

The averaged performance results are summarized in Table 7 below. Because the initial speed is 

directly output from VDSs, the PW method’s performance in predicting speed is better than 

density. Thus, we will mainly discuss based on speed prediction in the next chapter.  

Although Table 7 demonstrates that speeds are well predicted in 5-min period during AM 

Peak, we need to further consider whether the traffic conditions and/or length of the prediction 

periods effect the PW method. We will also discuss more on the drivers’ anticipation parameter 

Initial 

Time 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

8:20 AM 13.1048 235 14.35% 17.28% 23.50% 22.22% 45.73% 

8:25 AM 13.0421 243 23.52% 76.98% 18.60% 29.75% 48.35% 

8:30 AM 12.5894 235 17.71% 84.93% 12.88% 27.04% 39.91% 

8:35 AM 12.0565 250 16.60% 23.84% 20.80% 25.60% 46.40% 

8:40 AM 12.8492 244 20.02% 83.98% 15.29% 29.34% 44.63% 

8:45 AM 11.9975 249 22.89% 120.51% 14.46% 28.11% 42.57% 

8:50 AM 12.1997 250 30.40% 175.63% 18.88% 29.32% 48.19% 

8:55 AM 11.6111 248 15.96% 20.33% 14.52% 32.26% 46.77% 

Average 12.4847 241 19.20% 61.57% 18.36% 27.53% 45.89% 
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in the next chapter to investigate how it is related to the traffic conditions and/or length of the 

prediction periods. 

 

 

 

Table 7 Averaged Performance Results on 5-minute Speed and Density Predictions 

 

 

 

 

  

CA-SR 99 NB, AM Peak, January 16, 2018 

 
Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

Speed 12.4847 241 3.48% 5.33% 3.59% 4.69% 8.27% 

Density 12.4847 241 19.20% 61.57% 18.36% 27.53% 45.89% 
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5. DISCUSSION 

 

In the previous chapter, we show that the PW method is better in predicting speed than 

density based on 5-min prediction in AM Peak. Then, in this chapter, we investigate more on the 

drivers’ anticipation parameter and the error percentages of speed prediction in different traffic 

conditions (section 5.1) and different prediction periods (section 5.2). Lastly, in section 5.3, we 

provide a general recommendation on the anticipation parameter for practitioners to use PW 

prediction method without knowing the shape of entire traffic travelling wave. 

5.1 Comparisons in Different Traffic Conditions 

Recall, we identified three traffic conditions on January 16, 2018 for CA-SR 99 NB as 

AM Peak from 8:00 AM to 9:00 AM, PM Peak from 4:00PM to 5:00 PM, Off Peak from 2:00 

AM to 3:00 AM. We first compare the 5-min speed prediction in different traffic conditions.   

Table 8 compares the averaged anticipation parameters, numbers of predictable VDS and 

percentages of error (i.e. MAPE, VAPE, PPE) among AM Peak, PM Peak and Off Peak. It 

clearly shows that the drivers’ anticipation parameter is larger when the traffic is unstable. For 

example, the AM Peak is experiencing most congestions of a day and the anticipation parameter 

is with a value of 12.0537. It is about twice larger than the value for the PM peak, and twelve 

times larger than the one for the Off Peak. On the other hand, Table 8 shows that the number of 

predictable VDS reduces when the traffic gets more congested. It is because we eliminate a VDS 

at the step of interpolation if it reports a traffic measurement under a different traffic status (i.e. 

LOS) from its previous one. The percentages of errors are consistent in Table 8. We can 

conclude that the ability of PW model is stable in different traffic conditions.  
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Table 8 Comparisons for Different Traffic Conditions on 5-minute Speed Predictions 

 

* AM Peak is the average of 5-min prediction from 8:00 AM to 9:00 AM, PM Peak is from 

4:00PM to 5:00 PM, Off Peak is from 2:00 AM to 3:00 AM 

 

 

 

 Furthermore, we replicate the process and compare 5-min and 10-min speed predictions 

under different traffic conditions in Table 9. The results for 10-min speed prediction agree with 

those for 5-min. The percentages of errors do not vary much in different traffic conditions (only 

slightly worse in general). However, when the traffic gets more congested, the drivers’ 

anticipation parameter turns larger and the size of predictable VDSs gets reduced.  

 

 

 

Table 9 Comparisons for Different Traffic Conditions on 10-minute Speed 

Predictions 

 

* AM Peak is the average of 5-min prediction from 8:00 AM to 9:00 AM, PM Peak is from 

4:00PM to 5:00 PM, Off Peak is from 2:00 AM to 3:00 AM 

 

CA-SR 99 NB, January 16, 2018 

Traffic 

Condition* 
 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE 

(%) 

VAPE 

(%) 
PPEU (%) 

PPEO 

(%) 

PPE 

(%) 

AM Peak 12.0537 241 3.48% 5.33% 3.59% 4.69% 8.27% 

PM Peak 6.1425 265 2.50% 3.42% 1.98% 1.98% 3.96% 

Off Peak 1.8119 273 3.51% 4.28% 3.45% 4.68% 8.13% 

Comparisons on 10-minute Speed Predictions, CA-SR 99 NB, January 16, 2018 

Traffic 

Condition* 
 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE 

(%) 

VAPE 

(%) 
PPEU (%) 

PPEO 

(%) 

PPE 

(%) 

AM Peak 12.6516 239 4.33% 6.58% 4.32% 5.93% 10.25% 

PM Peak 6.0538 256 3.06% 4.07% 3.31% 3.13% 6.44% 

Off Peak 1.8380 266 3.65% 4.35% 4.49% 4.70% 9.19% 
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5.2 Comparisons in Different Prediction Periods 

In the previous section, we consider comparisons in different traffic conditions for 5-min 

and 10-min predictions. Further in this section, a detailed comparison in different prediction 

periods will be addressed. Recall, the possible short-term prediction periods are 5-min, 10-min, 

15-min, 20-min, 30-min, 45-min and 60-min based on the same initial speed. 

 

 

 

Table 10 Comparisons at AM Peak for Different Prediction Periods  

 

Comparisons on Speed Predictions at AM Peak, CA-SR 99 NB, January 16, 2018 

Prediction 

Periods 

(minute) 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

5 12.0537 239 3.47% 5.15% 4.18% 5.44% 9.62% 

10 12.0537 238 4.55% 7.51% 3.78% 6.30% 10.08% 

15 12.0537 233 6.02% 12.47% 6.01% 8.15% 14.16% 

20 12.0537 215 7.01% 19.91% 6.98% 8.37% 15.35% 

30 12.0537 204 5.33% 5.99% 4.90% 11.76% 16.67% 

45 12.0537 210 6.19% 7.13% 6.19% 14.29% 20.48% 

60 12.0537 197 6.69% 6.59% 4.06% 19.80% 23.86% 

 

 

 

Table 10 tabulates the averaged anticipation parameters, numbers of predictable VDS and 

percentages of error (i.e. MAPE, VAPE, PPE) among all seven prediction periods for AM Peak. 

Because prediction periods are all predicting from 8:00 AM, they are with the same drivers’ 

anticipation parameter. Table 10 shows that the number of predictable VDS reduces as the length 

of prediction period increases. This is because the traffic states have a larger possibility to 

change when we have a longer prediction period. For example, there are 239 predictable VDSs 

for a 5-min prediction, but 197 predictable VDSs for a 60-min prediction. It is about 20% 

reduction. On the other hand, the percentages of errors are relatively small in 5-min and 10-min 

predictions in Table 10. Thus, we conclude that the ability of PW model is stable in different 
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prediction periods, but we believe that PW model performs more accurately in 5-min and 10-min 

predictions.  

We then replicate the process and combine comparisons in different prediction periods 

and different traffic conditions in Table 11. When the traffic becomes more stable, the drivers’ 

anticipation parameter turns smaller and the size of predictable VDSs increases. The number of 

predictable VDS also increases if the length of prediction period is shorter. On the other hand, 

the percentages of errors do not vary much in different traffic conditions and prediction periods 

in general. Under the case of congested traffic (i.e. AM Peak), errors are smaller in 5-min and 

10-min predictions.  

 

 

 

Table 11 Comparisons at all Traffic Conditions for Different Prediction Periods 

 

Speed Predictions in AM Peak*, Initial Time 8:00 AM 

Prediction 

Periods 

(minute) 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

5 12.0537 239 3.47% 5.15% 4.18% 5.44% 9.62% 

10 12.0537 238 4.55% 7.51% 3.78% 6.30% 10.08% 

15 12.0537 233 6.02% 12.47% 6.01% 8.15% 14.16% 

20 12.0537 215 7.01% 19.91% 6.98% 8.37% 15.35% 

30 12.0537 204 5.33% 5.99% 4.90% 11.76% 16.67% 

45 12.0537 210 6.19% 7.13% 6.19% 14.29% 20.48% 

60 12.0537 197 6.69% 6.59% 4.06% 19.80% 23.86% 

Speed Predictions in PM Peak*, Initial Time 4:00 PM 

Prediction 

Periods 

(minute) 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

5 5.5798 260 2.48% 3.01% 1.92% 1.92% 3.85% 

10 5.5798 259 2.98% 3.66% 3.09%zy 3.86% 6.95% 

15 5.5798 251 2.81% 3.69% 3.19% 3.19% 6.37% 

20 5.5798 252 2.94% 3.36% 1.98% 2.78% 4.76% 

30 5.5798 229 3.90% 8.20% 3.06% 4.80% 7.86% 

45 5.5798 219 4.03% 13.33% 2.74% 2.28% 5.02% 

60 5.5798 196 3.87% 3.86% 6.12% 2.55% 8.67% 
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Table 11 Continued  

 

Speed Predictions in Off Peak*, Initial Time 2:00 AM 

Prediction 

Periods 

Averaged 

Anticipation 

Parameter 

Number of 

Predictable 

VDS 

MAPE (%) VAPE (%) PPEU (%) PPEO (%) PPE (%) 

5 2.3708 280 3.69% 4.09% 3.93% 4.64% 8.57% 

10 2.3708 273 3.80% 4.20% 6.23% 4.76% 10.99% 

15 2.3708 269 3.53% 3.93% 3.72% 3.72% 7.43% 

20 2.3708 260 3.62% 3.74% 2.31% 5.38% 7.69% 

30 2.3708 242 3.99% 4.84% 6.20% 3.31% 9.50% 

45 2.3708 231 3.72% 3.94% 6.06% 3.03% 9.09% 

60 2.3708 215 4.44% 4.81% 6.51% 6.98% 13.49% 

*AM Peak is the average of 5-min prediction from 8:00 AM to 9:00 AM, PM Peak is from 

4:00PM to 5:00 PM, Off Peak is from 2:00 AM to 3:00 AM 

 

 

 

5.3 Driver’s Anticipation Effect 

As addressed in the problem station (section 1.2), driver’s anticipation is essential in 

traffic modelling and traffic forecasting. It is one branch in driver behavior modelling. It 

describes how the traffic adjusts its speed based on the condition ahead. For an instance, the 

speed of traffic flow decreases when the driver notices congestion ahead. An accurate driver’s 

anticipation eliminates the difficulty in traffic predictions through the driver's side.  

The calibration of the anticipation parameter in the source term is proposed in section 

3.3.3 of the methodology chapter and derived by density and speed data from PeMS in section 

4.4 of the application chapter.  

The anticipation parameter is further investigated in section 5.1 and 5.2 of this discussion 

chapter. We compared it through different traffic conditions and different prediction periods. It is 

found that the drivers’ anticipation parameter turns smaller, when the traffic becomes more 

stable. To validate this observation, we reproduce the calibration process on multiple days. We 

found the anticipation parameter in LOS A (i.e. Off Peak on CA-SR 99 NB) can be as low as 0, 
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to about 4; it ranges from 3 to 9 during LOS B - LOS C (i.e. PM Peak on CA-SR 99 NB); it 

varies from 8 to 14 in LOS C - F (i.e. AM Peak on CA-SR 99 NB). These ranges are tabulated in 

Table 12 for practitioners to refer when they are using the PW traffic model without knowing the 

shape of traveling wave.    

 

 

 

Table 12 Recommendations on Driver’s Anticipation Parameter 

 

 

 

 

  

Statistical Summary of Anticipation Parameter  

Level of Service Mean Recommended Range 

A 1.8287 0~4 

B - C 6.3622 3~9 

C - F 11.6458 8~14 
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6. CONCLUSION 

 

Short-term traffic prediction is critical in advanced traffic management systems 

(ATMS)and advanced traveler information systems (ATIS). Accurate forecasting results in 

speed, density or flow are useful to indicate future traffic conditions and assist traffic managers 

in seeking solutions to congestion problems on freeways. There is a raised research interest in 

short-term traffic prediction with the developments in intelligent transportation systems (ITS) 

technologies. Previous research involves data analysis and technologies in many areas, and a 

significant number of prediction methods exist in the literature. However, most studies used non-

parametric predication methods, are data-driven, require data training time/process and have 

limited forecasting abilities with less data information given. While the PW prediction method 

developed in this study derived from the solutions of the macroscopic PW traffic flow, it 

underlies flow studies and the process includes the concept of traffic dynamics.  

The proposed PW prediction method validates its ability to predict speed and density in 

5-min with PeMS real world data sets from Caltrans. The test results indicate the average relative 

error between the predicted speed and actual observed speed is 3.48% with a variance of 5.33%. 

The PPE tests show that only 4.69% of the speed predictions being underestimated, and 8.27% of 

the speed predictions being overestimated in 5-min speed prediction. The test results in density 

indicate an average relative error is 19.20%. It is a relatively large error comparing with the 

prediction on speed. One reasonable explanation is the initial density is not a direct output from 

the VDS. Initial density is computed under the assumption of a fundamental relation between 

flow and speed. 
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Furthermore, we compare the drivers’ anticipation parameter and the error percentages of 

speed prediction in different traffic conditions and different prediction periods. When the traffic 

becomes more stable, the drivers’ anticipation parameter turns smaller and the size of predictable 

VDSs increases. The number of predictable VDS also increases if the length of prediction period 

is shorter. On the other hand, the percentages of errors do not vary much in different traffic 

conditions and prediction periods in general. Under the case of congested traffic (i.e. AM Peak), 

errors are smaller in 5-min and 10-min predictions.  

Lastly, we recommend takes a value between 8 to 14 for the anticipation parameter when 

modelling the traffic with LOS from C to F. We suggest a range from 3 to 9 for the parameter 

when modelling the traffic with LOS from B to C. For a traffic with LOS A, the best value for 

the parameter lies between 0 to 4. These recommendation ranges guide practitioners when using 

PW model or PW prediction method. 

The traffic prediction method developed in this study differs from data-driven prediction 

methods. It is derived from the solutions of PW model; hence, it underlies flow studies and the 

process includes the concept of traffic dynamics. It reduces the size of predictable data points, 

because a perturbation method was assumed in solving the PW model. The results show under a 

congested traffic, there are about 77.6% of data points satisfied for a 5-min PW prediction, 

63.6% of data points satisfied for a one-hour PW prediction. This indicates the limitation does 

not have large impact on the PW predictions in general. 
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