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Abstract

We consider aU(1)-invariant nonlinear Klein-Gordon equation in dimensionn ≥ 1, self-interacting via the mean
field mechanism. We analyze the long-time asymptotics of finite energy solutions and prove that, under certain generic
assumptions, each solution converges ast → ±∞ to the two-dimensional set of all “nonlinear eigenfunctions” of the
formφ(x)e−iωt. This global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous
spectrum and subsequent dispersive radiation.

1 Introduction and main results

In this paper, we establish the global attraction to the variety of all solitary waves for the complex Klein-Gordon field
ψ(x, t) with the mean field self-interaction:

{

ψ̈(x, t) = ∆ψ(x, t)−m2ψ(x, t) + ρ(x)F (〈ρ, ψ(·, t)〉), x ∈ R
n, n ≥ 1, t ∈ R,

ψ|
t=0

= ψ0(x), ψ̇|
t=0

= π0(x),
(1.1)

where

〈ρ, ψ(·, t)〉 =
∫

Rn

ρ̄(x)ψ(x, t) dnx.

We assume thatρ is a smooth real-valued function from the Schwartz class:ρ ∈ S (Rn), ρ 6≡ 0.
The long time asymptotics for nonlinear wave equations havebeen the subject of intensive research, starting with the

pioneering papers by Segal [Seg63a, Seg63b], Strauss [Str68], and Morawetz and Strauss [MS72], where the nonlinear
scattering and the local attraction to zero solution were proved. Local attraction to solitary waves, orasymptotic stability,
in U(1)-invariant dispersive systems was addressed in [SW90, BP93, SW92, BP95] and then developed in [PW97, SW99,
Cuc01a, Cuc01b, BS03, Cuc03]. Global attraction tostatic, stationary solutions in dispersive systemswithoutU(1)
symmetrywas first established in [Kom91, Kom95, KV96, KSK97, Kom99, KS00].

The present paper is our third result on the global attraction to solitary waves inU(1)-invariant dispersive systems.
In [KK07a], we proved such an attraction for the Klein-Gordon field coupled to one nonlinear oscillator. In [KK07b], we
generalized this result for the Klein-Gordon field coupled to several oscillators. Now we are going to extend our theory to a

∗Supported in part by Alexander von Humboldt Research Award (2006), by DFG grant 436 RUS 113/929/0-1, FWF grant P19138-N13, RFBR grant
07-01-00018a, and RFBR-DFG grant 08-01-91950-NNIOa.

†Supported in part by Max-Planck Institute for Mathematics in the Sciences (Leipzig), Technische Universität München, and by the National Science
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higher dimensional setting, for the Klein-Gordon equationwith the mean field interaction. This model could be viewed as
a generalization of theδ-function coupling [KK07a, KK07b] to higher dimensions. Wefollow the cairns of the approach
we developed in [KK07a, KK07b]: the proof of the absolute continuity of the spectral density for large frequencies, the
compactness argument to extract the omega-limit trajectories, and then the usage of the Titchmarsh Convolution Theorem
to pinpoint the spectrum to just one frequency. The substantial modification is due to apparent impossibility to split off
a dispersive component and to get the convergence to the attractor in the local energy norm, as in [KK07a, KK07b]; the
convergence which we prove isε-weaker. On the other hand, the proof of this slightly weakerconvergence allows us to
avoid the technique of quasimeasures, considerably shortening the argument.

We are aware of only one other recent advance [Tao07] in the field of nonzero global attractors for Hamiltonian PDEs.
In that paper, the global attraction for the nonlinear Schr¨odinger equation in dimensionsn ≥ 5 was considered. The
dispersive wave was explicitly specified using the rapid decay of local energy in higher dimensions. The global attractor
was proved to be compact, but it was neither identified with the set of solitary waves nor was proved to be of finite
dimension [Tao07, Remark 1.18].

Let us give the plan of the paper. In the remainder of this section, we formulate the assumptions and the results.
The proof of the Main Theorem takes up Section 2 (where we analyze the absolute continuity of the spectrum for large
frequencies) and Section 3 (where we select omega-limit trajectories and analyze their spectrum with the aid of the
Titchmarsh Convolution Theorem). The example of a multifrequency solitary waves in the situation whenρ is orthogonal
to some of the solitary waves is constructed in Section 4. In Appendix A we give a brief sketch of the proof of the global
well-posedness for equation (1.1).

1.1 Hamiltonian structure

We setΨ(t) = (ψ(x, t), π(x, t)) and rewrite the Cauchy problem (1.1) in the vector form:

Ψ̇(t) =

[

0 1

∆−m2 0

]

Ψ(t) + ρ(x)

[

0

F (〈ρ, ψ(·, t)〉)

]

, Ψ|
t=0

= Ψ0, x ∈ R
n, n ≥ 1, t ∈ R, (1.2)

whereΨ0 = (ψ0, π0). We assume that the nonlinearityF admits a real-valued potential:

F (z) = −∇U(z), z ∈ C, U ∈ C2(C), (1.3)

where the gradient is taken with respect toRe z andIm z. Then equation (1.2) formally can be written as a Hamiltonian
system,

Ψ̇(t) = J DH(Ψ), J =

[

0 1

−1 0

]

,

whereDH is the variational derivative of the Hamilton functional

H(Ψ) =
1

2

∫

Rn

(
|π|2 + |∇ψ|2 +m2|ψ|2

)
dnx+ U(〈ρ, ψ〉), Ψ =

[

ψ(x)

π(x)

]

. (1.4)

We assume that the potentialU(z) is U(1)-invariant, whereU(1) stands for the unitary groupeiθ, θ ∈ R mod 2π.
Namely, we assume that there existsu ∈ C2(R) such that

U(z) = u(|z|2), z ∈ C. (1.5)

Relations (1.3) and (1.5) imply that
F (z) = α(|z|2)z, z ∈ C, (1.6)

whereα(·) = −2u′(·) ∈ C1(R) is real-valued. Therefore,

F (eiθz) = eiθF (z), θ ∈ R, z ∈ C. (1.7)

Due to theU(1)-invariance, the Nöther theorem formally implies that thefunctional

Q(Ψ) =
i

2

∫

Rn

(
ψπ − πψ

)
dnx, Ψ =

[

ψ(x)

π(x)

]

, (1.8)
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is conserved for solutionsΨ(t) to (1.2).
We introduce the phase space of finite energy states for equation (1.2). Denote by‖ · ‖L2 the norm inL2(Rn). Let

Hs(Rn), s ∈ R, be the Sobolev space with the norm

‖ψ‖Hs = ‖(m2 −∆)s/2ψ‖L2. (1.9)

For s ∈ R andR > 0, denote byHs
0(B

n
R) the space of distributions fromHs(Rn) supported inBnR (the ball of radiusR

in Rn). We denote by‖ · ‖Hs,R the norm in the spaceHs(BnR) which is defined as the dual toH−s
0 (BnR).

Definition 1.1. (i) E = H1(Rn)⊕ L2(Rn) is the Hilbert space of statesΨ =

[

ψ(x)

π(x)

]

, with the norm

‖Ψ‖2E = ‖π‖2L2 + ‖∇ψ‖2L2 +m2‖ψ‖2L2 = ‖π‖2L2 + ‖ψ‖2H1 . (1.10)

(ii ) Forε ≥ 0, introduce the Banach spacesE −ε = H1−ε(Rn)⊕H−ε(Rn) with the norm defined by

‖Ψ‖2
E−ε = ‖(m2 −∆)−ε/2Ψ‖2E = ‖π‖2H−ε + ‖ψ‖2H1−ε . (1.11)

(iii ) Define the seminorms
‖Ψ‖2

E−ε,R = ‖π‖2H−ε,R + ‖ψ‖2H1−ε,R, R > 0, (1.12)

and denote byE −ε
loc the space of statesΨ ∈ E −ε with finitenorm

‖Ψ‖
E

−ε
loc

=
∞∑

R=1

2−R‖Ψ‖E−ε,R <∞. (1.13)

We will denoteEloc = E 0
loc.

Remark1.2. The Sobolev embedding theorem implies that the embeddingE ⊂ E
−ε
loc is compact for anyε > 0.

Equation (1.2) is formally the Hamiltonian system with the phase spaceE and the Hamilton functionalH. BothH
andQ are continuous functionals onE . We introduced into (1.9) the factorm2 > 0, so thatH(Ψ) = 1

2‖Ψ‖2
E
+U(〈ρ, ψ〉).

1.2 Global well-posedness

To have a priori estimates available for the proof of the global well-posedness, we assume that

U(z) ≥ A−B|z|2 for z ∈ C, where A ∈ R and 0 ≤ B <
m2

2‖ρ‖2L2

. (1.14)

Theorem 1.3. Letρ ∈ S (Rn), and letF (z) satisfy conditions(1.3), (1.5), and(1.14). Then:

(i) For everyΨ0 ∈ E the Cauchy problem(1.2)has a unique solutionΨ ∈ C(R, E ).

(ii ) The mapW (t) : Ψ0 7→ Ψ(t) is continuous inE andEloc for eacht ∈ R.

(iii ) The values of the energy and charge functionals are conserved:

H(Ψ(t)) = H(Ψ0), Q(Ψ(t)) = Q(Ψ0), t ∈ R. (1.15)

(iv) The followinga prioribound holds:

‖Ψ(t)‖E ≤ C(Ψ0) <∞, t ∈ R. (1.16)

(v) For anyε ≥ 0, the mapW (t) : Ψ0 7→ Ψ(t) is continuous inE −ε andE
−ε
loc uniformly int ∈ [−T, T ], for anyT > 0.

We sketch the proof of this theorem in Appendix A.
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1.3 Solitary waves

Definition 1.4. (i) The solitary waves of equation (1.1) are solutions of the form

ψ(x, t) = φω(x)e
−iωt, where ω ∈ R, φω(x) ∈ H1(Rn). (1.17)

(ii ) The solitary manifold is the setS = {(φω ,−iωφω): ω ∈ R} , whereφω are the amplitudes of solitary waves.

Identity (1.7) implies that the setS is invariant under multiplication byeiθ, θ ∈ R. Let us note that sinceF (0) = 0 by
(1.6), for anyω ∈ R there is a zero solitary wave,φω(x) ≡ 0.

Define

Σ(x, ω) = Fξ→x

[ ρ̂(ξ)

ξ2 +m2 − ω2

]

, ω ∈ C
+ ∪ (−m,m), (1.18)

whereC+ = {ω ∈ C: Imω > 0}. Note thatΣ(·, ω) is an analytic function ofω ∈ C+ with the values inS (Rn). Since
|Σ(x, ω)| ≤ const |Imω|−1 for ω ∈ C+, we can extend for anyx ∈ Rn the functionΣ(x, ω) to the entire real lineω ∈ R

as a boundary trace:
Σ(x, ω) = lim

ǫ→0+
Σ(x, ω + iǫ), ω ∈ R, (1.19)

where the limit holds in the sense of tempered distributions.

Proposition 1.5(Existence of solitary waves). Assume thatF (z) satisfies(1.7), and thatρ ∈ S (Rn), ρ 6≡ 0. There may
only be nonzero solitary wave solutions to(1.2) for ω ∈ [−m,m] ∪ Zρ, where

Zρ = {ω ∈ R\[−m,m]: ρ̂(ξ) = 0 for all ξ ∈ R
n such thatm2 + ξ2 = ω2}. (1.20)

The profiles of solitary waves are given by

φ̂ω(ξ) =
cρ̂(ξ)

ξ2 +m2 − ω2
,

wherec ∈ C, c 6= 0 is a root of the equation

σ(ω)α(|c|2|σ(ω)|2) = 1, (1.21)

whereα is defined in(1.6)and

σ(ω) = 〈ρ,Σ(·, ω)〉 = 1

(2π)n

∫

Rn

|ρ̂(ξ)|2
ξ2 +m2 − ω2

dnξ. (1.22)

The existence of such a root is a necessary condition for the existence of nonzero solitary waves(1.17).
The condition(1.21)is also sufficient forn ≥ 5 and for|ω| 6= m, n ≥ 1.
For |ω| = m, n ≤ 4, the following additional condition is needed for sufficiency:

∫

Rn

|ρ̂(ξ)|2
ξ4

dnξ <∞. (1.23)

Remark1.6. As follows from (1.21) and (1.22),σ(ω) is strictly positive for|ω| < m (sinceρ 6≡ 0) and takes finite
nonzero values for allω that correspond to solitary waves (forn ≤ 4, the finiteness ofσ(ω) atω = ±m follows if (1.23)
is satisfied).

Remark1.7. One can see that generically the solitary wave manifold is two-dimensional.

Proof. Substituting the ansatzφω(x)e−iωt into (1.1) and using (1.6), we get the following equation onφω :

− ω2φω(x) = ∆φω(x)−m2φω(x) + ρ(x)F (〈ρ, φω〉), x ∈ R
n. (1.24)

Therefore, all solitary waves satisfy the relation

(ξ2 +m2 − ω2)φ̂ω(ξ) = ρ̂(ξ)F (〈ρ, φω〉). (1.25)

Forω /∈ [−m,m]∪Zρ the relation (1.25) leads toφω /∈ L2(Rn) (unlessφω ≡ 0). We conclude that there are no nonzero
solitary waves forω /∈ [−m,m] ∪ Zρ.
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Let us consider the caseω ∈ [−m,m] ∪ Zρ. From (1.25), we see that

φ̂ω(ξ) =
ρ̂(ξ)

ξ2 +m2 − ω2
F (〈ρ, φω〉). (1.26)

Using the functionΣ(x, ω) defined in (1.18), we may expressφω(x) = cΣ(x, ω), with c ∈ C. Substituting this ansatz
into (1.26) and using (1.6), we can write the condition onc in the form (1.21).

Forn ≤ 4, the finiteness of the energy of solitons corresponding toω = ±m is equivalent to the condition (1.23).
This finishes the proof of the proposition.

1.4 The main result

Assumption A. We assume thatρ ∈ S (Rn), the setZρ is finite, and that

σ(ω) 6= 0, ω ∈ Zρ. (1.27)

Above,Zρ andσ(ω) are defined in (1.20) and (1.22).

Remark1.8. Note thatσ(ω) is well-defined at the points ofZρ sinceρ̂
∣
∣
|ξ|=

√
ω2−m2 ≡ 0 for ω ∈ Zρ.

As we mentioned before, we need to assume that the nonlinearity is polynomial. This assumption is crucial in our ar-
gument: It will allow us to apply the Titchmarsh ConvolutionTheorem. Now all our assumptions onF can be summarised
as follows.

Assumption B. F (z) satisfies (1.3) with the polynomial potentialU(z), and also satisfies (1.5) and (1.14). This can be
summarised as the following assumption onU(z):

U(z) =

p
∑

n=1

un|z|2n, un ∈ R, p ≥ 2, up > 0. (1.28)

Our main result is the following theorem.

Theorem 1.9(Main Theorem). Assume that the coupling functionρ(x) satisfies Assumption A and that the nonlinearity
F (z) satisfies Assumption B. Then for anyΨ0 ∈ E the solutionΨ(t) ∈ C(R, E ) to the Cauchy problem(1.2)converges
toS in the spaceE −ε

loc , for anyε > 0:
lim

t→±∞
dist

E
−ε
loc

(Ψ(t),S) = 0, (1.29)

wheredist
E

−ε
loc

(Ψ,S) := inf
s∈S

‖Ψ− s‖
E

−ε
loc

.

Remark1.10. TheE
−ε
loc -convergence to the attractor stated in this theorem is weaker than theEloc-convergence proved in

[KK07a] and [KK07b], where we considered the Klein-Gordon field in dimensionn = 1, coupled to nonlinear oscillators.

Obviously, it suffices to prove Theorem 1.9 fort→ +∞.

2 Absolute continuity for large frequencies

2.1 Splitting of a dispersive component

First we split the solutionψ(x, t) intoψ(x, t) = χ(x, t)+ϕ(x, t), whereχ andϕ are defined as solutions to the following
Cauchy problems:

χ̈(x, t) = ∆χ(x, t) −m2χ(x, t), (χ, χ̇)|
t=0

= Ψ0, (2.1)

ϕ̈(x, t) = ∆ϕ(x, t)−m2ϕ(x, t) + ρ(x)f(t), (ϕ, ϕ̇)|
t=0

= (0, 0), (2.2)

whereΨ0 is the initial data from (1.2), and
f(t) := F (〈ρ, ψ(·, t)〉). (2.3)

5



Note that〈ρ, ψ(·, t)〉 belongs toCb(R) since(ψ, ψ̇) ∈ Cb(R, E ) by Theorem 1.3 (iv). Hence,

f(·) ∈ Cb(R). (2.4)

On the other hand, sinceχ(t) is a finite energy solution to the free Klein-Gordon equation, we also have

(χ, χ̇) ∈ Cb(R, E ). (2.5)

Hence, the functionϕ(t) = ψ(t)− χ(t) also satisfies

(ϕ, ϕ̇) ∈ Cb(R, E ). (2.6)

The following lemma reflects the well-known energy decay forthe linear Klein-Gordon equation.

Lemma 2.1. There is a local decay ofχ in theEloc seminorms. That is,∀R > 0,

‖(χ(t), χ̇(t))‖
E ,R → 0, t→ ∞. (2.7)

2.2 Complex Fourier-Laplace transform

Let us analyze the complex Fourier-Laplace transform ofϕ(x, t):

ϕ̃(x, ω) = Ft→ω[Θ(t)ϕ(x, t)] :=

∫ ∞

0

eiωtϕ(x, t) dt, ω ∈ C
+, x ∈ R

n, (2.8)

whereC+ := {z ∈ C : Im z > 0}. Due to (2.6),ϕ̃(·, ω) is anH1-valued analytic function ofω ∈ C
+. Equation (2.2)

for ϕ implies that

−ω2ϕ̃(x, ω) = ∆ϕ̃(x, ω)−m2ϕ̃(x, ω) + ρ(x)f̃(ω), ω ∈ C
+, x ∈ R

n,

wheref̃(ω) is the Fourier-Laplace transform off(t):

f̃(ω) = Ft→ω[Θ(t)f(t)] =

∫ ∞

0

eiωtf(t) dt, ω ∈ C
+.

The solutionϕ̃(x, ω) is analytic forω ∈ C+ and can be represented by

ϕ̃(x, ω) = Σ(x, ω)f̃(ω), ω ∈ C
+. (2.9)

2.3 Traces of distributions forω ∈ R

First we remark that
Θ(t)ϕ(x, t) ∈ Cb(R, H

1(Rn)) (2.10)

by (2.6) sinceϕ(x, 0+) = 0 by initial conditions in (2.2). The Fourier-Laplace transform ofϕ in time,Ft→ω[Θ(t)ϕ(·, t)],
is a temperedH1-valued distribution ofω ∈ R by (2.6). We will denote this Fourier-Laplace transform byϕ̃(·, ω), ω ∈ R,
which is the boundary value of the analytic functionϕ̃(·, ω), ω ∈ C

+, in the following sense:

ϕ̃(·, ω) = lim
ǫ→0+

ϕ̃(·, ω + iǫ), ω ∈ R, (2.11)

where the convergence is in the space ofH1-valued tempered distributions ofω, S ′(R, H1(Rn)). Indeed,

ϕ̃(·, ω + iǫ) = Ft→ω[Θ(t)ϕ(·, t)e−ǫt],

while Θ(t)ϕ(·, t)e−ǫt −→
ǫ→0+

Θ(t)ϕ(·, t), with the convergence taking place inS ′(R, H1(Rn)) which is the space ofH1-

valued tempered distributions oft ∈ R. Therefore, (2.11) holds by the continuity of the Fourier transformFt→ω in
S ′(R). Similarly to (2.11), the distributioñf(ω) for ω ∈ R is the boundary value of the analytic inC+ function f̃(ω),
ω ∈ C+:

f̃(ω) = lim
ǫ→0+

f̃(ω + iǫ), ω ∈ R, (2.12)

since the functionΘ(t)f(t) is bounded. The convergence holds in the space of tempered distributionsS ′(R).
Let us justify that the representation (2.9) forϕ̃(x, ω) is also valid whenω ∈ R, ω 6= ±m, if the multiplication in

(2.9) is understood in the sense of distributions.
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Proposition 2.2. For any fixedx ∈ Rn,Σ(x, ω), ω ∈ R\{±m}, is a smooth function, and the identity

ϕ̃(x, ω) = Σ(x, ω)f̃(ω), ω ∈ R\{±m}, (2.13)

holds in the sense of distributions.

Proof. Consider

Σ(x, ω) =
1

(2π)n

∫

Rn

eiξxρ̂(ξ) dnξ

ξ2 +m2 − (ω + i0)2
=

∫ ∞

0

R(x, η) dη

η2 +m2 − (ω + i0)2
, (2.14)

where

R(x, η) =
1

(2π)n

∫

|ξ|=η
eiξxρ̂(ξ) dn−1Sξ. (2.15)

For eachx ∈ Rn, R(x, η) is smooth forη > 0 and satisfies|R(x, η)| = O(ηn−1). It follows that for eachx ∈ Rn,
Σ(x, ω) is a smooth function ofω ∈ R\{±m}, and hence is a multiplicator in the space of distributions.

2.4 Absolutely continuous spectrum

Let k(ω) denote the branch of
√
ω2 −m2 such thatIm

√
ω2 −m2 ≥ 0 for ω ∈ C+:

k(ω) =
√

ω2 −m2, Im k(ω) > 0, ω ∈ C
+. (2.16)

Thenk(ω) is the analytic function forω ∈ C+. We extend it toω ∈ C+ by continuity.

Proposition 2.3. The distributionf̃(ω + i0), ω ∈ R, is absolutely continuous for|ω| > m and satisfies
∫

|ω|>m
|f̃(ω)|2M (ω) dω <∞, (2.17)

whereM (ω) = 1
ω2 R(|k(ω)|), R(η) = 1

(2π)n

∫

|ξ|=η |ρ̂(ξ)|2 dn−1Sξ, η > 0.

Remark2.4. The functionM (ω), |ω| > m, is non-negative, and its set of zeros coincides withZρ defined in (1.20).

Remark2.5. Recall thatf̃(ω), ω ∈ R, is defined by (2.12) as the trace distribution:f̃(ω) = f̃(ω + i0).

Proof. We will prove that for any compact intervalI such thatI ∩ ([−m,m] ∪ Zρ) = ∅ the following inequality holds:
∫

I

|f̃(ω)|2M (ω) dω ≤ C, (2.18)

for some constantC > 0 which does not depend onI. Since there is a finite number of connected components of
R\([−m,m] ∪ Zρ), this will finish the proof of the proposition. Let us prove (2.18). The Parseval identity applied to

ϕ̃(x, ω + iǫ) =

∫ ∞

0

ϕ(x, t)eiωt−ǫt dt, ω ∈ R, ǫ > 0,

leads to ∫

R

‖ϕ̃(·, ω + iǫ)‖2L2 dω = 2π

∫ ∞

0

‖ϕ(·, t)‖2L2e−2ǫt dt.

Sincesupt≥0 ‖ϕ(·, t)‖L2 < ∞ by (2.6), we may bound the right-hand side byC1/ǫ, with someC1 > 0. Taking into
account (2.9), we arrive at the key inequality

∫

R

|f̃(ω + iǫ)|2‖Σ(·, ω + iǫ)‖2L2 dω ≤ C1

ǫ
. (2.19)

Lemma 2.6. Assume thatI is a compact interval such thatI ∩ ([−m,m] ∪ Zρ) = ∅. Then there existsǫI > 0 such that

‖Σ(·, ω + iǫ)‖2L2 ≥ M (ω)

40ǫ
, ω ∈ I, 0 < ǫ ≤ ǫI . (2.20)
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Proof. Let us compute theL2-norm using the Fourier space representation. SinceΣ̂(ξ, ω + iǫ) = ρ̂(ξ)
ξ2+m2−(ω+iǫ)2 , we

have:

‖Σ(·, ω + iǫ)‖2L2 =
1

(2π)n

∫

Rn

|ρ̂(ξ)2| dnξ
|ξ2 +m2 − (ω + iǫ)2|2 =

∞∫

0

R(η) dη

|η2 +m2 − (ω + iǫ)2|2 . (2.21)

LetKI be given by
KI = {η > 0: η2 = ω2 −m2, ω ∈ I}. (2.22)

We denote
ηω = |k(ω)| ∈ KI . (2.23)

Since the functionR(η) is smooth and strictly positive onKI , there existsǫI > 0, satisfying

ǫI < min(m,
1

2
|KI |), (2.24)

so thatR(η2) ≥ 1
2R(η1), for all η1, η2 ∈ KI such that|η2 − η1| < ǫI . Hence, (2.21) yields

‖Σ(·, ω + iǫ)‖2L2 ≥ R(ηω)

2

∫

KI∩[ηω−ǫ,ηω+ǫ]

dη

|η2 +m2 − (ω + iǫ)2|2 , 0 < ǫ ≤ ǫI . (2.25)

Estimating the integral in the right-hand side of (2.25) viathe inequality

inf
|η−ηω |≤ǫ

1

|η2 +m2 − (ω + iǫ)2|2 =
1

(2ηωǫ + 2ǫ2)2 + 4ω2ǫ2
≥ 1

20ǫ2ω2
,

where we took into account thatη2ω = ω2 −m2 andǫ ≤ ǫI < m < |ω|, we arrive at

‖Σ(·, ω + iǫ)‖2L2 ≥ R(ηω)

40ǫ2ω2
|KI ∩ [ηω − ǫ, ηω + ǫ]| ≥ R(ηω)

40ǫω2
, ω ∈ I, 0 < ǫ ≤ ǫI . (2.26)

The last inequality follows since by (2.23) and (2.24) either [ηω − ǫ, ηω] ⊂ KI or [ηω, ηω + ǫ] ⊂ KI or both.

Substituting (2.20) into (2.19), we obtain the bound
∫

I

|f̃(ω + iǫ)|2M (ω) dω ≤ 40C1, 0 < ǫ ≤ ǫI . (2.27)

We conclude that the set of functionsgI,ǫ(ω) = f̃(ω + iǫ)
√

M (ω), 0 < ǫ ≤ ǫI , defined forω ∈ I, is bounded in the
Hilbert spaceL2(I), and, by the Banach Theorem, is weakly compact. The convergence of the distributions (2.12) implies
the weak convergencegI,ǫ −−⇁

ǫ→0+
gI in the Hilbert spaceL2(I). The limit functiongI(ω) coincides with the distribution

f̃(ω)
√

M (ω) restricted ontoI. This proves the bound (2.18) and finishes the proof of the proposition.

3 Nonlinear spectral analysis of omega-limit trajectories

3.1 Compactness argument and omega-limit trajectories

Fix Ψ0 = (ψ0, π0) ∈ E , and letψ ∈ C(R, H1(Rn)) be the solution to the Cauchy problem (1.1) with the initial data
(ψ, ψ̇)|

t=0
= Ψ0. Let tj > 0, j ∈ N be a sequence such thattj → ∞.

Since(ψ, ψ̇)|
tj

are bounded inE , we can pick a subsequence of{tj}, also denoted{tj}, such that

(ψ, ψ̇)|
tj

−−−−−→
j→∞

B0 in E
−ε
loc , for any ε > 0, (3.1)

whereB0 is some vector fromE (see Remark 1.2). By Theorem 1.3, there is a solutionβ(x, t) ∈ C(R, H1(Rn)) to (1.1)
with the initial data(β, β̇)|

t=0
= B0 ∈ E :

β̈(x, t) = ∆β(x, t) −m2β(x, t) + ρ(x)F (〈ρ, β〉), x ∈ R
n, t ∈ R; (β, β̇)|

t=0
= B0 ∈ E ; (3.2)
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this solution satisfies the bound
sup
t∈R

‖(β(·, t), β̇(·, t))‖E <∞. (3.3)

Let Sτ be the time shift operators,Sτf(t) = f(t+ τ). By (3.1) and Theorem 1.3 (v), for anyT > 0 andε > 0, there is
the convergence

Stj (ψ, ψ̇) −−−−−→
j→∞

(β, β̇) in Cb([−T, T ], E−ε
loc ). (3.4)

If a functionβ(x, t) appears as the limit in (3.4) for some sequencetj → ∞, we will call it omega-limit trajectory.
To conclude the proof of Theorem 1.9, it suffices to check thatevery omega-limit trajectory belongs to the set of

solitary waves; that is,
β(x, t) = φω+

(x)e−iω+t, x ∈ R
n, t ∈ R, (3.5)

with someω+ ∈ R.

3.2 Compactness of the spectrum

We denoteg(t) = F (〈ρ, β(·, t)〉).

Proposition 3.1. supp g̃ ⊂ [−m,m] ∪ Zρ, whereZρ is defined in(1.20).

Proof. By Lemma 2.1,
‖(χ, χ̇)|

t
‖Eloc

−−−−−→
t→∞

0, (3.6)

hence the long-time asymptotics of the solutionψ(x, t) in Eloc depends only on the singular componentϕ(x, t). The
convergence (3.4), together with (3.6), prove that for anyT > 0 andε > 0,

Stj (ϕ, ϕ̇) −−−−−→
j→∞

(β, β̇), in Cb([−T, T ], E −ε
loc ). (3.7)

The convergence (3.7) implies that, for any smooth compactly supported functionα(x), there is a convergence

〈α, ϕ(·, t + tj)〉
S

′

−−−−−→
j→∞

〈α, β(·, t)〉.

Due to the continuity of the Fourier transform fromS ′(R) into itself, we also have

ζ(ω)〈α, ϕ̃(·, ω)〉e−iωtj
S

′

−−−−−→
j→∞

ζ(ω)〈α, β̃(·, ω)〉, (3.8)

whereζ(ω) is a smooth compactly supported function. Assume thatsupp ζ ∩ ([−m,m] ∪ Zρ) = ∅. Then, by Proposi-
tion 2.2, we may substituteζ(ω)ϕ̃(x, ω) by ζ(ω)Σ(x, ω)f̃(ω), getting

ζ(ω)〈α,Σ(·, ω)〉f̃ (ω)e−iωtj
S

′

−−−−−→
j→∞

ζ(ω)〈α, β̃(·, ω)〉. (3.9)

Since f̃ is locally L2 on R\([−m,m] ∪ Zρ) by Proposition 2.3, whileΣ(x, ω) is smooth inω ∈ R\{±m} for any
x ∈ Rn, the productζ(ω)〈α,Σ(·, ω)〉f̃ (ω) is inL1(R). Therefore the left-hand side of (3.9) converges to zero. Itfollows
thatβ̃(x, ω) ≡ 0 for ω /∈ [−m,m] ∪ Zρ.

3.3 Spectral inclusion

Proposition 3.2. supp g̃ ⊂ supp〈ρ, β̃(·, ω)〉.

This proposition states that the time spectrum ofg(t) = F (〈ρ, β(·, t)〉) is included in the time spectrum of〈ρ, β(·, t)〉.
This spectral inclusion plays the key role in the proof of ourmain result (Theorem 1.9).
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Proof. By (3.7),

f(t+ tj) = F (〈ρ, ϕ(·, t+ tj)〉)
Cb([−T,T ])
−−−−−→
j→∞

F (〈ρ, β(·, t)〉) = g(t),

for anyT > 0. Using (2.13) and taking into account thatΣ(x, ω) is smooth forω 6= ±m, we obtain the following relation
which holds in the sense of distributions:

β̃(x, ω) = Σ(x, ω)g̃(ω), x ∈ R
n, ω ∈ R\{±m}. (3.10)

Taking the pairing of (3.10) withρ and using definition ofσ(ω) (see (1.22)), we get:

〈ρ, β̃(·, ω)〉 = σ(ω)g̃(ω), ω ∈ R\{±m}. (3.11)

First we prove Proposition 3.2 modulo the setω = {±m}.

Lemma 3.3. supp g̃\{±m} ⊂ supp〈ρ, β̃(·, ω)〉.

Proof. By Proposition 3.1,supp g̃ ⊂ [−m,m] ∪ Zρ. Thus, the statement of the lemma follows from (3.11) and from
noticing thatσ(ω) is smooth and positive forω ∈ (−m,m) and moreover, by Assumption A, it is nonzero onZρ.

To finish the proof of Proposition 3.2, it remains to considerthe contribution ofω = ±m.

Lemma 3.4. If ω0 = ±m belongs tosupp g̃, thenω0 ∈ supp〈ρ, β̃〉.

Proof. In the case whenω0 = ±m is not an isolated point in[−m,m] ∩ supp g̃, we use (3.11) to conclude thatω0 ∈
supp〈ρ, β̃〉 due to positivity ofσ(ω) for |ω| < m (which is apparent from (1.22)).

We are left to consider the case whenω0 = m or −m is an isolated point in[−m,m] ∩ supp g̃. We can pick an open
neighbourhoodU of ω0 such thatU ∩ supp g̃ = {ω0} sincesupp g̃ ∈ [−m,m] ∪ Zρ andZρ is a discrete finite set. Pick
ζ ∈ C∞

0 (R), supp ζ ⊂ U , such thatζ(ω0) = 1. First we note that

ζ(ω)g̃(ω) =M δ(ω − ω0), M ∈ C\{0}, (3.12)

where the derivatives of theδ(ω−ω0) are prohibited becausěζ∗g(t) is bounded. By (3.10), we haveU∩suppω β̃ ⊂ {ω0},
hence

ζ(ω)β̃(x, ω) = δ(ω − ω0)b(x), b ∈ H1(Rn). (3.13)

Again, the terms with the derivatives ofδ(ω−ω0) are prohibited because〈α, ζ̌∗β(·, t)〉 are bounded for anyα ∈ C∞
0 (Rn),

while the inclusionb(x) ∈ H1(R) is due toβ̃ ∈ S ′(R, H1(R)).
Multiplying (3.2) byζ(ω) and taking into account (3.12), (3.13), and the relationω2

0 = m2, we see that the distribution
b(x) satisfies the equation

0 = ∆b(x) +Mρ(x). (3.14)

Therefore,b(x) 6≡ 0 due toM 6= 0 andρ(x) 6≡ 0. Coupling (3.13) withρ and using (3.14), we get:

ζ(ω)〈ρ, β̃(·, ω)〉 = δ(ω − ω0)〈ρ, b〉 = −δ(ω − ω0)
〈∆b, b〉
M

6= 0, (3.15)

sinceb ∈ H1(Rn) is nonzero. This finishes the proof of Lemma 3.4.

Lemmas 3.3 and 3.4 allow us to conclude thatsupp g̃(ω) ⊂ supp〈ρ, β̃(·, ω)〉, finishing the proof of Proposition 3.2.

3.4 The Titchmarsh argument

Finally, we reduce the spectrum ofγ(t) to one point using the spectral inclusion from Proposition 3.2 and the Titchmarsh
Convolution Theorem.

Lemma 3.5. 〈ρ, β(·, t)〉 = 0 or supp〈ρ, β̃(·, ω)〉 = {ω+}, for someω+ ∈ [−m,m] ∪ Zρ.
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Proof. Denote
γ(t) = 〈ρ, β(·, t)〉. (3.16)

By (1.28),g(t) := F (γ(t)) = −∑p
n=1 2nun|γ(t)|2n−2γ(t). Then, by the Titchmarsh Convolution Theorem,

sup supp g̃ = max
n∈{n≤p, un 6=0}

sup supp (˜̄γ ∗ γ̃) ∗ · · · ∗ (˜̄γ ∗ γ̃)
︸ ︷︷ ︸

n−1

∗γ̃ = p sup supp γ̃ + (p− 1) sup supp ˜̄γ. (3.17)

Remark3.6. The Titchmarsh Convolution Theorem applies becausesupp γ̃ ⊂ [−m,m] ∪ Zρ, and hence is compact.

Noting thatsup supp ˜̄γ = − inf supp γ̃, we rewrite (3.17) as

sup supp g̃ = sup γ̃ + (p− 1)(sup supp γ̃ − inf supp γ̃). (3.18)

Taking into account Proposition 3.2 and (3.18), we get the following relation:

sup supp γ̃ ≥ sup supp g̃ = sup supp γ̃ + (p− 1)(sup supp γ̃ − inf supp γ̃). (3.19)

This is only possible ifsupp γ̃ ⊂ {ω+}, for someω+ ∈ [−m,m] ∪ Zρ.

3.5 Conclusion of the proof of Theorem 1.9

We need to prove (3.5). As follows from Lemma 3.5,γ̃(ω) is a finite linear combination ofδ(ω−ω+) and its derivatives.
As the matter of fact, the derivatives could not be present because of the boundedness ofγ(t) := 〈ρ, β(·, t)〉 that follows
from (3.3). Therefore,̃γ = 2πC δ(ω − ω+), with someC ∈ C. This implies the following identity:

γ(t) = Ce−iω+t, C ∈ C, t ∈ R. (3.20)

It follows that g̃(ω) = 2πC δ(ω − ω+), C ∈ C, and the representation (3.10) implies thatβ(x, t) = β(x, 0)e−iω+t. Due
to equation (3.2) and the bound (3.3),β(x, t) is a solitary wave solution. This completes the proof of Theorem 1.9.

4 Multifrequency solutions

Now we consider the situation when Assumption A is violated.In this case, we show that there could exist multifrequency
solutions, indicating that the set of all (one-frequency) solitary waves is only a proper subset of the global attractor.

Fix ω1 ∈ (m, 3m). Setω0 = ω1/3 and pickρ ∈ S (Rn) such that the following conditions are satisfied:

ρ̂|
|ξ|=

√
ω2
1
−m2

= 0, (4.1)

σ(ω1) :=
1

(2π)n

∫

Rn

|ρ̂(ξ)|2 dnξ
ξ2 +m2 − ω2

1

= 0. (4.2)

These two equalities imply thatσ(ω) vanishes at a certain point ofZρ, violating Assumption A.

Lemma 4.1. There exista ∈ R, b < 0 so that equation(1.1)with the nonlinearity

F (z) = az + b|z|2z, z ∈ C,

admits multifrequency solutionsψ ∈ C(R, H1) of the form

ψ(x, t) = φ0(x) sinω0t+ φ1(x) sinω1t, ω0 =
ω1

3
, φ0, φ1 ∈ H1(Rn),

with bothφ0 andφ1 nonzero.

Proof. To make sure that the nonlinearity does not produce higher frequencies, we assume that

〈ρ, φ1〉 = 0. (4.3)

Due to this assumption,

F (〈ρ, ψ〉) = F (〈ρ, φ0〉 sinω0t) = a〈ρ, φ0〉 sinω0t+ b〈ρ, φ0〉3
3 sinω0t− sin 3ω0t

4
.

11



Collecting the terms with the factors ofsinω0t andsinω1t = sin 3ω0t, we rewrite the equation̈ψ = ∆ψ − m2ψ +
ρF (〈ρ, ψ〉) as two following equalities:

− ω2
0φ0 = ∆φ0 −m2φ0 + ρ(x)

(

a〈ρ, φ0〉+
3b〈ρ, φ0〉3

4

)

, (4.4)

− ω2
1φ1 = ∆φ1 −m2φ1 − ρ(x)

b〈ρ, φ0〉3
4

. (4.5)

We defineφ0(x) by φ̂0(ξ) =
ρ̂(ξ)

ξ2+m2−ω2
0

. Sincem2 − ω2
0 > 0, there is the inclusionφ1 ∈ H1(Rn). Moreover,

〈ρ, φ0〉 =
1

(2π)n

∫

Rn

|ρ(ξ)|2 dnξ
ξ2 +m2 − ω2

0

= σ(ω0) > 0,

due to strict positivity ofσ(ω) for |ω| < m (see (1.22)). Hence, for anyb (we takeb < 0 to comply with Assumption B),
we may picka such that (4.4) is satisfied. We then use (4.5) to define the functionφ1(x) by

φ̂1(ξ) = −b〈ρ, φ0〉
3

4

ρ̂(ξ)

ξ2 +m2 − ω2
1

= −bσ(ω0)
3

4

ρ̂(ξ)

ξ2 +m2 − ω2
1

.

Due to (4.1),φ1 ∈ H1(Rn). We are left to check thatφ0 satisfies the assumption (4.3). Indeed, due to (4.2),

〈ρ, φ1〉 = −bσ(ω0)
3

4

1

(2π)n

∫

Rn

|ρ̂(ξ)|2 dnξ
ξ2 +m2 − ω2

1

= 0.

A Appendix: Global well-posedness

The global existence stated in Theorem 1.3 is obtained by standard arguments from the contraction mapping principle. To
achieve this, we use the integral representation for the solutions to the Cauchy problem (1.2):

Ψ(t) =W0(t)Ψ0 + Z[Ψ](t), Z[Ψ](t) :=

∫ t

0

W0(t− s)
[

0

ρ F (〈ρ, ψ(·, s)〉)

]

ds, Ψ =
[
ψ

π

]

, t ≥ 0. (A.1)

HereW0(t) is the dynamical group for the linear Klein-Gordon equationwhich is a unitary operator in the spaceE −ε for
anyε ≥ 0. The bound

‖Z[Ψ1](t) − Z[Ψ2](t)‖E −ε ≤ C|t| sup
s∈[0,t]

‖Ψ1(s)−Ψ2(s)‖E −ε , C > 0, |t| ≤ 1, ε ≥ 0, (A.2)

which holds for any two functionsΨ1, Ψ2 ∈ C(R, E ), shows thatZ[ψ] is a contraction operator inC([0, t], E −ε), ε ≥ 0,
if t > 0 is sufficiently small.

The contraction mapping theorem based on the bound (A.2) on the nonlinear term allows us to prove the existence
and uniqueness of a local solution inE , as well as the continuity of the mapW (t) (continuity with respect to the initial
data). The continuity ofW (t) in Eloc follows from its continuity inE and the finite speed of propagation.

The conservation of the values of the energy and charge functionals,H andQ, is obtained by approximating the initial
data inE with smooth initial data and using the continuity ofW (t) in E . For the proof of the a priori bound (1.16), we
use (1.14) to bound‖Ψ‖E in terms of the value of the Hamiltonian:

‖Ψ‖2E ≤ 2m2

m2 − 2B‖ρ‖2L2

(H(Ψ)−A) , Ψ ∈ E . (A.3)

This bound allows us to extend the existence results for all times, proving the global well-posedness of (1.2) in the energy
space.

Finally, the continuity ofW (t) in E −ε andE
−ε
loc , ε ≥ 0, follows from the contraction mapping theorem (based on

(A.2)) and the finite speed of propagation.
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