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Abstract

We consider dJ(1)-invariant nonlinear Klein-Gordon equation in dimensior> 1, self-interacting via the mean
field mechanism. We analyze the long-time asymptotics ofefienergy solutions and prove that, under certain generic
assumptions, each solution convergeg as +oo to the two-dimensional set of all “nonlinear eigenfunctbof the
form ¢(z)e =", This global attraction is caused by the nonlinear enemyystier from lower harmonics to the continuous
spectrum and subsequent dispersive radiation.

1 Introduction and main results
In this paper, we establish the global attraction to theetgrof all solitary waves for the complex Klein-Gordon field
¥ (x,t) with the mean field self-interaction:

{ Uat) = Av(a,t) - mo(a0) + p@)F((pv(, 1), s R, mxl teR, wy

z/Jlt:o = lﬁo(w)a ¢|t:o = Wo(x),

where

i) = [ ploystat) i
We assume thatis a smooth real-valued function from the Schwartz class:. (R"), p £ 0.

The long time asymptotics for nonlinear wave equations theen the subject of intensive research, starting with the
pioneering papers by Segal [Seg63a, Sep63b], Strauss[Sard Morawetz and Strauss [MS72], where the nonlinear
scattering and the local attraction to zero solution weox@d. Local attraction to solitary waves,asymptotic stability
in U(1)-invariant dispersive systems was addressed in [SW90, ER®32 [ BP95] and then developed[in [PW97, SW99,
[CucO1a] CucO1b, BSDB, Cuc¢03]. Global attractiorstatic, stationary solutions in dispersive systemishout U(1)
symmetrywas first established in [Kom91, Kom95. KV96. KSK97, Korn9%00).

The present paper is our third result on the global attradtiosolitary waves ilJ(1)-invariant dispersive systems.
In [KKO7a], we proved such an attraction for the Klein-Gondizld coupled to one nonlinear oscillator. In [KK07b], we
generalized this result for the Klein-Gordon field coupledéveral oscillators. Now we are going to extend our themay t
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higher dimensional setting, for the Klein-Gordon equatigth the mean field interaction. This model could be viewed as
a generalization of thé-function coupling[[KK078, KKO7b] to higher dimensions. \iedlow the cairns of the approach
we developed in [KKO74a, KKO7b]: the proof of the absolute tiuity of the spectral density for large frequencies, the
compactness argument to extract the omega-limit trajestosind then the usage of the Titchmarsh Convolution Tineore
to pinpoint the spectrum to just one frequency. The subisiambdification is due to apparent impossibility to split of
a dispersive component and to get the convergence to tlaetattin the local energy norm, as in [KK07a, KK0O7b]; the
convergence which we provedsweaker. On the other hand, the proof of this slightly wealavergence allows us to
avoid the technique of quasimeasures, considerably stiogtéhe argument.

We are aware of only one other recent advahce [Tao07] in tltedf@onzero global attractors for Hamiltonian PDEs.
In that paper, the global attraction for the nonlinear 8dimger equation in dimensions > 5 was considered. The
dispersive wave was explicitly specified using the rapidagienf local energy in higher dimensions. The global attnacto
was proved to be compact, but it was neither identified with gbt of solitary waves nor was proved to be of finite
dimension[[Tao07, Remark 1.18].

Let us give the plan of the paper. In the remainder of thisi@ectve formulate the assumptions and the results.
The proof of the Main Theorem takes up Secfibn 2 (where weyaaahe absolute continuity of the spectrum for large
frequencies) and Sectidnd 3 (where we select omega-linjgdi@ies and analyze their spectrum with the aid of the
Titchmarsh Convolution Theorem). The example of a mulgjfrency solitary waves in the situation wheis orthogonal
to some of the solitary waves is constructed in Sedflon 4.dpehdiXA we give a brief sketch of the proof of the global
well-posedness for equatidn (1.1).

1.1 Hamiltonian structure
We set¥ (t) = (v(x,t), n(z,t)) and rewrite the Cauchy problein (IL.1) in the vector form:

0 1
A—m? 0

0
F({p,v(1)))

where¥, = (v, ). We assume that the nonlinearftyadmits a real-valued potential:

W(t) =

1 U(t) + p(z)

]7 U, , = Wy, reR” n>1, teR, (1.2

F(z) = -VU(z), ze€C, U € C*(C), (1.3)
where the gradient is taken with respecRez andIm z. Then equatior{(1]12) formally can be written as a Hamiltania

system,

. 0 1
U (t) = JDH(D), J:[_l 0],

whereD?H is the variational derivative of the Hamilton functional

(1.4)

HO) = 5 [ (4 [TOP +m2lof) e + U, 0), 0 =

() ] |

()

We assume that the potentidl(z) is U(1)-invariant, whereU(1) stands for the unitary groug?, 6 € R mod 27.
Namely, we assume that there exigts C?(R) such that

U(z) = u(|z]?), z e C. (1.5)

Relations[(1.8) and (1.5) imply that
F(2) = a(z]*)2, zeC, (1.6)

wherea(-) = —24/(-) € C*(R) is real-valued. Therefore,
F(e'2) = e F(2), feR, zeC. (1.7)

Due to theU(1)-invariance, the Nother theorem formally implies that finectional

Q(T) = —/n (r — 7)) d*x, W= w(xi ] (1.8)




is conserved for solutiong(¢) to (1.2).
We introduce the phase space of finite energy states foriequ@i2). Denote by - || > the norm inL?(R™). Let
H*(R™), s € R, be the Sobolev space with the norm

]

Fors € RandR > 0, denote byH;(B%) the space of distributions frotf *(R™) supported irB% (the ball of radiusk
inR™). We denote by - || &=,z the norm in the spacE* (B’ ) which is defined as the dual #d, *(B?,).

()

(X

me = ||(m® = A2 2. (1.9)

Definition 1.1. (i) & = H*(R") & L*(R") is the Hilbert space of statds = l 1 , with the norm

1% = 7z + IVelZe +m?lllLe = I7lZ2 + el (1.10)

(i) Fore > 0, introduce the Banach spac&s® = H'!~¢(R") & H¢(R"™) with the norm defined by
IWIIZ-e = ll(m® — 2)72W||Z = ||m |- + 9] 7. (1.11)
(iii) Define the seminorms
1z g =77 g+ 1015 py  R>0, (1.12)
and denote by “ the space of stateb € &= with finitenorm

oo

1) se =D 27 ¥llse g < oo (1.13)
R=1

We will denoted,. = &°

loc*

Remarkl.2 The Sobolev embedding theorem implies that the embedflings),; is compact for any > 0.

Equation[(T.P) is formally the Hamiltonian system with tHeape spac&’ and the Hamilton functionak{. Both H

andQ are continuous functionals @ We introduced intd(1]9) the factet® > 0, so thatH{(¥) = || ¥||%2+ U ({p, 1)).

1.2 Global well-posedness
To have a priori estimates available for the proof of the glatell-posedness, we assume that

2

U(z) > A—BJ|z|* forzeC, whereAcRand0< B < TR (1.14)
Plize2
Theorem 1.3. Letp € . (R™), and letF(z) satisfy conditiong1.3), (1.8), and(T.14) Then:
(i) Forevery¥, € & the Cauchy problerd.2) has a unique solutio® € C'(R, &).
(i) The mapV (t) : ¥y — W(¢) is continuous ing” and &, for eacht € R.
(i) The values of the energy and charge functionals are conderve
H(V(t)) = H(Py), Q(I(t)) = Q(y), teR. (1.15)
(iv) The followinga prioribound holds:
[(t)]le < C(Vo) <00,  teR. (1.16)

(v) Foranye > 0,the mapW (t) : ¥ — ¥(¢) is continuous i~ andé&,_ ¢ uniformly int € [T, T, for anyT > 0.

loc

We sketch the proof of this theorem in Appendix A.



1.3 Solitary waves

Definition 1.4. (i) The solitary waves of equation (1.1) are solutions of threnfo

Y(x,t) = ¢, (x)e™ ", where w € R, ¢,,(z) € H'(R™). (1.17)

(i) The solitary manifold is the s& = {(¢,,, —iwd,,): w € R}, whereg,, are the amplitudes of solitary waves.

Identity (I.T) implies that the s&is invariant under multiplication by'?, € R. Let us note that sinc&(0) = 0 by
(@8), for anyw € R there is a zero solitary wave,, (z) = 0.

Define 5(6)

P

m}, w e (C+ U (—m,m), (118)
whereC* = {w € C: Imw > 0}. Note that¥(-,w) is an analytic function of € C* with the values in#(R"). Since
| X (2, w)| < const [Imw|~! forw € C*, we can extend for any € R™ the functionX(z, w) to the entire real liney € R
as a boundary trace:

Y(x,w) = .7:5_m{

X(r,w) = El_i}I(IJl_‘_E(I,w + ie), weR, (1.19)

where the limit holds in the sense of tempered distributions

Proposition 1.5(Existence of solitary waves)Assume that’(z) satisfieq{L.14), and thatp € . (R"), p # 0. There may
only be nonzero solitary wave solutions(fo2) for w € [—m, m| U Z,, where

Z, = {w € R\[-m,m]: p(€) = 0 for all ¢ € R™ such that m? + ¢ = w?}. (1.20)
The profiles of solitary waves are given by
A cp(§)
$u(§) = Erm? o2
wherec € C, ¢ # 0 is a root of the equation
o(w)a(lcf|o(w)?) =1, (1.21)
whereq is defined in{Z.8) and
1 pé)[? n
o) =, 50w) = i [ PGS (1.22)

The existence of such a root is a necessary condition fontiseemce of nonzero solitary wav@s17)
The conditionT.21)is also sufficient for > 5 and for|w| # m, n > 1.
For |w| = m, n < 4, the following additional condition is needed for sufficgn

AreY[2
/n %%” d"¢ < . (1.23)

Remark1.6. As follows from [1.21) and[{1.22)7(w) is strictly positive forjw| < m (sincep # 0) and takes finite
nonzero values for alb that correspond to solitary waves (fer< 4, the finiteness of (w) atw = +m follows if (1.23)
is satisfied).

Remarkl.7. One can see that generically the solitary wave manifold ésdimensional.

Proof. Substituting the ansatz, (x)e~** into (I.1) and usind{116), we get the following equation/gn

— W hu(x) = Agu(z) =My (z) + p(x)F((p, b)),z €R™ (1.24)
Therefore, all solitary waves satisfy the relation
(€ +m® = w?)u (&) = PE)F({p, ). (1.25)

Forw ¢ [—m,m] U Z, the relation[(T.25) leads 0, ¢ L*(R™) (unlessg,, = 0). We conclude that there are no nonzero
solitary waves fotw ¢ [—m,m] U Z,,.



Let us consider the casec [—m,m] U Z,. From [1.Z5), we see that

2 ey (&)

b (8) 3 (P, b)) (1.26)

24 m2-w

Using the function¥(z,w) defined in [[Z.1B), we may expresgs () = c¢X(z,w), with ¢ € C. Substituting this ansatz
into (I.26) and usind(11.6), we can write the conditioncan the form [1.211).
Forn < 4, the finiteness of the energy of solitons corresponding te +=m is equivalent to the conditiof (T.23).
This finishes the proof of the proposition. O

1.4 The main result
Assumption A. We assume that € .(R"), the setZ,, is finite, and that

o(w) # 0, w € Zp. (1.27)
Above,Z, ando(w) are defined in(1.20) and{1]22).

Remarkl.8 Note thato(w) is well-defined at the points df,, since[)||£|:\/m =0forwe Z,.

As we mentioned before, we need to assume that the nonlipésapiolynomial. This assumption is crucial in our ar-
gument: It will allow us to apply the Titchmarsh Convolutibheorem. Now all our assumptions éhcan be summarised
as follows.

Assumption B. F'(z) satisfies[(113) with the polynomial potentidl~), and also satisfies (1.5) add (1.14). This can be
summarised as the following assumptionlofx ):

P
U(z)=> unlz’",  w, €R, p>2, u,>0. (1.28)
n=1

Our main result is the following theorem.

Theorem 1.9(Main Theorem) Assume that the coupling functipfir) satisfies Assumptiéd A and that the nonlinearity
F(z) satisfies Assumptidd B. Then for aby € & the solution¥ () € C(R, &) to the Cauchy problerfl.2) converges
to S in the spaces), 7, for anye > 0:

oc!

limdist ;- (0(¢),S) =0, (1.29)

loc

wheredist .- (U, S) := inf ||U — s]| ,—-.
& s &
oc sE oc

Remarkl.10. Thed), ;-convergence to the attractor stated in this theorem is arethlan thes,.-convergence proved in
[KKO74a] and [KKO7H], where we considered the Klein-Gordaidiin dimensiom = 1, coupled to nonlinear oscillators.

Obviously, it suffices to prove Theordm11.9 fors +occ.

2 Absolute continuity for large frequencies

2.1 Splitting of a dispersive component

First we split the solutiom)(x, t) into ¢ (x, t) = x(x,t) + ¢(z, t), wherex andy are defined as solutions to the following
Cauchy problems:

j{(l‘,t) = AX(xvt) - mQX(‘Tat)v (XaX)ln:o = W, (2.1)

¢(x7t) = A(p(z, t) - m2<p(x,t) + p(I)f(t), (‘Pv ¢)|t:0 = (07 O)v (2.2)

where¥ is the initial data from[{1]2), and
f@) = F({p, (-, 1)) (2.3)



Note that(p, ¥(-, t)) belongs taCy(R) since(, 1) € Cy(R, &) by Theoreni1I3i¢). Hence,

f() € Co(R). (2.4)
On the other hand, sincg(t) is a finite energy solution to the free Klein-Gordon equatiee also have
(X X) € Cy(R, &). (2.5)

Hence, the functiop(t) = ¢ (t) — x(t) also satisfies
The following lemma reflects the well-known energy decaythfierlinear Klein-Gordon equation.

Lemma 2.1. There is a local decay of in the &;,. seminorms. That i&/R > 0,

IO®), xE)llg,r =0, = o0 (2.7)

2.2 Complex Fourier-Laplace transform

Let us analyze the complex Fourier-Laplace transform(af, ¢):
P2,w) = Frou O p(a, 1)] = / é“lo(z,t)dt, weCt, zeR", (2.8)
0

whereC*t := {z € C: Imz > 0}. Due to [Z.6)5(-,w) is an H!-valued analytic function ab € C*. Equation[[Z.R)
for p implies that

—wg(z,w) = Ad(z,w) — m*@(z,w) + p(z)f(w), weCT, zeR",

wheref(w) is the Fourier-Laplace transform ¢f¢):

fw) = FlO®r0] = [ Ty, wecC.

0

The solutions(x,w) is analytic forw € C* and can be represented by

oz, w) = X(z,w)f(w), weCt. (2.9)

2.3 Traces of distributions forw € R

First we remark that
O(t)p(x,t) € Cy(R, H' (R™)) (2.10)
by (Z.8) sincep(x, 0+) = 0 by initial conditions in[[ZR). The Fourier-Laplace tramsh of  in time, 7, [© ()¢ (-, t)],

is a tempered{ *-valued distribution ofs € R by (2.8). We will denote this Fourier-Laplace transformity, w), w € R,
which is the boundary value of the analytic functipf, w), w € C*, in the following sense:

95('7(“)) = E£%1+95('7w + iE), w e Ra (211)

where the convergence is in the spacé/dfvalued tempered distributions of ./ (R, H!(R")). Indeed,
@('7"‘} + ZE) = Fisw [G(t)<p(7 t)eiet]a
while ©(t)p(-, t)e < A O(t)e(-,t), with the convergence taking place.ift’ (R, H'(R")) which is the space off -
€—
valued tempered distributions ofc R. Therefore,[(2.711) holds by the continuity of the Fouri@nsformF;_,,, in
<'(R). Similarly to (Z11), the distributiorf (w) for w € R is the boundary value of the analytic@" function f(w),

weCTt:

flw) = elirgl+ flw+ie), weR, (2.12)

since the functio®(¢) f (¢) is bounded. The convergence holds in the space of tempeseibdiionss”’(R).

Let us justify that the representatidn (2.9) fbfx, w) is also valid wheno € R, w # +m, if the multiplication in
(2.9) is understood in the sense of distributions.



Proposition 2.2. For any fixedr € R”, ¥(z,w), w € R\{£m}, is a smooth function, and the identity

Plr,w) = S(z,w)fw),  weR\{+m}, (2.13)
holds in the sense of distributions.
Proof. Consider o .
Dlw,w) = (271r)n /R 2 +e;;p£§gj7fi0)2 - /0 e ﬁ(f’_ngf i 0)2’ (2.14)
where ) .
R = e /m_n €€ 5(6) dn 5. (2.15)

For eachr € R", R(x,n) is smooth forn > 0 and satisfiesR(z,n)| = O(n™~1). It follows that for eachw € R™,
X(x,w) is a smooth function ab € R\{+m}, and hence is a multiplicator in the space of distributions. O

2.4 Absolutely continuous spectrum
Let k(w) denote the branch afw? — m? such thafm vw? — m? > 0 forw € C*:

k(w) = Vw? —m?2, Im k(w) > 0, weCt. (2.16)
Thenk(w) is the analytic function fow € C*. We extend it tav € C+ by continuity.

Proposition 2.3. The distributionf (w + i0), w € R, is absolutely continuous fdw| > m and satisfies
/ |f(w)|2 A (w) dw < o0, (2.17)
|w|[>m

where.#/(w) = 2 (k(w)), 2(1) = i [, 16 d" 1 Se, 1> 0.

Remark2.4. The functionZ (w), |w| > m, is non-negative, and its set of zeros coincides \istdefined in [1.210).
Remark2.5. Recall thatf(w), w € R, is defined by[(2.12) as the trace distributigitw) = f(w + i0).

Proof. We will prove that for any compact intervalsuch thatl N ([—m, m] U Z,) = () the following inequality holds:
[1i@ P <, 2.18)
I

for some constan€ > 0 which does not depend oh Since there is a finite number of connected components of
R\ ([-m,m] U Z,), this will finish the proof of the proposition. Let us pro{eIg8). The Parseval identity applied to

oz, w +ie) = / oz, t)e™t =< dt, WER, €>0,
0
leads to R
/ 16, w + ie)|72 dw = 2”/ (-, t)||7 262" at.
R 0

Sincesup, [l¢(- )|z < oo by (2.6), we may bound the right-hand side @y/¢, with someC; > 0. Taking into
account[(2.D), we arrive at the key inequality

N C
/R|f(w +i€) 2| D (-, w + d€)|| 52 dw < Tl (2.19)

Lemma 2.6. Assume thaf is a compact interval such thdtn ([—m, m] U Z,) = (. Then there exists; > 0 such that

M (w)
40¢ ’

12, w+ie)||2s > wel, 0<e<er. (2.20)



Proof. Let us compute thé&?-norm using the Fourier space representation. Sﬁﬁ({ew + i€) = %, we
have: '
2ldne
¥ = . 2.21
120w+ e}l |52—|—m2 (w + i€)? /|77 +m2 w—l—ze) |2 ( )
Let K; be given by
Kr={n>0n=w?-m? well (2.22)
We denote
Nw = |k(w)| € K. (2.23)
Since the functioZ(n) is smooth and strictly positive o/, there existg; > 0, satisfying
1
€7 < min(m, §|K1|), (2.24)
so that%(ns) > %%(m), for all ;, no € K7 such thatn, — ;| < e;. Hence,[Z21) yields
. 2 () / dn
(. 2> 0 <er. 2.25
|| (aw+l€)”L2— 2 |772+m2—(w+i6)2|2’ < e €r ( )
Klﬂ[nw_eaWW+5]
Estimating the integral in the right-hand side [0 (2.25)thia inequality
. 1 1 1
inf . = > ’
In—nw|<e [N +m? — (w—+i€)2|2  (2nwe+ 2€2)? + dw?e2 — 20e2w?
where we took into account that = w? — m? ande < ¢; < m < |w|, we arrive at
2 (1) 2 ()
|12, OJ+Z€)||L2_402 5 [ K10 [ —e,nw+e]|2406w2, wel, 0<e<e;. (2.26)
The last inequality follows since by (2123) ahd (2.24) eithg, — ¢, n.,] C K or [n,,n. + €] C K7 or both. O
Substituting[(2.20) intd (2.19), we obtain the bound
/|f(w+i6)|2//l(w) dw < 40C, 0<e<e. (2.27)
I

We conclude that the set of functiops. (w) = f(w + i€)\/-#(w), 0 < € < €, defined forw € I, is bounded in the

Hilbert space.? (1), and, by the Banach Theorem, is weakly compact. The conmeegg the distribution$(2.12) implies

the weak convergeneg . — gy in the Hilbert spacd.?(I). The limit functiong;(w) coincides with the distribution
e—0+

f(w)\/-# (w) restricted ontd. This proves the bounf{Z118) and finishes the proof of thpgsition. O

3 Nonlinear spectral analysis of omega-limit trajectories

3.1 Compactness argument and omega-limit trajectories

Fix ¥y = (¢o,m) € &, and letyy € C(R, H'(R™)) be the solution to the Cauchy probleln{1.1) with the initiatad
(¥, ¥)],_, = ¥o. Lett; > 0, j € N be a sequence such that— oo.
Since(1, ¢)|tj are bounded i#’, we can pick a subsequence{of}, also denotedt, }, such that

(. ), —— Bo  in &

. loc”
j—roo

for any € > 0, (3.1)

whereB is some vector fron#’ (see Remark12). By Theordm1l.3, there is a solufign t) € C(R, H'(R™)) to (L.1)
with the initial data(s, 5)|,_, = Bo € &

Bla,t) = AB(x,t) = m?B(z,t) + p(@)F((p, ), z€R" teR, (B, =Boes (32



this solution satisfies the bound '
sup 1(B(,1), B(, 1) |le < oo (3.3)
c

Let S- be the time shift operators,, f(t) = f(¢t + 7). By (3.1) and Theoref 1./, for anyT > 0 ande > 0, there is
the convergence ' .
S 9) —(B.8) i G=T.T],6.) (3.4)
If a function3(z, t) appears as the limit if.(3.4) for some sequetjces oo, we will call it omega-limit trajectory
To conclude the proof of Theorelm 1.9, it suffices to check évatry omega-limit trajectory belongs to the set of
solitary waves; that is,
B(x,t) = du, (z)e @+t reR", teR, (3.5)

with somew € R.

3.2 Compactness of the spectrum
We denotey(t) = F((p, B(:,1))).
Proposition 3.1. supp § C [-m, m] U Z,, whereZ,, is defined in(1.20)

Proof. By Lemmd 2.1,
1060 N 6100 ——— 0, (3.6)

hence the long-time asymptotics of the solutiofx, t) in &;,. depends only on the singular componeift, t). The
convergencd (314), together wifh (8.6), prove that for @ny 0 ande > 0,

Si,(p,0) —— (B,8),  in Cy([-T,T],655). 3.7)

j—oo

The convergencé€(3.7) implies that, for any smooth compaatported functiom(z), there is a convergence

’

(o (st +15)) —— (@, B(,1))-

j—oo

Due to the continuity of the Fourier transform fro#' (R) into itself, we also have

’

C(w)lon Pl w))e ™8 —Z— ¢(w){an Bl w)), (3.8)

j—o0

where((w) is a smooth compactly supported function. Assume ghap ¢ N ([—m,m] U Z,) = 0. Then, by Proposi-

tion[Z.2, we may substitutgw)@(z, w) by ¢(w) X(x,w) f(w), getting

’

. . 5

(), B f@)e™™ —— (o, B.w). (3.9)
Since f is locally L? on R\ ([~m,m] U Z,) by Propositio 213, while2(z,w) is smooth inw € R\{+m} for any
r € R", the product (w)(a, X'(-, w))f(w) isin L' (R). Therefore the left-hand side &F(B.9) converges to zerlltiws
that3(z,w) = 0forw ¢ [—m,m]U Z,. O

3.3 Spectral inclusion

Proposition 3.2. supp g C supp{p, 5(-,w)).

This proposition states that the time spectrum@§ = F({p, 8(-,t))) is included in the time spectrum b, 5(-, t)).
This spectral inclusion plays the key role in the proof of main result (Theorein 1.9).



Proof. By (3.1),

Co([-T,17)
FE+t) = Flp et +4))) —— Fl(p, 80, 8) = 9(t),

foranyT > 0. Using [2.I8) and taking into account thétx, w) is smooth fotw # +m, we obtain the following relation
which holds in the sense of distributions:

B(z,w) = X(z,w)j(w), r e R, w € R\{+m}. (3.10)

Taking the pairing ofl(3.10) witl» and using definition ofr(w) (see[(1.2R)), we get:

(0, B(w)) = o(w)g(w),  weR\{+m}. (3.11)

First we prove Propositidn 3.2 modulo the set {+m}.

Lemma 3.3. supp g\{£m} C supp{p, 8(-,w)).

Proof. By Propositiol3Jlsupp g C [—m,m] U Z,. Thus, the statement of the lemma follows frdm (8.11) anchfro
noticing thato (w) is smooth and positive fav € (—m, m) and moreover, by Assumpti@d A, it is nonzeroZp O

To finish the proof of Propositidn 3.2, it remains to consither contribution ofv = £m.

Lemma 3.4. If wg = £m belongs tesupp g, thenw, € supp(p, 5).

Proof. In the case when, = +m is not an isolated point if-m, m] N supp g, we use[(3.1) to conclude tha €
supp(p, 3) due to positivity ofo(w) for |w| < m (which is apparent fromi {1.22)).

We are left to consider the case when= m or —m is an isolated point ifi—m, m] N supp g. We can pick an open
neighbourhood’ of wy such that/ N supp § = {wo} sincesupp g € [—m, m] U Z, andZ,, is a discrete finite set. Pick

¢ € C5°(R), supp ¢ C U, such that(wy) = 1. First we note that
(W)gw) =Mi(w—wo), M eC\{0}, (3.12)

where the derivatives of thw—wy) are prohibited because g(t) is bounded. By[{3.10), we hatésupp,, 3 C {wo},
hence
((w)B(z,w) = 6(w —wo)b(z),  be H'(R™). (3.13)
Again, the terms with the derivatives &fw —wj) are prohibited because, Cxp(-,t)) are bounded for any € C§°(R™),
while the inclusiorb(z) € H'(R) is due to3 € .7"(R, H'(R)).
Multiplying (B.2) by ¢ (w) and taking into accourt (312, (3]13), and the relatigr= m?, we see that the distribution
b(z) satisfies the equation

0= Ab(z) + Mp(z). (3.14)
Thereforep(z) # 0 due toM £ 0 andp(z) # 0. Coupling [3.IB) withp and using[(3.14), we get:

- Ab,b
C(w){p, B(-,w)) = §(w — wp)(p,b) = =6 (w — w0)<—]\/[> #0, (3.15)
sinceb € H*(R") is nonzero. This finishes the proof of Lemmal 3.4. O

Lemmag$ 3B and 3.4 allow us to conclude thatp j(w) C supp(p, 5(-,w)), finishing the proof of Propositidi3.2.
O

3.4 The Titchmarsh argument

Finally, we reduce the spectrumft) to one point using the spectral inclusion from Propositicghehd the Titchmarsh
Convolution Theorem.

Lemma 3.5. (p, A(-, 1)) = 0 or supp{p, B(-,w)) = {w. }, for somew, € [-m,m|U Z,.

10



Proof. Denote

v(t) = (p, B(-,1)). (3.16)
By (L.28),9(t) :== F(v(t)) = — X7 _, 2nu,|y(t)|*"~2~(t). Then, by the Titchmarsh Convolution Theorem,
sup supp g = pe DX SUD SUpp (Y*7) %% (7% 7) *7 = psup suppy + (p — 1)sup suppy.  (3.17)
— n nil

Remark3.6. The Titchmarsh Convolution Theorem applies becauge 7 C [—m,m] U Z,, and hence is compact.
Noting thatsup supp 4 = — inf supp 7, we rewrite [3.1l7) as
sup supp g = supy + (p — 1)(sup supp ¥ — inf supp 7). (3.18)
Taking into account Propositién 3.2 and (3.18), we get thieviong relation:
sup supp 4 > sup supp g = supsupp” + (p — 1)(supsupp 4 — inf supp 7). (3.19)

This is only possible ifupp 4 C {w }, for somew, € [—=m,m]U Z,,. O

3.5 Conclusion of the proof of Theoreni 1.9

We need to prové (3.5). As follows from Leminal3i%.) is a finite linear combination of(w — w. ) and its derivatives.
As the matter of fact, the derivatives could not be presecabse of the boundednessdf) := (p, 8(-,t)) that follows
from (33). Thereforey = 27C §(w — w ), with someC' € C. This implies the following identity:

N(t)=Ce ™+t CeC, teR. (3.20)

It follows thatj(w) = 27C §(w — w4 ), C € C, and the representatidn (3} 10) implies thét, t) = 5(z,0)e~“+*. Due
to equation[(32) and the bourdld(B.3).z, t) is a solitary wave solution. This completes the proof of Teed1.9.

4 Multifrequency solutions

Now we consider the situation when Assumpfidn A is violatedhis case, we show that there could exist multifrequency
solutions, indicating that the set of all (one-frequenaofitary waves is only a proper subset of the global attractor
Fix wy € (m,3m). Setwy = w1 /3 and pickp € .(R™) such that the following conditions are satisfied:

il =0, (4.1)

l€]=1/w2 —m?2
o1 PO dme
o@1) = G /R &= =" (4.2)

These two equalities imply that{w) vanishes at a certain point &f,, violating AssumptiofLA.

Lemma 4.1. There exist € R, b < 0 so that equatiofI.1) with the nonlinearity
F(z) = az + b|z|*z, zeC,
admits multifrequency solutionse C(R, H') of the form

P(x,t) = do(x) sinwot + ¢1 () sinws t, wo = %, b0, p1 € H'(R™),

with both¢g and ¢, nonzero.

Proof. To make sure that the nonlinearity does not produce higkguincies, we assume that

(p, $1) = 0. (4.3)
Due to this assumption,

33 sinwot — sin 3wot
4

F((p,¥)) = F((p, do) sinwpt) = a(p, ¢o) sinwet + b{p, o)

11



Collecting the terms with the factors effn wgt andsinwit = sin 3wgt, we rewrite the equatiod =AY — m%p +
pF({p,1)) as two following equalities:

3b<p7 ¢0>3)7 (44)

—wio = Ado — m>po + p(x) (G<Pa ¢o) + )

b<pa ¢0>3
1 .

We definepg () by do (&) = %. Sincem? — w2 > 0, there is the inclusion; € H!(R™). Moreover,

<pa ¢0> = ! /]R |p(€)| dng = O'(CUQ) > 0,

2m)™ Jgn €2 +m? — wd

—wigr = Ag1 —mP¢1 — p(x) (4.5)

due to strict positivity ofr(w) for |w| < m (see[[Z.2R)). Hence, for ay(we takeb < 0 to comply with AssumptiofB),
we may picka such that[(414) is satisfied. We then Usel(4.5) to define thatiimep, (z) by

1S = 4 §2+m2—w%_ 4 24 m?2—wd

Due to [41) ¢, € H*(R™). We are left to check that, satisfies the assumptidn (#.3). Indeed, duéid (4.2),

il L[ ORTE
4 2m)n Jgn E+m2—wi

<p7 ¢1> - -

A Appendix: Global well-posedness

The global existence stated in Theollend 1.3 is obtained Ioylatd arguments from the contraction mapping principle. To
achieve this, we use the integral representation for theisal to the Cauchy problefn(1.2):

0
P Y (-5 8)))

U(t) = Wo(t) Ty + Z[W](t), Z[\I/](t)::/OWO(t—s)[pF« }ds, \yzm t>0. (Al

HereW,(t) is the dynamical group for the linear Klein-Gordon equatidrich is a unitary operator in the spa€e< for
anye > 0. The bound

1Z[W1](t) = Z[2] ()] e-= < Ct] s [W1(s) = Wa(s)g-=,  C>0, [t}|<1, e>0, (A.2)
se[0,t

which holds for any two function®, ¥, € C(R, &), shows thatZ[¢] is a contraction operator ifi([0,¢], &), e > 0,
if ¢ > 0 is sufficiently small.

The contraction mapping theorem based on the bdund (A.2h@madnlinear term allows us to prove the existence
and uniqueness of a local solutiondh as well as the continuity of the map (¢) (continuity with respect to the initial
data). The continuity ofV(¢) in &, follows from its continuity iné” and the finite speed of propagation.

The conservation of the values of the energy and chargeifuvads, £ andQ, is obtained by approximating the initial
data in& with smooth initial data and using the continuity16f(¢) in &. For the proof of the a priori bounB (1116), we
use [(1.14¥) to boun{i¥|| ¢ in terms of the value of the Hamiltonian:

2m?

1% < sz
© = m2 —2B||pl7.

(H(T) — A),  Teé. (A.3)

This bound allows us to extend the existence results foimadlg, proving the global well-posedness[of]1.2) in the gper
space.

Finally, the continuity ofi¥/ () in £~ and &), 7, ¢ > 0, follows from the contraction mapping theorem (based on
(A2)) and the finite speed of propagation.
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