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Abstract. The circle and sphere theorems in classical hydrodynamics are generalized to a
composite double body. The double body is composed of two overlapping circles/spheres of arbitrary
radii intersecting at a vertex angle π/n, n an integer. The Kelvin’s transformation is used successively
to obtain closed form expressions for several flow problems. The problems considered here include
two-dimensional and axisymmetric three-dimensional inviscid and slow viscous flows. The general
results are presented as theorems followed by simple proofs. The two-dimensional results are obtained
using complex function theory while the three-dimensional formulas are obtained using Stokes stream
function.

The solutions for several flows in the presence of the composite geometry are derived by the use
of these theorems. These solutions are in singularity forms and the image singularities are interpreted
in each case. In the case of three-dimensional axisymmetric viscous flows, a Faxen relation for the
force acting on the composite bubble is derived.
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1. Introduction. The celebrated Kelvin’s transformation [10, 14, 16, 40] has
been used frequently to determine the image system of a given potential distribution
in the presence of a sphere or a circular cylinder. Applying Kelvin’s transformation,
also known as Kelvin’s inversion theorem, on harmonic functions, Weiss [37] estab-
lished a relation connecting the velocity potential of the irrotational flow of an incom-
pressible inviscid fluid around a sphere with that of the flow when the sphere is absent.
The corresponding theorem for axisymmetric flows was developed by Butler [6] in a
simpler form using the Stokes stream function. The two-dimensional counterpart of
the Weiss sphere theorem was obtained earlier by Milne-Thomson [23, 24] which is
widely known as the circle theorem. These basic theorems were extended by several
authors in order to satisfy various boundary conditions that arise in various fields
such as hydrodynamics, heat, magnetism and electrostatics [19, 28, 29, 30, 38, 39].
The Kelvin’s inversion was the key idea in those works involving a single spherical
or a circular boundary. The Kelvin’s inversion theorem is also applied to scattering
problems of linear acoustics [11].

In addition, the Kelvin’s inversion theorem has been also generalized to the cases
of biharmonic and polyharmonic functions [7]. In [12, 25, 26], the result for biharmonic
function has been used to obtain sphere theorems for Stokes flows involving a spherical
boundary under a variety of boundary conditions. The earlier sphere theorems for
axisymmetric slow viscous flows [8, 9, 13] also used the inversion theorem implicitly.
The circle theorems for Stokes flows [1, 35] further exploited the use of the inversion
theorem for biharmonic functions. It is worth citing the notable extensions of circle
and sphere theorems for isotropic elastic media [20, 5].

In this paper, we generalize the basic theorems to the case of a composite geometry
consisting of two overlapping spheres/circles. The two spherical/cylindrical surfaces
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are assumed to intersect at the vertex ‘P’ (see Fig. 2.1) at an angle π/n, n an integer.
For our purposes, we call this angle ‘vertex angle’ in this paper. The chief advantage
of this assumption is that Kelvin’s inversion can be used successively to obtain general
expressions for the required functions satisfying the boundary conditions. This idea
has been used here to present generalized circle and sphere theorems for inviscid and
viscous flows. In a sense, this generalizes the idea that it is easier to construct images
in wedges of angle π/n (n an integer) than when the angle is an irrational multiple of π.
It should be pointed out that the problems involving overlapping circles/spheres are,
in general, solved by the use of toroidal and bicylindrical coordinates [17, 18, 31, 32].
This method uses the conical functions and may become cumbersome while computing
the results in general situations. Our present approach avoids such special coordinate
systems making the derivation simple. We also mention that the method of electric
inversion due to Maxwell [21] has been used in electrostatics to calculate the dipole
moment for equal conducting spheres [15, 22].

The layout of the paper is as follows: In section 2, we describe the overlapping ge-
ometry and provide some nice properties of the geometrical relations. We first present
the generalized circle theorem for inviscid flows in Section 3. The usefulness of this
theorem is also demonstrated with several examples. In section 4, the corresponding
theorem for Stokes flows is obtained. We have employed the inversion theorem for
biharmonic functions to compute the stream function. For convenience, we have used
the stress-free boundary conditions which yield simpler expressions. Here again, we
present various examples to illustrate our general results. The theorem for inviscid
axisymmetric flow about a sphere is provided in section 5. This may be considered
as the extension of Butler’s sphere theorem for inviscid flows. The corresponding ax-
isymmetric flow for two overlapping stress-free spherical surfaces is solved in section
6. The general expressions for the flow fields have been derived here for several cases
and the drag force has been calculated in each of these cases. We finally conclude in
section 7.

2. Geometry of the composite body. We consider two circles Sa and Sb of
radii ‘a’ and ‘b’ centered at positions Sa and Sb respectively. The circles overlap as
shown in Fig. 2.1, and intersect at an angle π

n , n an integer. The distance ‘c’ between
the centers is

c =
[

a2 + b2 + 2ab cos
π

n

]1/2

. (2.1)

The composite geometry consisting of two overlapping circles is called a double circle.
The boundary of the double circle is denoted by Γ = Γa ∪ Γb, where Γa is part of
the circle Sa and Γb is part of the circle Sb. Let Aj , Bj be the successive inverse
points lying along the line joining the centers. The first point A1 is the image of
B in circle Sa and B1 is the image of A in circle Sb. The successive image points
starting with B are ordered as follows: B → A1 → B2 → A3 → B4 → A5 → B6.....
Similarly, the successive image points starting with A are ordered as follows: A →
B1 → A2 → B3 → A4 → B5 → A6..... The distances aj = AAj and bj = BBj satisfy
the recurrence relations

aj =
a2

c− bj−1

bj =
b2

c− aj−1















, (2.2)
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Fig. 2.1. Geometry of the double circle Γ.

with initial values a0 = b0 = 0 and j = 1, ..., n− 1. For the vertex angle π
n , with n an

integer, one can prove that (see Appendix)

an−1 + bn−1 = c. (2.3)

In this case, the image points An−1 and Bn−1 coincide. The points {Aj} with
j < (n − 1) lie inside circle Sa but outside the overlap region, and the points {Bj}
with j < (n− 1) lie inside circle Sb but outside the overlap region. Such points exist
only for n > 2. For n = 2, the first image points lie inside the overlap region and
coincide. It can be further shown that the distances AjP and BjP (see Fig. 2.1) can
be expressed in terms of aj and bj by

AjP = (−1)j

[

a2
j +

b2 − a2 − c2

c
aj + a2

]1/2

BjP = (−1)j

[

b2j +
a2 − b2 − c2

c
bj + b2

]1/2



















, (2.4)

with A0P = AP = a,B0P = BP = b. We note some further properties of the
recurrence relations (2.2) and (2.4). By induction, one can prove from eq. (2.2) that
the distances {aj, bj} are related by

a2jb2j+1 = b2ja2j+1

a2j+1 − b2j+1 =
a2 − b2

c2







. (2.5)

Using (2.5) in (2.4) one finds that

A2j+1P = B2j+1P. (2.6)

Let z, z′ denote the complex positions of an arbitrary point with A and B as origins
respectively. Similarly, let zj , z

′

j denote the complex positions with Aj and Bj as
origins respectively. Note that zj = z − zAj

and z′j = z − zBj
, where zAj

and zBj

are the z-coordinates of the points Aj and Bj . Below, we discuss inviscid and viscous
fluid flow problems involving the composite double body Γ separately.
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3. Two-dimensional inviscid flow. Consider irrotational two-dimensional
flows of incompressible inviscid fluids in the z-plane. Then the governing equations
for the complex potential W (z) = φ + iψ is the two-dimensional Laplace’s equation
which is written in complex form as

∂2W

∂z∂z̄
= 0, (3.1)

where z = x + iy is the complex variable and z̄ its conjugate. The complex velocity
may be obtained from

u− iv =
dW

dz
. (3.2)

If there are rigid boundaries present in the given flow field, then the boundary con-
ditions can taken to be ψ = constant, different constants on different boundaries.
Based on this formulation, Milne-Thomson [23, 24] presented an elegant theorem for
the calculation of the flow disturbance resulting from the introduction of an infinite
circular cylinder to a given two-dimensional flow field. It is widely known as the
‘circle theorem’. The theorem can also be used for non-circular boundaries if one
can find conformal transformation that maps the given boundary to a circle. The
circle theorem of Milne-Thomson has also its analogue in electrostatics [29], Stokes
flows [1, 35] and in isotropic elasticity [20]. Furthermore, the circle theorem has
also been extended to include surface singularity distributions [33, 2]. More recently,
Bellamy-Knights [3] extended the circle theorem to the case of an elliptic cylinder, by
the use of conformal mapping. The latter author gave a general expression for the
image system in an elliptical cylinder and used it to calculate the source-sink surface
singularity distribution on the ellipse. In the following, we state and prove a theorem
for a double circle Γ, formed by two infinite circular cylinders overlapping at an angle
π
n , n an integer (see Fig. 2.1), introduced into the given potential flow field.

Theorem 3.1. Let f(z) be the complex potential of the two-dimensional ir-
rotational motion of the incompressible inviscid fluid in z-plane whose singularities
(sources, vortices etc.) lie outside the double circle Γ. If we introduce an infinite
cylinder Γ into the flow field of f(z) then the modified potential becomes

W = f(z) + f1(z), (3.3)

f1(z) = f̄

(

a2

z

)

+ f̄

(

b2

z′
+ c

)

+

n−1
∑

j=1

′

[

fmod

(

mod(j − 1, 2)AAj + mod(j, 2)ABj + (−1)jAjP
2

zj

)

+fmod

(

mod(j − 1, 2)ABj + mod(j, 2)AAj + (−1)jBjP
2

z′j

)]

(3.4)

where the prime on summation indicates that the last term must be divided by 2,

fmod =

{

f, j odd

f̄ , j even,
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and mod(i, j) = integer part of (i/j).
Proof. We first note that the image terms are obtained by the use of successive

Kelvin’s inversion. It is known that the given harmonic function and its Kelvin’s
inversion will have the same value on the boundary . This property can be used in
showing how boundary conditions are satisfied. In view of this, it is sufficient to prove
the above theorem for the special case n = 2 and the proof for any fixed integer n
follows in a similar fashion. The expression (3.4) for n = 2 becomes

f1(z) = f̄

(

a2

z

)

+ f̄

(

b2

z′
+ c

)

+ f

(

a2

c
−
a2b2

c2z1

)

. (3.5)

The conditions to be satisfied are that
(1) f1(z) must be a solution of (3.1);
(2) f1(z) must have its singularities within Γ;
(3) W = f(z) + f1(z) must be real on Γ.

Let us now proceed to show that f1(z) given by (3.5) and hence W (z) satisfy the
above conditions.

The operator ∂2

∂z∂z̄ is form invariant under the translation of origin along the
x-axis (real axis). We observe the following properties:

(i) Inversion: If f0(z) is a solution of (3.1), then so is f̄0

(

a2

z

)

. This is analogous

to Kelvin’s inversion in three dimensions.
(ii) Reflection: If f0(z) is a solution of (3.1), then f0(−z) is also a solution.
(iii) Shifting of origin: If f0(z) is a solution of (3.1), then f0(z + h), where h

is a constant, is also a solution.
These properties are also true for the conjugate function. In view of the above prop-
erties, f1(z) given by (3.5) satisfies the Laplace equation and hence condition (1) is
satisfied.

It can be seen that if z lies outside Γ, then a2

z ,
b2

z ,
a2b2

c2z1

all lie inside Γ and condition
(2) is also satisfied.

To prove (3), we first note the following relations from the Fig. 2.1

z = z′ + c = z1 +
a2

c
,

z1 = z′ +
b2

c
, c2 = a2 + b2.

Also, we have

c2z1z̄1 =

{

a2z′z̄′ on |z| = a,

b2zz̄ on |z′| = b.

By the use of these relations we see that

W = f(z) + f̄

(

a2

z

)

+ f̄

(

a2z̄′

cz̄1

)

+ f

(

a2z′

cz1

)

, on |z| = a, (3.6)

W = f(z̄′ + c) + f̄

(

a2

z

)

+ f̄(z̄′ + c) + f

(

a2

z̄

)

, on |z′| = b. (3.7)

From (3.6), and (3.7) it is clear that W is real on Γ and therefore condition (3) is also
satisfied. This completes the proof of the theorem for n = 2.
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In a similar way, the theorem can be proved for arbitrary integer n. By the use
of continuous reflections on either circle, we have successfully obtained the general
solution to the problem. It is important to note that the solution is found in the
z-plane without recourse to conformal mapping techniques. If we set either a = 0 or
b = 0 in the above theorem we obtain the result for a single circular cylinder. We now
illustrate the theorem for the double circle with several examples.

3.1. A double circle ΓΓΓ at incidence to a uniform stream. The complex
potential for the flow at upstream is taken to be

f(z) = Uzeiα.

Now the complete complex potential after the introduction of Γ into this flow field,
by the use of the Theorem 1, is

W (z) = Uzeiα + U
a2

z
e−iα + U

(

b2

z′
+ c

)

e−iα

+U

n−1
∑

j=1

′

{[

mod(j − 1, 2)AAj + mod(j, 2)ABj + (−1)j AjP
2

zjmod

+ mod (j − 1, 2)ABj + mod(j, 2)AAj + (−1)j BjP
2

z′jmod

]

eiα
jmod

}

(3.8)

where

zjmod =

{

zj, j odd

z̄j, j even

and similar definition holds for z′jmod and the exponential appearing in the summa-

tion. The image system consists of doublets of strengths UAjP
2eiα

jmod , UBjP
2eiα

jmod

respectively located at the points Aj and Bj . In addition, there are constants cor-
responding to each image doublet appearing in the perturbed part of the complex
potential. These constants appear due to geometrical asymmetry and are part of the
solution. The boundary condition of the problem is satisfied with the aid of these
constants. In order to exemplify the use of (3.8), we consider a special value for n,
say n = 2. In this case, (3.8) becomes

W (z) = Uzeiα + U
a2

z
e−iα + U

(

b2

z′
+ c

)

e−iα + U

(

a2

c
−
a2b2

c2z1

)

eiα. (3.9)

The image doublets in the present case are located at A,B and A1(= B1) respectively.

The strengths of these doublets are Ua2e−iα, Ub2e−iα and −U a2b2

c2 eiα respectively.
We notice from (3.9) that the constants make the W real on Γ and do not contribute
anything to the complex velocity. The streamlines for uniform flow past the double
circle are plotted for the cases n = 2 and n = 3 in Fig. 3.1(a)-(c). The flow streamlines
are, as expected, curved near the spherical surfaces and straight everywhere else. The
flow patterns in Fig. 3.1(d)-(f) are discussed in the next subsection.

Fig. 3.2 shows instantaneous streamlines after the steady flow has been subtracted
out. The instantaneous streamlines in this figure are very similar to those for a double
source (dipole).
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The constants in the perturbed flow depend on the choice of origin. We may
illustrate this by choosing the origin at the center of the line of intersection of the two
circles. The complex potential may be obtained by the use of the theorem developed
in section 3, with the distances AAj , BBj etc. properly defined with respect to the
new origin. For simplicity we choose again n = 2 and the complete complex potential
for the uniform flow is

W (z) = Uz1e
iα + U

(

a2

z
−
a2

c

)

e−iα + U

(

b2

z′
+
b2

c

)

e−iα − U
a2b2

c2z1
eiα. (3.10)

Comparing the above expression with (3.9), we notice that the image systems are the
same but the constants are different. Interestingly, the constants in (3.10) cancel if
the two circles have the same radii (i.e. a = b). This is due to the added symmetry
about the y-axis.

3.2. Stagnation point flow. The complex potential in the absence of the
cylinder is f(z) = kz2, where k is a constant. The complete complex potential in the
presence of Γ is therefore, (by the use of the Theorem 1)

W (z) = kz2 + k
a4

z2
+ k

(

b2

z′
+ c

)2

+k

n−1
∑

j=1

′

[

(

mod(j − 1, 2)AAj + mod(j, 2)BBj + (−1)j AjP
2

zjmod

)2

+

(

mod(j − 1, 2)BBj + mod(j, 2)AAj + (−1)j BjP
2

z′jmod

)2


 .

The definitions of the notations are the same as before. The image system consists
of quadrupoles at the points Aj and Bj and doublets at B0, Aj and Bj (j > 1). In
the present example also, the constants appear for the compensation of the boundary
condition and are origin dependent. As explained in the previous example, the con-
stants vanish for two equal circles if the origin of Γ is chosen at the center of line of
intersection of the two circles. The pattern of streamlines do not seem to be affected
noticeably due to various vertex angles (see Fig. 3.1(d)-(f)).

3.3. Potential-dipole outside Γ. The complex potential due to a potential-
dipole of strength µ2 located at (0,−d) whose axis is along the positive y−direction
is

f(z) =
µ2

z1 + d
,

where z1 is a complex position of a point with E1(0,−d) as origin. The complex
potential in the presence of a double circle, by the use of the Theorem 1, becomes

W (z) = µ2

{

1

z1 + d
−
a2

d2

1

z2 + a2/d
−

b2

(c+ d)2
1

z3 + b2/d

+

n−1
∑

j=1

′

[

(−1)j AjP
2

zjmod +AAj
+ (−1)j BjP

2

z′jmod + BBj

]}

(3.11)

The image system consists of dipoles at the image points Aj and Bj . The plots
of streamlines in dipole flow are sketched in Fig. 3.3(a)-(b). It may be seen that
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Fig. 3.1. Streamline patterns for two-dimensional potential flows for two vertex angles π/n and
different radii ratio a/b. (i) Uniform flow: (a) n = 2, a/b = 2, (b) n = 3, a/b = 2, (a) n = 3, a/b = 1.
(ii) Extensional flow:(d) n = 2, a/b = 2, (e) n = 3, a/b = 2, (f) n = 3, a/b = 1.
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Fig. 3.2. Instantaneous streamlines after the steady flow has been subtracted out for two vertex
angles and different radii ratio (Two-dimensional case): (i) n = 2: (a) a/b = 1, (b) a/b = 2, (c)
a/b = 0.5. (ii) n = 3: (d) a/b = 1, (e) a/b = 2, (f) a/b = 0.5.
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Fig. 3.3. Streamline patterns due to potential dipole for two vertex angles and same radii
ratio a/b = 1). (i) Two-dimensional case: (a) n = 2, d = a + 0.5, (b) n = 3, d = a + 0.5. (ii)
Three-dimensional case: (c) n = 2, d = a + 1.0, (d) n = 3, d = a + 1.0.

the location of the singularity and the vertex angle do not change the flow pattern
significantly.

4. Two-dimensional Stokes flow. We now consider the steady viscous flow
around the double circle Γ. We assume that the Reynolds number is very small so
that the inertial effects can be neglected. In the case of a steady, two-dimensional slow
motion of a viscous incompressible fluid, it is convenient to use the stream function
formulation. It is well-known that the stream function in this case satisfies the two-
dimensional biharmonic equation

∇4ψ = 0. (4.1)



Generalized Circle and Sphere Theorems 11

where ∇2 = ∂2

∂x2 + ∂2

∂y2 . The velocity components in spherical polar coordinates (r, θ)
are

qr = −
1

r

∂ψ

∂θ

qθ =
∂ψ

∂r
.











. (4.2)

We define ψ(x, y) = Im[S(z, z̄)], where S is called a generalized stream function and
satisfies the biharmonic equation (in complex form)

∂4S

∂z2∂z̄2
= 0. (4.3)

The problem now reduces to solving equation (4.3) subject to the boundary conditions
prescribed on the double circle Γ. We select the boundary conditions on Γ as follows:

• Normal velocity is zero on Γ;
• Shear stress is zero on Γ.

The above conditions make Γ a two-dimensional stationary composite bubble. A brief
discussion on composite bubbles is provided in [4]. We now derive the above boundary
conditions in terms of S. The zero normal velocity condition can be written in terms
of S(z, z̄) (using (4.2)) as

S = 0 on zz̄ = a2,
S = 0 on z′z̄′ = b2

}

. (4.4)

The stress-free conditions in terms of S may be derived as follows: The tangential
stress component in polar coordinates is

Trθ = µ

[

1

r

∂qr
∂θ

+
∂qθ
∂r

−
qθ
r

]

= µ

[

−
1

r2
∂2ψ

∂θ2
+
∂2ψ

∂r2
−

1

r

∂ψ

∂r

]

, (4.5)

where µ is the dynamic coefficient of viscosity. Changing the variables from (r, θ) to
z = reiθ and z̄ = re−iθ , we obtain the boundary condition Trθ = 0 on Γ as

z̄
∂2S

∂z∂z̄
−
∂S

∂z
= 0 on zz̄ = a2

z̄′
∂2S

∂z′∂z̄′
−
∂S

∂z′
= 0 on zz̄ = b2



















, (4.6)

where the suffix denotes partial differentiation. The governing equation (4.3) and the
boundary conditions (4.4) and (4.6) constitute a well-posed problem whose solution
provides the velocity and pressure prevailing in the presence of Γ. Now the general
solution of (4.3) (in the absence of boundaries) is

S(z, z̄) = f(z) + g(z̄) + zF (z̄) + z̄G(z) (4.7)

where f(z), g(z̄), F (z̄) and G(z) are analytic functions of their arguments. Therefore,
two cases arise depending on whether the given flow is characterized by a harmonic
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function f(z) or by a biharmonic function zF (z̄). In the following we present a theo-
rem for calculating the perturbed flow when a stress-free double circle Γ is introduced
into a given unbounded flow which may be either harmonic or biharmonic.

Theorem 4.1. Let there be a two-dimensional slow viscous flow (Stokes flow or
creeping flow) of an incompressible fluid in the z-plane. Let there be no boundaries
and let the generalized complex stream function of the flow be a harmonic function
f(z) (or a biharmonic function zF (z̄)), whose singularities lie outside Γ. If a double
circle Γ, consisting of two overlapping circles defined by |z| = a and |z′| = b which
intersect at an angle π

n , n an integer, is introduced in the flow field satisfying the
boundary conditions (4.4) and (4.6), then the generalized stream function S of the
modified flow is given by

(I) S(z, z̄) = f(z) −
zz̄

a2
f

(

a2

z̄

)

−
z′z̄′

b2
f

(

c+
b2

z̄′

)

+

n−1
∑

j=1

′ (4.8)

[

zj z̄j

ApP 2
fmod(x)

(

mod(j − 1, 2)AAj + mod(j, 2)ABj + (−1)jAjP
2

zj

)

+
z′j z̄

′

j

BjP 2
fmod(x)

(

mod(j − 1, 2)ABj + mod(j, 2)AAj + (−1)jBjP
2

z′j

)]

(II) S(z, z̄) = zF (z̄) − zF

(

a2

z

)

−

(

z′ +
cz′z̄′

b2

)

F

(

c+
b2

z′

)

−

n−1
∑

j=1

′

[(

zjmod + (−1)j zj z̄jABj

BjP 2

)

×

F

(

mod(j − 1, 2)AAj + mod(j, 2)ABj + (−1)jAjP
2

zj

)

+

(

z′jmod + (−1)j
z′j z̄

′

jBjA

AjP 2

)

×

F

(

mod(j − 1, 2)ABj + mod(j, 2)AAj + (−1)jBjP
2

z′j

)]

(4.9)

where

fmod(x) =

{

f(x), j odd

f(x̄), j even

and

zjmod =

{

z̄j, jodd

zj, j even

with similar definitions for z′jmod. The other notations are the same as those defined
in Section 3.

Proof. We prove the result (4.8) for the case n = 2 and the proof for arbitrary
integer n follows in a similar fashion. The expression (4.8) for n = 2 is

S(z, z̄) = f(z) −
zz̄

a2
f

(

z2

z̄

)

−
z′z̄′

b2
f

(

c+
b2

z̄′

)

+
c2z1z̄1
a2b2

− f

(

a2

c
−
a2b2

c2z1

)

. (4.10)

The properties (i), (ii) and (iii) stated in Section 3 are also satisfied by equation (4.3)
and therefore the perturbation terms in (4.10) are the solutions of (4.3).
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The singularities of the perturbed terms lie inside Γ because the singularities of
the basic flow lie outside the double-circle.

The condition (4.4) is satisfied by the use of the relations c2z1z̄1 = a2z′z̄′ on
|z| = a and c2zz̄1 = b2zz̄ on |z′| = b. The first condition in (4.6) on zz̄ = a2 yields

z̄Szz̄ − Sz = −
z̄

a2
f

(

a2

z̄

)

+ f ′

(

a2

z̄

)

− f ′(z) +
z̄

a2
f

(

a2

z̄

)

+

(

a2

cz1
+
z̄

z̄′

)

f ′

(

c+
b2

z̄′

)

.

Since c2z1z̄1 = a2z′z̄′ on |z| = a, we see that r.h.s. of the above equation becomes
zero. Similarly on |z′| = b, the second condition in (4.6) becomes

z̄′Sz′z̄′ − Sz′ = −
z̄′

b2
f

(

c+
b2

z̄′

)

+ f ′

(

c+
b2

z′

)

− f ′

(

c+
b2

z̄′

)

+
z̄′

b2

(

c+
b2

z̄′

)

+

(

z̄′

z
−

b2

cz1

)

f ′

(

a2z′

cz1

)

= 0 (since c2z1z̄1 = b2zz̄ on z′z̄′ = b2).

Therefore all the necessary conditions are satisfied by the generalized stream function
S given by (4.10). A similar proof of the result (4.9) may be established along the
same lines. The theorem for a single circle may be obtained by setting one of the radii
equal to zero.

In the following we justify the usefulness of our theorem by considering various
flow problems.

4.1. Stokes paradox. Consider the uniform motion of a fluid with speed U
past a stress-free double circle Γ. The generalized stream function for the basic flow is
f(z) = Uz. The basic flow is characterized by a harmonic function. The generalized
stream function for the modified flow may be constructed by the use of equation (4.8).
Substituting f(z) = Uz in (4.8), we obtain the result

S(z, z̄) = 0. (4.11)

The above result is the familiar ‘Stokes paradox’ which states that there is no solution
for the uniform flow about a two-dimensional obstacle. The present results further
confirm the validity of the paradox for intersecting circles.

4.2. Extensional flow. The basic flow is characterized by the harmonic func-

tion f(z) = αz2

2 , α is a shear constant. By the use of the expression (4.8) (of the
Theorem 2 for the double circle), we obtain the generalized stream function for the
perturbed flow as

S(z, z̄) =
α

2

[

z2 −
a′z

z̄
−
z′z̄′

b2

(

c+
b2

z̄′2

)

+

n−1
∑

j=1

′

(

zj z̄j

AjP 2
×

(

mod(j − 1, 2)AAj + mod(j, 2)ABj + (1)j AjP
4

z2
jmod

)

+
z′j z̄

′

j

BjP 2

(

mod(j − 1, 2)ABj + mod(j, 2)AAj + (−1)j BjP
4

z′2jmod

))]

. (4.12)
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It is of interest to analyze the stream function ψ corresponding to this flow. For
convenient we consider the case when n = 2. The stream function ψ(r, θ) in polar
coordinates is

ψ(r, θ) = αr2 sin θ cos θ − αa2 sin θ cos θ − αb2 sin θ′ cos θ′

−αr′c sin θ′ − α
a2b2

c2
sin θ1 cos θ1 + α

a2

c
r1 sin θ1, (4.13)

where (r, θ), (r′, θ′) and (r1, θ1) are the polar coordinates corresponding to z, z′ and
z1, respectively.
If we had chosen the origin at the circle of intersection then the modified stream
function would have been

ψ(r1, θ1) = αr21 sin θ1 cos θ1 − αa2 sin θ cos θ − αb2 sin θ′ cos θ′

−
αa2b2

c2
sin θ1 cos θ1 +

a2

c
r sin θ −

b2

c
r′ sin θ′. (4.14)

Note that the shifting of origin has altered the image terms. The last two terms
correspond to the uniform flow at infinity and arise due to geometrical asymmetry. For
two equal circles, these two terms cancel since r sin θ = r′ sin θ′ etc. The appearance of
these terms is unusual and should be eliminated. For unequal circles one must subtract
suitable terms from the perturbed solution in order to have a pure extensional flow
at infinity.

The above behavior may also arise in many circumstances. It appears that when
the given flow is odd in z, the perturbed solution will have terms which produce
uniform flow at infinity. By a suitable subtraction similar to that explained in the
preceding paragraph, one might resolve the difficulties.

The streamlines due to extensional flow for two different origin locations are
plotted in Fig. 4.1(a)-(b). It may be noted that the change of origin does not alter
the flow pattern. The streamlines in the present case are qualitatively similar to the
two-dimensional inviscid flow past a double circle (Fig. 3.1(d)-(f)).

5. Three-dimensional inviscid flow. We consider two spheres of radii ‘a’
and ‘b’ centered at positions A and B respectively. Fig. 2.1 now represents the cross
section of the two-sphere assembly in the meridian plane. The two spheres Sa and Sb

overlap as shown in Fig. 2.1 and intersect at an angle π
n , n an integer. The composite

geometry Γ consisting of two overlapping spheres is called a double sphere. For the
special case a = b it is called a dumbbell. The overlapping geometry also possesses
the shape of a figure-eight lens. The following geometrical relations are evident from
Fig. 2.1:

c2 = a2 + b2 + 2ab cos
π

n
, (5.1)

r2j = r2 − 2AAj cos θ +AA2
j ,

= r′
2

+ 2BAj cos θ′ +BA2
j , (5.2)

where (r, θ, ϕ), (r′, θ′, ϕ) and (rj , θj , ϕ) are the spherical polar coordinates with respect
to A,B and Aj respectively. The other geometrical relations provided in section 2 also
hold for the present geometry. Therefore, we follow the notations used in section 2 in
our present problem.
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Fig. 4.1. Streamline patterns for two-dimensional extensional creeping flows with different
origins. (a) Origin at A (see Fig. 2.1), (b) Origin at the circle of intersection.

Consider axisymmetric irrotational flow of incompressible inviscid fluid in three
dimensions. It is well-known that for an axisymmetric irrotational motion of an
inviscid fluid, the Stokes stream function ψ(ρ, z), (ρ, z) being cylindrical coordinates,
satisfies the equation

D2ψ = 0 (5.3)

where D2 = ∂2

∂ρ2 − 1
ρ

∂
∂ρ + ∂2

∂z2 . Since the operator D2 is form invariant under a
translation of origin along the z-axis, we observe that:

(A) Inversion: If ψ(ρ, z) is a solution of (5.3), then r
aψ
(

a2ρ
r2 ,

a2

r2 z
)

is also a

solution. This is the known Kelvin’s inversion in a sphere whose radius is ‘a’.
Here r =

√

ρ2 + z2.
(B) Reflection: If ψ(ρ, z) is a solution of (5.3), then so is ψ(ρ,−z).
(C) Translation of origin: If ψ(ρ, z) is a solution of (5.3), then ψ(ρ, z + h),

where h is a constant, is also a solution.
We take z-axis as the axis of symmetry, and (ρ, z), (ρ′, z′), (ρj , zj) and (ρ′j , z

′

j) as
the cylindrical coordinates of a point outside Γ with A,B,Aj and Bj as origin.

We now proceed to present a general theorem for constructing the perturbed
stream function when the double sphere Γ is introduced into a given irrotational flow
field. The problem of uniform flow about a lens (double sphere in our terminology)
has been studied by many authors several years ago. The lens problem was treated
by Shiffman and Spencer [36] by the use of an ingenious and difficult procedure in-
volving the method of images in a multi-sheeted Riemann-Sommerfeld space. Later,
a simple approach to the same problem was presented by Payne [27] by the use of
generalized electrostatics. The latter author used the toroidal coordinates and Legen-
dre functions of complex degree in the derivation of exact expressions for the stream
function. However, the solutions derived in [36] and [27] involved tedious calculations
and therefore only the problem of uniform flow around the lens was considered. Here
we show that a simple general solution exists for arbitrary axisymmetric flow around
a double sphere if the two spheres intersect at an angle π

n , n an integer. The method
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is based on the Kelvin’s transformation which is taken successively n times. We show
that The solution for the perturbed flow can be written down with the only knowledge
of the stream function in an unbounded flow.

The velocity components corresponding to the stream function ψ are given by

uρ =
1

ρ

∂ψ

∂z

uz = −
1

ρ

∂ψ

∂ρ











. (5.4)

The boundary condition on Γ is that the normal velocity is zero on the surface. In
terms of the stream function this condition becomes

ψ = 0 on Γ. (5.5)

The above condition makes Γ a rigid boundary and the stream sheets are given di-
rectly. We denote by ψ0(ρ, z) the stream function for an unbounded fluid motion.

Theorem 5.1. Let ψ0(ρ, z) be the Stokes stream function for an axisymmetric
motion of an inviscid fluid in the unbounded region all of whose singularities lie outside
the double sphere Γ, formed by two overlapping spheres which intersect at an angle
π
n , n an integer. When the rigid boundary Γ is introduced into the flow field of ψ0,
then the modified stream function for the fluid external to this boundary is given by

ψ(ρ, z) = ψ0(ρ, z) −
( r

a

)

ψ0

(

a2ρ

r2
,
a2z

r2

)

−

(

r′

b

)

ψ0

(

b2ρ′

r′2
, c+

b2z′

r′2

)

+

n−1
∑

j=1

′(−1)j+1

[

rj
AjP

ψ0

(

AjP
2ρj

r2j
,mod(j + 1, 2)AAj + mod(j, 2)ABj + (−1)jAjP

2

r2j
zj

)

+

(

r′j
BjP

ψ0

(

BjP
2

r′2j
ρ′j ,mod(j + 1, 2)ABj

+ mod (j, 2)AAj + (−1)jBjP
2

r′2j
z′j

))]

(5.6)

The notations are as defined in section 3.
Proof. By virtue of the properties (A), (B) and (C), the perturbation terms in

(5.6) are the solutions of (5.3). By the use of the geometrical relations (5.1) and (5.2),
it can be shown that the expression (5.6) satisfies the boundary condition (5.5).

Since the singularities of ψ0(ρ, z) lie outside Γ, the singularities of the perturbation
terms lie inside Γ. This is because the perturbation terms in (5.6) represent the
inversion of ψ0 in Γ.

Further, since ψ0 is finite at the origin, it should be of order O(r2) there. Then the
perturbation terms in (5.6) are of order O

(

1
r

)

for large r. This makes the perturbation
velocity zero as r → ∞. Therefore, all the required conditions are satisfied by the
expression (5.6).

We note that the expression (5.6) represents a general solution to the stream
function due to the presence of Γ in an axisymmetric, inviscid flow. This solution
can be used as a basic set for the study of interactions of double sphere with other
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objects. Also, the solution has been obtained without the use of toroidal coordinates.
If we set one of the radii of the spheres equal to zero, we recover the theorem for a
single spherical boundary. In the following we present some examples to justify the
usefulness of the theorem.

5.1. Uniform flow around ΓΓΓ. The stream function for uniform flow along
z−direction with the speed U is ψ0 = 1

2Uρ
2. The perturbed stream function due to

the presence of Γ may be obtained by the use of (5.6) and is given by

ψ(ρ, z) =
1

2
Uρ2 −

1

2
U
a3

r3
ρ2 −

1

2
U
b3

r′2
ρ′2

+
1

2
U

n−1
∑

j−1

′(−1)j+1

[

AjP
3

r3j
ρ2

j +
BjP

3

r′3j
ρ′2j

]

. (5.7)

The image system consists of doublets (potential-dipoles) of strengths Ua3, Ub3,
(−1)j+1UAjP

3 and (−1)j+1UBjP
3 located at A,B,Aj and Bj respectively. The

distances AjP and BjP may be calculated by the use of the relations (2.4). The
streamlines for the uniform flow are sketched in Fig. 5.1(a)-(c). The flow patterns are
qualitatively similar to the two-dimensional inviscid flow (see Fig. 3.1(a)-(c)). Fig. 5.2
shows instantaneous streamlines after the steady flow has been subtracted out. These
differ considerably from the two-dimensional motion (see Fig. 3.2).

It may be of interest to analyze the expression for sum of the strengths of the
image doublets, which is given by

Dsum = −U



a3 + b3 −

n−1
∑

j=1

′(−1)j+1(AjP
3 +BjP

3)



 . (5.8)

The doublet strength can further be used to determine the virtual mass if the volume
of the double sphere is known. The volume of the double sphere is

V =
π

12

[

2a+ 2b− c+
3(a− b)2

c

]

(a+ b+ c)2, (5.9)

where c is given in (5.1). The virtual mass M now becomes

M = πDsum − V, (5.10)

where Dsum and V are given in (5.8) and (5.9). The plots of M
V for various vertex

angles are presented in Fig. 5.3. It can be seen that M
V decreases for b/a < 1 until

it reaches its minimum value. For the values b/a > 1, it increases gradually until it
becomes a constant. The vertex angle has significant influence on the minimum value
of M

V .

5.2. Extensional flow. The stream function corresponding to the extensional
flow (without Γ) is ψ0 = ρ2z. The perturbed stream function, using (5.6), is

ψ(ρ, z) = ρ2z −
a5ρ2z

r5
−
b3

r3
ρ2

(

c+
b2z

r2

)

+
n−1
∑

j=1

′(−1)j+1 (5.11)

[

AjP
3

r3j
ρ2

j

(

mod(j + 1, 2)AAj + mod(j, 2)ABj + (−1)jAjP
2

r2j
zj

)

+
BjP

3

r′3j
ρ′2j

(

mod(j + 1, 2)ABj + mod(j, 2)AAj + (−1)jBjP
2

r′2j
z′j

)]

.



18 Daripa and Palaniappan

−6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

(a)
−6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

(d)

−6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

(b)
−6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

(e)

−6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

(c)
−6 −4 −2 0 2 4 6 8 10 12
0

1

2

3

4

5

6

(f)

Fig. 5.1. Streamline patterns for three-dimensional potential flows for two vertex angles π/n
and different radii ratio a/b. (i) Uniform flow: (a) n = 2, a/b = 2, (b) n = 3, a/b = 2, (c)
n = 3, a/b = 1. (ii) Extensional flow:(d) n = 2, a/b = 2, (e) n = 3, a/b = 2, (f) n = 3, a/b = 1.
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Fig. 5.2. Instantaneous streamlines after the steady flow has been subtracted out for two vertex
angles and different radii ratio (Three-dimensional case): (i) n = 2: (a) a/b = 1, (b) a/b = 2, (c)
a/b = 0.5. (ii) n = 3: (d) a/b = 1, (e) a/b = 2, (f) a/b = 0.5.
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The image system consists of potential quadrupoles of strengths a5, b5, (−1)j+1AjP
5,

(−1)j+1BjP
5 at A,B,Aj and Bj respectively. In addition, there are doublets located

at B,Aj and Bj in the image system. The strengths of these doublets depend on the
choice of coordinate system. For instance, if the origin is chosen at the center of the
circle where the two spheres intersect, and further if a = b (equal spheres), the sum of
the strengths of those doublets vanish. The streamlines in this case are qualitatively
similar to those in the two-dimensional flow (see Fig. 5.1(d)-(e)). The vertex angle
and the radii of the spherical surfaces do not change the flow pattern noticeably.

5.3. Potential-doublet. Now consider a potential-doublet of strength µ3 lo-
cated at (0, 0,−d) on the axis of symmetry. The stream function corresponding to
this doublet in the unbounded flow is

ψ0 = µ3
ρ2

r31
,

where r21 = r2 + 2dr cos θ + d2. The complete stream function after the introduction
of the double sphere, using the Theorem 3, becomes

ψ(ρ, z) = µ3ρ
2

[

−
a3

d3r3
−

b3

(c+ d)3r′2

+

n−1
∑

j−1

′(−1)j+1

(

AjP
3

r3j
+
BjP

3

r′3j

)]

. (5.12)

The image system consists of doublets at the respective image points. The streamline
patterns in the present case are plotted in Fig. 3.3(c)-(d). Here again the location of
dipole and vertex angle do not affect the flow structure.
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6. Three-dimensional Stokes flow. We consider a steady creeping flow
of an incompressible viscous fluid in three dimensions. For an axisymmetric flow,
the problem may be formulated in terms of Stokes stream function. In this case,
the equations of motion reduce to solving the fourth order axisymmetric biharmonic
equation

D4ψ = 0, (6.1)

where, as in the previous section, D2 = ∂2

∂ρ2 − 1
ρ

∂
∂ρ + ∂2

∂z2 , (ρ, z) being cylindrical

coordinates. Since z does not occur explicitly in the operator D2, it is form invariant
under a translation of origin along the z-axis. As in inviscid flow, we observe the
following properties for the axisymmetric biharmonic equation:

(A’) Inversion: If ψ(ρ, z) is a solution of (6.1), then
(

r
a

)3
ψ
(

a2ρ
r2 ,

a2z
r2

)

is also a

solution. This is the well-known spherical inversion for biharmonic functions.
Here ‘a’ is the radius of inversion and r =

√

ρ2 + z2.
(B’) Reflection: If ψ(ρ, z) is a solution of (6.1), then, so is ψ(ρ,−z).
(C’) Translation: If ψ(ρ, z) is a solution of (6.1), then ψ(ρ, z + h), where h is a

constant, is also a solution.
Note that the last two properties are the same as in the case of inviscid flow in
three dimensions. We now derive the stream function when the double sphere Γ is
introduced in to a given Stokes or creeping flow. There are several types of boundary
conditions that may be imposed on Γ. We select the impervious and stress-free
conditions on the surface. In terms of stream function they are stated as follows:
(i) normal velocity is zero on Γ (impervious condition):

ψ = 0 on r = a
ψ = 0 on r′ = b

}

(6.2)

(ii) shear-stress is zero on Γ:

∂

∂r

(

1

r2
∂ψ

∂r

)

= 0 on r = a

∂

∂r′

(

1

r′2
∂ψ

∂r′

)

= 0 on r′ = b.















(6.3)

The conditions (6.2) make Γ a stream surface and (6.3) make it stress-free (composite
bubbles). The existence of composite bubbles in liquids was discovered by Plateau
who also discussed those observations in his book ‘Statique des Liquides’. Further
brief discussion on composite bubbles is provided in [4]. The governing equation (6.1)
subject to the boundary conditions (6.2) and (6.3) constitute a well-posed problem
whose solution provides the velocity and pressure in the presence of the stress-free
double sphere Γ. The velocity components may be obtained from (5.4) and the pres-
sure may be found from

∂p

∂ρ
= −

µ

ρ

∂

∂z
(D2ψ)

∂p

∂z
=
µ

ρ

∂

∂p
(D2ψ)

(6.4)

where µ is the dynamic coefficient of viscosity. In the following, we state and prove a
theorem for a composite bubble suspended in an arbitrary axisymmetric slow viscous
flow.



22 Daripa and Palaniappan

Theorem 6.1. Let ψ0(ρ, z) be the Stokes stream function for an axisymmetric
motion of a viscous fluid in the unbounded region all of whose singularities lie outside
the double sphere (composite bubble) formed by two overlapping unequal, impervious,
shear-free spheres, intersect at an angle π

n , n an integer, and suppose that ψ0(ρ, z) =
O(r2) at the origin. When the stress-free boundary Γ is introduced into the flow field
of ψ0, the modified stream function for the fluid external to Γ is

ψ(ρ, z) = ψ0(ρ, z) −
( r

a

)3

ψ0

(

a2ρ

r2
,
a2z

r2

)

−

(

r′

b

)3

ψ0

(

b2ρ′

r′2
, c+

b2z′

r′2

)

+

n−1
∑

j=1

′(−1)j+1

[

(

rj
AjP

)3

ψ0

(

AjP
2

r2j
ρj ,mod(j + 1, 2)AAj

+ mod (j, 2)ABj + (−1)jAjP
2

r2j
zj

)

+

(

r′j
BjP

)3

ψ0

(

BjP
2

r′2j
ρ′j ,mod(j + 1, 2)ABj + mod(j, 2)AAj + (−1)jBjP

2

r′2j
z′j

)]

. (6.5)

Here again the notations are the same as those defined in section 3. The second and
third terms on the r.h.s of (6.5) are the images of ψ0(ρ, z) in the spheres A and B
respectively and the terms in the summation represent the successive images.

Proof. By virtue of the properties (A’), (B’) and (C’), the perturbation terms in
(6.5) are the solutions of the axisymmetric biharmonic equation (6.1).

It can be shown that the expression (6.5) satisfy the boundary conditions (6.2)
and (6.3) by the use of relations (5.1) and (5.2).

The perturbation terms in (6.5) have their singularities inside Γ since the sin-
gularities of ψ0(ρ, z) lie outside the double sphere. Finally, since ψ0(ρ, z)= o(r2) as
r → 0, the perturbation terms in (6.5) are at most of order o(r) as r → ∞. Hence,
the perturbation velocity tends to zero as r → ∞. This completes the proof.

The above theorem may be used to compute the velocity and pressure fields when
a stress-free boundary Γ is suspended in an arbitrary axisymmetric creeping flow. Our
theorem reduces to the case of a single stress-free sphere if we set either a or b equal to
zero. It is of interest to calculate the force on Γ in each case. Although the expression
(6.5) may still be used to deduce the drag on the composite bubble, we give here
another simple formula for finding the force without calculating the perturbed flow.

We note that we employed the successive reflection technique in obtaining the
perturbed stream function (6.5). By the use of the same procedure for the force, we
obtain

F = 4πµêz







a[u0]A + b[u0]B +

n−1
∑

j=1

′(−1)j(AjP [u0]Aj
+BjP [u0]Bj

)







. (6.6)

The expression (6.6) is a Faxen relation for the composite bubble. If one is interested
in the force acting on Γ suspended in an axisymmetric flow, then (6.6) may be used
without calculating the detailed flow. In the expression (6.6), êz is the unit vector in
z direction, ū0 is the unperturbed flow and the suffixes outside the square brackets
denote the evaluation of the quantities at those points. It is worth mentioning here
that the drag force is equivalent to the strength of the image stokeslets. Therefore,
if the solution in the presence of any body is expressed in singularity form, then the
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drag follows immediately from the image stokeslets strengths. The latter could be an
alternative approach for the calculation of the drag force.

6.1. Uniform flow past ΓΓΓ. The stream function for the uniform flow along the
z-direction is ψ0(ρ, z) = 1

2Uρ
2. When the stress-free double sphere Γ is introduced in

the flow field, then the modified stream function becomes (using (6.5)),

ψ(ρ, z) =
1

2
Uρ2 −

1

2
Ua

ρ2

2
−

1

2
Ub

ρ′2

r′
+

1

2
U

n−1
∑

j=1

′(−1)j+1

(

AjP

rj
ρ2

j +
BjP

r′j
ρ′2j

)

.

(6.7)

The image system consists of Stokeslets directed along z axis whose strengths are
4πµUa, 4πµUb, 4πµU(−1)jAjP , 4πµU(−1)jBjP located at A,B, Aj and Bj respec-
tively. The streamlines for uniform flow past Γ are presented in Fig. 6.1(a)-(c). The
flow patterns are as expected. The vertex angle and the radii of the spherical surfaces
do not seem to influence the flow behavior. The drag may be calculated by the use
of (6.6) and is given by

F = 4πµU êz







a+ b+

n−1
∑

j=1

′(−1)j(AjP +BjP )







. (6.8)

If we set either a = 0 or b = 0 in the above expression, we obtain the result for a
single stress-free sphere.

The normalized drag Fz

4πµu(a+b) is plotted against the ratio b/a) for various vertex

angles in Fig. 6.2. Here, Fz is the z component of the force F. The graph shows
that for each vertex angle, the drag force decreases monotonically with increasing b/a
until it reaches a minimum at b/a ≈ 1, and thereafter it increases monotonically with
increasing b/a. Thus, the drag attains its minimum value when the two spheres have
almost the same radii, and this minimum value for the drag increases with increasing
values of n, or equivalently, with decreasing vertex angle pi/n.

6.2. Extensional flow. The stream function for the extensional flow in the
absence of Γ is ψ0(ρ, z) = αρ2z where α is a shear constant. The perturbed stream
function due to the presence of Γ is

ψ(ρ, z) = αρ2z − αa3 ρ
2z

r3
− α

hρ2

r′

(

c+
b2z′

r′2

)

+ α

n−1
∑

j=1

′(−1)j+1

[

AjP

rj
ρ2

j

(

mod(j + 1, 2)AAj + mod(j, 2)ABj + (−1)jAjP
2

r2j
zj

)

+
BjP

r′j
ρ′2j

(

mod(j + 1, 2)ABj + mod(j, 2)AAj + (−1)jBjP
2

r′2j
z′j

)]

. (6.9)

The image system consists of symmetric Stokes doublets (stresslets) of strengths
αa3, αb3, α(−1)jAjP

3, α(−1)jBjP
3 located at A,B,Aj and Bj respectively. In ad-

dition to these stresslets, there are Stokeslets at B,Aj and Bj respectively. The
typical streamline pattern due to extensional flow in the presence of Γ are depicted in
Fig. 6.1(d)-(e). The flow structure is similar to that in the case of inviscid flow (see
Fig. 3.1(d)-(f)). The presence of the Stokeslets indicate that the stress-free double
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Fig. 6.1. Streamline patterns for three-dimensional creeping flows for two vertex angles π/n
and different radii ratio a/b. (i) Uniform flow: (a) n = 2, a/b = 2, (b) n = 3, a/b = 2, (a)
n = 3, a/b = 1. (ii) Extensional flow:(d) n = 2, a/b = 2, (e) n = 3, a/b = 2, (f) n = 3, a/b = 1.
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Fig. 6.2. The variation of the drag force with the radii ratio b/a in uniform flow.

sphere Γ experiences a force in extensional flow. The force is found (using (6.6)) to
be

F = 4πµαêz

{

bc+
n−1
∑

j=1

′(−1)j[AjP (mod(j + 1, 2)AAj + mod(j, 2)ABj)

+BjP (mod(j + 1, 2)ABj + mod(j, 2)AAj)]

}

. (6.10)

In Fig. 6.3, the normalized drag Fz

4πµα(a+b)2 is plotted against the radii ratio b/a

for various values of n. It is seen that the drag is monotonically increasing with b/a for
each value of n. It appears from this figure that the rate of increase of the drag force
decreases with increasing b/a, and the drag force appears to approach asymptotically
to a constant value for large b/a, this constant being different for different n perhaps.
Furthermore, we see that the drag increases with increasing n for each b/a.

We note that the drag force in extensional flow is origin dependent. This is
because the basic flow itself is origin dependent. If we choose the origin at the center
of circle of intersection of the two spheres, then the force is zero if the two spheres
have the same radii (i.e. a = b). This is due to the added symmetry in the problem.
On the other hand if the spheres have different radii, the force does not become zero
for any value of the parameters. If one wishes to calculate the stresslet coefficient, it is
necessary to subtract the translational velocity obtained from Stokes problem. In this
case, the translational part arising from extensional flow cancels with the translational
part of the Stokes problem leaving out only stresslets in the solution.

6.3. Stokeslet outside Γ. Consider a stokeslet of strength F3

8πµ located at

(0, 0,−d) on the axis of symmetry. The stream function corresponding to this stokeslet
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Fig. 6.3. The variation of the drag force with the radii ratio b/a in extensional flow.

in the unbounded flow is

ψ0 =
F3

8πµ

ρ2

r1
,

The complete stream function after the introduction of Γ, using the Theorem 4,
becomes

ψ(ρ, z) =
F3

8πµ
ρ2

[

−
a

dr
−

b

(c+ d)r′

+

n−1
∑

j−1

′(−1)j+1

(

AjP

rj
+
BjP

r′j

)

]

. (6.11)

The image system consists of stokeslets located at the respective image points. The
streamline patterns in the present case are plotted in Fig. 6.4(a)-(d). Here again the
location of stokeslet and vertex angle do not affect the flow structure.

The force on the composite bubble in the present case, using (6.6), is

F = 4πµêz







a

d
+

b

c+ d
+

n−1
∑

j=1

′(−1)j

(

AjP

AAj
+
BjP

BBj

)







(6.12)

In Fig. 6.5, we have plotted the drag force 2Fz

F3

, F3 = 8πµ against the radii ratio
b/a for different vertex angles. The force increases or decreases according to b/a < or
> 1. When b/a = 1, the drag attains its maximum value. Furthermore, the maximum
value for the drag increases with decreasing value of n or equivalently, with increasing
vertex angle π/n.
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Fig. 6.4. Streamline patterns due to a stokeslet located outside Γ for two vertex angles and
same radii ratio a/b = 1. (a) n = 2, d = a + 1.0, (b) n = 3, d = a + 1.0, (c) n = 2, d = a + 0.5, (d)
n = 3, d = a + 0.5.

7. Conclusion. Simple theorems are obtained for the two overlapping cir-
cles/spheres applicable to inviscid and viscous hydrodynamics. The key idea used
in the derivation of our results is the Kelvin’s transformation. The present results
cover the cases of single and two touching spherical/cylindrical surfaces, although, the
latter has not been stated explicitly in the text. Our method does not use the toroidal
or bicylindrical coordinates as in [27, 36] and hence avoids the tedious calculations
even in complex flow situations. Another significant feature of our procedure is that
it allows the interpretation of image singularities in each case. The locations of image
singularities depend on the given potential distribution.

Finally, the present results are constructed using the constraint that the two
spherical/cylindrical surfaces intersect at a vertex angle π/n, n an integer. For an
arbitrary vertex angle, the number of image terms may not terminate and one could
end up with infinite terms. The toroidal or bicylindrical systems could be used in
these situations but the resulting analysis could be as tedious as in the case of calcu-
lations with bispherical coordinates [34]. Furthermore, solving singularity driven flow
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Fig. 6.5. The variation of the drag force with the radii ratio b/a due to a stokeslet.

problems using these coordinate systems is yet to be examined.
Two- and three-dimensional flow patterns in uniform and extensional flows pre-

sented for several values of vertex angle show that the vertex angle does not influence
the flow patterns significantly. These studies have been carried out subject to the
constraint that the vertex angle be π

n . However, from our above studies it is presum-
ably safe to conjecture that the flow pattern may not change noticeably even in the
case of an arbitrary vertex angle.

Appendix. Results in support of equation (2.3). The recurrence relations
(2.2) for some special values of n are as follows:

a1 =
a2

c
, b1 =

b2

c

a2 =
a2c

c2 − b2
, b2 =

b2c

c2 − a2

a3 =
a2(c2 − a2)

c(c2 − a2 − b2)
, b3 =

b2(c2 − b2)

c(c2 − a2 − b2)

a4 =
a2c(c2 − a2 − b2)

[

c2(c2 − a2 − b2) − b2(c2 − b2)

] , b4 =
b2c(c2 − a2 − b2)

[

c2(c2 − a2 − b2) − a2(c2 − a2)

]

a5 =

a2

[

c2(c2 − a2 − b2) − a2(c2 − a2)

]

c

[

(c2 − b2)(c2 − a2 − b2) − a2(c2 − a2)

] ,
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b5 =

b2
[

c2(c2 − a2 − b2) − b2(c2 − b2)

]

c

[

(c2 − a2)(c2 − a2 − b2) − b2(c2 − b2)

]

Using the above expressions together with (2.1), it can be easily seen that an−1 +
bn−1 = c for n = 2, 3, 4, 5, 6. In a similar way, it can be shown that this result is true
for higher values of n also leading to the equation (2.3).
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